

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to:

docfeedback@sun.com

Sun Performance Library

Reference Manaual

Sun™ ONE Studio 8

Part No. 817-0934-10
May 2003 Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Portions of this product are derived in part
from Cray90, a product of Cray Research, Inc.

libdwarf

 and

libredblack

 are Copyright 2000 Silicon Graphics, Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com

.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun ONE Studio, the Solaris logo and the Sun ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits reserves.

Droits du gouvernement americain, utlisateurs gouvernmentaux logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR (Federal Acquisition Regulations) et des
supplements a celles-ci.

Distribue par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants developpes par des tierces parties.

Des parties de ce produit pourront etre derivees Cray CF90, un produit de Cray Inc.

Des parties de ce produit pourront etre derivees des systemes Berkeley BSD licencies par l’Universite de Californie.UNIX est une marque
deposee aux Etats-Unis et dans d’autres pays et licenciee exclusivement par X/Open Company, Ltd.

libdwarf

 et

libredblack

 sont déposent 2000 Silicon Graphics, Inc. et sont disponible sous le GNU Moins Général Public Permis de

http://www.sgi.com

.

Sun, Sun Microsystems, le logo Sun, Java, Sun ONE Studio, le logo Solaris et le logo Sun ONE sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Sun Performance Library[tm] Reference Manual

Sun [tm] ONE Studio 8

This reference manual is the Sun Performance Library section 3P man pages, available in HTML and PDF formats. For
additional information, see the Sun Performance Library User's Guide, available on docs.sun.com, or the LAPACK Users'
Guide, available from the Society for Industrial and Applied Mathematics (SIAM).

available_threads - available_threads - returns information about current thread usage

blas_dpermute - blas_dpermute - permutes a real (double precision) array in terms of the permutation vector P, output
by dsortv

blas_dsort - blas_dsort - sorts a real (double precision) vector X in increasing or decreasing order using quick sort
algorithm

blas_dsortv - blas_dsortv - sorts a real (double precision) vector X in increasing or decreasing order using quick sort
algorithm and overwrite P with the permutation vector

blas_ipermute - blas_ipermute - permutes an integer array in terms of the permutation vector P, output by dsortv

blas_isort - blas_isort - sorts an integer vector X in increasing or decreasing order using quick sort algorithm

blas_isortv - blas_isortv - sorts a real vector X in increasing or decreasing order using quick sort algorithm and
overwrite P with the permutation vector

blas_spermute - blas_spermute - permutes a real array in terms of the permutation vector P, output by dsortv

blas_ssort - blas_ssort - sorts a real vector X in increasing or decreasing order using quick sort algorithm

blas_ssortv - blas_ssortv - sorts a real vector X in increasing or decreasing order using quick sort algorithm and
overwrite P with the permutation vector

caxpy - caxpy - compute y := alpha * x + y

caxpyi - caxpyi - Compute y := alpha * x + y

cbcomm - cbcomm - block coordinate matrix-matrix multiply

cbdimm - cbdimm - block diagonal format matrix-matrix multiply

cbdism - cbdism - block diagonal format triangular solve

cbdsqr - cbdsqr - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix
B.

cbelmm - cbelmm - block Ellpack format matrix-matrix multiply

cbelsm - cbelsm - block Ellpack format triangular solve

cbscmm - cbscmm - block sparse column matrix-matrix multiply

cbscsm - cbscsm - block sparse column format triangular solve

cbsrmm - cbsrmm - block sparse row format matrix-matrix multiply

cbsrsm - cbsrsm - block sparse row format triangular solve

ccnvcor - ccnvcor - compute the convolution or correlation of complex vectors

ccnvcor2 - ccnvcor2 - compute the convolution or correlation of complex matrices

ccoomm - ccoomm - coordinate matrix-matrix multiply

ccopy - ccopy - Copy x to y

ccscmm - ccscmm - compressed sparse column format matrix-matrix multiply

ccscsm - ccscsm - compressed sparse column format triangular solve

ccsrmm - ccsrmm - compressed sparse row format matrix-matrix multiply

ccsrsm - ccsrsm - compressed sparse row format triangular solve

cdiamm - cdiamm - diagonal format matrix-matrix multiply

cdiasm - cdiasm - diagonal format triangular solve

cdotc - cdotc - compute the dot product of two vectors conjg(x) and y.

cdotci - cdotci - Compute the complex conjugated indexed dot product.

cdotu - cdotu - compute the dot product of two vectors x and y.

cdotui - cdotci - Compute the complex conjugated indexed dot product.

cellmm - cellmm - Ellpack format matrix-matrix multiply

cellsm - cellsm - Ellpack format triangular solve

cfft2b - cfft2b - compute a periodic sequence from its Fourier coefficients. The xFFT operations are unnormalized, so a
call of xFFT2F followed by a call of xFFT2B will multiply the input sequence by M*N.

cfft2f - cfft2f - compute the Fourier coefficients of a periodic sequence. The xFFT operations are unnormalized, so a
call of xFFT2F followed by a call of xFFT2B will multiply the input sequence by M*N.

cfft2i - cfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

cfft3b - cfft3b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a
call of CFFT3F followed by a call of CFFT3B will multiply the input sequence by M*N*K.

cfft3f - cfft3f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call
of CFFT3F followed by a call of CFFT3B will multiply the input sequence by M*N*K.

cfft3i - cfft3i - initialize the array WSAVE, which is used in both CFFT3F and CFFT3B.

cfftb - cfftb - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call
of CFFTF followed by a call of CFFTB will multiply the input sequence by N.

cfftc - cfftc - initialize the trigonometric weight and factor tables or compute the Fast Fourier transform (forward or
inverse) of a complex sequence.

cfftc2 - cfftc2 - initialize the trigonometric weight and factor tables or compute the two-dimensional Fast Fourier
Transform (forward or inverse) of a two-dimensional complex array.

cfftc3 - cfftc3 - initialize the trigonometric weight and factor tables or compute the three-dimensional Fast Fourier
Transform (forward or inverse) of a three-dimensional complex array.

cfftcm - cfftcm - initialize the trigonometric weight and factor tables or compute the one-dimensional Fast Fourier
Transform (forward or inverse) of a set of data sequences stored in a two-dimensional complex array.

cfftf - cfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
CFFTF followed by a call of CFFTB will multiply the input sequence by N.

cffti - cffti - initialize the array WSAVE, which is used in both CFFTF and CFFTB.

cfftopt - cfftopt - compute the length of the closest fast FFT

cffts - cffts - initialize the trigonometric weight and factor tables or compute the inverse Fast Fourier Transform of a
complex sequence as follows.

cffts2 - cffts2 - initialize the trigonometric weight and factor tables or compute the two-dimensional inverse Fast
Fourier Transform of a two-dimensional complex array.

cffts3 - cffts3 - initialize the trigonometric weight and factor tables or compute the three-dimensional inverse Fast
Fourier Transform of a three-dimensional complex array.

cfftsm - cfftsm - initialize the trigonometric weight and factor tables or compute the one-dimensional inverse Fast
Fourier Transform of a set of complex data sequences stored in a two-dimensional array.

cgbbrd - cgbbrd - reduce a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary
transformation

cgbcon - cgbcon - estimate the reciprocal of the condition number of a complex general band matrix A, in either the
1-norm or the infinity-norm,

cgbequ - cgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

cgbmv - cgbmv - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
y := alpha*conjg(A')*x + beta*y

cgbrfs - cgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded,
and provides error bounds and backward error estimates for the solution

cgbsv - cgbsv - compute the solution to a complex system of linear equations A * X = B, where A is a band matrix of
order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

cgbsvx - cgbsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

cgbtf2 - cgbtf2 - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

cgbtrf - cgbtrf - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

cgbtrs - cgbtrs - solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band
matrix A using the LU factorization computed by CGBTRF

cgebak - cgebak - form the right or left eigenvectors of a complex general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by CGEBAL

cgebal - cgebal - balance a general complex matrix A

cgebrd - cgebrd - reduce a general complex M-by-N matrix A to upper or lower bidiagonal form B by a unitary
transformation

cgecon - cgecon - estimate the reciprocal of the condition number of a general complex matrix A, in either the 1-norm
or the infinity-norm, using the LU factorization computed by CGETRF

cgeequ - cgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its
condition number

cgees - cgees - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

cgeesx - cgeesx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

cgeev - cgeev - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left
and/or right eigenvectors

cgeevx - cgeevx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left
and/or right eigenvectors

cgegs - cgegs - routine is deprecated and has been replaced by routine CGGES

cgegv - cgegv - routine is deprecated and has been replaced by routine CGGEV

cgehrd - cgehrd - reduce a complex general matrix A to upper Hessenberg form H by a unitary similarity
transformation

cgelqf - cgelqf - compute an LQ factorization of a complex M-by-N matrix A

cgels - cgels - solve overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its
conjugate-transpose, using a QR or LQ factorization of A

cgelsd - cgelsd - compute the minimum-norm solution to a real linear least squares problem

cgelss - cgelss - compute the minimum norm solution to a complex linear least squares problem

cgelsx - cgelsx - routine is deprecated and has been replaced by routine CGELSY

cgelsy - cgelsy - compute the minimum-norm solution to a complex linear least squares problem

cgemm - cgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

cgemv - cgemv - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
y := alpha*conjg(A')*x + beta*y

cgeqlf - cgeqlf - compute a QL factorization of a complex M-by-N matrix A

cgeqp3 - cgeqp3 - compute a QR factorization with column pivoting of a matrix A

cgeqpf - cgeqpf - routine is deprecated and has been replaced by routine CGEQP3

cgeqrf - cgeqrf - compute a QR factorization of a complex M-by-N matrix A

cgerc - cgerc - perform the rank 1 operation A := alpha*x*conjg(y') + A

cgerfs - cgerfs - improve the computed solution to a system of linear equations and provides error bounds and
backward error estimates for the solution

cgerqf - cgerqf - compute an RQ factorization of a complex M-by-N matrix A

cgeru - cgeru - perform the rank 1 operation A := alpha*x*y' + A

cgesdd - cgesdd - compute the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally
computing the left and/or right singular vectors, by using divide-and-conquer method

cgesv - cgesv - compute the solution to a complex system of linear equations A * X = B,

cgesvd - cgesvd - compute the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally
computing the left and/or right singular vectors

cgesvx - cgesvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,

cgetf2 - cgetf2 - compute an LU factorization of a general m-by-n matrix A using partial pivoting with row
interchanges

cgetrf - cgetrf - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row
interchanges

cgetri - cgetri - compute the inverse of a matrix using the LU factorization computed by CGETRF

cgetrs - cgetrs - solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N
matrix A using the LU factorization computed by CGETRF

cggbak - cggbak - form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x,
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by CGGBAL

cggbal - cggbal - balance a pair of general complex matrices (A,B)

cgges - cgges - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the
generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)

cggesx - cggesx - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues,
the complex Schur form (S,T),

cggev - cggev - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

cggevx - cggevx - compute for a pair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues,
and optionally, the left and/or right generalized eigenvectors

cggglm - cggglm - solve a general Gauss-Markov linear model (GLM) problem

cgghrd - cgghrd - reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary
transformations, where A is a general matrix and B is upper triangular

cgglse - cgglse - solve the linear equality-constrained least squares (LSE) problem

cggqrf - cggqrf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

cggrqf - cggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

cggsvd - cggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and
P-by-N complex matrix B

cggsvp - cggsvp - compute unitary matrices U, V and Q such that N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >=
0

cgssco - cgssco - General sparse solver condition number estimate.

cgssda - cgssda - Deallocate working storage for the general sparse solver.

cgssfa - cgssfa - General sparse solver numeric factorization.

cgssfs - cgssfs - General sparse solver one call interface.

cgssin - cgssin - Initialize the general sparse solver.

cgssor - cgssor - General sparse solver ordering and symbolic factorization.

cgssps - cgssps - Print general sparse solver statics.

cgssrp - cgssrp - Return permutation used by the general sparse solver.

cgsssl - cgsssl - Solve routine for the general sparse solver.

cgssuo - cgssuo - User supplied permutation for ordering used in the general sparse solver.

cgtcon - cgtcon - estimate the reciprocal of the condition number of a complex tridiagonal matrix A using the LU
factorization as computed by CGTTRF

cgthr - cgthr - Gathers specified elements from y into x.

cgthrz - cgthrz - Gather and zero.

cgtrfs - cgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
tridiagonal, and provides error bounds and backward error estimates for the solution

cgtsv - cgtsv - solve the equation A*X = B,

cgtsvx - cgtsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

cgttrf - cgttrf - compute an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting
and row interchanges

cgttrs - cgttrs - solve one of the systems of equations A * X = B, A**T * X = B, or A**H * X = B,

chbev - chbev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbevd - chbevd - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbevx - chbevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

chbgst - chbgst - reduce a complex Hermitian-definite banded generalized eigenproblem A*x = lambda*B*x to
standard form C*y = lambda*y,

chbgv - chbgv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

chbgvd - chbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

chbgvx - chbgvx - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

chbmv - chbmv - perform the matrix-vector operation y := alpha*A*x + beta*y

chbtrd - chbtrd - reduce a complex Hermitian band matrix A to real symmetric tridiagonal form T by a unitary
similarity transformation

checon - checon - estimate the reciprocal of the condition number of a complex Hermitian matrix A using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF

cheev - cheev - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

cheevd - cheevd - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

cheevr - cheevr - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian tridiagonal matrix
T

cheevx - cheevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

chegs2 - chegs2 - reduce a complex Hermitian-definite generalized eigenproblem to standard form

chegst - chegst - reduce a complex Hermitian-definite generalized eigenproblem to standard form

chegv - chegv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chegvd - chegvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chegvx - chegvx - compute selected eigenvalues, and optionally, eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chemm - chemm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

chemv - chemv - perform the matrix-vector operation y := alpha*A*x + beta*y

cher - cher - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

cher2 - cher2 - perform the hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

cher2k - cher2k - perform one of the Hermitian rank 2k operations C := alpha*A*conjg(B') + conjg(alpha)*B*conjg(
A') + beta*C or C := alpha*conjg(A')*B + conjg(alpha)*conjg(B')*A + beta*C

cherfs - cherfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite, and provides error bounds and backward error estimates for the solution

cherk - cherk - perform one of the Hermitian rank k operations C := alpha*A*conjg(A') + beta*C or C := alpha*conjg(
A')*A + beta*C

chesv - chesv - compute the solution to a complex system of linear equations A * X = B,

chesvx - chesvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear
equations A * X = B,

chetf2 - chetf2 - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal
pivoting method

chetrd - chetrd - reduce a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation

chetrf - chetrf - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal
pivoting method

chetri - chetri - compute the inverse of a complex Hermitian indefinite matrix A using the factorization A =
U*D*U**H or A = L*D*L**H computed by CHETRF

chetrs - chetrs - solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization
A = U*D*U**H or A = L*D*L**H computed by CHETRF

chgeqz - chgeqz - implement a single-shift version of the QZ method for finding the generalized eigenvalues
w(i)=ALPHA(i)/BETA(i) of the equation det(A-w(i) B) = 0 If JOB='S', then the pair (A,B) is simultaneously reduced
to Schur form (i.e., A and B are both upper triangular) by applying one unitary tranformation (usually called Q) on the
left and another (usually called Z) on the right

chpcon - chpcon - estimate the reciprocal of the condition number of a complex Hermitian packed matrix A using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

chpev - chpev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed
storage

chpevd - chpevd - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in
packed storage

chpevx - chpevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in
packed storage

chpgst - chpgst - reduce a complex Hermitian-definite generalized eigenproblem to standard form, using packed storage

chpgv - chpgv - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chpgvd - chpgvd - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chpgvx - chpgvx - compute selected eigenvalues and, optionally, eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

chpmv - chpmv - perform the matrix-vector operation y := alpha*A*x + beta*y

chpr - chpr - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

chpr2 - chpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

chprfs - chprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian indefinite and packed, and provides error bounds and backward error estimates for the solution

chpsv - chpsv - compute the solution to a complex system of linear equations A * X = B,

chpsvx - chpsvx - use the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution
to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format
and X and B are N-by-NRHS matrices

chptrd - chptrd - reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a
unitary similarity transformation

chptrf - chptrf - compute the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal
pivoting method

chptri - chptri - compute the inverse of a complex Hermitian indefinite matrix A in packed storage using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

chptrs - chptrs - solve a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed
format using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

chsein - chsein - use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg
matrix H

chseqr - chseqr - compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and
Z from the Schur decomposition H = Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the
unitary matrix of Schur vectors

cjadmm - cjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

cjadrp - cjadrp - right permutation of a jagged diagonal matrix

cjadsm - cjadsm - Jagged-diagonal format triangular solve

clarz - clarz - applie a complex elementary reflector H to a complex M-by-N matrix C, from either the left or the right

clarzb - clarzb - applie a complex block reflector H or its transpose H**H to a complex distributed M-by-N C from the
left or the right

clarzt - clarzt - form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of
k elementary reflectors

clatzm - clatzm - routine is deprecated and has been replaced by routine CUNMRZ

cosqb - cosqb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave
numbers. The COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to
COSQB will multiply the input sequence by 4 * N.

cosqf - cosqf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to COSQB will
multiply the input sequence by 4 * N.

cosqi - cosqi - initialize the array WSAVE, which is used in both COSQF and COSQB.

cost - cost - compute the discrete Fourier cosine transform of an even sequence. The COST transforms are

unnormalized inverses of themselves, so a call of COST followed by another call of COST will multiply the input
sequence by 2 * (N-1).

costi - costi - initialize the array WSAVE, which is used in COST.

cpbcon - cpbcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

cpbequ - cpbequ - compute row and column scalings intended to equilibrate a Hermitian positive definite band matrix
A and reduce its condition number (with respect to the two-norm)

cpbrfs - cpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian positive definite and banded, and provides error bounds and backward error estimates for the solution

cpbstf - cpbstf - compute a split Cholesky factorization of a complex Hermitian positive definite band matrix A

cpbsv - cpbsv - compute the solution to a complex system of linear equations A * X = B,

cpbsvx - cpbsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

cpbtf2 - cpbtf2 - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

cpbtrf - cpbtrf - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

cpbtrs - cpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

cpocon - cpocon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

cpoequ - cpoequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A and
reduce its condition number (with respect to the two-norm)

cporfs - cporfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian positive definite,

cposv - cposv - compute the solution to a complex system of linear equations A * X = B,

cposvx - cposvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

cpotf2 - cpotf2 - compute the Cholesky factorization of a complex Hermitian positive definite matrix A

cpotrf - cpotrf - compute the Cholesky factorization of a complex Hermitian positive definite matrix A

cpotri - cpotri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization
A = U**H*U or A = L*L**H computed by CPOTRF

cpotrs - cpotrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

cppcon - cppcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

cppequ - cppequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

cpprfs - cpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian positive definite and packed, and provides error bounds and backward error estimates for the solution

cppsv - cppsv - compute the solution to a complex system of linear equations A * X = B,

cppsvx - cppsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

cpptrf - cpptrf - compute the Cholesky factorization of a complex Hermitian positive definite matrix A stored in packed
format

cpptri - cpptri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization
A = U**H*U or A = L*L**H computed by CPPTRF

cpptrs - cpptrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed

storage using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

cptcon - cptcon - compute the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by CPTTRF

cpteqr - cpteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal
matrix by first factoring the matrix using SPTTRF and then calling CBDSQR to compute the singular values of the
bidiagonal factor

cptrfs - cptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

cptsv - cptsv - compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N
Hermitian positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

cptsvx - cptsvx - use the factorization A = L*D*L**H to compute the solution to a complex system of linear equations
A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

cpttrf - cpttrf - compute the L*D*L' factorization of a complex Hermitian positive definite tridiagonal matrix A

cpttrs - cpttrs - solve a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L'
computed by CPTTRF

cptts2 - cptts2 - solve a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L'
computed by CPTTRF

crot - crot - apply a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors X and Y are
complex

crotg - crotg - Construct a Given's plane rotation

cscal - cscal - Compute y := alpha * y

csctr - csctr - Scatters elements from x into y.

cskymm - cskymm - Skyline format matrix-matrix multiply

cskysm - cskysm - Skyline format triangular solve

cspcon - cspcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed
matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

csprfs - csprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution

cspsv - cspsv - compute the solution to a complex system of linear equations A * X = B,

cspsvx - cspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to
a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and
X and B are N-by-NRHS matrices

csptrf - csptrf - compute the factorization of a complex symmetric matrix A stored in packed format using the
Bunch-Kaufman diagonal pivoting method

csptri - csptri - compute the inverse of a complex symmetric indefinite matrix A in packed storage using the
factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

csptrs - csptrs - solve a system of linear equations A*X = B with a complex symmetric matrix A stored in packed
format using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

csrot - csrot - Apply a plane rotation.

csscal - csscal - Compute y := alpha * y

cstedc - cstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
divide and conquer method

cstegr - cstegr - Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

cstein - cstein - compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified
eigenvalues, using inverse iteration

csteqr - csteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the

implicit QL or QR method

cstsv - cstsv - compute the solution to a complex system of linear equations A * X = B where A is a Hermitian
tridiagonal matrix

csttrf - csttrf - compute the factorization of a complex Hermitian tridiagonal matrix A

csttrs - csttrs - computes the solution to a complex system of linear equations A * X = B

cswap - cswap - Exchange vectors x and y.

csycon - csycon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A
using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF

csymm - csymm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

csyr2k - csyr2k - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C or C :=
alpha*A'*B + alpha*B'*A + beta*C

csyrfs - csyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite, and provides error bounds and backward error estimates for the solution

csyrk - csyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A +
beta*C

csysv - csysv - compute the solution to a complex system of linear equations A * X = B,

csysvx - csysvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear
equations A * X = B,

csytf2 - csytf2 - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal
pivoting method

csytrf - csytrf - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal
pivoting method

csytri - csytri - compute the inverse of a complex symmetric indefinite matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by CSYTRF

csytrs - csytrs - solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by CSYTRF

ctbcon - ctbcon - estimate the reciprocal of the condition number of a triangular band matrix A, in either the 1-norm or
the infinity-norm

ctbmv - ctbmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ctbrfs - ctbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular band coefficient matrix

ctbsv - ctbsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ctbtrs - ctbtrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ctgevc - ctgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of complex upper
triangular matrices (A,B)

ctgexc - ctgexc - reorder the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary
equivalence transformation (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is
moved to row ILST

ctgsen - ctgsen - reorder the generalized Schur decomposition of a complex matrix pair (A, B) (in terms of an unitary
equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appears in the leading diagonal
blocks of the pair (A,B)

ctgsja - ctgsja - compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or
trapezoidal) matrices A and B

ctgsna - ctgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair
(A, B)

ctgsyl - ctgsyl - solve the generalized Sylvester equation

ctpcon - ctpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm
or the infinity-norm

ctpmv - ctpmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ctprfs - ctprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular packed coefficient matrix

ctpsv - ctpsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ctptri - ctptri - compute the inverse of a complex upper or lower triangular matrix A stored in packed format

ctptrs - ctptrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ctrans - ctrans - transpose and scale source matrix

ctrcon - ctrcon - estimate the reciprocal of the condition number of a triangular matrix A, in either the 1-norm or the
infinity-norm

ctrevc - ctrevc - compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T

ctrexc - ctrexc - reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T
with row index IFST is moved to row ILST

ctrmm - ctrmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A) where
alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of
op(A) = A or op(A) = A' or op(A) = conjg(A')

ctrmv - ctrmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ctrrfs - ctrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

ctrsen - ctrsen - reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that a selected cluster of
eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns
of Q form an orthonormal basis of the corresponding right invariant subspace

ctrsm - ctrsm - solve one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B

ctrsna - ctrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex
upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)

ctrsv - ctrsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ctrsyl - ctrsyl - solve the complex Sylvester matrix equation

ctrti2 - ctrti2 - compute the inverse of a complex upper or lower triangular matrix

ctrtri - ctrtri - compute the inverse of a complex upper or lower triangular matrix A

ctrtrs - ctrtrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ctzrqf - ctzrqf - routine is deprecated and has been replaced by routine CTZRZF

ctzrzf - ctzrzf - reduce the M-by-N (M<=N) complex upper trapezoidal matrix A to upper triangular form by means of
unitary transformations

cung2l - cung2l - generate an m by n complex matrix Q with orthonormal columns,

cung2r - cung2r - generate an m by n complex matrix Q with orthonormal columns,

cungbr - cungbr - generate one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a
complex matrix A to bidiagonal form

cunghr - cunghr - generate a complex unitary matrix Q which is defined as the product of IHI-ILO elementary
reflectors of order N, as returned by CGEHRD

cungl2 - cungl2 - generate an m-by-n complex matrix Q with orthonormal rows,

cunglq - cunglq - generate an M-by-N complex matrix Q with orthonormal rows,

cungql - cungql - generate an M-by-N complex matrix Q with orthonormal columns,

cungqr - cungqr - generate an M-by-N complex matrix Q with orthonormal columns,

cungr2 - cungr2 - generate an m by n complex matrix Q with orthonormal rows,

cungrq - cungrq - generate an M-by-N complex matrix Q with orthonormal rows,

cungtr - cungtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors of
order N, as returned by CHETRD

cunmbr - cunmbr - VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE =
'R' TRANS = 'N'

cunmhr - cunmhr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunml2 - cunml2 - overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'*
C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

cunmlq - cunmlq - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunmql - cunmql - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunmqr - cunmqr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunmr2 - cunmr2 - overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'*
C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

cunmrq - cunmrq - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunmrz - cunmrz - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cunmtr - cunmtr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cupgtr - cupgtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors H(i)
of order n, as returned by CHPTRD using packed storage

cupmtr - cupmtr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

cvbrmm - cvbrmm - variable block sparse row format matrix-matrix multiply

cvbrsm - cvbrsm - variable block sparse row format triangular solve

cvmul - cvmul - compute the scaled product of complex vectors

dasum - dasum - Return the sum of the absolute values of a vector x.

daxpy - daxpy - compute y := alpha * x + y

daxpyi - daxpyi - Compute y := alpha * x + y

dbcomm - dbcomm - block coordinate matrix-matrix multiply

dbdimm - dbdimm - block diagonal format matrix-matrix multiply

dbdism - dbdism - block diagonal format triangular solve

dbdsdc - dbdsdc - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal
matrix B

dbdsqr - dbdsqr - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix
B.

dbelmm - dbelmm - block Ellpack format matrix-matrix multiply

dbelsm - dbelsm - block Ellpack format triangular solve

dbscmm - dbscmm - block sparse column matrix-matrix multiply

dbscsm - dbscsm - block sparse column format triangular solve

dbsrmm - dbsrmm - block sparse row format matrix-matrix multiply

dbsrsm - dbsrsm - block sparse row format triangular solve

dcnvcor - dcnvcor - compute the convolution or correlation of real vectors

dcnvcor2 - dcnvcor2 - compute the convolution or correlation of real matrices

dcoomm - dcoomm - coordinate matrix-matrix multiply

dcopy - dcopy - Copy x to y

dcosqb - dcosqb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave
numbers. The COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to
COSQB will multiply the input sequence by 4 * N.

dcosqf - dcosqf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
COSQ operations are unnormalized inverses of themselves, so a call to COSQF followed by a call to COSQB will
multiply the input sequence by 4 * N.

dcosqi - dcosqi - initialize the array WSAVE, which is used in both COSQF and COSQB.

dcost - dcost - compute the discrete Fourier cosine transform of an even sequence. The COST transforms are
unnormalized inverses of themselves, so a call of COST followed by another call of COST will multiply the input
sequence by 2 * (N-1).

dcosti - dcosti - initialize the array WSAVE, which is used in COST.

dcscmm - dcscmm - compressed sparse column format matrix-matrix multiply

dcscsm - dcscsm - compressed sparse column format triangular solve

dcsrmm - dcsrmm - compressed sparse row format matrix-matrix multiply

dcsrsm - dcsrsm - compressed sparse row format triangular solve

ddiamm - ddiamm - diagonal format matrix-matrix multiply

ddiasm - ddiasm - diagonal format triangular solve

ddisna - ddisna - compute the reciprocal condition numbers for the eigenvectors of a real symmetric or complex
Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix

ddot - ddot - compute the dot product of two vectors x and y.

ddoti - ddoti - Compute the indexed dot product.

dellmm - dellmm - Ellpack format matrix-matrix multiply

dellsm - dellsm - Ellpack format triangular solve

dezftb - dezftb - computes a periodic sequence from its Fourier coefficients. DEZFTB is a simplified but slower version
of DFFTB.

dezftf - dezftf - computes the Fourier coefficients of a periodic sequence. DEZFTF is a simplified but slower version of
DFFTF.

dezfti - dezfti - initializes the array WSAVE, which is used in both DEZFTF and DEZFTB.

dfft2b - dfft2b - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so
a call of DFFT2F followed by a call of DFFT2B will multiply the input sequence by M*N.

dfft2f - dfft2f - compute the Fourier coefficients of a periodic sequence. The DFFT operations are unnormalized, so a
call of DFFT2F followed by a call of DFFT2B will multiply the input sequence by M*N.

dfft2i - dfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

dfft3b - dfft3b - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so
a call of DFFT3F followed by a call of DFFT3B will multiply the input sequence by M*N*K.

dfft3f - dfft3f - compute the Fourier coefficients of a real periodic sequence. The DFFT operations are unnormalized, so
a call of DFFT3F followed by a call of DFFT3B will multiply the input sequence by M*N*K.

dfft3i - dfft3i - initialize the array WSAVE, which is used in both DFFT3F and DFFT3B.

dfftb - dfftb - compute a periodic sequence from its Fourier coefficients. The DFFT operations are unnormalized, so a
call of DFFTF followed by a call of DFFTB will multiply the input sequence by N.

dfftf - dfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of

DFFTF followed by a call of DFFTB will multiply the input sequence by N.

dffti - dffti - initialize the array WSAVE, which is used in both DFFTF and DFFTB.

dfftopt - dfftopt - compute the length of the closest fast FFT

dfftz - dfftz - initialize the trigonometric weight and factor tables or compute the forward Fast Fourier Transform of a
double precision sequence.

dfftz2 - dfftz2 - initialize the trigonometric weight and factor tables or compute the two-dimensional forward Fast
Fourier Transform of a two-dimensional double precision array.

dfftz3 - dfftz3 - initialize the trigonometric weight and factor tables or compute the three-dimensional forward Fast
Fourier Transform of a three-dimensional double complex array.

dfftzm - dfftzm - initialize the trigonometric weight and factor tables or compute the one-dimensional forward Fast
Fourier Transform of a set of double precision data sequences stored in a two-dimensional array.

dgbbrd - dgbbrd - reduce a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal
transformation

dgbcon - dgbcon - estimate the reciprocal of the condition number of a real general band matrix A, in either the 1-norm
or the infinity-norm,

dgbequ - dgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

dgbmv - dgbmv - perform one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y

dgbrfs - dgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded,
and provides error bounds and backward error estimates for the solution

dgbsv - dgbsv - compute the solution to a real system of linear equations A * X = B, where A is a band matrix of order
N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

dgbsvx - dgbsvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

dgbtf2 - dgbtf2 - compute an LU factorization of a real m-by-n band matrix A using partial pivoting with row
interchanges

dgbtrf - dgbtrf - compute an LU factorization of a real m-by-n band matrix A using partial pivoting with row
interchanges

dgbtrs - dgbtrs - solve a system of linear equations A * X = B or A' * X = B with a general band matrix A using the LU
factorization computed by SGBTRF

dgebak - dgebak - form the right or left eigenvectors of a real general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by SGEBAL

dgebal - dgebal - balance a general real matrix A

dgebrd - dgebrd - reduce a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal
transformation

dgecon - dgecon - estimate the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the
infinity-norm, using the LU factorization computed by SGETRF

dgeequ - dgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its
condition number

dgees - dgees - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

dgeesx - dgeesx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

dgeev - dgeev - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

dgeevx - dgeevx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

dgegs - dgegs - routine is deprecated and has been replaced by routine SGGES

dgegv - dgegv - routine is deprecated and has been replaced by routine SGGEV

dgehrd - dgehrd - reduce a real general matrix A to upper Hessenberg form H by an orthogonal similarity
transformation

dgelqf - dgelqf - compute an LQ factorization of a real M-by-N matrix A

dgels - dgels - solve overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its
transpose, using a QR or LQ factorization of A

dgelsd - dgelsd - compute the minimum-norm solution to a real linear least squares problem

dgelss - dgelss - compute the minimum norm solution to a real linear least squares problem

dgelsx - dgelsx - routine is deprecated and has been replaced by routine SGELSY

dgelsy - dgelsy - compute the minimum-norm solution to a real linear least squares problem

dgemm - dgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

dgemv - dgemv - perform one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y

dgeqlf - dgeqlf - compute a QL factorization of a real M-by-N matrix A

dgeqp3 - dgeqp3 - compute a QR factorization with column pivoting of a matrix A

dgeqpf - dgeqpf - routine is deprecated and has been replaced by routine SGEQP3

dgeqrf - dgeqrf - compute a QR factorization of a real M-by-N matrix A

dger - dger - perform the rank 1 operation A := alpha*x*y' + A

dgerfs - dgerfs - improve the computed solution to a system of linear equations and provides error bounds and
backward error estimates for the solution

dgerqf - dgerqf - compute an RQ factorization of a real M-by-N matrix A

dgesdd - dgesdd - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing
the left and right singular vectors

dgesv - dgesv - compute the solution to a real system of linear equations A * X = B,

dgesvd - dgesvd - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing
the left and/or right singular vectors

dgesvx - dgesvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B,

dgetf2 - dgetf2 - compute an LU factorization of a general m-by-n matrix A using partial pivoting with row
interchanges

dgetrf - dgetrf - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row
interchanges

dgetri - dgetri - compute the inverse of a matrix using the LU factorization computed by SGETRF

dgetrs - dgetrs - solve a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the
LU factorization computed by SGETRF

dggbak - dggbak - form the right or left eigenvectors of a real generalized eigenvalue problem A*x = lambda*B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by SGGBAL

dggbal - dggbal - balance a pair of general real matrices (A,B)

dgges - dgges - compute for a pair of N-by-N real nonsymmetric matrices (A,B),

dggesx - dggesx - compute for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the
real Schur form (S,T), and,

dggev - dggev - compute for a pair of N-by-N real nonsymmetric matrices (A,B)

dggevx - dggevx - compute for a pair of N-by-N real nonsymmetric matrices (A,B)

dggglm - dggglm - solve a general Gauss-Markov linear model (GLM) problem

dgghrd - dgghrd - reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal
transformations, where A is a general matrix and B is upper triangular

dgglse - dgglse - solve the linear equality-constrained least squares (LSE) problem

dggqrf - dggqrf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

dggrqf - dggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

dggsvd - dggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and
P-by-N real matrix B

dggsvp - dggsvp - compute orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L
>= 0

dgssco - dgssco - General sparse solver condition number estimate.

dgssda - dgssda - Deallocate working storage for the general sparse solver.

dgssfa - dgssfa - General sparse solver numeric factorization.

dgssfs - dgssfs - General sparse solver one call interface.

dgssin - dgssin - Initialize the general sparse solver.

dgssor - dgssor - General sparse solver ordering and symbolic factorization.

dgssps - dgssps - Print general sparse solver statics.

dgssrp - dgssrp - Return permutation used by the general sparse solver.

dgsssl - dgsssl - Solve routine for the general sparse solver.

dgssuo - dgssuo - User supplied permutation for ordering used in the general sparse solver.

dgtcon - dgtcon - estimate the reciprocal of the condition number of a real tridiagonal matrix A using the LU
factorization as computed by SGTTRF

dgthr - dgthr - Gathers specified elements from y into x.

dgthrz - dgthrz - Gather and zero.

dgtrfs - dgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
tridiagonal, and provides error bounds and backward error estimates for the solution

dgtsv - dgtsv - solve the equation A*X = B,

dgtsvx - dgtsvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B or
A**T * X = B,

dgttrf - dgttrf - compute an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and
row interchanges

dgttrs - dgttrs - solve one of the systems of equations A*X = B or A'*X = B,

dhgeqz - dhgeqz - implement a single-/double-shift version of the QZ method for finding the generalized eigenvalues
w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j) of the equation det(A-w(i) B) = 0 In addition, the pair A,B may be
reduced to generalized Schur form

dhsein - dhsein - use inverse iteration to find specified right and/or left eigenvectors of a real upper Hessenberg matrix
H

dhseqr - dhseqr - compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z
from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is
the orthogonal matrix of Schur vectors

djadmm - djadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

djadrp - djadrp - right permutation of a jagged diagonal matrix

djadsm - djadsm - Jagged-diagonal format triangular solve

dlagtf - dlagtf - factorize the matrix (T-lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as
T-lambda*I = PLU

dlamrg - dlamrg - will create a permutation list which will merge the elements of A (which is composed of two
independently sorted sets) into a single set which is sorted in ascending order

dlarz - dlarz - applies a real elementary reflector H to a real M-by-N matrix C, from either the left or the right

dlarzb - dlarzb - applies a real block reflector H or its transpose H**T to a real distributed M-by-N C from the left or
the right

dlarzt - dlarzt - form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k
elementary reflectors

dlasrt - dlasrt - the numbers in D in increasing order (if ID = 'I') or in decreasing order (if ID = 'D')

dlatzm - dlatzm - routine is deprecated and has been replaced by routine SORMRZ

dnrm2 - dnrm2 - Return the Euclidian norm of a vector.

dopgtr - dopgtr - generate a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors H(i)
of order n, as returned by SSPTRD using packed storage

dopmtr - dopmtr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dorg2l - dorg2l - generate an m by n real matrix Q with orthonormal columns,

dorg2r - dorg2r - generate an m by n real matrix Q with orthonormal columns,

dorgbr - dorgbr - generate one of the real orthogonal matrices Q or P**T determined by SGEBRD when reducing a real
matrix A to bidiagonal form

dorghr - dorghr - generate a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors
of order N, as returned by SGEHRD

dorgl2 - dorgl2 - generate an m by n real matrix Q with orthonormal rows,

dorglq - dorglq - generate an M-by-N real matrix Q with orthonormal rows,

dorgql - dorgql - generate an M-by-N real matrix Q with orthonormal columns,

dorgqr - dorgqr - generate an M-by-N real matrix Q with orthonormal columns,

dorgr2 - dorgr2 - generate an m by n real matrix Q with orthonormal rows,

dorgrq - dorgrq - generate an M-by-N real matrix Q with orthonormal rows,

dorgtr - dorgtr - generate a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of
order N, as returned by SSYTRD

dormbr - dormbr - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R'
TRANS = 'N'

dormhr - dormhr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormlq - dormlq - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormql - dormql - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormqr - dormqr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormrq - dormrq - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormrz - dormrz - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dormtr - dormtr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

dpbcon - dpbcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

dpbequ - dpbequ - compute row and column scalings intended to equilibrate a symmetric positive definite band matrix
A and reduce its condition number (with respect to the two-norm)

dpbrfs - dpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is

symmetric positive definite and banded, and provides error bounds and backward error estimates for the solution

dpbstf - dpbstf - compute a split Cholesky factorization of a real symmetric positive definite band matrix A

dpbsv - dpbsv - compute the solution to a real system of linear equations A * X = B,

dpbsvx - dpbsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

dpbtf2 - dpbtf2 - compute the Cholesky factorization of a real symmetric positive definite band matrix A

dpbtrf - dpbtrf - compute the Cholesky factorization of a real symmetric positive definite band matrix A

dpbtrs - dpbtrs - solve a system of linear equations A*X = B with a symmetric positive definite band matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

dpocon - dpocon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

dpoequ - dpoequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A and
reduce its condition number (with respect to the two-norm)

dporfs - dporfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric positive definite,

dposv - dposv - compute the solution to a real system of linear equations A * X = B,

dposvx - dposvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

dpotf2 - dpotf2 - compute the Cholesky factorization of a real symmetric positive definite matrix A

dpotrf - dpotrf - compute the Cholesky factorization of a real symmetric positive definite matrix A

dpotri - dpotri - compute the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A
= U**T*U or A = L*L**T computed by SPOTRF

dpotrs - dpotrs - solve a system of linear equations A*X = B with a symmetric positive definite matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

dppcon - dppcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

dppequ - dppequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

dpprfs - dpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric positive definite and packed, and provides error bounds and backward error estimates for the solution

dppsv - dppsv - compute the solution to a real system of linear equations A * X = B,

dppsvx - dppsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

dpptrf - dpptrf - compute the Cholesky factorization of a real symmetric positive definite matrix A stored in packed
format

dpptri - dpptri - compute the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A
= U**T*U or A = L*L**T computed by SPPTRF

dpptrs - dpptrs - solve a system of linear equations A*X = B with a symmetric positive definite matrix A in packed
storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

dptcon - dptcon - compute the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF

dpteqr - dpteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal
matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the
bidiagonal factor

dptrfs - dptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

dptsv - dptsv - compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

dptsvx - dptsvx - use the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X
= B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

dpttrf - dpttrf - compute the L*D*L' factorization of a real symmetric positive definite tridiagonal matrix A

dpttrs - dpttrs - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by
SPTTRF

dptts2 - dptts2 - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by
SPTTRF

dqdota - dqdota - compute a double precision constant plus an extended precision constant plus the extended precision
dot product of two double precision vectors x and y.

dqdoti - dqdoti - compute a constant plus the extended precision dot product of two double precision vectors x and y.

drot - drot - Apply a Given's rotation constructed by SROTG.

drotg - drotg - Construct a Given's plane rotation

droti - droti - Apply an indexed Givens rotation.

drotm - drotm - Apply a Gentleman's modified Given's rotation constructed by SROTMG.

drotmg - drotmg - Construct a Gentleman's modified Given's plane rotation

dsbev - dsbev - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

dsbevd - dsbevd - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

dsbevx - dsbevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

dsbgst - dsbgst - reduce a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard
form C*y = lambda*y,

dsbgv - dsbgv - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)*B*x

dsbgvd - dsbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x

dsbgvx - dsbgvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)*B*x

dsbmv - dsbmv - perform the matrix-vector operation y := alpha*A*x + beta*y

dsbtrd - dsbtrd - reduce a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

dscal - dscal - Compute y := alpha * y

dsctr - dsctr - Scatters elements from x into y.

dsdot - dsdot - compute the double precision dot product of two single precision vectors x and y.

dsecnd - dsecnd - return the user time for a process in seconds

dsinqb - dsinqb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave
numbers. The SINQ operations are unnormalized inverses of themselves, so a call to SINQF followed by a call to
SINQB will multiply the input sequence by 4 * N.

dsinqf - dsinqf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The
SINQ operations are unnormalized inverses of themselves, so a call to SINQF followed by a call to SINQB will
multiply the input sequence by 4 * N.

dsinqi - dsinqi - initialize the array xWSAVE, which is used in both SINQF and SINQB.

dsint - dsint - compute the discrete Fourier sine transform of an odd sequence. The SINT transforms are unnormalized
inverses of themselves, so a call of SINT followed by another call of SINT will multiply the input sequence by 2 *
(N+1).

dsinti - dsinti - initialize the array WSAVE, which is used in subroutine SINT.

dskymm - dskymm - Skyline format matrix-matrix multiply

dskysm - dskysm - Skyline format triangular solve

dspcon - dspcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric packed matrix A
using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

dspev - dspev - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

dspevd - dspevd - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

dspevx - dspevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

dspgst - dspgst - reduce a real symmetric-definite generalized eigenproblem to standard form, using packed storage

dspgv - dspgv - compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dspgvd - dspgvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dspgvx - dspgvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dspmv - dspmv - perform the matrix-vector operation y := alpha*A*x + beta*y

dspr - dspr - perform the symmetric rank 1 operation A := alpha*x*x' + A

dspr2 - dspr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

dsprfs - dsprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution

dspsv - dspsv - compute the solution to a real system of linear equations A * X = B,

dspsvx - dspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to
a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices

dsptrd - dsptrd - reduce a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an
orthogonal similarity transformation

dsptrf - dsptrf - compute the factorization of a real symmetric matrix A stored in packed format using the
Bunch-Kaufman diagonal pivoting method

dsptri - dsptri - compute the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A
= U*D*U**T or A = L*D*L**T computed by SSPTRF

dsptrs - dsptrs - solve a system of linear equations A*X = B with a real symmetric matrix A stored in packed format
using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

dstebz - dstebz - compute the eigenvalues of a symmetric tridiagonal matrix T

dstedc - dstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
divide and conquer method

dstegr - dstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

dstein - dstein - compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified
eigenvalues, using inverse iteration

dsteqr - dsteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
implicit QL or QR method

dsterf - dsterf - compute all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the
QL or QR algorithm

dstev - dstev - compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

dstevd - dstevd - compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix

dstevr - dstevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T

dstevx - dstevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

dstsv - dstsv - compute the solution to a system of linear equations A * X = B where A is a symmetric tridiagonal
matrix

dsttrf - dsttrf - compute the factorization of a symmetric tridiagonal matrix A

dsttrs - dsttrs - computes the solution to a real system of linear equations A * X = B

dswap - dswap - Exchange vectors x and y.

dsycon - dsycon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using
the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF

dsyev - dsyev - compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

dsyevd - dsyevd - compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

dsyevr - dsyevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T

dsyevx - dsyevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

dsygs2 - dsygs2 - reduce a real symmetric-definite generalized eigenproblem to standard form

dsygst - dsygst - reduce a real symmetric-definite generalized eigenproblem to standard form

dsygv - dsygv - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dsygvd - dsygvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dsygvx - dsygvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

dsymm - dsymm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

dsymv - dsymv - perform the matrix-vector operation y := alpha*A*x + beta*y

dsyr - dsyr - perform the symmetric rank 1 operation A := alpha*x*x' + A

dsyr2 - dsyr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

dsyr2k - dsyr2k - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C or C :=
alpha*A'*B + alpha*B'*A + beta*C

dsyrfs - dsyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite, and provides error bounds and backward error estimates for the solution

dsyrk - dsyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A +
beta*C

dsysv - dsysv - compute the solution to a real system of linear equations A * X = B,

dsysvx - dsysvx - use the diagonal pivoting factorization to compute the solution to a real system of linear equations A
* X = B,

dsytd2 - dsytd2 - reduce a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

dsytf2 - dsytf2 - compute the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

dsytrd - dsytrd - reduce a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity
transformation

dsytrf - dsytrf - compute the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting

method

dsytri - dsytri - compute the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSYTRF

dsytrs - dsytrs - solve a system of linear equations A*X = B with a real symmetric matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by SSYTRF

dtbcon - dtbcon - estimate the reciprocal of the condition number of a triangular band matrix A, in either the 1-norm or
the infinity-norm

dtbmv - dtbmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

dtbrfs - dtbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular band coefficient matrix

dtbsv - dtbsv - solve one of the systems of equations A*x = b, or A'*x = b

dtbtrs - dtbtrs - solve a triangular system of the form A * X = B or A**T * X = B,

dtgevc - dtgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of real upper triangular
matrices (A,B)

dtgexc - dtgexc - reorder the generalized real Schur decomposition of a real matrix pair (A,B) using an orthogonal
equivalence transformation (A, B) = Q * (A, B) * Z',

dtgsen - dtgsen - reorder the generalized real Schur decomposition of a real matrix pair (A, B) (in terms of an
orthonormal equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appears in the
leading diagonal blocks of the upper quasi-triangular matrix A and the upper triangular B

dtgsja - dtgsja - compute the generalized singular value decomposition (GSVD) of two real upper triangular (or
trapezoidal) matrices A and B

dtgsna - dtgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair
(A, B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z') with orthogonal matrices Q
and Z, where Z' denotes the transpose of Z

dtgsyl - dtgsyl - solve the generalized Sylvester equation

dtpcon - dtpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm
or the infinity-norm

dtpmv - dtpmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

dtprfs - dtprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular packed coefficient matrix

dtpsv - dtpsv - solve one of the systems of equations A*x = b, or A'*x = b

dtptri - dtptri - compute the inverse of a real upper or lower triangular matrix A stored in packed format

dtptrs - dtptrs - solve a triangular system of the form A * X = B or A**T * X = B,

dtrans - dtrans - transpose and scale source matrix

dtrcon - dtrcon - estimate the reciprocal of the condition number of a triangular matrix A, in either the 1-norm or the
infinity-norm

dtrevc - dtrevc - compute some or all of the right and/or left eigenvectors of a real upper quasi-triangular matrix T

dtrexc - dtrexc - reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T
with row index IFST is moved to row ILST

dtrmm - dtrmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A)

dtrmv - dtrmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

dtrrfs - dtrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

dtrsen - dtrsen - reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,

dtrsm - dtrsm - solve one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B

dtrsna - dtrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a real
upper quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q orthogonal)

dtrsv - dtrsv - solve one of the systems of equations A*x = b, or A'*x = b

dtrsyl - dtrsyl - solve the real Sylvester matrix equation

dtrti2 - dtrti2 - compute the inverse of a real upper or lower triangular matrix

dtrtri - dtrtri - compute the inverse of a real upper or lower triangular matrix A

dtrtrs - dtrtrs - solve a triangular system of the form A * X = B or A**T * X = B,

dtzrqf - dtzrqf - routine is deprecated and has been replaced by routine STZRZF

dtzrzf - dtzrzf - reduce the M-by-N (M<=N) real upper trapezoidal matrix A to upper triangular form by means of
orthogonal transformations

dvbrmm - dvbrmm - variable block sparse row format matrix-matrix multiply

dvbrsm - dvbrsm - variable block sparse row format triangular solve

dwiener - dwiener - perform Wiener deconvolution of two signals

dzasum - dzasum - Return the sum of the absolute values of a vector x.

dznrm2 - dznrm2 - Return the Euclidian norm of a vector.

ezfftb - ezfftb - computes a periodic sequence from its Fourier coefficients. EZFFTB is a simplified but slower version
of RFFTB.

ezfftf - ezfftf - computes the Fourier coefficients of a periodic sequence. EZFFTF is a simplified but slower version of
RFFTF.

ezffti - ezffti - initializes the array WSAVE, which is used in both EZFFTF and EZFFTB.

fft - Overview of Fast Fourier Transform subroutines

icamax - icamax - return the index of the element with largest absolute value.

idamax - idamax - return the index of the element with largest absolute value.

ilaenv - The name of the calling subroutine, in either upper case or lower case.

isamax - isamax - return the index of the element with largest absolute value.

izamax - izamax - return the index of the element with largest absolute value.

lsame - lsame - returns .TRUE. if CA is the same letter as CB regardless of case

rfft2b - rfft2b - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so a
call of RFFT2F followed by a call of RFFT2B will multiply the input sequence by M*N.

rfft2f - rfft2f - compute the Fourier coefficients of a periodic sequence. The RFFT operations are unnormalized, so a
call of RFFT2F followed by a call of RFFT2B will multiply the input sequence by M*N.

rfft2i - rfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

rfft3b - rfft3b - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so a
call of RFFT3F followed by a call of RFFT3B will multiply the input sequence by M*N*K.

rfft3f - rfft3f - compute the Fourier coefficients of a real periodic sequence. The RFFT operations are unnormalized, so
a call of RFFT3F followed by a call of RFFT3B will multiply the input sequence by M*N*K.

rfft3i - rfft3i - initialize the array WSAVE, which is used in both RFFT3F and RFFT3B.

rfftb - rfftb - compute a periodic sequence from its Fourier coefficients. The RFFT operations are unnormalized, so a
call of RFFTF followed by a call of RFFTB will multiply the input sequence by N.

rfftf - rfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
RFFTF followed by a call of RFFTB will multiply the input sequence by N.

rffti - rffti - initialize the array WSAVE, which is used in both RFFTF and RFFTB.

rfftopt - rfftopt - compute the length of the closest fast FFT

sasum - sasum - Return the sum of the absolute values of a vector x.

saxpy - saxpy - compute y := alpha * x + y

saxpyi - saxpyi - Compute y := alpha * x + y

sbcomm - sbcomm - block coordinate matrix-matrix multiply

sbdimm - sbdimm - block diagonal format matrix-matrix multiply

sbdism - sbdism - block diagonal format triangular solve

sbdsdc - sbdsdc - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix
B

sbdsqr - sbdsqr - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix
B.

sbelmm - sbelmm - block Ellpack format matrix-matrix multiply

sbelsm - sbelsm - block Ellpack format triangular solve

sbscmm - sbscmm - block sparse column matrix-matrix multiply

sbscsm - sbscsm - block sparse column format triangular solve

sbsrmm - sbsrmm - block sparse row format matrix-matrix multiply

sbsrsm - sbsrsm - block sparse row format triangular solve

scasum - scasum - Return the sum of the absolute values of a vector x.

scnrm2 - scnrm2 - Return the Euclidian norm of a vector.

scnvcor - scnvcor - compute the convolution or correlation of real vectors

scnvcor2 - scnvcor2 - compute the convolution or correlation of real matrices

scoomm - scoomm - coordinate matrix-matrix multiply

scopy - scopy - Copy x to y

scscmm - scscmm - compressed sparse column format matrix-matrix multiply

scscsm - scscsm - compressed sparse column format triangular solve

scsrmm - scsrmm - compressed sparse row format matrix-matrix multiply

scsrsm - scsrsm - compressed sparse row format triangular solve

sdiamm - sdiamm - diagonal format matrix-matrix multiply

sdiasm - sdiasm - diagonal format triangular solve

sdisna - sdisna - compute the reciprocal condition numbers for the eigenvectors of a real symmetric or complex
Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix

sdot - sdot - compute the dot product of two vectors x and y.

sdoti - sdoti - Compute the indexed dot product.

sdsdot - sdsdot - compute a constant plus the double precision dot product of two single precision vectors x and y

second - second - return the user time for a process in seconds

sellmm - sellmm - Ellpack format matrix-matrix multiply

sellsm - sellsm - Ellpack format triangular solve

sfftc - sfftc - initialize the trigonometric weight and factor tables or compute the forward Fast Fourier Transform of a
real sequence.

sfftc2 - sfftc2 - initialize the trigonometric weight and factor tables or compute the two-dimensional forward Fast
Fourier Transform of a two-dimensional real array.

sfftc3 - sfftc3 - initialize the trigonometric weight and factor tables or compute the three-dimensional forward Fast
Fourier Transform of a three-dimensional complex array.

sfftcm - sfftcm - initialize the trigonometric weight and factor tables or compute the one-dimensional forward Fast
Fourier Transform of a set of real data sequences stored in a two-dimensional array.

sgbbrd - sgbbrd - reduce a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal
transformation

sgbcon - sgbcon - estimate the reciprocal of the condition number of a real general band matrix A, in either the 1-norm
or the infinity-norm,

sgbequ - sgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

sgbmv - sgbmv - perform one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y

sgbrfs - sgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded,
and provides error bounds and backward error estimates for the solution

sgbsv - sgbsv - compute the solution to a real system of linear equations A * X = B, where A is a band matrix of order
N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

sgbsvx - sgbsvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

sgbtf2 - sgbtf2 - compute an LU factorization of a real m-by-n band matrix A using partial pivoting with row
interchanges

sgbtrf - sgbtrf - compute an LU factorization of a real m-by-n band matrix A using partial pivoting with row
interchanges

sgbtrs - sgbtrs - solve a system of linear equations A * X = B or A' * X = B with a general band matrix A using the LU
factorization computed by SGBTRF

sgebak - sgebak - form the right or left eigenvectors of a real general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by SGEBAL

sgebal - sgebal - balance a general real matrix A

sgebrd - sgebrd - reduce a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal
transformation

sgecon - sgecon - estimate the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the
infinity-norm, using the LU factorization computed by SGETRF

sgeequ - sgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its
condition number

sgees - sgees - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

sgeesx - sgeesx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and,
optionally, the matrix of Schur vectors Z

sgeev - sgeev - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

sgeevx - sgeevx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or
right eigenvectors

sgegs - sgegs - routine is deprecated and has been replaced by routine SGGES

sgegv - sgegv - routine is deprecated and has been replaced by routine SGGEV

sgehrd - sgehrd - reduce a real general matrix A to upper Hessenberg form H by an orthogonal similarity
transformation

sgelqf - sgelqf - compute an LQ factorization of a real M-by-N matrix A

sgels - sgels - solve overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its
transpose, using a QR or LQ factorization of A

sgelsd - sgelsd - compute the minimum-norm solution to a real linear least squares problem

sgelss - sgelss - compute the minimum norm solution to a real linear least squares problem

sgelsx - sgelsx - routine is deprecated and has been replaced by routine SGELSY

sgelsy - sgelsy - compute the minimum-norm solution to a real linear least squares problem

sgemm - sgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

sgemv - sgemv - perform one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y

sgeqlf - sgeqlf - compute a QL factorization of a real M-by-N matrix A

sgeqp3 - sgeqp3 - compute a QR factorization with column pivoting of a matrix A

sgeqpf - sgeqpf - routine is deprecated and has been replaced by routine SGEQP3

sgeqrf - sgeqrf - compute a QR factorization of a real M-by-N matrix A

sger - sger - perform the rank 1 operation A := alpha*x*y' + A

sgerfs - sgerfs - improve the computed solution to a system of linear equations and provides error bounds and backward
error estimates for the solution

sgerqf - sgerqf - compute an RQ factorization of a real M-by-N matrix A

sgesdd - sgesdd - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing
the left and right singular vectors

sgesv - sgesv - compute the solution to a real system of linear equations A * X = B,

sgesvd - sgesvd - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing
the left and/or right singular vectors

sgesvx - sgesvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B,

sgetf2 - sgetf2 - compute an LU factorization of a general m-by-n matrix A using partial pivoting with row
interchanges

sgetrf - sgetrf - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row
interchanges

sgetri - sgetri - compute the inverse of a matrix using the LU factorization computed by SGETRF

sgetrs - sgetrs - solve a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the
LU factorization computed by SGETRF

sggbak - sggbak - form the right or left eigenvectors of a real generalized eigenvalue problem A*x = lambda*B*x, by
backward transformation on the computed eigenvectors of the balanced pair of matrices output by SGGBAL

sggbal - sggbal - balance a pair of general real matrices (A,B)

sgges - sgges - compute for a pair of N-by-N real nonsymmetric matrices (A,B),

sggesx - sggesx - compute for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the real
Schur form (S,T), and,

sggev - sggev - compute for a pair of N-by-N real nonsymmetric matrices (A,B)

sggevx - sggevx - compute for a pair of N-by-N real nonsymmetric matrices (A,B)

sggglm - sggglm - solve a general Gauss-Markov linear model (GLM) problem

sgghrd - sgghrd - reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal
transformations, where A is a general matrix and B is upper triangular

sgglse - sgglse - solve the linear equality-constrained least squares (LSE) problem

sggqrf - sggqrf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

sggrqf - sggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

sggsvd - sggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and
P-by-N real matrix B

sggsvp - sggsvp - compute orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L
>= 0

sgssco - sgssco - General sparse solver condition number estimate.

sgssda - sgssda - Deallocate working storage for the general sparse solver.

sgssfa - sgssfa - General sparse solver numeric factorization.

sgssfs - sgssfs - General sparse solver one call interface.

sgssin - sgssin - Initialize the general sparse solver.

sgssor - sgssor - General sparse solver ordering and symbolic factorization.

sgssps - sgssps - Print general sparse solver statics.

sgssrp - sgssrp - Return permutation used by the general sparse solver.

sgsssl - sgsssl - Solve routine for the general sparse solver.

sgssuo - sgssuo - User supplied permutation for ordering used in the general sparse solver.

sgtcon - sgtcon - estimate the reciprocal of the condition number of a real tridiagonal matrix A using the LU
factorization as computed by SGTTRF

sgthr - sgthr - Gathers specified elements from y into x.

sgthrz - sgthrz - Gather and zero.

sgtrfs - sgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
tridiagonal, and provides error bounds and backward error estimates for the solution

sgtsv - sgtsv - solve the equation A*X = B,

sgtsvx - sgtsvx - use the LU factorization to compute the solution to a real system of linear equations A * X = B or
A**T * X = B,

sgttrf - sgttrf - compute an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and
row interchanges

sgttrs - sgttrs - solve one of the systems of equations A*X = B or A'*X = B,

shgeqz - shgeqz - implement a single-/double-shift version of the QZ method for finding the generalized eigenvalues
w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j) of the equation det(A-w(i) B) = 0 In addition, the pair A,B may be
reduced to generalized Schur form

shsein - shsein - use inverse iteration to find specified right and/or left eigenvectors of a real upper Hessenberg matrix
H

shseqr - shseqr - compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z
from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is
the orthogonal matrix of Schur vectors

sinqb - sinqb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave numbers.
The SINQ operations are unnormalized inverses of themselves, so a call to SINQF followed by a call to SINQB will
multiply the input sequence by 4 * N.

sinqf - sinqf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The SINQ
operations are unnormalized inverses of themselves, so a call to SINQF followed by a call to SINQB will multiply the
input sequence by 4 * N.

sinqi - sinqi - initialize the array xWSAVE, which is used in both SINQF and SINQB.

sint - sint - compute the discrete Fourier sine transform of an odd sequence. The SINT transforms are unnormalized
inverses of themselves, so a call of SINT followed by another call of SINT will multiply the input sequence by 2 *

(N+1).

sinti - sinti - initialize the array WSAVE, which is used in subroutine SINT.

sjadmm - sjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

sjadrp - sjadrp - right permutation of a jagged diagonal matrix

sjadsm - sjadsm - Jagged-diagonal format triangular solve

slagtf - slagtf - factorize the matrix (T-lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as
T-lambda*I = PLU

slamrg - slamrg - will create a permutation list which will merge the elements of A (which is composed of two
independently sorted sets) into a single set which is sorted in ascending order

slarz - slarz - applies a real elementary reflector H to a real M-by-N matrix C, from either the left or the right

slarzb - slarzb - applies a real block reflector H or its transpose H**T to a real distributed M-by-N C from the left or the
right

slarzt - slarzt - form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k
elementary reflectors

slasrt - slasrt - the numbers in D in increasing order (if ID = 'I') or in decreasing order (if ID = 'D')

slatzm - slatzm - routine is deprecated and has been replaced by routine SORMRZ

snrm2 - snrm2 - Return the Euclidian norm of a vector.

sopgtr - sopgtr - generate a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors H(i)
of order n, as returned by SSPTRD using packed storage

sopmtr - sopmtr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sorg2l - sorg2l - generate an m by n real matrix Q with orthonormal columns,

sorg2r - sorg2r - generate an m by n real matrix Q with orthonormal columns,

sorgbr - sorgbr - generate one of the real orthogonal matrices Q or P**T determined by SGEBRD when reducing a real
matrix A to bidiagonal form

sorghr - sorghr - generate a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors
of order N, as returned by SGEHRD

sorgl2 - sorgl2 - generate an m by n real matrix Q with orthonormal rows,

sorglq - sorglq - generate an M-by-N real matrix Q with orthonormal rows,

sorgql - sorgql - generate an M-by-N real matrix Q with orthonormal columns,

sorgqr - sorgqr - generate an M-by-N real matrix Q with orthonormal columns,

sorgr2 - sorgr2 - generate an m by n real matrix Q with orthonormal rows,

sorgrq - sorgrq - generate an M-by-N real matrix Q with orthonormal rows,

sorgtr - sorgtr - generate a real orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of
order N, as returned by SSYTRD

sormbr - sormbr - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R'
TRANS = 'N'

sormhr - sormhr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormlq - sormlq - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormql - sormql - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormqr - sormqr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormrq - sormrq - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormrz - sormrz - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

sormtr - sormtr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

spbcon - spbcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

spbequ - spbequ - compute row and column scalings intended to equilibrate a symmetric positive definite band matrix
A and reduce its condition number (with respect to the two-norm)

spbrfs - spbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric positive definite and banded, and provides error bounds and backward error estimates for the solution

spbstf - spbstf - compute a split Cholesky factorization of a real symmetric positive definite band matrix A

spbsv - spbsv - compute the solution to a real system of linear equations A * X = B,

spbsvx - spbsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

spbtf2 - spbtf2 - compute the Cholesky factorization of a real symmetric positive definite band matrix A

spbtrf - spbtrf - compute the Cholesky factorization of a real symmetric positive definite band matrix A

spbtrs - spbtrs - solve a system of linear equations A*X = B with a symmetric positive definite band matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF

spocon - spocon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

spoequ - spoequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A and
reduce its condition number (with respect to the two-norm)

sporfs - sporfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric positive definite,

sposv - sposv - compute the solution to a real system of linear equations A * X = B,

sposvx - sposvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

spotf2 - spotf2 - compute the Cholesky factorization of a real symmetric positive definite matrix A

spotrf - spotrf - compute the Cholesky factorization of a real symmetric positive definite matrix A

spotri - spotri - compute the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by SPOTRF

spotrs - spotrs - solve a system of linear equations A*X = B with a symmetric positive definite matrix A using the
Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF

sppcon - sppcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

sppequ - sppequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

spprfs - spprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric positive definite and packed, and provides error bounds and backward error estimates for the solution

sppsv - sppsv - compute the solution to a real system of linear equations A * X = B,

sppsvx - sppsvx - use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system
of linear equations A * X = B,

spptrf - spptrf - compute the Cholesky factorization of a real symmetric positive definite matrix A stored in packed
format

spptri - spptri - compute the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by SPPTRF

spptrs - spptrs - solve a system of linear equations A*X = B with a symmetric positive definite matrix A in packed
storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF

sptcon - sptcon - compute the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite
tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF

spteqr - spteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal
matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the
bidiagonal factor

sptrfs - sptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

sptsv - sptsv - compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric
positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

sptsvx - sptsvx - use the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X
= B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

spttrf - spttrf - compute the L*D*L' factorization of a real symmetric positive definite tridiagonal matrix A

spttrs - spttrs - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by
SPTTRF

sptts2 - sptts2 - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by
SPTTRF

srot - srot - Apply a Given's rotation constructed by SROTG.

srotg - srotg - Construct a Given's plane rotation

sroti - sroti - Apply an indexed Givens rotation.

srotm - srotm - Apply a Gentleman's modified Given's rotation constructed by SROTMG.

srotmg - srotmg - Construct a Gentleman's modified Given's plane rotation

ssbev - ssbev - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

ssbevd - ssbevd - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

ssbevx - ssbevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

ssbgst - ssbgst - reduce a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard
form C*y = lambda*y,

ssbgv - ssbgv - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)*B*x

ssbgvd - ssbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)*B*x

ssbgvx - ssbgvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
banded eigenproblem, of the form A*x=(lambda)*B*x

ssbmv - ssbmv - perform the matrix-vector operation y := alpha*A*x + beta*y

ssbtrd - ssbtrd - reduce a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

sscal - sscal - Compute y := alpha * y

ssctr - ssctr - Scatters elements from x into y.

sskymm - sskymm - Skyline format matrix-matrix multiply

sskysm - sskysm - Skyline format triangular solve

sspcon - sspcon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric packed matrix A
using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

sspev - sspev - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

sspevd - sspevd - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

sspevx - sspevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed
storage

sspgst - sspgst - reduce a real symmetric-definite generalized eigenproblem to standard form, using packed storage

sspgv - sspgv - compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

sspgvd - sspgvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

sspgvx - sspgvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

sspmv - sspmv - perform the matrix-vector operation y := alpha*A*x + beta*y

sspr - sspr - perform the symmetric rank 1 operation A := alpha*x*x' + A

sspr2 - sspr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

ssprfs - ssprfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite and packed, and provides error bounds and backward error estimates for the solution

sspsv - sspsv - compute the solution to a real system of linear equations A * X = B,

sspsvx - sspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to
a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices

ssptrd - ssptrd - reduce a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an
orthogonal similarity transformation

ssptrf - ssptrf - compute the factorization of a real symmetric matrix A stored in packed format using the
Bunch-Kaufman diagonal pivoting method

ssptri - ssptri - compute the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A
= U*D*U**T or A = L*D*L**T computed by SSPTRF

ssptrs - ssptrs - solve a system of linear equations A*X = B with a real symmetric matrix A stored in packed format
using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF

sstebz - sstebz - compute the eigenvalues of a symmetric tridiagonal matrix T

sstedc - sstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
divide and conquer method

sstegr - sstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

sstein - sstein - compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified
eigenvalues, using inverse iteration

ssteqr - ssteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
implicit QL or QR method

ssterf - ssterf - compute all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the
QL or QR algorithm

sstev - sstev - compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

sstevd - sstevd - compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix

sstevr - sstevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T

sstevx - sstevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

sstsv - sstsv - compute the solution to a system of linear equations A * X = B where A is a symmetric tridiagonal
matrix

ssttrf - ssttrf - compute the factorization of a symmetric tridiagonal matrix A

ssttrs - ssttrs - computes the solution to a real system of linear equations A * X = B

sswap - sswap - Exchange vectors x and y.

ssycon - ssycon - estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using
the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF

ssyev - ssyev - compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

ssyevd - ssyevd - compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

ssyevr - ssyevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T

ssyevx - ssyevx - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

ssygs2 - ssygs2 - reduce a real symmetric-definite generalized eigenproblem to standard form

ssygst - ssygst - reduce a real symmetric-definite generalized eigenproblem to standard form

ssygv - ssygv - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

ssygvd - ssygvd - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

ssygvx - ssygvx - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

ssymm - ssymm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

ssymv - ssymv - perform the matrix-vector operation y := alpha*A*x + beta*y

ssyr - ssyr - perform the symmetric rank 1 operation A := alpha*x*x' + A

ssyr2 - ssyr2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A

ssyr2k - ssyr2k - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C or C :=
alpha*A'*B + alpha*B'*A + beta*C

ssyrfs - ssyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric
indefinite, and provides error bounds and backward error estimates for the solution

ssyrk - ssyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C

ssysv - ssysv - compute the solution to a real system of linear equations A * X = B,

ssysvx - ssysvx - use the diagonal pivoting factorization to compute the solution to a real system of linear equations A *
X = B,

ssytd2 - ssytd2 - reduce a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation

ssytf2 - ssytf2 - compute the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

ssytrd - ssytrd - reduce a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity
transformation

ssytrf - ssytrf - compute the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting
method

ssytri - ssytri - compute the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or
A = L*D*L**T computed by SSYTRF

ssytrs - ssytrs - solve a system of linear equations A*X = B with a real symmetric matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by SSYTRF

stbcon - stbcon - estimate the reciprocal of the condition number of a triangular band matrix A, in either the 1-norm or
the infinity-norm

stbmv - stbmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

stbrfs - stbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular band coefficient matrix

stbsv - stbsv - solve one of the systems of equations A*x = b, or A'*x = b

stbtrs - stbtrs - solve a triangular system of the form A * X = B or A**T * X = B,

stgevc - stgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of real upper triangular
matrices (A,B)

stgexc - stgexc - reorder the generalized real Schur decomposition of a real matrix pair (A,B) using an orthogonal
equivalence transformation (A, B) = Q * (A, B) * Z',

stgsen - stgsen - reorder the generalized real Schur decomposition of a real matrix pair (A, B) (in terms of an
orthonormal equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appears in the
leading diagonal blocks of the upper quasi-triangular matrix A and the upper triangular B

stgsja - stgsja - compute the generalized singular value decomposition (GSVD) of two real upper triangular (or
trapezoidal) matrices A and B

stgsna - stgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair
(A, B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z') with orthogonal matrices Q
and Z, where Z' denotes the transpose of Z

stgsyl - stgsyl - solve the generalized Sylvester equation

stpcon - stpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm
or the infinity-norm

stpmv - stpmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

stprfs - stprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular packed coefficient matrix

stpsv - stpsv - solve one of the systems of equations A*x = b, or A'*x = b

stptri - stptri - compute the inverse of a real upper or lower triangular matrix A stored in packed format

stptrs - stptrs - solve a triangular system of the form A * X = B or A**T * X = B,

strans - strans - transpose and scale source matrix

strcon - strcon - estimate the reciprocal of the condition number of a triangular matrix A, in either the 1-norm or the
infinity-norm

strevc - strevc - compute some or all of the right and/or left eigenvectors of a real upper quasi-triangular matrix T

strexc - strexc - reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T
with row index IFST is moved to row ILST

strmm - strmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A)

strmv - strmv - perform one of the matrix-vector operations x := A*x, or x := A'*x

strrfs - strrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

strsen - strsen - reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,

strsm - strsm - solve one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B

strsna - strsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a real
upper quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q orthogonal)

strsv - strsv - solve one of the systems of equations A*x = b, or A'*x = b

strsyl - strsyl - solve the real Sylvester matrix equation

strti2 - strti2 - compute the inverse of a real upper or lower triangular matrix

strtri - strtri - compute the inverse of a real upper or lower triangular matrix A

strtrs - strtrs - solve a triangular system of the form A * X = B or A**T * X = B,

stzrqf - stzrqf - routine is deprecated and has been replaced by routine STZRZF

stzrzf - stzrzf - reduce the M-by-N (M<=N) real upper trapezoidal matrix A to upper triangular form by means of

orthogonal transformations

sunperf_version - sunperf_version - gets library information .HP 1i SUBROUTINE SUNPERF_VERSION(VERSION,
PATCH, UPDATE) .HP 1i INTEGER VERSION, PATCH, UPDATE .HP 1i

svbrmm - svbrmm - variable block sparse row format matrix-matrix multiply

svbrsm - svbrsm - variable block sparse row format triangular solve

swiener - swiener - perform Wiener deconvolution of two signals

use_threads - use_threads - set the upper bound on the number of threads that the calling thread wants used

using_threads - using_threads - returns the current Use number set by the USE_THREADS subroutine

vcfftb - vcfftb - compute a periodic sequence from its Fourier coefficients. The VCFFT operations are normalized, so a
call of VCFFTF followed by a call of VCFFTB will return the original sequence.

vcfftf - vcfftf - compute the Fourier coefficients of a periodic sequence. The VCFFT operations are normalized, so a
call of VCFFTF followed by a call of VCFFTB will return the original sequence.

vcffti - vcffti - initialize the array WSAVE, which is used in both VCFFTF and VCFFTB.

vcosqb - vcosqb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave
numbers. The VCOSQ operations are normalized, so a call of VCOSQF followed by a call of VCOSQB will return the
original sequence.

vcosqf - vcosqf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
VCOSQ operations are normalized, so a call of VCOSQF followed by a call of VCOSQB will return the original
sequence.

vcosqi - vcosqi - initialize the array WSAVE, which is used in both VCOSQF and VCOSQB.

vcost - vcost - compute the discrete Fourier cosine transform of an even sequence. The VCOST transform is
normalized, so a call of VCOST followed by a call of VCOST will return the original sequence.

vcosti - vcosti - initialize the array WSAVE, which is used in VCOST.

vdcosqb - vdcosqb - synthesize a Fourier sequence from its representation in terms of a cosine series with odd wave
numbers. The VCOSQ operations are normalized, so a call of VCOSQF followed by a call of VCOSQB will return the
original sequence.

vdcosqf - vdcosqf - compute the Fourier coefficients in a cosine series representation with only odd wave numbers. The
VCOSQ operations are normalized, so a call of VCOSQF followed by a call of VCOSQB will return the original
sequence.

vdcosqi - vdcosqi - initialize the array WSAVE, which is used in both VCOSQF and VCOSQB.

vdcost - vdcost - compute the discrete Fourier cosine transform of an even sequence. The VCOST transform is
normalized, so a call of VCOST followed by a call of VCOST will return the original sequence.

vdcosti - vdcosti - initialize the array WSAVE, which is used in VCOST.

vdfftb - vdfftb - compute a periodic sequence from its Fourier coefficients. The VRFFT operations are normalized, so a
call of VRFFTF followed by a call of VRFFTB will return the original sequence.

vdfftf - vdfftf - compute the Fourier coefficients of a periodic sequence. The VRFFT operations are normalized, so a
call of VRFFTF followed by a call of VRFFTB will return the original sequence.

vdffti - vdffti - initialize the array WSAVE, which is used in both VRFFTF and VRFFTB.

vdsinqb - vdsinqb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave
numbers. The VSINQ operations are normalized, so a call of VSINQF followed by a call of VSINQB will return the
original sequence.

vdsinqf - vdsinqf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The
VSINQ operations are normalized, so a call of VSINQF followed by a call of VSINQB will return the original
sequence.

vdsinqi - vdsinqi - initialize the array WSAVE, which is used in both VSINQF and VSINQB.

vdsint - vdsint - compute the discrete Fourier sine transform of an odd sequence. The VSINT transforms are

unnormalized inverses of themselves, so a call of VSINT followed by another call of VSINT will multiply the input
sequence by 2 * (N+1). The VSINT transforms are normalized, so a call of VSINT followed by a call of VSINT will
return the original sequence.

vdsinti - vdsinti - initialize the array WSAVE, which is used in subroutine VSINT.

vrfftb - vrfftb - compute a periodic sequence from its Fourier coefficients. The VRFFT operations are normalized, so a
call of VRFFTF followed by a call of VRFFTB will return the original sequence.

vrfftf - vrfftf - compute the Fourier coefficients of a periodic sequence. The VRFFT operations are normalized, so a call
of VRFFTF followed by a call of VRFFTB will return the original sequence.

vrffti - vrffti - initialize the array WSAVE, which is used in both VRFFTF and VRFFTB.

vsinqb - vsinqb - synthesize a Fourier sequence from its representation in terms of a sine series with odd wave
numbers. The VSINQ operations are normalized, so a call of VSINQF followed by a call of VSINQB will return the
original sequence.

vsinqf - vsinqf - compute the Fourier coefficients in a sine series representation with only odd wave numbers. The
VSINQ operations are normalized, so a call of VSINQF followed by a call of VSINQB will return the original
sequence.

vsinqi - vsinqi - initialize the array WSAVE, which is used in both VSINQF and VSINQB.

vsint - vsint - compute the discrete Fourier sine transform of an odd sequence. The VSINT transforms are unnormalized
inverses of themselves, so a call of VSINT followed by another call of VSINT will multiply the input sequence by 2 *
(N+1). The VSINT transforms are normalized, so a call of VSINT followed by a call of VSINT will return the original
sequence.

vsinti - vsinti - initialize the array WSAVE, which is used in subroutine VSINT.

vzfftb - vzfftb - compute a periodic sequence from its Fourier coefficients. The VZFFT operations are normalized, so a
call of VZFFTF followed by a call of VZFFTB will return the original sequence.

vzfftf - vzfftf - compute the Fourier coefficients of a periodic sequence. The VZFFT operations are normalized, so a
call of VZFFTF followed by a call of VZFFTB will return the original sequence.

vzffti - vzffti - initialize the array WSAVE, which is used in both VZFFTF and VZFFTB.

zaxpy - zaxpy - compute y := alpha * x + y

zaxpyi - zaxpyi - Compute y := alpha * x + y

zbcomm - zbcomm - block coordinate matrix-matrix multiply

zbdimm - zbdimm - block diagonal format matrix-matrix multiply

zbdism - zbdism - block diagonal format triangular solve

zbdsqr - zbdsqr - compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix
B.

zbelmm - zbelmm - block Ellpack format matrix-matrix multiply

zbelsm - zbelsm - block Ellpack format triangular solve

zbscmm - zbscmm - block sparse column matrix-matrix multiply

zbscsm - zbscsm - block sparse column format triangular solve

zbsrmm - zbsrmm - block sparse row format matrix-matrix multiply

zbsrsm - zbsrsm - block sparse row format triangular solve

zcnvcor - zcnvcor - compute the convolution or correlation of complex vectors

zcnvcor2 - zcnvcor2 - compute the convolution or correlation of complex matrices

zcoomm - zcoomm - coordinate matrix-matrix multiply

zcopy - zcopy - Copy x to y

zcscmm - zcscmm - compressed sparse column format matrix-matrix multiply

zcscsm - zcscsm - compressed sparse column format triangular solve

zcsrmm - zcsrmm - compressed sparse row format matrix-matrix multiply

zcsrsm - zcsrsm - compressed sparse row format triangular solve

zdiamm - zdiamm - diagonal format matrix-matrix multiply

zdiasm - zdiasm - diagonal format triangular solve

zdotc - zdotc - compute the dot product of two vectors conjg(x) and y.

zdotci - zdotci - Compute the complex conjugated indexed dot product.

zdotu - zdotu - compute the dot product of two vectors x and y.

zdotui - zdotui - Compute the complex unconjugated indexed dot product.

zdrot - zdrot - Apply a plane rotation.

zdscal - zdscal - Compute y := alpha * y

zellmm - zellmm - Ellpack format matrix-matrix multiply

zellsm - zellsm - Ellpack format triangular solve

zfft2b - zfft2b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a
call of ZFFT2F followed by a call of ZFFT2B will multiply the input sequence by M*N.

zfft2f - zfft2f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call
of ZFFT2F followed by a call of ZFFT2B will multiply the input sequence by M*N.

zfft2i - zfft2i - initialize the array WSAVE, which is used in both the forward and backward transforms.

zfft3b - zfft3b - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a
call of ZFFT3F followed by a call of ZFFT3B will multiply the input sequence by M*N*K.

zfft3f - zfft3f - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call
of ZFFT3F followed by a call of ZFFT3B will multiply the input sequence by M*N*K.

zfft3i - zfft3i - initialize the array WSAVE, which is used in both ZFFT3F and ZFFT3B.

zfftb - zfftb - compute a periodic sequence from its Fourier coefficients. The FFT operations are unnormalized, so a call
of ZFFTF followed by a call of ZFFTB will multiply the input sequence by N.

zfftd - zfftd - initialize the trigonometric weight and factor tables or compute the inverse Fast Fourier Transform of a
double complex sequence.

zfftd2 - zfftd2 - initialize the trigonometric weight and factor tables or compute the two-dimensional inverse Fast
Fourier Transform of a two-dimensional double complex array.

zfftd3 - zfftd3 - initialize the trigonometric weight and factor tables or compute the three-dimensional inverse Fast
Fourier Transform of a three-dimensional double complex array.

zfftdm - zfftdm - initialize the trigonometric weight and factor tables or compute the one-dimensional inverse Fast
Fourier Transform of a set of double complex data sequences stored in a two-dimensional array.

zfftf - zfftf - compute the Fourier coefficients of a periodic sequence. The FFT operations are unnormalized, so a call of
ZFFTF followed by a call of ZFFTB will multiply the input sequence by N.

zffti - zffti - initialize the array WSAVE, which is used in both ZFFTF and ZFFTB.

zfftopt - zfftopt - compute the length of the closest fast FFT

zfftz - zfftz - initialize the trigonometric weight and factor tables or compute the Fast Fourier transform (forward or
inverse) of a double complex sequence.

zfftz2 - zfftz2 - initialize the trigonometric weight and factor tables or compute the two-dimensional Fast Fourier
Transform (forward or inverse) of a two-dimensional double complex array.

zfftz3 - zfftz3 - initialize the trigonometric weight and factor tables or compute the three-dimensional Fast Fourier
Transform (forward or inverse) of a three-dimensional double complex array.

zfftzm - zfftzm - initialize the trigonometric weight and factor tables or compute the one-dimensional Fast Fourier
Transform (forward or inverse) of a set of data sequences stored in a two-dimensional double complex array.

zgbbrd - zgbbrd - reduce a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary
transformation

zgbcon - zgbcon - estimate the reciprocal of the condition number of a complex general band matrix A, in either the
1-norm or the infinity-norm,

zgbequ - zgbequ - compute row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its
condition number

zgbmv - zgbmv - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
y := alpha*conjg(A')*x + beta*y

zgbrfs - zgbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is banded,
and provides error bounds and backward error estimates for the solution

zgbsv - zgbsv - compute the solution to a complex system of linear equations A * X = B, where A is a band matrix of
order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices

zgbsvx - zgbsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

zgbtf2 - zgbtf2 - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

zgbtrf - zgbtrf - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row
interchanges

zgbtrs - zgbtrs - solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band
matrix A using the LU factorization computed by CGBTRF

zgebak - zgebak - form the right or left eigenvectors of a complex general matrix by backward transformation on the
computed eigenvectors of the balanced matrix output by CGEBAL

zgebal - zgebal - balance a general complex matrix A

zgebrd - zgebrd - reduce a general complex M-by-N matrix A to upper or lower bidiagonal form B by a unitary
transformation

zgecon - zgecon - estimate the reciprocal of the condition number of a general complex matrix A, in either the 1-norm
or the infinity-norm, using the LU factorization computed by CGETRF

zgeequ - zgeequ - compute row and column scalings intended to equilibrate an M-by-N matrix A and reduce its
condition number

zgees - zgees - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

zgeesx - zgeesx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and,
optionally, the matrix of Schur vectors Z

zgeev - zgeev - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left
and/or right eigenvectors

zgeevx - zgeevx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left
and/or right eigenvectors

zgegs - zgegs - routine is deprecated and has been replaced by routine CGGES

zgegv - zgegv - routine is deprecated and has been replaced by routine CGGEV

zgehrd - zgehrd - reduce a complex general matrix A to upper Hessenberg form H by a unitary similarity
transformation

zgelqf - zgelqf - compute an LQ factorization of a complex M-by-N matrix A

zgels - zgels - solve overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its
conjugate-transpose, using a QR or LQ factorization of A

zgelsd - zgelsd - compute the minimum-norm solution to a real linear least squares problem

zgelss - zgelss - compute the minimum norm solution to a complex linear least squares problem

zgelsx - zgelsx - routine is deprecated and has been replaced by routine CGELSY

zgelsy - zgelsy - compute the minimum-norm solution to a complex linear least squares problem

zgemm - zgemm - perform one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C

zgemv - zgemv - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
y := alpha*conjg(A')*x + beta*y

zgeqlf - zgeqlf - compute a QL factorization of a complex M-by-N matrix A

zgeqp3 - zgeqp3 - compute a QR factorization with column pivoting of a matrix A

zgeqpf - zgeqpf - routine is deprecated and has been replaced by routine CGEQP3

zgeqrf - zgeqrf - compute a QR factorization of a complex M-by-N matrix A

zgerc - zgerc - perform the rank 1 operation A := alpha*x*conjg(y') + A

zgerfs - zgerfs - improve the computed solution to a system of linear equations and provides error bounds and
backward error estimates for the solution

zgerqf - zgerqf - compute an RQ factorization of a complex M-by-N matrix A

zgeru - zgeru - perform the rank 1 operation A := alpha*x*y' + A

zgesdd - zgesdd - compute the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally
computing the left and/or right singular vectors, by using divide-and-conquer method

zgesv - zgesv - compute the solution to a complex system of linear equations A * X = B,

zgesvd - zgesvd - compute the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally
computing the left and/or right singular vectors

zgesvx - zgesvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,

zgetf2 - zgetf2 - compute an LU factorization of a general m-by-n matrix A using partial pivoting with row
interchanges

zgetrf - zgetrf - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row
interchanges

zgetri - zgetri - compute the inverse of a matrix using the LU factorization computed by CGETRF

zgetrs - zgetrs - solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N
matrix A using the LU factorization computed by CGETRF

zggbak - zggbak - form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x,
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by CGGBAL

zggbal - zggbal - balance a pair of general complex matrices (A,B)

zgges - zgges - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the
generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)

zggesx - zggesx - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues,
the complex Schur form (S,T),

zggev - zggev - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and
optionally, the left and/or right generalized eigenvectors

zggevx - zggevx - compute for a pair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues,
and optionally, the left and/or right generalized eigenvectors

zggglm - zggglm - solve a general Gauss-Markov linear model (GLM) problem

zgghrd - zgghrd - reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary
transformations, where A is a general matrix and B is upper triangular

zgglse - zgglse - solve the linear equality-constrained least squares (LSE) problem

zggqrf - zggqrf - compute a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B.

zggrqf - zggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B

zggsvd - zggsvd - compute the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and
P-by-N complex matrix B

zggsvp - zggsvp - compute unitary matrices U, V and Q such that N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >=
0

zgssco - zgssco - General sparse solver condition number estimate.

zgssda - zgssda - Deallocate working storage for the general sparse solver.

zgssfa - zgssfa - General sparse solver numeric factorization.

zgssfs - zgssfs - General sparse solver one call interface.

zgssin - zgssin - Initialize the general sparse solver.

zgssor - zgssor - General sparse solver ordering and symbolic factorization.

zgssps - zgssps - Print general sparse solver statics.

zgssrp - zgssrp - Return permutation used by the general sparse solver.

zgsssl - zgsssl - Solve routine for the general sparse solver.

zgssuo - zgssuo - User supplied permutation for ordering used in the general sparse solver.

zgtcon - zgtcon - estimate the reciprocal of the condition number of a complex tridiagonal matrix A using the LU
factorization as computed by CGTTRF

zgthr - zgthr - Gathers specified elements from y into x.

zgthrz - zgthrz - Gather and zero.

zgtrfs - zgtrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
tridiagonal, and provides error bounds and backward error estimates for the solution

zgtsv - zgtsv - solve the equation A*X = B,

zgtsvx - zgtsvx - use the LU factorization to compute the solution to a complex system of linear equations A * X = B,
A**T * X = B, or A**H * X = B,

zgttrf - zgttrf - compute an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting
and row interchanges

zgttrs - zgttrs - solve one of the systems of equations A * X = B, A**T * X = B, or A**H * X = B,

zhbev - zhbev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbevd - zhbevd - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbevx - zhbevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

zhbgst - zhbgst - reduce a complex Hermitian-definite banded generalized eigenproblem A*x = lambda*B*x to
standard form C*y = lambda*y,

zhbgv - zhbgv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

zhbgvd - zhbgvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

zhbgvx - zhbgvx - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x

zhbmv - zhbmv - perform the matrix-vector operation y := alpha*A*x + beta*y

zhbtrd - zhbtrd - reduce a complex Hermitian band matrix A to real symmetric tridiagonal form T by a unitary
similarity transformation

zhecon - zhecon - estimate the reciprocal of the condition number of a complex Hermitian matrix A using the

factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF

zheev - zheev - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zheevd - zheevd - compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zheevr - zheevr - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian tridiagonal matrix
T

zheevx - zheevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

zhegs2 - zhegs2 - reduce a complex Hermitian-definite generalized eigenproblem to standard form

zhegst - zhegst - reduce a complex Hermitian-definite generalized eigenproblem to standard form

zhegv - zhegv - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhegvd - zhegvd - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhegvx - zhegvx - compute selected eigenvalues, and optionally, eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhemm - zhemm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

zhemv - zhemv - perform the matrix-vector operation y := alpha*A*x + beta*y

zher - zher - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

zher2 - zher2 - perform the hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

zher2k - zher2k - perform one of the Hermitian rank 2k operations C := alpha*A*conjg(B') + conjg(alpha)*B*conjg(
A') + beta*C or C := alpha*conjg(A')*B + conjg(alpha)*conjg(B')*A + beta*C

zherfs - zherfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
indefinite, and provides error bounds and backward error estimates for the solution

zherk - zherk - perform one of the Hermitian rank k operations C := alpha*A*conjg(A') + beta*C or C := alpha*conjg(
A')*A + beta*C

zhesv - zhesv - compute the solution to a complex system of linear equations A * X = B,

zhesvx - zhesvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear
equations A * X = B,

zhetf2 - zhetf2 - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal
pivoting method

zhetrd - zhetrd - reduce a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation

zhetrf - zhetrf - compute the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal
pivoting method

zhetri - zhetri - compute the inverse of a complex Hermitian indefinite matrix A using the factorization A =
U*D*U**H or A = L*D*L**H computed by CHETRF

zhetrs - zhetrs - solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization
A = U*D*U**H or A = L*D*L**H computed by CHETRF

zhgeqz - zhgeqz - implement a single-shift version of the QZ method for finding the generalized eigenvalues
w(i)=ALPHA(i)/BETA(i) of the equation det(A-w(i) B) = 0 If JOB='S', then the pair (A,B) is simultaneously reduced
to Schur form (i.e., A and B are both upper triangular) by applying one unitary tranformation (usually called Q) on the
left and another (usually called Z) on the right

zhpcon - zhpcon - estimate the reciprocal of the condition number of a complex Hermitian packed matrix A using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

zhpev - zhpev - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed
storage

zhpevd - zhpevd - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in

packed storage

zhpevx - zhpevx - compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in
packed storage

zhpgst - zhpgst - reduce a complex Hermitian-definite generalized eigenproblem to standard form, using packed storage

zhpgv - zhpgv - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhpgvd - zhpgvd - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhpgvx - zhpgvx - compute selected eigenvalues and, optionally, eigenvectors of a complex generalized
Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

zhpmv - zhpmv - perform the matrix-vector operation y := alpha*A*x + beta*y

zhpr - zhpr - perform the hermitian rank 1 operation A := alpha*x*conjg(x') + A

zhpr2 - zhpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

zhprfs - zhprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian indefinite and packed, and provides error bounds and backward error estimates for the solution

zhpsv - zhpsv - compute the solution to a complex system of linear equations A * X = B,

zhpsvx - zhpsvx - use the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution
to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format
and X and B are N-by-NRHS matrices

zhptrd - zhptrd - reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a
unitary similarity transformation

zhptrf - zhptrf - compute the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal
pivoting method

zhptri - zhptri - compute the inverse of a complex Hermitian indefinite matrix A in packed storage using the
factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

zhptrs - zhptrs - solve a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed
format using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF

zhsein - zhsein - use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg
matrix H

zhseqr - zhseqr - compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and
Z from the Schur decomposition H = Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the
unitary matrix of Schur vectors

zjadmm - zjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)

zjadrp - zjadrp - right permutation of a jagged diagonal matrix

zjadsm - zjadsm - Jagged-diagonal format triangular solve

zlarz - zlarz - applie a complex elementary reflector H to a complex M-by-N matrix C, from either the left or the right

zlarzb - zlarzb - applie a complex block reflector H or its transpose H**H to a complex distributed M-by-N C from the
left or the right

zlarzt - zlarzt - form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of
k elementary reflectors

zlatzm - zlatzm - routine is deprecated and has been replaced by routine CUNMRZ

zpbcon - zpbcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

zpbequ - zpbequ - compute row and column scalings intended to equilibrate a Hermitian positive definite band matrix
A and reduce its condition number (with respect to the two-norm)

zpbrfs - zpbrfs - improve the computed solution to a system of linear equations when the coefficient matrix is

Hermitian positive definite and banded, and provides error bounds and backward error estimates for the solution

zpbstf - zpbstf - compute a split Cholesky factorization of a complex Hermitian positive definite band matrix A

zpbsv - zpbsv - compute the solution to a complex system of linear equations A * X = B,

zpbsvx - zpbsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

zpbtf2 - zpbtf2 - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

zpbtrf - zpbtrf - compute the Cholesky factorization of a complex Hermitian positive definite band matrix A

zpbtrs - zpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF

zpocon - zpocon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

zpoequ - zpoequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A and
reduce its condition number (with respect to the two-norm)

zporfs - zporfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian positive definite,

zposv - zposv - compute the solution to a complex system of linear equations A * X = B,

zposvx - zposvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

zpotf2 - zpotf2 - compute the Cholesky factorization of a complex Hermitian positive definite matrix A

zpotrf - zpotrf - compute the Cholesky factorization of a complex Hermitian positive definite matrix A

zpotri - zpotri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization
A = U**H*U or A = L*L**H computed by CPOTRF

zpotrs - zpotrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A using the
Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF

zppcon - zppcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

zppequ - zppequ - compute row and column scalings intended to equilibrate a Hermitian positive definite matrix A in
packed storage and reduce its condition number (with respect to the two-norm)

zpprfs - zpprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
Hermitian positive definite and packed, and provides error bounds and backward error estimates for the solution

zppsv - zppsv - compute the solution to a complex system of linear equations A * X = B,

zppsvx - zppsvx - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex
system of linear equations A * X = B,

zpptrf - zpptrf - compute the Cholesky factorization of a complex Hermitian positive definite matrix A stored in packed
format

zpptri - zpptri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization
A = U**H*U or A = L*L**H computed by CPPTRF

zpptrs - zpptrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed
storage using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

zptcon - zptcon - compute the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive
definite tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by CPTTRF

zpteqr - zpteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal
matrix by first factoring the matrix using SPTTRF and then calling CBDSQR to compute the singular values of the
bidiagonal factor

zptrfs - zptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian
positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution

zptsv - zptsv - compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N
Hermitian positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices.

zptsvx - zptsvx - use the factorization A = L*D*L**H to compute the solution to a complex system of linear equations
A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices

zpttrf - zpttrf - compute the L*D*L' factorization of a complex Hermitian positive definite tridiagonal matrix A

zpttrs - zpttrs - solve a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L'
computed by CPTTRF

zptts2 - zptts2 - solve a tridiagonal system of the form A * X = B using the factorization A = U'*D*U or A = L*D*L'
computed by CPTTRF

zrot - zrot - apply a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors X and Y are
complex

zrotg - zrotg - Construct a Given's plane rotation

zscal - zscal - Compute y := alpha * y

zsctr - zsctr - Scatters elements from x into y.

zskymm - zskymm - Skyline format matrix-matrix multiply

zskysm - zskysm - Skyline format triangular solve

zspcon - zspcon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed
matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

zsprfs - zsprfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution

zspsv - zspsv - compute the solution to a complex system of linear equations A * X = B,

zspsvx - zspsvx - use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to
a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and
X and B are N-by-NRHS matrices

zsptrf - zsptrf - compute the factorization of a complex symmetric matrix A stored in packed format using the
Bunch-Kaufman diagonal pivoting method

zsptri - zsptri - compute the inverse of a complex symmetric indefinite matrix A in packed storage using the
factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

zsptrs - zsptrs - solve a system of linear equations A*X = B with a complex symmetric matrix A stored in packed
format using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF

zstedc - zstedc - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
divide and conquer method

zstegr - zstegr - Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

zstein - zstein - compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified
eigenvalues, using inverse iteration

zsteqr - zsteqr - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the
implicit QL or QR method

zstsv - zstsv - compute the solution to a complex system of linear equations A * X = B where A is a Hermitian
tridiagonal matrix

zsttrf - zsttrf - compute the factorization of a complex Hermitian tridiagonal matrix A

zsttrs - zsttrs - computes the solution to a complex system of linear equations A * X = B

zswap - zswap - Exchange vectors x and y.

zsycon - zsycon - estimate the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A
using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF

zsymm - zsymm - perform one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C

zsyr2k - zsyr2k - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C or C :=
alpha*A'*B + alpha*B'*A + beta*C

zsyrfs - zsyrfs - improve the computed solution to a system of linear equations when the coefficient matrix is
symmetric indefinite, and provides error bounds and backward error estimates for the solution

zsyrk - zsyrk - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A +
beta*C

zsysv - zsysv - compute the solution to a complex system of linear equations A * X = B,

zsysvx - zsysvx - use the diagonal pivoting factorization to compute the solution to a complex system of linear
equations A * X = B,

zsytf2 - zsytf2 - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal
pivoting method

zsytrf - zsytrf - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal
pivoting method

zsytri - zsytri - compute the inverse of a complex symmetric indefinite matrix A using the factorization A =
U*D*U**T or A = L*D*L**T computed by CSYTRF

zsytrs - zsytrs - solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization
A = U*D*U**T or A = L*D*L**T computed by CSYTRF

ztbcon - ztbcon - estimate the reciprocal of the condition number of a triangular band matrix A, in either the 1-norm or
the infinity-norm

ztbmv - ztbmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ztbrfs - ztbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular band coefficient matrix

ztbsv - ztbsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ztbtrs - ztbtrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ztgevc - ztgevc - compute some or all of the right and/or left generalized eigenvectors of a pair of complex upper
triangular matrices (A,B)

ztgexc - ztgexc - reorder the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary
equivalence transformation (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is
moved to row ILST

ztgsen - ztgsen - reorder the generalized Schur decomposition of a complex matrix pair (A, B) (in terms of an unitary
equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appears in the leading diagonal
blocks of the pair (A,B)

ztgsja - ztgsja - compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or
trapezoidal) matrices A and B

ztgsna - ztgsna - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair
(A, B)

ztgsyl - ztgsyl - solve the generalized Sylvester equation

ztpcon - ztpcon - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm
or the infinity-norm

ztpmv - ztpmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ztprfs - ztprfs - provide error bounds and backward error estimates for the solution to a system of linear equations with
a triangular packed coefficient matrix

ztpsv - ztpsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ztptri - ztptri - compute the inverse of a complex upper or lower triangular matrix A stored in packed format

ztptrs - ztptrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ztrans - ztrans - transpose and scale source matrix

ztrcon - ztrcon - estimate the reciprocal of the condition number of a triangular matrix A, in either the 1-norm or the
infinity-norm

ztrevc - ztrevc - compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T

ztrexc - ztrexc - reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T
with row index IFST is moved to row ILST

ztrmm - ztrmm - perform one of the matrix-matrix operations B := alpha*op(A)*B, or B := alpha*B*op(A) where
alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of
op(A) = A or op(A) = A' or op(A) = conjg(A')

ztrmv - ztrmv - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg(A')*x

ztrrfs - ztrrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a
triangular coefficient matrix

ztrsen - ztrsen - reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that a selected cluster of
eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns
of Q form an orthonormal basis of the corresponding right invariant subspace

ztrsm - ztrsm - solve one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B

ztrsna - ztrsna - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex
upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)

ztrsv - ztrsv - solve one of the systems of equations A*x = b, or A'*x = b, or conjg(A')*x = b

ztrsyl - ztrsyl - solve the complex Sylvester matrix equation

ztrti2 - ztrti2 - compute the inverse of a complex upper or lower triangular matrix

ztrtri - ztrtri - compute the inverse of a complex upper or lower triangular matrix A

ztrtrs - ztrtrs - solve a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,

ztzrqf - ztzrqf - routine is deprecated and has been replaced by routine CTZRZF

ztzrzf - ztzrzf - reduce the M-by-N (M<=N) complex upper trapezoidal matrix A to upper triangular form by means of
unitary transformations

zung2l - zung2l - generate an m by n complex matrix Q with orthonormal columns,

zung2r - zung2r - generate an m by n complex matrix Q with orthonormal columns,

zungbr - zungbr - generate one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a
complex matrix A to bidiagonal form

zunghr - zunghr - generate a complex unitary matrix Q which is defined as the product of IHI-ILO elementary
reflectors of order N, as returned by CGEHRD

zungl2 - zungl2 - generate an m-by-n complex matrix Q with orthonormal rows,

zunglq - zunglq - generate an M-by-N complex matrix Q with orthonormal rows,

zungql - zungql - generate an M-by-N complex matrix Q with orthonormal columns,

zungqr - zungqr - generate an M-by-N complex matrix Q with orthonormal columns,

zungr2 - zungr2 - generate an m by n complex matrix Q with orthonormal rows,

zungrq - zungrq - generate an M-by-N complex matrix Q with orthonormal rows,

zungtr - zungtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors of
order N, as returned by CHETRD

zunmbr - zunmbr - VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE =
'R' TRANS = 'N'

zunmhr - zunmhr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunml2 - zunml2 - overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'*
C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

zunmlq - zunmlq - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunmql - zunmql - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunmqr - zunmqr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunmr2 - zunmr2 - overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'*
C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

zunmrq - zunmrq - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunmrz - zunmrz - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zunmtr - zunmtr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zupgtr - zupgtr - generate a complex unitary matrix Q which is defined as the product of n-1 elementary reflectors H(i)
of order n, as returned by CHPTRD using packed storage

zupmtr - zupmtr - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

zvbrmm - zvbrmm - variable block sparse row format matrix-matrix multiply

zvbrsm - zvbrsm - variable block sparse row format triangular solve

zvmul - zvmul - compute the scaled product of complex vectors

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 available_threads - returns information about current thread
 usage

SYNOPSIS

 SUBROUTINE AVAILABLE_THREADS(NTOTAL, NUSING)

 INTEGER NTOTAL, NUSING

 SUBROUTINE AVAILABLE_THREADS_64(NTOTAL, NUSING)

 INTEGER*8 NTOTAL, NUSING

 F95 INTERFACE
 SUBROUTINE AVAILABLE_THREADS(NTOTAL, NUSING)

 INTEGER :: NTOTAL, NUSING

 SUBROUTINE AVAILABLE_THREADS_64(NTOTAL, NUSING)

 INTEGER(8) :: NTOTAL, NUSING

 C INTERFACE
 #include <sunperf.h>

 void available_threads(int *ntotal, int *nusing);

 void available_threads_64(long *ntotal, long *nusing);

PURPOSE

 available_threads threads returns NTOTAL, which is the total
 number of CPUs available to the job (generally the number of
 CPUs presently on-line in the partition), and NUSING, which
 is the sum of the current Use numbers for all threads speci-
 fied in USE_THREADS. If NTOTAL < NUSING then the system is
 potentially overcommitted.

ARGUMENTS

 NTOTAL (output)
 Total number of CPUs available.

 NUSING (output)
 Sum of current Use numbers for all threads speci-
 fied in USE_THREADS.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_dpermute - permutes a real (double precision) array in
 terms of the permutation vector P, output by dsortv

SYNOPSIS

 SUBROUTINE BLAS_DPERMUTE (N, P, INCP, X, INCX)

 INTEGER N
 INTEGER P(*)
 INTEGER INCP
 REAL*8 X(*)
 INTEGER INCX

 SUBROUTINE BLAS_DPERMUTE_64 (N, P, INCP, X, INCX)

 INTEGER*8 N
 INTEGER*8 P(*)
 INTEGER*8 INCP
 REAL*8 X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE PERMUTE (X, P)

 USE SUNPERF

 SUBROUTINE PERMUTE_64 (X, P)

 USE SUNPERF

ARGUMENTS

 N (input) INTEGER, the number of elements to be permuted in X
 If N <= 1, the subroutine returns without trying
 to permute X.

 P (input) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector defined follows the same conventions as
 that for DTYPE SORTV. It records the details of
 the interchanges of the elements of X during sort-
 ing. That is X = P*X. In current implementation, P
 contains the index of sorted X.

 INCP (input) INTEGER, increment for P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, the permutation is applied in the oppo-
 site direction. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)).
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

 X (input/output) REAL*8(KIND)((N-1)*|INCX|+1), the array to
 be permuted. Minimum size (N-1)*|INCX|+1 is
 required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, X will be permuted in a reverse way (see
 the description for INCP above).

SEE ALSO

 blas_dsortv(3P), blas_dsort(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_dsort - sorts a real (double precision) vector X in
 increasing or decreasing order using quick sort algorithm

SYNOPSIS

 SUBROUTINE BLAS_DSORT (SORT, N, X, INCX)

 INTEGER SORT
 INTEGER N
 REAL*8 X(*)
 INTEGER INCX

 SUBROUTINE BLAS_DSORT_64 (SORT, N, X, INCX)

 INTEGER*8 SORT
 INTEGER*8 N
 REAL*8 X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE SORT (X [, SORT])

 USE SUNPERF

 SUBROUTINE SORT_64 (X [, SORT])

 USE SUNPERF

 The functionality of SORT is covered by SORTV

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) REAL*8((N-1)*|INCX|+1), the array to be

 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

SEE ALSO

 blas_dsortv(3P), blas_dpermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_dsortv - sorts a real (double precision) vector X in
 increasing or decreasing order using quick sort algorithm
 and overwrite P with the permutation vector

SYNOPSIS

 SUBROUTINE BLAS_DSORTV (SORT, N, X, INCX, P, INCP)

 INTEGER SORT
 INTEGER N
 REAL*8 X(*)
 INTEGER INCX
 INTEGER P(*)
 INTEGER INCP

 SUBROUTINE BLAS_DSORTV_64 (SORT, N, X, INCX, P, INCP)

 INTEGER*8 SORT
 INTEGER*8 N
 REAL*8 X(*)
 INTEGER*8 INCX
 INTEGER*8 P(*)
 INTEGER*8 INCP

 F95 INTERFACE
 SUBROUTINE SORTV (X [, SORT] [, P])

 USE SUNPERF

 SUBROUTINE SORTV_64 (X [, SORT] [, P])

 USE SUNPERF

 SORTV covers the functionality of SORT

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) REAL*8((N-1)*|INCX|+1), the array to be
 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

 P (output) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector recording the details of the interchanges
 of the elements of X during sorting. That is X =
 P*X. In this implementation, P contains the index
 of sorted X.

 INCP (input) INTEGER, increment fpr P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, store P(i) in reverse order. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

SEE ALSO

 blas_dsort(3P), blas_dpermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_ipermute - permutes an integer array in terms of the
 permutation vector P, output by dsortv

SYNOPSIS

 SUBROUTINE BLAS_IPERMUTE (N, P, INCP, X, INCX)

 INTEGER N
 INTEGER P(*)
 INTEGER INCP
 INTEGER X(*)
 INTEGER INCX

 SUBROUTINE BLAS_IPERMUTE_64 (N, P, INCP, X, INCX)

 INTEGER*8 N
 INTEGER*8 P(*)
 INTEGER*8 INCP
 INTEGER*8 X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE PERMUTE (X, P)

 USE SUNPERF

 SUBROUTINE PERMUTE_64 (X, P)

 USE SUNPERF

ARGUMENTS

 N (input) INTEGER, the number of elements to be permuted in X
 If N <= 1, the subroutine returns without trying
 to permute X.

 P (input) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector defined follows the same conventions as
 that for DTYPE SORTV. It records the details of
 the interchanges of the elements of X during sort-
 ing. That is X = P*X. In current implementation, P
 contains the index of sorted X.

 INCP (input) INTEGER, increment for P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, the permutation is applied in the oppo-
 site direction. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)).
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

 X (input/output) INTEGER(KIND)((N-1)*|INCX|+1), the array
 to be permuted. Minimum size (N-1)*|INCX|+1 is
 required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, X will be permuted in a reverse way (see
 the description for INCP above).

SEE ALSO

 blas_isortv(3P), blas_isort(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_isort - sorts an integer vector X in increasing or
 decreasing order using quick sort algorithm

SYNOPSIS

 SUBROUTINE BLAS_ISORT (SORT, N, X, INCX)

 INTEGER SORT
 INTEGER N
 INTEGER X(*)
 INTEGER INCX

 SUBROUTINE BLAS_ISORT_64 (SORT, N, X, INCX)

 INTEGER*8 SORT
 INTEGER*8 N
 INTEGER*8 X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE SORT (X [, SORT])

 USE SUNPERF

 SUBROUTINE SORT_64 (X [, SORT])

 USE SUNPERF

 The functionality of SORT is covered by SORTV

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) INTEGER((N-1)*|INCX|+1), the array to be

 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

SEE ALSO

 blas_isortv(3P), blas_ipermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_isortv - sorts a real vector X in increasing or
 decreasing order using quick sort algorithm and overwrite P
 with the permutation vector

SYNOPSIS

 SUBROUTINE BLAS_ISORTV (SORT, N, X, INCX, P, INCP)

 INTEGER SORT
 INTEGER N
 INTEGER X(*)
 INTEGER INCX
 INTEGER P(*)
 INTEGER INCP

 SUBROUTINE BLAS_ISORTV_64 (SORT, N, X, INCX, P, INCP)

 INTEGER*8 SORT
 INTEGER*8 N
 INTEGER*8 X(*)
 INTEGER*8 INCX
 INTEGER*8 P(*)
 INTEGER*8 INCP

 F95 INTERFACE
 SUBROUTINE SORTV (X [, SORT] [, P])

 USE SUNPERF

 SUBROUTINE SORTV_64 (X [, SORT] [, P])

 USE SUNPERF

 SORTV covers the functionality of SORT

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) INTEGER((N-1)*|INCX|+1), the array to be
 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

 P (output) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector recording the details of the interchanges
 of the elements of X during sorting. That is X =
 P*X. In this implementation, P contains the index
 of sorted X.

 INCP (input) INTEGER, increment fpr P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, store P(i) in reverse order. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

SEE ALSO

 blas_isort(3P), blas_ipermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_spermute - permutes a real array in terms of the permu-
 tation vector P, output by dsortv

SYNOPSIS

 SUBROUTINE BLAS_SPERMUTE (N, P, INCP, X, INCX)

 INTEGER N
 INTEGER P(*)
 INTEGER INCP
 REAL X(*)
 INTEGER INCX

 SUBROUTINE BLAS_SPERMUTE_64 (N, P, INCP, X, INCX)

 INTEGER*8 N
 INTEGER*8 P(*)
 INTEGER*8 INCP
 REAL X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE PERMUTE (X, P)

 USE SUNPERF

 SUBROUTINE PERMUTE_64 (X, P)

 USE SUNPERF

ARGUMENTS

 N (input) INTEGER, the number of elements to be permuted in X
 If N <= 1, the subroutine returns without trying
 to permute X.

 P (input) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector defined follows the same conventions as
 that for DTYPE SORTV. It records the details of
 the interchanges of the elements of X during sort-
 ing. That is X = P*X. In current implementation, P
 contains the index of sorted X.

 INCP (input) INTEGER, increment for P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, the permutation is applied in the oppo-
 site direction. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)).
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

 X (input/output) REAL(KIND)((N-1)*|INCX|+1), the array to be
 permuted. Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, X will be permuted in a reverse way (see
 the description for INCP above).

SEE ALSO

 blas_ssortv(3P), blas_ssort(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_ssort - sorts a real vector X in increasing or decreas-
 ing order using quick sort algorithm

SYNOPSIS

 SUBROUTINE BLAS_SSORT (SORT, N, X, INCX)

 INTEGER SORT
 INTEGER N
 REAL X(*)
 INTEGER INCX

 SUBROUTINE BLAS_SSORT_64 (SORT, N, X, INCX)

 INTEGER*8 SORT
 INTEGER*8 N
 REAL X(*)
 INTEGER*8 INCX

 F95 INTERFACE
 SUBROUTINE SORT (X [, SORT])

 USE SUNPERF

 SUBROUTINE SORT_64 (X [, SORT])

 USE SUNPERF

 The functionality of SORT is covered by SORTV

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) REAL((N-1)*|INCX|+1), the array to be

 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

SEE ALSO

 blas_ssortv(3P), blas_spermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

ARGUMENTS●

SEE ALSO●

NAME

 blas_ssortv - sorts a real vector X in increasing or
 decreasing order using quick sort algorithm and overwrite P
 with the permutation vector

SYNOPSIS

 SUBROUTINE BLAS_SSORTV (SORT, N, X, INCX, P, INCP)

 INTEGER SORT
 INTEGER N
 REAL X(*)
 INTEGER INCX
 INTEGER P(*)
 INTEGER INCP

 SUBROUTINE BLAS_SSORTV_64 (SORT, N, X, INCX, P, INCP)

 INTEGER*8 SORT
 INTEGER*8 N
 REAL X(*)
 INTEGER*8 INCX
 INTEGER*8 P(*)
 INTEGER*8 INCP

 F95 INTERFACE
 SUBROUTINE SORTV (X [, SORT] [, P])

 USE SUNPERF

 SUBROUTINE SORTV_64 (X [, SORT] [, P])

 USE SUNPERF

 SORTV covers the functionality of SORT

ARGUMENTS

 SORT (input) INTEGER, indicating sort directions
 SORT = 0, descending
 SORT = 1, ascending
 SORT = other value, error
 SORT is default to 1 for F95 INTERFACE

 N (input) INTEGER, the number of elements to be sorted in X
 If N <= 1, the subroutine returns without trying
 to sort X.

 X (input/output) REAL((N-1)*|INCX|+1), the array to be
 sorted
 Minimum size (N-1)*|INCX|+1 is required

 INCX (input) INTEGER, increment for X
 INCX must not be zero. INCX could be negative. If
 INCX < 0, change the sorting direction defined by
 SORT. That is
 If SORT = 0, let SORT = 1, INCX = |INCX|;
 If SORT = 1, let SORT = 0, INCX = |INCX|.

 P (output) INTEGER((N-1)*|INCP|+1), the permutation (index)
 vector recording the details of the interchanges
 of the elements of X during sorting. That is X =
 P*X. In this implementation, P contains the index
 of sorted X.

 INCP (input) INTEGER, increment fpr P
 INCP must not be zero. INCP could be negative. If
 INCP < 0, store P(i) in reverse order. That is
 If INCP > 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((i-1)*INCP+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1) = X(P((i-1)*INCP+1));
 If INCP < 0,
 if INCX > 0,
 sorted X((i-1)*INCX+1) = X(P((N-i)*|INCP|+1)),
 if INCX < 0,
 sorted X((N-i)*|INCX|+1)
 = X(P((N-i)*|INCP|+1)).

SEE ALSO

 blas_ssort(3P), blas_spermute(3P)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 caxpy - compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE CAXPY(N, ALPHA, X, INCX, Y, INCY)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CAXPY_64(N, ALPHA, X, INCX, Y, INCY)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE AXPY([N], ALPHA, X, [INCX], Y, [INCY])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE AXPY_64([N], ALPHA, X, [INCX], Y, [INCY])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void caxpy(int n, complex *alpha, complex *x, int incx, com-
 plex *y, int incy);

 void caxpy_64(long n, complex *alpha, complex *x, long incx,
 complex *y, long incy);

PURPOSE

 caxpy compute y := alpha * x + y where alpha is a scalar and
 x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 array of DIMENSION at least (1 + (n - 1)*abs(
 INCX)). Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 array of DIMENSION at least (1 + (n - 1)*abs(
 INCY)). On entry, the incremented array Y must
 contain the vector y. On exit, Y is overwritten by
 the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 caxpyi - Compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE CAXPYI(NZ, A, X, INDX, Y)

 COMPLEX A
 COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE CAXPYI_64(NZ, A, X, INDX, Y)

 COMPLEX A
 COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE AXPYI([NZ], [A], X, INDX, Y)

 COMPLEX :: A
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE AXPYI_64([NZ], [A], X, INDX, Y)

 COMPLEX :: A
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CAXPYI Compute y := alpha * x + y where alpha is a scalar, x
 is a sparse vector, and y is a vector in full storage form

 do i = 1, n
 y(indx(i)) = alpha * x(i) + y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 A (input)
 On entry, A(LPHA) specifies the scaling value.
 Unchanged on exit. A is defaulted to (1.0E0, 0.0E0)
 for F95 INTERFACE.
 X (input)
 Vector containing the values of the compressed form.
 Unchanged on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbcomm - block coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CBCOMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BJNDX(BNNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBCOMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BJNDX(BNNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BCOMM(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, KB, BNNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BCOMM_64(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, KB, BNNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block coordinate format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the non-zero block entries of A, in any order.
 Each block is stored in standard column-major form.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BJNDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BNNZ number of block entries

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbdimm - block diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CBDIMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBDIMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDIMM(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BDIMM_64(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block diagonal format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LB*LB*BLDA-by-NBDIAG scalar array
 consisting of the NBDIAG nonzero block diagonal in
 any order. Each dense block is stored in standard
 column-major form.

 BLDA leading block dimension of VAL().

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 block diagonals of A in VAL. Lower triangular
 block diagonals have negative offsets, the main
 block diagonal has offset 0, and upper triangular

 block diagonals have positive offset.

 NBDIAG the number of non-zero block diagonals in A.
 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbdism - block diagonal format triangular solve

SYNOPSIS

 SUBROUTINE CBDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE CBDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block diagonal format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of length MB*LB*LB containing the elements of
 the diagonal blocks of the matrix D. The size of each
 square block is LB-by-LB and each block
 is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() Two-dimensional LB*LB*BLDA-by-NBDIAG scalar array

 consisting of the NBDIAG non-zero block diagonal.
 Each dense block is stored in standard column-major form.

 BLDA Leading block dimension of VAL(). Should be greater
 than or equal to MB.

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero block
 diagonals of A in VAL. Lower triangular block diagonals
 have negative offsets, the main block diagonal has offset
 0, and upper triangular block diagonals have positive offset.
 Elements of IBDIAG MUST be sorted in increasing order.

 NBDIAG The number of non-zero block diagonals in A.

 LB Dimension of dense blocks composing A.

 B() Rectangular array with first dimension LDB.

 LDB Leading dimension of B.

 BETA Scalar parameter.

 C() Rectangular array with first dimension LDC.

 LDC Leading dimension of C.

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK array,
 returns this value as the first entry of the WORK array,
 and no error message related to LWORK is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BDI representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine.

 WORK(1)=0 on return if the factorization for all diagonal
 blocks has been completed successfully, otherwise WORK(1) =
 -i where i is the block number for which the LU
 factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cbdsqr - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B.

SYNOPSIS

 SUBROUTINE CBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
 LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX VT(LDVT,*), U(LDU,*), C(LDC,*)
 INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL D(*), E(*), WORK(*)

 SUBROUTINE CBDSQR_64(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
 C, LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX VT(LDVT,*), U(LDU,*), C(LDC,*)
 INTEGER*8 N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSQR(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: VT, U, C
 INTEGER :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 SUBROUTINE BDSQR_64(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: VT, U, C
 INTEGER(8) :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void cbdsqr(char uplo, int n, int ncvt, int nru, int ncc,
 float *d, float *e, complex *vt, int ldvt, complex

 *u, int ldu, complex *c, int ldc, int *info);

 void cbdsqr_64(char uplo, long n, long ncvt, long nru, long
 ncc, float *d, float *e, complex *vt, long ldvt,
 complex *u, long ldu, complex *c, long ldc, long
 *info);

PURPOSE

 cbdsqr computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = Q * S
 * P' (P' denotes the transpose of P), where S is a diagonal
 matrix with non-negative diagonal elements (the singular
 values of B), and Q and P are orthogonal matrices.

 The routine computes S, and optionally computes U * Q, P' *
 VT, or Q' * C, for given complex input matrices U, VT, and
 C.

 See "Computing Small Singular Values of Bidiagonal Matrices
 With Guaranteed High Relative Accuracy," by J. Demmel and W.
 Kahan, LAPACK Working Note #3 (or SIAM J. Sci. Statist. Com-
 put. vol. 11, no. 5, pp. 873-912, Sept 1990) and
 "Accurate singular values and differential qd algorithms,"
 by B. Parlett and V. Fernando, Technical Report CPAM-554,
 Mathematics Department, University of California at Berke-
 ley, July 1992 for a detailed description of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal;
 = 'L': B is lower bidiagonal.

 N (input) The order of the matrix B. N >= 0.

 NCVT (input)
 The number of columns of the matrix VT. NCVT >= 0.

 NRU (input)
 The number of rows of the matrix U. NRU >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B in decreasing order.
 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of of the bidiagonal matrix whose SVD
 is desired. On normal exit (INFO = 0), E is des-
 troyed. If the algorithm does not converge (INFO
 > 0), D and E will contain the diagonal and super-
 diagonal elements of a bidiagonal matrix orthogo-
 nally equivalent to the one given as input. E(N)
 is used for workspace.

 VT (input/output)

 On entry, an N-by-NCVT matrix VT. On exit, VT is
 overwritten by P' * VT. VT is not referenced if
 NCVT = 0.

 LDVT (input)
 The leading dimension of the array VT. LDVT >=
 max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.

 U (input/output)
 On entry, an NRU-by-N matrix U. On exit, U is
 overwritten by U * Q. U is not referenced if NRU
 = 0.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,NRU).

 C (input/output)
 On entry, an N-by-NCC matrix C. On exit, C is
 overwritten by Q' * C. C is not referenced if NCC
 = 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,N) if NCC > 0; LDC >=1 if NCC = 0.

 WORK (workspace)
 dimension (4*N)

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm did not converge; D and E con-
 tain the elements of a bidiagonal matrix which is
 orthogonally similar to the input matrix B; if
 INFO = i, i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbelmm - block Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CBELMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBELMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BELMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block Ellpack format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense
 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.
 LB row and column dimension of the dense blocks composing
 VAL.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbelsm - block Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE CBELSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE CBELSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BELSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense

 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ. The block column indices MUST be sorted
 in increasing order for each block row.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.

 LB row and column dimension of the dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the minimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BEL representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbscmm - block sparse column matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBSCMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(KB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the block entries stored column-major within each
 dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BPNTRB() integer array of length KB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column
 of A.
 BPNTRE() integer array of length KB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX

 of the last block entry of the J-th block column
 of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbscsm - block sparse column format triangular solve

SYNOPSIS

 SUBROUTINE CBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)- BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse column format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.
 The block row indices MUST be sorted
 in increasing order for each block column.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block column of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSC representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbsrmm - block sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBSRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix A is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting
 of the block entries stored column-major within
 each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.
 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse row format (see for example Y.Saad, "Iterative
 Methods for Sparse Linear Systems", WPS, 1996). Its data
 structure consists of three array instead of the four used
 in the current implementation. The main difference is that
 only one array, IA, containing the pointers to the beginning
 of each block row in the arrays VAL and BINDX is used
 instead of two arrays BPNTRB and BPNTRE. To use the routine
 with this kind of block sparse row format the following
 calling sequence should be used

 CALL SBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cbsrsm - block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE CBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CBSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse row format
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.
 The block column indices MUST be sorted
 in increasing order for each block row.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 row format the following calling sequence should be used

 CALL SBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ccnvcor - compute the convolution or correlation of complex
 vectors

SYNOPSIS

 SUBROUTINE CCNVCOR(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 COMPLEX X(*), Y(*), Z(*), WORK(*)
 INTEGER NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK

 SUBROUTINE CCNVCOR_64(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 COMPLEX X(*), Y(*), Z(*), WORK(*)
 INTEGER*8 NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK

 F95 INTERFACE
 SUBROUTINE CNVCOR(CNVCOR, FOUR, NX, X, IFX, [INCX], NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 COMPLEX, DIMENSION(:) :: X, Y, Z, WORK
 INTEGER :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK

 SUBROUTINE CNVCOR_64(CNVCOR, FOUR, NX, X, IFX, [INCX], NY, NPRE, M,
 Y, IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 COMPLEX, DIMENSION(:) :: X, Y, Z, WORK
 INTEGER(8) :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK

 C INTERFACE
 #include <sunperf.h>

 void ccnvcor(char cnvcor, char four, int nx, complex *x, int
 ifx, int incx, int ny, int npre, int m, complex

 *y, int ify, int inc1y, int inc2y, int nz, int k,
 complex *z, int ifz, int inc1z, int inc2z, complex
 *work, int lwork);
 void ccnvcor_64(char cnvcor, char four, long nx, complex *x,
 long ifx, long incx, long ny, long npre, long m,
 complex *y, long ify, long inc1y, long inc2y, long
 nz, long k, complex *z, long ifz, long inc1z, long
 inc2z, complex *work, long lwork);

PURPOSE

 ccnvcor computes the convolution or correlation of complex
 vectors.

ARGUMENTS

 CNVCOR (input)
 CHARACTER
 'V' or 'v' if convolution is desired, 'R' or 'r'
 if correlation is desired.

 FOUR (input)
 CHARACTER
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' if the computation should be
 done directly from the definition. The Fourier
 transform method is generally faster, but it may
 introduce noticeable errors into certain results,
 notably when both the real and imaginary parts of
 the filter and data vectors consist entirely of
 integers or vectors where elements of either the
 filter vector or a given data vector differ signi-
 ficantly in magnitude from the 1-norm of the vec-
 tor.

 NX (input)
 Length of the filter vector. NX >= 0. CCNVCOR
 will return immediately if NX = 0.

 X (input) dimension(*)
 Filter vector.

 IFX (input)
 Index of the first element of X. NX >= IFX >= 1.

 INCX (input)
 Stride between elements of the filter vector in X.
 INCX > 0.
 NY (input)
 Length of the input vectors. NY >= 0. CCNVCOR
 will return immediately if NY = 0.

 NPRE (input)
 The number of implicit zeros prepended to the Y
 vectors. NPRE >= 0.

 M (input)
 Number of input vectors. M >= 0. CCNVCOR will
 return immediately if M = 0.

 Y (input) dimension(*)
 Input vectors.

 IFY (input)
 Index of the first element of Y. NY >= IFY >= 1.

 INC1Y (input)
 Stride between elements of the input vectors in Y.
 INC1Y > 0.

 INC2Y (input)
 Stride between the input vectors in Y. INC2Y > 0.

 NZ (input)
 Length of the output vectors. NZ >= 0. CCNVCOR
 will return immediately if NZ = 0. See the Notes
 section below for information about how this argu-
 ment interacts with NX and NY to control circular
 versus end-off shifting.

 K (input)
 Number of Z vectors. K >= 0. If K = 0 then
 CCNVCOR will return immediately. If K < M then
 only the first K input vectors will be processed.
 If K > M then M input vectors will be processed.

 Z (output)
 dimension(*)
 Result vectors.
 IFZ (input)
 Index of the first element of Z. NZ >= IFZ >= 1.

 INC1Z (input)
 Stride between elements of the output vectors in
 Z. INC1Z > 0.

 INC2Z (input)
 Stride between the output vectors in Z. INC2Z >
 0.

 WORK (input/output)
 (input/scratch) dimension(LWORK)
 Scratch space. Before the first call to CCNVCOR
 with particular values of the integer arguments
 the first element of WORK must be set to zero. If
 WORK is written between calls to CCNVCOR or if
 CCNVCOR is called with different values of the
 integer arguments then the first element of WORK
 must again be set to zero before each call. If
 WORK has not been written and the same values of
 the integer arguments are used then the first ele-
 ment of WORK to zero. This can avoid certain ini-
 tializations that store their results into WORK,
 and avoiding the initialization can make CCNVCOR
 run faster.

 LWORK (input)
 Length of WORK. LWORK >= 2*MAX(NX,NY+NPRE,NZ)+8.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ccnvcor2 - compute the convolution or correlation of complex
 matrices

SYNOPSIS

 SUBROUTINE CCNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORK, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 COMPLEX X(LDX,*), Y(LDY,*), Z(LDZ,*), WORK(*)
 INTEGER MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK

 SUBROUTINE CCNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORK, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 COMPLEX X(LDX,*), Y(LDY,*), Z(LDZ,*), WORK(*)
 INTEGER*8 MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK

 F95 INTERFACE
 SUBROUTINE CNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: X, Y, Z
 INTEGER :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK

 SUBROUTINE CNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: X, Y, Z
 INTEGER(8) :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 C INTERFACE
 #include <sunperf.h>

 void ccnvcor2(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, int mx, int
 nx, complex *x, int ldx, int my, int ny, int mpre,
 int npre, complex *y, int ldy, int mz, int nz,
 complex *z, int ldz, complex *work, int lwork);

 void ccnvcor2_64(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, long mx,
 long nx, complex *x, long ldx, long my, long ny,
 long mpre, long npre, complex *y, long ldy, long
 mz, long nz, complex *z, long ldz, complex *work,
 long lwork);

PURPOSE

 ccnvcor2 computes the convolution or correlation of complex
 matrices.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' to compute convolution, 'R' or 'r' to
 compute correlation.

 METHOD (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' to compute directly from the
 definition.

 TRANSX (input)
 'N' or 'n' if X is the filter matrix, 'T' or 't'
 if transpose(X) is the filter matrix.

 SCRATCHX (input)
 'N' or 'n' if X must be preserved, 'S' or 's' if X
 can be used as scratch space. The contents of X
 are undefined after returning from a call in which
 X is allowed to be used for scratch.

 TRANSY (input)
 'N' or 'n' if Y is the input matrix, 'T' or 't' if
 transpose(Y) is the input matrix.

 SCRATCHY (input)
 'N' or 'n' if Y must be preserved, 'S' or 's' if Y
 can be used as scratch space. The contents of Y
 are undefined after returning from a call in which
 Y is allowed to be used for scratch.

 MX (input)
 Number of rows in the filter matrix. MX >= 0.

 NX (input)

 Number of columns in the filter matrix. NX >= 0.

 X (input)
 On entry, the filter matrix. Unchanged on exit if
 SCRATCHX is 'N' or 'n', undefined on exit if
 SCRATCHX is 'S' or 's'.

 LDX (input)
 Leading dimension of the array that contains the
 filter matrix.

 MY (input)
 Number of rows in the input matrix. MY >= 0.

 NY (input)
 Number of columns in the input matrix. NY >= 0.

 MPRE (input)
 Number of implicit zeros to prepend to each row of
 the input matrix. MPRE >= 0.

 NPRE (input)
 Number of implicit zeros to prepend to each column
 of the input matrix. NPRE >= 0.

 Y (input)
 Input matrix. Unchanged on exit if SCRATCHY is
 'N' or 'n', undefined on exit if SCRATCHY is 'S'
 or 's'.

 LDY (input)
 Leading dimension of the array that contains the
 input matrix.
 MZ (input)
 Number of rows in the output matrix. MZ >= 0.
 CCNVCOR2 will return immediately if MZ = 0.

 NZ (input)
 Number of columns in the output matrix. NZ >= 0.
 CCNVCOR2 will return immediately if NZ = 0.

 Z (output)
 dimension(LDZ,*)
 Result matrix.

 LDZ (input)
 Leading dimension of the array that contains the
 result matrix. LDZ >= MAX(1,MZ).

 WORK (input/output)
 (input/scratch) dimension(LWORK)
 On entry for the first call to CCNVCOR2, WORK(1)
 must contain CMPLX(0.0,0.0). After the first
 call, WORK(1) must be set to CMPLX(0.0,0.0) iff
 WORK has been altered since the last call to this
 subroutine or if the sizes of the arrays have
 changed.

 LWORK (input)
 Length of the work vector. The upper bound of the
 workspace length requirement is 2 * (MYC + NYC) +
 15, where MYC = MAX(MAX(MX,NX), MAX(MY,NY)+NPRE)
 and NYC = MAX(MAX(MX,NX), MAX(MY,NY)+MPRE). If
 LWORK indicates a workspace that is too small, the

 routine will allocate its own workspace. If the
 FFT is not used, the value of LWORK is unimpor-
 tant.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ccoomm - coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CCOOMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), JNDX(NNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CCOOMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), JNDX(NNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE COOMM(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER TRANSA, M, K, NNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, JNDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE COOMM_64(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, JNDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in coordinate format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the
 non-zero entries of A, in any order.

 INDX() integer array of length NNZ consisting of the
 corresponding row indices of the entries of A.

 JNDX() integer array of length NNZ consisting of the
 corresponding column indices of the entries of A.

 NNZ number of non-zero elements in A.
 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ccopy - Copy x to y

SYNOPSIS

 SUBROUTINE CCOPY(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CCOPY_64(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE COPY([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE COPY_64([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void ccopy(int n, complex *x, int incx, complex *y, int
 incy);

 void ccopy_64(long n, complex *x, long incx, complex *y,
 long incy);

PURPOSE

 ccopy Copy x to y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). Before entry, the incremented array X must
 contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (output)
 of DIMENSION at least (1 + (m - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. On exit, Y is overwritten by the
 vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ccscmm - compressed sparse column format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE CCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(K), PNTRE(K)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CCSCMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(K), PNTRE(K)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(K)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the row
 indices of nonzero entries of A.

 PNTRB() integer array of length K such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.
 PNTRE() integer array of length K such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ccscsm - compressed sparse column format triangular solve

SYNOPSIS

 SUBROUTINE CCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CCSCSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse column
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic column scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the row indices
 of nonzero entries of A. (Row indices MUST be sorted in
 increasing order for each column).

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the columns of A such
 that their 2-norms are one. The scaling may improve the

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 accuracy of the computed solution. Corresponding entries of
 VAL are changed only in the particular case. On return DV
 matrix stored as a vector contains the diagonal matrix by
 which the columns have been scaled. UNITD=3 should be used
 for the next calls to the routine with overwritten VAL and
 DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the column
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSC representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSC representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ccsrmm - compressed sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CCSRMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the
 column indices of nonzero entries of A.

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.
 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ccsrsm - compressed sparse row format triangular solve

SYNOPSIS

 SUBROUTINE CCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CCSRSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse row
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of
 the scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the column
 indices of nonzero entries of A (column indices MUST be
 sorted in increasing order for each row)

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSR representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSR representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA, C,
 * LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cdiamm - diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CDIAMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CDIAMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIAMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIAMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in diagonal format and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)
 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cdiasm - diagonal format triangular solve

SYNOPSIS

 SUBROUTINE CDIASM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CDIASM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIASM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: DV
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIASM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: DV
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in diagonal format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)

 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.
 Elements of IDIAG of MUST be sorted in increasing order.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the DIA representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the DIA representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cdotc - compute the dot product of two vectors conjg(x) and
 y.

SYNOPSIS

 COMPLEX FUNCTION CDOTC(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 COMPLEX FUNCTION CDOTC_64(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 COMPLEX FUNCTION DOTC([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 COMPLEX FUNCTION DOTC_64([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 complex cdotc(int n, complex *x, int incx, complex *y, int
 incy);

 complex cdotc_64(long n, complex *x, long incx, complex *y,
 long incy);

PURPOSE

 cdotc compute the dot product of conjg(x) and y where x and
 y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the incremented array X must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 cdotci - Compute the complex conjugated indexed dot product.

SYNOPSIS

 COMPLEX FUNCTION CDOTCI(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 COMPLEX FUNCTION CDOTCI_64(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 COMPLEX FUNCTION DOTCI([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 COMPLEX FUNCTION DOTCI_64([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CDOTCI Compute the complex conjugated indexed dot product of
 a complex sparse vector x stored in compressed form with a
 complex vector y in full storage form.

 dot = 0
 do i = 1, n
 dot = dot + conjg(x(i)) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cdotu - compute the dot product of two vectors x and y.

SYNOPSIS

 COMPLEX FUNCTION CDOTU(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 COMPLEX FUNCTION CDOTU_64(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 COMPLEX FUNCTION DOT([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 COMPLEX FUNCTION DOT_64([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 complex cdotu(int n, complex *x, int incx, complex *y, int
 incy);

 complex cdotu_64(long n, complex *x, long incx, complex *y,
 long incy);

PURPOSE

 cdotu compute the dot product of x and y where x and y are
 n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the incremented array X must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 cdotui - Compute the complex unconjugated indexed dot
 product.

SYNOPSIS

 COMPLEX FUNCTION CDOTCI(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 COMPLEX FUNCTION CDOTCI_64(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 COMPLEX FUNCTION DOTCI([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 COMPLEX FUNCTION DOTCI_64([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CDOTUI Compute the complex unconjugated indexed dot product
 of a complex sparse vector x stored in compressed form with
 a complex vector y in full storage form.

 dot = 0
 do i = 1, n
 dot = dot + x(i) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cellmm - Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CELLMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CELLMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in Ellpack format format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)
 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cellsm - Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE CELLSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CELLSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: DV
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: DV
 COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)

 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.
 The column indices MUST be sorted in increasing order
 for each row.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the ELL representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the ELL representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft2b - compute a periodic sequence from its Fourier coef-
 ficients. The xFFT operations are unnormalized, so a call
 of xFFT2F followed by a call of xFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE CFFT2B(M, N, A, LDA, WORK, LWORK)

 COMPLEX A(LDA,*)
 INTEGER M, N, LDA, LWORK
 REAL WORK(*)

 SUBROUTINE CFFT2B_64(M, N, A, LDA, WORK, LWORK)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, LWORK
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2B([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT2B_64([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft2b(int m, int n, complex *a, int lda, float *work,
 int lwork);

 void cfft2b_64(long m, long n, complex *a, long lda, float
 *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 A (input/output)
 On entry, a two-dimensional array A(M,N) that con-
 tains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by CFFT2I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4 * (M
 + N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft2f - compute the Fourier coefficients of a periodic
 sequence. The xFFT operations are unnormalized, so a call
 of xFFT2F followed by a call of xFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE CFFT2F(M, N, A, LDA, WORK, LWORK)

 COMPLEX A(LDA,*)
 INTEGER M, N, LDA, LWORK
 REAL WORK(*)

 SUBROUTINE CFFT2F_64(M, N, A, LDA, WORK, LWORK)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, LWORK
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2F([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT2F_64([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft2f(int m, int n, complex *a, int lda, float *work,
 int lwork);

 void cfft2f_64(long m, long n, complex *a, long lda, float
 *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 A (input/output)
 On entry, a two-dimensional array A(M,N) that con-
 tains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by CFFT2I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4 * (M
 + N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft2i - initialize the array WSAVE, which is used in both
 the forward and backward transforms.

SYNOPSIS

 SUBROUTINE CFFT2I(M, N, WORK)

 INTEGER M, N
 REAL WORK(*)

 SUBROUTINE CFFT2I_64(M, N, WORK)

 INTEGER*8 M, N
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE CFFT2I(M, N, WORK)

 INTEGER :: M, N
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE CFFT2I_64(M, N, WORK)

 INTEGER(8) :: M, N
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft2i(int m, int n, float *work);

 void cfft2i_64(long m, long n, float *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 WORK (input/output)
 On entry, an array of dimension (4 * (M + N) + 30)
 or greater. CFFT2I needs to be called only once

 to initialize array WORK before calling CFFT2F
 and/or CFFT2B if M, N and WORK remain unchanged
 between these calls. Thus, subsequent transforms
 or inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft3b - compute a periodic sequence from its Fourier coef-
 ficients. The FFT operations are unnormalized, so a call of
 CFFT3F followed by a call of CFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE CFFT3B(M, N, K, A, LDA, LD2A, WORK, LWORK)

 COMPLEX A(LDA,LD2A,*)
 INTEGER M, N, K, LDA, LD2A, LWORK
 REAL WORK(*)

 SUBROUTINE CFFT3B_64(M, N, K, A, LDA, LD2A, WORK, LWORK)

 COMPLEX A(LDA,LD2A,*)
 INTEGER*8 M, N, K, LDA, LD2A, LWORK
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3B([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX, DIMENSION(:,:,:) :: A
 INTEGER :: M, N, K, LDA, LD2A, LWORK
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT3B_64([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX, DIMENSION(:,:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LD2A, LWORK
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft3b(int m, int n, int k, complex *a, int lda, int
 ld2a, float *work, int lwork);

 void cfft3b_64(long m, long n, long k, complex *a, long lda,
 long ld2a, float *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 K (input) Number of planes to be transformed. These subrou-
 tines are most efficient when K is a product of
 small primes. K >= 0.

 A (input/output)
 On entry, a three-dimensional array A(LDA,LD2A,K)
 that contains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 LD2A (input)
 Second dimension of the array containing the data
 to be transformed. LD2A >= N.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by CFFT3I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4*(M +
 N + K) + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft3f - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 CFFT3F followed by a call of CFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE CFFT3F(M, N, K, A, LDA, LD2A, WORK, LWORK)

 COMPLEX A(LDA,LD2A,*)
 INTEGER M, N, K, LDA, LD2A, LWORK
 REAL WORK(*)

 SUBROUTINE CFFT3F_64(M, N, K, A, LDA, LD2A, WORK, LWORK)

 COMPLEX A(LDA,LD2A,*)
 INTEGER*8 M, N, K, LDA, LD2A, LWORK
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3F([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX, DIMENSION(:,:,:) :: A
 INTEGER :: M, N, K, LDA, LD2A, LWORK
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT3F_64([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX, DIMENSION(:,:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LD2A, LWORK
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft3f(int m, int n, int k, complex *a, int lda, int
 ld2a, float *work, int lwork);

 void cfft3f_64(long m, long n, long k, complex *a, long lda,
 long ld2a, float *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 K (input) Number of planes to be transformed. These subrou-
 tines are most efficient when K is a product of
 small primes. K >= 0.

 A (input/output)
 On entry, a three-dimensional array A(M,N,K) that
 contains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 LD2A (input)
 Second dimension of the array containing the data
 to be transformed. LD2A >= N.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by CFFT3I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4*(M +
 N + K) + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfft3i - initialize the array WSAVE, which is used in both
 CFFT3F and CFFT3B.

SYNOPSIS

 SUBROUTINE CFFT3I(M, N, K, WORK)

 INTEGER M, N, K
 REAL WORK(*)

 SUBROUTINE CFFT3I_64(M, N, K, WORK)

 INTEGER*8 M, N, K
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE CFFT3I(M, N, K, WORK)

 INTEGER :: M, N, K
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE CFFT3I_64(M, N, K, WORK)

 INTEGER(8) :: M, N, K
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void cfft3i(int m, int n, int k, float *work);

 void cfft3i_64(long m, long n, long k, float *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 K (input) Number of planes to be transformed. K >= 0.

 WORK (input/output)

 On entry, an array of dimension (4*(M + N + K) +
 45) or greater. CFFT3I needs to be called only
 once to initialize array WORK before calling
 CFFT3F and/or CFFT3B if M, N, K and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfftb - compute a periodic sequence from its Fourier coeffi-
 cients. The FFT operations are unnormalized, so a call of
 CFFTF followed by a call of CFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE CFFTB(N, X, WSAVE)

 COMPLEX X(*)
 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE CFFTB_64(N, X, WSAVE)

 COMPLEX X(*)
 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([N], X, WSAVE)

 COMPLEX, DIMENSION(:) :: X
 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE FFTB_64([N], X, WSAVE)

 COMPLEX, DIMENSION(:) :: X
 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cfftb(int n, complex *x, float *wsave);

 void cfftb_64(long n, complex *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed.

 WSAVE (input/output)
 On entry, WSAVE must be an array of dimension (4 *
 N + 15) or greater and must have been initialized
 by CFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 cfftc - initialize the trigonometric weight and factor
 tables or compute the Fast Fourier transform (forward or
 inverse) of a complex sequence.

SYNOPSIS

 SUBROUTINE CFFTC(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 COMPLEX X(*), Y(*)
 REAL SCALE, TRIGS(*), WORK(*)

 SUBROUTINE CFFTC_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 REAL SCALE, TRIGS(*), WORK(*)
 COMPLEX X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void cfftc_ (int *iopt, int *n, float *scale, complex *x,
 complex *y, float *trigs, int *ifac, float *work,
 int *lwork, int *ierr);

 void cfftc_64_ (long *iopt, long *n, float *scale, complex
 *x, complex *y, float *trigs, long *ifac, float
 *work, long *lwork, long *ierr);

PURPOSE

 cfftc initializes the trigonometric weight and factor tables
 or computes the Fast Fourier transform (forward or inverse)
 of a complex sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) On entry, X is a complex array of dimension at
 least N that contains the sequence to be
 transformed.

 Y (output)
 Complex array of dimension at least N that con-
 tains the transform results. X and Y may be the
 same array starting at the same memory location.
 Otherwise, it is assumed that there is no overlap
 between X and Y in memory.

 TRIGS (input/output)
 Real array of length 2*N that contains the tri-

 gonometric weights. The weights are computed when
 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = 1 or IOPT =
 -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = 1 or
 IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least 2*N. The user
 can also choose to have the routine allocate its
 own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than 2*N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 cfftc2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional Fast Fourier Transform
 (forward or inverse) of a two-dimensional complex array.

SYNOPSIS

 SUBROUTINE CFFTC2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX X(LDX, *), Y(LDY, *)
 REAL SCALE, TRIGS(*), WORK(*)

 SUBROUTINE CFFTC2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL SCALE, TRIGS(*), WORK(*)
 COMPLEX X(LDX, *), Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void cfftc2_ (int *iopt, int *n1, int *n2, float *scale,
 complex *x, int *ldx, complex *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void cfftc2_64_ (long *iopt, long *n1, long *n2, float
 *scale, complex *x, long *ldx, complex *y, long

 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 cfftc2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional Fast Fourier
 Transform (forward or inverse) of a two-dimensional complex
 array. In computing the two-dimensional FFT,
 one-dimensional FFTs are computed along the columns of the
 input array. One-dimensional FFTs are then computed along
 the rows of the intermediate results.

 N2-1 N1-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.
 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX, N2) that
 contains input data to be transformed.

 LDX (input)
 Leading dimension of X. LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY, N2) that
 contains the transform results. X and Y can be
 the same array starting at the same memory loca-
 tion, in which case the input data are overwritten
 by their transform results. Otherwise, it is
 assumed that there is no overlap between X and Y
 in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = LDX Else LDY >= N1 Unchanged on exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2) that contains the
 trigonometric weights. The weights are computed

 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1 or IOPT
 = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1 or IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least
 2*MAX(N1,N2)*NCPUS where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1)
 -5 = (LDY < N1) or (LDY not equal LDX when X and Y
 are same array)
 -6 = (LWORK not equal 0) and (LWORK <
 2*MAX(N1,N2)*NCPUS)
 -7 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, entire output array Y(1:LDY, 1:N2) is overwritten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 cfftc3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional Fast Fourier
 Transform (forward or inverse) of a three-dimensional com-
 plex array.

SYNOPSIS

 SUBROUTINE CFFTC3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
 REAL SCALE, TRIGS(*), WORK(*)

 SUBROUTINE CFFTC3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
 REAL SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR
 C INTERFACE
 #include <sunperf.h>

 void cfftc3_ (int *iopt, int *n1, int *n2, int *n3, float
 *scale, complex *x, int *ldx1, int *ldx2, complex
 *y, int *ldy1, int *ldy2, float *trigs, int *ifac,
 float *work, int *lwork, int *ierr);

 void cfftc3_64_ (long *iopt, long *n1, long *n2, long *n3,

 float *scale, complex *x, long *ldx1, long *ldx2,
 complex *y, long *ldy1, long *ldy2, float *trigs,
 long *ifac, float *work, long *lwork, long *ierr);

PURPOSE

 cfftc3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional Fast Fourier
 Transform (forward or inverse) of a three-dimensional com-
 plex array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX1, LDX2,
 N3) that contains input data to be transformed.

 LDX1 (input)
 first dimension of X. LDX1 >= N1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY1, LDY2,
 N3) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. If X and Y are the same

 array, LDY1 = LDX1 Else LDY1 >= N1 Unchanged on
 exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same
 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2+N3) that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = 1 or
 IOPT = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The fac-
 tors are computed when the routine is called with
 IOPT = 0 and they are used in subsequent calls
 when IOPT = 1 or IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least (2*MAX(N,N2,N3) +
 32*N3) * NCPUS where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1)
 -6 = (LDX2 < N2)
 -7 = (LDY1 < N1) or (LDY1 not equal LDX1 when X
 and Y are same array)
 -8 = (LDY2 < N2) or (LDY2 not equal LDX2 when X
 and Y are same array)
 -9 = (LWORK not equal 0) and (LWORK <
 (2*MAX(N,N2,N3) + 16*N3) * NCPUS)
 -10 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 This routine uses Y(N1+1:LDY1,:,:) as scratch space. There-
 fore, the original contents of this subarray will be lost
 upon returning from routine while subarray Y(1:N1,1:N2,1:N3)
 contains the transform results.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 cfftcm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional Fast Fourier Transform
 (forward or inverse) of a set of data sequences stored in a
 two-dimensional complex array.

SYNOPSIS

 SUBROUTINE CFFTCM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX X(LDX, *), Y(LDY, *)
 REAL SCALE, TRIGS(*), WORK(*)

 SUBROUTINE CFFTCM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL SCALE, TRIGS(*), WORK(*)
 COMPLEX X(LDX, *), Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void cfftcm_ (int *iopt, int *n1, int *n2, float *scale,
 complex *x, int *ldx, complex *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void cfftcm_64_ (long *iopt, long *n1, long *n2, float
 *scale, complex *x, long *ldx, complex *y, long

 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 cfftcm initializes the trigonometric weight and factor
 tables or computes the one-dimensional Fast Fourier
 Transform (forward or inverse) of a set of data sequences
 stored in a two-dimensional complex array:

 N1-1
 Y(k,l) = SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N1)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX, N2) that
 contains the sequences to be transformed stored in
 its columns.

 LDX (input)
 Leading dimension of X. LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY, N2) that
 contains the transform results of the input
 sequences. X and Y can be the same array starting
 at the same memory location, in which case the
 input sequences are overwritten by their transform
 results. Otherwise, it is assumed that there is
 no overlap between X and Y in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = LDX Else LDY >= N1 Unchanged on exit.

 TRIGS (input/output)
 Real array of length 2*N1 that contains the tri-
 gonometric weights. The weights are computed when
 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = 1 or IOPT =
 -1. Unchanged on exit.

 IFAC (input/output)

 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1 or IOPT
 = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least 2*N1*NCPUS where
 NCPUS is the number of threads used to execute the
 routine. The user can also choose to have the
 routine allocate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1)
 -5 = (LDY < N1) or (LDY not equal LDX when X and Y
 are same array)
 -6 = (LWORK not equal 0) and (LWORK < 2*N1*NCPUS)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cfftf - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 CFFTF followed by a call of CFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE CFFTF(N, X, WSAVE)

 COMPLEX X(*)
 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE CFFTF_64(N, X, WSAVE)

 COMPLEX X(*)
 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([N], X, WSAVE)

 COMPLEX, DIMENSION(:) :: X
 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE FFTF_64([N], X, WSAVE)

 COMPLEX, DIMENSION(:) :: X
 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cfftf(int n, complex *x, float *wsave);

 void cfftf_64(long n, complex *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (4 *
 N + 15) or greater and must have been initialized
 by CFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cffti - initialize the array WSAVE, which is used in both
 CFFTF and CFFTB.

SYNOPSIS

 SUBROUTINE CFFTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE CFFTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE CFFTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE CFFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cffti(int n, float *wsave);

 void cffti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input/output)
 On entry, an array of dimension (4 * N + 15) or
 greater. CFFTI needs to be called only once to
 initialize array WORK before calling CFFTF and/or
 CFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 cfftopt - compute the length of the closest fast FFT

SYNOPSIS

 INTEGER FUNCTION CFFTOPT(LEN)

 INTEGER LEN

 INTEGER*8 FUNCTION CFFTOPT_64(LEN)

 INTEGER*8 LEN

 F95 INTERFACE
 INTEGER FUNCTION CFFTOPT(LEN)

 INTEGER :: LEN

 INTEGER(8) FUNCTION CFFTOPT_64(LEN)

 INTEGER(8) :: LEN

 C INTERFACE
 #include <sunperf.h>

 int cfftopt(int len);

 long cfftopt_64(long len);

PURPOSE

 cfftopt computes the length of the closest fast FFT. Fast
 Fourier transform algorithms, including those used in Per-
 formance Library, work best with vector lengths that are
 products of small primes. For example, an FFT of length
 32=2**5 will run faster than an FFT of prime length 31
 because 32 is a product of small primes and 31 is not. If
 your application is such that you can taper or zero pad your
 vector to a larger length then this function may help you
 select a better length and run your FFT faster.

 CFFTOPT will return an integer no smaller than the input
 argument N that is the closest number that is the product of

 small primes. CFFTOPT will return 16 for an input of N=16
 and return 18=2*3*3 for an input of N=17.

 Note that the length computed here is not guaranteed to be
 optimal, only to be a product of small primes. Also, the
 value returned may change as the underlying FFTs become
 capable of handling larger primes. For example, passing in
 N=51 today will return 52=2*2*13 rather than 51=3*17 because
 the FFTs in Performance Library do not have fast radix 17
 code. In the future, radix 17 code may be added and then
 N=51 will return 51.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 cffts - initialize the trigonometric weight and factor
 tables or compute the inverse Fast Fourier Transform of a
 complex sequence as follows.

SYNOPSIS

 SUBROUTINE CFFTS(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 COMPLEX X(*)
 REAL SCALE, Y(*), TRIGS(*), WORK(*)

 SUBROUTINE CFFTS_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 REAL SCALE, Y(*), TRIGS(*), WORK(*)
 COMPLEX X(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, N, [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, N
 INTEGER*4, INTENT(IN), OPTIONAL :: LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:) :: X
 REAL, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, N, [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N
 INTEGER(8), INTENT(IN), OPTIONAL :: LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:) :: X
 REAL, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void cffts_ (int *iopt, int *n, float *scale, complex *x,
 float *y, float *trigs, int *ifac, float *work,
 int *lwork, int *ierr);

 void cffts_64_ (long *iopt, long *n, float *scale, complex
 *x, float *y, float *trigs, long *ifac, float
 *work, long *lwork, long *ierr);

PURPOSE

 cffts initializes the trigonometric weight and factor tables
 or computes the inverse Fast Fourier Transform of a complex
 sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)
 In complex-to-real transform of length N, the (N/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored. Furthermore, due to symmetries the
 imaginary of the component of X(0) and X(N/2) (if N is even
 in the latter) is assumed to be zero and is not referenced.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) On entry, X is a complex array whose first (N/2+1)
 elements are the input sequence to be transformed.
 Y (output)
 Real array of dimension at least N that contains
 the transform results. X and Y may be the same
 array starting at the same memory location. Oth-
 erwise, it is assumed that there is no overlap

 between X and Y in memory.

 TRIGS (input/output)
 Real array of length 2*N that contains the tri-
 gonometric weights. The weights are computed when
 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = 1. Unchanged
 on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = 1.
 Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least N. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 cffts2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional inverse Fast Fourier
 Transform of a two-dimensional complex array.

SYNOPSIS

 SUBROUTINE CFFTS2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX X(LDX, *)
 REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 SUBROUTINE CFFTS2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX X(LDX, *)
 REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 & IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, N1
 INTEGER*4, INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void cffts2_ (int *iopt, int *n1, int *n2, float *scale,
 complex *x, int *ldx, float *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void cffts2_64_ (long *iopt, long *n1, long *n2, float
 *scale, complex *x, long *ldx, float *y, long
 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 cffts2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional inverse Fast Fourier
 Transform of a two-dimensional complex array. In computing
 the two-dimensional FFT, one-dimensional FFTs are computed
 along the rows of the input array. One-dimensional FFTs are
 then computed along the columns of the intermediate results.

 N1-1 N2-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j1=0 j2=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 In complex-to-real transform of length N1, the (N1/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX, N2) that
 contains input data to be transformed.

 LDX (input)
 Leading dimension of X. LDX >= (N1/2 + 1)
 Unchanged on exit.

 Y (output)
 Y is a real array of dimensions (LDY, N2) that
 contains the transform results. X and Y can be
 the same array starting at the same memory loca-
 tion, in which case the input data are overwritten
 by their transform results. Otherwise, it is
 assumed that there is no overlap between X and Y
 in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = 2*LDX Else LDY >= 2*LDX and LDY must
 be even. Unchanged on exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2) that contains the
 trigonometric weights. The weights are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least
 MAX(N1,2*N2)*NCPUS, where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1/2+1)
 -5 = LDY not equal 2*LDX when X and Y are same
 array
 -6 = (LDY < 2*LDX or LDY odd) when X and Y are
 same array
 -7 = (LWORK not equal 0) and (LWORK <
 MAX(N1,2*N2)*NCPUS)
 -8 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 Y(N1+1:LDY,:) is used as scratch space. Upon returning, the
 original contents of Y(N1+1:LDY,:) will be lost, whereas
 Y(1:N1,1:N2) contains the transform results.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 cffts3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional inverse Fast Fourier
 Transform of a three-dimensional complex array.

SYNOPSIS

 SUBROUTINE CFFTS3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX X(LDX1, LDX2, *)
 REAL SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

 SUBROUTINE CFFTS3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX X(LDX1, LDX2, *)
 REAL SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, N1, LDX2, LDY2
 INTEGER*4, INTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1,
 LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR
 C INTERFACE
 #include <sunperf.h>

 void cffts3_ (int *iopt, int *n1, int *n2, int *n3, float
 *scale, complex *x, int *ldx1, int *ldx2, float
 *y, int *ldy1, int *ldy2, float *trigs, int *ifac,
 float *work, int *lwork, int *ierr);

 void cffts3_64_ (long *iopt, long *n1, long *n2, long *n3,
 float *scale, complex *x, long *ldx1, long *ldx2,
 float *y, long *ldy1, long *ldy2, float *trigs,

 long *ifac, float *work, long *lwork, long *ierr);

PURPOSE

 cffts3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional inverse Fast
 Fourier Transform of a three-dimensional complex array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.
 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX1, LDX2,
 N3) that contains input data to be transformed.

 LDX1 (input)
 first dimension of X. LDX1 >= N1/2+1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY1, LDY2,
 N3) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. If X and Y are the same
 array, LDY1 = 2*LDX1 Else LDY1 >= 2*LDX1 and LDY1
 is even Unchanged on exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same

 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2+N3) that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = 1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The fac-
 tors are computed when the routine is called with
 IOPT = 0 and they are used in subsequent calls
 when IOPT = 1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least (MAX(N,2*N2,2*N3)
 + 16*N3) * NCPUS where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1/2+1)
 -6 = (LDX2 < N2)
 -7 = LDY1 not equal 2*LDX1 when X and Y are same
 array
 -8 = (LDY1 < 2*LDX1) or (LDY1 is odd) when X and Y
 are not same array
 -9 = (LDY2 < N2) or (LDY2 not equal LDX2) when X
 and Y are same array
 -10 = (LWORK not equal 0) and ((LWORK <
 MAX(N,2*N2,2*N3) + 16*N3)*NCPUS)
 -11 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 This routine uses Y(N1+1:LDY1,:,:) as scratch space. There-
 fore, the original contents of this subarray will be lost
 upon returning from routine while subarray Y(1:N1,1:N2,1:N3)
 contains the transform results.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 cfftsm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional inverse Fast Fourier
 Transform of a set of complex data sequences stored in a
 two-dimensional array.

SYNOPSIS

 SUBROUTINE CFFTSM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX X(LDX, *)
 REAL SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 SUBROUTINE CFFTSM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL SCALE, Y(LDY,*), TRIGS(*), WORK(*)
 COMPLEX X(LDX, *)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, N1
 INTEGER*4, INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 COMPLEX, INTENT(IN), DIMENSION(:,:) :: X
 REAL, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void cfftsm_ (int *iopt, int *n1, int *n2, float *scale,
 complex *x, int *ldx, float *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void cfftsm_64_ (long *iopt, long *n1, long *n2, float

 *scale, complex *x, long *ldx, float *y, long
 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 cfftsm initializes the trigonometric weight and factor
 tables or computes the one-dimensional inverse Fast Fourier
 Transform of a set of complex data sequences stored in a
 two-dimensional array:

 N1-1
 Y(k,l) = scale * SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W = exp(isign*i*j*k*2*pi/N1)
 In complex-to-real transform of length N1, the (N1/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored. Furthermore, due to symmetries the
 imaginary of the component of X(0,0:N2-1) and X(N1/2,0:N2-1)
 (if N1 is even in the latter) is assumed to be zero and is
 not referenced.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.
 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX, N2) that
 contains the sequences to be transformed stored in
 its columns in X(0:N1/2, 0:N2-1).

 LDX (input)
 Leading dimension of X. LDX >= (N1/2+1) Unchanged
 on exit.

 Y (output)
 Y is a real array of dimensions (LDY, N2) that
 contains the transform results of the input
 sequences in Y(0:N1-1,0:N2-1). X and Y can be the
 same array starting at the same memory location,
 in which case the input sequences are overwritten
 by their transform results. Otherwise, it is
 assumed that there is no overlap between X and Y
 in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = 2*LDX Else LDY >= N1 Unchanged on

 exit.

 TRIGS (input/output)
 Real array of length 2*N1 that contains the tri-
 gonometric weights. The weights are computed when
 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = 1. Unchanged
 on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1.
 Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least N1. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1/2+1)
 -5 = (LDY < N1) or (LDY not equal 2*LDX when X and
 Y are same array)
 -6 = (LWORK not equal 0) and (LWORK < N1)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbbrd - reduce a complex general m-by-n band matrix A to
 real upper bidiagonal form B by a unitary transformation

SYNOPSIS

 SUBROUTINE CGBBRD(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, RWORK, INFO)

 CHARACTER * 1 VECT
 COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*), WORK(*)
 INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL D(*), E(*), RWORK(*)

 SUBROUTINE CGBBRD_64(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, RWORK, INFO)

 CHARACTER * 1 VECT
 COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL D(*), E(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GBBRD(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E, [Q],
 [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Q, PT, C
 INTEGER :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL, DIMENSION(:) :: D, E, RWORK

 SUBROUTINE GBBRD_64(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E,
 [Q], [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Q, PT, C
 INTEGER(8) :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL, DIMENSION(:) :: D, E, RWORK

 C INTERFACE
 #include <sunperf.h>

 void cgbbrd(char vect, int m, int n, int ncc, int kl, int
 ku, complex *ab, int ldab, float *d, float *e,
 complex *q, int ldq, complex *pt, int ldpt, com-
 plex *c, int ldc, int *info);
 void cgbbrd_64(char vect, long m, long n, long ncc, long kl,
 long ku, complex *ab, long ldab, float *d, float
 *e, complex *q, long ldq, complex *pt, long ldpt,
 complex *c, long ldc, long *info);

PURPOSE

 cgbbrd reduces a complex general m-by-n band matrix A to
 real upper bidiagonal form B by a unitary transformation: Q'
 * A * P = B.

 The routine computes B, and optionally forms Q or P', or
 computes Q'*C for a given matrix C.

ARGUMENTS

 VECT (input)
 Specifies whether or not the matrices Q and P' are
 to be formed. = 'N': do not form Q or P';
 = 'Q': form Q only;
 = 'P': form P' only;
 = 'B': form both.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 KL (input)
 The number of subdiagonals of the matrix A. KL >=
 0.

 KU (input)
 The number of superdiagonals of the matrix A. KU
 >= 0.

 AB (input/output)
 On entry, the m-by-n band matrix A, stored in rows
 1 to KL+KU+1. The j-th column of A is stored in
 the j-th column of the array AB as follows:
 AB(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl). On exit, A is overwritten by
 values generated during the reduction.
 LDAB (input)
 The leading dimension of the array A. LDAB >=
 KL+KU+1.

 D (output)
 The diagonal elements of the bidiagonal matrix B.

 E (output)
 The superdiagonal elements of the bidiagonal
 matrix B.

 Q (output)
 If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
 If VECT = 'N' or 'P', the array Q is not refer-
 enced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.

 PT (output)
 If VECT = 'P' or 'B', the n-by-n unitary matrix
 P'. If VECT = 'N' or 'Q', the array PT is not
 referenced.

 LDPT (input)
 The leading dimension of the array PT. LDPT >=
 max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 other-
 wise.

 C (input/output)
 On entry, an m-by-ncc matrix C. On exit, C is
 overwritten by Q'*C. C is not referenced if NCC =
 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.

 WORK (workspace)
 dimension(MAX(M,N))

 RWORK (workspace)
 dimension(MAX(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbcon - estimate the reciprocal of the condition number of
 a complex general band matrix A, in either the 1-norm or the
 infinity-norm,

SYNOPSIS

 SUBROUTINE CGBCON(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND
 REAL WORK2(*)

 SUBROUTINE CGBCON_64(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBCON(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GBCON_64(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: WORK

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void cgbcon(char norm, int n, int nsub, int nsuper, complex
 *a, int lda, int *ipivot, float anorm, float
 *rcond, int *info);

 void cgbcon_64(char norm, long n, long nsub, long nsuper,
 complex *a, long lda, long *ipivot, float anorm,
 float *rcond, long *info);

PURPOSE

 cgbcon estimates the reciprocal of the condition number of a
 complex general band matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 CGBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 ANORM (input)

 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension (N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbequ - compute row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number

SYNOPSIS

 SUBROUTINE CGBEQU(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCND,
 COLCND, AMAX, INFO)

 COMPLEX A(LDA,*)
 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 REAL ROWCND, COLCND, AMAX
 REAL ROWSC(*), COLSC(*)

 SUBROUTINE CGBEQU_64(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC,
 ROWCND, COLCND, AMAX, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 REAL ROWCND, COLCND, AMAX
 REAL ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GBEQU([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCND, COLCND, AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 REAL :: ROWCND, COLCND, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC

 SUBROUTINE GBEQU_64([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCND, COLCND, AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 REAL :: ROWCND, COLCND, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC

 C INTERFACE
 #include <sunperf.h>

 void cgbequ(int m, int n, int nsub, int nsuper, complex *a,

 int lda, float *rowsc, float *colsc, float
 *rowcnd, float *colcnd, float *amax, int *info);
 void cgbequ_64(long m, long n, long nsub, long nsuper, com-
 plex *a, long lda, float *rowsc, float *colsc,
 float *rowcnd, float *colcnd, float *amax, long
 *info);

PURPOSE

 cgbequ computes row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number. R returns the row scale factors and C the column
 scale factors, chosen to try to make the largest element in
 each row and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) The band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 ROWSC (output)
 If INFO = 0, or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCND (output)
 If INFO = 0 or INFO > M, ROWCND contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCND >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCND (output)

 If INFO = 0, COLCND contains the ratio of the
 smallest COLSC(i) to the largest COLSC(i). If
 COLCND >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbmv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y

SYNOPSIS

 SUBROUTINE CGBMV(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X, INCX,
 BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER M, N, NSUB, NSUPER, LDA, INCX, INCY

 SUBROUTINE CGBMV_64(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X,
 INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE GBMV([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA], X,
 [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INCX, INCY

 SUBROUTINE GBMV_64([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA],
 X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void cgbmv(char transa, int m, int n, int nsub, int nsuper,
 complex *alpha, complex *a, int lda, complex *x,
 int incx, complex *beta, complex *y, int incy);
 void cgbmv_64(char transa, long m, long n, long nsub, long
 nsuper, complex *alpha, complex *a, long lda, com-
 plex *x, long incx, complex *beta, complex *y,
 long incy);

PURPOSE

 cgbmv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y where alpha and beta are
 scalars, x and y are vectors and A is an m by n band matrix,
 with nsub sub-diagonals and nsuper super-diagonals.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:
 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.
 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.
 TRANSA = 'C' or 'c' y := alpha*conjg(A')*x +
 beta*y.
 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M must be at least zero. Unchanged on
 exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N must be at least zero. Unchanged on
 exit.

 NSUB (input)
 On entry, NSUB specifies the number of sub-
 diagonals of the matrix A. NSUB must satisfy 0
 .le. NSUB. Unchanged on exit.

 NSUPER (input)
 On entry, NSUPER specifies the number of super-
 diagonals of the matrix A. NSUPER must satisfy 0
 .le. NSUPER. Unchanged on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading (nsub + nsuper + 1) by
 n part of the array A must contain the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (nsuper + 1
) of the array, the first super-diagonal starting
 at position 2 in row nsuper, the first sub-

 diagonal starting at position 1 in row (nsuper +
 2), and so on. Elements in the array A that do
 not correspond to elements in the band matrix
 (such as the top left nsuper by nsuper triangle)
 are not referenced. The following program segment
 will transfer a band matrix from conventional full
 matrix storage to band storage:

 DO 20, J = 1, N
 K = NSUPER + 1 - J
 DO 10, I = MAX(1, J - NSUPER), MIN(M, J +
 NSUB)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA must
 be at least (nsub + nsuper + 1). Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry, the incremented array Y
 must contain the vector y. On exit, Y is overwrit-
 ten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE CGBRFS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGBRFS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBRFS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA], AF,
 [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GBRFS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK

 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cgbrfs(char transa, int n, int nsub, int nsuper, int
 nrhs, complex *a, int lda, complex *af, int ldaf,
 int *ipivot, complex *b, int ldb, complex *x, int
 ldx, float *ferr, float *berr, int *info);

 void cgbrfs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, complex *a, long lda, complex *af, long
 ldaf, long *ipivot, complex *b, long ldb, complex
 *x, long ldx, float *ferr, float *berr, long
 *info);

PURPOSE

 cgbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(n,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input)
 Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB*NSUPER+1.

 IPIVOT (input)
 The pivot indices from CGBTRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CGBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgbsv - compute the solution to a complex system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE CGBSV(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGBSV_64(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB,
 INFO)

 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBSV([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBSV_64([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B,
 [LDB], [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgbsv(int n, int nsub, int nsuper, int nrhs, complex
 *a, int lda, int *ipivot, complex *b, int ldb, int
 *info);

 void cgbsv_64(long n, long nsub, long nsuper, long nrhs,
 complex *a, long lda, long *ipivot, complex *b,
 long ldb, long *info);

PURPOSE

 cgbsv computes the solution to a complex system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row inter-
 changes is used to factor A as A = L * U, where L is a pro-
 duct of permutation and unit lower triangular matrices with
 KL subdiagonals, and U is upper triangular with KL+KU super-
 diagonals. The factored form of A is then used to solve the
 system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(NSUB+NSUPER+1+i-j,j) = A(i,j) for
 max(1,j-NSUPER)<=i<=min(N,j+NSUB) On exit, details
 of the factorization: U is stored as an upper tri-
 angular band matrix with NSUB+NSUPER superdiago-
 nals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1. See below
 for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)

 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and the solution has not been
 computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbsvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CGBSVX(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL ROWSC(*), COLSC(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGBSVX_64(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL ROWSC(*), COLSC(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBSVX(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 SUBROUTINE GBSVX_64(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A,
 [LDA], AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],

 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgbsvx(char fact, char transa, int n, int nsub, int
 nsuper, int nrhs, complex *a, int lda, complex
 *af, int ldaf, int *ipivot, char equed, float
 *rowsc, float *colsc, complex *b, int ldb, complex
 *x, int ldx, float *rcond, float *ferr, float
 *berr, int *info);

 void cgbsvx_64(char fact, char transa, long n, long nsub,
 long nsuper, long nrhs, complex *a, long lda, com-
 plex *af, long ldaf, long *ipivot, char equed,
 float *rowsc, float *colsc, complex *b, long ldb,
 complex *x, long ldx, float *rcond, float *ferr,
 float *berr, long *info);

PURPOSE

 cgbsvx uses the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B, where A is a band matrix of order N with
 KL subdiagonals and KU superdiagonals, and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = L * U,

 where L is a product of permutation and unit lower tri-
 angular
 matrices with KL subdiagonals, and U is upper triangular
 with
 KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.

 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows 1
 to NSUB+NSUPER+1. The j-th column of A is stored
 in the j-th column of the array A as follows:
 A(NSUPER+1+i-j,j) = A(i,j) for max(1,j-
 NSUPER)<=i<=min(N,j+kl)

 If FACT = 'F' and EQUED is not 'N', then A must
 have been equilibrated by the scaling factors in
 ROWSC and/or COLSC. A is not modified if FACT =
 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on
 exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).
 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains details of the LU factorization of
 the band matrix A, as computed by CGBTRF. U is
 stored as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. If EQUED .ne. 'N', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns details of the LU factorization of
 A.

 If FACT = 'E', then AF is an output argument and
 on exit returns details of the LU factorization of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = L*U as computed by CGBTRF; row i
 of the matrix was interchanged with row IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if EQUED = 'N', B is not modified; if TRANSA = 'N'
 and EQUED = 'ROWSC' or 'B', B is overwritten by
 diag(ROWSC)*B; if TRANSA = 'T' or 'COLSC' and
 EQUED = 'COLSC' or 'B', B is overwritten by
 diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.
 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If

 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N) On exit, WORK2(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK2(1) is much less than 1, then the stability
 of the LU factorization of the (equilibrated)
 matrix A could be poor. This also means that the
 solution X, condition estimator RCOND, and forward
 error bound FERR could be unreliable. If factori-
 zation fails with 0<INFO<=N, then WORK2(1) con-
 tains the reciprocal pivot growth factor for the
 leading INFO columns of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgbtf2 - compute an LU factorization of a complex m-by-n
 band matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE CGBTF2(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 COMPLEX AB(LDAB,*)
 INTEGER M, N, KL, KU, LDAB, INFO
 INTEGER IPIV(*)

 SUBROUTINE CGBTF2_64(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 COMPLEX AB(LDAB,*)
 INTEGER*8 M, N, KL, KU, LDAB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE GBTF2([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER :: M, N, KL, KU, LDAB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE GBTF2_64([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER(8) :: M, N, KL, KU, LDAB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void cgbtf2(int m, int n, int kl, int ku, complex *ab, int
 ldab, int *ipiv, int *info);

 void cgbtf2_64(long m, long n, long kl, long ku, complex
 *ab, long ldab, long *ipiv, long *info);

PURPOSE

 cgbtf2 computes an LU factorization of a complex m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 KL (input)
 The number of subdiagonals within the band of A.
 KL >= 0.

 KU (input)
 The number of superdiagonals within the band of A.
 KU >= 0.

 AB (input/output)
 On entry, the matrix A in band storage, in rows
 KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
 not be set. The j-th column of A is stored in the
 j-th column of the array AB as follows:
 AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with KL+KU
 superdiagonals in rows 1 to KL+KU+1, and the mul-
 tipliers used during the factorization are stored
 in rows KL+KU+2 to 2*KL+KU+1. See below for
 further details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 2*KL+KU+1.

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, KL = 2, KU = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U, because of fill-in
 resulting from the row
 interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgbtrf - compute an LU factorization of a complex m-by-n
 band matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE CGBTRF(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 COMPLEX A(LDA,*)
 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGBTRF_64(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBTRF([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBTRF_64([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgbtrf(int m, int n, int nsub, int nsuper, complex *a,
 int lda, int *ipivot, int *info);

 void cgbtrf_64(long m, long n, long nsub, long nsuper, com-
 plex *a, long lda, long *ipivot, long *info);

PURPOSE

 cgbtrf computes an LU factorization of a complex m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. See below for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgbtrs - solve a system of linear equations A * X = B, A**T
 * X = B, or A**H * X = B with a general band matrix A using
 the LU factorization computed by CGBTRF

SYNOPSIS

 SUBROUTINE CGBTRS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGBTRS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT,
 B, LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBTRS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBTRS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgbtrs(char transa, int n, int nsub, int nsuper, int

 nrhs, complex *a, int lda, int *ipivot, complex
 *b, int ldb, int *info);
 void cgbtrs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, complex *a, long lda, long *ipivot,
 complex *b, long ldb, long *info);

PURPOSE

 cgbtrs solves a system of linear equations
 A * X = B, A**T * X = B, or A**H * X = B with a gen-
 eral band matrix A using the LU factorization computed by
 CGBTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgebak - form the right or left eigenvectors of a complex
 general matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by CGEBAL

SYNOPSIS

 SUBROUTINE CGEBAK(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 COMPLEX V(LDV,*)
 INTEGER N, ILO, IHI, M, LDV, INFO
 REAL SCALE(*)

 SUBROUTINE CGEBAK_64(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 COMPLEX V(LDV,*)
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 REAL SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAK(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX, DIMENSION(:,:) :: V
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: SCALE

 SUBROUTINE GEBAK_64(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX, DIMENSION(:,:) :: V
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void cgebak(char job, char side, int n, int ilo, int ihi,
 float *scale, int m, complex *v, int ldv, int
 *info);

 void cgebak_64(char job, char side, long n, long ilo, long
 ihi, float *scale, long m, complex *v, long ldv,
 long *info);

PURPOSE

 cgebak forms the right or left eigenvectors of a complex
 general matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by CGEBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required: = 'N', do nothing, return immediately;
 = 'P', do backward transformation for permutation
 only; = 'S', do backward transformation for scal-
 ing only; = 'B', do backward transformations for
 both permutation and scaling. JOB must be the
 same as the argument JOB supplied to CGEBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integer ILO determined by CGEBAL. 1 <= ILO <=
 IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 The integer IHI determined by CGEBAL. 1 <= ILO <=
 IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 SCALE (input)
 Details of the permutation and scaling factors, as
 returned by CGEBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by CHSEIN or
 CTREVC. On exit, V is overwritten by the
 transformed eigenvectors.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgebal - balance a general complex matrix A

SYNOPSIS

 SUBROUTINE CGEBAL(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 COMPLEX A(LDA,*)
 INTEGER N, LDA, ILO, IHI, INFO
 REAL SCALE(*)

 SUBROUTINE CGEBAL_64(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, ILO, IHI, INFO
 REAL SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAL(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, ILO, IHI, INFO
 REAL, DIMENSION(:) :: SCALE

 SUBROUTINE GEBAL_64(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, ILO, IHI, INFO
 REAL, DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void cgebal(char job, int n, complex *a, int lda, int *ilo,
 int *ihi, float *scale, int *info);

 void cgebal_64(char job, long n, complex *a, long lda, long
 *ilo, long *ihi, float *scale, long *info);

PURPOSE

 cgebal balances a general complex matrix A. This involves,
 first, permuting A by a similarity transformation to isolate
 eigenvalues in the first 1 to ILO-1 and last IHI+1 to N
 elements on the diagonal; and second, applying a diagonal
 similarity transformation to rows and columns ILO to IHI to
 make the rows and columns as close in norm as possible.
 Both steps are optional.

 Balancing may reduce the 1-norm of the matrix, and improve
 the accuracy of the computed eigenvalues and/or eigenvec-
 tors.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A:
 = 'N': none: simply set ILO = 1, IHI = N,
 SCALE(I) = 1.0 for i = 1,...,N; = 'P': permute
 only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 IHI (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 SCALE (output)
 Details of the permutations and scaling factors
 applied to A. If P(j) is the index of the row and
 column interchanged with row and column j and D(j)
 is the scaling factor applied to row and column j,
 then SCALE(j) = P(j) for j = 1,...,ILO-1 = D(j)
 for j = ILO,...,IHI = P(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 INFO (output)
 = 0: successful exit.

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The permutations consist of row and column interchanges
 which put the matrix in the form

 (T1 X Y)
 P A P = (0 B Z)
 (0 0 T2)

 where T1 and T2 are upper triangular matrices whose eigen-
 values lie along the diagonal. The column indices ILO and
 IHI mark the starting and ending columns of the submatrix B.
 Balancing consists of applying a diagonal similarity
 transformation inv(D) * B * D to make the 1-norms of each
 row of B and its corresponding column nearly equal. The
 output matrix is

 (T1 X*D Y)
 (0 inv(D)*B*D inv(D)*Z).
 (0 0 T2)

 Information about the permutations P and the diagonal matrix
 D is returned in the vector SCALE.

 This subroutine is based on the EISPACK routine CBAL.

 Modified by Tzu-Yi Chen, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgebrd - reduce a general complex M-by-N matrix A to upper
 or lower bidiagonal form B by a unitary transformation

SYNOPSIS

 SUBROUTINE CGEBRD(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAUQ(*), TAUP(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO
 REAL D(*), E(*)

 SUBROUTINE CGEBRD_64(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 INFO)

 COMPLEX A(LDA,*), TAUQ(*), TAUP(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO
 REAL D(*), E(*)

 F95 INTERFACE
 SUBROUTINE GEBRD([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK], [LWORK],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAUQ, TAUP, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E

 SUBROUTINE GEBRD_64([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK],
 [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAUQ, TAUP, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void cgebrd(int m, int n, complex *a, int lda, float *d,
 float *e, complex *tauq, complex *taup, int
 *info);

 void cgebrd_64(long m, long n, complex *a, long lda, float
 *d, float *e, complex *tauq, complex *taup, long
 *info);

PURPOSE

 cgebrd reduces a general complex M-by-N matrix A to upper or
 lower bidiagonal form B by a unitary transformation: Q**H *
 A * P = B.

 If m >= n, B is upper bidiagonal; if m < n, B is lower bidi-
 agonal.

ARGUMENTS

 M (input) The number of rows in the matrix A. M >= 0.

 N (input) The number of columns in the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N general matrix to be reduced.
 On exit, if m >= n, the diagonal and the first
 superdiagonal are overwritten with the upper bidi-
 agonal matrix B; the elements below the diagonal,
 with the array TAUQ, represent the unitary matrix
 Q as a product of elementary reflectors, and the
 elements above the first superdiagonal, with the
 array TAUP, represent the unitary matrix P as a
 product of elementary reflectors; if m < n, the
 diagonal and the first subdiagonal are overwritten
 with the lower bidiagonal matrix B; the elements
 below the first subdiagonal, with the array TAUQ,
 represent the unitary matrix Q as a product of
 elementary reflectors, and the elements above the
 diagonal, with the array TAUP, represent the uni-
 tary matrix P as a product of elementary reflec-
 tors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 D (output)
 The diagonal elements of the bidiagonal matrix B:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the bidiagonal matrix
 B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-
 1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
 TAUQ (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q. See Further
 Details.

 TAUP (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix P. See Further
 Details.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,M,N). For optimum performance LWORK >=
 (M+N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrices Q and P are represented as products of elemen-
 tary reflectors:

 If m >= n,

 Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are complex scalars, and v and u are
 complex vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is
 stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and
 u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in
 TAUQ(i) and taup in TAUP(i).
 If m < n,

 Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are complex scalars, and v and u are
 complex vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is
 stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and
 u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in
 TAUQ(i) and taup in TAUP(i).

 The contents of A on exit are illustrated by the following
 examples:

 m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

 (d e u1 u1 u1) (d u1 u1 u1 u1
 u1)
 (v1 d e u2 u2) (e d u2 u2 u2
 u2)
 (v1 v2 d e u3) (v1 e d u3 u3

 u3)
 (v1 v2 v3 d e) (v1 v2 e d u4
 u4)
 (v1 v2 v3 v4 d) (v1 v2 v3 e d
 u5)
 (v1 v2 v3 v4 v5)

 where d and e denote diagonal and off-diagonal elements of
 B, vi denotes an element of the vector defining H(i), and ui
 an element of the vector defining G(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgecon - estimate the reciprocal of the condition number of
 a general complex matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by CGETRF

SYNOPSIS

 SUBROUTINE CGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 SUBROUTINE CGECON_64(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GECON(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GECON_64(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void cgecon(char norm, int n, complex *a, int lda, float
 anorm, float *rcond, int *info);

 void cgecon_64(char norm, long n, complex *a, long lda,
 float anorm, float *rcond, long *info);

PURPOSE

 cgecon estimates the reciprocal of the condition number of a
 general complex matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 CGETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgeequ - compute row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number

SYNOPSIS

 SUBROUTINE CGEEQU(M, N, A, LDA, ROWSC, COLSC, ROWCND, COLCND, AMAX,
 INFO)

 COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 REAL ROWCND, COLCND, AMAX
 REAL ROWSC(*), COLSC(*)

 SUBROUTINE CGEEQU_64(M, N, A, LDA, ROWSC, COLSC, ROWCND, COLCND,
 AMAX, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 REAL ROWCND, COLCND, AMAX
 REAL ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GEEQU([M], [N], A, [LDA], ROWSC, COLSC, ROWCND, COLCND,
 AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 REAL :: ROWCND, COLCND, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC

 SUBROUTINE GEEQU_64([M], [N], A, [LDA], ROWSC, COLSC, ROWCND, COLCND,
 AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 REAL :: ROWCND, COLCND, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC

 C INTERFACE
 #include <sunperf.h>

 void cgeequ(int m, int n, complex *a, int lda, float *rowsc,
 float *colsc, float *rowcnd, float *colcnd, float

 *amax, int *info);

 void cgeequ_64(long m, long n, complex *a, long lda, float
 *rowsc, float *colsc, float *rowcnd, float
 *colcnd, float *amax, long *info);

PURPOSE

 cgeequ computes row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number. R
 returns the row scale factors and C the column scale fac-
 tors, chosen to try to make the largest element in each row
 and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input) The M-by-N matrix whose equilibration factors are
 to be computed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 ROWSC (output)
 If INFO = 0 or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCND (output)
 If INFO = 0 or INFO > M, ROWCND contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCND >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCND (output)
 If INFO = 0, COLCND contains the ratio of the
 smallest COLSC(i) to the largest COLSC(i). If
 COLCND >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgees - compute for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE CGEES(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, W, Z, LDZ,
 WORK, LDWORK, WORK2, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL WORK3(*)
 REAL WORK2(*)

 SUBROUTINE CGEES_64(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, W, Z, LDZ,
 WORK, LDWORK, WORK2, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 WORK3(*)
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEES(JOBZ, SORTEV, [SELECT], [N], A, [LDA], [NOUT], W, [Z], [LDZ],
 [WORK], [LDWORK], [WORK2], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: WORK3
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEES_64(JOBZ, SORTEV, [SELECT], [N], A, [LDA], [NOUT], W, [Z],
 [LDZ], [WORK], [LDWORK], [WORK2], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 COMPLEX, DIMENSION(:) :: W, WORK

 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: WORK3
 REAL, DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void cgees(char jobz, char sortev, int(*select)(complex),
 int n, complex *a, int lda, int *nout, complex *w,
 complex *z, int ldz, int *info);

 void cgees_64(char jobz, char sortev,
 long(*select)(complex), long n, complex *a, long
 lda, long *nout, complex *w, complex *z, long ldz,
 long *info);

PURPOSE

 cgees computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**H).

 Optionally, it also orders the eigenvalues on the diagonal
 of the Schur form so that selected eigenvalues are at the
 top left. The leading columns of Z then form an orthonormal
 basis for the invariant subspace corresponding to the
 selected eigenvalues.

 A complex matrix is in Schur form if it is upper triangular.

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered:
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to order to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. The eigenvalue W(j) is selected if
 SELECT(W(j)) is true.

 N (input) The order of the matrix A. N >= 0.
 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten by its Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues for which SELECT is true.

 W (output)
 W contains the computed eigenvalues, in the same
 order that they appear on the diagonal of the out-
 put Schur form T.

 Z (output)
 If JOBZ = 'V', Z contains the unitary matrix Z of
 Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1;
 if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)
 WORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of W con-
 tain those eigenvalues which have converged; if
 JOBZ = 'V', Z contains the matrix which reduces A
 to its partially converged Schur form. = N+1: the
 eigenvalues could not be reordered because some
 eigenvalues were too close to separate (the prob-
 lem is very ill-conditioned); = N+2: after reord-
 ering, roundoff changed values of some complex
 eigenvalues so that leading eigenvalues in the
 Schur form no longer satisfy SELECT = .TRUE..
 This could also be caused by underflow due to
 scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgeesx - compute for an N-by-N complex nonsymmetric matrix
 A, the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE CGEESX(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, W, Z,
 LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL BWORK3(*)
 REAL RCONE, RCONV
 REAL WORK2(*)

 SUBROUTINE CGEESX_64(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, W,
 Z, LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 BWORK3(*)
 REAL RCONE, RCONV
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEESX(JOBZ, SORTEV, [SELECT], SENSE, [N], A, [LDA], NOUT, W,
 [Z], [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: BWORK3
 REAL :: RCONE, RCONV
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEESX_64(JOBZ, SORTEV, [SELECT], SENSE, [N], A, [LDA], NOUT,

 W, [Z], [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: BWORK3
 REAL :: RCONE, RCONV
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgeesx(char jobz, char sortev, int(*select)(complex),
 char sense, int n, complex *a, int lda, int *nout,
 complex *w, complex *z, int ldz, float *rcone,
 float *rconv, int *info);

 void cgeesx_64(char jobz, char sortev,
 long(*select)(complex), char sense, long n, com-
 plex *a, long lda, long *nout, complex *w, complex
 *z, long ldz, float *rcone, float *rconv, long
 *info);

PURPOSE

 cgeesx computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**H).

 Optionally, it also orders the eigenvalues on the diagonal
 of the Schur form so that selected eigenvalues are at the
 top left; computes a reciprocal condition number for the
 average of the selected eigenvalues (RCONDE); and computes a
 reciprocal condition number for the right invariant subspace
 corresponding to the selected eigenvalues (RCONDV). The
 leading columns of Z form an orthonormal basis for this
 invariant subspace.

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see Section 4.10 of the LAPACK Users'
 Guide (where these quantities are called s and sep respec-
 tively).

 A complex matrix is in Schur form if it is upper triangular.

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.
 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to order to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. An eigenvalue W(j) is selected if
 SELECT(W(j)) is true.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for average of selected eigen-
 values only;
 = 'V': Computed for selected right invariant sub-
 space only;
 = 'B': Computed for both. If SENSE = 'E', 'V' or
 'B', SORTEV must equal 'S'.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A is
 overwritten by its Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues for which SELECT is true.

 W (output)
 W contains the computed eigenvalues, in the same
 order that they appear on the diagonal of the out-
 put Schur form T.

 Z (output)
 If JOBZ = 'V', Z contains the unitary matrix Z of
 Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 RCONE (output)
 If SENSE = 'E' or 'B', RCONE contains the recipro-
 cal condition number for the average of the
 selected eigenvalues. Not referenced if SENSE =
 'N' or 'V'.

 RCONV (output)
 If SENSE = 'V' or 'B', RCONV contains the recipro-
 cal condition number for the selected right
 invariant subspace. Not referenced if SENSE = 'N'
 or 'E'.

 WORK (workspace)
 dimension(LDWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=

 max(1,2*N). Also, if SENSE = 'E' or 'V' or 'B',
 LDWORK >= 2*NOUT*(N-NOUT), where NOUT is the
 number of selected eigenvalues computed by this
 routine. Note that 2*NOUT*(N-NOUT) <= N*N/2. For
 good performance, LDWORK must generally be larger.

 WORK2 (workspace)
 dimension(N)

 BWORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of W con-
 tain those eigenvalues which have converged; if
 JOBZ = 'V', Z contains the transformation which
 reduces A to its partially converged Schur form.
 = N+1: the eigenvalues could not be reordered
 because some eigenvalues were too close to
 separate (the problem is very ill-conditioned); =
 N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Schur form no longer satisfy
 SELECT=.TRUE. This could also be caused by under-
 flow due to scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgeev - compute for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE CGEEV(JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL WORK2(*)

 SUBROUTINE CGEEV_64(JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEEV(JOBVL, JOBVR, [N], A, [LDA], W, VL, [LDVL], VR, [LDVR],
 [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, VL, VR
 INTEGER :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEEV_64(JOBVL, JOBVR, [N], A, [LDA], W, VL, [LDVL], VR,
 [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, VL, VR
 INTEGER(8) :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgeev(char jobvl, char jobvr, int n, complex *a, int
 lda, complex *w, complex *vl, int ldvl, complex
 *vr, int ldvr, int *info);
 void cgeev_64(char jobvl, char jobvr, long n, complex *a,
 long lda, complex *w, complex *vl, long ldvl, com-
 plex *vr, long ldvr, long *info);

PURPOSE

 cgeev computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

ARGUMENTS

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of are computed.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 W contains the computed eigenvalues.

 VL (input)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. u(j) = VL(:,j), the
 j-th column of VL.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are

 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. v(j) = VR(:,j), the
 j-th column of VR.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors have
 been computed; elements and i+1:N of W contain
 eigenvalues which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgeevx - compute for an N-by-N complex nonsymmetric matrix
 A, the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE CGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL ABNRM
 REAL SCALE(*), RCONE(*), RCONV(*), WORK2(*)

 SUBROUTINE CGEEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL ABNRM
 REAL SCALE(*), RCONE(*), RCONV(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], W, VL,
 [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV, [WORK],
 LDWORK, [WORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, VL, VR
 INTEGER :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL :: ABNRM
 REAL, DIMENSION(:) :: SCALE, RCONE, RCONV, WORK2

 SUBROUTINE GEEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], W,
 VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], LDWORK, [WORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE

 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: A, VL, VR
 INTEGER(8) :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL :: ABNRM
 REAL, DIMENSION(:) :: SCALE, RCONE, RCONV, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cgeevx (char, char, char, char, int, complex*, int,
 complex*, complex*, int, complex*, int, int*,
 int*, float*, float*, float*, float*, int*);

 void cgeevx_64 (char, char, char, char, long, complex*,
 long, complex*, complex*, long, complex*, long,
 long*, long*, float*, float*, float*, float*,
 long*);

PURPOSE

 cgeevx computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers
 for the eigenvalues (RCONDE), and reciprocal condition
 numbers for the right
 eigenvectors (RCONDV).

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

 Balancing a matrix means permuting the rows and columns to
 make it more nearly upper triangular, and applying a diago-
 nal similarity transformation D * A * D**(-1), where D is a
 diagonal matrix, to make its rows and columns closer in norm
 and the condition numbers of its eigenvalues and eigenvec-
 tors smaller. The computed reciprocal condition numbers
 correspond to the balanced matrix. Permuting rows and
 columns will not change the condition numbers (in exact
 arithmetic) but diagonal scaling will. For further explana-
 tion of balancing, see section 4.10.2 of the LAPACK Users'
 Guide.

ARGUMENTS

 BALANC (input)
 Indicates how the input matrix should be
 diagonally scaled and/or permuted to improve the
 conditioning of its eigenvalues. = 'N': Do not
 diagonally scale or permute;
 = 'P': Perform permutations to make the matrix

 more nearly upper triangular. Do not diagonally
 scale; = 'S': Diagonally scale the matrix, ie.
 replace A by D*A*D**(-1), where D is a diagonal
 matrix chosen to make the rows and columns of A
 more equal in norm. Do not permute; = 'B': Both
 diagonally scale and permute A.

 Computed reciprocal condition numbers will be for
 the matrix after balancing and/or permuting. Per-
 muting does not change condition numbers (in exact
 arithmetic), but balancing does.

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVL must = 'V'.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVR must = 'V'.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for eigenvalues only;
 = 'V': Computed for right eigenvectors only;
 = 'B': Computed for eigenvalues and right eigen-
 vectors.

 If SENSE = 'E' or 'B', both left and right eigen-
 vectors must also be computed (JOBVL = 'V' and
 JOBVR = 'V').

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten. If JOBVL = 'V' or JOBVR = 'V',
 A contains the Schur form of the balanced version
 of the matrix A.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 W contains the computed eigenvalues.

 VL (input)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. u(j) = VL(:,j), the
 j-th column of VL.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. v(j) = VR(:,j), the

 j-th column of VR.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 IHI (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 SCALE (output)
 Details of the permutations and scaling factors
 applied when balancing A. If P(j) is the index of
 the row and column interchanged with row and
 column j, and D(j) is the scaling factor applied
 to row and column j, then SCALE(J) = P(J), for
 J = 1,...,ILO-1 = D(J), for J = ILO,...,IHI =
 P(J) for J = IHI+1,...,N. The order in which
 the interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix (the maximum
 of the sum of absolute values of elements of any
 column).

 RCONE (output)
 RCONE(j) is the reciprocal condition number of the
 j-th eigenvalue.

 RCONV (output)
 RCONV(j) is the reciprocal condition number of the
 j-th right eigenvector.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. If SENSE = 'N'
 or 'E', LDWORK >= max(1,2*N), and if SENSE = 'V'
 or 'B', LDWORK >= N*N+2*N. For good performance,
 LDWORK must generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-

 pute all the eigenvalues, and no eigenvectors or
 condition numbers have been computed; elements
 1:ILO-1 and i+1:N of W contain eigenvalues which
 have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgegs - routine is deprecated and has been replaced by rou-
 tine CGGES

SYNOPSIS

 SUBROUTINE CGEGS(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
 LDVSL, VSR, LDVSR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL WORK2(*)

 SUBROUTINE CGEGS_64(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
 VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEGS(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEGS_64(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void cgegs(char jobvsl, char jobvsr, int n, complex *a, int
 lda, complex *b, int ldb, complex *alpha, complex
 *beta, complex *vsl, int ldvsl, complex *vsr, int
 ldvsr, int *info);

 void cgegs_64(char jobvsl, char jobvsr, long n, complex *a,
 long lda, complex *b, long ldb, complex *alpha,
 complex *beta, complex *vsl, long ldvsl, complex
 *vsr, long ldvsr, long *info);

PURPOSE

 cgegs routine is deprecated and has been replaced by routine
 CGGES.

 CGEGS computes for a pair of N-by-N complex nonsymmetric
 matrices A, B: the generalized eigenvalues (alpha, beta),
 the complex Schur form (A, B), and optionally left and/or
 right Schur vectors (VSL and VSR).

 (If only the generalized eigenvalues are needed, use the
 driver CGEGV instead.)

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 The (generalized) Schur form of a pair of matrices is the
 result of multiplying both matrices on the left by one uni-
 tary matrix and both on the right by another unitary matrix,
 these two unitary matrices being chosen so as to bring the
 pair of matrices into upper triangular form with the diago-
 nal elements of B being non-negative real numbers (this is
 also called complex Schur form.)

 The left and right Schur vectors are the columns of VSL and
 VSR, respectively, where VSL and VSR are the unitary
 matrices
 which reduce A and B to Schur form:

 Schur form of (A,B) = ((VSL)**H A (VSR), (VSL)**H B (VSR))

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.
 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of A.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j), j=1,...,N and
 BETA(j), j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) output by CGEGS. The
 BETA(j) will be non-negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See the description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL >=
 1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB as

 the MAX of the blocksizes for CGEQRF, CUNMQR, and
 CUNGQR; the optimal LDWORK is N*(NB+1).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. (A,B) are not
 in Schur form, but ALPHA(j) and BETA(j) should be
 correct for j=INFO+1,...,N. > N: errors that
 usually indicate LAPACK problems:
 =N+1: error return from CGGBAL
 =N+2: error return from CGEQRF
 =N+3: error return from CUNMQR
 =N+4: error return from CUNGQR
 =N+5: error return from CGGHRD
 =N+6: error return from CHGEQZ (other than failed
 iteration) =N+7: error return from CGGBAK (comput-
 ing VSL)
 =N+8: error return from CGGBAK (computing VSR)
 =N+9: error return from CLASCL (various places)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgegv - routine is deprecated and has been replaced by rou-
 tine CGGEV

SYNOPSIS

 SUBROUTINE CGEGV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL WORK2(*)

 SUBROUTINE CGEGV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEGV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEGV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgegv(char jobvl, char jobvr, int n, complex *a, int
 lda, complex *b, int ldb, complex *alpha, complex
 *beta, complex *vl, int ldvl, complex *vr, int
 ldvr, int *info);

 void cgegv_64(char jobvl, char jobvr, long n, complex *a,
 long lda, complex *b, long ldb, complex *alpha,
 complex *beta, complex *vl, long ldvl, complex
 *vr, long ldvr, long *info);

PURPOSE

 cgegv routine is deprecated and has been replaced by routine
 CGGEV.

 CGEGV computes for a pair of N-by-N complex nonsymmetric
 matrices A and B, the generalized eigenvalues (alpha, beta),
 and optionally, the left and/or right generalized eigenvec-
 tors (VL and VR).

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 A right generalized eigenvector corresponding to a general-
 ized eigenvalue w for a pair of matrices (A,B) is a vector
 r such that (A - w B) r = 0 . A left generalized eigen-
 vector is a vector l such that l**H * (A - w B) = 0, where
 l**H is the
 conjugate-transpose of l.

 Note: this routine performs "full balancing" on A and B.
 See "Further Details", below.

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the first of the pair of matrices whose

 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of A on exit, see
 "Further Details", below.)

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of B on exit, see
 "Further Details", below.)

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/VL(j), j=1,...,N, will be the
 generalized eigenvalues.

 Note: the quotients ALPHA(j)/VL(j) may easily
 over- or underflow, and VL(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and VL always less than and usually
 comparable with norm(B).

 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Each eigenvector will be
 scaled so the largest component will have abs(real
 part) + abs(imag. part) = 1, *except* that for
 eigenvalues with alpha=beta=0, a zero vector will
 be returned as the corresponding eigenvector. Not
 referenced if JOBVL = 'N'.
 BETA (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Each eigenvector will be
 scaled so the largest component will have abs(real
 part) + abs(imag. part) = 1, *except* that for
 eigenvalues with alpha=beta=0, a zero vector will
 be returned as the corresponding eigenvector. Not
 referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right generalized eigenvec-
 tors. (See "Purpose", above.) Each eigenvector
 will be scaled so the largest component will have
 abs(real part) + abs(imag. part) = 1, *except*
 that for eigenvalues with alpha=beta=0, a zero
 vector will be returned as the corresponding
 eigenvector. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,

 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB as
 the MAX of the blocksizes for CGEQRF, CUNMQR, and
 CUNGQR; The optimal LDWORK is MAX(2*N, N*(NB+1)
).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.
 WORK2 (workspace)
 dimension(8*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and VL(j)
 should be correct for j=INFO+1,...,N. > N:
 errors that usually indicate LAPACK problems:
 =N+1: error return from CGGBAL
 =N+2: error return from CGEQRF
 =N+3: error return from CUNMQR
 =N+4: error return from CUNGQR
 =N+5: error return from CGGHRD
 =N+6: error return from CHGEQZ (other than failed
 iteration) =N+7: error return from CTGEVC
 =N+8: error return from CGGBAK (computing VL)
 =N+9: error return from CGGBAK (computing VR)
 =N+10: error return from CLASCL (various calls)

FURTHER DETAILS

 Balancing

 This driver calls CGGBAL to both permute and scale rows and
 columns of A and B. The permutations PL and PR are chosen
 so that PL*A*PR and PL*B*R will be upper triangular except
 for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i
 and j as close together as possible. The diagonal scaling
 matrices DL and DR are chosen so that the pair
 DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one
 (except for the elements that start out zero.)

 After the eigenvalues and eigenvectors of the balanced
 matrices have been computed, CGGBAK transforms the eigenvec-
 tors back to what they would have been (in perfect arith-
 metic) if they had not been balanced.

 Contents of A and B on Exit

 -------- -- - --- - -- ----

 If any eigenvectors are computed (either JOBVL='V' or
 JOBVR='V' or both), then on exit the arrays A and B will
 contain the complex Schur form[*] of the "balanced" versions
 of A and B. If no eigenvectors are computed, then only the
 diagonal blocks will be correct.

 [*] In other words, upper triangular form.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgehrd - reduce a complex general matrix A to upper Hessen-
 berg form H by a unitary similarity transformation

SYNOPSIS

 SUBROUTINE CGEHRD(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER N, ILO, IHI, LDA, LWORKIN, INFO

 SUBROUTINE CGEHRD_64(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER*8 N, ILO, IHI, LDA, LWORKIN, INFO

 F95 INTERFACE
 SUBROUTINE GEHRD([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORKIN
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, ILO, IHI, LDA, LWORKIN, INFO

 SUBROUTINE GEHRD_64([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORKIN
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, ILO, IHI, LDA, LWORKIN, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgehrd(int n, int ilo, int ihi, complex *a, int lda,
 complex *tau, int *info);

 void cgehrd_64(long n, long ilo, long ihi, complex *a, long
 lda, complex *tau, long *info);

PURPOSE

 cgehrd reduces a complex general matrix A to upper Hessen-
 berg form H by a unitary similarity transformation: Q' * A
 * Q = H .

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGEBAL;
 otherwise they should be set to 1 and N respec-
 tively. See Further Details.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first subdiag-
 onal of A are overwritten with the upper Hessen-
 berg matrix H, and the elements below the first
 subdiagonal, with the array TAU, represent the
 unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details). Elements 1:ILO-1 and
 IHI:N-1 of TAU are set to zero.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The length of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of (ihi-ilo) ele-
 mentary reflectors

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi)
 is stored on exit in A(i+2:ihi,i), and tau in TAU(i).

 The contents of A are illustrated by the following example,
 with n = 7, ilo = 2 and ihi = 6:

 on entry, on exit,

 (a a a a a a a) (a a h h h h
 a) (a a a a a a) (a h h h
 h a) (a a a a a a) (h h h
 h h h) (a a a a a a) (v2 h
 h h h h) (a a a a a a) (v2
 v3 h h h h) (a a a a a a) (
 v2 v3 v4 h h h) (a) (
 a)

 where a denotes an element of the original matrix A, h
 denotes a modified element of the upper Hessenberg matrix H,
 and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgelqf - compute an LQ factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE CGELQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE CGELQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GELQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GELQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgelqf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void cgelqf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 cgelqf computes an LQ factorization of a complex M-by-N
 matrix A: A = L * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and below the diagonal of the array con-
 tain the m-by-min(m,n) lower trapezoidal matrix L
 (L is lower triangular if m <= n); the elements
 above the diagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on
 exit in A(i,i+1:n), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgels - solve overdetermined or underdetermined complex
 linear systems involving an M-by-N matrix A, or its
 conjugate-transpose, using a QR or LQ factorization of A

SYNOPSIS

 SUBROUTINE CGELS(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, LDWORK, INFO

 SUBROUTINE CGELS_64(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GELS([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB], [WORK],
 LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, LDWORK, INFO

 SUBROUTINE GELS_64([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB],
 [WORK], LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgels (char, int, int, int, complex*, int, complex*,
 int, int*);

 void cgels_64 (char, long, long, long, complex*, long, com-
 plex*, long, long*);

PURPOSE

 cgels solves overdetermined or underdetermined complex
 linear systems involving an M-by-N matrix A, or its
 conjugate-transpose, using a QR or LQ factorization of A.
 It is assumed that A has full rank.

 The following options are provided:

 1. If TRANS = 'N' and m >= n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A*X ||.

 2. If TRANS = 'N' and m < n: find the minimum norm solution
 of
 an underdetermined system A * X = B.

 3. If TRANS = 'C' and m >= n: find the minimum norm solu-
 tion of
 an undetermined system A**H * X = B.

 4. If TRANS = 'C' and m < n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A**H * X ||.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

ARGUMENTS

 TRANSA (input)
 = 'N': the linear system involves A;
 = 'C': the linear system involves A**H.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. if M >= N, A is
 overwritten by details of its QR factorization as
 returned by CGEQRF; if M < N, A is overwritten by
 details of its LQ factorization as returned by
 CGELQF.

 LDA (input)

 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the matrix B of right hand side vectors,
 stored columnwise; B is M-by-NRHS if TRANSA = 'N',
 or N-by-NRHS if TRANSA = 'C'. On exit, B is
 overwritten by the solution vectors, stored
 columnwise: if TRANSA = 'N' and m >= n, rows 1 to
 n of B contain the least squares solution vectors;
 the residual sum of squares for the solution in
 each column is given by the sum of squares of ele-
 ments N+1 to M in that column; if TRANSA = 'N' and
 m < n, rows 1 to N of B contain the minimum norm
 solution vectors; if TRANSA = 'C' and m >= n, rows
 1 to M of B contain the minimum norm solution vec-
 tors; if TRANSA = 'C' and m < n, rows 1 to M of B
 contain the least squares solution vectors; the
 residual sum of squares for the solution in each
 column is given by the sum of squares of elements
 M+1 to N in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 MAX(1,M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. LDWORK >= max(
 1, MN + max(MN, NRHS)). For optimal perfor-
 mance, LDWORK >= max(1, MN + max(MN, NRHS)*NB
). where MN = min(M,N) and NB is the optimum
 block size.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgelsd - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE CGELSD(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
 LWORK, RWORK, IWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER IWORK(*)
 REAL RCOND
 REAL S(*), RWORK(*)

 SUBROUTINE CGELSD_64(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 WORK, LWORK, RWORK, IWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 IWORK(*)
 REAL RCOND
 REAL S(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GELSD([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: RCOND
 REAL, DIMENSION(:) :: S, RWORK

 SUBROUTINE GELSD_64([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK

 REAL :: RCOND
 REAL, DIMENSION(:) :: S, RWORK

 C INTERFACE
 #include <sunperf.h>
 void cgelsd(int m, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, float *s, float rcond, int
 *rank, int *info);

 void cgelsd_64(long m, long n, long nrhs, complex *a, long
 lda, complex *b, long ldb, float *s, float rcond,
 long *rank, long *info);

PURPOSE

 cgelsd computes the minimum-norm solution to a real linear
 least squares problem:
 minimize 2-norm(| b - A*x |)
 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The problem is solved in three steps:
 (1) Reduce the coefficient matrix A to bidiagonal form with
 Householder tranformations, reducing the original prob-
 lem
 into a "bidiagonal least squares problem" (BLS)
 (2) Solve the BLS using a divide and conquer approach.
 (3) Apply back all the Householder tranformations to solve
 the original least squares problem.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and RANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 S (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 S(1)/S(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values S(i) <= RCOND*S(1) are treated
 as zero. If RCOND < 0, machine precision is used
 instead.

 RANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than RCOND*S(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. The
 exact minimum amount of workspace needed depends
 on M, N and NRHS. If M >= N, LWORK >= 2*N +
 N*NRHS. If M < N, LWORK >= 2*M + M*NRHS. For
 good performance, LWORK should generally be
 larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 If M >= N, LRWORK >= 8*N + 2*N*SMLSIZ + 8*N*NLVL +
 N*NRHS. If M < N, LRWORK >= 8*M + 2*M*SMLSIZ +
 8*M*NLVL + M*NRHS. SMLSIZ is returned by ILAENV
 and is equal to the maximum size of the subprob-
 lems at the bottom of the computation tree (usu-
 ally about 25), and NLVL = INT(LOG_2(MIN(M,N
)/(SMLSIZ+1))) + 1

 IWORK (workspace)
 LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where
 MINMN = MIN(M,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Ren-Cang Li, Computer Science Division,
 University of California at Berkeley, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgelss - compute the minimum norm solution to a complex
 linear least squares problem

SYNOPSIS

 SUBROUTINE CGELSS(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, WORK2, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL RCOND
 REAL SING(*), WORK2(*)

 SUBROUTINE CGELSS_64(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, WORK2, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL RCOND
 REAL SING(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GELSS([M], [N], [NRHS], A, [LDA], B, [LDB], SING, RCOND,
 IRANK, [WORK], [LDWORK], [WORK2], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SING, WORK2

 SUBROUTINE GELSS_64([M], [N], [NRHS], A, [LDA], B, [LDB], SING,
 RCOND, IRANK, [WORK], [LDWORK], [WORK2], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SING, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgelss(int m, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, float *sing, float rcond, int
 *irank, int *info);
 void cgelss_64(long m, long n, long nrhs, complex *a, long
 lda, complex *b, long ldb, float *sing, float
 rcond, long *irank, long *info);

PURPOSE

 cgelss computes the minimum norm solution to a complex
 linear least squares problem:

 Minimize 2-norm(| b - A*x |).

 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the first
 min(m,n) rows of A are overwritten with its right
 singular vectors, stored rowwise.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and IRANK = n, the
 residual sum-of-squares for the solution in the
 i-th column is given by the sum of squares of ele-
 ments n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 SING (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =

 SING(1)/SING(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values SING(i) <= RCOND*SING(1) are
 treated as zero. If RCOND < 0, machine precision
 is used instead.

 IRANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than
 RCOND*SING(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1, and
 also: LDWORK >= 2*min(M,N) + max(M,N,NRHS) For
 good performance, LDWORK should generally be
 larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(5*min(M,N))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgelsx - routine is deprecated and has been replaced by rou-
 tine CGELSY

SYNOPSIS

 SUBROUTINE CGELSX(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND, IRANK,
 WORK, WORK2, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER JPIVOT(*)
 REAL RCOND
 REAL WORK2(*)

 SUBROUTINE CGELSX_64(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND,
 IRANK, WORK, WORK2, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER*8 JPIVOT(*)
 REAL RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GELSX([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT, RCOND,
 IRANK, [WORK], [WORK2], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GELSX_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT,
 RCOND, IRANK, [WORK], [WORK2], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void cgelsx(int m, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, int *jpivot, float rcond, int
 *irank, int *info);

 void cgelsx_64(long m, long n, long nrhs, complex *a, long
 lda, complex *b, long ldb, long *jpivot, float
 rcond, long *irank, long *info);

PURPOSE

 cgelsx routine is deprecated and has been replaced by rou-
 tine CGELSY.

 CGELSX computes the minimum-norm solution to a complex
 linear least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by unitary transformations from the right, arriving at
 the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X. If m >=
 n and IRANK = n, the residual sum-of-squares for
 the solution in the i-th column is given by the
 sum of squares of elements N+1:M in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is an initial column, otherwise it is a free
 column. Before the QR factorization of A, all
 initial columns are permuted to the leading posi-
 tions; only the remaining free columns are moved
 as a result of column pivoting during the factori-
 zation. On exit, if JPIVOT(i) = k, then the i-th
 column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 IRANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.
 WORK (workspace)
 (min(M,N) + max(N, 2*min(M,N)+NRHS)),

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgelsy - compute the minimum-norm solution to a complex
 linear least squares problem

SYNOPSIS

 SUBROUTINE CGELSY(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, RWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER JPVT(*)
 REAL RCOND
 REAL RWORK(*)

 SUBROUTINE CGELSY_64(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, RWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 JPVT(*)
 REAL RCOND
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE GELSY([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL :: RCOND
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE GELSY_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT,
 RCOND, RANK, [WORK], [LWORK], [RWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT

 REAL :: RCOND
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void cgelsy(int m, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, int *jpvt, float rcond, int
 *rank, int *info);

 void cgelsy_64(long m, long n, long nrhs, complex *a, long
 lda, complex *b, long ldb, long *jpvt, float
 rcond, long *rank, long *info);

PURPOSE

 cgelsy computes the minimum-norm solution to a complex
 linear least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by unitary transformations from the right, arriving at
 the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

 This routine is basically identical to the original xGELSX
 except three differences:
 o The permutation of matrix B (the right hand side) is
 faster and
 more simple.
 o The call to the subroutine xGEQPF has been substituted
 by the
 the call to the subroutine xGEQP3. This subroutine is a
 Blas-3
 version of the QR factorization with column pivoting.
 o Matrix B (the right hand side) is updated with Blas-3.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPVT (input/output)
 On entry, if JPVT(i) .ne. 0, the i-th column of A
 is permuted to the front of AP, otherwise column i
 is a free column. On exit, if JPVT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 RANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal
 factorization of A.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. The unblocked
 strategy requires that: LWORK >= MN + MAX(2*MN,
 N+1, MN+NRHS) where MN = min(M,N). The block
 algorithm requires that: LWORK >= MN + MAX(2*MN,
 NB*(N+1), MN+MN*NB, MN+NB*NRHS) where NB is an
 upper bound on the blocksize returned by ILAENV
 for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR,
 and CUNMRZ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message

 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA
 E. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgemm - perform one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C

SYNOPSIS

 SUBROUTINE CGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, K, LDA, LDB, LDC

 SUBROUTINE CGEMM_64(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, K, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE GEMM([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, K, LDA, LDB, LDC

 SUBROUTINE GEMM_64([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, K, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void cgemm(char transa, char transb, int m, int n, int k,
 complex *alpha, complex *a, int lda, complex *b,

 int ldb, complex *beta, complex *c, int ldc);

 void cgemm_64(char transa, char transb, long m, long n, long
 k, complex *alpha, complex *a, long lda, complex
 *b, long ldb, complex *beta, complex *c, long
 ldc);

PURPOSE

 cgemm performs one of the matrix-matrix operations

 C := alpha*op(A)*op(B) + beta*C

 where op(X) is one of

 op(X) = X or op(X) = X' or op(X) = conjg(X'), alpha
 and beta are scalars, and A, B and C are matrices, with
 op(A) an m by k matrix, op(B) a k by n matrix and C an m
 by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = conjg(A').

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 TRANSB (input)
 On entry, TRANSB specifies the form of op(B) to
 be used in the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = conjg(B').

 Unchanged on exit.

 TRANSB is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of
 the matrix op(A) and of the matrix C. M >=
 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of
 the matrix op(B) and the number of columns of
 the matrix C. N >= 0. Unchanged on exit.

 K (input)
 On entry, K specifies the number of columns of
 the matrix op(A) and the number of rows of the
 matrix op(B). K >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, ka), where ka
 is K when TRANSA = 'N' or 'n', and is M otherwise.
 Before entry with TRANSA = 'N' or 'n', the leading
 M by K part of the array A must contain the matrix
 A, otherwise the leading K by M part of the array
 A must contain the matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 TRANSA = 'N' or 'n' then LDA >= max(1, M), other-
 wise LDA >= max(1, K). Unchanged on exit.

 B (input)
 COMPLEX array of DIMENSION (LDB, kb), where kb
 is n when TRANSB = 'N' or 'n', and is k oth-
 erwise. Before entry with TRANSB = 'N' or 'n',
 the leading k by n part of the array B must
 contain the matrix B, otherwise the leading n
 by k part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. When
 TRANSB = 'N' or 'n' then LDB >= max(1, k), oth-
 erwise LDB >= max(1, n). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n). Before
 entry, the leading m by n part of the array C
 must contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n matrix (alpha*op(A)*op(B) + beta*C).

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgemv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y

SYNOPSIS

 SUBROUTINE CGEMV(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER M, N, LDA, INCX, INCY

 SUBROUTINE CGEMV_64(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 M, N, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE GEMV([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INCX, INCY

 SUBROUTINE GEMV_64([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void cgemv(char transa, int m, int n, complex *alpha, com-
 plex *a, int lda, complex *x, int incx, complex
 *beta, complex *y, int incy);
 void cgemv_64(char transa, long m, long n, complex *alpha,
 complex *a, long lda, complex *x, long incx, com-
 plex *beta, complex *y, long incy);

PURPOSE

 cgemv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y where alpha and beta are
 scalars, x and y are vectors and A is an m by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*conjg(A')*x +
 beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)

 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry with BETA non-zero, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgeqlf - compute a QL factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE CGEQLF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE CGEQLF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GEQLF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GEQLF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgeqlf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void cgeqlf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 cgeqlf computes a QL factorization of a complex M-by-N
 matrix A: A = Q * L.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m >=
 n, the lower triangle of the subarray A(m-
 n+1:m,1:n) contains the N-by-N lower triangular
 matrix L; if m <= n, the elements on and below the
 (n-m)-th superdiagonal contain the M-by-N lower
 trapezoidal matrix L; the remaining elements, with
 the array TAU, represent the unitary matrix Q as a
 product of elementary reflectors (see Further
 Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector

 with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is
 stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgeqp3 - compute a QR factorization with column pivoting of
 a matrix A

SYNOPSIS

 SUBROUTINE CGEQP3(M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO
 INTEGER JPVT(*)
 REAL RWORK(*)

 SUBROUTINE CGEQP3_64(M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
 INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO
 INTEGER*8 JPVT(*)
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE GEQP3([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [RWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE GEQP3_64([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [RWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void cgeqp3(int m, int n, complex *a, int lda, int *jpvt,
 complex *tau, int *info);

 void cgeqp3_64(long m, long n, complex *a, long lda, long
 *jpvt, complex *tau, long *info);

PURPOSE

 cgeqp3 computes a QR factorization with column pivoting of a
 matrix A: A*P = Q*R using Level 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper trapezoidal matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the unitary matrix Q as a product of min(M,N) ele-
 mentary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPVT (input/output)
 On entry, if JPVT(J).ne.0, the J-th column of A is
 permuted to the front of A*P (a leading column);
 if JPVT(J)=0, the J-th column of A is a free
 column. On exit, if JPVT(J)=K, then the J-th
 column of A*P was the the K-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N+1.
 For optimal performance LWORK >= (N+1)*NB, where
 NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit.

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real/complex scalar, and v is a real/complex
 vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on
 exit in A(i+1:m,i), and tau in TAU(i).

 Based on contributions by
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 X. Sun, Computer Science Dept., Duke University, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgeqpf - routine is deprecated and has been replaced by rou-
 tine CGEQP3

SYNOPSIS

 SUBROUTINE CGEQPF(M, N, A, LDA, JPIVOT, TAU, WORK, WORK2, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, INFO
 INTEGER JPIVOT(*)
 REAL WORK2(*)

 SUBROUTINE CGEQPF_64(M, N, A, LDA, JPIVOT, TAU, WORK, WORK2, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 JPIVOT(*)
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEQPF([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [WORK2],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE GEQPF_64([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [WORK2],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgeqpf(int m, int n, complex *a, int lda, int *jpivot,
 complex *tau, int *info);

 void cgeqpf_64(long m, long n, complex *a, long lda, long
 *jpivot, complex *tau, long *info);

PURPOSE

 cgeqpf routine is deprecated and has been replaced by rou-
 tine CGEQP3.

 CGEQPF computes a QR factorization with column pivoting of a
 complex M-by-N matrix A: A*P = Q*R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper triangular matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the unitary matrix Q as a product of min(m,n) ele-
 mentary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is permuted to the front of A*P (a leading
 column); if JPIVOT(i) = 0, the i-th column of A is
 a free column. On exit, if JPIVOT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(n)

 Each H(i) has the form

 H = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit
 in A(i+1:m,i).

 The matrix P is represented in jpvt as follows: If
 jpvt(j) = i
 then the jth column of P is the ith canonical unit vector.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgeqrf - compute a QR factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE CGEQRF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE CGEQRF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GEQRF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GEQRF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgeqrf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void cgeqrf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 cgeqrf computes a QR factorization of a complex M-by-N
 matrix A: A = Q * R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(M,N)-by-N upper trapezoidal matrix R
 (R is upper triangular if m >= n); the elements
 below the diagonal, with the array TAU, represent
 the unitary matrix Q as a product of min(m,n) ele-
 mentary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit
 in A(i+1:m,i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgerc - perform the rank 1 operation A := alpha*x*conjg(
 y') + A

SYNOPSIS

 SUBROUTINE CGERC(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER M, N, INCX, INCY, LDA

 SUBROUTINE CGERC_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 M, N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE GERC([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, INCX, INCY, LDA

 SUBROUTINE GERC_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void cgerc(int m, int n, complex *alpha, complex *x, int
 incx, complex *y, int incy, complex *a, int lda);

 void cgerc_64(long m, long n, complex *alpha, complex *x,
 long incx, complex *y, long incy, complex *a, long
 lda);

PURPOSE

 cgerc performs the rank 1 operation A := alpha*x*conjg(y')
 + A where alpha is a scalar, x is an m element vector, y is
 an n element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgerfs - improve the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution

SYNOPSIS

 SUBROUTINE CGERFS(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGERFS_64(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GERFS([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GERFS_64([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>
 void cgerfs(char transa, int n, int nrhs, complex *a, int
 lda, complex *af, int ldaf, int *ipivot, complex
 *b, int ldb, complex *x, int ldx, float *ferr,
 float *berr, int *info);

 void cgerfs_64(char transa, long n, long nrhs, complex *a,
 long lda, complex *af, long ldaf, long *ipivot,
 complex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 cgerfs improves the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original N-by-N matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).
 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)

 On entry, the solution matrix X, as computed by
 CGETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgerqf - compute an RQ factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE CGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE CGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GERQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GERQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgerqf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void cgerqf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 cgerqf computes an RQ factorization of a complex M-by-N
 matrix A: A = R * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m <=
 n, the upper triangle of the subarray A(1:m,n-
 m+1:n) contains the M-by-M upper triangular matrix
 R; if m >= n, the elements on and above the (m-
 n)-th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAU, represent the unitary matrix Q as a
 product of min(m,n) elementary reflectors (see
 Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector

 with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1))
 is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgeru - perform the rank 1 operation A := alpha*x*y' + A

SYNOPSIS

 SUBROUTINE CGERU(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER M, N, INCX, INCY, LDA

 SUBROUTINE CGERU_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 M, N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE GER([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, INCX, INCY, LDA

 SUBROUTINE GER_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void cgeru(int m, int n, complex *alpha, complex *x, int
 incx, complex *y, int incy, complex *a, int lda);

 void cgeru_64(long m, long n, complex *alpha, complex *x,
 long incx, complex *y, long incy, complex *a, long
 lda);

PURPOSE

 cgeru performs the rank 1 operation A := alpha*x*y' + A
 where alpha is a scalar, x is an m element vector, y is an n
 element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgesdd - compute the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors, by using divide-and-conquer
 method

SYNOPSIS

 SUBROUTINE CGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, RWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER IWORK(*)
 REAL S(*), RWORK(*)

 SUBROUTINE CGESDD_64(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, RWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER*8 M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER*8 IWORK(*)
 REAL S(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GESDD(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, U, VT
 INTEGER :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: S, RWORK

 SUBROUTINE GESDD_64(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 COMPLEX, DIMENSION(:) :: WORK

 COMPLEX, DIMENSION(:,:) :: A, U, VT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: S, RWORK
 C INTERFACE
 #include <sunperf.h>

 void cgesdd(char jobz, int m, int n, complex *a, int lda,
 float *s, complex *u, int ldu, complex *vt, int
 ldvt, int *info);

 void cgesdd_64(char jobz, long m, long n, complex *a, long
 lda, float *s, complex *u, long ldu, complex *vt,
 long ldvt, long *info);

PURPOSE

 cgesdd computes the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors, by using divide-and-conquer
 method. The SVD is written
 = U * SIGMA * conjugate-transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M unitary matrix,
 and V is an N-by-N unitary matrix. The diagonal elements of
 SIGMA are the singular values of A; they are real and non-
 negative, and are returned in descending order. The first
 min(m,n) columns of U and V are the left and right singular
 vectors of A.

 Note that the routine returns VT = V**H, not V.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U and all N rows of V**H
 are returned in the arrays U and VT; = 'S': the
 first min(M,N) columns of U and the first min(M,N)
 rows of V**H are returned in the arrays U and VT;
 = 'O': If M >= N, the first N columns of U are
 overwritten on the array A and all rows of V**H
 are returned in the array VT; otherwise, all
 columns of U are returned in the array U and the
 first M rows of V**H are overwritten in the array
 VT; = 'N': no columns of U or rows of V**H are
 computed.

 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBZ =
 'O', A is overwritten with the first N columns of
 U (the left singular vectors, stored columnwise)
 if M >= N; A is overwritten with the first M rows
 of V**H (the right singular vectors, stored row-
 wise) otherwise. if JOBZ .ne. 'O', the contents
 of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 S (output)
 The singular values of A, sorted so that S(i) >=
 S(i+1).

 U (output)
 UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
 UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or
 JOBZ = 'O' and M < N, U contains the M-by-M uni-
 tary matrix U; if JOBZ = 'S', U contains the first
 min(M,N) columns of U (the left singular vectors,
 stored columnwise); if JOBZ = 'O' and M >= N, or
 JOBZ = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU
 >= M.

 VT (output)
 If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT con-
 tains the N-by-N unitary matrix V**H; if JOBZ =
 'S', VT contains the first min(M,N) rows of V**H
 (the right singular vectors, stored rowwise); if
 JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
 if JOBZ = 'S', LDVT >= min(M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. if
 JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N). if JOBZ
 = 'O', LWORK >=
 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). if JOBZ
 = 'S' or 'A', LWORK >=
 min(M,N)*min(M,N)+2*min(M,N)+max(M,N). For good
 performance, LWORK should generally be larger. If
 LWORK < 0 but other input arguments are legal,
 WORK(1) returns optimal LWORK.

 RWORK (workspace)
 If JOBZ = 'N', LRWORK >= 7*min(M,N). Otherwise,

 LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N)

 IWORK (workspace)
 dimension(8*MIN(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The updating process of SBDSDC did not con-
 verge.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgesv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GESV([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GESV_64([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgesv(int n, int nrhs, complex *a, int lda, int
 *ipivot, complex *b, int ldb, int *info);

 void cgesv_64(long n, long nrhs, complex *a, long lda, long
 *ipivot, complex *b, long ldb, long *info);

PURPOSE

 cgesv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row
 interchanges is used to factor A as
 A = P * L * U,
 where P is a permutation matrix, L is unit lower triangular,
 and U is upper triangular. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N coefficient matrix A. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)
 On entry, the N-by-NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N-by-NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, so the solution could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgesvd - compute the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors

SYNOPSIS

 SUBROUTINE CGESVD(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT, LDVT,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBU, JOBVT
 COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL SING(*), WORK2(*)

 SUBROUTINE CGESVD_64(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT,
 LDVT, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBU, JOBVT
 COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER*8 M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL SING(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GESVD(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU], VT,
 [LDVT], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, U, VT
 INTEGER :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL, DIMENSION(:) :: SING, WORK2

 SUBROUTINE GESVD_64(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU],
 VT, [LDVT], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, U, VT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL, DIMENSION(:) :: SING, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgesvd(char jobu, char jobvt, int m, int n, complex *a,
 int lda, float *sing, complex *u, int ldu, complex
 *vt, int ldvt, int *info);
 void cgesvd_64(char jobu, char jobvt, long m, long n, com-
 plex *a, long lda, float *sing, complex *u, long
 ldu, complex *vt, long ldvt, long *info);

PURPOSE

 cgesvd computes the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors. The SVD is written
 = U * SIGMA * conjugate-transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M unitary matrix,
 and V is an N-by-N unitary matrix. The diagonal elements of
 SIGMA are the singular values of A; they are real and non-
 negative, and are returned in descending order. The first
 min(m,n) columns of U and V are the left and right singular
 vectors of A.

 Note that the routine returns V**H, not V.

ARGUMENTS

 JOBU (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U are returned in array
 U:
 = 'S': the first min(m,n) columns of U (the left
 singular vectors) are returned in the array U; =
 'O': the first min(m,n) columns of U (the left
 singular vectors) are overwritten on the array A;
 = 'N': no columns of U (no left singular vectors)
 are computed.

 JOBVT (input)
 Specifies options for computing all or part of the
 matrix V**H:
 = 'A': all N rows of V**H are returned in the
 array VT;
 = 'S': the first min(m,n) rows of V**H (the right
 singular vectors) are returned in the array VT; =
 'O': the first min(m,n) rows of V**H (the right
 singular vectors) are overwritten on the array A;
 = 'N': no rows of V**H (no right singular vec-
 tors) are computed.

 JOBVT and JOBU cannot both be 'O'.
 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBU =
 'O', A is overwritten with the first min(m,n)

 columns of U (the left singular vectors, stored
 columnwise); if JOBVT = 'O', A is overwritten with
 the first min(m,n) rows of V**H (the right singu-
 lar vectors, stored rowwise); if JOBU .ne. 'O' and
 JOBVT .ne. 'O', the contents of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 SING (output)
 The singular values of A, sorted so that SING(i)
 >= SING(i+1).

 U (input) (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU =
 'S'. If JOBU = 'A', U contains the M-by-M unitary
 matrix U; if JOBU = 'S', U contains the first
 min(m,n) columns of U (the left singular vectors,
 stored columnwise); if JOBU = 'N' or 'O', U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBU = 'S' or 'A', LDU >= M.

 VT (input)
 If JOBVT = 'A', VT contains the N-by-N unitary
 matrix V**H; if JOBVT = 'S', VT contains the first
 min(m,n) rows of V**H (the right singular vectors,
 stored rowwise); if JOBVT = 'N' or 'O', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >=
 min(M,N).
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1.
 LDWORK >= 2*MIN(M,N)+MAX(M,N) For good perfor-
 mance, LDWORK should generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 DIMENSION(5*MIN(M,N)). On exit, if INFO > 0,
 WORK2(1:MIN(M,N)-1) contains the unconverged
 superdiagonal elements of an upper bidiagonal
 matrix B whose diagonal is in SING (not neces-
 sarily sorted). B satisfies A = U * B * VT, so it
 has the same singular values as A, and singular
 vectors related by U and VT.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

 > 0: if CBDSQR did not converge, INFO specifies
 how many superdiagonals of an intermediate bidiag-
 onal form B did not converge to zero. See the
 description of WORK2 above for details.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgesvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE CGESVX(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL ROWSC(*), COLSC(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGESVX_64(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL ROWSC(*), COLSC(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GESVX(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 SUBROUTINE GESVX_64(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgesvx(char fact, char transa, int n, int nrhs, complex
 *a, int lda, complex *af, int ldaf, int *ipivot,
 char equed, float *rowsc, float *colsc, complex
 *b, int ldb, complex *x, int ldx, float *rcond,
 float *ferr, float *berr, int *info);

 void cgesvx_64(char fact, char transa, long n, long nrhs,
 complex *a, long lda, complex *af, long ldaf, long
 *ipivot, char equed, float *rowsc, float *colsc,
 complex *b, long ldb, complex *x, long ldx, float
 *rcond, float *ferr, float *berr, long *info);

PURPOSE

 cgesvx uses the LU factorization to compute the solution to
 a complex system of linear equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = P * L * U,
 where P is a permutation matrix, L is a unit lower tri-
 angular
 matrix, and U is upper triangular.

 3. If some U(i,i)=0, so that U is exactly singular, then the

 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. If FACT = 'F' and
 EQUED is not 'N', then A must have been equili-
 brated by the scaling factors in ROWSC and/or
 COLSC. A is not modified if FACT = 'F' or 'N', or

 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the factors L and U from the fac-
 torization A = P*L*U as computed by CGETRF. If
 EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the equilibrated matrix A
 (see the description of A for the form of the
 equilibrated matrix).
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = P*L*U as computed by CGETRF; row
 i of the matrix was interchanged with row
 IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT

 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each
 element of COLSC must be positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 TRANSA = 'N' and EQUED = 'ROWSC' or 'B', B is
 overwritten by diag(ROWSC)*B; if TRANSA = 'T' or
 'COLSC' and EQUED = 'COLSC' or 'B', B is overwrit-
 ten by diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.
 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)

 dimension(2*N)

 WORK2 (workspace)
 dimension(2*N) On exit, WORK2(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK2(1) is much less than 1, then the stability
 of the LU factorization of the (equilibrated)
 matrix A could be poor. This also means that the
 solution X, condition estimator RCOND, and forward
 error bound FERR could be unreliable. If factori-
 zation fails with 0<INFO<=N, then WORK2(1) con-
 tains the reciprocal pivot growth factor for the
 leading INFO columns of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgetf2 - compute an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE CGETF2(M, N, A, LDA, IPIV, INFO)

 COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE CGETF2_64(M, N, A, LDA, IPIV, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE GETF2([M], [N], A, [LDA], IPIV, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE GETF2_64([M], [N], A, [LDA], IPIV, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void cgetf2(int m, int n, complex *a, int lda, int *ipiv,
 int *info);

 void cgetf2_64(long m, long n, complex *a, long lda, long
 *ipiv, long *info);

PURPOSE

 cgetf2 computes an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 2 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the m by n matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The fac-
 torization has been completed, but the factor U is
 exactly singular, and division by zero will occur
 if it is used to solve a system of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgetrf - compute an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE CGETRF(M, N, A, LDA, IPIVOT, INFO)

 COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGETRF_64(M, N, A, LDA, IPIVOT, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRF([M], [N], A, [LDA], IPIVOT, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRF_64([M], [N], A, [LDA], IPIVOT, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgetrf(int m, int n, complex *a, int lda, int *ipivot,
 int *info);

 void cgetrf_64(long m, long n, complex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 cgetrf computes an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgetri - compute the inverse of a matrix using the LU fac-
 torization computed by CGETRF

SYNOPSIS

 SUBROUTINE CGETRI(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGETRI_64(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRI([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRI_64([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgetri(int n, complex *a, int lda, int *ipivot, int
 *info);

 void cgetri_64(long n, complex *a, long lda, long *ipivot,
 long *info);

PURPOSE

 cgetri computes the inverse of a matrix using the LU factor-
 ization computed by CGETRF.

 This method inverts U and then computes inv(A) by solving
 the system inv(A)*L = inv(U) for inv(A).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the factors L and U from the factoriza-
 tion A = P*L*U as computed by CGETRF. On exit, if
 INFO = 0, the inverse of the original matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 WORK (workspace)
 On exit, if INFO=0, then WORK(1) returns the
 optimal LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimal performance LDWORK >= N*NB,
 where NB is the optimal blocksize returned by
 ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero; the
 matrix is singular and its inverse could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgetrs - solve a system of linear equations A * X = B, A**T
 * X = B, or A**H * X = B with a general N-by-N matrix A
 using the LU factorization computed by CGETRF

SYNOPSIS

 SUBROUTINE CGETRS(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGETRS_64(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRS([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRS_64([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgetrs(char transa, int n, int nrhs, complex *a, int
 lda, int *ipivot, complex *b, int ldb, int *info);

 void cgetrs_64(char transa, long n, long nrhs, complex *a,
 long lda, long *ipivot, complex *b, long ldb, long
 *info);

PURPOSE

 cgetrs solves a system of linear equations
 A * X = B, A**T * X = B, or A**H * X = B with a gen-
 eral N-by-N matrix A using the LU factorization computed by
 CGETRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggbak - form the right or left eigenvectors of a complex
 generalized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by CGGBAL

SYNOPSIS

 SUBROUTINE CGGBAK(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
 INFO)

 CHARACTER * 1 JOB, SIDE
 COMPLEX V(LDV,*)
 INTEGER N, ILO, IHI, M, LDV, INFO
 REAL LSCALE(*), RSCALE(*)

 SUBROUTINE CGGBAK_64(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 COMPLEX V(LDV,*)
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 REAL LSCALE(*), RSCALE(*)

 F95 INTERFACE
 SUBROUTINE GGBAK(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX, DIMENSION(:,:) :: V
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE

 SUBROUTINE GGBAK_64(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX, DIMENSION(:,:) :: V
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE

 C INTERFACE

 #include <sunperf.h>

 void cggbak(char job, char side, int n, int ilo, int ihi,
 float *lscale, float *rscale, int m, complex *v,
 int ldv, int *info);
 void cggbak_64(char job, char side, long n, long ilo, long
 ihi, float *lscale, float *rscale, long m, complex
 *v, long ldv, long *info);

PURPOSE

 cggbak forms the right or left eigenvectors of a complex
 generalized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by CGGBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required:
 = 'N': do nothing, return immediately;
 = 'P': do backward transformation for permutation
 only;
 = 'S': do backward transformation for scaling
 only;
 = 'B': do backward transformations for both per-
 mutation and scaling. JOB must be the same as the
 argument JOB supplied to CGGBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by CGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 The integers ILO and IHI determined by CGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 LSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the left side of A and B, as returned
 by CGGBAL.
 RSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the right side of A and B, as returned
 by CGGBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by CTGEVC. On

 exit, V is overwritten by the transformed eigen-
 vectors.

 LDV (input)
 The leading dimension of the matrix V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. Ward, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggbal - balance a pair of general complex matrices (A,B)

SYNOPSIS

 SUBROUTINE CGGBAL(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 WORK, INFO)

 CHARACTER * 1 JOB
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, LDA, LDB, ILO, IHI, INFO
 REAL LSCALE(*), RSCALE(*), WORK(*)

 SUBROUTINE CGGBAL_64(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
 RSCALE, WORK, INFO)

 CHARACTER * 1 JOB
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, LDA, LDB, ILO, IHI, INFO
 REAL LSCALE(*), RSCALE(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGBAL(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, LDA, LDB, ILO, IHI, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE, WORK

 SUBROUTINE GGBAL_64(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, LDA, LDB, ILO, IHI, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE, WORK

 C INTERFACE
 #include <sunperf.h>

 void cggbal(char job, int n, complex *a, int lda, complex

 *b, int ldb, int *ilo, int *ihi, float *lscale,
 float *rscale, int *info);

 void cggbal_64(char job, long n, complex *a, long lda, com-
 plex *b, long ldb, long *ilo, long *ihi, float
 *lscale, float *rscale, long *info);

PURPOSE

 cggbal balances a pair of general complex matrices (A,B).
 This involves, first, permuting A and B by similarity
 transformations to isolate eigenvalues in the first 1 to
 ILO$-$1 and last IHI+1 to N elements on the diagonal; and
 second, applying a diagonal similarity transformation to
 rows and columns ILO to IHI to make the rows and columns as
 close in norm as possible. Both steps are optional.

 Balancing may reduce the 1-norm of the matrices, and improve
 the accuracy of the computed eigenvalues and/or eigenvectors
 in the generalized eigenvalue problem A*x = lambda*B*x.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A and
 B:
 = 'N': none: simply set ILO = 1, IHI = N,
 LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i=1,...,N;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) On entry, the input matrix B. On exit, B is
 overwritten by the balanced matrix. If JOB = 'N',
 B is not referenced.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If JOB = 'N' or
 'S', ILO = 1 and IHI = N.

 IHI (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =

 1,...,ILO-1 or i = IHI+1,...,N.

 LSCALE (input)
 Details of the permutations and scaling factors
 applied to the left side of A and B. If P(j) is
 the index of the row interchanged with row j, and
 D(j) is the scaling factor applied to row j, then
 LSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j)
 for J = ILO,...,IHI = P(j) for J = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (input)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If P(j) is
 the index of the column interchanged with column
 j, and D(j) is the scaling factor applied to
 column j, then RSCALE(j) = P(j) for J =
 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j)
 for J = IHI+1,...,N. The order in which the
 interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. WARD, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgges - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 complex Schur form (S, T), and optionally left and/or right
 Schur vectors (VSL and VSR)

SYNOPSIS

 SUBROUTINE CGGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL SELCTG
 LOGICAL BWORK(*)
 REAL RWORK(*)

 SUBROUTINE CGGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL*8 SELCTG
 LOGICAL*8 BWORK(*)
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, [SELCTG], [N], A, [LDA], B, [LDB],
 SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LWORK],
 [RWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL :: SELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, [SELCTG], [N], A, [LDA], B,
 [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK],
 [LWORK], [RWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL(8) :: SELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void cgges(char jobvsl, char jobvsr, char sort,
 int(*selctg)(complex,complex), int n, complex *a,
 int lda, complex *b, int ldb, int *sdim, complex
 *alpha, complex *beta, complex *vsl, int ldvsl,
 complex *vsr, int ldvsr, int *info);

 void cgges_64(char jobvsl, char jobvsr, char sort,
 long(*selctg)(complex,complex), long n, complex
 *a, long lda, complex *b, long ldb, long *sdim,
 complex *alpha, complex *beta, complex *vsl, long
 ldvsl, complex *vsr, long ldvsr, long *info);

PURPOSE

 cgges computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 complex Schur form (S, T), and optionally left and/or right
 Schur vectors (VSL and VSR). This gives the generalized
 Schur factorization

 (A,B) = ((VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H)

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper triangular matrix S and the upper
 triangular matrix T. The leading columns of VSL and VSR then
 form an unitary basis for the corresponding left and right
 eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the
 driver CGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.
 A pair of matrices (S,T) is in generalized complex Schur
 form if S and T are upper triangular and, in addition, the
 diagonal elements of T are non-negative real numbers.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see SELCTG).

 SELCTG (input)
 SELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', SELCTG is not refer-
 enced. If SORT = 'S', SELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue ALPHA(j)/BETA(j) is selected
 if SELCTG(ALPHA(j),BETA(j)) is true.

 Note that a selected complex eigenvalue may no
 longer satisfy SELCTG(ALPHA(j),BETA(j)) = .TRUE.
 after ordering, since ordering may change the
 value of complex eigenvalues (especially if the
 eigenvalue is ill-conditioned), in this case INFO
 is set to N+2 (See INFO below).

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).
 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 SELCTG is true.

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j), j=1,...,N and
 BETA(j), j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) output by CGGES. The
 BETA(j) will be non-negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the

 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL >=
 1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(8*N)

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. (A,B) are not
 in Schur form, but ALPHA(j) and BETA(j) should be
 correct for j=INFO+1,...,N. > N: =N+1: other
 than QZ iteration failed in CHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy SELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering falied in
 CTGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cggesx - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the complex
 Schur form (S,T),

SYNOPSIS

 SUBROUTINE CGGESX(JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, B,
 LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE, RCONDV,
 WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELCTG
 LOGICAL BWORK(*)
 REAL RCONDE(*), RCONDV(*), RWORK(*)

 SUBROUTINE CGGESX_64(JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
 B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE,
 RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*),
 VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELCTG
 LOGICAL*8 BWORK(*)
 REAL RCONDE(*), RCONDV(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGESX(JOBVSL, JOBVSR, SORT, [SELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], RCONDE,
 RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,

 INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: SELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: RCONDE, RCONDV, RWORK
 SUBROUTINE GGESX_64(JOBVSL, JOBVSR, SORT, [SELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], RCONDE,
 RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: SELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: RCONDE, RCONDV, RWORK

 C INTERFACE
 #include <sunperf.h>

 void cggesx(char jobvsl, char jobvsr, char sort,
 int(*selctg)(complex,complex), char sense, int n,
 complex *a, int lda, complex *b, int ldb, int
 *sdim, complex *alpha, complex *beta, complex
 *vsl, int ldvsl, complex *vsr, int ldvsr, float
 *rconde, float *rcondv, int *info);

 void cggesx_64(char jobvsl, char jobvsr, char sort,
 long(*selctg)(complex,complex), char sense, long
 n, complex *a, long lda, complex *b, long ldb,
 long *sdim, complex *alpha, complex *beta, complex
 *vsl, long ldvsl, complex *vsr, long ldvsr, float
 *rconde, float *rcondv, long *info);

PURPOSE

 cggesx computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the complex
 Schur form (S,T), and, optionally, the left and/or right
 matrices of Schur vectors (VSL and VSR). This gives the
 generalized Schur factorization A,B) = ((VSL) S (VSR)**H,
 (VSL) T (VSR)**H)

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper triangular matrix S and the upper
 triangular matrix T; computes a reciprocal condition number
 for the average of the selected eigenvalues (RCONDE); and
 computes a reciprocal condition number for the right and
 left deflating subspaces corresponding to the selected
 eigenvalues (RCONDV). The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair

 (alpha,beta), as there is a reasonable interpretation for
 beta=0 or for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur
 form if T is upper triangular with non-negative diagonal and
 S is upper triangular.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see SELCTG).

 SELCTG (input)
 SELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', SELCTG is not refer-
 enced. If SORT = 'S', SELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. Note that a selected complex eigenvalue may
 no longer satisfy SELCTG(ALPHA(j),BETA(j)) =
 .TRUE. after ordering, since ordering may change
 the value of complex eigenvalues (especially if
 the eigenvalue is ill-conditioned), in this case
 INFO is set to N+3 see INFO below).

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N' : None are computed;
 = 'E' : Computed for average of selected eigen-
 values only;
 = 'V' : Computed for selected deflating subspaces
 only;
 = 'B' : Computed for both. If SENSE = 'E', 'V',
 or 'B', SORT must equal 'S'.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)

 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 SELCTG is true.

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j) and
 BETA(j),j=1,...,N are the diagonals of the com-
 plex Schur form (S,T). BETA(j) will be non-
 negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).
 BETA (output)
 See description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 RCONDE (output)
 If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2)
 contain the reciprocal condition numbers for the
 average of the selected eigenvalues. Not refer-
 enced if SENSE = 'N' or 'V'.

 RCONDV (output)
 If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2)
 contain the reciprocal condition number for the
 selected deflating subspaces. Not referenced if
 SENSE = 'N' or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 2*N.
 If SENSE = 'E', 'V', or 'B', LWORK >= MAX(2*N,
 2*SDIM*(N-SDIM)).

 RWORK (workspace)
 dimension(8*N) Real workspace.
 IWORK (workspace/output)

 Not referenced if SENSE = 'N'. On exit, if INFO =
 0, IWORK(1) returns the optimal LIWORK.

 LIWORK (input)
 The dimension of the array WORK. LIWORK >= N+2.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHA(j) and BETA(j) should
 be correct for j=INFO+1,...,N. > N: =N+1: other
 than QZ iteration failed in CHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy SELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 CTGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cggev - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors

SYNOPSIS

 SUBROUTINE CGGEV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL RWORK(*)

 SUBROUTINE CGGEV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGEV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE GGEV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void cggev(char jobvl, char jobvr, int n, complex *a, int
 lda, complex *b, int ldb, complex *alpha, complex
 *beta, complex *vl, int ldvl, complex *vr, int
 ldvr, int *info);

 void cggev_64(char jobvl, char jobvr, long n, complex *a,
 long lda, complex *b, long ldb, complex *alpha,
 complex *beta, complex *vl, long ldvl, complex
 *vr, long ldvr, long *info);

PURPOSE

 cggev computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 The right generalized eigenvector v(j) corresponding to the
 generalized eigenvalue lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j).

 The left generalized eigenvector u(j) corresponding to the
 generalized eigenvalues lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On

 exit, B has been overwritten.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VL (input)
 If JOBVL = 'V', the left generalized eigenvectors
 u(j) are stored one after another in the columns
 of VL, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right generalized eigenvectors
 v(j) are stored one after another in the columns
 of VR, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(8*N)

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other then QZ iteration failed in
 SHGEQZ,
 =N+2: error return from STGEVC.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggevx - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors

SYNOPSIS

 SUBROUTINE CGGEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE, RSCALE, ABNRM,
 BBNRM, RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, BWORK, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL BWORK(*)
 REAL ABNRM, BBNRM
 REAL LSCALE(*), RSCALE(*), RCONDE(*), RCONDV(*), RWORK(*)

 SUBROUTINE CGGEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE, RSCALE, ABNRM,
 BBNRM, RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, BWORK, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 BWORK(*)
 REAL ABNRM, BBNRM
 REAL LSCALE(*), RSCALE(*), RCONDE(*), RCONDV(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B, [LDB],
 ALPHA, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE, RSCALE,
 ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [RWORK], [IWORK],
 [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR

 INTEGER :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: BWORK
 REAL :: ABNRM, BBNRM
 REAL, DIMENSION(:) :: LSCALE, RSCALE, RCONDE, RCONDV, RWORK
 SUBROUTINE GGEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B,
 [LDB], ALPHA, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [RWORK],
 [IWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL :: ABNRM, BBNRM
 REAL, DIMENSION(:) :: LSCALE, RSCALE, RCONDE, RCONDV, RWORK

 C INTERFACE
 #include <sunperf.h>

 void cggevx(char balanc, char jobvl, char jobvr, char sense,
 int n, complex *a, int lda, complex *b, int ldb,
 complex *alpha, complex *beta, complex *vl, int
 ldvl, complex *vr, int ldvr, int *ilo, int *ihi,
 float *lscale, float *rscale, float *abnrm, float
 *bbnrm, float *rconde, float *rcondv, int *info);

 void cggevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, complex *a, long lda, complex *b,
 long ldb, complex *alpha, complex *beta, complex
 *vl, long ldvl, complex *vr, long ldvr, long *ilo,
 long *ihi, float *lscale, float *rscale, float
 *abnrm, float *bbnrm, float *rconde, float
 *rcondv, long *info);

PURPOSE

 cggevx computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 Optionally, it also computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal
 condition numbers for the eigenvalues (RCONDE), and recipro-
 cal condition numbers for the right eigenvectors (RCONDV).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.
 The right eigenvector v(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies
 A * v(j) = lambda(j) * B * v(j) .
 The left eigenvector u(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies
 u(j)**H * A = lambda(j) * u(j)**H * B.
 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 BALANC (input)
 Specifies the balance option to be performed:
 = 'N': do not diagonally scale or permute;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale. Computed recipro-
 cal condition numbers will be for the matrices
 after permuting and/or balancing. Permuting does
 not change condition numbers (in exact arith-
 metic), but balancing does.

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': none are computed;
 = 'E': computed for eigenvalues only;
 = 'V': computed for eigenvectors only;
 = 'B': computed for eigenvalues and eigenvectors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then A contains the first part
 of the complex Schur form of the "balanced" ver-
 sions of the input A and B.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then B contains the second part
 of the complex Schur form of the "balanced" ver-
 sions of the input A and B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues.

 Note: the quotient ALPHA(j)/BETA(j)) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio ALPHA/BETA. However, ALPHA will be always
 less than and usually comparable with norm(A) in

 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors
 u(j) are stored one after another in the columns
 of VL, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.
 VR (input)
 If JOBVR = 'V', the right generalized eigenvectors
 v(j) are stored one after another in the columns
 of VR, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO is an integer value such that on exit A(i,j) =
 0 and B(i,j) = 0 if i > j and j = 1,...,ILO-1 or i
 = IHI+1,...,N. If BALANC = 'N' or 'S', ILO = 1
 and IHI = N.

 IHI (output)
 IHI is an integer value such that on exit A(i,j) =
 0 and B(i,j) = 0 if i > j and j = 1,...,ILO-1 or i
 = IHI+1,...,N. If BALANC = 'N' or 'S', ILO = 1
 and IHI = N.

 LSCALE (output)
 Details of the permutations and scaling factors
 applied to the left side of A and B. If PL(j) is
 the index of the row interchanged with row j, and
 DL(j) is the scaling factor applied to row j, then
 LSCALE(j) = PL(j) for j = 1,...,ILO-1 = DL(j)
 for j = ILO,...,IHI = PL(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (output)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If PR(j) is
 the index of the column interchanged with column
 j, and DR(j) is the scaling factor applied to
 column j, then RSCALE(j) = PR(j) for j =
 1,...,ILO-1 = DR(j) for j = ILO,...,IHI = PR(j)
 for j = IHI+1,...,N The order in which the inter-
 changes are made is N to IHI+1, then 1 to ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix A.
 BBNRM (output)

 The one-norm of the balanced matrix B.

 RCONDE (output)
 If SENSE = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. If SENSE =
 'V', RCONDE is not referenced.

 RCONDV (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 the eigenvalues cannot be reordered to compute
 RCONDV(j), RCONDV(j) is set to 0; this can only
 occur when the true value would be very small any-
 way. If SENSE = 'E', RCONDV is not referenced.
 Not referenced if JOB = 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). If SENSE = 'N' or 'E', LWORK >= 2*N.
 If SENSE = 'V' or 'B', LWORK >= 2*N*N+2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(6*N) Real workspace.

 IWORK (workspace)
 dimension(N+2) If SENSE = 'E', IWORK is not refer-
 enced.

 BWORK (workspace)
 dimension(N) If SENSE = 'N', BWORK is not refer-
 enced.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in
 CHGEQZ.
 =N+2: error return from CTGEVC.

FURTHER DETAILS

 Balancing a matrix pair (A,B) includes, first, permuting
 rows and columns to isolate eigenvalues, second, applying
 diagonal similarity transformation to the rows and columns
 to make the rows and columns as close in norm as possible.
 The computed reciprocal condition numbers correspond to the
 balanced matrix. Permuting rows and columns will not change
 the condition numbers (in exact arithmetic) but diagonal

 scaling will. For further explanation of balancing, see
 section 4.11.1.2 of LAPACK Users' Guide.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)

 An approximate error bound for the angle between the i-th
 computed eigenvector VL(i) or VR(i) is given by
 PS * norm(ABNRM, BBNRM) / DIF(i).

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see section 4.11 of LAPACK User's Guide.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cggglm - solve a general Gauss-Markov linear model (GLM)
 problem

SYNOPSIS

 SUBROUTINE CGGGLM(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 COMPLEX A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)
 INTEGER N, M, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE CGGGLM_64(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 COMPLEX A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)
 INTEGER*8 N, M, P, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGGLM([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: D, X, Y, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, M, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE GGGLM_64([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: D, X, Y, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, M, P, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cggglm(int n, int m, int p, complex *a, int lda, com-
 plex *b, int ldb, complex *d, complex *x, complex
 *y, int *info);

 void cggglm_64(long n, long m, long p, complex *a, long lda,
 complex *b, long ldb, complex *d, complex *x, com-
 plex *y, long *info);

PURPOSE

 cggglm solves a general Gauss-Markov linear model (GLM)
 problem:
 minimize || y ||_2 subject to d = A*x + B*y
 x

 where A is an N-by-M matrix, B is an N-by-P matrix, and d is
 a given N-vector. It is assumed that M <= N <= M+P, and

 rank(A) = M and rank(A B) = N.

 Under these assumptions, the constrained equation is always
 consistent, and there is a unique solution x and a minimal
 2-norm solution y, which is obtained using a generalized QR
 factorization of A and B.

 In particular, if matrix B is square nonsingular, then the
 problem GLM is equivalent to the following weighted linear
 least squares problem

 minimize || inv(B)*(d-A*x) ||_2
 x

 where inv(B) denotes the inverse of B.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. 0 <= M <=
 N.

 P (input) The number of columns of the matrix B. P >= N-M.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 D (input/output)
 On entry, D is the left hand side of the GLM equa-
 tion. On exit, D is destroyed.

 X (output)
 On exit, X and Y are the solutions of the GLM
 problem.

 Y (output)
 On exit, X and Y are the solutions of the GLM
 problem.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N+M+P). For optimum performance, LDWORK >=
 M+min(N,P)+max(N,P)*NB, where NB is an upper bound
 for the optimal blocksizes for CGEQRF, CGERQF,
 CUNMQR and CUNMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cgghrd - reduce a pair of complex matrices (A,B) to general-
 ized upper Hessenberg form using unitary transformations,
 where A is a general matrix and B is upper triangular

SYNOPSIS

 SUBROUTINE CGGHRD(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ,
 Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 SUBROUTINE CGGHRD_64(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 LDQ, Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 F95 INTERFACE
 SUBROUTINE GGHRD(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB], Q,
 [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 SUBROUTINE GGHRD_64(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 Q, [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgghrd(char compq, char compz, int n, int ilo, int ihi,
 complex *a, int lda, complex *b, int ldb, complex
 *q, int ldq, complex *z, int ldz, int *info);

 void cgghrd_64(char compq, char compz, long n, long ilo,
 long ihi, complex *a, long lda, complex *b, long
 ldb, complex *q, long ldq, complex *z, long ldz,
 long *info);

PURPOSE

 cgghrd reduces a pair of complex matrices (A,B) to general-
 ized upper Hessenberg form using unitary transformations,
 where A is a general matrix and B is upper triangular: Q' *
 A * Z = H and Q' * B * Z = T, where H is upper Hessenberg, T
 is upper triangular, and Q and Z are unitary, and ' means
 conjugate transpose.

 The unitary matrices Q and Z are determined as products of
 Givens rotations. They may either be formed explicitly, or
 they may be postmultiplied into input matrices Q1 and Z1, so
 that
 1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'

ARGUMENTS

 COMPQ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the unitary matrix Q is returned; = 'V': Q must
 contain a unitary matrix Q1 on entry, and the pro-
 duct Q1*Q is returned.

 COMPZ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the unitary matrix Q is returned; = 'V': Q must
 contain a unitary matrix Q1 on entry, and the pro-
 duct Q1*Q is returned.

 N (input) The order of the matrices A and B. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGGBAL;
 otherwise they should be set to 1 and N respec-
 tively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and
 IHI=0, if N=0.

 IHI (input)
 See description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first
 subdiagonal of A are overwritten with the upper
 Hessenberg matrix H, and the rest is set to zero.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-N upper triangular matrix B.
 On exit, the upper triangular matrix T = Q' B Z.
 The elements below the diagonal are set to zero.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 If COMPQ='N': Q is not referenced.
 If COMPQ='I': on entry, Q need not be set, and on
 exit it contains the unitary matrix Q, where Q' is
 the product of the Givens transformations which
 are applied to A and B on the left. If COMPQ='V':
 on entry, Q must contain a unitary matrix Q1, and
 on exit this is overwritten by Q1*Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= N if
 COMPQ='V' or 'I'; LDQ >= 1 otherwise.

 Z (input/output)
 If COMPZ='N': Z is not referenced.
 If COMPZ='I': on entry, Z need not be set, and on
 exit it contains the unitary matrix Z, which is
 the product of the Givens transformations which
 are applied to A and B on the right. If
 COMPZ='V': on entry, Z must contain a unitary
 matrix Z1, and on exit this is overwritten by
 Z1*Z.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= N if
 COMPZ='V' or 'I'; LDZ >= 1 otherwise.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 This routine reduces A to Hessenberg and B to triangular
 form by an unblocked reduction, as described in
 _Matrix_Computations_, by Golub and van Loan (Johns Hopkins
 Press).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgglse - solve the linear equality-constrained least squares
 (LSE) problem

SYNOPSIS

 SUBROUTINE CGGLSE(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 COMPLEX A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)
 INTEGER M, N, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE CGGLSE_64(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 COMPLEX A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)
 INTEGER*8 M, N, P, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGLSE([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: C, D, X, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE GGLSE_64([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 COMPLEX, DIMENSION(:) :: C, D, X, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, P, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgglse(int m, int n, int p, complex *a, int lda, com-
 plex *b, int ldb, complex *c, complex *d, complex
 *x, int *info);

 void cgglse_64(long m, long n, long p, complex *a, long lda,
 complex *b, long ldb, complex *c, complex *d, com-
 plex *x, long *info);

PURPOSE

 cgglse solves the linear equality-constrained least squares
 (LSE) problem:
 minimize || c - A*x ||_2 subject to B*x = d

 where A is an M-by-N matrix, B is a P-by-N matrix, c is a
 given M-vector, and d is a given P-vector. It is assumed
 that
 P <= N <= M+P, and

 rank(B) = P and rank((A)) = N.
 ((B))

 These conditions ensure that the LSE problem has a unique
 solution, which is obtained using a GRQ factorization of the
 matrices B and A.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. 0 <= P <= N <=
 M+P.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 C (input/output)
 On entry, C contains the right hand side vector
 for the least squares part of the LSE problem. On
 exit, the residual sum of squares for the solution
 is given by the sum of squares of elements N-P+1
 to M of vector C.

 D (input/output)
 On entry, D contains the right hand side vector
 for the constrained equation. On exit, D is des-
 troyed.

 X (output)
 On exit, X is the solution of the LSE problem.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M+N+P). For optimum performance LDWORK >=
 P+min(M,N)+max(M,N)*NB, where NB is an upper bound
 for the optimal blocksizes for CGEQRF, CGERQF,
 CUNMQR and CUNMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggqrf - compute a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B.

SYNOPSIS

 SUBROUTINE CGGQRF(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER N, M, P, LDA, LDB, LWORK, INFO

 SUBROUTINE CGGQRF_64(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER*8 N, M, P, LDA, LDB, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGQRF([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, M, P, LDA, LDB, LWORK, INFO

 SUBROUTINE GGQRF_64([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, M, P, LDA, LDB, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cggqrf(int n, int m, int p, complex *a, int lda, com-
 plex *taua, complex *b, int ldb, complex *taub,
 int *info);

 void cggqrf_64(long n, long m, long p, complex *a, long lda,
 complex *taua, complex *b, long ldb, complex

 *taub, long *info);

PURPOSE

 cggqrf computes a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B:
 A = Q*R, B = Q*T*Z,

 where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
 matrix, and R and T assume one of the forms:

 if N >= M, R = (R11) M , or if N < M, R = (R11 R12
) N,
 (0) N-M N M-N
 M

 where R11 is upper triangular, and

 if N <= P, T = (0 T12) N, or if N > P, T = (T11)
 N-P,
 P-N N (T21) P
 P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR fac-
 torization of A and B implicitly gives the QR factorization
 of inv(B)*A:

 inv(B)*A = Z'*(inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the conjugate transpose of matrix Z.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. M >= 0.

 P (input) The number of columns of the matrix B. P >= 0.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(N,M)-by-M upper trapezoidal matrix R
 (R is upper triangular if N >= M); the elements
 below the diagonal, with the array TAUA, represent
 the unitary matrix Q as a product of min(N,M) ele-
 mentary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q (see Further
 Details).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, if N <=
 P, the upper triangle of the subarray B(1:N,P-
 N+1:P) contains the N-by-N upper triangular matrix
 T; if N > P, the elements on and above the (N-P)-
 th subdiagonal contain the N-by-P upper tra-
 pezoidal matrix T; the remaining elements, with
 the array TAUB, represent the unitary matrix Z as
 a product of elementary reflectors (see Further
 Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Z (see Further
 Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the QR factorization of an
 N-by-M matrix, NB2 is the optimal blocksize for
 the RQ factorization of an N-by-P matrix, and NB3
 is the optimal blocksize for a call of CUNMQR.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(n,m).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit
 in A(i+1:n,i), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine CUNGQR.
 To use Q to update another matrix, use LAPACK subroutine
 CUNMQR.

 The matrix Z is represented as a product of elementary

 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(n,p).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a complex scalar, and v is a complex vector
 with v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is
 stored on exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine CUNGRQ.
 To use Z to update another matrix, use LAPACK subroutine
 CUNMRQ.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggrqf - compute a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B

SYNOPSIS

 SUBROUTINE CGGRQF(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER M, P, N, LDA, LDB, LWORK, INFO

 SUBROUTINE CGGRQF_64(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER*8 M, P, N, LDA, LDB, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGRQF([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, P, N, LDA, LDB, LWORK, INFO

 SUBROUTINE GGRQF_64([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, P, N, LDA, LDB, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cggrqf(int m, int p, int n, complex *a, int lda, com-
 plex *taua, complex *b, int ldb, complex *taub,
 int *info);

 void cggrqf_64(long m, long p, long n, complex *a, long lda,
 complex *taua, complex *b, long ldb, complex

 *taub, long *info);

PURPOSE

 cggrqf computes a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B:
 A = R*Q, B = Z*T*Q,

 where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
 matrix, and R and T assume one of the forms:

 if M <= N, R = (0 R12) M, or if M > N, R = (R11)
 M-N,
 N-M M (R21) N
 N

 where R12 or R21 is upper triangular, and

 if P >= N, T = (T11) N , or if P < N, T = (T11 T12
) P,
 (0) P-N P N-P
 N

 where T11 is upper triangular.

 In particular, if B is square and nonsingular, the GRQ fac-
 torization of A and B implicitly gives the RQ factorization
 of A*inv(B):

 A*inv(B) = (R*inv(T))*Z'

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the conjugate transpose of the matrix Z.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M <=
 N, the upper triangle of the subarray A(1:M,N-
 M+1:N) contains the M-by-M upper triangular matrix
 R; if M > N, the elements on and above the (M-N)-
 th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAUA, represent the unitary matrix Q as
 a product of elementary reflectors (see Further
 Details).
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q (see Further

 Details).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(P,N)-by-N upper trapezoidal matrix T
 (T is upper triangular if P >= N); the elements
 below the diagonal, with the array TAUB, represent
 the unitary matrix Z as a product of elementary
 reflectors (see Further Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Z (see Further
 Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the RQ factorization of an
 M-by-N matrix, NB2 is the optimal blocksize for
 the QR factorization of a P-by-N matrix, and NB3
 is the optimal blocksize for a call of CUNMRQ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO=-i, the i-th argument had an illegal
 value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a complex scalar, and v is a complex vector
 with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is
 stored on exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine CUNGRQ.
 To use Q to update another matrix, use LAPACK subroutine
 CUNMRQ.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(p,n).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit
 in B(i+1:p,i), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine CUNGQR.
 To use Z to update another matrix, use LAPACK subroutine
 CUNMQR.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cggsvd - compute the generalized singular value decomposi-
 tion (GSVD) of an M-by-N complex matrix A and P-by-N complex
 matrix B

SYNOPSIS

 SUBROUTINE CGGSVD(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, WORK2, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 WORK(*)
 INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER IWORK3(*)
 REAL ALPHA(*), BETA(*), WORK2(*)

 SUBROUTINE CGGSVD_64(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, WORK2, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 WORK(*)
 INTEGER*8 M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK3(*)
 REAL ALPHA(*), BETA(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GGSVD(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA], B,
 [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK], [WORK2],
 IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK3
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK2

 SUBROUTINE GGSVD_64(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA],
 B, [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 [WORK2], IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ

 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cggsvd(char jobu, char jobv, char jobq, int m, int n,
 int p, int *k, int *l, complex *a, int lda, com-
 plex *b, int ldb, float *alpha, float *beta, com-
 plex *u, int ldu, complex *v, int ldv, complex *q,
 int ldq, int *iwork3, int *info);

 void cggsvd_64(char jobu, char jobv, char jobq, long m, long
 n, long p, long *k, long *l, complex *a, long lda,
 complex *b, long ldb, float *alpha, float *beta,
 complex *u, long ldu, complex *v, long ldv, com-
 plex *q, long ldq, long *iwork3, long *info);

PURPOSE

 cggsvd computes the generalized singular value decomposition
 (GSVD) of an M-by-N complex matrix A and P-by-N complex
 matrix B:

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R)

 where U, V and Q are unitary matrices, and Z' means the con-
 jugate transpose of Z. Let K+L = the effective numerical
 rank of the matrix (A',B')', then R is a (K+L)-by-(K+L) non-
 singular upper triangular matrix, D1 and D2 are M-by-(K+L)
 and P-by-(K+L) "diagonal" matrices and of the following
 structures, respectively:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12)
 L (0 0 R22)
 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.
 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M
 (0 R) = K (0 R11 R12 R13)
 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 (R11 R12 R13) is stored in A(1:M, N-K-L+1:N), and R33 is
 stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then
 the GSVD of A and B implicitly gives the SVD of A*inv(B):
 A*inv(B) = U*(D1*inv(D2))*V'.
 If (A',B')' has orthnormal columns, then the GSVD of A and
 B is also equal to the CS decomposition of A and B. Further-
 more, the GSVD can be used to derive the solution of the
 eigenvalue problem:
 A'*A x = lambda* B'*B x.
 In some literature, the GSVD of A and B is presented in the
 form
 U'*A*X = (0 D1), V'*B*X = (0 D2)
 where U and V are orthogonal and X is nonsingular, and D1
 and D2 are ``diagonal''. The former GSVD form can be con-
 verted to the latter form by taking the nonsingular matrix X
 as

 X = Q*(I 0)
 (0 inv(R))

ARGUMENTS

 JOBU (input)
 = 'U': Unitary matrix U is computed;
 = 'N': U is not computed.

 JOBV (input)
 = 'V': Unitary matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Unitary matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 L (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular matrix R, or part of R. See
 Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains part of the triangular matrix R if M-K-L <
 0. See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = C,
 BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=
 C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1 and
 ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0

 BETA (output)
 See description of ALPHA.

 U (output)
 If JOBU = 'U', U contains the M-by-M unitary
 matrix U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (output)
 If JOBV = 'V', V contains the P-by-P unitary
 matrix V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (output)
 If JOBQ = 'Q', Q contains the N-by-N unitary
 matrix Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(MAX(3*N,M,P)+N)

 WORK2 (workspace)
 dimension(2*N)

 IWORK3 (output)
 dimension(N) On exit, IWORK3 stores the sorting
 information. More precisely, the following loop
 will sort ALPHA for I = K+1, min(M,K+L) swap
 ALPHA(I) and ALPHA(IWORK3(I)) endfor such that
 ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = 1, the Jacobi-type procedure
 failed to converge. For further details, see sub-
 routine CTGSJA.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cggsvp - compute unitary matrices U, V and Q such that N-
 K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >= 0

SYNOPSIS

 SUBROUTINE CGGSVP(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 TAU(*), WORK(*)
 INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER IWORK(*)
 REAL TOLA, TOLB
 REAL RWORK(*)

 SUBROUTINE CGGSVP_64(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 TAU(*), WORK(*)
 INTEGER*8 M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK(*)
 REAL TOLA, TOLB
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVP(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, [LDB],
 TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], [RWORK],
 [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE GGSVP_64(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B,
 [LDB], TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK],
 [RWORK], [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void cggsvp(char jobu, char jobv, char jobq, int m, int p,
 int n, complex *a, int lda, complex *b, int ldb,
 float tola, float tolb, int *k, int *l, complex
 *u, int ldu, complex *v, int ldv, complex *q, int
 ldq, int *info);

 void cggsvp_64(char jobu, char jobv, char jobq, long m, long
 p, long n, complex *a, long lda, complex *b, long
 ldb, float tola, float tolb, long *k, long *l,
 complex *u, long ldu, complex *v, long ldv, com-
 plex *q, long ldq, long *info);

PURPOSE

 cggsvp computes unitary matrices U, V and Q such that
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 V'*B*Q = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
 K+L = the effective numerical rank of the (M+P)-by-N matrix
 (A',B')'. Z' denotes the conjugate transpose of Z.

 This decomposition is the preprocessing step for computing
 the Generalized Singular Value Decomposition (GSVD), see
 subroutine CGGSVD.

ARGUMENTS

 JOBU (input)
 = 'U': Unitary matrix U is computed;
 = 'N': U is not computed.
 JOBV (input)
 = 'V': Unitary matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Unitary matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular (or trapezoidal) matrix
 described in the Purpose section.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix described in the Pur-
 pose section.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the thresholds to determine the
 effective numerical rank of matrix B and a sub-
 block of A. Generally, they are set to TOLA =
 MAX(M,N)*norm(A)*MACHEPS, TOLB =
 MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and
 TOLB may affect the size of backward errors of the
 decomposition.
 TOLB (input)
 See description of TOLA.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose section. K + L =
 effective numerical rank of (A',B')'.

 L (output)
 See the description of K.

 U (input) If JOBU = 'U', U contains the unitary matrix U.
 If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) If JOBV = 'V', V contains the unitary matrix V.
 If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) If JOBQ = 'Q', Q contains the unitary matrix Q.

 If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 IWORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(2*N)

 TAU (workspace)
 dimension(N)

 WORK (workspace)
 dimension(MAX(3*N,M,P))
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The subroutine uses LAPACK subroutine CGEQPF for the QR fac-
 torization with column pivoting to detect the effective
 numerical rank of the a matrix. It may be replaced by a
 better rank determination strategy.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssco - General sparse solver condition number estimate.

SYNOPSIS

 SUBROUTINE CGSSCO (COND, HANDLE, IER)

 INTEGER IER
 REAL COND
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSCO - Condition number estimate.

PARAMETERS

 COND - REAL
 On exit, an estimate of the condition number of the
 factored matrix. Must be called after the numerical
 factorization subroutine, CGSSFA().

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -700 : Invalid calling sequence - need to call CGSSFA first.
 -710 : Condition number estimate not available (not implemented
 for this HANDLE's matix type).

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssda - Deallocate working storage for the general sparse
 solver.

SYNOPSIS

 SUBROUTINE CGSSDA (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSDA - Deallocate dynamically allocated working storage.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 none

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssfa - General sparse solver numeric factorization.

SYNOPSIS

 SUBROUTINE CGSSFA (NEQNS, COLSTR, ROWIND, VALUES, HANDLE, IER)

 INTEGER NEQNS, COLSTR(*), ROWIND(*), IER
 COMPLEX VALUES(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSFA - Numeric factorization of a sparse matrix.

PARAMETERS

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 coefficient matrix. Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - COMPLEX array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the numeric values of
 the sparse matrix to be factored. Unchanged on
 exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on

 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -300 : Invalid calling sequence - need to call CGSSOR first.
 -301 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssfs - General sparse solver one call interface.

SYNOPSIS

 SUBROUTINE CGSSFS (MTXTYP, PIVOT , NEQNS, COLSTR, ROWIND,
 VALUES, NRHS , RHS , LDRHS , ORDMTHD,
 OUTUNT, MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), NRHS, LDRHS,
 OUTUNT, MSGLVL, IER
 CHARACTER*3 ORDMTHD
 COMPLEX VALUES(*), RHS(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSFS - General sparse solver one call interface.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, Hermitian positive definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, pivot specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER

 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.
 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - COMPLEX array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the non-zero numeric
 values of the sparse matrix to be factored.
 Unchanged on exit.

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(*) - COMPLEX array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see CGSSUO)

 Unchanged on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array of containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.
 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros is less than NEQNS.
 -105 : NEQNS < 1
 -201 : Failure to dynamically allocate memory.
 -301 : Failure to dynamically allocate memory.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssin - Initialize the general sparse solver.

SYNOPSIS

 SUBROUTINE CGSSIN (MTXTYP, PIVOT, NEQNS, COLSTR, ROWIND, OUTUNT,
 MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), OUTUNT, MSGLVL, IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSIN - Initialize the sparse solver and input the matrix
 structure.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, Hermitian positive definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, PIVOT specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros less than NEQNS.
 -105 : NEQNS < 1

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssor - General sparse solver ordering and symbolic
 factorization.

SYNOPSIS

 SUBROUTINE CGSSOR (ORDMTHD, HANDLE, IER)

 CHARACTER*3 ORDMTHD
 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSOR - Orders and symbolically factors a sparse matrix.

PARAMETERS

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see CGSSUO)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -200 : Invalid calling sequence - need to call CGSSIN first.
 -201 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssps - Print general sparse solver statics.

SYNOPSIS

 SUBROUTINE CGSSPS (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSPS - Print solver statistics.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -800 : Invalid calling sequence - need to call CGSSSL first.
 -899 : Printed solver statistics not supported this release.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssrp - Return permutation used by the general sparse
 solver.

SYNOPSIS

 SUBROUTINE CGSSRP (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSRP - Returns the permutation used by the solver for the
 fill-reducing ordering.

PARAMETERS

 PERM(NEQNS) - INTEGER array
 Undefined on entry. PERM(NEQNS) is the permutation
 array used by the sparse solver for the fill-
 reducing ordering. Modified on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -600 : Invalid calling sequence - need to call CGSSOR first.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgsssl - Solve routine for the general sparse solver.

SYNOPSIS

 SUBROUTINE CGSSSL (NRHS, RHS, LDRHS, HANDLE, IER)

 INTEGER NRHS, LDRHS, IER
 COMPLEX RHS(LDRHS,NRHS)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSSL - Triangular solve of a factored sparse matrix.

PARAMETERS

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(LDRHS,*) - COMPLEX array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -400 : Invalid calling sequence - need to call CGSSFA first.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 cgssuo - User supplied permutation for ordering used in the
 general sparse solver.

SYNOPSIS

 SUBROUTINE CGSSUO (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 CGSSUO - User supplied permutation for ordering. Must be
 called after CGSSIN() (sparse solver initialization) and
 before CGSSOR() (sparse solver ordering).

PARAMETERS

 PERM(NEQNS) - INTEGER array
 On entry, PERM(NEQNS) is a permutation array
 supplied by the user for the fill-reducing ordering.
 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -500 : Invalid calling sequence - need to call CGSSIN first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgtcon - estimate the reciprocal of the condition number of
 a complex tridiagonal matrix A using the LU factorization as
 computed by CGTTRF

SYNOPSIS

 SUBROUTINE CGTCON(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM, RCOND,
 WORK, INFO)

 CHARACTER * 1 NORM
 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND

 SUBROUTINE CGTCON_64(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, WORK, INFO)

 CHARACTER * 1 NORM
 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE GTCON(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 SUBROUTINE GTCON_64(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void cgtcon(char norm, int n, complex *low, complex *diag,
 complex *up1, complex *up2, int *ipivot, float
 anorm, float *rcond, int *info);

 void cgtcon_64(char norm, long n, complex *low, complex
 *diag, complex *up1, complex *up2, long *ipivot,
 float anorm, float *rcond, long *info);

PURPOSE

 cgtcon estimates the reciprocal of the condition number of a
 complex tridiagonal matrix A using the LU factorization as
 computed by CGTTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 CGTTRF.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second superdiagonal of
 U.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 cgthr - Gathers specified elements from y into x.

SYNOPSIS

 SUBROUTINE CGTHR(NZ, Y, X, INDX)

 COMPLEX Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE CGTHR_64(NZ, Y, X, INDX)

 COMPLEX Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHR([NZ], Y, X, INDX)

 COMPLEX, DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHR_64([NZ], Y, X, INDX)

 COMPLEX, DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CGTHR - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. Only
 the elements of y whose indices are listed in indx are
 referenced.

 do i = 1, n
 x(i) = y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input)
 Vector in full storage form. Unchanged on exit.

 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.
 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 cgthrz - Gather and zero.

SYNOPSIS

 SUBROUTINE CGTHRZ(NZ, Y, X, INDX)

 COMPLEX Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE CGTHRZ_64(NZ, Y, X, INDX)

 COMPLEX Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHRZ([NZ], Y, X, INDX)

 COMPLEX, DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHRZ_64([NZ], Y, X, INDX)

 COMPLEX, DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CGTHRZ - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. The
 gathered elements of y are set to zero. Only the elements
 of y whose indices are listed in indx are referenced.

 do i = 1, n
 x(i) = y(indx(i))
 y(indx(i)) = 0
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input/output)
 Vector in full storage form. Gathered elements are
 set to zero.
 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgtrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE CGTRFS(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGTRFS_64(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 TRANSA
 COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GTRFS([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GTRFS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],

 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgtrfs(char transa, int n, int nrhs, complex *low, com-
 plex *diag, complex *up, complex *lowf, complex
 *diagf, complex *upf1, complex *upf2, int *ipivot,
 complex *b, int ldb, complex *x, int ldx, float
 *ferr, float *berr, int *info);

 void cgtrfs_64(char transa, long n, long nrhs, complex *low,
 complex *diag, complex *up, complex *lowf, complex
 *diagf, complex *upf1, complex *upf2, long
 *ipivot, complex *b, long ldb, complex *x, long
 ldx, float *ferr, float *berr, long *info);

PURPOSE

 cgtrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.
 DIAG (input)
 The diagonal elements of A.

 UP (input)
 The (n-1) superdiagonal elements of A.

 LOWF (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 CGTTRF.

 DIAGF (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UPF1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UPF2 (input)
 The (n-2) elements of the second superdiagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CGTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgtsv - solve the equation A*X = B,

SYNOPSIS

 SUBROUTINE CGTSV(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 COMPLEX LOW(*), DIAG(*), UP(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE CGTSV_64(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 COMPLEX LOW(*), DIAG(*), UP(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE GTSV([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE GTSV_64([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cgtsv(int n, int nrhs, complex *low, complex *diag,
 complex *up, complex *b, int ldb, int *info);

 void cgtsv_64(long n, long nrhs, complex *low, complex
 *diag, complex *up, complex *b, long ldb, long
 *info);

PURPOSE

 cgtsv solves the equation

 where A is an N-by-N tridiagonal matrix, by Gaussian elimi-
 nation with partial pivoting.

 Note that the equation A'*X = B may be solved by inter-
 changing the order of the arguments DU and DL.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input/output)
 On entry, LOW must contain the (n-1) subdiagonal
 elements of A. On exit, LOW is overwritten by the
 (n-2) elements of the second superdiagonal of the
 upper triangular matrix U from the LU factoriza-
 tion of A, in LOW(1), ..., LOW(n-2).

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A. On exit, DIAG is overwritten by the n diag-
 onal elements of U.

 UP (input/output)
 On entry, UP must contain the (n-1) superdiagonal
 elements of A. On exit, UP is overwritten by the
 (n-1) elements of the first superdiagonal of U.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero, and the
 solution has not been computed. The factorization
 has not been completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgtsvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CGTSVX(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CGTSVX_64(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GTSVX(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GTSVX_64(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cgtsvx(char fact, char transa, int n, int nrhs, complex
 *low, complex *diag, complex *up, complex *lowf,
 complex *diagf, complex *upf1, complex *upf2, int
 *ipivot, complex *b, int ldb, complex *x, int ldx,
 float *rcond, float *ferr, float *berr, int
 *info);

 void cgtsvx_64(char fact, char transa, long n, long nrhs,
 complex *low, complex *diag, complex *up, complex
 *lowf, complex *diagf, complex *upf1, complex
 *upf2, long *ipivot, complex *b, long ldb, complex
 *x, long ldx, float *rcond, float *ferr, float
 *berr, long *info);

PURPOSE

 cgtsvx uses the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B, where A is a tridiagonal matrix of order
 N and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the LU decomposition is used to factor the
 matrix A
 as A = L * U, where L is a product of permutation and
 unit lower
 bidiagonal matrices and U is upper triangular with
 nonzeros in
 only the main diagonal and first two superdiagonals.

 2. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': LOWF, DIAGF,
 UPF1, UPF2, and IPIVOT contain the factored form
 of A; LOW, DIAG, UP, LOWF, DIAGF, UPF1, UPF2 and
 IPIVOT will not be modified. = 'N': The matrix
 will be copied to LOWF, DIAGF, and UPF1 and fac-
 tored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The n diagonal elements of A.

 UP (input)
 The (n-1) superdiagonal elements of A.

 LOWF (input/output)
 If FACT = 'F', then LOWF is an input argument and
 on entry contains the (n-1) multipliers that
 define the matrix L from the LU factorization of A
 as computed by CGTTRF.

 If FACT = 'N', then LOWF is an output argument and
 on exit contains the (n-1) multipliers that define
 the matrix L from the LU factorization of A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 upper triangular matrix U from the LU factoriza-
 tion of A.

 If FACT = 'N', then DIAGF is an output argument

 and on exit contains the n diagonal elements of
 the upper triangular matrix U from the LU factori-
 zation of A.

 UPF1 (input/output)
 If FACT = 'F', then UPF1 is an input argument and
 on entry contains the (n-1) elements of the first
 superdiagonal of U.

 If FACT = 'N', then UPF1 is an output argument and
 on exit contains the (n-1) elements of the first
 superdiagonal of U.

 UPF2 (input/output)
 If FACT = 'F', then UPF2 is an input argument and
 on entry contains the (n-2) elements of the second
 superdiagonal of U.

 If FACT = 'N', then UPF2 is an output argument and
 on exit contains the (n-2) elements of the second
 superdiagonal of U.

 IPIVOT (input/output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 LU factorization of A as computed by CGTTRF.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the LU
 factorization of A; row i of the matrix was inter-
 changed with row IPIVOT(i). IPIVOT(i) will always
 be either i or i+1; IPIVOT(i) = i indicates a row
 interchange was not required.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as

 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has not been completed unless i = N, but the fac-
 tor U is exactly singular, so the solution and
 error bounds could not be computed. RCOND = 0 is
 returned. = N+1: U is nonsingular, but RCOND is
 less than machine precision, meaning that the
 matrix is singular to working precision.
 Nevertheless, the solution and error bounds are
 computed because there are a number of situations
 where the computed solution can be more accurate
 than the value of RCOND would suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgttrf - compute an LU factorization of a complex tridiago-
 nal matrix A using elimination with partial pivoting and row
 interchanges

SYNOPSIS

 SUBROUTINE CGTTRF(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGTTRF_64(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GTTRF([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GTTRF_64([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgttrf(int n, complex *low, complex *diag, complex
 *up1, complex *up2, int *ipivot, int *info);

 void cgttrf_64(long n, complex *low, complex *diag, complex
 *up1, complex *up2, long *ipivot, long *info);

PURPOSE

 cgttrf computes an LU factorization of a complex tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges.

 The factorization has the form
 A = L * U
 where L is a product of permutation and unit lower bidiago-
 nal matrices and U is upper triangular with nonzeros in only
 the main diagonal and first two superdiagonals.

ARGUMENTS

 N (input) The order of the matrix A.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-1) multi-
 pliers that define the matrix L from the LU fac-
 torization of A.

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of the upper triangular matrix U from the
 LU factorization of A.

 UP1 (input/output)
 On entry, UP1 must contain the (n-1) super-
 diagonal elements of A.

 On exit, UP1 is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 UP2 (output)
 On exit, UP2 is overwritten by the (n-2) elements
 of the second super-diagonal of U.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cgttrs - solve one of the systems of equations A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CGTTRS(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CGTTRS_64(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GTTRS([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2, IPIVOT,
 B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GTTRS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2,
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cgttrs(char transa, int n, int nrhs, complex *low, com-
 plex *diag, complex *up1, complex *up2, int
 *ipivot, complex *b, int ldb, int *info);
 void cgttrs_64(char transa, long n, long nrhs, complex *low,
 complex *diag, complex *up1, complex *up2, long
 *ipivot, complex *b, long ldb, long *info);

PURPOSE

 cgttrs solves one of the systems of equations
 A * X = B, A**T * X = B, or A**H * X = B, with a tri-
 diagonal matrix A using the LU factorization computed by
 CGTTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first super-diagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second super-diagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input/output)
 On entry, the matrix of right hand side vectors B.
 On exit, B is overwritten by the solution vectors
 X.

 LDB (input)
 The leading dimension of the array B. LDB >=

 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbev - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE CHBEV(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, NDIAG, LDA, LDZ, INFO
 REAL W(*), WORK2(*)

 SUBROUTINE CHBEV_64(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, LDZ, INFO
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HBEV(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER :: N, NDIAG, LDA, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HBEV_64(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ],
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, NDIAG, LDA, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void chbev(char jobz, char uplo, int n, int ndiag, complex
 *a, int lda, float *w, complex *z, int ldz, int
 *info);
 void chbev_64(char jobz, char uplo, long n, long ndiag, com-
 plex *a, long lda, float *w, complex *z, long ldz,
 long *info);

PURPOSE

 chbev computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows
 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.
 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,

 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE CHBEVD(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHBEVD_64(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBEVD(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ], [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Z
 INTEGER :: N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HBEVD_64(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ],
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Z
 INTEGER(8) :: N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void chbevd(char jobz, char uplo, int n, int kd, complex
 *ab, int ldab, float *w, complex *z, int ldz, int
 *info);

 void chbevd_64(char jobz, char uplo, long n, long kd, com-
 plex *ab, long ldab, float *w, complex *z, long
 ldz, long *info);

PURPOSE

 chbevd computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A. If eigenvec-
 tors are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).
 On exit, AB is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows KD
 and KD+1 of AB, and if UPLO = 'L', the diagonal
 and first subdiagonal of T are returned in the
 first two rows of AB.

 LDAB (input)
 The leading dimension of the array AB. LDAB >= KD

 + 1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N. If JOBZ = 'V' and N
 > 1, LWORK must be at least 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.
 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and N
 > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK must be at least 1. If JOBZ = 'V'
 and N > 1, LIWORK must be at least 3 + 5*N .

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE CHBEVX(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 SUBROUTINE CHBEVX_64(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HBEVX(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [WORK2],
 [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Q, Z
 INTEGER :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HBEVX_64(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [WORK2],
 [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Q, Z
 INTEGER(8) :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void chbevx(char jobz, char range, char uplo, int n, int
 ndiag, complex *a, int lda, complex *q, int ldq,
 float vl, float vu, int il, int iu, float abtol,
 int *nfound, float *w, complex *z, int ldz, int
 *ifail, int *info);

 void chbevx_64(char jobz, char range, char uplo, long n,
 long ndiag, complex *a, long lda, complex *q, long
 ldq, float vl, float vu, long il, long iu, float
 abtol, long *nfound, float *w, complex *z, long
 ldz, long *ifail, long *info);

PURPOSE

 chbevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A. Eigenvalues
 and eigenvectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if

 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 Q (output)
 If JOBZ = 'V', the N-by-N unitary matrix used in
 the reduction to tridiagonal form. If JOBZ = 'N',
 the array Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'V', then LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.
 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal

 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbgst - reduce a complex Hermitian-definite banded general-
 ized eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y,

SYNOPSIS

 SUBROUTINE CHBGST(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
 WORK, RWORK, INFO)

 CHARACTER * 1 VECT, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL RWORK(*)

 SUBROUTINE CHBGST_64(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
 LDX, WORK, RWORK, INFO)

 CHARACTER * 1 VECT, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGST(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], X,
 [LDX], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, X
 INTEGER :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE HBGST_64(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 X, [LDX], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, X
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void chbgst(char vect, char uplo, int n, int ka, int kb,
 complex *ab, int ldab, complex *bb, int ldbb, com-
 plex *x, int ldx, int *info);
 void chbgst_64(char vect, char uplo, long n, long ka, long
 kb, complex *ab, long ldab, complex *bb, long
 ldbb, complex *x, long ldx, long *info);

PURPOSE

 chbgst reduces a complex Hermitian-definite banded general-
 ized eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y, such that C has the same bandwidth as A.

 B must have been previously factorized as S**H*S by CPBSTF,
 using a split Cholesky factorization. A is overwritten by C
 = X**H*A*X, where X = S**(-1)*Q and Q is a unitary matrix
 chosen to preserve the bandwidth of A.

ARGUMENTS

 VECT (input)
 = 'N': do not form the transformation matrix X;
 = 'V': form X.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).
 On exit, the transformed matrix X**H*A*X, stored
 in the same format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input)
 The banded factor S from the split Cholesky fac-
 torization of B, as returned by CPBSTF, stored in
 the first kb+1 rows of the array.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 X (output)
 If VECT = 'V', the n-by-n matrix X. If VECT =
 'N', the array X is not referenced.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbgv - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE CHBGV(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, RWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL W(*), RWORK(*)

 SUBROUTINE CHBGV_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, RWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGV(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGV_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void chbgv(char jobz, char uplo, int n, int ka, int kb, com-
 plex *ab, int ldab, complex *bb, int ldbb, float
 *w, complex *z, int ldz, int *info);
 void chbgv_64(char jobz, char uplo, long n, long ka, long
 kb, complex *ab, long ldab, complex *bb, long
 ldbb, float *w, complex *z, long ldz, long *info);

PURPOSE

 chbgv computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.
 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chbgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE CHBGVD(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHBGVD_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGVD(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK,
 LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGVD_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK],

 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void chbgvd(char jobz, char uplo, int n, int ka, int kb,
 complex *ab, int ldab, complex *bb, int ldbb,
 float *w, complex *z, int ldz, int *info);

 void chbgvd_64(char jobz, char uplo, long n, long ka, long
 kb, complex *ab, long ldab, complex *bb, long
 ldbb, float *w, complex *z, long ldz, long *info);

PURPOSE

 chbgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite. If eigenvectors are desired, it uses a
 divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.
 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)

 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.
 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N.
 If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO=0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=

 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO=0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chbgvx - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE CHBGVX(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB,
 Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 SUBROUTINE CHBGVX_64(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
 IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGVX(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [RWORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Q, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGVX_64(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [RWORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, BB, Q, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void chbgvx(char jobz, char range, char uplo, int n, int ka,
 int kb, complex *ab, int ldab, complex *bb, int
 ldbb, complex *q, int ldq, float vl, float vu, int
 il, int iu, float abstol, int *m, float *w, com-
 plex *z, int ldz, int *ifail, int *info);

 void chbgvx_64(char jobz, char range, char uplo, long n,
 long ka, long kb, complex *ab, long ldab, complex
 *bb, long ldbb, complex *q, long ldq, float vl,
 float vu, long il, long iu, float abstol, long *m,
 float *w, complex *z, long ldz, long *ifail, long
 *info);

PURPOSE

 chbgvx computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite. Eigenvalues and eigenvectors can be
 selected by specifying either all eigenvalues, a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.
 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 Q (output)
 If JOBZ = 'V', the n-by-n matrix used in the
 reduction of A*x = (lambda)*B*x to standard form,
 i.e. C*x = (lambda)*x, and consequently C to tri-
 diagonal form. If JOBZ = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing AP to tri-
 diagonal form.
 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: if INFO = i, and i is:
 <= N: then i eigenvectors failed to converge.
 Their indices are stored in array IFAIL. > N:
 if INFO = N + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chbmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE CHBMV(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER N, NDIAG, LDA, INCX, INCY

 SUBROUTINE CHBMV_64(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HBMV(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCX, INCY

 SUBROUTINE HBMV_64(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void chbmv(char uplo, int n, int ndiag, complex *alpha, com-
 plex *a, int lda, complex *x, int incx, complex
 *beta, complex *y, int incy);
 void chbmv_64(char uplo, long n, long ndiag, complex *alpha,
 complex *a, long lda, complex *x, long incx, com-
 plex *beta, complex *y, long incy);

PURPOSE

 chbmv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian band matrix, with
 ndiag super-diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the band matrix A is
 being supplied as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A
 is being supplied.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry, NDIAG specifies the number of super-
 diagonals of the matrix A. NDIAG must satisfy 0
 .le. NDIAG. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the hermitian
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row (ndiag + 1) of
 the array, the first super-diagonal starting at
 position 2 in row ndiag, and so on. The top left
 ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer the upper triangular part of a hermitian
 band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)

 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the hermitian
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row 1 of the array,
 the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right ndiag by ndiag
 triangle of the array A is not referenced. The
 following program segment will transfer the lower
 triangular part of a hermitian band matrix from
 conventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that the imaginary parts of the diagonal ele-
 ments need not be set and are assumed to be zero.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chbtrd - reduce a complex Hermitian band matrix A to real
 symmetric tridiagonal form T by a unitary similarity
 transformation

SYNOPSIS

 SUBROUTINE CHBTRD(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 COMPLEX AB(LDAB,*), Q(LDQ,*), WORK(*)
 INTEGER N, KD, LDAB, LDQ, INFO
 REAL D(*), E(*)

 SUBROUTINE CHBTRD_64(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 COMPLEX AB(LDAB,*), Q(LDQ,*), WORK(*)
 INTEGER*8 N, KD, LDAB, LDQ, INFO
 REAL D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HBTRD(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Q
 INTEGER :: N, KD, LDAB, LDQ, INFO
 REAL, DIMENSION(:) :: D, E

 SUBROUTINE HBTRD_64(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: AB, Q
 INTEGER(8) :: N, KD, LDAB, LDQ, INFO
 REAL, DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void chbtrd(char vect, char uplo, int n, int kd, complex
 *ab, int ldab, float *d, float *e, complex *q, int
 ldq, int *info);
 void chbtrd_64(char vect, char uplo, long n, long kd, com-
 plex *ab, long ldab, float *d, float *e, complex
 *q, long ldq, long *info);

PURPOSE

 chbtrd reduces a complex Hermitian band matrix A to real
 symmetric tridiagonal form T by a unitary similarity
 transformation: Q**H * A * Q = T.

ARGUMENTS

 VECT (input)
 = 'N': do not form Q;
 = 'V': form Q;
 = 'U': update a matrix X, by forming X*Q.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd). On exit, the diagonal ele-
 ments of AB are overwritten by the diagonal ele-
 ments of the tridiagonal matrix T; if KD > 0, the
 elements on the first superdiagonal (if UPLO =
 'U') or the first subdiagonal (if UPLO = 'L') are
 overwritten by the off-diagonal elements of T; the
 rest of AB is overwritten by values generated dur-
 ing the reduction.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 D (output)
 The diagonal elements of the tridiagonal matrix T.

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) =

 T(i+1,i) if UPLO = 'L'.

 Q (input/output)
 On entry, if VECT = 'U', then Q must contain an
 N-by-N matrix X; if VECT = 'N' or 'V', then Q need
 not be set.

 On exit: if VECT = 'V', Q contains the N-by-N
 unitary matrix Q; if VECT = 'U', Q contains the
 product X*Q; if VECT = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1,
 and LDQ >= N if VECT = 'V' or 'U'.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Modified by Linda Kaufman, Bell Labs.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 checon - estimate the reciprocal of the condition number of
 a complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE CHECON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND

 SUBROUTINE CHECON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE HECON(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 SUBROUTINE HECON_64(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void checon(char uplo, int n, complex *a, int lda, int
 *ipivot, float anorm, float *rcond, int *info);

 void checon_64(char uplo, long n, complex *a, long lda, long
 *ipivot, float anorm, float *rcond, long *info);

PURPOSE

 checon estimates the reciprocal of the condition number of a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cheev - compute all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE CHEEV(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 REAL W(*), WORK2(*)

 SUBROUTINE CHEEV_64(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, WORK2,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEEV(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HEEV_64(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cheev(char jobz, char uplo, int n, complex *a, int lda,

 float *w, int *info);

 void cheev_64(char jobz, char uplo, long n, complex *a, long
 lda, float *w, long *info);

PURPOSE

 cheev computes all eigenvalues and, optionally, eigenvectors
 of a complex Hermitian matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N-1). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cheevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE CHEEVD(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHEEVD_64(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEEVD(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HEEVD_64(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, LRWORK, LIWORK, INFO

 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void cheevd(char jobz, char uplo, int n, complex *a, int
 lda, float *w, int *info);

 void cheevd_64(char jobz, char uplo, long n, complex *a,
 long lda, float *w, long *info);

PURPOSE

 cheevd computes all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N + 1. If JOBZ = 'V'
 and N > 1, LWORK must be at least 2*N + N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and
 N > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK must be at least 1. If JOBZ = 'N' and N >
 1, LIWORK must be at least 1. If JOBZ = 'V' and
 N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cheevr - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian tridiagonal matrix T

SYNOPSIS

 SUBROUTINE CHEEVR(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 SUBROUTINE CHEEVR_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEEVR(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [RWORK], [LRWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HEEVR_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [RWORK], [LRWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void cheevr(char jobz, char range, char uplo, int n, complex
 *a, int lda, float vl, float vu, int il, int iu,
 float abstol, int *m, float *w, complex *z, int
 ldz, int *isuppz, int *info);

 void cheevr_64(char jobz, char range, char uplo, long n,
 complex *a, long lda, float vl, float vu, long il,
 long iu, float abstol, long *m, float *w, complex
 *z, long ldz, long *isuppz, long *info);

PURPOSE

 cheevr computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, CHEEVR calls CSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 CSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by

 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.

 Note 1 : CHEEVR calls CSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. CHEEVR calls SSTEBZ and CSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of CSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in
 environments which do not handle NaNs and infinities in the
 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but furu-
 tre releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (output)
 If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the

 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.
 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,2*N). For optimal efficiency, LWORK >=
 (NB+1)*N, where NB is the max of the blocksize for
 CHETRD and for CUNMTR as returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 (and minimal) LRWORK.

 LRWORK (input)
 The length of the array RWORK. LRWORK >=
 max(1,24*N).

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 (and minimal) LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cheevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE CHEEVX(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 SUBROUTINE CHEEVX_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEEVX(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [LDWORK], [WORK2], [IWORK3],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HEEVX_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [LDWORK], [WORK2], [IWORK3],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cheevx(char jobz, char range, char uplo, int n, complex
 *a, int lda, float vl, float vu, int il, int iu,
 float abtol, int *nfound, float *w, complex *z,
 int ldz, int *ifail, int *info);

 void cheevx_64(char jobz, char range, char uplo, long n,
 complex *a, long lda, float vl, float vu, long il,
 long iu, float abtol, long *nfound, float *w, com-
 plex *z, long ldz, long *ifail, long *info);

PURPOSE

 cheevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to
 tridiagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 On normal exit, the first NFOUND elements contain
 the selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-

 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the max of the blocksize for
 CHETRD and for CUNMTR as returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chegs2 - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form

SYNOPSIS

 SUBROUTINE CHEGS2(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER ITYPE, N, LDA, LDB, INFO

 SUBROUTINE CHEGS2_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 ITYPE, N, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE HEGS2(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, INFO

 SUBROUTINE HEGS2_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void chegs2(int itype, char uplo, int n, complex *a, int
 lda, complex *b, int ldb, int *info);

 void chegs2_64(long itype, char uplo, long n, complex *a,
 long lda, complex *b, long ldb, long *info);

PURPOSE

 chegs2 reduces a complex Hermitian-definite generalized
 eigenproblem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.

 B must have been previously factorized as U'*U or L*L' by
 CPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
 = 2 or 3: compute U*A*U' or L'*A*L.

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored, and how
 B has been factorized. = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by CPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chegst - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form

SYNOPSIS

 SUBROUTINE CHEGST(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER ITYPE, N, LDA, LDB, INFO

 SUBROUTINE CHEGST_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 ITYPE, N, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE HEGST(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, INFO

 SUBROUTINE HEGST_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void chegst(int itype, char uplo, int n, complex *a, int
 lda, complex *b, int ldb, int *info);

 void chegst_64(long itype, char uplo, long n, complex *a,
 long lda, complex *b, long ldb, long *info);

PURPOSE

 chegst reduces a complex Hermitian-definite generalized
 eigenproblem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**H or
 L**H*A*L.

 B must have been previously factorized as U**H*U or L*L**H
 by CPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H);
 = 2 or 3: compute U*A*U**H or L**H*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**H*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**H.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by CPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chegv - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHEGV(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL W(*), WORK2(*)

 SUBROUTINE CHEGV_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEGV(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HEGV_64(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE

 #include <sunperf.h>

 void chegv(int itype, char jobz, char uplo, int n, complex
 *a, int lda, complex *b, int ldb, float *w, int
 *info);

 void chegv_64(long itype, char jobz, char uplo, long n, com-
 plex *a, long lda, complex *b, long ldb, float *w,
 long *info);

PURPOSE

 chegv computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian and B is also
 positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian positive definite matrix
 B. If UPLO = 'U', the leading N-by-N upper tri-

 angular part of B contains the upper triangular
 part of the matrix B. If UPLO = 'L', the leading
 N-by-N lower triangular part of B contains the
 lower triangular part of the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N-1). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(max(1,3*N-2))
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEV returned an error code:
 <= N: if INFO = i, CHEEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chegvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHEGVD(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHEGVD_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEGVD(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W, [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HEGVD_64(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W,
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: WORK

 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK
 C INTERFACE
 #include <sunperf.h>

 void chegvd(int itype, char jobz, char uplo, int n, complex
 *a, int lda, complex *b, int ldb, float *w, int
 *info);

 void chegvd_64(long itype, char jobz, char uplo, long n,
 complex *a, long lda, complex *b, long ldb, float
 *w, long *info);

PURPOSE

 chegvd computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian and B is also positive definite. If
 eigenvectors are desired, it uses a divide and conquer algo-
 rithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-

 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N
 + 1. If JOBZ = 'V' and N > 1, LWORK >= 2*N +
 N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=
 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)

 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >=
 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEVD returned an error code:
 <= N: if INFO = i, CHEEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chegvx - compute selected eigenvalues, and optionally,
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHEGVX(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), B(LDB,*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 SUBROUTINE CHEGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(LDA,*), B(LDB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEGVX(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, Z
 INTEGER :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HEGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, Z
 INTEGER(8) :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void chegvx(int itype, char jobz, char range, char uplo, int
 n, complex *a, int lda, complex *b, int ldb, float
 vl, float vu, int il, int iu, float abstol, int
 *m, float *w, complex *z, int ldz, int *ifail, int
 *info);

 void chegvx_64(long itype, char jobz, char range, char uplo,
 long n, complex *a, long lda, complex *b, long
 ldb, float vl, float vu, long il, long iu, float
 abstol, long *m, float *w, complex *z, long ldz,
 long *ifail, long *info);

PURPOSE

 chegvx computes selected eigenvalues, and optionally, eigen-
 vectors of a complex generalized Hermitian-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian
 and B is also positive definite. Eigenvalues and eigenvec-
 tors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, the lower triangle (if UPLO='L') or the
 upper triangle (if UPLO='U') of A, including the
 diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.
 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.
 Z (output)
 If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace/output)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,2*N-1). For optimal efficiency, LWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEVX returned an error code:
 <= N: if INFO = i, CHEEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chemm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE CHEMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, LDA, LDB, LDC

 SUBROUTINE CHEMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE HEMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, LDA, LDB, LDC

 SUBROUTINE HEMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void chemm(char side, char uplo, int m, int n, complex
 *alpha, complex *a, int lda, complex *b, int ldb,

 complex *beta, complex *c, int ldc);

 void chemm_64(char side, char uplo, long m, long n, complex
 *alpha, complex *a, long lda, complex *b, long
 ldb, complex *beta, complex *c, long ldc);

PURPOSE

 chemm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is an hermitian matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the hermitian
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the hermitian
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the hermitian matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the hermitian matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.
 A (input)
 COMPLEX array of DIMENSION (LDA, ka), where ka
 is m when SIDE = 'L' or 'l' and is n other-
 wise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the hermi-
 tian matrix, such that when UPLO = 'U' or 'u',
 the leading m by m upper triangular part of the
 array A must contain the upper triangular part

 of the hermitian matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the hermi-
 tian matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the hermi-
 tian matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the hermitian matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the hermi-
 tian matrix and the strictly upper triangular
 part of A is not referenced.

 Note that the imaginary parts of the diagonal
 elements need not be set, they are assumed to be
 zero. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 COMPLEX array of DIMENSION (LDB, n). Before
 entry, the leading m by n part of the array B
 must contain the matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB must be at least max(1, m). Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n).

 Before entry, the leading m by n part of the
 array C must contain the matrix C, except when
 beta is zero, in which case C need not be set on
 entry.

 On exit, the array C is overwritten by the m by
 n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, m). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chemv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE CHEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER N, LDA, INCX, INCY

 SUBROUTINE CHEMV_64(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 N, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HEMV(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCX, INCY

 SUBROUTINE HEMV_64(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void chemv(char uplo, int n, complex *alpha, complex *a, int
 lda, complex *x, int incx, complex *beta, complex
 *y, int incy);

 void chemv_64(char uplo, long n, complex *alpha, complex *a,
 long lda, complex *x, long incx, complex *beta,
 complex *y, long incy);

PURPOSE

 chemv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. Before entry with UPLO = 'L'
 or 'l', the leading n by n lower triangular part
 of the array A must contain the lower triangular
 part of the hermitian matrix and the strictly
 upper triangular part of A is not referenced.
 Note that the imaginary parts of the diagonal ele-
 ments need not be set and are assumed to be zero.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cher - perform the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A

SYNOPSIS

 SUBROUTINE CHER(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 COMPLEX X(*), A(LDA,*)
 INTEGER N, INCX, LDA
 REAL ALPHA

 SUBROUTINE CHER_64(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 COMPLEX X(*), A(LDA,*)
 INTEGER*8 N, INCX, LDA
 REAL ALPHA

 F95 INTERFACE
 SUBROUTINE HER(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: X
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, INCX, LDA
 REAL :: ALPHA

 SUBROUTINE HER_64(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: X
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, INCX, LDA
 REAL :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void cher(char uplo, int n, float alpha, complex *x, int
 incx, complex *a, int lda);

 void cher_64(char uplo, long n, float alpha, complex *x,

 long incx, complex *a, long lda);

PURPOSE

 cher performs the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A where alpha is a real scalar, x is
 an n element vector and A is an n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the hermitian matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix. Note that the ima-
 ginary parts of the diagonal elements need not be
 set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA (input)

 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cher2 - perform the hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

SYNOPSIS

 SUBROUTINE CHER2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER N, INCX, INCY, LDA

 SUBROUTINE CHER2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE HER2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, INCX, INCY, LDA

 SUBROUTINE HER2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void cher2(char uplo, int n, complex *alpha, complex *x, int
 incx, complex *y, int incy, complex *a, int lda);

 void cher2_64(char uplo, long n, complex *alpha, complex *x,

 long incx, complex *y, long incy, complex *a, long
 lda);

PURPOSE

 cher2 performs the hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A where
 alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n

 lower triangular part of the array A must contain
 the lower triangular part of the hermitian matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix. Note that the ima-
 ginary parts of the diagonal elements need not be
 set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cher2k - perform one of the Hermitian rank 2k operations C
 := alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') +
 beta*C or C := alpha*conjg(A')*B + conjg(alpha)*conjg(
 B')*A + beta*C

SYNOPSIS

 SUBROUTINE CHER2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER N, K, LDA, LDB, LDC
 REAL BETA

 SUBROUTINE CHER2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDB, LDC
 REAL BETA

 F95 INTERFACE
 SUBROUTINE HER2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: N, K, LDA, LDB, LDC
 REAL :: BETA

 SUBROUTINE HER2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: N, K, LDA, LDB, LDC
 REAL :: BETA

 C INTERFACE
 #include <sunperf.h>
 void cher2k(char uplo, char transa, int n, int k, complex*
 alpha, complex *a, int lda, complex *b, int ldb,
 float beta, complex *c, int ldc);

 void cher2k_64(char uplo, char transa, long n, long k, com-
 plex *alpha, complex *a, long lda, complex *b,
 long ldb, float beta, complex *c, long ldc);

PURPOSE

 cher2k performs one of the Hermitian rank 2k operations C :=
 alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') + beta*C
 or C := alpha*conjg(A')*B + conjg(alpha)*conjg(B')*A +
 beta*C where alpha and beta are scalars with beta real,
 C is an n by n Hermitian matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*conjg(B')
 + conjg(alpha)*B*conjg(A') + beta*C.

 TRANSA = 'C' or 'c' C := alpha*conjg(A')*B
 + conjg(alpha)*conjg(B')*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'C' or 'c', K
 specifies the number of rows of the matrices A
 and B. K must be at least zero. Unchanged on

 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 COMPLEX array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 Hermitian matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 Hermitian matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 Note that the imaginary parts of the diagonal ele-
 ments need not be set, they are assumed to be

 zero, and on exit they are set to zero.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cherfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE CHERFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CHERFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HERFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HERFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cherfs(char uplo, int n, int nrhs, complex *a, int lda,
 complex *af, int ldaf, int *ipivot, complex *b,
 int ldb, complex *x, int ldx, float *ferr, float
 *berr, int *info);

 void cherfs_64(char uplo, long n, long nrhs, complex *a,
 long lda, complex *af, long ldaf, long *ipivot,
 complex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 cherfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**H or A = L*D*L**H as computed by
 CHETRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-

 ture of D as determined by CHETRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CHETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cherk - perform one of the Hermitian rank k operations C
 := alpha*A*conjg(A') + beta*C or C := alpha*conjg(A')*A
 + beta*C

SYNOPSIS

 SUBROUTINE CHERK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX A(LDA,*), C(LDC,*)
 INTEGER N, K, LDA, LDC
 REAL ALPHA, BETA

 SUBROUTINE CHERK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX A(LDA,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDC
 REAL ALPHA, BETA

 F95 INTERFACE
 SUBROUTINE HERK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: N, K, LDA, LDC
 REAL :: ALPHA, BETA

 SUBROUTINE HERK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: N, K, LDA, LDC
 REAL :: ALPHA, BETA

 C INTERFACE
 #include <sunperf.h>

 void cherk(char uplo, char transa, int n, int k, float
 alpha, complex *a, int lda, float beta, complex
 *c, int ldc);

 void cherk_64(char uplo, char transa, long n, long k, float
 alpha, complex *a, long lda, float beta, complex
 *c, long ldc);

PURPOSE

 cherk performs one of the Hermitian rank k operations C :=
 alpha*A*conjg(A') + beta*C or C := alpha*conjg(A')*A +
 beta*C where alpha and beta are real scalars, C is an n
 by n Hermitian matrix and A is an n by k matrix in the
 first case and a k by n matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*conjg(A') +
 beta*C.

 TRANSA = 'C' or 'c' C := alpha*conjg(A')*A +
 beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'C' or 'c', K
 specifies the number of rows of the matrix A. K
 must be at least zero. Unchanged on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or

 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 Hermitian matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 Hermitian matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 Note that the imaginary parts of the diagonal ele-
 ments need not be set, they are assumed to be
 zero, and on exit they are set to zero.
 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chesv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CHESV(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHESV_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK,
 LDWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HESV(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HESV_64(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chesv(char uplo, int n, int nrhs, complex *a, int lda,
 int *ipivot, complex *b, int ldb, int *info);
 void chesv_64(char uplo, long n, long nrhs, complex *a, long
 lda, long *ipivot, complex *b, long ldb, long
 *info);

PURPOSE

 chesv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**H or A =
 L*D*L**H as computed by CHETRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CHETRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were

 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 1, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CHETRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chesvx - use the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B,

SYNOPSIS

 SUBROUTINE CHESVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CHESVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HESVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HESVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void chesvx(char fact, char uplo, int n, int nrhs, complex
 *a, int lda, complex *af, int ldaf, int *ipivot,
 complex *b, int ldb, complex *x, int ldx, float
 *rcond, float *ferr, float *berr, int *info);

 void chesvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, long lda, complex *af, long ldaf, long
 *ipivot, complex *b, long ldb, complex *x, long
 ldx, float *rcond, float *ferr, float *berr, long
 *info);

PURPOSE

 chesvx uses the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B, where A is an N-by-N Hermitian matrix and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is Hermitian and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.
 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution

 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**H or A = L*D*L**H as
 computed by CHETRF.

 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**H or A =
 L*D*L**H.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CHETRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns

 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CHETRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 2*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CHETRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chetf2 - compute the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE CHETF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE CHETF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE HETF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE HETF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void chetf2(char uplo, int n, complex *a, int lda, int
 *ipiv, int *info);

 void chetf2_64(char uplo, long n, complex *a, long lda, long

 *ipiv, long *info);

PURPOSE

 chetf2 computes the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the conjugate transpose
 of U, and D is Hermitian and block diagonal with 1-by-1 and
 2-by-2 diagonal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by
 J. Lewis, Boeing Computer Services Company
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chetrd - reduce a complex Hermitian matrix A to real sym-
 metric tridiagonal form T by a unitary similarity transfor-
 mation

SYNOPSIS

 SUBROUTINE CHETRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, LDA, LWORK, INFO
 REAL D(*), E(*)

 SUBROUTINE CHETRD_64(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, LDA, LWORK, INFO
 REAL D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HETRD(UPLO, [N], A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E

 SUBROUTINE HETRD_64(UPLO, [N], A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void chetrd(char uplo, int n, complex *a, int lda, float *d,
 float *e, complex *tau, int *info);

 void chetrd_64(char uplo, long n, complex *a, long lda,
 float *d, float *e, complex *tau, long *info);

PURPOSE

 chetrd reduces a complex Hermitian matrix A to real sym-
 metric tridiagonal form T by a unitary similarity transfor-
 mation: Q**H * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the unitary matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.
 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal

 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. For
 optimum performance LWORK >= N*NB, where NB is the
 optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit
 in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit
 in A(i+2:n,i), and tau in TAU(i).

 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chetrf - compute the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE CHETRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHETRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRF(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRF_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chetrf(char uplo, int n, complex *a, int lda, int

 *ipivot, int *info);

 void chetrf_64(char uplo, long n, complex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 chetrf computes the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method.
 The form of the factorization is

 A = U*D*U**H or A = L*D*L**H

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chetri - compute the inverse of a complex Hermitian indefin-
 ite matrix A using the factorization A = U*D*U**H or A =
 L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE CHETRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHETRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRI(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRI_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chetri(char uplo, int n, complex *a, int lda, int
 *ipivot, int *info);

 void chetri_64(char uplo, long n, complex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 chetri computes the inverse of a complex Hermitian indefin-
 ite matrix A using the factorization A = U*D*U**H or A =
 L*D*L**H computed by CHETRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CHETRF.

 On exit, if INFO = 0, the (Hermitian) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chetrs - solve a system of linear equations A*X = B with a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE CHETRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHETRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRS(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRS_64(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chetrs(char uplo, int n, int nrhs, complex *a, int lda,
 int *ipivot, complex *b, int ldb, int *info);

 void chetrs_64(char uplo, long n, long nrhs, complex *a,

 long lda, long *ipivot, complex *b, long ldb, long
 *info);

PURPOSE

 chetrs solves a system of linear equations A*X = B with a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chgeqz - implement a single-shift version of the QZ method
 for finding the generalized eigenvalues
 w(i)=ALPHA(i)/BETA(i) of the equation det(A-w(i) B) = 0
 If JOB='S', then the pair (A,B) is simultaneously reduced to
 Schur form (i.e., A and B are both upper triangular) by
 applying one unitary tranformation (usually called Q) on the
 left and another (usually called Z) on the right

SYNOPSIS

 SUBROUTINE CHGEQZ(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), Q(LDQ,*),
 Z(LDZ,*), WORK(*)
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL RWORK(*)

 SUBROUTINE CHGEQZ_64(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), Q(LDQ,*),
 Z(LDZ,*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE HGEQZ(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 ALPHA, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE HGEQZ_64(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B,
 [LDB], ALPHA, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [RWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: RWORK
 C INTERFACE
 #include <sunperf.h>

 void chgeqz(char job, char compq, char compz, int n, int
 ilo, int ihi, complex *a, int lda, complex *b, int
 ldb, complex *alpha, complex *beta, complex *q,
 int ldq, complex *z, int ldz, int *info);

 void chgeqz_64(char job, char compq, char compz, long n,
 long ilo, long ihi, complex *a, long lda, complex
 *b, long ldb, complex *alpha, complex *beta, com-
 plex *q, long ldq, complex *z, long ldz, long
 *info);

PURPOSE

 chgeqz implements a single-shift version of the QZ method
 for finding the generalized eigenvalues
 w(i)=ALPHA(i)/BETA(i) of the equation A are then
 ALPHA(1),...,ALPHA(N), and of B are BETA(1),...,BETA(N).

 If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the uni-
 tary transformations used to reduce (A,B) are accumulated
 into the arrays Q and Z s.t.:
 (in) A(in) Z(in)* = Q(out) A(out) Z(out)*

 Ref: C.B. Moler & G.W. Stewart, "An Algorithm for General-
 ized Matrixigenvalue Problems", SIAM J. Numer. Anal.,
 10(1973),p. 241--256.

ARGUMENTS

 JOB (input)
 = 'E': compute only ALPHA and BETA. A and B will
 not necessarily be put into generalized Schur
 form. = 'S': put A and B into generalized Schur
 form, as well as computing ALPHA and BETA.

 COMPQ (input)
 = 'N': do not modify Q.
 = 'V': multiply the array Q on the right by the
 conjugate transpose of the unitary tranformation
 that is applied to the left side of A and B to
 reduce them to Schur form. = 'I': like COMPQ='V',
 except that Q will be initialized to the identity
 first.

 COMPZ (input)
 = 'N': do not modify Z.
 = 'V': multiply the array Z on the right by the
 unitary tranformation that is applied to the right
 side of A and B to reduce them to Schur form. =
 'I': like COMPZ='V', except that Z will be ini-
 tialized to the identity first.

 N (input) The order of the matrices A, B, Q, and Z. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 A (input) On entry, the N-by-N upper Hessenberg matrix A.
 Elements below the subdiagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to upper triangular form.
 If JOB='E', then on exit A will have been des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >= max(
 1, N).

 B (input) On entry, the N-by-N upper triangular matrix B.
 Elements below the diagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to upper triangular form.
 If JOB='E', then on exit B will have been des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >= max(
 1, N).

 ALPHA (output)
 The diagonal elements of A when the pair (A,B) has
 been reduced to Schur form. ALPHA(i)/BETA(i)
 i=1,...,N are the generalized eigenvalues.
 BETA (output)
 The diagonal elements of B when the pair (A,B) has
 been reduced to Schur form. ALPHA(i)/BETA(i)
 i=1,...,N are the generalized eigenvalues. A and
 B are normalized so that BETA(1),...,BETA(N) are
 non-negative real numbers.

 Q (input/output)
 If COMPQ='N', then Q will not be referenced. If
 COMPQ='V' or 'I', then the conjugate transpose of
 the unitary transformations which are applied to A
 and B on the left will be applied to the array Q
 on the right.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If COMPQ='V' or 'I', then LDQ >= N.

 Z (input/output)
 If COMPZ='N', then Z will not be referenced. If
 COMPZ='V' or 'I', then the unitary transformations
 which are applied to A and B on the right will be
 applied to the array Z on the right.

 LDZ (input)

 The leading dimension of the array Z. LDZ >= 1.
 If COMPZ='V' or 'I', then LDZ >= N.

 WORK (workspace)
 On exit, if INFO >= 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1,...,N: the QZ iteration did not converge.
 (A,B) is not in Schur form, but ALPHA(i) and
 BETA(i), i=INFO+1,...,N should be correct. =
 N+1,...,2*N: the shift calculation failed. (A,B)
 is not in Schur form, but ALPHA(i) and BETA(i),
 i=INFO-N+1,...,N should be correct. > 2*N:
 various "impossible" errors.

FURTHER DETAILS

 We assume that complex ABS works as long as its value is
 less than overflow.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpcon - estimate the reciprocal of the condition number of
 a complex Hermitian packed matrix A using the factorization
 A = U*D*U**H or A = L*D*L**H computed by CHPTRF

SYNOPSIS

 SUBROUTINE CHPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND

 SUBROUTINE CHPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE HPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 SUBROUTINE HPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>

 void chpcon(char uplo, int n, complex *a, int *ipivot, float

 anorm, float *rcond, int *info);

 void chpcon_64(char uplo, long n, complex *a, long *ipivot,
 float anorm, float *rcond, long *info);

PURPOSE

 chpcon estimates the reciprocal of the condition number of a
 complex Hermitian packed matrix A using the factorization A
 = U*D*U**H or A = L*D*L**H computed by CHPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpev - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix in packed storage

SYNOPSIS

 SUBROUTINE CHPEV(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, INFO
 REAL W(*), WORK2(*)

 SUBROUTINE CHPEV_64(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, INFO
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPEV(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HPEV_64(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void chpev(char jobz, char uplo, int n, complex *a, float
 *w, complex *z, int ldz, int *info);

 void chpev_64(char jobz, char uplo, long n, complex *a,
 float *w, complex *z, long ldz, long *info);

PURPOSE

 chpev computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix in packed storage.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).
 WORK (workspace)
 dimension(MAX(1,2*N-1))

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-

 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage

SYNOPSIS

 SUBROUTINE CHPEVD(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AP(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHPEVD_64(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPEVD(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: AP, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HPEVD_64(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: AP, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void chpevd(char jobz, char uplo, int n, complex *ap, float
 *w, complex *z, int ldz, int *info);

 void chpevd_64(char jobz, char uplo, long n, complex *ap,
 float *w, complex *z, long ldz, long *info);

PURPOSE

 chpevd computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, AP is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.
 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N. If JOBZ = 'V' and N
 > 1, LWORK must be at least 2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and N
 > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.
 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK must be at least 1. If JOBZ = 'V'
 and N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian matrix A in packed
 storage

SYNOPSIS

 SUBROUTINE CHPEVX(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 SUBROUTINE CHPEVX_64(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPEVX(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [WORK2], [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HPEVX_64(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [WORK2], [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: A, WORK

 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK2
 C INTERFACE
 #include <sunperf.h>

 void chpevx(char jobz, char range, char uplo, int n, complex
 *a, float vl, float vu, int il, int iu, float
 abtol, int *nfound, float *w, complex *z, int ldz,
 int *ifail, int *info);

 void chpevx_64(char jobz, char range, char uplo, long n,
 complex *a, float vl, float vu, long il, long iu,
 float abtol, long *nfound, float *w, complex *z,
 long ldz, long *ifail, long *info);

PURPOSE

 chpevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage.
 Eigenvalues/vectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 VL (input)

 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 If INFO = 0, the selected eigenvalues in ascending
 order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in

 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)
 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpgst - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form, using packed storage

SYNOPSIS

 SUBROUTINE CHPGST(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), BP(*)
 INTEGER ITYPE, N, INFO

 SUBROUTINE CHPGST_64(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), BP(*)
 INTEGER*8 ITYPE, N, INFO

 F95 INTERFACE
 SUBROUTINE HPGST(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, BP
 INTEGER :: ITYPE, N, INFO

 SUBROUTINE HPGST_64(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, BP
 INTEGER(8) :: ITYPE, N, INFO

 C INTERFACE
 #include <sunperf.h>

 void chpgst(int itype, char uplo, int n, complex *ap, com-
 plex *bp, int *info);

 void chpgst_64(long itype, char uplo, long n, complex *ap,
 complex *bp, long *info);

PURPOSE

 chpgst reduces a complex Hermitian-definite generalized
 eigenproblem to standard form, using packed storage.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**H or
 L**H*A*L.

 B must have been previously factorized as U**H*U or L*L**H
 by CPPTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H);
 = 2 or 3: compute U*A*U**H or L**H*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**H*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**H.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 BP (input)
 The triangular factor from the Cholesky factoriza-
 tion of B, stored in the same format as A, as
 returned by CPPTRF.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpgv - compute all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHPGV(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK, WORK2,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(*), B(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDZ, INFO
 REAL W(*), WORK2(*)

 SUBROUTINE CHPGV_64(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX A(*), B(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDZ, INFO
 REAL W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPGV(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: A, B, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 SUBROUTINE HPGV_64(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: A, B, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK2

 C INTERFACE

 #include <sunperf.h>

 void chpgv(int itype, char jobz, char uplo, int n, complex
 *a, complex *b, float *w, complex *z, int ldz, int
 *info);

 void chpgv_64(long itype, char jobz, char uplo, long n, com-
 plex *a, complex *b, float *w, complex *z, long
 ldz, long *info);

PURPOSE

 chpgv computes all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian, stored in packed format, and B is
 also positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of A are destroyed.

 B (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array B as follows: if UPLO = 'U', B(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', B(i +
 (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 W (output)

 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(MAX(1,2*N-1))

 WORK2 (workspace)
 dimension(MAX(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEV returned an error code:
 <= N: if INFO = i, CHPEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not convergeto zero; > N: if INFO =
 N + i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chpgvd - compute all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHPGVD(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL W(*), RWORK(*)

 SUBROUTINE CHPGVD_64(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPGVD(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: AP, BP, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HPGVD_64(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ],
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX, DIMENSION(:) :: AP, BP, WORK

 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, RWORK
 C INTERFACE
 #include <sunperf.h>

 void chpgvd(int itype, char jobz, char uplo, int n, complex
 *ap, complex *bp, float *w, complex *z, int ldz,
 int *info);

 void chpgvd_64(long itype, char jobz, char uplo, long n,
 complex *ap, complex *bp, float *w, complex *z,
 long ldz, long *info);

PURPOSE

 chpgvd computes all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian, stored in packed format, and B is
 also positive definite.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N.
 If JOBZ = 'V' and N > 1, LWORK >= 2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=
 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,

 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEVD returned an error code:
 <= N: if INFO = i, CHPEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not convergeto zero; > N: if INFO =
 N + i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chpgvx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE CHPGVX(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 SUBROUTINE CHPGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPGVX(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, [LDZ], [WORK], [RWORK], [IWORK], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: AP, BP, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 SUBROUTINE HPGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU,

 IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [RWORK], [IWORK], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX, DIMENSION(:) :: AP, BP, WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void chpgvx(int itype, char jobz, char range, char uplo, int
 n, complex *ap, complex *bp, float vl, float vu,
 int il, int iu, float abstol, int *m, float *w,
 complex *z, int ldz, int *ifail, int *info);

 void chpgvx_64(long itype, char jobz, char range, char uplo,
 long n, complex *ap, complex *bp, float vl, float
 vu, long il, long iu, float abstol, long *m, float
 *w, complex *z, long ldz, long *ifail, long
 *info);

PURPOSE

 chpgvx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex generalized Hermitian-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian,
 stored in packed format, and B is also positive definite.
 Eigenvalues and eigenvectors can be selected by specifying
 either a range of values or a range of indices for the
 desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.
 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)

 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.
 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing AP to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if
 ITYPE = 3, Z**H*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(2*N)

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEVX returned an error code:
 <= N: if INFO = i, CHPEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE CHPMV(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(*), X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CHPMV_64(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(*), X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HPMV(UPLO, [N], ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: A, X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE HPMV_64(UPLO, [N], ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: A, X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void chpmv(char uplo, int n, complex *alpha, complex *a,
 complex *x, int incx, complex *beta, complex *y,
 int incy);

 void chpmv_64(char uplo, long n, complex *alpha, complex *a,
 complex *x, long incx, complex *beta, complex *y,

 long incy);

PURPOSE

 chpmv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian matrix, supplied
 in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array A
 must contain the lower triangular part of the her-
 mitian matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that the imaginary parts
 of the diagonal elements need not be set and are
 assumed to be zero. Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on

 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpr - perform the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A

SYNOPSIS

 SUBROUTINE CHPR(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 COMPLEX X(*), A(*)
 INTEGER N, INCX
 REAL ALPHA

 SUBROUTINE CHPR_64(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 COMPLEX X(*), A(*)
 INTEGER*8 N, INCX
 REAL ALPHA

 F95 INTERFACE
 SUBROUTINE HPR(UPLO, [N], ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: X, A
 INTEGER :: N, INCX
 REAL :: ALPHA

 SUBROUTINE HPR_64(UPLO, [N], ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: X, A
 INTEGER(8) :: N, INCX
 REAL :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void chpr(char uplo, int n, float alpha, complex *x, int
 incx, complex *a);

 void chpr_64(char uplo, long n, float alpha, complex *x,
 long incx, complex *a);

PURPOSE

 chpr performs the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A where alpha is a real scalar, x is
 an n element vector and A is an n by n hermitian matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain
 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix. Note that
 the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on
 exit they are set to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chpr2 - perform the Hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

SYNOPSIS

 SUBROUTINE CHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CHPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 COMPLEX ALPHA
 COMPLEX X(*), Y(*), A(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HPR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y, A
 INTEGER :: N, INCX, INCY

 SUBROUTINE HPR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: X, Y, A
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void chpr2(char uplo, int n, complex *alpha, complex *x, int
 incx, complex *y, int incy, complex *a);

 void chpr2_64(char uplo, long n, complex *alpha, complex *x,
 long incx, complex *y, long incy, complex *a);

PURPOSE

 chpr2 performs the Hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A where
 alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.
 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain

 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix. Note that
 the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on
 exit they are set to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE CHPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CHPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPRFS(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HPRFS_64(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void chprfs(char uplo, int n, int nrhs, complex *a, complex
 *af, int *ipivot, complex *b, int ldb, complex *x,
 int ldx, float *ferr, float *berr, int *info);

 void chprfs_64(char uplo, long n, long nrhs, complex *a,
 complex *af, long *ipivot, complex *b, long ldb,
 complex *x, long ldx, float *ferr, float *berr,
 long *info);

PURPOSE

 chprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**H or A = L*D*L**H as computed by
 CHPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CHPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chpsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CHPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPSV(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPSV_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chpsv(char uplo, int n, int nrhs, complex *a, int
 *ipivot, complex *b, int ldb, int *info);

 void chpsv_64(char uplo, long n, long nrhs, complex *a, long
 *ipivot, complex *b, long ldb, long *info);

PURPOSE

 chpsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is Hermitian and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**H or A = L*D*L**H as com-
 puted by CHPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CHPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chpsvx - use the diagonal pivoting factorization A =
 U*D*U**H or A = L*D*L**H to compute the solution to a com-
 plex system of linear equations A * X = B, where A is an N-
 by-N Hermitian matrix stored in packed format and X and B
 are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE CHPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CHPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPSVX(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB],

 X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void chpsvx(char fact, char uplo, int n, int nrhs, complex
 *a, complex *af, int *ipivot, complex *b, int ldb,
 complex *x, int ldx, float *rcond, float *ferr,
 float *berr, int *info);

 void chpsvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, complex *af, long *ipivot, complex *b,
 long ldb, complex *x, long ldx, float *rcond,
 float *ferr, float *berr, long *info);

PURPOSE

 chpsvx uses the diagonal pivoting factorization A = U*D*U**H
 or A = L*D*L**H to compute the solution to a complex system
 of linear equations A * X = B, where A is an N-by-N Hermi-
 tian matrix stored in packed format and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is Hermitian and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.
 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed

 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. AF and
 IPIVOT will not be modified. = 'N': The matrix A
 will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**H or A = L*D*L**H as
 computed by CHPTRF, stored as a packed triangular
 matrix in the same storage format as A.
 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**H or A =
 L*D*L**H as computed by CHPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CHPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument

 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CHPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would

 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:
 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chptrd - reduce a complex Hermitian matrix A stored in
 packed form to real symmetric tridiagonal form T by a uni-
 tary similarity transformation

SYNOPSIS

 SUBROUTINE CHPTRD(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), TAU(*)
 INTEGER N, INFO
 REAL D(*), E(*)

 SUBROUTINE CHPTRD_64(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), TAU(*)
 INTEGER*8 N, INFO
 REAL D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HPTRD(UPLO, [N], AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, TAU
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: D, E

 SUBROUTINE HPTRD_64(UPLO, [N], AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, TAU
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void chptrd(char uplo, int n, complex *ap, float *d, float
 *e, complex *tau, int *info);

 void chptrd_64(char uplo, long n, complex *ap, float *d,
 float *e, complex *tau, long *info);

PURPOSE

 chptrd reduces a complex Hermitian matrix A stored in packed
 form to real symmetric tridiagonal form T by a unitary simi-
 larity transformation: Q**H * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit,
 if UPLO = 'U', the diagonal and first superdiago-
 nal of A are overwritten by the corresponding ele-
 ments of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the unitary matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit
 in AP, overwriting A(1:i-1,i+1), and tau is stored in
 TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit
 in AP, overwriting A(i+2:n,i), and tau is stored in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chptrf - compute the factorization of a complex Hermitian
 packed matrix A using the Bunch-Kaufman diagonal pivoting
 method

SYNOPSIS

 SUBROUTINE CHPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chptrf(char uplo, int n, complex *a, int *ipivot, int
 *info);

 void chptrf_64(char uplo, long n, complex *a, long *ipivot,
 long *info);

PURPOSE

 chptrf computes the factorization of a complex Hermitian
 packed matrix A using the Bunch-Kaufman diagonal pivoting
 method:

 A = U*D*U**H or A = L*D*L**H

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chptri - compute the inverse of a complex Hermitian indefin-
 ite matrix A in packed storage using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHPTRF

SYNOPSIS

 SUBROUTINE CHPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRI(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRI_64(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chptri(char uplo, int n, complex *a, int *ipivot, int
 *info);

 void chptri_64(char uplo, long n, complex *a, long *ipivot,
 long *info);

PURPOSE

 chptri computes the inverse of a complex Hermitian
 indefinite matrix A in packed storage using the factoriza-
 tion A = U*D*U**H or A = L*D*L**H computed by CHPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CHPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (Hermitian) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chptrs - solve a system of linear equations A*X = B with a
 complex Hermitian matrix A stored in packed format using the
 factorization A = U*D*U**H or A = L*D*L**H computed by
 CHPTRF

SYNOPSIS

 SUBROUTINE CHPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CHPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRS(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRS_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void chptrs(char uplo, int n, int nrhs, complex *a, int
 *ipivot, complex *b, int ldb, int *info);

 void chptrs_64(char uplo, long n, long nrhs, complex *a,
 long *ipivot, complex *b, long ldb, long *info);

PURPOSE

 chptrs solves a system of linear equations A*X = B with a
 complex Hermitian matrix A stored in packed format using the
 factorization A = U*D*U**H or A = L*D*L**H computed by
 CHPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 chsein - use inverse iteration to find specified right
 and/or left eigenvectors of a complex upper Hessenberg
 matrix H

SYNOPSIS

 SUBROUTINE CHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER IFAILL(*), IFAILR(*)
 LOGICAL SELECT(*)
 REAL RWORK(*)

 SUBROUTINE CHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER*8 IFAILL(*), IFAILR(*)
 LOGICAL*8 SELECT(*)
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], W, VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: H, VL, VR
 INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER, DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], W,
 VL, [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], IFAILL, IFAILR,
 [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: H, VL, VR
 INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: RWORK
 C INTERFACE
 #include <sunperf.h>

 void chsein(char side, char eigsrc, char initv, int *select,
 int n, complex *h, int ldh, complex *w, complex
 *vl, int ldvl, complex *vr, int ldvr, int mm, int
 *m, int *ifaill, int *ifailr, int *info);

 void chsein_64(char side, char eigsrc, char initv, long
 *select, long n, complex *h, long ldh, complex *w,
 complex *vl, long ldvl, complex *vr, long ldvr,
 long mm, long *m, long *ifaill, long *ifailr, long
 *info);

PURPOSE

 chsein uses inverse iteration to find specified right and/or
 left eigenvectors of a complex upper Hessenberg matrix H.

 The right eigenvector x and the left eigenvector y of the
 matrix H corresponding to an eigenvalue w are defined by:

 H * x = w * x, y**h * H = w * y**h

 where y**h denotes the conjugate transpose of the vector y.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 EIGSRC (input)
 Specifies the source of eigenvalues supplied in W:
 = 'Q': the eigenvalues were found using CHSEQR;
 thus, if H has zero subdiagonal elements, and so
 is block-triangular, then the j-th eigenvalue can
 be assumed to be an eigenvalue of the block con-
 taining the j-th row/column. This property allows
 CHSEIN to perform inverse iteration on just one
 diagonal block. = 'N': no assumptions are made on
 the correspondence between eigenvalues and diago-
 nal blocks. In this case, CHSEIN must always per-
 form inverse iteration using the whole matrix H.

 INITV (input)
 = 'N': no initial vectors are supplied;
 = 'U': user-supplied initial vectors are stored in
 the arrays VL and/or VR.

 SELECT (input)

 Specifies the eigenvectors to be computed. To
 select the eigenvector corresponding to the eigen-
 value W(j), SELECT(j) must be set to .TRUE..

 N (input) The order of the matrix H. N >= 0.

 H (input) The upper Hessenberg matrix H.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 W (input/output)
 On entry, the eigenvalues of H. On exit, the real
 parts of W may have been altered since close
 eigenvalues are perturbed slightly in searching
 for independent eigenvectors.

 VL (input/output)
 On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL
 must contain starting vectors for the inverse
 iteration for the left eigenvectors; the starting
 vector for each eigenvector must be in the same
 column in which the eigenvector will be stored.
 On exit, if SIDE = 'L' or 'B', the left eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VL, in the same order as
 their eigenvalues. If SIDE = 'R', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR
 must contain starting vectors for the inverse
 iteration for the right eigenvectors; the starting
 vector for each eigenvector must be in the same
 column in which the eigenvector will be stored.
 On exit, if SIDE = 'R' or 'B', the right eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. If SIDE = 'L', VR is not
 referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 required to store the eigenvectors (= the number
 of .TRUE. elements in SELECT).

 WORK (workspace)
 dimension(N*N)

 RWORK (workspace)
 dimension(N)

 IFAILL (output)
 If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the
 left eigenvector in the i-th column of VL
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILL(i) = 0 if the eigenvector con-
 verged satisfactorily. If SIDE = 'R', IFAILL is
 not referenced.

 IFAILR (output)
 If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the
 right eigenvector in the i-th column of VR
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILR(i) = 0 if the eigenvector con-
 verged satisfactorily. If SIDE = 'L', IFAILR is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, i is the number of eigenvectors
 which failed to converge; see IFAILL and IFAILR
 for further details.

FURTHER DETAILS

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x|+|y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 chseqr - compute the eigenvalues of a complex upper Hessen-
 berg matrix H, and, optionally, the matrices T and Z from
 the Schur decomposition H = Z T Z**H, where T is an upper
 triangular matrix (the Schur form), and Z is the unitary
 matrix of Schur vectors

SYNOPSIS

 SUBROUTINE CHSEQR(JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK,
 LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 COMPLEX H(LDH,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO

 SUBROUTINE CHSEQR_64(JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 COMPLEX H(LDH,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDH, LDZ, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE HSEQR(JOB, COMPZ, N, ILO, IHI, H, [LDH], W, Z, [LDZ],
 [WORK], LWORK, [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: H, Z
 INTEGER :: N, ILO, IHI, LDH, LDZ, LWORK, INFO

 SUBROUTINE HSEQR_64(JOB, COMPZ, N, ILO, IHI, H, [LDH], W, Z, [LDZ],
 [WORK], LWORK, [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: H, Z
 INTEGER(8) :: N, ILO, IHI, LDH, LDZ, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void chseqr (char, char, int, int, int, complex*, int, com-

 plex*, complex*, int, int*);

 void chseqr_64 (char, char, long, long, long, complex*,
 long, complex*, complex*, long, long*);

PURPOSE

 chseqr computes the eigenvalues of a complex upper Hessen-
 berg matrix H, and, optionally, the matrices T and Z from
 the Schur decomposition H = Z T Z**H, where T is an upper
 triangular matrix (the Schur form), and Z is the unitary
 matrix of Schur vectors.

 Optionally Z may be postmultiplied into an input unitary
 matrix Q, so that this routine can give the Schur factoriza-
 tion of a matrix A which has been reduced to the Hessenberg
 form H by the unitary matrix Q: A = Q*H*Q**H =
 (QZ)*T*(QZ)**H.

ARGUMENTS

 JOB (input)
 = 'E': compute eigenvalues only;
 = 'S': compute eigenvalues and the Schur form T.

 COMPZ (input)
 = 'N': no Schur vectors are computed;
 = 'I': Z is initialized to the unit matrix and the
 matrix Z of Schur vectors of H is returned; = 'V':
 Z must contain an unitary matrix Q on entry, and
 the product Q*Z is returned.

 N (input) The order of the matrix H. N >= 0.

 ILO (input)
 It is assumed that H is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGEBAL,
 and then passed to CGEHRD when the matrix output
 by CGEBAL is reduced to Hessenberg form. Otherwise
 ILO and IHI should be set to 1 and N respectively.
 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0,
 if N=0.

 IHI (input)
 See the description of ILO.

 H (input/output)
 On entry, the upper Hessenberg matrix H. On exit,
 if JOB = 'S', H contains the upper triangular
 matrix T from the Schur decomposition (the Schur
 form). If JOB = 'E', the contents of H are
 unspecified on exit.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 W (output)
 The computed eigenvalues. If JOB = 'S', the eigen-

 values are stored in the same order as on the
 diagonal of the Schur form returned in H, with
 W(i) = H(i,i).

 Z (input) If COMPZ = 'N': Z is not referenced.
 If COMPZ = 'I': on entry, Z need not be set, and
 on exit, Z contains the unitary matrix Z of the
 Schur vectors of H. If COMPZ = 'V': on entry Z
 must contain an N-by-N matrix Q, which is assumed
 to be equal to the unit matrix except for the sub-
 matrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
 Normally Q is the unitary matrix generated by
 CUNGHR after the call to CGEHRD which formed the
 Hessenberg matrix H.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 other-
 wise.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (output)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value
 > 0: if INFO = i, CHSEQR failed to compute all
 the eigenvalues in a total of 30*(IHI-ILO+1)
 iterations; elements 1:ilo-1 and i+1:n of W con-
 tain those eigenvalues which have been success-
 fully computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cjadmm - Jagged diagonal matrix-matrix multiply (modified
 Ellpack)

SYNOPSIS

 SUBROUTINE CJADMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CJADMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE JADMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a
 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.
 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1) = 0, it is assumed by convention that
 IPERM(I) = I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cjadrp - right permutation of a jagged diagonal matrix

SYNOPSIS

 SUBROUTINE CJADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, WORK, LWORK)
 INTEGER TRANSP, M, K, MAXNZ, LWORK
 INTEGER INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 COMPLEX VAL(*)

 SUBROUTINE CJADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, WORK, LWORK)
 INTEGER*8 TRANSP, M, K, MAXNZ, LWORK
 INTEGER*8 INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 COMPLEX VAL(*)

 F95 INTERFACE

 SUBROUTINE JADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER TRANSP, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: INDX, PNTR, IPERM
 COMPLEX, DIMENSION(:) :: VAL

 SUBROUTINE JADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER*8 TRANSP, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: INDX, PNTR, IPERM
 COMPLEX, DIMENSION(:) :: VAL

DESCRIPTION

 A <- A P
 A <- A P'
 (' indicates matrix transpose)

 where permutation P is represented by an integer vector IPERM,
 such that IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.

 NOTE: In order to get a symetrically permuted jagged diagonal
 matrix P A P', one can explicitly permute the columns P A by

 calling

 SJADRP(0, M, M, VAL, INDX, PNTR, MAXNZ, IPERM, WORK, LWORK)

 where parameters VAL, INDX, PNTR, MAXNZ, IPERM are the representation
 of A in the jagged diagonal format. The operation makes sense if
 the original matrix A is square.

ARGUMENTS

 TRANSP Indicates how to operate with the permutation matrix
 0 : operate with matrix
 1 : operate with transpose matrix

 M Number of rows in matrix A

 K Number of columns in matrix A

 VAL() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 entries of A. VAL can be viewed as a column major
 ordering of a row permutation of the Ellpack
 representation of A, where the Ellpack representation
 is permuted so that the rows are non-increasing in
 the number of nonzero entries. Values added for
 padding in Ellpack are not included in the
 Jagged-Diagonal format.

 INDX() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 the column indices of the corresponding entries in
 VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length K such that I = IPERM(I').
 Array IPERM represents a permutation P, such that
 IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.
 For example, if
 | 0 0 1 |
 P =| 1 0 0 |
 | 0 1 0 |
 then IPERM = (3, 1, 2).

 WORK() scratch array of length LWORK. LWORK should be at
 least K.

 LWORK length of WORK array

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of the
 WORK array, returns this value as the first entry of
 the WORK array, and no error message related to LWORK
 is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cjadsm - Jagged-diagonal format triangular solve

SYNOPSIS

 SUBROUTINE CJADSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CJADSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE JADSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a

 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1)=0, it's assumed by convention that
 IPERM(I)=I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least 2*M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=2*M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy
 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the JAD representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the JAD representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 clarz - applie a complex elementary reflector H to a complex
 M-by-N matrix C, from either the left or the right

SYNOPSIS

 SUBROUTINE CLARZ(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 COMPLEX TAU
 COMPLEX V(*), C(LDC,*), WORK(*)
 INTEGER M, N, L, INCV, LDC

 SUBROUTINE CLARZ_64(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 COMPLEX TAU
 COMPLEX V(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, L, INCV, LDC

 F95 INTERFACE
 SUBROUTINE LARZ(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX :: TAU
 COMPLEX, DIMENSION(:) :: V, WORK
 COMPLEX, DIMENSION(:,:) :: C
 INTEGER :: M, N, L, INCV, LDC

 SUBROUTINE LARZ_64(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX :: TAU
 COMPLEX, DIMENSION(:) :: V, WORK
 COMPLEX, DIMENSION(:,:) :: C
 INTEGER(8) :: M, N, L, INCV, LDC

 C INTERFACE
 #include <sunperf.h>

 void clarz(char side, int m, int n, int l, complex *v, int
 incv, complex *tau, complex *c, int ldc);

 void clarz_64(char side, long m, long n, long l, complex *v,
 long incv, complex *tau, complex *c, long ldc);

PURPOSE

 clarz applies a complex elementary reflector H to a complex
 M-by-N matrix C, from either the left or the right. H is
 represented in the form

 H = I - tau * v * v'

 where tau is a complex scalar and v is a complex vector.

 If tau = 0, then H is taken to be the unit matrix.

 To apply H' (the conjugate transpose of H), supply
 conjg(tau) instead tau.

 H is a product of k elementary reflectors as returned by
 CTZRZF.

ARGUMENTS

 SIDE (input)
 = 'L': form H * C
 = 'R': form C * H

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 L (input) The number of entries of the vector V containing
 the meaningful part of the Householder vectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 V (input) The vector v in the representation of H as
 returned by CTZRZF. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0.

 TAU (input)
 The value tau in the representation of H.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by the matrix H * C if SIDE = 'L', or
 C * H if SIDE = 'R'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' or (M) if SIDE = 'R'

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 clarzb - applie a complex block reflector H or its transpose
 H**H to a complex distributed M-by-N C from the left or the
 right

SYNOPSIS

 SUBROUTINE CLARZB(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T,
 LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 COMPLEX V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)
 INTEGER M, N, K, L, LDV, LDT, LDC, LDWORK

 SUBROUTINE CLARZB_64(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV,
 T, LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 COMPLEX V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)
 INTEGER*8 M, N, K, L, LDV, LDT, LDC, LDWORK

 F95 INTERFACE
 SUBROUTINE LARZB(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V, [LDV],
 T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 COMPLEX, DIMENSION(:,:) :: V, T, C, WORK
 INTEGER :: M, N, K, L, LDV, LDT, LDC, LDWORK

 SUBROUTINE LARZB_64(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V,
 [LDV], T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 COMPLEX, DIMENSION(:,:) :: V, T, C, WORK
 INTEGER(8) :: M, N, K, L, LDV, LDT, LDC, LDWORK

 C INTERFACE
 #include <sunperf.h>

 void clarzb(char side, char trans, char direct, char storev,
 int m, int n, int k, int l, complex *v, int ldv,
 complex *t, int ldt, complex *c, int ldc, int

 ldwork);

 void clarzb_64(char side, char trans, char direct, char
 storev, long m, long n, long k, long l, complex
 *v, long ldv, complex *t, long ldt, complex *c,
 long ldc, long ldwork);

PURPOSE

 clarzb applies a complex block reflector H or its transpose
 H**H to a complex distributed M-by-N C from the left or the
 right.

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 SIDE (input)
 = 'L': apply H or H' from the Left
 = 'R': apply H or H' from the Right

 TRANS (input)
 = 'N': apply H (No transpose)
 = 'C': apply H' (Conjugate transpose)

 DIRECT (input)
 Indicates how H is formed from a product of ele-
 mentary reflectors = 'F': H = H(1) H(2) . . . H(k)
 (Forward, not supported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Indicates how the vectors which define the elemen-
 tary reflectors are stored:
 = 'C': Columnwise (not sup-
 ported yet)
 = 'R': Rowwise

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 K (input) The order of the matrix T (= the number of elemen-
 tary reflectors whose product defines the block
 reflector).

 L (input) The number of columns of the matrix V containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.
 V (input) If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= L; if STOREV = 'R', LDV >= K.

 T (input) The triangular K-by-K matrix T in the representa-
 tion of the block reflector.

 LDT (input)

 The leading dimension of the array T. LDT >= K.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by H*C or H'*C or C*H or C*H'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 dimension(MAX(M,N),K)

 LDWORK (input)
 The leading dimension of the array WORK. If SIDE
 = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK
 >= max(1,M).

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 clarzt - form the triangular factor T of a complex block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors

SYNOPSIS

 SUBROUTINE CLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 COMPLEX V(LDV,*), TAU(*), T(LDT,*)
 INTEGER N, K, LDV, LDT

 SUBROUTINE CLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 COMPLEX V(LDV,*), TAU(*), T(LDT,*)
 INTEGER*8 N, K, LDV, LDT

 F95 INTERFACE
 SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 COMPLEX, DIMENSION(:) :: TAU
 COMPLEX, DIMENSION(:,:) :: V, T
 INTEGER :: N, K, LDV, LDT

 SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 COMPLEX, DIMENSION(:) :: TAU
 COMPLEX, DIMENSION(:,:) :: V, T
 INTEGER(8) :: N, K, LDV, LDT

 C INTERFACE
 #include <sunperf.h>

 void clarzt(char direct, char storev, int n, int k, complex
 *v, int ldv, complex *tau, complex *t, int ldt);

 void clarzt_64(char direct, char storev, long n, long k,
 complex *v, long ldv, complex *tau, complex *t,

 long ldt);

PURPOSE

 clarzt forms the triangular factor T of a complex block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper
 triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower
 triangular.

 If STOREV = 'C', the vector which defines the elementary
 reflector H(i) is stored in the i-th column of the array V,
 and

 H = I - V * T * V'

 If STOREV = 'R', the vector which defines the elementary
 reflector H(i) is stored in the i-th row of the array V, and

 H = I - V' * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 DIRECT (input)
 Specifies the order in which the elementary
 reflectors are multiplied to form the block
 reflector:
 = 'F': H = H(1) H(2) . . . H(k) (Forward, not sup-
 ported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Specifies how the vectors which define the elemen-
 tary reflectors are stored (see also Further
 Details):
 = 'R': rowwise

 N (input) The order of the block reflector H. N >= 0.

 K (input) The order of the triangular factor T (= the number
 of elementary reflectors). K >= 1.

 V (input) (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R'
 The matrix V. See further details.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i).

 T (input) The k by k triangular factor T of the block

 reflector. If DIRECT = 'F', T is upper triangu-
 lar; if DIRECT = 'B', T is lower triangular. The
 rest of the array is not used.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The shape of the matrix V and the storage of the vectors
 which define the H(i) is best illustrated by the following
 example with n = 5 and k = 3. The elements equal to 1 are
 not stored; the corresponding array elements are modified
 but restored on exit. The rest of the array is not used.

 DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and
 STOREV = 'R':

 ______V_____
 (v1 v2 v3) /
 (v1 v2 v3) (v1 v1 v1 v1 v1 1
)
 V = (v1 v2 v3) (v2 v2 v2 v2 v2 .
 . . 1)
 (v1 v2 v3) (v3 v3 v3 v3 v3 .
 . 1)
 (v1 v2 v3)
 . . .
 1 . .
 1 .
 1

 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and
 STOREV = 'R':

 ______V_____
 1 /
 . 1 (1 v1 v1 v1 v1 v1)
 . . 1 (. 1 . . . v2 v2
 v2 v2 v2)
 . . . (. . 1 . . v3 v3
 v3 v3 v3)
 . . .
 (v1 v2 v3)
 V = (v1 v2 v3)
 (v1 v2 v3)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 clatzm - routine is deprecated and has been replaced by rou-
 tine CUNMRZ

SYNOPSIS

 SUBROUTINE CLATZM(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 COMPLEX TAU
 COMPLEX V(*), C1(LDC,*), C2(LDC,*), WORK(*)
 INTEGER M, N, INCV, LDC

 SUBROUTINE CLATZM_64(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 COMPLEX TAU
 COMPLEX V(*), C1(LDC,*), C2(LDC,*), WORK(*)
 INTEGER*8 M, N, INCV, LDC

 F95 INTERFACE
 SUBROUTINE LATZM(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX :: TAU
 COMPLEX, DIMENSION(:) :: V, WORK
 COMPLEX, DIMENSION(:,:) :: C1, C2
 INTEGER :: M, N, INCV, LDC

 SUBROUTINE LATZM_64(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC],
 [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX :: TAU
 COMPLEX, DIMENSION(:) :: V, WORK
 COMPLEX, DIMENSION(:,:) :: C1, C2
 INTEGER(8) :: M, N, INCV, LDC

 C INTERFACE
 #include <sunperf.h>

 void clatzm(char side, int m, int n, complex *v, int incv,
 complex *tau, complex *c1, complex *c2, int ldc);

 void clatzm_64(char side, long m, long n, complex *v, long
 incv, complex *tau, complex *c1, complex *c2, long
 ldc);

PURPOSE

 clatzm routine is deprecated and has been replaced by rou-
 tine CUNMRZ.

 CLATZM applies a Householder matrix generated by CTZRQF to a
 matrix.

 Let P = I - tau*u*u', u = (1),
 (v)
 where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector
 if SIDE = 'R'.

 If SIDE equals 'L', let
 C = [C1] 1
 [C2] m-1
 n
 Then C is overwritten by P*C.

 If SIDE equals 'R', let
 C = [C1, C2] m
 1 n-1
 Then C is overwritten by C*P.

ARGUMENTS

 SIDE (input)
 = 'L': form P * C
 = 'R': form C * P

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 V (input) (1 + (M-1)*abs(INCV)) if SIDE = 'L' (1 + (N-
 1)*abs(INCV)) if SIDE = 'R' The vector v in the
 representation of P. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0

 TAU (input)
 The value tau in the representation of P.

 C1 (input/output)
 (LDC,N) if SIDE = 'L' (M,1) if SIDE = 'R' On
 entry, the n-vector C1 if SIDE = 'L', or the m-
 vector C1 if SIDE = 'R'.

 On exit, the first row of P*C if SIDE = 'L', or
 the first column of C*P if SIDE = 'R'.

 C2 (input/output)
 (LDC, N) if SIDE = 'L' (LDC, N-1) if SIDE = 'R'
 On entry, the (m - 1) x n matrix C2 if SIDE = 'L',
 or the m x (n - 1) matrix C2 if SIDE = 'R'.

 On exit, rows 2:m of P*C if SIDE = 'L', or columns
 2:m of C*P if SIDE = 'R'.

 LDC (input)
 The leading dimension of the arrays C1 and C2.
 LDC >= max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cosqb - synthesize a Fourier sequence from its representa-
 tion in terms of a cosine series with odd wave numbers. The
 COSQ operations are unnormalized inverses of themselves, so
 a call to COSQF followed by a call to COSQB will multiply
 the input sequence by 4 * N.

SYNOPSIS

 SUBROUTINE COSQB(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE COSQB_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQB(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE COSQB_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cosqb(int n, float *x, float *wsave);

 void cosqb_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave cosine synthesis of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15) that has been initialized by COSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cosqf - compute the Fourier coefficients in a cosine series
 representation with only odd wave numbers. The COSQ opera-
 tions are unnormalized inverses of themselves, so a call to
 COSQF followed by a call to COSQB will multiply the input
 sequence by 4 * N.

SYNOPSIS

 SUBROUTINE COSQF(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE COSQF_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQF(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE COSQF_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cosqf(int n, float *x, float *wsave);

 void cosqf_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave cosine transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15) that has been initialized by COSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cosqi - initialize the array WSAVE, which is used in both
 COSQF and COSQB.

SYNOPSIS

 SUBROUTINE COSQI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE COSQI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE COSQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cosqi(int n, float *wsave);

 void cosqi_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. COSQI needs to be called only once to

 initialize WSAVE before calling COSQF and/or COSQB
 if N and WSAVE remain unchanged between these
 calls. Thus, subsequent transforms or inverse
 transforms of same size can be obtained faster
 than the first since they do not require initiali-
 zation of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 cost - compute the discrete Fourier cosine transform of an
 even sequence. The COST transforms are unnormalized
 inverses of themselves, so a call of COST followed by
 another call of COST will multiply the input sequence by 2 *
 (N-1).

SYNOPSIS

 SUBROUTINE COST(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE COST_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COST(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE COST_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void cost(int n, float *x, float *wsave);

 void cost_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N - 1 is a
 product of small primes. N >= 2.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the cosine
 transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15), initialized by COSTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 costi - initialize the array WSAVE, which is used in COST.

SYNOPSIS

 SUBROUTINE COSTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE COSTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE COSTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void costi(int n, float *wsave);

 void costi_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N - 1 is a product
 of small primes. N >= 2.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. COSTI is called once to initialize WSAVE
 before calling COST and need not be called again

 between calls to COST if N and WSAVE remain
 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpbcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite band
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPBTRF

SYNOPSIS

 SUBROUTINE CPBCON(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NDIAG, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 SUBROUTINE CPBCON_64(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBCON(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE PBCON_64(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO

 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void cpbcon(char uplo, int n, int ndiag, complex *a, int
 lda, float anorm, float *rcond, int *info);

 void cpbcon_64(char uplo, long n, long ndiag, complex *a,
 long lda, float anorm, float *rcond, long *info);

PURPOSE

 cpbcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite band
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 band matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpbequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite band matrix A and reduce
 its condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE CPBEQU(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, NDIAG, LDA, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 SUBROUTINE CPBEQU_64(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, NDIAG, LDA, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 F95 INTERFACE
 SUBROUTINE PBEQU(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 SUBROUTINE PBEQU_64(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 C INTERFACE

 #include <sunperf.h>

 void cpbequ(char uplo, int n, int ndiag, complex *a, int
 lda, float *scale, float *scond, float *amax, int
 *info);

 void cpbequ_64(char uplo, long n, long ndiag, complex *a,
 long lda, float *scale, float *scond, float *amax,
 long *info);

PURPOSE

 cpbequ computes row and column scalings intended to equili-
 brate a Hermitian positive definite band matrix A and reduce
 its condition number (with respect to the two-norm). S con-
 tains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so
 that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular of A is stored;
 = 'L': Lower triangular of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The upper or lower triangle of the Hermitian band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.
 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE CPBRFS(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPBRFS_64(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBRFS(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PBRFS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE

 #include <sunperf.h>

 void cpbrfs(char uplo, int n, int ndiag, int nrhs, complex
 *a, int lda, complex *af, int ldaf, complex *b,
 int ldb, complex *x, int ldx, float *ferr, float
 *berr, int *info);

 void cpbrfs_64(char uplo, long n, long ndiag, long nrhs,
 complex *a, long lda, complex *af, long ldaf, com-
 plex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 cpbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A as computed by CPBTRF, in the same
 storage format as A (see A).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CPBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpbstf - compute a split Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE CPBSTF(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AB(LDAB,*)
 INTEGER N, KD, LDAB, INFO

 SUBROUTINE CPBSTF_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AB(LDAB,*)
 INTEGER*8 N, KD, LDAB, INFO

 F95 INTERFACE
 SUBROUTINE PBSTF(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER :: N, KD, LDAB, INFO

 SUBROUTINE PBSTF_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER(8) :: N, KD, LDAB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpbstf(char uplo, int n, int kd, complex *ab, int ldab,
 int *info);

 void cpbstf_64(char uplo, long n, long kd, complex *ab, long
 ldab, long *info);

PURPOSE

 cpbstf computes a split Cholesky factorization of a complex
 Hermitian positive definite band matrix A.

 This routine is designed to be used in conjunction with
 CHBGST.
 The factorization has the form A = S**H*S where S is a
 band matrix of the same bandwidth as A and the following
 structure:

 S = (U)
 (M L)

 where U is upper triangular of order m = (n+kd)/2, and L is
 lower triangular of order n-m.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first kd+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the factor S from the split
 Cholesky factorization A = S**H*S. See Further
 Details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the factorization could not be
 completed, because the updated element a(i,i) was
 negative; the matrix A is not positive definite.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 7, KD = 2:

 S = (s11 s12 s13)
 (s22 s23 s24)
 (s33 s34)
 (s44)
 (s53 s54 s55)
 (s64 s65 s66)
 (s75 s76 s77)

 If UPLO = 'U', the array AB holds:

 on entry: on exit:

 * * a13 a24 a35 a46 a57 * * s13 s24 s53'
 s64' s75'
 * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54'
 s65' s76' a11 a22 a33 a44 a55 a66 a77 s11 s22 s33
 s44 s55 s66 s77

 If UPLO = 'L', the array AB holds:

 on entry: on exit:

 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55
 s66 s77 a21 a32 a43 a54 a65 a76 * s12' s23' s34'
 s54 s65 s76 * a31 a42 a53 a64 a64 * * s13'
 s24' s53 s64 s75 * *

 Array elements marked * are not used by the routine; s12'
 denotes conjg(s12); the diagonal elements of S are real.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpbsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPBSV(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE CPBSV_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PBSV(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE PBSV_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpbsv(char uplo, int n, int ndiag, int nrhs, complex
 *a, int lda, complex *b, int ldb, int *info);

 void cpbsv_64(char uplo, long n, long ndiag, long nrhs, com-
 plex *a, long lda, complex *b, long ldb, long
 *info);

PURPOSE

 cpbsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a lower
 triangular band matrix, with the same number of superdiago-
 nals or subdiagonals as A. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j) for
 max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-j,j)
 = A(i,j) for j<=i<=min(N,j+NDIAG). See below for
 further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpbsvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPBSVX(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPBSVX_64(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBSVX(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE PBSVX_64(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF,
 [LDAF], EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cpbsvx(char fact, char uplo, int n, int ndiag, int
 nrhs, complex *a, int lda, complex *af, int ldaf,
 char equed, float *scale, complex *b, int ldb,
 complex *x, int ldx, float *rcond, float *ferr,
 float *berr, int *info);

 void cpbsvx_64(char fact, char uplo, long n, long ndiag,
 long nrhs, complex *a, long lda, complex *af, long
 ldaf, char equed, float *scale, complex *b, long
 ldb, complex *x, long ldx, float *rcond, float
 *ferr, float *berr, long *info);

PURPOSE

 cpbsvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a
 lower
 triangular band matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less

 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right-hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array, except if FACT = 'F' and EQUED
 = 'Y', then A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the j-th column of the array A as
 follows: if UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j)
 for max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-
 j,j) = A(i,j) for j<=i<=min(N,j+NDIAG). See
 below for further details.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A (see A). If EQUED = 'Y', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.
 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13
 a22 a23 a24
 a33 a34 a35
 a44 a45 a46
 a55 a56

 (aij=conjg(aji)) a66

 Band storage of the upper triangle of A:

 * * a13 a24 a35 a46
 * a12 a23 a34 a45 a56
 a11 a22 a33 a44 a55 a66

 Similarly, if UPLO = 'L' the format of A is as follows:

 a11 a22 a33 a44 a55 a66
 a21 a32 a43 a54 a65 *
 a31 a42 a53 a64 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpbtf2 - compute the Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE CPBTF2(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AB(LDAB,*)
 INTEGER N, KD, LDAB, INFO

 SUBROUTINE CPBTF2_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AB(LDAB,*)
 INTEGER*8 N, KD, LDAB, INFO

 F95 INTERFACE
 SUBROUTINE PBTF2(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER :: N, KD, LDAB, INFO

 SUBROUTINE PBTF2_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: AB
 INTEGER(8) :: N, KD, LDAB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpbtf2(char uplo, int n, int kd, complex *ab, int ldab,
 int *info);

 void cpbtf2_64(char uplo, long n, long kd, complex *ab, long
 ldab, long *info);

PURPOSE

 cpbtf2 computes the Cholesky factorization of a complex Her-
 mitian positive definite band matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, U' is the conjugate
 transpose of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of super-diagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U'*U or A =
 L*L' of the band matrix A, in the same storage
 format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, KD = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpbtrf - compute the Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE CPBTRF(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, NDIAG, LDA, INFO

 SUBROUTINE CPBTRF_64(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, NDIAG, LDA, INFO

 F95 INTERFACE
 SUBROUTINE PBTRF(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO

 SUBROUTINE PBTRF_64(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpbtrf(char uplo, int n, int ndiag, complex *a, int
 lda, int *info);

 void cpbtrf_64(char uplo, long n, long ndiag, complex *a,
 long lda, long *info);

PURPOSE

 cpbtrf computes the Cholesky factorization of a complex Her-
 mitian positive definite band matrix A.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':
 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56

 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

 Contributed by
 Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March
 23, 1989

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpbtrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite band matrix A using the Cholesky
 factorization A = U**H*U or A = L*L**H computed by CPBTRF

SYNOPSIS

 SUBROUTINE CPBTRS(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE CPBTRS_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PBTRS(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE PBTRS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpbtrs(char uplo, int n, int ndiag, int nrhs, complex
 *a, int lda, complex *b, int ldb, int *info);

 void cpbtrs_64(char uplo, long n, long ndiag, long nrhs,
 complex *a, long lda, complex *b, long ldb, long
 *info);

PURPOSE

 cpbtrs solves a system of linear equations A*X = B with a
 Hermitian positive definite band matrix A using the Cholesky
 factorization A = U**H*U or A = L*L**H computed by CPBTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpocon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite matrix
 using the Cholesky factorization A = U**H*U or A = L*L**H
 computed by CPOTRF

SYNOPSIS

 SUBROUTINE CPOCON(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 SUBROUTINE CPOCON_64(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE POCON(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE POCON_64(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL :: ANORM, RCOND

 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void cpocon(char uplo, int n, complex *a, int lda, float
 anorm, float *rcond, int *info);

 void cpocon_64(char uplo, long n, complex *a, long lda,
 float anorm, float *rcond, long *info);

PURPOSE

 cpocon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite matrix
 using the Cholesky factorization A = U**H*U or A = L*L**H
 computed by CPOTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpoequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A and reduce its
 condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE CPOEQU(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 SUBROUTINE CPOEQU_64(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 F95 INTERFACE
 SUBROUTINE POEQU([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 SUBROUTINE POEQU_64([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void cpoequ(int n, complex *a, int lda, float *scale, float
 *scond, float *amax, int *info);

 void cpoequ_64(long n, complex *a, long lda, float *scale,
 float *scond, float *amax, long *info);

PURPOSE

 cpoequ computes row and column scalings intended to
 equilibrate a Hermitian positive definite matrix A and
 reduce its condition number (with respect to the two-norm).
 S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen
 so that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input) The N-by-N Hermitian positive definite matrix
 whose scaling factors are to be computed. Only
 the diagonal elements of A are referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cporfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite,

SYNOPSIS

 SUBROUTINE CPORFS(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPORFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PORFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PORFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cporfs(char uplo, int n, int nrhs, complex *a, int lda,
 complex *af, int ldaf, complex *b, int ldb, com-
 plex *x, int ldx, float *ferr, float *berr, int
 *info);

 void cporfs_64(char uplo, long n, long nrhs, complex *a,
 long lda, complex *af, long ldaf, complex *b, long
 ldb, complex *x, long ldx, float *ferr, float
 *berr, long *info);

PURPOSE

 cporfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite, and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by

 CPOTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cposv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE CPOSV_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE POSV(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE POSV_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cposv(char uplo, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, int *info);

 void cposv_64(char uplo, long n, long nrhs, complex *a, long
 lda, complex *b, long ldb, long *info);

PURPOSE

 cposv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cposvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPOSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPOSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE POSVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE POSVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X

 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cposvx(char fact, char uplo, int n, int nrhs, complex
 *a, int lda, complex *af, int ldaf, char equed,
 float *scale, complex *b, int ldb, complex *x, int
 ldx, float *rcond, float *ferr, float *berr, int
 *info);

 void cposvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, long lda, complex *af, long ldaf, char
 equed, float *scale, complex *b, long ldb, complex
 *x, long ldx, float *rcond, float *ferr, float
 *berr, long *info);

PURPOSE

 cposvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as

 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the Hermitian matrix A, except if FACT =
 'F' and EQUED = 'Y', then A must contain the
 equilibrated matrix diag(SCALE)*A*diag(SCALE). If
 UPLO = 'U', the leading N-by-N upper triangular
 part of A contains the upper triangular part of
 the matrix A, and the strictly lower triangular
 part of A is not referenced. If UPLO = 'L', the
 leading N-by-N lower triangular part of A contains
 the lower triangular part of the matrix A, and the
 strictly upper triangular part of A is not refer-
 enced. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H, in the same storage format as A. If EQUED
 .ne. 'N', then AF is the factored form of the
 equilibrated matrix diag(SCALE)*A*diag(SCALE).

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS righthand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-

 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpotf2 - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A

SYNOPSIS

 SUBROUTINE CPOTF2(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE CPOTF2_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTF2(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTF2_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpotf2(char uplo, int n, complex *a, int lda, int
 *info);

 void cpotf2_64(char uplo, long n, complex *a, long lda, long
 *info);

PURPOSE

 cpotf2 computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored. = 'U':
 Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U'*U or A = L*L'.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpotrf - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A

SYNOPSIS

 SUBROUTINE CPOTRF(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE CPOTRF_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTRF(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTRF_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpotrf(char uplo, int n, complex *a, int lda, int
 *info);

 void cpotrf_64(char uplo, long n, complex *a, long lda, long
 *info);

PURPOSE

 cpotrf computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the block version of the algorithm, calling Level 3
 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpotri - compute the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPOTRF

SYNOPSIS

 SUBROUTINE CPOTRI(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE CPOTRI_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTRI(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTRI_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpotri(char uplo, int n, complex *a, int lda, int
 *info);

 void cpotri_64(char uplo, long n, complex *a, long lda, long
 *info);

PURPOSE

 cpotri computes the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 as computed by CPOTRF. On exit, the upper or
 lower triangle of the (Hermitian) inverse of A,
 overwriting the input factor U or L.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpotrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite matrix A using the Cholesky fac-
 torization A = U**H*U or A = L*L**H computed by CPOTRF

SYNOPSIS

 SUBROUTINE CPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE CPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE POTRS(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE POTRS_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpotrs(char uplo, int n, int nrhs, complex *a, int lda,
 complex *b, int ldb, int *info);

 void cpotrs_64(char uplo, long n, long nrhs, complex *a,
 long lda, complex *b, long ldb, long *info);

PURPOSE

 cpotrs solves a system of linear equations A*X = B with a
 Hermitian positive definite matrix A using the Cholesky fac-
 torization A = U**H*U or A = L*L**H computed by CPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cppcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite packed
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPPTRF

SYNOPSIS

 SUBROUTINE CPPCON(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 SUBROUTINE CPPCON_64(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 REAL ANORM, RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPCON(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE PPCON_64(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void cppcon(char uplo, int n, complex *a, float anorm, float
 *rcond, int *info);
 void cppcon_64(char uplo, long n, complex *a, float anorm,
 float *rcond, long *info);

PURPOSE

 cppcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite packed
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cppequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm)

SYNOPSIS

 SUBROUTINE CPPEQU(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER N, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 SUBROUTINE CPPEQU_64(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER*8 N, INFO
 REAL SCOND, AMAX
 REAL SCALE(*)

 F95 INTERFACE
 SUBROUTINE PPEQU(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 SUBROUTINE PPEQU_64(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void cppequ(char uplo, int n, complex *a, float *scale,
 float *scond, float *amax, int *info);
 void cppequ_64(char uplo, long n, complex *a, float *scale,
 float *scond, float *amax, long *info);

PURPOSE

 cppequ computes row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm). S contains the scale factors,
 S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 This choice of S puts the condition number of B within a
 factor N of the smallest possible condition number over all
 possible diagonal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE CPPRFS(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPPRFS_64(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPRFS(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PPRFS_64(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE

 #include <sunperf.h>

 void cpprfs(char uplo, int n, int nrhs, complex *a, complex
 *af, complex *b, int ldb, complex *x, int ldx,
 float *ferr, float *berr, int *info);

 void cpprfs_64(char uplo, long n, long nrhs, complex *a,
 complex *af, complex *b, long ldb, complex *x,
 long ldx, float *ferr, float *berr, long *info);

PURPOSE

 cpprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by SPPTRF/CPPTRF, packed columnwise in a
 linear array in the same format as A (see A).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 X (input/output)
 On entry, the solution matrix X, as computed by
 CPPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated

 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cppsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPPSV(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE CPPSV_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PPSV(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE PPSV_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cppsv(char uplo, int n, int nrhs, complex *a, complex
 *b, int ldb, int *info);

 void cppsv_64(char uplo, long n, long nrhs, complex *a, com-
 plex *b, long ldb, long *info);

PURPOSE

 cppsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 The Cholesky decomposition is used to factor A as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 in the same storage format as A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cppsvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CPPSVX(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPPSVX_64(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPSVX(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE PPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>
 void cppsvx(char fact, char uplo, int n, int nrhs, complex
 *a, complex *af, char equed, float *scale, complex
 *b, int ldb, complex *x, int ldx, float *rcond,
 float *ferr, float *berr, int *info);

 void cppsvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, complex *af, char equed, float *scale,
 complex *b, long ldb, complex *x, long ldx, float
 *rcond, float *ferr, float *berr, long *info);

PURPOSE

 cppsvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U'* U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, L is a lower tri-
 angular
 matrix, and ' indicates conjugate transpose.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the
 Hermitian matrix A, packed columnwise in a linear
 array, except if FACT = 'F' and EQUED = 'Y', then
 A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. See below for further details. A is not
 modified if FACT = 'F' or 'N', or if FACT = 'E'
 and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H, in the same storage format as A. If EQUED

 .ne. 'N', then AF is the factored form of the
 equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.
 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-

 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cpptrf - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A stored in packed format

SYNOPSIS

 SUBROUTINE CPPTRF(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE CPPTRF_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE PPTRF(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE PPTRF_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpptrf(char uplo, int n, complex *a, int *info);

 void cpptrf_64(char uplo, long n, complex *a, long *info);

PURPOSE

 cpptrf computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A stored in packed format.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H, in the same storage format as A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpptri - compute the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPPTRF

SYNOPSIS

 SUBROUTINE CPPTRI(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE CPPTRI_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE PPTRI(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE PPTRI_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpptri(char uplo, int n, complex *a, int *info);

 void cpptri_64(char uplo, long n, complex *a, long *info);

PURPOSE

 cpptri computes the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor is stored in A;
 = 'L': Lower triangular factor is stored in A.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 packed columnwise as a linear array. The j-th
 column of U or L is stored in the array A as fol-
 lows: if UPLO = 'U', A(i + (j-1)*j/2) = U(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = L(i,j) for j<=i<=n.

 On exit, the upper or lower triangle of the (Her-
 mitian) inverse of A, overwriting the input factor
 U or L.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpptrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite matrix A in packed storage using
 the Cholesky factorization A = U**H*U or A = L*L**H computed
 by CPPTRF

SYNOPSIS

 SUBROUTINE CPPTRS(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE CPPTRS_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PPTRS(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE PPTRS_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void cpptrs(char uplo, int n, int nrhs, complex *a, complex
 *b, int ldb, int *info);

 void cpptrs_64(char uplo, long n, long nrhs, complex *a,
 complex *b, long ldb, long *info);

PURPOSE

 cpptrs solves a system of linear equations A*X = B with a
 Hermitian positive definite matrix A in packed storage using
 the Cholesky factorization A = U**H*U or A = L*L**H computed
 by CPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cptcon - compute the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite tridi-
 agonal matrix using the factorization A = L*D*L**H or A =
 U**H*D*U computed by CPTTRF

SYNOPSIS

 SUBROUTINE CPTCON(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 COMPLEX OFFD(*)
 INTEGER N, INFO
 REAL ANORM, RCOND
 REAL DIAG(*), WORK(*)

 SUBROUTINE CPTCON_64(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 COMPLEX OFFD(*)
 INTEGER*8 N, INFO
 REAL ANORM, RCOND
 REAL DIAG(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTCON([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: OFFD
 INTEGER :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: DIAG, WORK

 SUBROUTINE PTCON_64([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: OFFD
 INTEGER(8) :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: DIAG, WORK

 C INTERFACE
 #include <sunperf.h>

 void cptcon(int n, float *diag, complex *offd, float anorm,
 float *rcond, int *info);

 void cptcon_64(long n, float *diag, complex *offd, float
 anorm, float *rcond, long *info);

PURPOSE

 cptcon computes the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite tridi-
 agonal matrix using the factorization A = L*D*L**H or A =
 U**H*D*U computed by CPTTRF.

 Norm(inv(A)) is computed by a direct method, and the
 reciprocal of the condition number is computed as
 RCOND = 1 / (ANORM * norm(inv(A))).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization of A, as computed by
 CPTTRF.

 OFFD (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization of A,
 as computed by CPTTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is the 1-norm of inv(A) computed in
 this routine.

 WORK (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The method used is described in Nicholas J. Higham, "Effi-
 cient Algorithms for Computing the Condition Number of a
 Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No.
 1, January 1986.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF and then calling
 CBDSQR to compute the singular values of the bidiagonal fac-
 tor

SYNOPSIS

 SUBROUTINE CPTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*)
 INTEGER N, LDZ, INFO
 REAL D(*), E(*), WORK(*)

 SUBROUTINE CPTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*)
 INTEGER*8 N, LDZ, INFO
 REAL D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 SUBROUTINE PTEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void cpteqr(char compz, int n, float *d, float *e, complex
 *z, int ldz, int *info);

 void cpteqr_64(char compz, long n, float *d, float *e, com-
 plex *z, long ldz, long *info);

PURPOSE

 cpteqr computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF and then calling
 CBDSQR to compute the singular values of the bidiagonal fac-
 tor.

 This routine computes the eigenvalues of the positive defin-
 ite tridiagonal matrix to high relative accuracy. This
 means that if the eigenvalues range over many orders of mag-
 nitude in size, then the small eigenvalues and corresponding
 eigenvectors will be computed more accurately than, for
 example, with the standard QR method.

 The eigenvectors of a full or band positive definite Hermi-
 tian matrix can also be found if CHETRD, CHPTRD, or CHBTRD
 has been used to reduce this matrix to tridiagonal form.
 (The reduction to tridiagonal form, however, may preclude
 the possibility of obtaining high relative accuracy in the
 small eigenvalues of the original matrix, if these eigen-
 values range over many orders of magnitude.)

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvectors of original Hermitian
 matrix also. Array Z contains the unitary matrix
 used to reduce the original matrix to tridiagonal
 form. = 'I': Compute eigenvectors of tridiagonal
 matrix also.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On normal exit, D contains the eigen-
 values, in descending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', the unitary matrix used
 in the reduction to tridiagonal form. On exit, if
 COMPZ = 'V', the orthonormal eigenvectors of the
 original Hermitian matrix; if COMPZ = 'I', the
 orthonormal eigenvectors of the tridiagonal
 matrix. If INFO > 0 on exit, Z contains the
 eigenvectors associated with only the stored
 eigenvalues. If COMPZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,

 and if COMPZ = 'V' or 'I', LDZ >= max(1,N).

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is: <= N the Cholesky
 factorization of the matrix could not be performed
 because the i-th principal minor was not positive
 definite. > N the SVD algorithm failed to con-
 verge; if INFO = N+i, i off-diagonal elements of
 the bidiagonal factor did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cptrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution

SYNOPSIS

 SUBROUTINE CPTRFS(UPLO, N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX OFFD(*), OFFDF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL DIAG(*), DIAGF(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPTRFS_64(UPLO, N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX OFFD(*), OFFDF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL DIAG(*), DIAGF(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PTRFS(UPLO, [N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: OFFD, OFFDF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2

 SUBROUTINE PTRFS_64(UPLO, [N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: OFFD, OFFDF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2

 C INTERFACE

 #include <sunperf.h>

 void cptrfs(char uplo, int n, int nrhs, float *diag, complex
 *offd, float *diagf, complex *offdf, complex *b,
 int ldb, complex *x, int ldx, float *ferr, float
 *berr, int *info);

 void cptrfs_64(char uplo, long n, long nrhs, float *diag,
 complex *offd, float *diagf, complex *offdf, com-
 plex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 cptrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution.

ARGUMENTS

 UPLO (input)
 Specifies whether the superdiagonal or the subdi-
 agonal of the tridiagonal matrix A is stored and
 the form of the factorization:
 = 'U': OFFD is the superdiagonal of A, and A =
 U**H*DIAG*U;
 = 'L': OFFD is the subdiagonal of A, and A =
 L*DIAG*L**H. (The two forms are equivalent if A
 is real.)

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n real diagonal elements of the tridiagonal
 matrix A.

 OFFD (input)
 The (n-1) off-diagonal elements of the tridiagonal
 matrix A (see UPLO).

 DIAGF (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization computed by CPTTRF.
 OFFDF (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization com-
 puted by CPTTRF (see UPLO).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)

 On entry, the solution matrix X, as computed by
 CPTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cptsv - compute the solution to a complex system of linear
 equations A*X = B, where A is an N-by-N Hermitian positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

SYNOPSIS

 SUBROUTINE CPTSV(N, NRHS, DIAG, SUB, B, LDB, INFO)

 COMPLEX SUB(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 REAL DIAG(*)

 SUBROUTINE CPTSV_64(N, NRHS, DIAG, SUB, B, LDB, INFO)

 COMPLEX SUB(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 REAL DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTSV([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:) :: SUB
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG

 SUBROUTINE PTSV_64([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 COMPLEX, DIMENSION(:) :: SUB
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void cptsv(int n, int nrhs, float *diag, complex *sub, com-
 plex *b, int ldb, int *info);

 void cptsv_64(long n, long nrhs, float *diag, complex *sub,
 complex *b, long ldb, long *info);

PURPOSE

 cptsv computes the solution to a complex system of linear
 equations A*X = B, where A is an N-by-N Hermitian positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

 A is factored as A = L*D*L**H, and the factored form of A is
 then used to solve the system of equations.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the factorization A
 = L*DIAG*L**H.

 SUB (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L**H factorization of A. SUB can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U**H*DIAG*U factorization
 of A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the solution has not
 been computed. The factorization has not been
 completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cptsvx - use the factorization A = L*D*L**H to compute the
 solution to a complex system of linear equations A*X = B,
 where A is an N-by-N Hermitian positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE CPTSVX(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT
 COMPLEX SUB(*), SUBF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL DIAG(*), DIAGF(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CPTSVX_64(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT
 COMPLEX SUB(*), SUBF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL DIAG(*), DIAGF(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PTSVX(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B, [LDB],
 X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT
 COMPLEX, DIMENSION(:) :: SUB, SUBF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2

 SUBROUTINE PTSVX_64(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT
 COMPLEX, DIMENSION(:) :: SUB, SUBF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO

 REAL :: RCOND
 REAL, DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void cptsvx(char fact, int n, int nrhs, float *diag, complex
 *sub, float *diagf, complex *subf, complex *b, int
 ldb, complex *x, int ldx, float *rcond, float
 *ferr, float *berr, int *info);

 void cptsvx_64(char fact, long n, long nrhs, float *diag,
 complex *sub, float *diagf, complex *subf, complex
 *b, long ldb, complex *x, long ldx, float *rcond,
 float *ferr, float *berr, long *info);

PURPOSE

 cptsvx uses the factorization A = L*D*L**H to compute the
 solution to a complex system of linear equations A*X = B,
 where A is an N-by-N Hermitian positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the matrix A is factored as A = L*D*L**H,
 where L
 is a unit lower bidiagonal matrix and D is diagonal. The
 factorization can also be regarded as having the form
 A = U**H*D*U.

 2. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry. = 'F': On entry,
 DIAGF and SUBF contain the factored form of A.
 DIAG, SUB, DIAGF, and SUBF will not be modified.
 = 'N': The matrix A will be copied to DIAGF and
 SUBF and factored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 SUB (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 diagonal matrix DIAG from the L*DIAG*L**H factori-
 zation of A. If FACT = 'N', then DIAGF is an out-
 put argument and on exit contains the n diagonal
 elements of the diagonal matrix DIAG from the
 L*DIAG*L**H factorization of A.

 SUBF (input/output)
 If FACT = 'F', then SUBF is an input argument and
 on entry contains the (n-1) subdiagonal elements
 of the unit bidiagonal factor L from the
 L*DIAG*L**H factorization of A. If FACT = 'N',
 then SUBF is an output argument and on exit con-
 tains the (n-1) subdiagonal elements of the unit
 bidiagonal factor L from the L*DIAG*L**H factori-
 zation of A.
 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The reciprocal condition number of the matrix A.
 If RCOND is less than the machine precision (in
 particular, if RCOND = 0), the matrix is singular
 to working precision. This condition is indicated
 by a return code of INFO > 0.

 FERR (output)

 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpttrf - compute the L*D*L' factorization of a complex Her-
 mitian positive definite tridiagonal matrix A

SYNOPSIS

 SUBROUTINE CPTTRF(N, DIAG, OFFD, INFO)

 COMPLEX OFFD(*)
 INTEGER N, INFO
 REAL DIAG(*)

 SUBROUTINE CPTTRF_64(N, DIAG, OFFD, INFO)

 COMPLEX OFFD(*)
 INTEGER*8 N, INFO
 REAL DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTTRF([N], DIAG, OFFD, [INFO])

 COMPLEX, DIMENSION(:) :: OFFD
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: DIAG

 SUBROUTINE PTTRF_64([N], DIAG, OFFD, [INFO])

 COMPLEX, DIMENSION(:) :: OFFD
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void cpttrf(int n, float *diag, complex *offd, int *info);

 void cpttrf_64(long n, float *diag, complex *offd, long
 *info);

PURPOSE

 cpttrf computes the L*D*L' factorization of a complex Hermi-
 tian positive definite tridiagonal matrix A. The factoriza-
 tion may also be regarded as having the form A = U'*D*U.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the L*DIAG*L' fac-
 torization of A.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L' factorization of A. OFFD can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U'*DIAG*U factorization
 of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite; if k < N, the factorization
 could not be completed, while if k = N, the fac-
 torization was completed, but DIAG(N) = 0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cpttrs - solve a tridiagonal system of the form A * X = B
 using the factorization A = U'*D*U or A = L*D*L' computed by
 CPTTRF

SYNOPSIS

 SUBROUTINE CPTTRS(UPLO, N, NRHS, DIAG, OFFD, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX OFFD(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 REAL DIAG(*)

 SUBROUTINE CPTTRS_64(UPLO, N, NRHS, DIAG, OFFD, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX OFFD(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 REAL DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTTRS(UPLO, [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: OFFD
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG

 SUBROUTINE PTTRS_64(UPLO, [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: OFFD
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void cpttrs(char uplo, int n, int nrhs, float *diag, complex
 *offd, complex *b, int ldb, int *info);

 void cpttrs_64(char uplo, long n, long nrhs, float *diag,
 complex *offd, complex *b, long ldb, long *info);

PURPOSE

 cpttrs solves a tridiagonal system of the form
 A * X = B using the factorization A = U'*D*U or A =
 L*D*L' computed by CPTTRF. D is a diagonal matrix specified
 in the vector D, U (or L) is a unit bidiagonal matrix whose
 superdiagonal (subdiagonal) is specified in the vector E,
 and X and B are N by NRHS matrices.

ARGUMENTS

 UPLO (input)
 Specifies the form of the factorization and
 whether the vector OFFD is the superdiagonal of
 the upper bidiagonal factor U or the subdiagonal
 of the lower bidiagonal factor L. = 'U': A =
 U'*DIAG*U, OFFD is the superdiagonal of U
 = 'L': A = L*DIAG*L', OFFD is the subdiagonal of
 L

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization A = U'*DIAG*U or A =
 L*DIAG*L'.

 OFFD (input/output)
 If UPLO = 'U', the (n-1) superdiagonal elements of
 the unit bidiagonal factor U from the factoriza-
 tion A = U'*DIAG*U. If UPLO = 'L', the (n-1) sub-
 diagonal elements of the unit bidiagonal factor L
 from the factorization A = L*DIAG*L'.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cptts2 - solve a tridiagonal system of the form A * X = B
 using the factorization A = U'*D*U or A = L*D*L' computed by
 CPTTRF

SYNOPSIS

 SUBROUTINE CPTTS2(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX E(*), B(LDB,*)
 INTEGER IUPLO, N, NRHS, LDB
 REAL D(*)

 SUBROUTINE CPTTS2_64(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX E(*), B(LDB,*)
 INTEGER*8 IUPLO, N, NRHS, LDB
 REAL D(*)

 F95 INTERFACE
 SUBROUTINE CPTTS2(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX, DIMENSION(:) :: E
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: IUPLO, N, NRHS, LDB
 REAL, DIMENSION(:) :: D

 SUBROUTINE CPTTS2_64(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX, DIMENSION(:) :: E
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: IUPLO, N, NRHS, LDB
 REAL, DIMENSION(:) :: D

 C INTERFACE
 #include <sunperf.h>

 void cptts2(int iuplo, int n, int nrhs, float *d, complex
 *e, complex *b, int ldb);

 void cptts2_64(long iuplo, long n, long nrhs, float *d, com-
 plex *e, complex *b, long ldb);

PURPOSE

 cptts2 solves a tridiagonal system of the form
 A * X = B using the factorization A = U'*D*U or A =
 L*D*L' computed by CPTTRF. D is a diagonal matrix specified
 in the vector D, U (or L) is a unit bidiagonal matrix whose
 superdiagonal (subdiagonal) is specified in the vector E,
 and X and B are N by NRHS matrices.

ARGUMENTS

 IUPLO (input)
 Specifies the form of the factorization and
 whether the vector E is the superdiagonal of the
 upper bidiagonal factor U or the subdiagonal of
 the lower bidiagonal factor L. = 1: A = U'*D*U,
 E is the superdiagonal of U
 = 0: A = L*D*L', E is the subdiagonal of L

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 D (input) The n diagonal elements of the diagonal matrix D
 from the factorization A = U'*D*U or A = L*D*L'.

 E (input) If IUPLO = 1, the (n-1) superdiagonal elements of
 the unit bidiagonal factor U from the factoriza-
 tion A = U'*D*U. If IUPLO = 0, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the factorization A = L*D*L'.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 crot - apply a plane rotation, where the cos (C) is real and
 the sin (S) is complex, and the vectors X and Y are complex

SYNOPSIS

 SUBROUTINE CROT(N, X, INCX, Y, INCY, C, S)

 COMPLEX S
 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY
 REAL C

 SUBROUTINE CROT_64(N, X, INCX, Y, INCY, C, S)

 COMPLEX S
 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY
 REAL C

 F95 INTERFACE
 SUBROUTINE ROT([N], X, [INCX], Y, [INCY], C, S)

 COMPLEX :: S
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY
 REAL :: C

 SUBROUTINE ROT_64([N], X, [INCX], Y, [INCY], C, S)

 COMPLEX :: S
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY
 REAL :: C

 C INTERFACE
 #include <sunperf.h>

 void crot(int n, complex *x, int incx, complex *y, int incy,
 float c, complex *s);

 void crot_64(long n, complex *x, long incx, complex *y, long
 incy, float c, complex *s);

PURPOSE

 crot applies a plane rotation, where the cos (C) is real
 and the sin (S) is complex, and the vectors X and Y are
 complex.

ARGUMENTS

 N (input)
 The number of elements in the vectors X and Y.

 X (input/output)
 On input, the vector X. On output, X is overwrit-
 ten with C*X + S*Y.

 INCX (input)
 The increment between successive values of Y.
 INCX <> 0.

 Y (input/output)
 On input, the vector Y. On output, Y is overwrit-
 ten with -CONJG(S)*X + C*Y.

 INCY (input)
 The increment between successive values of Y.
 INCY <> 0.

 C (input)

 S (input)
 C and S define a rotation
 [C S]
 [-conjg(S) C]

 where C*C + S*CONJG(S) = 1.0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 crotg - Construct a Given's plane rotation

SYNOPSIS

 SUBROUTINE CROTG(A, B, C, S)

 COMPLEX A, B, S
 REAL C

 SUBROUTINE CROTG_64(A, B, C, S)

 COMPLEX A, B, S
 REAL C

 F95 INTERFACE
 SUBROUTINE ROTG(A, B, C, S)

 COMPLEX :: A, B, S
 REAL :: C

 SUBROUTINE ROTG_64(A, B, C, S)

 COMPLEX :: A, B, S
 REAL :: C

 C INTERFACE
 #include <sunperf.h>

 void crotg(complex *a, complex *b, float *c, complex *s);

 void crotg_64(complex *a, complex *b, float *c, complex *s);

PURPOSE

 crotg Construct a Given's plane rotation that will annihi-
 late an element of a vector.

ARGUMENTS

 A (input/output)
 On entry, A contains the entry in the first vector
 that corresponds to the element to be annihilated
 in the second vector. On exit, contains the
 nonzero element of the rotated vector.
 B (input)
 On entry, B contains the entry to be annihilated
 in the second vector. Unchanged on exit.

 C (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

 S (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE CSCAL(N, ALPHA, Y, INCY)

 COMPLEX ALPHA
 COMPLEX Y(*)
 INTEGER N, INCY

 SUBROUTINE CSCAL_64(N, ALPHA, Y, INCY)

 COMPLEX ALPHA
 COMPLEX Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: Y
 INTEGER :: N, INCY

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:) :: Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void cscal(int n, complex *alpha, complex *y, int incy);

 void cscal_64(long n, complex *alpha, complex *y, long
 incy);

PURPOSE

 cscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 csctr - Scatters elements from x into y.

SYNOPSIS

 SUBROUTINE CSCTR(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE CSCTR_64(NZ, X, INDX, Y)

 COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE SCTR([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE SCTR_64([NZ], X, INDX, Y)

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 CSCTR - Scatters the components of a sparse vector x stored
 in compressed form into specified components of a vector y
 in full storage form.

 do i = 1, n
 y(indx(i)) = x(i)
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector containing the values to be scattered from
 compressed form into full storage form. Unchanged
 on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector whose elements specified by indx have been
 set to the corresponding entries of x. Only the
 elements corresponding to the indices in indx have
 been modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cskymm - Skyline format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE CSKYMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR, B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CSKYMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR, B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 COMPLEX ALPHA, BETA
 COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(K+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(M+1)-PNTR(1) (lower triangular)
 PNTR() size = (K+1) (upper triangular)
 PNTR() size = (M+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in skyline format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general (NOT SUPPORTED)
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 The SKY data structure is not supported for a general matrix
 structure (DESCRA(1)=0).

 Also not supported:
 1. lower triangular matrix A of size m by n where m > n
 2. upper triangular matrix A of size m by n where m < n

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cskysm - Skyline format triangular solve

SYNOPSIS

 SUBROUTINE CSKYSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CSKYSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 COMPLEX ALPHA, BETA
 COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(M+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(K+1)-PNTR(1) (lower triangular)
 PNTR() size = (M+1) (upper triangular)
 PNTR() size = (K+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in skyline format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A')).
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row or column scaling (see section
 NOTES for further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. Also not supported:
 a. lower triangular matrix A of size m by n where m > n
 b. upper triangular matrix A of size m by n where m < n

 2. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 3. If UNITD =4, the routine scales the rows of A if
 DESCRA(2)=1 and the columns of A if DESCRA(2)=2 such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in this particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows (columns) have been scaled. UNITD=2 if DESCRA(2)=1 and
 UNITD=3 if DESCRA(2)=2 should be used for the next calls to
 the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 (column) number which 2-norm is exactly zero.

 4. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the SKY representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the SKY representation.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cspcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF

SYNOPSIS

 SUBROUTINE CSPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND

 SUBROUTINE CSPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE SPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 SUBROUTINE SPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>

 void cspcon(char uplo, int n, complex *a, int *ipivot, float
 anorm, float *rcond, int *info);
 void cspcon_64(char uplo, long n, complex *a, long *ipivot,
 float anorm, float *rcond, long *info);

PURPOSE

 cspcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE CSPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CSPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SPRFS(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SPRFS_64(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void csprfs(char uplo, int n, int nrhs, complex *a, complex
 *af, int *ipivot, complex *b, int ldb, complex *x,
 int ldx, float *ferr, float *berr, int *info);

 void csprfs_64(char uplo, long n, long nrhs, complex *a,
 complex *af, long *ipivot, complex *b, long ldb,
 complex *x, long ldx, float *ferr, float *berr,
 long *info);

PURPOSE

 csprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 CSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CSPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cspsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CSPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPSV(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPSV_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void cspsv(char uplo, int n, int nrhs, complex *a, int
 *ipivot, complex *b, int ldb, int *info);

 void cspsv_64(char uplo, long n, long nrhs, complex *a, long
 *ipivot, complex *b, long ldb, long *info);

PURPOSE

 cspsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N symmetric matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is symmetric and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by CSPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CSPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cspsvx - use the diagonal pivoting factorization A =
 U*D*U**T or A = L*D*L**T to compute the solution to a com-
 plex system of linear equations A * X = B, where A is an N-
 by-N symmetric matrix stored in packed format and X and B
 are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE CSPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CSPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SPSVX(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB],

 X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: A, AF, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void cspsvx(char fact, char uplo, int n, int nrhs, complex
 *a, complex *af, int *ipivot, complex *b, int ldb,
 complex *x, int ldx, float *rcond, float *ferr,
 float *berr, int *info);

 void cspsvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, complex *af, long *ipivot, complex *b,
 long ldb, complex *x, long ldx, float *rcond,
 float *ferr, float *berr, long *info);

PURPOSE

 cspsvx uses the diagonal pivoting factorization A = U*D*U**T
 or A = L*D*L**T to compute the solution to a complex system
 of linear equations A * X = B, where A is an N-by-N sym-
 metric matrix stored in packed format and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is symmetric and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.
 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed

 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by CSPTRF, stored as a packed triangular
 matrix in the same storage format as A.
 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by CSPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CSPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument

 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CSPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would

 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:
 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 csptrf - compute the factorization of a complex symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method

SYNOPSIS

 SUBROUTINE CSPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csptrf(char uplo, int n, complex *a, int *ipivot, int
 *info);

 void csptrf_64(char uplo, long n, complex *a, long *ipivot,
 long *info);

PURPOSE

 csptrf computes the factorization of a complex symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method:

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csptri - compute the inverse of a complex symmetric indefin-
 ite matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSPTRF

SYNOPSIS

 SUBROUTINE CSPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRI(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRI_64(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csptri(char uplo, int n, complex *a, int *ipivot, int
 *info);

 void csptri_64(char uplo, long n, complex *a, long *ipivot,
 long *info);

PURPOSE

 csptri computes the inverse of a complex symmetric
 indefinite matrix A in packed storage using the factoriza-
 tion A = U*D*U**T or A = L*D*L**T computed by CSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CSPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csptrs - solve a system of linear equations A*X = B with a
 complex symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF

SYNOPSIS

 SUBROUTINE CSPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRS(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRS_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csptrs(char uplo, int n, int nrhs, complex *a, int
 *ipivot, complex *b, int ldb, int *info);

 void csptrs_64(char uplo, long n, long nrhs, complex *a,
 long *ipivot, complex *b, long ldb, long *info);

PURPOSE

 csptrs solves a system of linear equations A*X = B with a
 complex symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csrot - Apply a plane rotation.

SYNOPSIS

 SUBROUTINE CSROT(N, X, INCX, Y, INCY, C, S)

 REAL C, S
 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CSROT_64(N, X, INCX, Y, INCY, C, S)

 REAL C, S
 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE ROT([N], X, [INCX], Y, [INCY], C, S)

 REAL :: C, S
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE ROT_64([N], X, [INCX], Y, [INCY], C, S)

 REAL :: C, S
 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void csrot(int n, complex *x, int incx, complex *y, int
 incy, float c, float s);

 void csrot_64(long n, complex *x, long incx, complex *y,
 long incy, float c, float s);

PURPOSE

 csrot Apply a plane rotation, where the cos and sin (c and
 s) are real and the vectors x and y are complex.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input/output)
 Before entry, the incremented array X must contain the
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 On entry, the incremented array Y must contain
 the vector y. On exit, Y is overwritten by the
 updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 C (input)
 On entry, the cosine. Unchanged on exit.

 S (input)
 On entry, the sin. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE CSSCAL(N, ALPHA, Y, INCY)

 COMPLEX Y(*)
 INTEGER N, INCY
 REAL ALPHA

 SUBROUTINE CSSCAL_64(N, ALPHA, Y, INCY)

 COMPLEX Y(*)
 INTEGER*8 N, INCY
 REAL ALPHA

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 COMPLEX, DIMENSION(:) :: Y
 INTEGER :: N, INCY
 REAL :: ALPHA

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 COMPLEX, DIMENSION(:) :: Y
 INTEGER(8) :: N, INCY
 REAL :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void csscal(int n, float alpha, complex *y, int incy);

 void csscal_64(long n, float alpha, complex *y, long incy);

PURPOSE

 csscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the
 subroutine to have any visible effect. Unchanged
 on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cstedc - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method

SYNOPSIS

 SUBROUTINE CSTEDC(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK,
 IWORK, LIWORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL D(*), E(*), RWORK(*)

 SUBROUTINE CSTEDC_64(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL D(*), E(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE STEDC(COMPZ, [N], D, E, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, RWORK

 SUBROUTINE STEDC_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: Z

 INTEGER(8) :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, RWORK

 C INTERFACE
 #include <sunperf.h>
 void cstedc(char compz, int n, float *d, float *e, complex
 *z, int ldz, int *info);

 void cstedc_64(char compz, long n, float *d, float *e, com-
 plex *z, long ldz, long *info);

PURPOSE

 cstedc computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method. The eigenvectors of a full or band complex
 Hermitian matrix can also be found if CHETRD or CHPTRD or
 CHBTRD has been used to reduce this matrix to tridiagonal
 form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLAED3 for details.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'I': Compute eigenvectors of tridiagonal matrix
 also.
 = 'V': Compute eigenvectors of original Hermitian
 matrix also. On entry, Z contains the unitary
 matrix used to reduce the original matrix to tri-
 diagonal form.

 N (input) The dimension of the symmetric tridiagonal matrix.
 N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the subdiagonal elements of the tridiag-
 onal matrix. On exit, E has been destroyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 unitary matrix used in the reduction to tridiago-
 nal form. On exit, if INFO = 0, then if COMPZ =
 'V', Z contains the orthonormal eigenvectors of
 the original Hermitian matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If eigenvectors are desired, then LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If COMPZ = 'N'
 or 'I', or N <= 1, LWORK must be at least 1. If
 COMPZ = 'V' and N > 1, LWORK must be at least N*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If COMPZ = 'N'
 or N <= 1, LRWORK must be at least 1. If COMPZ =
 'V' and N > 1, LRWORK must be at least 1 + 3*N +
 2*N*lg N + 3*N**2 , where lg(N) = smallest
 integer k such that 2**k >= N. If COMPZ = 'I' and
 N > 1, LRWORK must be at least 1 + 4*N + 2*N**2 .

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If COMPZ = 'N'
 or N <= 1, LIWORK must be at least 1. If COMPZ =
 'V' or N > 1, LIWORK must be at least 6 + 6*N +
 5*N*lg N. If COMPZ = 'I' or N > 1, LIWORK must
 be at least 3 + 5*N .

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an eigen-
 value while working on the submatrix lying in rows
 and columns INFO/(N+1) through mod(INFO,N+1).

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cstegr - Compute T-sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T is a relatively robust representation

SYNOPSIS

 SUBROUTINE CSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 COMPLEX Z(LDZ,*)
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), WORK(*)

 SUBROUTINE CSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 COMPLEX Z(LDZ,*)
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEGR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEGR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 COMPLEX, DIMENSION(:,:) :: Z

 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK
 C INTERFACE
 #include <sunperf.h>

 void cstegr(char jobz, char range, int n, float *d, float
 *e, float vl, float vu, int il, int iu, float
 abstol, int *m, float *w, complex *z, int ldz, int
 *isuppz, int *info);

 void cstegr_64(char jobz, char range, long n, float *d,
 float *e, float vl, float vu, long il, long iu,
 float abstol, long *m, float *w, complex *z, long
 ldz, long *isuppz, long *info);

PURPOSE

 cstegr b) Compute the eigenvalues, lambda_j, of L_i D_i
 L_i^T to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB/CSD-97-971, UC Berkeley, May 1997.

 Note 1 : Currently CSTEGR is only set up to find ALL the n
 eigenvalues and eigenvectors of T in O(n^2) time
 Note 2 : Currently the routine CSTEIN is called when an
 appropriate sigma_i cannot be chosen in step (c) above.
 CSTEIN invokes modified Gram-Schmidt when eigenvalues are
 close.
 Note 3 : CSTEGR works only on machines which follow ieee-754
 floating-point standard in their handling of infinities and
 NaNs. Normal execution of CSTEGR may create NaNs and infin-
 ities and hence may abort due to a floating point exception
 in environments which do not conform to the ieee standard.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.
 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix T. On exit, D is overwritten.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix T in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E is overwritten.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the
 eigenvalues/eigenvectors. IF JOBZ = 'V', the
 eigenvalues and eigenvectors output have residual
 norms bounded by ABSTOL, and the dot products
 between different eigenvectors are bounded by
 ABSTOL. If ABSTOL is less than N*EPS*|T|, then
 N*EPS*|T| will be used in its place, where EPS is
 the machine precision and |T| is the 1-norm of the
 tridiagonal matrix. The eigenvalues are computed
 to an accuracy of EPS*|T| irrespective of ABSTOL.
 If high relative accuracy is important, set ABSTOL
 to DLAMCH('Safe minimum'). See Barlow and Dem-
 mel "Computing Accurate Eigensystems of Scaled
 Diagonally Dominant Matrices", LAPACK Working Note
 #7 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input/output)
 If JOBZ = 'V', then if INFO = 0, the first M

 columns of Z contain the orthonormal eigenvectors
 of the matrix T corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,18*N)

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N)

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = 1, internal error in SLARRE, if
 INFO = 2, internal error in CLARRV.

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cstein - compute the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration

SYNOPSIS

 SUBROUTINE CSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 COMPLEX Z(LDZ,*)
 INTEGER N, M, LDZ, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 REAL D(*), E(*), W(*), WORK(*)

 SUBROUTINE CSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
 IWORK, IFAIL, INFO)

 COMPLEX Z(LDZ,*)
 INTEGER*8 N, M, LDZ, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 REAL D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEIN([N], D, E, [M], W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL, DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEIN_64([N], D, E, [M], W, IBLOCK, ISPLIT, Z, [LDZ],
 [WORK], [IWORK], IFAIL, [INFO])

 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL, DIMENSION(:) :: D, E, W, WORK

 C INTERFACE
 #include <sunperf.h>

 void cstein(int n, float *d, float *e, int m, float *w, int

 *iblock, int *isplit, complex *z, int ldz, int
 *ifail, int *info);
 void cstein_64(long n, float *d, float *e, long m, float *w,
 long *iblock, long *isplit, complex *z, long ldz,
 long *ifail, long *info);

PURPOSE

 cstein computes the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration.

 The maximum number of iterations allowed for each eigenvec-
 tor is specified by an internal parameter MAXITS (currently
 set to 5).

 Although the eigenvectors are real, they are stored in a
 complex array, which may be passed to CUNMTR or CUPMTR for
 back
 transformation to the eigenvectors of a complex Hermitian
 matrix which was reduced to tridiagonal form.

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) subdiagonal elements of the tridiagonal
 matrix T, stored in elements 1 to N-1; E(N) need
 not be set.

 M (input) The number of eigenvectors to be found. 0 <= M <=
 N.

 W (input) The first M elements of W contain the eigenvalues
 for which eigenvectors are to be computed. The
 eigenvalues should be grouped by split-off block
 and ordered from smallest to largest within the
 block. (The output array W from SSTEBZ with
 ORDER = 'B' is expected here.)

 IBLOCK (input)
 The submatrix indices associated with the
 corresponding eigenvalues in W; IBLOCK(i)=1 if
 eigenvalue W(i) belongs to the first submatrix
 from the top, =2 if W(i) belongs to the second
 submatrix, etc. (The output array IBLOCK from
 SSTEBZ is expected here.)

 ISPLIT (input)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2),
 etc. (The output array ISPLIT from SSTEBZ is
 expected here.)

 Z (output)

 The computed eigenvectors. The eigenvector asso-
 ciated with the eigenvalue W(i) is stored in the
 i-th column of Z. Any vector which fails to con-
 verge is set to its current iterate after MAXITS
 iterations. The imaginary parts of the eigenvec-
 tors are set to zero.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK (workspace)
 dimension(N)

 IFAIL (output)
 On normal exit, all elements of IFAIL are zero.
 If one or more eigenvectors fail to converge after
 MAXITS iterations, then their indices are stored
 in array IFAIL.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge in MAXITS iterations. Their indices are
 stored in array IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method

SYNOPSIS

 SUBROUTINE CSTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*)
 INTEGER N, LDZ, INFO
 REAL D(*), E(*), WORK(*)

 SUBROUTINE CSTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 COMPLEX Z(LDZ,*)
 INTEGER*8 N, LDZ, INFO
 REAL D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 SUBROUTINE STEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX, DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void csteqr(char compz, int n, float *d, float *e, complex
 *z, int ldz, int *info);

 void csteqr_64(char compz, long n, float *d, float *e, com-
 plex *z, long ldz, long *info);

PURPOSE

 csteqr computes all eigenvalues and, optionally,
 eigenvectors of a symmetric tridiagonal matrix using the
 implicit QL or QR method. The eigenvectors of a full or
 band complex Hermitian matrix can also be found if CHETRD or
 CHPTRD or CHBTRD has been used to reduce this matrix to tri-
 diagonal form.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvalues and eigenvectors of
 the original Hermitian matrix. On entry, Z must
 contain the unitary matrix used to reduce the ori-
 ginal matrix to tridiagonal form. = 'I': Compute
 eigenvalues and eigenvectors of the tridiagonal
 matrix. Z is initialized to the identity matrix.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 unitary matrix used in the reduction to tridiago-
 nal form. On exit, if INFO = 0, then if COMPZ =
 'V', Z contains the orthonormal eigenvectors of
 the original Hermitian matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if eigenvectors are desired, then LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(max(1,2*N-2)) If COMPZ = 'N', then WORK
 is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm has failed to find all the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero; on exit, D and E contain the elements of a
 symmetric tridiagonal matrix which is unitarily

 similar to the original matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cstsv - compute the solution to a complex system of linear
 equations A * X = B where A is a Hermitian tridiagonal
 matrix

SYNOPSIS

 SUBROUTINE CSTSV(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)

 SUBROUTINE CSTSV_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STSV([N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STSV_64([N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void cstsv(int n, int nrhs, complex *l, complex *d, complex
 *subl, complex *b, int ldb, int *ipiv, int *info);

 void cstsv_64(long n, long nrhs, complex *l, complex *d,
 complex *subl, complex *b, long ldb, long *ipiv,
 long *info);

PURPOSE

 cstsv computes the solution to a complex system of linear
 equations A * X = B where A is a Hermitian tridiagonal
 matrix.

ARGUMENTS

 N (input)
 The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides in B.

 L (input/output)
 COMPLEX array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 COMPLEX array, dimension (N)
 On exit, part of the factorization of A.

 B (input/output)
 The columns of B contain the right hand sides.

 LDB (input)
 The leading dimension of B as specified in a type
 or DIMENSION statement.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csttrf - compute the factorization of a complex Hermitian
 tridiagonal matrix A

SYNOPSIS

 SUBROUTINE CSTTRF(N, L, D, SUBL, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*)
 INTEGER N, INFO
 INTEGER IPIV(*)

 SUBROUTINE CSTTRF_64(N, L, D, SUBL, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STTRF([N], L, D, SUBL, IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STTRF_64([N], L, D, SUBL, IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void csttrf(int n, complex *l, complex *d, complex *subl,
 int *ipiv, int *info);

 void csttrf_64(long n, complex *l, complex *d, complex
 *subl, long *ipiv, long *info);

PURPOSE

 csttrf computes the L*D*L**H factorization of a complex Her-
 mitian tridiagonal matrix A.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 L (input/output)
 COMPLEX array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 COMPLEX array, dimension (N)
 On exit, part of the factorization of A.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csttrs - computes the solution to a complex system of linear
 equations A * X = B

SYNOPSIS

 SUBROUTINE CSTTRS(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)

 SUBROUTINE CSTTRS_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STTRS([N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STTRS_64([N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX, DIMENSION(:) :: L, D, SUBL
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void csttrs(int n, int nrhs, complex *l, complex *d, complex
 *subl, complex *b, int ldb, int *ipiv, int *info);

 void csttrs_64(long n, long nrhs, complex *l, complex *d,
 complex *subl, complex *b, long ldb, long *ipiv,
 long *info);

PURPOSE

 csttrs computes the solution to a complex system of linear
 equations A * X = B, where A is an N-by-N symmetric tridiag-
 onal matrix and X and B are N-by-NRHS matrices.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 INTEGER
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 L (input) COMPLEX array, dimension (N-1)
 On entry, the subdiagonal elements of LL and DD.

 D (input) COMPLEX array, dimension (N)
 On entry, the diagonal elements of DD.

 SUBL (input)
 COMPLEX array, dimension (N-2)
 On entry, the second subdiagonal elements of LL.

 B (input/output)
 COMPLEX array, dimension (LDB, NRHS)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 INTEGER
 The leading dimension of the array B. LDB >=
 max(1, N)

 IPIV (output)
 INTEGER array, dimension (N)
 Details of the interchanges and block pivot. If
 IPIV(K) > 0, 1 by 1 pivot, and if IPIV(K) = K + 1
 an interchange done; If IPIV(K) < 0, 2 by 2
 pivot, no interchange required.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cswap - Exchange vectors x and y.

SYNOPSIS

 SUBROUTINE CSWAP(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE CSWAP_64(N, X, INCX, Y, INCY)

 COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE SWAP([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE SWAP_64([N], X, [INCX], Y, [INCY])

 COMPLEX, DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void cswap(int n, complex *x, int incx, complex *y, int
 incy);

 void cswap_64(long n, complex *x, long incx, complex *y,
 long incy);

PURPOSE

 cswap Exchange x and y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, the y vector.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, the x vector.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csycon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric matrix A using the fac-
 torization A = U*D*U**T or A = L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE CSYCON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 REAL ANORM, RCOND

 SUBROUTINE CSYCON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE SYCON(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 SUBROUTINE SYCON_64(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void csycon(char uplo, int n, complex *a, int lda, int
 *ipivot, float anorm, float *rcond, int *info);

 void csycon_64(char uplo, long n, complex *a, long lda, long
 *ipivot, float anorm, float *rcond, long *info);

PURPOSE

 csycon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric matrix A using the fac-
 torization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csymm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE CSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, LDA, LDB, LDC

 SUBROUTINE CSYMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE SYMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, LDA, LDB, LDC

 SUBROUTINE SYMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void csymm(char side, char uplo, int m, int n, complex
 *alpha, complex *a, int lda, complex *b, int ldb,

 complex *beta, complex *c, int ldc);

 void csymm_64(char side, char uplo, long m, long n, complex
 *alpha, complex *a, long lda, complex *b, long
 ldb, complex *beta, complex *c, long ldc);

PURPOSE

 csymm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is a symmetric matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the symmetric
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the symmetric
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the symmetric matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.
 A (input)
 COMPLEX array of DIMENSION (LDA, ka), where ka
 is m when SIDE = 'L' or 'l' and is n other-
 wise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading m by m upper triangular part of the
 array A must contain the upper triangular part

 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 COMPLEX array of DIMENSION (LDB, n). Before
 entry, the leading m by n part of the array B
 must contain the matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n). Before
 entry, the leading m by n part of the array C
 must contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csyr2k - perform one of the symmetric rank 2k operations C
 := alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C

SYNOPSIS

 SUBROUTINE CSYR2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER N, K, LDA, LDB, LDC

 SUBROUTINE CSYR2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE SYR2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: N, K, LDA, LDB, LDC

 SUBROUTINE SYR2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: N, K, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void csyr2k(char uplo, char transa, int n, int k, complex

 *alpha, complex *a, int lda, complex *b, int ldb,
 complex *beta, complex *c, int ldc);
 void csyr2k_64(char uplo, char transa, long n, long k, com-
 plex *alpha, complex *a, long lda, complex *b,
 long ldb, complex *beta, complex *c, long ldc);

PURPOSE

 csyr2k performs one of the symmetric rank 2k operations C :=
 alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C where alpha and beta are scalars, C
 is an n by n symmetric matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*B' +
 alpha*B*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*B +
 alpha*B'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'T' or 't', K
 specifies the number of rows of the matrices A
 and B. K must be at least zero. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 COMPLEX array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.
 C (input/output)
 COMPLEX array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csyrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE CSYRFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CSYRFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SYRFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SYRFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void csyrfs(char uplo, int n, int nrhs, complex *a, int lda,
 complex *af, int ldaf, int *ipivot, complex *b,
 int ldb, complex *x, int ldx, float *ferr, float
 *berr, int *info);

 void csyrfs_64(char uplo, long n, long nrhs, complex *a,
 long lda, complex *af, long ldaf, long *ipivot,
 complex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 csyrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 CSYTRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-

 ture of D as determined by CSYTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CSYTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csyrk - perform one of the symmetric rank k operations C
 := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C

SYNOPSIS

 SUBROUTINE CSYRK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), C(LDC,*)
 INTEGER N, K, LDA, LDC

 SUBROUTINE CSYRK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 COMPLEX ALPHA, BETA
 COMPLEX A(LDA,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDC

 F95 INTERFACE
 SUBROUTINE SYRK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: N, K, LDA, LDC

 SUBROUTINE SYRK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: N, K, LDA, LDC

 C INTERFACE
 #include <sunperf.h>

 void csyrk(char uplo, char transa, int n, int k, complex
 *alpha, complex *a, int lda, complex *beta, com-
 plex *c, int ldc);

 void csyrk_64(char uplo, char transa, long n, long k, com-
 plex *alpha, complex *a, long lda, complex *beta,
 complex *c, long ldc);

PURPOSE

 csyrk performs one of the symmetric rank k operations C :=
 alpha*A*A' + beta*C or C := alpha*A'*A + beta*C where alpha
 and beta are scalars, C is an n by n symmetric matrix and
 A is an n by k matrix in the first case and a k by n
 matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'T' or 't', K
 specifies the number of rows of the matrix A. K
 must be at least zero. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading

 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csysv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE CSYSV(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER IPIV(*)

 SUBROUTINE CSYSV_64(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
 INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE SYSV(UPLO, [N], [NRHS], A, [LDA], IPIV, B, [LDB], [WORK],
 [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE SYSV_64(UPLO, [N], [NRHS], A, [LDA], IPIV, B, [LDB], [WORK],
 [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void csysv(char uplo, int n, int nrhs, complex *a, int lda,
 int *ipiv, complex *b, int ldb, int *info);
 void csysv_64(char uplo, long n, long nrhs, complex *a, long
 lda, long *ipiv, complex *b, long ldb, long
 *info);

PURPOSE

 csysv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N symmetric matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by CSYTRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CSYTRF. If IPIV(k) >
 0, then rows and columns k and IPIV(k) were inter-
 changed, and D(k,k) is a 1-by-1 diagonal block.
 If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then
 rows and columns k-1 and -IPIV(k) were inter-

 changed and D(k-1:k,k-1:k) is a 2-by-2 diagonal
 block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
 then rows and columns k+1 and -IPIV(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of WORK. LWORK >= 1, and for best per-
 formance LWORK >= N*NB, where NB is the optimal
 blocksize for CSYTRF.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csysvx - use the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B,

SYNOPSIS

 SUBROUTINE CSYSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CSYSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 REAL RCOND
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SYSVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SYSVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void csysvx(char fact, char uplo, int n, int nrhs, complex
 *a, int lda, complex *af, int ldaf, int *ipivot,
 complex *b, int ldb, complex *x, int ldx, float
 *rcond, float *ferr, float *berr, int *info);

 void csysvx_64(char fact, char uplo, long n, long nrhs, com-
 plex *a, long lda, complex *af, long ldaf, long
 *ipivot, complex *b, long ldb, complex *x, long
 ldx, float *rcond, float *ferr, float *berr, long
 *info);

PURPOSE

 csysvx uses the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B, where A is an N-by-N symmetric matrix and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is symmetric and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.
 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution

 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by CSYTRF.

 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CSYTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns

 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CSYTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 2*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 csytf2 - compute the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE CSYTF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE CSYTF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE SYTF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE SYTF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void csytf2(char uplo, int n, complex *a, int lda, int
 *ipiv, int *info);

 void csytf2_64(char uplo, long n, complex *a, long lda, long

 *ipiv, long *info);

PURPOSE

 csytf2 computes the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the transpose of U, and D
 is symmetric and block diagonal with 1-by-1 and 2-by-2 diag-
 onal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 csytrf - compute the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE CSYTRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSYTRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRF(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRF_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csytrf(char uplo, int n, complex *a, int lda, int

 *ipivot, int *info);

 void csytrf_64(char uplo, long n, complex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 csytrf computes the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method.
 The form of the factorization is

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csytri - compute the inverse of a complex symmetric indefin-
 ite matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE CSYTRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSYTRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRI(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRI_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csytri(char uplo, int n, complex *a, int lda, int
 *ipivot, int *info);

 void csytri_64(char uplo, long n, complex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 csytri computes the inverse of a complex symmetric indefin-
 ite matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by CSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CSYTRF.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 csytrs - solve a system of linear equations A*X = B with a
 complex symmetric matrix A using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE CSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE CSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRS(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRS_64(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void csytrs(char uplo, int n, int nrhs, complex *a, int lda,
 int *ipivot, complex *b, int ldb, int *info);

 void csytrs_64(char uplo, long n, long nrhs, complex *a,

 long lda, long *ipivot, complex *b, long ldb, long
 *info);

PURPOSE

 csytrs solves a system of linear equations A*X = B with a
 complex symmetric matrix A using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctbcon - estimate the reciprocal of the condition number of
 a triangular band matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE CTBCON(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NDIAG, LDA, INFO
 REAL RCOND
 REAL WORK2(*)

 SUBROUTINE CTBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, INFO
 REAL RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE TBCON(NORM, UPLO, DIAG, [N], NDIAG, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE TBCON_64(NORM, UPLO, DIAG, [N], NDIAG, A, [LDA], RCOND,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL :: RCOND

 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void ctbcon(char norm, char uplo, char diag, int n, int
 ndiag, complex *a, int lda, float *rcond, int
 *info);

 void ctbcon_64(char norm, char uplo, char diag, long n, long
 ndiag, complex *a, long lda, float *rcond, long
 *info);

PURPOSE

 ctbcon estimates the reciprocal of the condition number of a
 triangular band matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctbmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE CTBMV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER N, NDIAG, LDA, INCY

 SUBROUTINE CTBMV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TBMV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCY

 SUBROUTINE TBMV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctbmv(char uplo, char transa, char diag, int n, int
 ndiag, complex *a, int lda, complex *y, int incy);

 void ctbmv_64(char uplo, char transa, char diag, long n,
 long ndiag, complex *a, long lda, complex *y, long
 incy);

PURPOSE

 ctbmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular band matrix, with (ndiag + 1) diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=
 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain

 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctbrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix

SYNOPSIS

 SUBROUTINE CTBRFS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CTBRFS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TBRFS(UPLO, [TRANSA], DIAG, [N], NDIAG, [NRHS], A, [LDA],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TBRFS_64(UPLO, [TRANSA], DIAG, [N], NDIAG, [NRHS], A, [LDA],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ctbrfs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, complex *a, int lda, complex *b,
 int ldb, complex *x, int ldx, float *ferr, float
 *berr, int *info);

 void ctbrfs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, complex *a, long lda, com-
 plex *b, long ldb, complex *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 ctbrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix.

 The solution matrix X must be computed by CTBTRS or some
 other means before entering this routine. CTBRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=

 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctbsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE CTBSV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER N, NDIAG, LDA, INCY

 SUBROUTINE CTBSV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TBSV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCY

 SUBROUTINE TBSV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctbsv(char uplo, char transa, char diag, int n, int
 ndiag, complex *a, int lda, complex *y, int incy);

 void ctbsv_64(char uplo, char transa, char diag, long n,
 long ndiag, complex *a, long lda, complex *y, long
 incy);

PURPOSE

 ctbsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular band matrix, with (ndiag + 1) diagonals.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=

 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctbtrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CTBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE CTBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, [N], NDIAG, [NRHS], A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, [N], NDIAG, [NRHS], A, [LDA],
 B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctbtrs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, complex *a, int lda, complex *b,
 int ldb, int *info);

 void ctbtrs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, complex *a, long lda, com-

 plex *b, long ldb, long *info);

PURPOSE

 ctbtrs solves a triangular system of the form

 where A is a triangular band matrix of order N, and B is an
 N-by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of A. The j-th
 column of A is stored in the j-th column of the
 array A as follows: if UPLO = 'U', A(kd+1+i-j,j)
 = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
 A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If
 DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctgevc - compute some or all of the right and/or left gen-
 eralized eigenvectors of a pair of complex upper triangular
 matrices (A,B)

SYNOPSIS

 SUBROUTINE CTGEVC(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 REAL RWORK(*)

 SUBROUTINE CTGEVC_64(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE TGEVC(SIDE, HOWMNY, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE TGEVC_64(SIDE, HOWMNY, SELECT, [N], A, [LDA], B, [LDB],
 VL, [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT

 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void ctgevc(char side, char howmny, int *select, int n, com-
 plex *a, int lda, complex *b, int ldb, complex
 *vl, int ldvl, complex *vr, int ldvr, int mm, int
 *m, int *info);

 void ctgevc_64(char side, char howmny, long *select, long n,
 complex *a, long lda, complex *b, long ldb, com-
 plex *vl, long ldvl, complex *vr, long ldvr, long
 mm, long *m, long *info);

PURPOSE

 ctgevc computes some or all of the right and/or left gen-
 eralized eigenvectors of a pair of complex upper triangular
 matrices (A,B).

 The right generalized eigenvector x and the left generalized
 eigenvector y of (A,B) corresponding to a generalized eigen-
 value w are defined by:

 (A - wB) * x = 0 and y**H * (A - wB) = 0

 where y**H denotes the conjugate tranpose of y.

 If an eigenvalue w is determined by zero diagonal elements
 of both A and B, a unit vector is returned as the
 corresponding eigenvector.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of (A,B), or the products Z*X and/or Q*Y, where Z and Q are
 input unitary matrices. If (A,B) was obtained from the gen-
 eralized Schur factorization of an original pair of matrices
 (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
 then Z*X and Q*Y are the matrices of right or left eigenvec-
 tors of A.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvectors;
 = 'B': compute all right and/or left eigenvectors,
 and backtransform them using the input matrices
 supplied in VR and/or VL; = 'S': compute selected
 right and/or left eigenvectors, specified by the
 logical array SELECT.

 SELECT (input)
 If HOWMNY='S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY='A' or 'B', SELECT is
 not referenced. To select the eigenvector

 corresponding to the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrices A and B. N >= 0.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B. B must have real
 diagonal elements.

 LDB (input)
 The leading dimension of array B. LDB >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 unitary matrix Q of left Schur vectors returned by
 CHGEQZ). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Q*Y; if HOWMNY = 'S', the left eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 unitary matrix Z of right Schur vectors returned
 by CHGEQZ). On exit, if SIDE = 'R' or 'B', VR
 contains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Z*X; if HOWMNY = 'S', the right eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VR, in the same order as their
 eigenvalues. If SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 eigenvector occupies one column.

 WORK (workspace)
 dimension(2*N)

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctgexc - reorder the generalized Schur decomposition of a
 complex matrix pair (A,B), using an unitary equivalence
 transformation (A, B) := Q * (A, B) * Z', so that the diago-
 nal block of (A, B) with row index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE CTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, INFO)

 COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL WANTQ, WANTZ

 SUBROUTINE CTGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, INFO)

 COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL*8 WANTQ, WANTZ

 F95 INTERFACE
 SUBROUTINE TGEXC(WANTQ, WANTZ, [N], A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL :: WANTQ, WANTZ

 SUBROUTINE TGEXC_64(WANTQ, WANTZ, [N], A, [LDA], B, [LDB], Q, [LDQ],
 Z, [LDZ], IFST, ILST, [INFO])

 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL(8) :: WANTQ, WANTZ

 C INTERFACE
 #include <sunperf.h>

 void ctgexc(int wantq, int wantz, int n, complex *a, int
 lda, complex *b, int ldb, complex *q, int ldq,

 complex *z, int ldz, int *ifst, int *ilst, int
 *info);

 void ctgexc_64(long wantq, long wantz, long n, complex *a,
 long lda, complex *b, long ldb, complex *q, long
 ldq, complex *z, long ldz, long *ifst, long *ilst,
 long *info);

PURPOSE

 ctgexc reorders the generalized Schur decomposition of a
 complex matrix pair (A,B), using an unitary equivalence
 transformation (A, B) := Q * (A, B) * Z', so that the diago-
 nal block of (A, B) with row index IFST is moved to row
 ILST.

 (A, B) must be in generalized Schur canonical form, that is,
 A and B are both upper triangular.

 Optionally, the matrices Q and Z of generalized Schur vec-
 tors are updated.

 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

ARGUMENTS

 WANTQ (input)

 WANTZ (input)

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper triangular matrix A in the
 pair (A, B). On exit, the updated matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the upper triangular matrix B in the
 pair (A, B). On exit, the updated matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 On entry, if WANTQ = .TRUE., the unitary matrix Q.
 On exit, the updated matrix Q. If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1; If
 WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., the unitary matrix Z.

 On exit, the updated matrix Z. If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1; If
 WANTZ = .TRUE., LDZ >= N.

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 (A, B). The block with row index IFST is moved to
 row ILST, by a sequence of swapping between adja-
 cent blocks.

 ILST (input/output)
 See the description of IFST.

 INFO (output)
 =0: Successful exit.
 <0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1: The transformed matrix pair (A, B) would be
 too far from generalized Schur form; the problem
 is ill- conditioned. (A, B) may have been par-
 tially reordered, and ILST points to the first row
 of the current position of the block being moved.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK working

 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctgsen - reorder the generalized Schur decomposition of a
 complex matrix pair (A, B) (in terms of an unitary
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the pair (A,B)

SYNOPSIS

 SUBROUTINE CTGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK,
 LIWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), Q(LDQ,*),
 Z(LDZ,*), WORK(*)
 INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL WANTQ, WANTZ
 LOGICAL SELECT(*)
 REAL PL, PR
 REAL DIF(*)

 SUBROUTINE CTGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK,
 LIWORK, INFO)

 COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), Q(LDQ,*),
 Z(LDZ,*), WORK(*)
 INTEGER*8 IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 WANTQ, WANTZ
 LOGICAL*8 SELECT(*)
 REAL PL, PR
 REAL DIF(*)

 F95 INTERFACE
 SUBROUTINE TGSEN(IJOB, WANTQ, WANTZ, SELECT, [N], A, [LDA], B, [LDB],
 ALPHA, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK

 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: WANTQ, WANTZ
 LOGICAL, DIMENSION(:) :: SELECT
 REAL :: PL, PR
 REAL, DIMENSION(:) :: DIF
 SUBROUTINE TGSEN_64(IJOB, WANTQ, WANTZ, SELECT, [N], A, [LDA], B,
 [LDB], ALPHA, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX, DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: WANTQ, WANTZ
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL :: PL, PR
 REAL, DIMENSION(:) :: DIF

 C INTERFACE
 #include <sunperf.h>

 void ctgsen(int ijob, int wantq, int wantz, int *select, int
 n, complex *a, int lda, complex *b, int ldb, com-
 plex *alpha, complex *beta, complex *q, int ldq,
 complex *z, int ldz, int *m, float *pl, float *pr,
 float *dif, int *info);

 void ctgsen_64(long ijob, long wantq, long wantz, long
 *select, long n, complex *a, long lda, complex *b,
 long ldb, complex *alpha, complex *beta, complex
 *q, long ldq, complex *z, long ldz, long *m, float
 *pl, float *pr, float *dif, long *info);

PURPOSE

 ctgsen reorders the generalized Schur decomposition of a
 complex matrix pair (A, B) (in terms of an unitary
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the pair (A,B). The leading columns of Q and
 Z form unitary bases of the corresponding left and right
 eigenspaces (deflating subspaces). (A, B) must be in gen-
 eralized Schur canonical form, that is, A and B are both
 upper triangular.

 CTGSEN also computes the generalized eigenvalues

 w(j)= ALPHA(j) / BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, the routine computes estimates of reciprocal
 condition numbers for eigenvalues and eigenspaces. These are
 Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)],
 i.e. the separation(s) between the matrix pairs (A11, B11)
 and (A22,B22) that correspond to the selected cluster and
 the eigenvalues outside the cluster, resp., and norms of
 "projections" onto left and right eigenspaces w.r.t. the

 selected cluster in the (1,1)-block.

ARGUMENTS

 IJOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (PL and PR) or the
 deflating subspaces (Difu and Difl):
 =0: Only reorder w.r.t. SELECT. No extras.
 =1: Reciprocal of norms of "projections" onto left
 and right eigenspaces w.r.t. the selected cluster
 (PL and PR). =2: Upper bounds on Difu and Difl.
 F-norm-based estimate
 (DIF(1:2)).
 =3: Estimate of Difu and Difl. 1-norm-based esti-
 mate
 (DIF(1:2)). About 5 times as expensive as IJOB =
 2. =4: Compute PL, PR and DIF (i.e. 0, 1 and 2
 above): Economic version to get it all. =5: Com-
 pute PL, PR and DIF (i.e. 0, 1 and 3 above)

 WANTQ (input)

 WANTZ (input)

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select an eigenvalue w(j), SELECT(j)
 must be set to

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper triangular matrix A, in gen-
 eralized Schur canonical form. On exit, A is
 overwritten by the reordered matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 B (input/output)
 On entry, the upper triangular matrix B, in gen-
 eralized Schur canonical form. On exit, B is
 overwritten by the reordered matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ALPHA (output)
 The diagonal elements of A and B, respectively,
 when the pair (A,B) has been reduced to general-
 ized Schur form. ALPHA(i)/BETA(i) i=1,...,N are
 the generalized eigenvalues.

 BETA (output)
 See the description of ALPHA.

 Q (input/output)
 On entry, if WANTQ = .TRUE., Q is an N-by-N
 matrix. On exit, Q has been postmultiplied by the
 left unitary transformation matrix which reorder

 (A, B); The leading M columns of Q form orthonor-
 mal bases for the specified pair of left eigen-
 spaces (deflating subspaces). If WANTQ = .FALSE.,
 Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., Z is an N-by-N
 matrix. On exit, Z has been postmultiplied by the
 left unitary transformation matrix which reorder
 (A, B); The leading M columns of Z form orthonor-
 mal bases for the specified pair of left eigen-
 spaces (deflating subspaces). If WANTZ = .FALSE.,
 Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If WANTZ = .TRUE., LDZ >= N.
 M (output)
 The dimension of the specified pair of left and
 right eigenspaces, (deflating subspaces) 0 <= M <=
 N.

 PL (output)
 IF IJOB = 1, 4, or 5, PL, PR are lower bounds on
 the reciprocal of the norm of "projections" onto
 left and right eigenspace with respect to the
 selected cluster.
 0 < PL, PR <= 1. If M = 0 or M = N, PL = PR = 1.
 If IJOB = 0, 2, or 3 PL, PR are not referenced.

 PR (output)
 See the description of PL.

 DIF (output)
 If IJOB >= 2, DIF(1:2) store the estimates of Difu
 and Difl.
 If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper
 bounds on
 Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-
 norm-based estimates of Difu and Difl, computed
 using reversed communication with CLACON. If M =
 0 or N, DIF(1:2) = F-norm([A, B]). If IJOB = 0 or
 1, DIF is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1 If
 IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M) If IJOB = 3
 or 5, LWORK >= 4*M*(N-M)

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 If IJOB = 0, IWORK is not referenced. Otherwise,
 on exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 1. If
 IJOB = 1, 2 or 4, LIWORK >= N+2; If IJOB = 3 or
 5, LIWORK >= MAX(N+2, 2*M*(N-M));

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 =0: Successful exit.
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 =1: Reordering of (A, B) failed because the
 transformed matrix pair (A, B) would be too far
 from generalized Schur form; the problem is very
 ill-conditioned. (A, B) may have been partially
 reordered. If requested, 0 is returned in DIF(*),
 PL and PR.

FURTHER DETAILS

 CTGSEN first collects the selected eigenvalues by computing
 unitary U and W that move them to the top left corner of (A,
 B). In other words, the selected eigenvalues are the eigen-
 values of (A11, B11) in

 U'*(A, B)*W = (A11 A12) (B11 B12) n1
 (0 A22),(0 B22) n2
 n1 n2 n1 n2

 where N = n1+n2 and U' means the conjugate transpose of U.
 The first n1 columns of U and W span the specified pair of
 left and right eigenspaces (deflating subspaces) of (A, B).

 If (A, B) has been obtained from the generalized real Schur
 decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then
 the reordered generalized Schur form of (C, D) is given by

 (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',

 and the first n1 columns of Q*U and Z*W span the correspond-
 ing deflating subspaces of (C, D) (Q and Z store Q*U and
 Z*W, resp.).

 Note that if the selected eigenvalue is sufficiently ill-
 conditioned, then its value may differ significantly from
 its value before reordering.

 The reciprocal condition numbers of the left and right
 eigenspaces spanned by the first n1 columns of U and W (or
 Q*U and Z*W) may be returned in DIF(1:2), corresponding to
 Difu and Difl, resp.

 The Difu and Difl are defined as:
 ifu[(A11, B11), (A22, B22)] = sigma-min(Zu)

 and

 where sigma-min(Zu) is the smallest singular value of the
 (2*n1*n2)-by-(2*n1*n2) matrix
 u = [kron(In2, A11) -kron(A22', In1)]
 [kron(In2, B11) -kron(B22', In1)].

 Here, Inx is the identity matrix of size nx and A22' is the
 transpose of A22. kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 When DIF(2) is small, small changes in (A, B) can cause
 large changes in the deflating subspace. An approximate
 (asymptotic) bound on the maximum angular error in the com-
 puted deflating subspaces is PS * norm((A, B)) / DIF(2),

 where EPS is the machine precision.

 The reciprocal norm of the projectors on the left and right
 eigenspaces associated with (A11, B11) may be returned in PL
 and PR. They are computed as follows. First we compute L
 and R so that P*(A, B)*Q is block diagonal, where
 = (I -L) n1 Q = (I R) n1
 (0 I) n2 and (0 I) n2
 n1 n2 n1 n2

 and (L, R) is the solution to the generalized Sylvester
 equation 11*R - L*A22 = -A12

 Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-
 norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on
 the average absolute error of the selected eigenvalues is
 EPS * norm((A, B)) / PL.

 There are also global error bounds which valid for perturba-
 tions up to a certain restriction: A lower bound (x) on the
 smallest F-norm(E,F) for which an eigenvalue of (A11, B11)
 may move and coalesce with an eigenvalue of (A22, B22) under
 perturbation (E,F), (i.e. (A + E, B + F), is

 x =
 min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
 An approximate bound on x can be computed from DIF(1:2), PL
 and PL.

 If y = (F-norm(E,F) / x) <= 1, the angles between the per-
 turbed (L', R') and unperturbed (L, R) left and right
 deflating subspaces associated with the selected cluster in
 the (1,1)-blocks can be bounded as

 max-angle(L, L') <= arctan(y * PL / (1 - y * (1 - PL *
 PL)**(1/2))
 max-angle(R, R') <= arctan(y * PR / (1 - y * (1 - PR *
 PR)**(1/2))

 See LAPACK User's Guide section 4.11 or the following refer-
 ences for more information.

 Note that if the default method for computing the
 Frobenius-norm- based estimate DIF is not wanted (see
 CLATDF), then the parameter IDIFJB (see below) should be
 changed from 3 to 4 (routine CLATDF (IJOB = 2 will be
 used)). See CTGSYL for more details.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctgsja - compute the generalized singular value decomposi-
 tion (GSVD) of two complex upper triangular (or trapezoidal)
 matrices A and B

SYNOPSIS

 SUBROUTINE CTGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 WORK(*)
 INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
 REAL TOLA, TOLB
 REAL ALPHA(*), BETA(*)

 SUBROUTINE CTGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 WORK(*)
 INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL TOLA, TOLB
 REAL ALPHA(*), BETA(*)

 F95 INTERFACE
 SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA], B,
 [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: ALPHA, BETA

 SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA],

 B, [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCY-
 CLE, INFO
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: ALPHA, BETA

 C INTERFACE
 #include <sunperf.h>

 void ctgsja(char jobu, char jobv, char jobq, int m, int p,
 int n, int k, int l, complex *a, int lda, complex
 *b, int ldb, float tola, float tolb, float *alpha,
 float *beta, complex *u, int ldu, complex *v, int
 ldv, complex *q, int ldq, int *ncycle, int *info);

 void ctgsja_64(char jobu, char jobv, char jobq, long m, long
 p, long n, long k, long l, complex *a, long lda,
 complex *b, long ldb, float tola, float tolb,
 float *alpha, float *beta, complex *u, long ldu,
 complex *v, long ldv, complex *q, long ldq, long
 *ncycle, long *info);

PURPOSE

 ctgsja computes the generalized singular value decomposition
 (GSVD) of two complex upper triangular (or trapezoidal)
 matrices A and B.

 On entry, it is assumed that matrices A and B have the fol-
 lowing forms, which may be obtained by the preprocessing
 subroutine CGGSVP from a general M-by-N matrix A and P-by-N
 matrix B:

 N-K-L K L
 A = K (0 A12 A13) if M-K-L >= 0;
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 A = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 B = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.

 On exit,
 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R),

 where U, V and Q are unitary matrices, Z' denotes the conju-
 gate transpose of Z, R is a nonsingular upper triangular
 matrix, and D1 and D2 are ``diagonal'' matrices, which are
 of the following structures:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12) K
 L (0 0 R22) L

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M

 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where
 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 R = (R11 R12 R13) is stored in A(1:M, N-K-L+1:N) and R33
 is stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The computation of the unitary transformation matrices U, V
 or Q is optional. These matrices may either be formed
 explicitly, or they may be postmultiplied into input
 matrices U1, V1, or Q1.

 CTGSJA essentially uses a variant of Kogbetliantz algorithm
 to reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix
 A23 and L-by-L matrix B13 to the form:
 U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
 where U1, V1 and Q1 are unitary matrix, and Z' is the conju-
 gate transpose of Z. C1 and S1 are diagonal matrices satis-
 fying
 C1**2 + S1**2 = I,
 and R1 is an L-by-L nonsingular upper triangular matrix.

ARGUMENTS

 JOBU (input)
 = 'U': U must contain a unitary matrix U1 on
 entry, and the product U1*U is returned; = 'I': U
 is initialized to the unit matrix, and the unitary
 matrix U is returned; = 'N': U is not computed.

 JOBV (input)
 = 'V': V must contain a unitary matrix V1 on
 entry, and the product V1*V is returned; = 'I': V
 is initialized to the unit matrix, and the unitary
 matrix V is returned; = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Q must contain a unitary matrix Q1 on
 entry, and the product Q1*Q is returned; = 'I': Q
 is initialized to the unit matrix, and the unitary
 matrix Q is returned; = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.
 K (input) K and L specify the subblocks in the input
 matrices A and B:
 A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 =
 B(1:L,,N-L+1:N) of A and B, whose GSVD is going to
 be computed by CTGSJA. See the Further Details
 section below.

 L (input) See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A(N-
 K+1:N,1:MIN(K+L,M)) contains the triangular
 matrix R or part of R. See Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, if neces-
 sary, B(M-K+1:L,N+M-K-L+1:N) contains a part of R.
 See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the convergence criteria for the
 Jacobi- Kogbetliantz iteration procedure. Gen-
 erally, they are the same as used in the prepro-
 cessing step, say TOLA = MAX(M,N)*norm(A)*MACHEPS,
 TOLB = MAX(P,N)*norm(B)*MACHEPS.

 TOLB (input)

 See the description of TOLA.

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = diag(C),
 BETA(K+1:K+L) = diag(S), or if M-K-L < 0,
 ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore,
 if K+L < N, ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0.

 BETA (output)
 See the description of ALPHA.

 U (input) On entry, if JOBU = 'U', U must contain a matrix
 U1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBU = 'I', U contains the
 unitary matrix U; if JOBU = 'U', U contains the
 product U1*U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) On entry, if JOBV = 'V', V must contain a matrix
 V1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBV = 'I', V contains the
 unitary matrix V; if JOBV = 'V', V contains the
 product V1*V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) On entry, if JOBQ = 'Q', Q must contain a matrix
 Q1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBQ = 'I', Q contains the
 unitary matrix Q; if JOBQ = 'Q', Q contains the
 product Q1*Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 NCYCLE (output)
 The number of cycles required for convergence.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1: the procedure does not converge after MAXIT
 cycles.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctgsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B)

SYNOPSIS

 SUBROUTINE CTGSNA(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 REAL S(*), DIF(*)

 SUBROUTINE CTGSNA_64(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 REAL S(*), DIF(*)

 F95 INTERFACE
 SUBROUTINE TGSNA(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, DIF

 SUBROUTINE TGSNA_64(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, DIF
 C INTERFACE
 #include <sunperf.h>

 void ctgsna(char job, char howmnt, int *select, int n, com-
 plex *a, int lda, complex *b, int ldb, complex
 *vl, int ldvl, complex *vr, int ldvr, float *s,
 float *dif, int mm, int *m, int *info);

 void ctgsna_64(char job, char howmnt, long *select, long n,
 complex *a, long lda, complex *b, long ldb, com-
 plex *vl, long ldvl, complex *vr, long ldvr, float
 *s, float *dif, long mm, long *m, long *info);

PURPOSE

 ctgsna estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B).

 (A, B) must be in generalized Schur canonical form, that is,
 A and B are both upper triangular.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (DIF):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (DIF);
 = 'B': for both eigenvalues and eigenvectors (S
 and DIF).

 HOWMNT (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNT = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the corresponding j-
 th eigenvalue and/or eigenvector, SELECT(j) must
 be set to .TRUE.. If HOWMNT = 'A', SELECT is not
 referenced.

 N (input) The order of the square matrix pair (A, B). N >=
 0.
 A (input) The upper triangular matrix A in the pair (A,B).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B in the pair (A, B).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VL, as
 returned by CTGEVC. If JOB = 'V', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and If JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VR, as
 returned by CTGEVC. If JOB = 'V', VR is not
 referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 If JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. If JOB = 'V',
 S is not referenced.

 DIF (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 the eigenvalues cannot be reordered to compute
 DIF(j), DIF(j) is set to 0; this can only occur
 when the true value would be very small anyway.
 For each eigenvalue/vector specified by SELECT,
 DIF stores a Frobenius norm-based estimate of
 Difl. If JOB = 'E', DIF is not referenced.

 MM (input)
 The number of elements in the arrays S and DIF. MM
 >= M.

 M (output)
 The number of elements of the arrays S and DIF
 used to store the specified condition numbers; for
 each selected eigenvalue one element is used. If
 HOWMNT = 'A', M is set to N.

 WORK (workspace)
 If JOB = 'E', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)

 The dimension of the array WORK. LWORK >= 1. If
 JOB = 'V' or 'B', LWORK >= 2*N*N.

 IWORK (workspace)
 dimension(N+2) If JOB = 'E', IWORK is not refer-
 enced.

 INFO (output)
 = 0: Successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of the i-th general-
 ized eigenvalue w = (a, b) is defined as

 S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) /
 (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of (A, B)
 corresponding to w; |z| denotes the absolute value of the
 complex number, and norm(u) denotes the 2-norm of the vector
 u. The pair (a, b) corresponds to an eigenvalue w = a/b (=
 v'Au/v'Bu) of the matrix pair (A, B). If both a and b equal
 zero, then (A,B) is singular and S(I) = -1 is returned.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is

 chord(w, lambda) <= EPS * norm(A, B) / S(I),

 where EPS is the machine precision.

 The reciprocal of the condition number of the right eigen-
 vector u and left eigenvector v corresponding to the gen-
 eralized eigenvalue w is defined as follows. Suppose

 (A, B) = (a *) (b *) 1
 (0 A22),(0 B22) n-1
 1 n-1 1 n-1

 Then the reciprocal condition number DIF(I) is

 Difl[(a, b), (A22, B22)] = sigma-min(Zl)

 where sigma-min(Zl) denotes the smallest singular value of

 Zl = [kron(a, In-1) -kron(1, A22)]
 [kron(b, In-1) -kron(1, B22)].

 Here In-1 is the identity matrix of size n-1 and X' is the
 conjugate transpose of X. kron(X, Y) is the Kronecker pro-
 duct between the matrices X and Y.

 We approximate the smallest singular value of Zl with an
 upper bound. This is done by CLATDF.

 An approximate error bound for a computed eigenvector VL(i)
 or VR(i) is given by

 EPS * norm(A, B) / DIF(i).

 See ref. [2-3] for more details and further references.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========
 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75.
 To appear in ACM Trans. on Math. Software, Vol 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctgsyl - solve the generalized Sylvester equation

SYNOPSIS

 SUBROUTINE CTGSYL(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), E(LDE,*),
 F(LDF,*), WORK(*)
 INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER IWORK(*)
 REAL SCALE, DIF

 SUBROUTINE CTGSYL_64(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), E(LDE,*),
 F(LDF,*), WORK(*)
 INTEGER*8 IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER*8 IWORK(*)
 REAL SCALE, DIF

 F95 INTERFACE
 SUBROUTINE TGSYL(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C, [LDC],
 D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: TRANS
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, C, D, E, F
 INTEGER :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: SCALE, DIF

 SUBROUTINE TGSYL_64(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK],

 [IWORK], [INFO])

 CHARACTER(LEN=1) :: TRANS
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, C, D, E, F
 INTEGER(8) :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF,
 LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL :: SCALE, DIF

 C INTERFACE
 #include <sunperf.h>

 void ctgsyl(char trans, int ijob, int m, int n, complex *a,
 int lda, complex *b, int ldb, complex *c, int ldc,
 complex *d, int ldd, complex *e, int lde, complex
 *f, int ldf, float *scale, float *dif, int *info);

 void ctgsyl_64(char trans, long ijob, long m, long n, com-
 plex *a, long lda, complex *b, long ldb, complex
 *c, long ldc, complex *d, long ldd, complex *e,
 long lde, complex *f, long ldf, float *scale,
 float *dif, long *info);

PURPOSE

 ctgsyl solves the generalized Sylvester equation:

 A * R - L * B = scale * C (1)
 D * R - L * E = scale * F

 where R and L are unknown m-by-n matrices, (A, D), (B, E)
 and (C, F) are given matrix pairs of size m-by-m, n-by-n and
 m-by-n, respectively, with complex entries. A, B, D and E
 are upper triangular (i.e., (A,D) and (B,E) in generalized
 Schur form).

 The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
 is an output scaling factor chosen to avoid overflow.

 In matrix notation (1) is equivalent to solve Zx = scale*b,
 where Z is defined as

 Z = [kron(In, A) -kron(B', Im)] (2)
 [kron(In, D) -kron(E', Im)],

 Here Ix is the identity matrix of size x and X' is the con-
 jugate transpose of X. Kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 If TRANS = 'C', y in the conjugate transposed system Z'*y =
 scale*b is solved for, which is equivalent to solve for R
 and L in

 A' * R + D' * L = scale * C (3)
 R * B' + L * E' = scale * -F

 This case (TRANS = 'C') is used to compute an one-norm-based
 estimate of Dif[(A,D), (B,E)], the separation between the
 matrix pairs (A,D) and (B,E), using CLACON.

 If IJOB >= 1, CTGSYL computes a Frobenius norm-based esti-

 mate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower
 bound on the reciprocal of the smallest singular value of Z.

 This is a level-3 BLAS algorithm.

ARGUMENTS

 TRANS (input)
 = 'N': solve the generalized sylvester equation
 (1).
 = 'C': solve the "conjugate transposed" system
 (3).

 IJOB (input)
 Specifies what kind of functionality to be per-
 formed. =0: solve (1) only.
 =1: The functionality of 0 and 3.
 =2: The functionality of 0 and 4.
 =3: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (look ahead strategy is used). =4: Only
 an estimate of Dif[(A,D), (B,E)] is computed.
 (CGECON on sub-systems is used). Not referenced
 if TRANS = 'C'.

 M (input) The order of the matrices A and D, and the row
 dimension of the matrices C, F, R and L.

 N (input) The order of the matrices B and E, and the column
 dimension of the matrices C, F, R and L.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1, M).

 B (input) The upper triangular matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1, N).

 C (input/output)
 On entry, C contains the right-hand-side of the
 first matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, C has been overwritten by the
 solution R. If IJOB = 3 or 4 and TRANS = 'N', C
 holds R, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1, M).

 D (input) The upper triangular matrix D.

 LDD (input)
 The leading dimension of the array D. LDD >=
 max(1, M).

 E (input) The upper triangular matrix E.

 LDE (input)
 The leading dimension of the array E. LDE >=
 max(1, N).

 F (input/output)
 On entry, F contains the right-hand-side of the
 second matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, F has been overwritten by the
 solution L. If IJOB = 3 or 4 and TRANS = 'N', F
 holds L, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDF (input)
 The leading dimension of the array F. LDF >=
 max(1, M).

 DIF (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] = sigma-
 min(Z), where Z as in (2). If IJOB = 0 or TRANS =
 'C', SCALE is not referenced.

 SCALE (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] = sigma-
 min(Z), where Z as in (2). If IJOB = 0 or TRANS =
 'C', SCALE is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO=0 then WORK(1) returns the
 optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK > = 1. If
 IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 If IJOB = 0, IWORK is not referenced.

 INFO (output)
 =0: successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 >0: (A, D) and (B, E) have common or very close
 eigenvalues.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and

 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

 [2] B. Kagstrom, A Perturbation Analysis of the Generalized
 Sylvester
 Equation (AR - LB, DR - LE) = (C, F), SIAM J. Matrix
 Anal.
 Appl., 15(4):1045-1060, 1994.

 [3] B. Kagstrom and L. Westin, Generalized Schur Methods
 with
 Condition Estimators for Solving the Generalized Sylves-
 ter
 Equation, IEEE Transactions on Automatic Control, Vol.
 34, No. 7,
 July 1989, pp 745-751.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctpcon - estimate the reciprocal of the condition number of
 a packed triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE CTPCON(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 REAL RCOND
 REAL WORK2(*)

 SUBROUTINE CTPCON_64(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 REAL RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE TPCON(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE TPCON_64(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 C INTERFACE

 #include <sunperf.h>

 void ctpcon(char norm, char uplo, char diag, int n, complex
 *a, float *rcond, int *info);
 void ctpcon_64(char norm, char uplo, char diag, long n, com-
 plex *a, float *rcond, long *info);

PURPOSE

 ctpcon estimates the reciprocal of the condition number of a
 packed triangular matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).
 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctpmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE CTPMV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), Y(*)
 INTEGER N, INCY

 SUBROUTINE CTPMV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE TPMV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, Y
 INTEGER :: N, INCY

 SUBROUTINE TPMV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctpmv(char uplo, char transa, char diag, int n, complex
 *a, complex *y, int incy);

 void ctpmv_64(char uplo, char transa, char diag, long n,
 complex *a, complex *y, long incy);

PURPOSE

 ctpmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular matrix, supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'
 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)

 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctprfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix

SYNOPSIS

 SUBROUTINE CTPRFS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CTPRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TPRFS(UPLO, [TRANSA], DIAG, N, [NRHS], A, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TPRFS_64(UPLO, [TRANSA], DIAG, N, [NRHS], A, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, WORK
 COMPLEX, DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ctprfs(char uplo, char transa, char diag, int n, int
 nrhs, complex *a, complex *b, int ldb, complex *x,
 int ldx, float *ferr, float *berr, int *info);
 void ctprfs_64(char uplo, char transa, char diag, long n,
 long nrhs, complex *a, complex *b, long ldb, com-
 plex *x, long ldx, float *ferr, float *berr, long
 *info);

PURPOSE

 ctprfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix.

 The solution matrix X must be computed by CTPTRS or some
 other means before entering this routine. CTPRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctpsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE CTPSV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), Y(*)
 INTEGER N, INCY

 SUBROUTINE CTPSV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE TPSV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, Y
 INTEGER :: N, INCY

 SUBROUTINE TPSV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A, Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctpsv(char uplo, char transa, char diag, int n, complex
 *a, complex *y, int incy);

 void ctpsv_64(char uplo, char transa, char diag, long n,
 complex *a, complex *y, long incy);

PURPOSE

 ctpsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'

 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctptri - compute the inverse of a complex upper or lower
 triangular matrix A stored in packed format

SYNOPSIS

 SUBROUTINE CTPTRI(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE CTPTRI_64(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE TPTRI(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctptri(char uplo, char diag, int n, complex *a, int
 *info);

 void ctptri_64(char uplo, char diag, long n, complex *a,
 long *info);

PURPOSE

 ctptri computes the inverse of a complex upper or lower tri-
 angular matrix A stored in packed format.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangular matrix A,
 stored columnwise in a linear array. The j-th
 column of A is stored in the array A as follows:
 if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j) for
 1<=i<=j; if UPLO = 'L', A(i + (j-1)*((2*n-j)/2) =
 A(i,j) for j<=i<=n. See below for further
 details. On exit, the (triangular) inverse of the
 original matrix, in the same packed storage for-
 mat.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

FURTHER DETAILS

 A triangular matrix A can be transferred to packed storage
 using one of the following program segments:

 UPLO = 'U': UPLO = 'L':

 JC = 1 JC = 1
 DO 2 J = 1, N DO 2 J = 1, N
 DO 1 I = 1, J DO 1 I = J, N
 A(JC+I-1) = A(I,J) A(JC+I-J) =
 A(I,J)
 1 CONTINUE 1 CONTINUE
 JC = JC + J JC = JC + N - J +
 1
 2 CONTINUE 2 CONTINUE

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctptrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CTPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE CTPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TPTRS(UPLO, TRANSA, DIAG, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE TPTRS_64(UPLO, TRANSA, DIAG, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: A
 COMPLEX, DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctptrs(char uplo, char transa, char diag, int n, int
 nrhs, complex *a, complex *b, int ldb, int *info);

 void ctptrs_64(char uplo, char transa, char diag, long n,
 long nrhs, complex *a, complex *b, long ldb, long
 *info);

PURPOSE

 ctptrs solves a triangular system of the form

 where A is a triangular matrix of order N stored in packed
 format, and B is an N-by-NRHS matrix. A check is made to
 verify that A is nonsingular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrans - transpose and scale source matrix

SYNOPSIS

 SUBROUTINE CTRANS(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 COMPLEX SCALE
 COMPLEX SOURCE(*), DEST(*)
 INTEGER M, N

 SUBROUTINE CTRANS_64(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 COMPLEX SCALE
 COMPLEX SOURCE(*), DEST(*)
 INTEGER*8 M, N

 F95 INTERFACE
 SUBROUTINE TRANS([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 COMPLEX :: SCALE
 COMPLEX, DIMENSION(:) :: SOURCE, DEST
 INTEGER :: M, N

 SUBROUTINE TRANS_64([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 COMPLEX :: SCALE
 COMPLEX, DIMENSION(:) :: SOURCE, DEST
 INTEGER(8) :: M, N

 C INTERFACE
 #include <sunperf.h>

 void ctrans(char place, complex *scale, complex *source, int
 m, int n, complex *dest);

 void ctrans_64(char place, complex *scale, complex *source,
 long m, long n, complex *dest);

PURPOSE

 ctrans scales and transposes the source matrix. The N2 x N1
 result is written into SOURCE when PLACE = 'I' or 'i', and
 DEST when PLACE = 'O' or 'o'.
 PLACE = 'I' or 'i': SOURCE = SCALE * SOURCE'

 PLACE = 'O' or 'o': DEST = SCALE * SOURCE'

ARGUMENTS

 PLACE (input)
 Type of transpose. 'I' or 'i' for in-place, 'O'
 or 'o' for out-of-place. 'I' is default.

 SCALE (input)
 Scale factor on the SOURCE matrix.

 SOURCE (input/output)
 on input. Array of (N, M) on output if in-place
 transpose.

 M (input)
 Number of rows in the SOURCE matrix on input.

 N (input)
 Number of columns in the SOURCE matrix on input.

 DEST (output)
 Scaled and transposed SOURCE matrix if out-of-
 place transpose. Not referenced if in-place tran-
 spose.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrcon - estimate the reciprocal of the condition number of
 a triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE CTRCON(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 REAL RCOND
 REAL WORK2(*)

 SUBROUTINE CTRCON_64(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 REAL RCOND
 REAL WORK2(*)

 F95 INTERFACE
 SUBROUTINE TRCON(NORM, UPLO, DIAG, [N], A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK2

 SUBROUTINE TRCON_64(NORM, UPLO, DIAG, [N], A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL :: RCOND

 REAL, DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void ctrcon(char norm, char uplo, char diag, int n, complex
 *a, int lda, float *rcond, int *info);

 void ctrcon_64(char norm, char uplo, char diag, long n, com-
 plex *a, long lda, float *rcond, long *info);

PURPOSE

 ctrcon estimates the reciprocal of the condition number of a
 triangular matrix A, in either the 1-norm or the infinity-
 norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctrevc - compute some or all of the right and/or left eigen-
 vectors of a complex upper triangular matrix T

SYNOPSIS

 SUBROUTINE CTREVC(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 REAL RWORK(*)

 SUBROUTINE CTREVC_64(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 REAL RWORK(*)

 F95 INTERFACE
 SUBROUTINE TREVC(SIDE, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL], VR,
 [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: T, VL, VR
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: RWORK

 SUBROUTINE TREVC_64(SIDE, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL],
 VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: T, VL, VR
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, INFO

 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void ctrevc(char side, char howmny, int *select, int n, com-
 plex *t, int ldt, complex *vl, int ldvl, complex
 *vr, int ldvr, int mm, int *m, int *info);

 void ctrevc_64(char side, char howmny, long *select, long n,
 complex *t, long ldt, complex *vl, long ldvl, com-
 plex *vr, long ldvr, long mm, long *m, long
 *info);

PURPOSE

 ctrevc computes some or all of the right and/or left eigen-
 vectors of a complex upper triangular matrix T.

 The right eigenvector x and the left eigenvector y of T
 corresponding to an eigenvalue w are defined by:

 T*x = w*x, y'*T = w*y'

 where y' denotes the conjugate transpose of the vector y.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of T, or the products Q*X and/or Q*Y, where Q is an input
 unitary
 matrix. If T was obtained from the Schur factorization of an
 original matrix A = Q*T*Q', then Q*X and Q*Y are the
 matrices of right or left eigenvectors of A.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvec-
 tors;
 = 'B': compute all right and/or left eigenvec-
 tors, and backtransform them using the input
 matrices supplied in VR and/or VL; = 'S': compute
 selected right and/or left eigenvectors, specified
 by the logical array SELECT.

 SELECT (input/output)
 If HOWMNY = 'S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY = 'A' or 'B', SELECT is
 not referenced. To select the eigenvector
 corresponding to the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrix T. N >= 0.

 T (input/output)

 The upper triangular matrix T. T is modified, but
 restored on exit.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 unitary matrix Q of Schur vectors returned by
 CHSEQR). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of T; VL is lower triangular. The i-
 th column VL(i) of VL is the eigenvector
 corresponding to T(i,i). if HOWMNY = 'B', the
 matrix Q*Y; if HOWMNY = 'S', the left eigenvectors
 of T specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 unitary matrix Q of Schur vectors returned by
 CHSEQR). On exit, if SIDE = 'R' or 'B', VR con-
 tains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of T; VR is upper triangular. The i-
 th column VR(i) of VR is the eigenvector
 corresponding to T(i,i). if HOWMNY = 'B', the
 matrix Q*X; if HOWMNY = 'S', the right eigenvec-
 tors of T specified by SELECT, stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. If SIDE = 'L', VR is not
 referenced.
 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 eigenvector occupies one column.

 WORK (workspace)
 dimension(2*N)

 RWORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value

FURTHER DETAILS

 The algorithm used in this program is basically backward
 (forward) substitution, with scaling to make the the code
 robust against possible overflow.

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x| + |y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrexc - reorder the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that the diagonal element of T with row
 index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE CTREXC(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO)

 CHARACTER * 1 COMPQ
 COMPLEX T(LDT,*), Q(LDQ,*)
 INTEGER N, LDT, LDQ, IFST, ILST, INFO

 SUBROUTINE CTREXC_64(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO)

 CHARACTER * 1 COMPQ
 COMPLEX T(LDT,*), Q(LDQ,*)
 INTEGER*8 N, LDT, LDQ, IFST, ILST, INFO

 F95 INTERFACE
 SUBROUTINE TREXC(COMPQ, [N], T, [LDT], Q, [LDQ], IFST, ILST, [INFO])

 CHARACTER(LEN=1) :: COMPQ
 COMPLEX, DIMENSION(:,:) :: T, Q
 INTEGER :: N, LDT, LDQ, IFST, ILST, INFO

 SUBROUTINE TREXC_64(COMPQ, [N], T, [LDT], Q, [LDQ], IFST, ILST, [INFO])

 CHARACTER(LEN=1) :: COMPQ
 COMPLEX, DIMENSION(:,:) :: T, Q
 INTEGER(8) :: N, LDT, LDQ, IFST, ILST, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctrexc(char compq, int n, complex *t, int ldt, complex
 *q, int ldq, int ifst, int ilst, int *info);

 void ctrexc_64(char compq, long n, complex *t, long ldt,
 complex *q, long ldq, long ifst, long ilst, long
 *info);

PURPOSE

 ctrexc reorders the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that the diagonal element of T with row
 index IFST is moved to row ILST.
 The Schur form T is reordered by a unitary similarity
 transformation Z**H*T*Z, and optionally the matrix Q of
 Schur vectors is updated by postmultplying it with Z.

ARGUMENTS

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper triangular matrix T. On exit,
 the reordered upper triangular matrix.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the unitary transformation
 matrix Z which reorders T. If COMPQ = 'N', Q is
 not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 IFST (input)
 Specify the reordering of the diagonal elements of
 T: The element with row index IFST is moved to
 row ILST by a sequence of transpositions between
 adjacent elements. 1 <= IFST <= N; 1 <= ILST <=
 N.

 ILST (input)
 See the description of IFST.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrmm - perform one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of op(
 A) = A or op(A) = A' or op(A) = conjg(A')

SYNOPSIS

 SUBROUTINE CTRMM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER M, N, LDA, LDB

 SUBROUTINE CTRMM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 M, N, LDA, LDB

 F95 INTERFACE
 SUBROUTINE TRMM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, LDA, LDB

 SUBROUTINE TRMM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, LDA, LDB

 C INTERFACE
 #include <sunperf.h>

 void ctrmm(char side, char uplo, char transa, char diag, int
 m, int n, complex *alpha, complex *a, int lda,
 complex *b, int ldb);
 void ctrmm_64(char side, char uplo, char transa, char diag,
 long m, long n, complex *alpha, complex *a, long
 lda, complex *b, long ldb);

PURPOSE

 ctrmm performs one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of op(
 A) = A or op(A) = A' or op(A) = conjg(A')

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) multi-
 plies B from the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = conjg(A').

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, k), where k is
 m when SIDE = 'L' or 'l' and is n when SIDE =
 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be unity.

 Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1,M), when SIDE
 = 'R' or 'r' then LDA >= max(1,N). Unchanged on
 exit.

 B (input/output)
 COMPLEX array of DIMENSION (LDB, n). Before
 entry, the leading M by N part of the array B must
 contain the matrix B, and on exit is overwritten
 by the transformed matrix.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling subprogram. LDB must
 be at least max(1,M). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE CTRMV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER N, LDA, INCY

 SUBROUTINE CTRMV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TRMV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCY

 SUBROUTINE TRMV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctrmv(char uplo, char transa, char diag, int n, complex
 *a, int lda, complex *y, int incy);

 void ctrmv_64(char uplo, char transa, char diag, long n,
 complex *a, long lda, complex *y, long incy);

PURPOSE

 ctrmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not
 referenced. Before entry with UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the
 array A must contain the lower triangular matrix
 and the strictly upper triangular part of A is not
 referenced. Note that when DIAG = 'U' or 'u',

 the diagonal elements of A are not referenced
 either, but are assumed to be unity. Unchanged on
 exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix

SYNOPSIS

 SUBROUTINE CTRRFS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 SUBROUTINE CTRRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LDX, INFO
 REAL FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TRRFS(UPLO, [TRANSA], DIAG, [N], [NRHS], A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, X
 INTEGER :: N, NRHS, LDA, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TRRFS_64(UPLO, [TRANSA], DIAG, [N], [NRHS], A, [LDA], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: WORK
 COMPLEX, DIMENSION(:,:) :: A, B, X
 INTEGER(8) :: N, NRHS, LDA, LDB, LDX, INFO
 REAL, DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ctrrfs(char uplo, char transa, char diag, int n, int
 nrhs, complex *a, int lda, complex *b, int ldb,
 complex *x, int ldx, float *ferr, float *berr, int
 *info);

 void ctrrfs_64(char uplo, char transa, char diag, long n,
 long nrhs, complex *a, long lda, complex *b, long
 ldb, complex *x, long ldx, float *ferr, float
 *berr, long *info);

PURPOSE

 ctrrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix.

 The solution matrix X must be computed by CTRTRS or some
 other means before entering this routine. CTRRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctrsen - reorder the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that a selected cluster of eigenvalues
 appears in the leading positions on the diagonal of the
 upper triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace

SYNOPSIS

 SUBROUTINE CTRSEN(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
 SEP, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 COMPLEX T(LDT,*), Q(LDQ,*), W(*), WORK(*)
 INTEGER N, LDT, LDQ, M, LWORK, INFO
 LOGICAL SELECT(*)
 REAL S, SEP

 SUBROUTINE CTRSEN_64(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
 SEP, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 COMPLEX T(LDT,*), Q(LDQ,*), W(*), WORK(*)
 INTEGER*8 N, LDT, LDQ, M, LWORK, INFO
 LOGICAL*8 SELECT(*)
 REAL S, SEP

 F95 INTERFACE
 SUBROUTINE TRSEN(JOB, COMPQ, SELECT, [N], T, [LDT], Q, [LDQ], W, M,
 S, SEP, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: T, Q
 INTEGER :: N, LDT, LDQ, M, LWORK, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL :: S, SEP

 SUBROUTINE TRSEN_64(JOB, COMPQ, SELECT, [N], T, [LDT], Q, [LDQ], W,
 M, S, SEP, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 COMPLEX, DIMENSION(:) :: W, WORK
 COMPLEX, DIMENSION(:,:) :: T, Q
 INTEGER(8) :: N, LDT, LDQ, M, LWORK, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL :: S, SEP
 C INTERFACE
 #include <sunperf.h>

 void ctrsen(char job, char compq, int *select, int n, com-
 plex *t, int ldt, complex *q, int ldq, complex *w,
 int *m, float *s, float *sep, int *info);

 void ctrsen_64(char job, char compq, long *select, long n,
 complex *t, long ldt, complex *q, long ldq, com-
 plex *w, long *m, float *s, float *sep, long
 *info);

PURPOSE

 ctrsen reorders the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that a selected cluster of eigenvalues
 appears in the leading positions on the diagonal of the
 upper triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace.

 Optionally the routine computes the reciprocal condition
 numbers of the cluster of eigenvalues and/or the invariant
 subspace.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (S) or the invari-
 ant subspace (SEP):
 = 'N': none;
 = 'E': for eigenvalues only (S);
 = 'V': for invariant subspace only (SEP);
 = 'B': for both eigenvalues and invariant subspace
 (S and SEP).

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrix T. N >= 0.
 T (input/output)
 On entry, the upper triangular matrix T. On exit,
 T is overwritten by the reordered matrix T, with
 the selected eigenvalues as the leading diagonal
 elements.

 LDT (input)

 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the unitary transformation
 matrix which reorders T; the leading M columns of
 Q form an orthonormal basis for the specified
 invariant subspace. If COMPQ = 'N', Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if COMPQ = 'V', LDQ >= N.

 W (output)
 The reordered eigenvalues of T, in the same order
 as they appear on the diagonal of T.

 M (output)
 The dimension of the specified invariant subspace.
 0 <= M <= N.

 S (output)
 If JOB = 'E' or 'B', S is a lower bound on the
 reciprocal condition number for the selected clus-
 ter of eigenvalues. S cannot underestimate the
 true reciprocal condition number by more than a
 factor of sqrt(N). If M = 0 or N, S = 1. If JOB =
 'N' or 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', SEP is the estimated recipro-
 cal condition number of the specified invariant
 subspace. If M = 0 or N, SEP = norm(T). If JOB =
 'N' or 'E', SEP is not referenced.
 WORK (workspace)
 If JOB = 'N', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOB = 'N',
 LWORK >= 1; if JOB = 'E', LWORK = M*(N-M); if JOB
 = 'V' or 'B', LWORK >= 2*M*(N-M).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 CTRSEN first collects the selected eigenvalues by computing
 a unitary transformation Z to move them to the top left
 corner of T. In other words, the selected eigenvalues are
 the eigenvalues of T11 in:

 Z'*T*Z = (T11 T12) n1
 (0 T22) n2
 n1 n2

 where N = n1+n2 and Z' means the conjugate transpose of Z.
 The first n1 columns of Z span the specified invariant sub-
 space of T.

 If T has been obtained from the Schur factorization of a
 matrix A = Q*T*Q', then the reordered Schur factorization of
 A is given by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1
 columns of Q*Z span the corresponding invariant subspace of
 A.

 The reciprocal condition number of the average of the eigen-
 values of T11 may be returned in S. S lies between 0 (very
 badly conditioned) and 1 (very well conditioned). It is com-
 puted as follows. First we compute R so that

 P = (I R) n1
 (0 0) n2
 n1 n2
 is the projector on the invariant subspace associated with
 T11. R is the solution of the Sylvester equation:

 T11*R - R*T22 = T12.

 Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M)
 denote the two-norm of M. Then S is computed as the lower
 bound

 (1 + F-norm(R)**2)**(-1/2)

 on the reciprocal of 2-norm(P), the true reciprocal condi-
 tion number. S cannot underestimate 1 / 2-norm(P) by more
 than a factor of sqrt(N).

 An approximate error bound for the computed average of the
 eigenvalues of T11 is

 EPS * norm(T) / S

 where EPS is the machine precision.

 The reciprocal condition number of the right invariant sub-
 space spanned by the first n1 columns of Z (or of Q*Z) is
 returned in SEP. SEP is defined as the separation of T11
 and T22:

 sep(T11, T22) = sigma-min(C)

 where sigma-min(C) is the smallest singular value of the
 n1*n2-by-n1*n2 matrix

 C = kprod(I(n2), T11) - kprod(transpose(T22), I(n1))

 I(m) is an m by m identity matrix, and kprod denotes the
 Kronecker product. We estimate sigma-min(C) by the recipro-
 cal of an estimate of the 1-norm of inverse(C). The true
 reciprocal 1-norm of inverse(C) cannot differ from sigma-
 min(C) by more than a factor of sqrt(n1*n2).

 When SEP is small, small changes in T can cause large

 changes in the invariant subspace. An approximate bound on
 the maximum angular error in the computed right invariant
 subspace is

 EPS * norm(T) / SEP

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrsm - solve one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B

SYNOPSIS

 SUBROUTINE CTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER M, N, LDA, LDB

 SUBROUTINE CTRSM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 COMPLEX ALPHA
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 M, N, LDA, LDB

 F95 INTERFACE
 SUBROUTINE TRSM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: M, N, LDA, LDB

 SUBROUTINE TRSM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX :: ALPHA
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, LDA, LDB

 C INTERFACE
 #include <sunperf.h>

 void ctrsm(char side, char uplo, char transa, char diag, int
 m, int n, complex *alpha, complex *a, int lda,

 complex *b, int ldb);

 void ctrsm_64(char side, char uplo, char transa, char diag,
 long m, long n, complex *alpha, complex *a, long
 lda, complex *b, long ldb);

PURPOSE

 ctrsm solves one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B where alpha is a scalar, X
 and B are m by n matrices, A is a unit, or non-unit, upper
 or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(
 A').

 The matrix X is overwritten on B.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) appears
 on the left or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = conjg(A').

 Unchanged on exit.
 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-

 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 COMPLEX array of DIMENSION (LDA, k),
 where k is m when SIDE = 'L' or 'l' and is n
 when SIDE = 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be unity.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1,M), when SIDE
 = 'R' or 'r' then LDA >= max(1,N). Unchanged on
 exit.

 B (input/output)
 COMPLEX array of DIMENSION (LDB, n).
 Before entry, the leading M by N part of the array
 B must contain the right-hand side matrix B, and
 on exit is overwritten by the solution matrix X.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling subprogram. LDB >=
 max(1,M). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctrsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a complex upper
 triangular matrix T (or of any matrix Q*T*Q**H with Q uni-
 tary)

SYNOPSIS

 SUBROUTINE CTRSNA(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
 S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(LDWORK,*)
 INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL SELECT(*)
 REAL S(*), SEP(*), WORK1(*)

 SUBROUTINE CTRSNA_64(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(LDWORK,*)
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL*8 SELECT(*)
 REAL S(*), SEP(*), WORK1(*)

 F95 INTERFACE
 SUBROUTINE TRSNA(JOB, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 COMPLEX, DIMENSION(:,:) :: T, VL, VR, WORK
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, SEP, WORK1

 SUBROUTINE TRSNA_64(JOB, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL],
 VR, [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 COMPLEX, DIMENSION(:,:) :: T, VL, VR, WORK
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO

 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, SEP, WORK1

 C INTERFACE
 #include <sunperf.h>
 void ctrsna(char job, char howmny, int *select, int n, com-
 plex *t, int ldt, complex *vl, int ldvl, complex
 *vr, int ldvr, float *s, float *sep, int mm, int
 *m, int ldwork, int *info);

 void ctrsna_64(char job, char howmny, long *select, long n,
 complex *t, long ldt, complex *vl, long ldvl, com-
 plex *vr, long ldvr, float *s, float *sep, long
 mm, long *m, long ldwork, long *info);

PURPOSE

 ctrsna estimates reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a complex upper
 triangular matrix T (or of any matrix Q*T*Q**H with Q uni-
 tary).

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (SEP):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (SEP);
 = 'B': for both eigenvalues and eigenvectors (S
 and SEP).

 HOWMNY (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNY = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the j-th eigenpair,
 SELECT(j) must be set to .TRUE.. If HOWMNY = 'A',
 SELECT is not referenced.

 N (input) The order of the matrix T. N >= 0.

 T (input) The upper triangular matrix T.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of T (or of any Q*T*Q**H with Q unitary),
 corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VL, as returned by
 CHSEIN or CTREVC. If JOB = 'V', VL is not refer-

 enced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and if JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of T (or of any Q*T*Q**H with Q unitary),
 corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VR, as returned by
 CHSEIN or CTREVC. If JOB = 'V', VR is not refer-
 enced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 and if JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. Thus S(j),
 SEP(j), and the j-th columns of VL and VR all
 correspond to the same eigenpair (but not in gen-
 eral the j-th eigenpair, unless all eigenpairs are
 selected). If JOB = 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 JOB = 'E', SEP is not referenced.

 MM (input)
 The number of elements in the arrays S (if JOB =
 'E' or 'B') and/or SEP (if JOB = 'V' or 'B'). MM
 >= M.

 M (output)
 The number of elements of the arrays S and/or SEP
 actually used to store the estimated condition
 numbers. If HOWMNY = 'A', M is set to N.

 WORK (workspace)
 dimension(LDWORK,N+1) If JOB = 'E', WORK is not
 referenced.

 LDWORK (input)
 The leading dimension of the array WORK. LDWORK
 >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

 WORK1 (workspace)
 dimension(N) If JOB = 'E', WORK1 is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of an eigenvalue
 lambda is defined as

 S(lambda) = |v'*u| / (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of T
 corresponding to lambda; v' denotes the conjugate transpose
 of v, and norm(u) denotes the Euclidean norm. These recipro-
 cal condition numbers always lie between zero (very badly
 conditioned) and one (very well conditioned). If n = 1,
 S(lambda) is defined to be 1.

 An approximate error bound for a computed eigenvalue W(i) is
 given by

 EPS * norm(T) / S(i)

 where EPS is the machine precision.

 The reciprocal of the condition number of the right eigen-
 vector u corresponding to lambda is defined as follows.
 Suppose

 T = (lambda c)
 (0 T22)

 Then the reciprocal condition number is

 SEP(lambda, T22) = sigma-min(T22 - lambda*I)

 where sigma-min denotes the smallest singular value. We
 approximate the smallest singular value by the reciprocal of
 an estimate of the one-norm of the inverse of T22 -
 lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).

 An approximate error bound for a computed right eigenvector
 VR(i) is given by

 EPS * norm(T) / SEP(i)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE CTRSV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER N, LDA, INCY

 SUBROUTINE CTRSV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TRSV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCY

 SUBROUTINE TRSV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:) :: Y
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ctrsv(char uplo, char transa, char diag, int n, complex
 *a, int lda, complex *y, int incy);

 void ctrsv_64(char uplo, char transa, char diag, long n,
 complex *a, long lda, complex *y, long incy);

PURPOSE

 ctrsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular matrix.
 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced. Before entry with UPLO = 'L' or 'l', the
 leading n by n lower triangular part of the array
 A must contain the lower triangular matrix and the

 strictly upper triangular part of A is not refer-
 enced. Note that when DIAG = 'U' or 'u', the
 diagonal elements of A are not referenced either,
 but are assumed to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrsyl - solve the complex Sylvester matrix equation

SYNOPSIS

 SUBROUTINE CTRSYL(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
 SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
 REAL SCALE

 SUBROUTINE CTRSYL_64(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 LDC, SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 ISGN, M, N, LDA, LDB, LDC, INFO
 REAL SCALE

 F95 INTERFACE
 SUBROUTINE TRSYL(TRANA, TRANB, ISGN, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL :: SCALE

 SUBROUTINE TRSYL_64(TRANA, TRANB, ISGN, [M], [N], A, [LDA], B, [LDB],
 C, [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 COMPLEX, DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void ctrsyl(char trana, char tranb, int isgn, int m, int n,
 complex *a, int lda, complex *b, int ldb, complex
 *c, int ldc, float *scale, int *info);

 void ctrsyl_64(char trana, char tranb, long isgn, long m,
 long n, complex *a, long lda, complex *b, long
 ldb, complex *c, long ldc, float *scale, long
 *info);

PURPOSE

 ctrsyl solves the complex Sylvester matrix equation:

 op(A)*X + X*op(B) = scale*C or
 op(A)*X - X*op(B) = scale*C,

 where op(A) = A or A**H, and A and B are both upper triangu-
 lar. A is M-by-M and B is N-by-N; the right hand side C and
 the solution X are M-by-N; and scale is an output scale fac-
 tor, set <= 1 to avoid overflow in X.

ARGUMENTS

 TRANA (input)
 Specifies the option op(A):
 = 'N': op(A) = A (No transpose)
 = 'C': op(A) = A**H (Conjugate transpose)

 TRANB (input)
 Specifies the option op(B):
 = 'N': op(B) = B (No transpose)
 = 'C': op(B) = B**H (Conjugate transpose)

 ISGN (input)
 Specifies the sign in the equation:
 = +1: solve op(A)*X + X*op(B) = scale*C
 = -1: solve op(A)*X - X*op(B) = scale*C

 M (input) The order of the matrix A, and the number of rows
 in the matrices X and C. M >= 0.

 N (input) The order of the matrix B, and the number of
 columns in the matrices X and C. N >= 0.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input) The upper triangular matrix B.
 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 C (input/output)
 On entry, the M-by-N right hand side matrix C. On
 exit, C is overwritten by the solution matrix X.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M)

 SCALE (output)
 The scale factor, scale, set <= 1 to avoid over-
 flow in X.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: A and B have common or very close eigen-
 values; perturbed values were used to solve the
 equation (but the matrices A and B are unchanged).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrti2 - compute the inverse of a complex upper or lower
 triangular matrix

SYNOPSIS

 SUBROUTINE CTRTI2(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE CTRTI2_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TRTI2(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE TRTI2_64(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctrti2(char uplo, char diag, int n, complex *a, int
 lda, int *info);

 void ctrti2_64(char uplo, char diag, long n, complex *a,
 long lda, long *info);

PURPOSE

 ctrti2 computes the inverse of a complex upper or lower tri-
 angular matrix.

 This is the Level 2 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 Specifies whether the matrix A is upper or lower
 triangular. = 'U': Upper triangular
 = 'L': Lower triangular

 DIAG (input)
 Specifies whether or not the matrix A is unit tri-
 angular. = 'N': Non-unit triangular
 = 'U': Unit triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 On exit, the (triangular) inverse of the original
 matrix, in the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrtri - compute the inverse of a complex upper or lower
 triangular matrix A

SYNOPSIS

 SUBROUTINE CTRTRI(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE CTRTRI_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TRTRI(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE TRTRI_64(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctrtri(char uplo, char diag, int n, complex *a, int
 lda, int *info);

 void ctrtri_64(char uplo, char diag, long n, complex *a,
 long lda, long *info);

PURPOSE

 ctrtri computes the inverse of a complex upper or lower tri-
 angular matrix A.

 This is the Level 3 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1. On exit, the
 (triangular) inverse of the original matrix, in
 the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ctrtrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE CTRTRS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE CTRTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TRTRS(UPLO, [TRANSA], DIAG, [N], [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE TRTRS_64(UPLO, [TRANSA], DIAG, [N], [NRHS], A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX, DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctrtrs(char uplo, char transa, char diag, int n, int
 nrhs, complex *a, int lda, complex *b, int ldb,
 int *info);

 void ctrtrs_64(char uplo, char transa, char diag, long n,
 long nrhs, complex *a, long lda, complex *b, long
 ldb, long *info);

PURPOSE

 ctrtrs solves a triangular system of the form
 where A is a triangular matrix of order N, and B is an N-
 by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A

 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctzrqf - routine is deprecated and has been replaced by rou-
 tine CTZRZF

SYNOPSIS

 SUBROUTINE CTZRQF(M, N, A, LDA, TAU, INFO)

 COMPLEX A(LDA,*), TAU(*)
 INTEGER M, N, LDA, INFO

 SUBROUTINE CTZRQF_64(M, N, A, LDA, TAU, INFO)

 COMPLEX A(LDA,*), TAU(*)
 INTEGER*8 M, N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TZRQF([M], [N], A, [LDA], TAU, [INFO])

 COMPLEX, DIMENSION(:) :: TAU
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO

 SUBROUTINE TZRQF_64([M], [N], A, [LDA], TAU, [INFO])

 COMPLEX, DIMENSION(:) :: TAU
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctzrqf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void ctzrqf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 ctzrqf routine is deprecated and has been replaced by rou-
 tine CTZRZF.

 CTZRQF reduces the M-by-N (M<=N) complex upper trapezoidal
 matrix A to upper triangular form by means of unitary
 transformations.

 The upper trapezoidal matrix A is factored as
 A = (R 0) * Z,

 where Z is an N-by-N unitary matrix and R is an M-by-M upper
 triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= M.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the uni-
 tary matrix Z as a product of M elementary reflec-
 tors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), whose conjugate transpose
 is used to introduce zeros into the (m - k + 1)th row of A,
 is given in the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.

 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ctzrzf - reduce the M-by-N (M<=N) complex upper tra-
 pezoidal matrix A to upper triangular form by means of uni-
 tary transformations

SYNOPSIS

 SUBROUTINE CTZRZF(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO

 SUBROUTINE CTZRZF_64(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE TZRZF([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO

 SUBROUTINE TZRZF_64([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void ctzrzf(int m, int n, complex *a, int lda, complex *tau,
 int *info);

 void ctzrzf_64(long m, long n, complex *a, long lda, complex
 *tau, long *info);

PURPOSE

 ctzrzf reduces the M-by-N (M<=N) complex upper trapezoidal
 matrix A to upper triangular form by means of unitary
 transformations.

 The upper trapezoidal matrix A is factored as

 A = (R 0) * Z,
 where Z is an N-by-N unitary matrix and R is an M-by-M upper
 triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the uni-
 tary matrix Z as a product of M elementary reflec-
 tors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.
 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cung2l - generate an m by n complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE CUNG2L(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE CUNG2L_64(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNG2L(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNG2L_64(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cung2l(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cung2l_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cung2l L generates an m by n complex matrix Q with orthonor-
 mal columns, which is defined as the last n columns of a
 product of k elementary reflectors of order m

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by CGEQLF in
 the last k columns of its array argument A. On
 exit, the m-by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cung2r - generate an m by n complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE CUNG2R(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE CUNG2R_64(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNG2R(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNG2R_64(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cung2r(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cung2r_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cung2r R generates an m by n complex matrix Q with orthonor-
 mal columns, which is defined as the first n columns of a
 product of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

 as returned by CGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. On exit, the m
 by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungbr - generate one of the complex unitary matrices Q or
 P**H determined by CGEBRD when reducing a complex matrix A
 to bidiagonal form

SYNOPSIS

 SUBROUTINE CUNGBR(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE CUNGBR_64(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGBR(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGBR_64(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungbr(char vect, int m, int n, int k, complex *a, int
 lda, complex *tau, int *info);

 void cungbr_64(char vect, long m, long n, long k, complex
 *a, long lda, complex *tau, long *info);

PURPOSE

 cungbr generates one of the complex unitary matrices Q or
 P**H determined by CGEBRD when reducing a complex matrix A
 to bidiagonal form: A = Q * B * P**H. Q and P**H are
 defined as products of elementary reflectors H(i) or G(i)
 respectively.

 If VECT = 'Q', A is assumed to have been an M-by-K matrix,
 and Q is of order M:
 if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the
 first n columns of Q, where m >= n >= k;
 if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as
 an M-by-M matrix.

 If VECT = 'P', A is assumed to have been a K-by-N matrix,
 and P**H is of order N:
 if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the
 first m rows of P**H, where n >= m >= k;
 if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns
 P**H as an N-by-N matrix.

ARGUMENTS

 VECT (input)
 Specifies whether the matrix Q or the matrix P**H
 is required, as defined in the transformation
 applied by CGEBRD:
 = 'Q': generate Q;
 = 'P': generate P**H.

 M (input) The number of rows of the matrix Q or P**H to be
 returned. M >= 0.

 N (input) The number of columns of the matrix Q or P**H to
 be returned. N >= 0. If VECT = 'Q', M >= N >=
 min(M,K); if VECT = 'P', N >= M >= min(N,K).

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal M-by-K matrix reduced by CGEBRD. If VECT =
 'P', the number of rows in the original K-by-N
 matrix reduced by CGEBRD. K >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CGEBRD. On exit, the
 M-by-N matrix Q or P**H.

 LDA (input)
 The leading dimension of the array A. LDA >= M.

 TAU (input)
 (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P'
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i), which determines Q
 or P**H, as returned by CGEBRD in its array argu-
 ment TAUQ or TAUP.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,min(M,N)). For optimum performance LWORK >=
 min(M,N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunghr - generate a complex unitary matrix Q which is
 defined as the product of IHI-ILO elementary reflectors of
 order N, as returned by CGEHRD

SYNOPSIS

 SUBROUTINE CUNGHR(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, ILO, IHI, LDA, LWORK, INFO

 SUBROUTINE CUNGHR_64(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGHR([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, ILO, IHI, LDA, LWORK, INFO

 SUBROUTINE UNGHR_64([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, ILO, IHI, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunghr(int n, int ilo, int ihi, complex *a, int lda,
 complex *tau, int *info);

 void cunghr_64(long n, long ilo, long ihi, complex *a, long
 lda, complex *tau, long *info);

PURPOSE

 cunghr generates a complex unitary matrix Q which is defined
 as the product of IHI-ILO elementary reflectors of order N,
 as returned by CGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 N (input) The order of the matrix Q. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of CGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if
 N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of IHI.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CGEHRD. On exit, the
 N-by-N unitary matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEHRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= IHI-ILO.
 For optimum performance LWORK >= (IHI-ILO)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungl2 - generate an m-by-n complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE CUNGL2(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE CUNGL2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNGL2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNGL2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungl2(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cungl2_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cungl2 generates an m-by-n complex matrix Q with orthonormal
 rows, which is defined as the first m rows of a product of k
 elementary reflectors of order n

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGELQF in the first k
 rows of its array argument A. On exit, the m by n
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunglq - generate an M-by-N complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE CUNGLQ(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE CUNGLQ_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGLQ(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGLQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunglq(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cunglq_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cunglq generates an M-by-N complex matrix Q with orthonormal
 rows, which is defined as the first M rows of a product of K
 elementary reflectors of order N

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGELQF in the first k
 rows of its array argument A. On exit, the M-by-N
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit;
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungql - generate an M-by-N complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE CUNGQL(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE CUNGQL_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGQL(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGQL_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungql(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cungql_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cungql generates an M-by-N complex matrix Q with orthonormal
 columns, which is defined as the last N columns of a product
 of K elementary reflectors of order M

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by CGEQLF in
 the last k columns of its array argument A. On
 exit, the M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N). For optimum performance LWORK >= N*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungqr - generate an M-by-N complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE CUNGQR(M, N, K, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER M, N, K, LDA, LWORKIN, INFO

 SUBROUTINE CUNGQR_64(M, N, K, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER*8 M, N, K, LDA, LWORKIN, INFO

 F95 INTERFACE
 SUBROUTINE UNGQR(M, [N], [K], A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORKIN
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORKIN, INFO

 SUBROUTINE UNGQR_64(M, [N], [K], A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORKIN
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORKIN, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungqr(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cungqr_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cungqr generates an M-by-N complex matrix Q with orthonormal
 columns, which is defined as the first N columns of a pro-
 duct of K elementary reflectors of order M

 Q = H(1) H(2) . . . H(k)
 as returned by CGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. On exit, the M-
 by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The dimension of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungr2 - generate an m by n complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE CUNGR2(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE CUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNGR2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNGR2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungr2(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cungr2_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cungr2 generates an m by n complex matrix Q with orthonormal
 rows, which is defined as the last m rows of a product of k
 elementary reflectors of order n

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by CGERQF in the
 last k rows of its array argument A. On exit, the
 m-by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungrq - generate an M-by-N complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE CUNGRQ(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE CUNGRQ_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGRQ(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGRQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungrq(int m, int n, int k, complex *a, int lda, com-
 plex *tau, int *info);

 void cungrq_64(long m, long n, long k, complex *a, long lda,
 complex *tau, long *info);

PURPOSE

 cungrq generates an M-by-N complex matrix Q with orthonormal
 rows, which is defined as the last M rows of a product of K
 elementary reflectors of order N

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by CGERQF in the
 last k rows of its array argument A. On exit, the
 M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cungtr - generate a complex unitary matrix Q which is
 defined as the product of n-1 elementary reflectors of order
 N, as returned by CHETRD

SYNOPSIS

 SUBROUTINE CUNGTR(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, LDA, LWORK, INFO

 SUBROUTINE CUNGTR_64(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGTR(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, INFO

 SUBROUTINE UNGTR_64(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cungtr(char uplo, int n, complex *a, int lda, complex
 *tau, int *info);

 void cungtr_64(char uplo, long n, complex *a, long lda, com-
 plex *tau, long *info);

PURPOSE

 cungtr generates a complex unitary matrix Q which is defined
 as the product of n-1 elementary reflectors of order N, as
 returned by CHETRD:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from CHETRD; = 'L': Lower triangle of A
 contains elementary reflectors from CHETRD.

 N (input) The order of the matrix Q. N >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CHETRD. On exit, the
 N-by-N unitary matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >= N.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CHETRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N-1.
 For optimum performance LWORK >= (N-1)*NB, where
 NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmbr - VECT = 'Q', CUNMBR overwrites the general complex
 M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMBR(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMBR_64(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmbr(char vect, char side, char trans, int m, int n,
 int k, complex *a, int lda, complex *tau, complex
 *c, int ldc, int *info);

 void cunmbr_64(char vect, char side, char trans, long m,
 long n, long k, complex *a, long lda, complex
 *tau, complex *c, long ldc, long *info);

PURPOSE

 cunmbr VECT = 'Q', CUNMBR overwrites the general complex M-
 by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N':
 Q * C C * Q TRANS = 'C': Q**H * C C *
 Q**H

 If VECT = 'P', CUNMBR overwrites the general complex M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R'
 TRANS = 'N': P * C C * P
 TRANS = 'C': P**H * C C * P**H

 Here Q and P**H are the unitary matrices determined by
 CGEBRD when reducing a complex matrix A to bidiagonal form:
 A = Q * B * P**H. Q and P**H are defined as products of ele-
 mentary reflectors H(i) and G(i) respectively.

 Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq
 is the order of the unitary matrix Q or P**H that is
 applied.

 If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 if nq >= k, Q = H(1) H(2) . . . H(k);
 if nq < k, Q = H(1) H(2) . . . H(nq-1).

 If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 if k < nq, P = G(1) G(2) . . . G(k);
 if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

 VECT (input)
 = 'Q': apply Q or Q**H;
 = 'P': apply P or P**H.

 SIDE (input)
 = 'L': apply Q, Q**H, P or P**H from the Left;
 = 'R': apply Q, Q**H, P or P**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q or P;
 = 'C': Conjugate transpose, apply Q**H or P**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.
 N (input) The number of columns of the matrix C. N >= 0.

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal matrix reduced by CGEBRD. If VECT = 'P', the
 number of rows in the original matrix reduced by
 CGEBRD. K >= 0.

 A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if

 VECT = 'P' The vectors which define the elementary
 reflectors H(i) and G(i), whose products determine
 the matrices Q and P, as returned by CGEBRD.

 LDA (input)
 The leading dimension of the array A. If VECT =
 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >=
 max(1,min(nq,K)).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i) which determines Q
 or P, as returned by CGEBRD in the array argument
 TAUQ or TAUP.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q or
 P*C or P**H*C or C*P or C*P**H.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmhr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMHR(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMHR_64(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 LDC, WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMHR(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMHR_64(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmhr(char side, char trans, int m, int n, int ilo,
 int ihi, complex *a, int lda, complex *tau, com-
 plex *c, int ldc, int *info);

 void cunmhr_64(char side, char trans, long m, long n, long
 ilo, long ihi, complex *a, long lda, complex *tau,
 complex *c, long ldc, long *info);

PURPOSE

 cunmhr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of IHI-ILO elementary reflectors, as returned by
 CGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q**H (Conjugate transpose)

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of CGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <=
 ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI =
 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI
 <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.

 IHI (input)
 See the description of ILO.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by CGEHRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by CGEHRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is

 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunml2 - overwrite the general complex m-by-n matrix C with
 Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE =
 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS =
 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

SYNOPSIS

 SUBROUTINE CUNML2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, INFO

 SUBROUTINE CUNML2_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UNML2(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, INFO

 SUBROUTINE UNML2_64(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunml2(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int

 ldc, int *info);

 void cunml2_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunml2 overwrites the general complex m-by-n matrix C with

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF. Q is of order m if SIDE = 'L' and of
 order n if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q' from the Left
 = 'R': apply Q or Q' from the Right

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q' (Conjugate transpose)

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 C (input/output)
 On entry, the m-by-n matrix C. On exit, C is
 overwritten by Q*C or Q'*C or C*Q' or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)

 (N) if SIDE = 'L', (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmlq - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMLQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMLQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmlq(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int
 ldc, int *info);

 void cunmlq_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunmlq overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmql - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMQL(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMQL_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmql(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int
 ldc, int *info);

 void cunmql_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunmql overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by CGEQLF in the last k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmqr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMQR(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMQR_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmqr(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int
 ldc, int *info);

 void cunmqr_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunmqr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by CGEQRF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmr2 - overwrite the general complex m-by-n matrix C with
 Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE =
 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS =
 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

SYNOPSIS

 SUBROUTINE CUNMR2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, INFO

 SUBROUTINE CUNMR2_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UNMR2(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, INFO

 SUBROUTINE UNMR2_64(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmr2(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int

 ldc, int *info);

 void cunmr2_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunmr2 overwrites the general complex m-by-n matrix C with

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF. Q is of order m if SIDE = 'L' and of
 order n if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q' from the Left
 = 'R': apply Q or Q' from the Right

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q' (Conjugate transpose)

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 C (input/output)
 On entry, the m-by-n matrix C. On exit, C is
 overwritten by Q*C or Q'*C or C*Q' or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)

 (N) if SIDE = 'L', (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmrq - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMRQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMRQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmrq(char side, char trans, int m, int n, int k, com-
 plex *a, int lda, complex *tau, complex *c, int
 ldc, int *info);

 void cunmrq_64(char side, char trans, long m, long n, long
 k, complex *a, long lda, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cunmrq overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 cunmrz - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, L, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, L, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE CUNMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, L, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, L, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmrz(char side, char trans, int m, int n, int k, int
 l, complex *a, int lda, complex *tau, complex *c,

 int ldc, int *info);

 void cunmrz_64(char side, char trans, long m, long n, long
 k, long l, complex *a, long lda, complex *tau,
 complex *c, long ldc, long *info);

PURPOSE

 cunmrz overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by CTZRZF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 L (input) The number of columns of the matrix A containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CTZRZF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CTZRZF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cunmtr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUNMTR(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, LDA, LDC, LWORK, INFO

 SUBROUTINE CUNMTR_64(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMTR(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER :: M, N, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMTR_64(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX, DIMENSION(:) :: TAU, WORK
 COMPLEX, DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void cunmtr(char side, char uplo, char trans, int m, int n,
 complex *a, int lda, complex *tau, complex *c, int
 ldc, int *info);

 void cunmtr_64(char side, char uplo, char trans, long m,
 long n, complex *a, long lda, complex *tau, com-
 plex *c, long ldc, long *info);

PURPOSE

 cunmtr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by
 CHETRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from CHETRD; = 'L': Lower triangle of A
 contains elementary reflectors from CHETRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by CHETRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by CHETRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >=M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cupgtr - generate a complex unitary matrix Q which is
 defined as the product of n-1 elementary reflectors H(i) of
 order n, as returned by CHPTRD using packed storage

SYNOPSIS

 SUBROUTINE CUPGTR(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), TAU(*), Q(LDQ,*), WORK(*)
 INTEGER N, LDQ, INFO

 SUBROUTINE CUPGTR_64(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 COMPLEX AP(*), TAU(*), Q(LDQ,*), WORK(*)
 INTEGER*8 N, LDQ, INFO

 F95 INTERFACE
 SUBROUTINE UPGTR(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, TAU, WORK
 COMPLEX, DIMENSION(:,:) :: Q
 INTEGER :: N, LDQ, INFO

 SUBROUTINE UPGTR_64(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX, DIMENSION(:) :: AP, TAU, WORK
 COMPLEX, DIMENSION(:,:) :: Q
 INTEGER(8) :: N, LDQ, INFO

 C INTERFACE
 #include <sunperf.h>

 void cupgtr(char uplo, int n, complex *ap, complex *tau,
 complex *q, int ldq, int *info);

 void cupgtr_64(char uplo, long n, complex *ap, complex *tau,
 complex *q, long ldq, long *info);

PURPOSE

 cupgtr generates a complex unitary matrix Q which is defined
 as the product of n-1 elementary reflectors H(i) of order n,
 as returned by CHPTRD using packed storage:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to CHPTRD; = 'L': Lower triangular
 packed storage used in previous call to CHPTRD.

 N (input) The order of the matrix Q. N >= 0.

 AP (input)
 The vectors which define the elementary reflec-
 tors, as returned by CHPTRD.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CHPTRD.

 Q (output)
 The N-by-N unitary matrix Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 WORK (workspace)
 dimension(N-1)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cupmtr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE CUPMTR(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 COMPLEX AP(*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, LDC, INFO

 SUBROUTINE CUPMTR_64(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 COMPLEX AP(*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UPMTR(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX, DIMENSION(:) :: AP, TAU, WORK
 COMPLEX, DIMENSION(:,:) :: C
 INTEGER :: M, N, LDC, INFO

 SUBROUTINE UPMTR_64(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX, DIMENSION(:) :: AP, TAU, WORK
 COMPLEX, DIMENSION(:,:) :: C
 INTEGER(8) :: M, N, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void cupmtr(char side, char uplo, char trans, int m, int n,
 complex *ap, complex *tau, complex *c, int ldc,
 int *info);

 void cupmtr_64(char side, char uplo, char trans, long m,
 long n, complex *ap, complex *tau, complex *c,
 long ldc, long *info);

PURPOSE

 cupmtr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by CHPTRD
 using packed storage:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to CHPTRD; = 'L': Lower triangular
 packed storage used in previous call to CHPTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 AP (input)
 (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE =
 'R' The vectors which define the elementary
 reflectors, as returned by CHPTRD. AP is modified
 by the routine but restored on exit.

 TAU (input)
 or (N-1) if SIDE = 'R' TAU(i) must contain the
 scalar factor of the elementary reflector H(i), as
 returned by CHPTRD.
 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cvbrmm - variable block sparse row format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE CVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CVBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are matrices,
 A is a matrix represented in variable block sparse row format
 and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.
 INDX() integer array of length BNNZ+1 where BNNZ is the number of
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block

 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
 rows in matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 CPNTR() integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is
 the number of columns in matrix A.
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. For a general matrix (DESCRA(1)=0), array CPNTR can be
 different from RPNTR. For all other matrix types, RPNTR
 must equal CPNTR and a single array can be passed for both
 arguments.

 2. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

 SUBROUTINE SVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 cvbrsm - variable block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE CVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE CVBRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 COMPLEX ALPHA, BETA
 COMPLEX DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 COMPLEX ALPHA, BETA
 COMPLEX, DIMENSION(:) :: VAL, DV
 COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in variable block sparse row
 format and op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array containing the block entries of the block
 diagonal matrix D. The size of the J-th block is
 RPNTR(J+1)-RPNTR(J) and each block contains matrix
 entries stored column-major. The total length of
 array DV is given by the formula:

 sum over J from 1 to MB:
 ((RPNTR(J+1)-RPNTR(J))*(RPNTR(J+1)-RPNTR(J)))

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal block
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible

 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.

 INDX() integer array of length BNNZ+1 where BNNZ is the number
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block
 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A. Block column
 indices MUST be sorted in increasing order for each block
 row.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number
 of rows in square triangular matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments

 CPNTR() integer array of length MB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(MB+1) is set to M+CPNTR(1).
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments
 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 M = RPNTR(MB+1)-RPNTR(1).

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the VBR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case. DESCRA(2) indicates which triangle will be used.

 6. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,
 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 SUBROUTINE CVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 cvmul - compute the scaled product of complex vectors

SYNOPSIS

 SUBROUTINE CVMUL(N, ALPHA, X, INCX, Y, INCY, BETA, Z, INCZ)

 COMPLEX ALPHA, BETA
 COMPLEX X(*), Y(*), Z(*)
 INTEGER N, INCX, INCY, INCZ

 SUBROUTINE CVMUL_64(N, ALPHA, X, INCX, Y, INCY, BETA, Z, INCZ)

 COMPLEX ALPHA, BETA
 COMPLEX X(*), Y(*), Z(*)
 INTEGER*8 N, INCX, INCY, INCZ

 F95 INTERFACE
 SUBROUTINE VMUL([N], ALPHA, X, [INCX], Y, [INCY], BETA, Z, [INCZ])

 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y, Z
 INTEGER :: N, INCX, INCY, INCZ

 SUBROUTINE VMUL_64([N], ALPHA, X, [INCX], Y, [INCY], BETA, Z, [INCZ])

 COMPLEX :: ALPHA, BETA
 COMPLEX, DIMENSION(:) :: X, Y, Z
 INTEGER(8) :: N, INCX, INCY, INCZ

 C INTERFACE
 #include <sunperf.h>

 void cvmul(int n, complex *alpha, complex *x, int incx, com-
 plex *y, int incy, complex *beta, complex *z, int
 incz);

 void cvmul_64(long n, complex *alpha, complex *x, long incx,
 complex *y, long incy, complex *beta, complex *z,
 long incz);

PURPOSE

 cvmul computes the scaled product of complex vectors:
 z(i) = ALPHA * x(i) * y(i) + BETA * z(i)
 for 1 <= i <= N.

ARGUMENTS

 N (input)
 Length of the vectors. N >= 0. Returns immedi-
 ately if N = 0.

 ALPHA (input)
 Scale factor on the multiplicand vectors.

 X (input) dimension(*)
 Multiplicand vector.

 INCX (input)
 Stride between elements of the multiplicand vector
 X. INCX > 0.

 Y (input) dimension(*)
 Multiplicand vector.

 INCY (input)
 Stride between elements of the multiplicand vector
 Y. INCY > 0.

 BETA (input)
 Scale factor on the product vector.

 Z (input/output)
 dimension(*)
 Product vector. On exit, z(i) = ALPHA * x(i) *
 y(i) + BETA * z(i).

 INCZ (input)
 Stride between elements of Z. INCZ > 0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dasum - Return the sum of the absolute values of a vector x.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DASUM(N, X, INCX)

 INTEGER N, INCX
 DOUBLE PRECISION X(*)

 DOUBLE PRECISION FUNCTION DASUM_64(N, X, INCX)

 INTEGER*8 N, INCX
 DOUBLE PRECISION X(*)

 F95 INTERFACE
 REAL(8) FUNCTION ASUM([N], X, [INCX])

 INTEGER :: N, INCX
 REAL(8), DIMENSION(:) :: X

 REAL(8) FUNCTION ASUM_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL(8), DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 double dasum(int n, double *x, int incx);

 double dasum_64(long n, double *x, long incx);

PURPOSE

 dasum Return the sum of the absolute values of x where x is
 an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 daxpy - compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE DAXPY(N, ALPHA, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*)

 SUBROUTINE DAXPY_64(N, ALPHA, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE AXPY([N], ALPHA, X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y

 SUBROUTINE AXPY_64([N], ALPHA, X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void daxpy(int n, double alpha, double *x, int incx, double
 *y, int incy);

 void daxpy_64(long n, double alpha, double *x, long incx,
 double *y, long incy);

PURPOSE

 daxpy compute y := alpha * x + y where alpha is a scalar and
 x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 daxpyi - Compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE DAXPYI(NZ, A, X, INDX, Y)

 DOUBLE PRECISION A
 DOUBLE PRECISION X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE DAXPYI_64(NZ, A, X, INDX, Y)

 DOUBLE PRECISION A
 DOUBLE PRECISION X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE AXPYI([NZ], [A], X, INDX, Y)

 REAL(8) :: A
 REAL(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE AXPYI_64([NZ], [A], X, INDX, Y)

 REAL(8) :: A
 REAL(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 DAXPYI Compute y := alpha * x + y where alpha is a scalar, x
 is a sparse vector, and y is a vector in full storage form

 do i = 1, n
 y(indx(i)) = alpha * x(i) + y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 A (input)
 On entry, A(LPHA) specifies the scaling value.
 Unchanged on exit. A is defaulted to 1.0D0 for F95
 INTERFACE.
 X (input)
 Vector containing the values of the compressed form.
 Unchanged on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbcomm - block coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DBCOMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BJNDX(BNNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBCOMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BJNDX(BNNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BCOMM(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, KB, BNNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BCOMM_64(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, KB, BNNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block coordinate format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the non-zero block entries of A, in any order.
 Each block is stored in standard column-major form.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BJNDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BNNZ number of block entries

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbdimm - block diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DBDIMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBDIMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDIMM(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BDIMM_64(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block diagonal format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LB*LB*BLDA-by-NBDIAG scalar array
 consisting of the NBDIAG nonzero block diagonal in
 any order. Each dense block is stored in standard
 column-major form.

 BLDA leading block dimension of VAL().

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 block diagonals of A in VAL. Lower triangular
 block diagonals have negative offsets, the main
 block diagonal has offset 0, and upper triangular

 block diagonals have positive offset.

 NBDIAG the number of non-zero block diagonals in A.
 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbdism - block diagonal format triangular solve

SYNOPSIS

 SUBROUTINE DBDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE DBDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block diagonal format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of length MB*LB*LB containing the elements of
 the diagonal blocks of the matrix D. The size of each
 square block is LB-by-LB and each block
 is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() Two-dimensional LB*LB*BLDA-by-NBDIAG scalar array

 consisting of the NBDIAG non-zero block diagonal.
 Each dense block is stored in standard column-major form.

 BLDA Leading block dimension of VAL(). Should be greater
 than or equal to MB.

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero block
 diagonals of A in VAL. Lower triangular block diagonals
 have negative offsets, the main block diagonal has offset
 0, and upper triangular block diagonals have positive offset.
 Elements of IBDIAG MUST be sorted in increasing order.

 NBDIAG The number of non-zero block diagonals in A.

 LB Dimension of dense blocks composing A.

 B() Rectangular array with first dimension LDB.

 LDB Leading dimension of B.

 BETA Scalar parameter.

 C() Rectangular array with first dimension LDC.

 LDC Leading dimension of C.

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK array,
 returns this value as the first entry of the WORK array,
 and no error message related to LWORK is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BDI representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dbdsdc - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B

SYNOPSIS

 SUBROUTINE DBDSDC(UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 WORK, IWORK, INFO)

 CHARACTER * 1 UPLO, COMPQ
 INTEGER N, LDU, LDVT, INFO
 INTEGER IQ(*), IWORK(*)
 DOUBLE PRECISION D(*), E(*), U(LDU,*), VT(LDVT,*), Q(*),
 WORK(*)

 SUBROUTINE DBDSDC_64(UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 WORK, IWORK, INFO)

 CHARACTER * 1 UPLO, COMPQ
 INTEGER*8 N, LDU, LDVT, INFO
 INTEGER*8 IQ(*), IWORK(*)
 DOUBLE PRECISION D(*), E(*), U(LDU,*), VT(LDVT,*), Q(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSDC(UPLO, COMPQ, [N], D, E, U, [LDU], VT, [LDVT], [Q], [IQ],
 [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO, COMPQ
 INTEGER :: N, LDU, LDVT, INFO
 INTEGER, DIMENSION(:) :: IQ, IWORK
 REAL(8), DIMENSION(:) :: D, E, Q, WORK
 REAL(8), DIMENSION(:,:) :: U, VT

 SUBROUTINE BDSDC_64(UPLO, COMPQ, [N], D, E, U, [LDU], VT, [LDVT], [Q],
 [IQ], [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO, COMPQ
 INTEGER(8) :: N, LDU, LDVT, INFO
 INTEGER(8), DIMENSION(:) :: IQ, IWORK
 REAL(8), DIMENSION(:) :: D, E, Q, WORK
 REAL(8), DIMENSION(:,:) :: U, VT

 C INTERFACE
 #include <sunperf.h>

 void dbdsdc(char uplo, char compq, int n, double *d, double
 *e, double *u, int ldu, double *vt, int ldvt,
 double *q, int *iq, int *info);

 void dbdsdc_64(char uplo, char compq, long n, double *d,
 double *e, double *u, long ldu, double *vt, long
 ldvt, double *q, long *iq, long *info);

PURPOSE

 dbdsdc computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = U * S
 * VT, using a divide and conquer method, where S is a diago-
 nal matrix with non-negative diagonal elements (the singular
 values of B), and U and VT are orthogonal matrices of left
 and right singular vectors, respectively. SBDSDC can be used
 to compute all singular values, and optionally, singular
 vectors or singular vectors in compact form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLASD3 for details.

 The code currently call SLASDQ if singular values only are
 desired. However, it can be slightly modified to compute
 singular values using the divide and conquer method.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal.
 = 'L': B is lower bidiagonal.

 COMPQ (input)
 Specifies whether singular vectors are to be com-
 puted as follows:
 = 'N': Compute singular values only;
 = 'P': Compute singular values and compute singu-
 lar vectors in compact form; = 'I': Compute
 singular values and singular vectors.

 N (input) The order of the matrix B. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B.

 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of the bidiagonal matrix whose SVD is
 desired. On exit, E has been destroyed.

 U (output)
 If COMPQ = 'I', then: On exit, if INFO = 0, U
 contains the left singular vectors of the bidiago-
 nal matrix. For other values of COMPQ, U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1.
 If singular vectors are desired, then LDU >= max(
 1, N).

 VT (output)
 If COMPQ = 'I', then: On exit, if INFO = 0, VT'
 contains the right singular vectors of the bidiag-
 onal matrix. For other values of COMPQ, VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1.
 If singular vectors are desired, then LDVT >= max(
 1, N).

 Q (input) If COMPQ = 'P', then: On exit, if INFO = 0, Q
 and IQ contain the left and right singular vectors
 in a compact form, requiring O(N log N) space
 instead of 2*N**2. In particular, Q contains all
 the REAL data in LDQ >= N*(11 + 2*SMLSIZ +
 8*INT(LOG_2(N/(SMLSIZ+1)))) words of memory, where
 SMLSIZ is returned by ILAENV and is equal to the
 maximum size of the subproblems at the bottom of
 the computation tree (usually about 25). For
 other values of COMPQ, Q is not referenced.

 IQ (output)
 If COMPQ = 'P', then: On exit, if INFO = 0, Q
 and IQ contain the left and right singular vectors
 in a compact form, requiring O(N log N) space
 instead of 2*N**2. In particular, IQ contains all
 INTEGER data in LDIQ >= N*(3 +
 3*INT(LOG_2(N/(SMLSIZ+1)))) words of memory, where
 SMLSIZ is returned by ILAENV and is equal to the
 maximum size of the subproblems at the bottom of
 the computation tree (usually about 25). For
 other values of COMPQ, IQ is not referenced.

 WORK (workspace)
 If COMPQ = 'N' then LWORK >= (2 * N). If COMPQ =
 'P' then LWORK >= (6 * N). If COMPQ = 'I' then
 LWORK >= (3 * N**2 + 4 * N).

 IWORK (workspace)
 dimension(8*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an singular
 value. The update process of divide and conquer
 failed.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dbdsqr - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B.

SYNOPSIS

 SUBROUTINE DBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
 LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 DOUBLE PRECISION D(*), E(*), VT(LDVT,*), U(LDU,*), C(LDC,*),
 WORK(*)

 SUBROUTINE DBDSQR_64(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
 C, LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 DOUBLE PRECISION D(*), E(*), VT(LDVT,*), U(LDU,*), C(LDC,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSQR(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: VT, U, C

 SUBROUTINE BDSQR_64(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: VT, U, C

 C INTERFACE
 #include <sunperf.h>

 void dbdsqr(char uplo, int n, int ncvt, int nru, int ncc,
 double *d, double *e, double *vt, int ldvt, double

 *u, int ldu, double *c, int ldc, int *info);

 void dbdsqr_64(char uplo, long n, long ncvt, long nru, long
 ncc, double *d, double *e, double *vt, long ldvt,
 double *u, long ldu, double *c, long ldc, long
 *info);

PURPOSE

 dbdsqr computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = Q * S
 * P' (P' denotes the transpose of P), where S is a diagonal
 matrix with non-negative diagonal elements (the singular
 values of B), and Q and P are orthogonal matrices.

 The routine computes S, and optionally computes U * Q, P' *
 VT, or Q' * C, for given real input matrices U, VT, and C.

 See "Computing Small Singular Values of Bidiagonal Matrices
 With Guaranteed High Relative Accuracy," by J. Demmel and W.
 Kahan, LAPACK Working Note #3 (or SIAM J. Sci. Statist. Com-
 put. vol. 11, no. 5, pp. 873-912, Sept 1990) and
 "Accurate singular values and differential qd algorithms,"
 by B. Parlett and V. Fernando, Technical Report CPAM-554,
 Mathematics Department, University of California at Berke-
 ley, July 1992 for a detailed description of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal;
 = 'L': B is lower bidiagonal.

 N (input) The order of the matrix B. N >= 0.

 NCVT (input)
 The number of columns of the matrix VT. NCVT >= 0.

 NRU (input)
 The number of rows of the matrix U. NRU >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B in decreasing order.
 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of the bidiagonal matrix whose SVD is
 desired. On normal exit (INFO = 0), E is des-
 troyed. If the algorithm does not converge (INFO
 > 0), D and E will contain the diagonal and super-
 diagonal elements of a bidiagonal matrix orthogo-
 nally equivalent to the one given as input. E(N)
 is used for workspace.

 VT (input/output)
 On entry, an N-by-NCVT matrix VT. On exit, VT is

 overwritten by P' * VT. VT is not referenced if
 NCVT = 0.

 LDVT (input)
 The leading dimension of the array VT. LDVT >=
 max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.

 U (input/output)
 On entry, an NRU-by-N matrix U. On exit, U is
 overwritten by U * Q. U is not referenced if NRU
 = 0.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,NRU).

 C (input/output)
 On entry, an N-by-NCC matrix C. On exit, C is
 overwritten by Q' * C. C is not referenced if NCC
 = 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,N) if NCC > 0; LDC >=1 if NCC = 0.

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm did not converge; D and E
 contain the elements of a bidiagonal matrix which
 is orthogonally similar to the input matrix B; if
 INFO = i, i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbelmm - block Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DBELMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBELMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BELMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block Ellpack format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense
 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.
 LB row and column dimension of the dense blocks composing
 VAL.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbelsm - block Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE DBELSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE DBELSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BELSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense

 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ. The block column indices MUST be sorted
 in increasing order for each block row.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.

 LB row and column dimension of the dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the minimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BEL representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbscmm - block sparse column matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBSCMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(KB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the block entries stored column-major within each
 dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BPNTRB() integer array of length KB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column
 of A.
 BPNTRE() integer array of length KB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX

 of the last block entry of the J-th block column
 of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbscsm - block sparse column format triangular solve

SYNOPSIS

 SUBROUTINE DBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)- BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse column format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.
 The block row indices MUST be sorted
 in increasing order for each block column.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block column of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSC representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbsrmm - block sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBSRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix A is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting
 of the block entries stored column-major within
 each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.
 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse row format (see for example Y.Saad, "Iterative
 Methods for Sparse Linear Systems", WPS, 1996). Its data
 structure consists of three array instead of the four used
 in the current implementation. The main difference is that
 only one array, IA, containing the pointers to the beginning
 of each block row in the arrays VAL and BINDX is used
 instead of two arrays BPNTRB and BPNTRE. To use the routine
 with this kind of block sparse row format the following
 calling sequence should be used

 CALL SBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dbsrsm - block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE DBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DBSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse row format
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.
 The block column indices MUST be sorted
 in increasing order for each block row.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 row format the following calling sequence should be used

 CALL DBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 dcnvcor - compute the convolution or correlation of real
 vectors

SYNOPSIS

 SUBROUTINE DCNVCOR(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 INTEGER NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK
 DOUBLE PRECISION X(*), Y(*), Z(*), WORK(*)

 SUBROUTINE DCNVCOR_64(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 INTEGER*8 NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK
 DOUBLE PRECISION X(*), Y(*), Z(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE CNVCOR(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 INTEGER :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK
 REAL(8), DIMENSION(:) :: X, Y, Z, WORK

 SUBROUTINE CNVCOR_64(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M,
 Y, IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 INTEGER(8) :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK
 REAL(8), DIMENSION(:) :: X, Y, Z, WORK

 C INTERFACE
 #include <sunperf.h>

 void dcnvcor(char cnvcor, char four, int nx, double *x, int
 ifx, int incx, int ny, int npre, int m, double *y,
 int ify, int inc1y, int inc2y, int nz, int k, dou-
 ble *z, int ifz, int inc1z, int inc2z, double
 *work, int lwork);
 void dcnvcor_64(char cnvcor, char four, long nx, double *x,
 long ifx, long incx, long ny, long npre, long m,
 double *y, long ify, long inc1y, long inc2y, long
 nz, long k, double *z, long ifz, long inc1z, long
 inc2z, double *work, long lwork);

PURPOSE

 dcnvcor computes the convolution or correlation of real vec-
 tors.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' if convolution is desired, 'R' or 'r'
 if correlation is desired.

 FOUR (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' if the computation should be
 done directly from the definition. The Fourier
 transform method is generally faster, but it may
 introduce noticeable errors into certain results,
 notably when both the filter and data vectors con-
 sist entirely of integers or vectors where ele-
 ments of either the filter vector or a given data
 vector differ significantly in magnitude from the
 1-norm of the vector.

 NX (input)
 Length of the filter vector. NX >= 0. DCNVCOR
 will return immediately if NX = 0.

 X (input)
 Filter vector.

 IFX (input)
 Index of the first element of X. NX >= IFX >= 1.

 INCX (input)
 Stride between elements of the filter vector in X.
 INCX > 0.

 NY (input)
 Length of the input vectors. NY >= 0. DCNVCOR
 will return immediately if NY = 0.
 NPRE (input)
 The number of implicit zeros prepended to the Y
 vectors. NPRE >= 0.

 M (input)
 Number of input vectors. M >= 0. DCNVCOR will
 return immediately if M = 0.

 Y (input)

 Input vectors.

 IFY (input)
 Index of the first element of Y. NY >= IFY >= 1.

 INC1Y (input)
 Stride between elements of the input vectors in Y.
 INC1Y > 0.

 INC2Y (input)
 Stride between the input vectors in Y. INC2Y > 0.

 NZ (input)
 Length of the output vectors. NZ >= 0. DCNVCOR
 will return immediately if NZ = 0. See the Notes
 section below for information about how this argu-
 ment interacts with NX and NY to control circular
 versus end-off shifting.

 K (input)
 Number of Z vectors. K >= 0. If K = 0 then
 DCNVCOR will return immediately. If K < M then
 only the first K input vectors will be processed.
 If K > M then M input vectors will be processed.

 Z (output)
 Result vectors.

 IFZ (input)
 Index of the first element of Z. NZ >= IFZ >= 1.

 INC1Z (input)
 Stride between elements of the output vectors in
 Z. INC1Z > 0.

 INC2Z (input)
 Stride between the output vectors in Z. INC2Z >
 0.

 WORK (input/output)
 Scratch space. Before the first call to DCNVCOR
 with particular values of the integer arguments
 the first element of WORK must be set to zero. If
 WORK is written between calls to DCNVCOR or if
 DCNVCOR is called with different values of the
 integer arguments then the first element of WORK
 must again be set to zero before each call. If
 WORK has not been written and the same values of
 the integer arguments are used then the first ele-
 ment of WORK to zero. This can avoid certain ini-
 tializations that store their results into WORK,
 and avoiding the initialization can make DCNVCOR
 run faster.

 LWORK (input)
 Length of WORK. LWORK >= 4*MAX(NX,NY,NZ)+15.

NOTES

 If any vector overlaps a writable vector, either because of
 argument aliasing or ill-chosen values of the various INC
 arguments, the results are undefined and may vary from one
 run to the next.

 The most common form of the computation, and the case that
 executes fastest, is applying a filter vector X to a series
 of vectors stored in the columns of Y with the result placed
 into the columns of Z. In that case, INCX = 1, INC1Y = 1,
 INC2Y >= NY, INC1Z = 1, INC2Z >= NZ. Another common form is
 applying a filter vector X to a series of vectors stored in
 the rows of Y and store the result in the row of Z, in which
 case INCX = 1, INC1Y >= NY, INC2Y = 1, INC1Z >= NZ, and
 INC2Z = 1.

 A common use of convolution is to compute the products of
 polynomials. The following code uses DCNVCOR to compute the
 product of 1 + 2x + 3x**2 and 4 + 5x + 6x**2:

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dcnvcor2 - compute the convolution or correlation of real
 matrices

SYNOPSIS

 SUBROUTINE DCNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 DOUBLE COMPLEX WORKIN(*)
 INTEGER MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK
 DOUBLE PRECISION X(LDX,*), Y(LDY,*), Z(LDZ,*)

 SUBROUTINE DCNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 DOUBLE COMPLEX WORKIN(*)
 INTEGER*8 MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK
 DOUBLE PRECISION X(LDX,*), Y(LDY,*), Z(LDZ,*)

 F95 INTERFACE
 SUBROUTINE CNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX(8), DIMENSION(:) :: WORKIN
 INTEGER :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 REAL(8), DIMENSION(:,:) :: X, Y, Z

 SUBROUTINE CNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX(8), DIMENSION(:) :: WORKIN
 INTEGER(8) :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 REAL(8), DIMENSION(:,:) :: X, Y, Z
 C INTERFACE
 #include <sunperf.h>

 void dcnvcor2(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, int mx, int
 nx, double *x, int ldx, int my, int ny, int mpre,
 int npre, double *y, int ldy, int mz, int nz, dou-
 ble *z, int ldz, doublecomplex *workin, int
 lwork);

 void dcnvcor2_64(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, long mx,
 long nx, double *x, long ldx, long my, long ny,
 long mpre, long npre, double *y, long ldy, long
 mz, long nz, double *z, long ldz, doublecomplex
 *workin, long lwork);

PURPOSE

 dcnvcor2 computes the convolution or correlation of real
 matrices.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' to compute convolution, 'R' or 'r' to
 compute correlation.

 METHOD (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' to compute directly from the
 definition.

 TRANSX (input)
 'N' or 'n' if X is the filter matrix, 'T' or 't'
 if transpose(X) is the filter matrix.

 SCRATCHX (input)
 'N' or 'n' if X must be preserved, 'S' or 's' if X
 can be used as scratch space. The contents of X
 are undefined after returning from a call in which
 X is allowed to be used for scratch.

 TRANSY (input)
 'N' or 'n' if Y is the input matrix, 'T' or 't' if
 transpose(Y) is the input matrix.
 SCRATCHY (input)
 'N' or 'n' if Y must be preserved, 'S' or 's' if Y
 can be used as scratch space. The contents of Y
 are undefined after returning from a call in which
 Y is allowed to be used for scratch.

 MX (input)
 Number of rows in the filter matrix. MX >= 0.

 NX (input)
 Number of columns in the filter matrix. NX >= 0.

 X (input) dimension(LDX,NX)
 On entry, the filter matrix. Unchanged on exit if
 SCRATCHX is 'N' or 'n', undefined on exit if
 SCRATCHX is 'S' or 's'.

 LDX (input)
 Leading dimension of the array that contains the
 filter matrix.

 MY (input)
 Number of rows in the input matrix. MY >= 0.

 NY (input)
 Number of columns in the input matrix. NY >= 0.

 MPRE (input)
 Number of implicit zeros to prepend to each row of
 the input matrix. MPRE >= 0.

 NPRE (input)
 Number of implicit zeros to prepend to each column
 of the input matrix. NPRE >= 0.

 Y (input) dimension(LDY,*)
 Input matrix. Unchanged on exit if SCRATCHY is
 'N' or 'n', undefined on exit if SCRATCHY is 'S'
 or 's'.

 LDY (input)
 Leading dimension of the array that contains the
 input matrix.

 MZ (input)
 Number of rows in the output matrix. MZ >= 0.
 DCNVCOR2 will return immediately if MZ = 0.

 NZ (input)
 Number of columns in the output matrix. NZ >= 0.
 DCNVCOR2 will return immediately if NZ = 0.

 Z (output)
 dimension(LDZ,*)
 Result matrix.

 LDZ (input)
 Leading dimension of the array that contains the
 result matrix. LDZ >= MAX(1,MZ).

 WORKIN (input/output)
 (input/scratch) dimension(LWORK)
 On entry for the first call to DCNVCOR2, WORKIN(1)
 must contain 0.0. After the first call, WORKIN(1)
 must be set to 0.0 iff WORKIN has been altered
 since the last call to this subroutine or if the
 sizes of the arrays have changed.

 LWORK (input)
 Length of the work vector. If the FFT is to be
 used then for best performance LWORK should be at
 least 30 words longer than the amount of memory

 needed to hold the trig tables. If the FFT is not
 used, the value of LWORK is unimportant.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dcoomm - coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DCOOMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), JNDX(NNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DCOOMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), JNDX(NNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE COOMM(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER TRANSA, M, K, NNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, JNDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE COOMM_64(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, JNDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in coordinate format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the
 non-zero entries of A, in any order.

 INDX() integer array of length NNZ consisting of the
 corresponding row indices of the entries of A.

 JNDX() integer array of length NNZ consisting of the
 corresponding column indices of the entries of A.

 NNZ number of non-zero elements in A.
 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dcopy - Copy x to y

SYNOPSIS

 SUBROUTINE DCOPY(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 SUBROUTINE DCOPY_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE COPY([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 SUBROUTINE COPY_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void dcopy(int n, double *x, int incx, double *y, int incy);

 void dcopy_64(long n, double *x, long incx, double *y, long
 incy);

PURPOSE

 dcopy Copy x to y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (output)
 (1 + (m - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dcosqb - synthesize a Fourier sequence from its representa-
 tion in terms of a cosine series with odd wave numbers. The
 COSQ operations are unnormalized inverses of themselves, so
 a call to COSQF followed by a call to COSQB will multiply
 the input sequence by 4 * N.

SYNOPSIS

 SUBROUTINE DCOSQB(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DCOSQB_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQB([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE COSQB_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dcosqb(int n, double *x, double *wsave);

 void dcosqb_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave cosine synthesis of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15) that has been initialized by DCOSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dcosqf - compute the Fourier coefficients in a cosine series
 representation with only odd wave numbers. The COSQ opera-
 tions are unnormalized inverses of themselves, so a call to
 COSQF followed by a call to COSQB will multiply the input
 sequence by 4 * N.

SYNOPSIS

 SUBROUTINE DCOSQF(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DCOSQF_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQF([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE COSQF_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dcosqf(int n, double *x, double *wsave);

 void dcosqf_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave cosine transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15) that has been initialized by DCOSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dcosqi - initialize the array WSAVE, which is used in both
 COSQF and COSQB.

SYNOPSIS

 SUBROUTINE DCOSQI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DCOSQI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE COSQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dcosqi(int n, double *wsave);

 void dcosqi_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. DCOSQI needs to be called only once to

 initialize WSAVE before calling DCOSQF and/or
 DCOSQB if N and WSAVE remain unchanged between
 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dcost - compute the discrete Fourier cosine transform of an
 even sequence. The COST transforms are unnormalized
 inverses of themselves, so a call of COST followed by
 another call of COST will multiply the input sequence by 2 *
 (N-1).

SYNOPSIS

 SUBROUTINE DCOST(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DCOST_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COST([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE COST_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dcost(int n, double *x, double *wsave);

 void dcost_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N - 1 is a
 product of small primes. N >= 2.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the cosine
 transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15), initialized by DCOSTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dcosti - initialize the array WSAVE, which is used in COST.

SYNOPSIS

 SUBROUTINE DCOSTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DCOSTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE COSTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dcosti(int n, double *wsave);

 void dcosti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N - 1 is a product
 of small primes. N >= 2.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. DCOSTI is called once to initialize
 WSAVE before calling DCOST and need not be called

 again between calls to DCOST if N and WSAVE remain
 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dcscmm - compressed sparse column format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE DCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(K), PNTRE(K)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DCSCMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(K), PNTRE(K)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(K)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the row
 indices of nonzero entries of A.

 PNTRB() integer array of length K such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.
 PNTRE() integer array of length K such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dcscsm - compressed sparse column format triangular solve

SYNOPSIS

 SUBROUTINE DCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DCSCSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse column
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic column scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the row indices
 of nonzero entries of A. (Row indices MUST be sorted in
 increasing order for each column).

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the columns of A such
 that their 2-norms are one. The scaling may improve the

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 accuracy of the computed solution. Corresponding entries of
 VAL are changed only in the particular case. On return DV
 matrix stored as a vector contains the diagonal matrix by
 which the columns have been scaled. UNITD=3 should be used
 for the next calls to the routine with overwritten VAL and
 DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the column
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSC representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSC representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dcsrmm - compressed sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DCSRMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the
 column indices of nonzero entries of A.

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.
 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dcsrsm - compressed sparse row format triangular solve

SYNOPSIS

 SUBROUTINE DCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DCSRSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse row
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of
 the scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the column
 indices of nonzero entries of A (column indices MUST be
 sorted in increasing order for each row)

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSR representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSR representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA, C,
 * LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ddiamm - diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DDIAMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DDIAMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIAMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIAMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in diagonal format and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)
 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 ddiasm - diagonal format triangular solve

SYNOPSIS

 SUBROUTINE DDIASM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DDIASM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIASM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: DV
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIASM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: DV
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in diagonal format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)

 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.
 Elements of IDIAG of MUST be sorted in increasing order.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the DIA representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the DIA representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ddisna - compute the reciprocal condition numbers for the
 eigenvectors of a real symmetric or complex Hermitian matrix
 or for the left or right singular vectors of a general m-
 by-n matrix

SYNOPSIS

 SUBROUTINE DDISNA(JOB, M, N, D, SEP, INFO)

 CHARACTER * 1 JOB
 INTEGER M, N, INFO
 DOUBLE PRECISION D(*), SEP(*)

 SUBROUTINE DDISNA_64(JOB, M, N, D, SEP, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 M, N, INFO
 DOUBLE PRECISION D(*), SEP(*)

 F95 INTERFACE
 SUBROUTINE DISNA(JOB, M, N, D, SEP, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: M, N, INFO
 REAL(8), DIMENSION(:) :: D, SEP

 SUBROUTINE DISNA_64(JOB, M, N, D, SEP, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: M, N, INFO
 REAL(8), DIMENSION(:) :: D, SEP

 C INTERFACE
 #include <sunperf.h>

 void ddisna(char job, int m, int n, double *d, double *sep,
 int *info);

 void ddisna_64(char job, long m, long n, double *d, double
 *sep, long *info);

PURPOSE

 ddisna computes the reciprocal condition numbers for the
 eigenvectors of a real symmetric or complex Hermitian matrix
 or for the left or right singular vectors of a general m-
 by-n matrix. The reciprocal condition number is the 'gap'
 between the corresponding eigenvalue or singular value and
 the nearest other one.

 The bound on the error, measured by angle in radians, in the
 I-th computed vector is given by

 SLAMCH('E') * (ANORM / SEP(I))

 where ANORM = 2-norm(A) = max(abs(D(j))). SEP(I) is not
 allowed to be smaller than SLAMCH('E')*ANORM in order to
 limit the size of the error bound.

 SDISNA may also be used to compute error bounds for eigen-
 vectors of the generalized symmetric definite eigenproblem.

ARGUMENTS

 JOB (input)
 Specifies for which problem the reciprocal condi-
 tion numbers should be computed:
 = 'E': the eigenvectors of a symmetric/Hermitian
 matrix;
 = 'L': the left singular vectors of a general
 matrix;
 = 'R': the right singular vectors of a general
 matrix.

 M (input) The number of rows of the matrix. M >= 0.

 N (input) If JOB = 'L' or 'R', the number of columns of the
 matrix, in which case N >= 0. Ignored if JOB =
 'E'.

 D (input) dimension (min(M,N)) if JOB = 'L' or 'R' The
 eigenvalues (if JOB = 'E') or singular values (if
 JOB = 'L' or 'R') of the matrix, in either
 increasing or decreasing order. If singular
 values, they must be non-negative.

 SEP (output)
 dimension (min(M,N)) if JOB = 'L' or 'R' The
 reciprocal condition numbers of the vectors.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an
 illegal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ddot - compute the dot product of two vectors x and y.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DDOT(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 DOUBLE PRECISION FUNCTION DDOT_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 REAL(8) FUNCTION DOT([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 REAL(8) FUNCTION DOT_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 double ddot(int n, double *x, int incx, double *y, int
 incy);

 double ddot_64(long n, double *x, long incx, double *y, long
 incy);

PURPOSE

 ddot compute the dot product of x and y where x and y are
 n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y.
 Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 ddoti - Compute the indexed dot product.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DDOTI(NZ, X, INDX, Y)

 DOUBLE PRECISION X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 DOUBLE PRECISION FUNCTION DDOTI_64(NZ, X, INDX, Y)

 DOUBLE PRECISION X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 DOUBLE PRECISION FUNCTION DOTI([NZ], X, INDX, Y)

 REAL(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 DOUBLE PRECISION FUNCTION DOTI_64([NZ], X, INDX, Y)

 REAL(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 DDOTI Compute the indexed dot product of a real sparse
 vector x stored in compressed form with a real vector y in
 full storage form.

 dot = 0
 do i = 1, n
 dot = dot + x(i) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dellmm - Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DELLMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DELLMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in Ellpack format format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)
 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dellsm - Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE DELLSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DELLSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: DV
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: DV
 DOUBLE PRECISION, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)

 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.
 The column indices MUST be sorted in increasing order
 for each row.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the ELL representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the ELL representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dezftb - computes a periodic sequence from its Fourier coef-
 ficients. DEZFTB is a simplified but slower version of
 DFFTB.

SYNOPSIS

 SUBROUTINE DEZFTB(N, R, AZERO, A, B, WSAVE)

 INTEGER N
 DOUBLE PRECISION AZERO
 DOUBLE PRECISION R(*), A(*), B(*), WSAVE(*)

 SUBROUTINE DEZFTB_64(N, R, AZERO, A, B, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION AZERO
 DOUBLE PRECISION R(*), A(*), B(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE DEZFTB(N, R, AZERO, A, B, WSAVE)

 INTEGER :: N
 REAL(8) :: AZERO
 REAL(8), DIMENSION(:) :: R, A, B, WSAVE

 SUBROUTINE DEZFTB_64(N, R, AZERO, A, B, WSAVE)

 INTEGER(8) :: N
 REAL(8) :: AZERO
 REAL(8), DIMENSION(:) :: R, A, B, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dezftb(int n, double *r, double azero, double *a, dou-
 ble *b, double *wsave);

 void dezftb_64(long n, double *r, double azero, double *a,
 double *b, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be synthesized. The
 method is most efficient when N is the product of
 small primes. N >= 0.

 R (output)
 On exit, the Fourier synthesis of the inputs.
 AZERO (input)
 On entry, the constant Fourier coefficient A0.
 Unchanged on exit.

 A (input/output)
 On entry, array that contains the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 B (input/output)
 On entry, array that contains the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15), initialized by DEZFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dezftf - computes the Fourier coefficients of a periodic
 sequence. DEZFTF is a simplified but slower version of
 DFFTF.

SYNOPSIS

 SUBROUTINE DEZFTF(N, R, AZERO, A, B, WSAVE)

 INTEGER N
 DOUBLE PRECISION AZERO
 DOUBLE PRECISION R(*), A(*), B(*), WSAVE(*)

 SUBROUTINE DEZFTF_64(N, R, AZERO, A, B, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION AZERO
 DOUBLE PRECISION R(*), A(*), B(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE DEZFTF(N, R, AZERO, A, B, WSAVE)

 INTEGER :: N
 REAL(8) :: AZERO
 REAL(8), DIMENSION(:) :: R, A, B, WSAVE

 SUBROUTINE DEZFTF_64(N, R, AZERO, A, B, WSAVE)

 INTEGER(8) :: N
 REAL(8) :: AZERO
 REAL(8), DIMENSION(:) :: R, A, B, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dezftf(int n, double *r, double azero, double *a, dou-
 ble *b, double *wsave);

 void dezftf_64(long n, double *r, double azero, double *a,
 double *b, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is the product of
 small primes. N >= 0.

 R (input/output)
 On entry, a real array of length N containing the
 sequence to be transformed. On exit, R is
 unchanged.

 AZERO (output)
 On exit, the sum from i=1 to i=n of r(i)/n.

 A (input/output)
 On entry, array that contains the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 B (input/output)
 On entry, array that contains the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15), initialized by DEZFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dezfti - initializes the array WSAVE, which is used in both
 DEZFTF and DEZFTB.

SYNOPSIS

 SUBROUTINE DEZFTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DEZFTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE DEZFTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE DEZFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dezfti(int n, double *wsave);

 void dezfti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array with a dimension of at least (3
 * N + 15). The same work array can be used for
 both DEZFTF and DEZFTB as long as N remains
 unchanged. Different WSAVE arrays are required
 for different values of N. This initialization

 does not have to be repeated between calls to
 DEZFTF or DEZFTB as long as N and WSAVE remain
 unchanged, thus subsequent transforms can be
 obtained faster than the first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft2b - compute a periodic sequence from its Fourier coef-
 ficients. The DFFT operations are unnormalized, so a call
 of DFFT2F followed by a call of DFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE DFFT2B(PLACE, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER M, N, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DFFT2B_64(PLACE, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2B(PLACE, [M], [N], A, [LDA], B, [LDB], WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE FFT2B_64(PLACE, [M], [N], A, [LDA], B, [LDB], WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dfft2b(char place, int m, int n, double *a, int lda,
 double *b, int ldb, double *work, int lwork);

 void dfft2b_64(char place, long m, long n, double *a, long
 lda, double *b, long ldb, double *work, long
 lwork);

ARGUMENTS

 PLACE (input)
 Character. If PLACE = 'I' or 'i' (for in-place) ,
 the input and output data are stored in array A.
 If PLACE = 'O' or 'o' (for out-of-place), the
 input data is stored in array B while the output
 is stored in A.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most most efficient when N is
 a product of small primes. N >= 0; when N = 0,
 the subroutine returns immediately without chang-
 ing any data.

 A (input/output)
 Real array of dimension (LDA,N). On entry, the
 two-dimensional array A(LDA,N) contains the input
 data to be transformed if an in-place transform is
 requested. Otherwise, it is not referenced. Upon
 exit, results are stored in A(1:M,1:N).

 LDA (input)
 Integer specifying the leading dimension of A. If
 an out-of-place transform is desired LDA >= M.
 Else if an in-place transform is desired LDA >=
 2*(M/2+1).

 B (input/output)
 Real array of dimension (2*LDB, N). On entry, if
 an out-of-place transform is requested B contains
 the input data. Otherwise, B is not referenced.
 B is unchanged upon exit.

 LDB (input)
 Integer. If an out-of-place transform is desired,
 2*LDB is the leading dimension of the array B
 which contains the data to be transformed and
 2*LDB >= 2*(M/2+1). Otherwise it is not refer-
 enced.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by DFFT2I.

 LWORK (input)
 Integer. LWORK >= (M + 2*N + MAX(M, 2*N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft2f - compute the Fourier coefficients of a periodic
 sequence. The DFFT operations are unnormalized, so a call
 of DFFT2F followed by a call of DFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE DFFT2F(PLACE, FULL, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER M, N, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DFFT2F_64(PLACE, FULL, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER*8 M, N, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2F(PLACE, FULL, [M], [N], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER :: M, N, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE FFT2F_64(PLACE, FULL, [M], [N], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER(8) :: M, N, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dfft2f(char place, char full, int m, int n, double *a,
 int lda, double *b, int ldb, double *work, int
 lwork);

 void dfft2f_64(char place, char full, long m, long n, double
 *a, long lda, double *b, long ldb, double *work,
 long lwork);

ARGUMENTS

 PLACE (input)
 Character. If PLACE = 'I' or 'i' (for in-place) ,
 the input and output data are stored in array A.
 If PLACE = 'O' or 'o' (for out-of-place), the
 input data is stored in array B while the output
 is stored in A.

 FULL (input)
 Indicates whether or not to generate the full
 result matrix. 'F' or 'f' will cause DFFT2F to
 generate the full result matrix. Otherwise only a
 partial matrix that takes advantage of symmetry
 will be generated.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most most efficient when N is
 a product of small primes. N >= 0; when N = 0,
 the subroutine returns immediately without chang-
 ing any data.

 A (input/output)
 On entry, a two-dimensional array A(LDA,N) that
 contains the data to be transformed. Upon exit, A
 is unchanged if an out-of-place transform is done.
 If an in-place transform with partial result is
 requested, A(1:(M/2+1)*2,1:N) will contain the
 transformed results. If an in-place transform
 with full result is requested, A(1:2*M,1:N) will
 contain complete transformed results.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA must be even if the
 transformed sequences are to be stored in A.

 If PLACE = ('O' or 'o') LDA >= M

 If PLACE = ('I' or 'i') LDA must be even. If
 FULL = ('F' or 'f'), LDA >= 2*M

 FULL is not ('F' or 'f'), LDA >= (M/2+1)*2

 B (input/output)
 Upon exit, a two-dimensional array B(2*LDB,N) that
 contains the transformed results if an out-of-
 place transform is done. Otherwise, B is not
 used.

 If an out-of-place transform is done and FULL is
 not 'F' or 'f', B(1:(M/2+1)*2,1:N) will contain
 the partial transformed results. If FULL = 'F' or
 'f', B(1:2*M,1:N) will contain the complete
 transformed results.

 LDB (input)
 2*LDB is the leading dimension of the array B. If
 an in-place transform is desired LDB is ignored.

 If PLACE is ('O' or 'o') and

 FULL is ('F' or 'f'), LDB >= M

 FULL is not ('F' or 'f'), LDB >= M/2+1

 Note that even though LDB is used in the argument
 list, 2*LDB is the actual leading dimension of B.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by DFFT2I.

 LWORK (input)
 Integer. LWORK >= (M + 2*N + MAX(M, 2*N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft2i - initialize the array WSAVE, which is used in both
 the forward and backward transforms.

SYNOPSIS

 SUBROUTINE DFFT2I(M, N, WORK)

 INTEGER M, N
 DOUBLE PRECISION WORK(*)

 SUBROUTINE DFFT2I_64(M, N, WORK)

 INTEGER*8 M, N
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2I(M, N, WORK)

 INTEGER :: M, N
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT2I_64(M, N, WORK)

 INTEGER(8) :: M, N
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void dfft2i(int m, int n, double *work);

 void dfft2i_64(long m, long n, double *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 WORK (input/output)
 On entry, an array of dimension (M + 2*N + MAX(M,
 2*N) + 30) or greater. DFFT2I needs to be called

 only once to initialize array WORK before calling
 DFFT2F and/or DFFT2B if M, N and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft3b - compute a periodic sequence from its Fourier coef-
 ficients. The DFFT operations are unnormalized, so a call of
 DFFT3F followed by a call of DFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE DFFT3B(PLACE, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER M, N, K, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,N,*), B(LDB,N,*), WORK(*)

 SUBROUTINE DFFT3B_64(PLACE, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N, K, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,N,*), B(LDB,N,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3B(PLACE, [M], [N], [K], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N, K, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:,:) :: A, B

 SUBROUTINE FFT3B_64(PLACE, [M], [N], [K], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N, K, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dfft3b(char place, int m, int n, int k, double *a, int
 lda, double *b, int ldb, double *work, int lwork);

 void dfft3b_64(char place, long m, long n, long k, double
 *a, long lda, double *b, long ldb, double *work,
 long lwork);

ARGUMENTS

 PLACE (input)
 Select an in-place ('I' or 'i') or out-of-place
 ('O' or 'o') transform.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most efficient when N is a
 product of small primes. N >= 0; when N = 0, the
 subroutine returns immediately without changing
 any data.

 K (input) Integer specifying the number of planes to be
 transformed. It is most efficient when K is a
 product of small primes. K >= 0; when K = 0, the
 subroutine returns immediately without changing
 any data.

 A (input/output)
 On entry, the three-dimensional array A(LDA,N,K)
 contains the data to be transformed if an in-place
 transform is requested. Otherwise, it is not
 referenced. Upon exit, results are stored in
 A(1:M,1:N,1:K).

 LDA (input)
 Integer specifying the leading dimension of A. If
 an out-of-place transform is desired LDA >= M.
 Else if an in-place transform is desired LDA >=
 2*(M/2+1).

 B (input/output)
 Real array of dimension B(2*LDB,N,K). On entry,
 if an out-of-place transform is requested
 B(1:2*(M/2+1),1:N,1:K) contains the input data.
 Otherwise, B is not referenced. B is unchanged
 upon exit.

 LDB (input)
 If an out-of-place transform is desired, 2*LDB is
 the leading dimension of the array B which con-
 tains the data to be transformed and 2*LDB >=
 2*(M/2+1). Otherwise it is not referenced.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by DFFT3I.

 LWORK (input)
 Integer. LWORK >= (M + 2*(N + K) + 4*K + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft3f - compute the Fourier coefficients of a real periodic
 sequence. The DFFT operations are unnormalized, so a call of
 DFFT3F followed by a call of DFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE DFFT3F(PLACE, FULL, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER M, N, K, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,N,*), B(LDB,N,*), WORK(*)

 SUBROUTINE DFFT3F_64(PLACE, FULL, M, N, K, A, LDA, B, LDB, WORK,
 LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER*8 M, N, K, LDA, LDB, LWORK
 DOUBLE PRECISION A(LDA,N,*), B(LDB,N,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3F(PLACE, FULL, [M], [N], [K], A, [LDA], B, [LDB],
 WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER :: M, N, K, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:,:) :: A, B

 SUBROUTINE FFT3F_64(PLACE, FULL, [M], [N], [K], A, [LDA], B, [LDB],
 WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER(8) :: M, N, K, LDA, LDB, LWORK
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dfft3f(char place, char full, int m, int n, int k, dou-
 ble *a, int lda, double *b, int ldb, double *work,
 int lwork);

 void dfft3f_64(char place, char full, long m, long n, long
 k, double *a, long lda, double *b, long ldb, dou-

 ble *work, long lwork);

ARGUMENTS

 PLACE (input)
 Select an in-place ('I' or 'i') or out-of-place
 ('O' or 'o') transform.

 FULL (input)
 Select a full ('F' or 'f') or partial (' ')
 representation of the results. If the caller
 selects full representation then an MxNxK real
 array will transform to produce an MxNxK complex
 array. If the caller does not select full
 representation then an MxNxK real array will
 transform to a (M/2+1)xNxK complex array that
 takes advantage of the symmetry properties of a
 transformed real sequence.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most efficient when N is a
 product of small primes. N >= 0; when N = 0, the
 subroutine returns immediately without changing
 any data.

 K (input) Integer specifying the number of planes to be
 transformed. It is most efficient when K is a
 product of small primes. K >= 0; when K = 0, the
 subroutine returns immediately without changing
 any data.

 A (input/output)
 On entry, a three-dimensional array A(LDA,N,K)
 that contains input data to be transformed. On
 exit, if an in-place transform is done and FULL is
 not 'F' or 'f', A(1:2*(M/2+1),1:N,1:K) will con-
 tain the partial transformed results. If FULL =
 'F' or 'f', A(1:2*M,1:N,1:K) will contain the com-
 plete transformed results.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA must be even if the
 transformed sequences are to be stored in A.

 If PLACE = ('O' or 'o') LDA >= M

 If PLACE = ('I' or 'i') LDA must be even. If

 FULL = ('F' or 'f'), LDA >= 2*M

 FULL is not ('F' or 'f'), LDA >= 2*(M/2+1)

 B (input/output)
 Upon exit, a three-dimensional array B(2*LDB,N,K)
 that contains the transformed results if an out-

 of-place transform is done. Otherwise, B is not
 used.

 If an out-of-place transform is done and FULL is
 not 'F' or 'f', B(1:2*(M/2+1),1:N,1:K) will con-
 tain the partial transformed results. If FULL =
 'F' or 'f', B(1:2*M,1:N,1:K) will contain the com-
 plete transformed results.

 LDB (input)
 2*LDB is the leading dimension of the array B. If
 an in-place transform is desired LDB is ignored.

 If PLACE is ('O' or 'o') and

 FULL is ('F' or 'f'), then LDB >= M

 FULL is not ('F' or 'f'), then LDB >= M/2 + 1

 Note that even though LDB is used in the argument
 list, 2*LDB is the actual leading dimension of B.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. WORK must have been initialized by DFFT3I.

 LWORK (input)
 Integer. LWORK >= (M + 2*(N + K) + 4*K + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfft3i - initialize the array WSAVE, which is used in both
 DFFT3F and DFFT3B.

SYNOPSIS

 SUBROUTINE DFFT3I(M, N, K, WORK)

 INTEGER M, N, K
 DOUBLE PRECISION WORK(*)

 SUBROUTINE DFFT3I_64(M, N, K, WORK)

 INTEGER*8 M, N, K
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3I(M, N, K, WORK)

 INTEGER :: M, N, K
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT3I_64(M, N, K, WORK)

 INTEGER(8) :: M, N, K
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void dfft3i(int m, int n, int k, double *work);

 void dfft3i_64(long m, long n, long k, double *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 K (input) Number of planes to be transformed. K >= 0.

 WORK (input/output)

 On entry, an array of dimension (M + 2*(N + K) +
 30) or greater. DFFT3I needs to be called only
 once to initialize array WORK before calling
 DFFT3F and/or DFFT3B if M, N, K and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfftb - compute a periodic sequence from its Fourier coeffi-
 cients. The DFFT operations are unnormalized, so a call of
 DFFTF followed by a call of DFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE DFFTB(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DFFTB_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE FFTB_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dfftb(int n, double *x, double *wsave);

 void dfftb_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the

 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (2 *
 N + 15) or greater and must have been initialized
 by DFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dfftf - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 DFFTF followed by a call of DFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE DFFTF(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DFFTF_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE FFTF_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dfftf(int n, double *x, double *wsave);

 void dfftf_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the

 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (2 *
 N + 15) or greater and must have been initialized
 by DFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dffti - initialize the array WSAVE, which is used in both
 DFFTF and DFFTB.

SYNOPSIS

 SUBROUTINE DFFTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DFFTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE FFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dffti(int n, double *wsave);

 void dffti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. DFFTI needs to be called only once to
 initialize array WORK before calling DFFTF and/or
 DFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 dfftopt - compute the length of the closest fast FFT

SYNOPSIS

 INTEGER FUNCTION DFFTOPT(LEN)

 INTEGER LEN

 INTEGER*8 FUNCTION DFFTOPT_64(LEN)

 INTEGER*8 LEN

 F95 INTERFACE
 INTEGER FUNCTION DFFTOPT(LEN)

 INTEGER :: LEN

 INTEGER(8) FUNCTION DFFTOPT_64(LEN)

 INTEGER(8) :: LEN

 C INTERFACE
 #include <sunperf.h>

 int dfftopt(int len);

 long dfftopt_64(long len);

PURPOSE

 dfftopt computes the length of the closest fast FFT. Fast
 Fourier transform algorithms, including those used in Per-
 formance Library, work best with vector lengths that are
 products of small primes. For example, an FFT of length
 32=2**5 will run faster than an FFT of prime length 31
 because 32 is a product of small primes and 31 is not. If
 your application is such that you can taper or zero pad your
 vector to a larger length then this function may help you
 select a better length and run your FFT faster.

 DFFTOPT will return an integer no smaller than the input
 argument N that is the closest number that is the product of

 small primes. DFFTOPT will return 16 for an input of N=16
 and return 18=2*3*3 for an input of N=17.

 Note that the length computed here is not guaranteed to be
 optimal, only to be a
 product of small primes. Also, the value returned may
 change as the underlying
 FFTs become capable of handling larger primes. For exam-
 ple, passing in N=51 to day will return 52=2*2*13 rather
 than 51=3*17 because the FFTs in Performance Li brary do not
 have fast radix 17 code. In the future, radix 17 code may
 be added
 and then N=51 will return 51.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 dfftz - initialize the trigonometric weight and factor
 tables or compute the forward Fast Fourier Transform of a
 double precision sequence.

SYNOPSIS

 SUBROUTINE DFFTZ(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX Y(*)
 DOUBLE PRECISION X(*), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE DFFTZ_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX Y(*)
 DOUBLE PRECISION X(*), SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void dfftz_ (int *iopt, int *n, double *scale, double *x,
 doublecomplex *y, double *trigs, int *ifac, double
 *work, int *lwork, int *ierr);

 void dfftz_64_ (long *iopt, long *n, double *scale, double
 *x, doublecomplex *y, double *trigs, long *ifac,
 double *work, long *lwork, long *ierr);

PURPOSE

 dfftz initializes the trigonometric weight and factor tables
 or computes the forward Fast Fourier Transform of a double
 precision sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)
 In real-to-complex transform of length N, the (N/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) On entry, X is a real array whose first N elements
 contain the sequence to be transformed.

 Y (output)
 Double complex array whose first (N/2+1) elements
 contain the transform results. X and Y may be the
 same array starting at the same memory location,
 in which case the dimension of X must be at least
 2*(N/2+1). Otherwise, it is assumed that there is

 no overlap between X and Y in memory.

 TRIGS (input/output)
 Double precision array of length 2*N that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = -1.
 Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least N.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 dfftz2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional forward Fast Fourier
 Transform of a two-dimensional double precision array.

SYNOPSIS

 SUBROUTINE DFFTZ2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX Y(LDY, *)
 DOUBLE PRECISION X(LDX, *), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE DFFTZ2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX Y(LDY, *)
 DOUBLE PRECISION X(LDX, *), SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void dfftz2_ (int *iopt, int *n1, int *n2, double *scale,
 double *x, int *ldx, doublecomplex *y, int *ldy,
 double *trigs, int *ifac, double *work, int
 *lwork, int *ierr);

 void dfftz2_64_ (long *iopt, long *n1, long *n2, double
 *scale, double *x, long *ldx, doublecomplex *y,

 long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 dfftz2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional forward Fast Fourier
 Transform of a two-dimensional double precision array. In
 computing the two-dimensional FFT, one-dimensional FFTs are
 computed along the columns of the input array.
 One-dimensional FFTs are then computed along the rows of the
 intermediate results.

 N2-1 N1-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 In real-to-complex transform of length N1, the (N1/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes N2 >= 0. Unchanged on
 exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX,
 N2) that contains input data to be transformed. X
 and Y can be the same array.

 LDX (input)
 Leading dimension of X. LDX >= N1 if X is not the
 same array as Y. Else, LDX = 2*LDY. Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY,
 N2) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY (input)
 Leading dimension of Y. LDY >= N1/2+1 Unchanged
 on exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2) that
 contains the trigonometric weights. The weights
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 MAX(N1, 2*N2) where NCPUS is the number of threads
 used to execute the routine. The user can also
 choose to have the routine allocate its own
 workspace (see LWORK).
 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1) or (LDX not equal 2*LDY when X and
 Y are same array)
 -5 = (LDY < N1/2+1)
 -6 = (LWORK not equal 0) and (LWORK <
 MAX(N1,2*N2))
 -7 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, output array Y(1:LDY, 1:N2) is overwritten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 dfftz3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional forward Fast Fourier
 Transform of a three-dimensional double complex array.

SYNOPSIS

 SUBROUTINE DFFTZ3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX Y(LDY1, LDY2, *)
 DOUBLE PRECISION X(LDX1, LDX2, *), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE DFFTZ3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX Y(LDY1, LDY2, *)
 DOUBLE PRECISION X(LDX1, LDX2, *), SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR
 C INTERFACE
 #include <sunperf.h>

 void dfftz3_ (int *iopt, int *n1, int *n2, int *n3, double
 *scale, double *x, int *ldx1, int *ldx2, doub-
 lecomplex *y, int *ldy1, int *ldy2, double *trigs,
 int *ifac, double *work, int *lwork, int *ierr);

 void dfftz3_64_ (long *iopt, long *n1, long *n2, long *n3,
 double *scale, double *x, long *ldx1, long *ldx2,
 doublecomplex *y, long *ldy1, long *ldy2, double
 *trigs, long *ifac, double *work, long *lwork,
 long *ierr);

PURPOSE

 dfftz3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional forward Fast
 Fourier Transform of a three-dimensional double complex
 array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double precision array of dimensions (LDX1,
 LDX2, N3) that contains input data to be
 transformed. X can be same array as Y.

 LDX1 (input)
 first dimension of X. If X is not same array as
 Y, LDX1 >= N1 Else, LDX1 = 2*LDY1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY1,
 LDY2, N3) that contains the transform results. X
 and Y can be the same array starting at the same
 memory location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. LDY1 >= N1/2+1 Unchanged on
 exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same
 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2+N3) that
 contains the trigonometric weights. The weights

 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The fac-
 tors are computed when the routine is called with
 IOPT = 0 and they are used in subsequent calls
 when IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 (MAX(N,2*N2,2*N3) + 16*N3) * NCPUS where NCPUS is
 the number of threads used to execute the routine.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1) or (LDX not equal 2*LDY when X
 and Y are same array)
 -6 = (LDX2 < N2)
 -7 = (LDY1 < N1/2+1)
 -8 = (LDY2 < N2) or (LDY2 not equal LDX2 when X
 and Y are same array)
 -9 = (LWORK not equal 0) and (LWORK <
 (MAX(N,2*N2,2*N3) + 16*N3))
 -10 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, output subarray Y(1:LDY1, 1:N2, 1:N3) is overwrit-
 ten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 dfftzm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional forward Fast Fourier
 Transform of a set of double precision data sequences stored
 in a two-dimensional array.

SYNOPSIS

 SUBROUTINE DFFTZM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE PRECISION X(LDX, *), SCALE, TRIGS(*), WORK(*)
 DOUBLE COMPLEX Y(LDY, *)

 SUBROUTINE DFFTZM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE PRECISION X(LDX, *), SCALE, TRIGS(*), WORK(*)
 DOUBLE COMPLEX Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 REAL(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void dfftzm_ (int *iopt, int *m, int *n, double *scale, dou-
 ble *x, int *ldx, doublecomplex *y, int *ldy, dou-
 ble *trigs, int *ifac, double *work, int *lwork,
 int *ierr);

 void dfftzm_64_ (long *iopt, long *m, long *n, double
 *scale, double *x, long *ldx, doublecomplex *y,

 long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 dfftzm initializes the trigonometric weight and factor
 tables or computes the one-dimensional forward Fast Fourier
 Transform of a set of double precision data sequences stored
 in a two-dimensional array:

 N1-1
 Y(k,l) = scale * SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N1)
 In real-to-complex transform of length N1, the (N1/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the discrete Fourier transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double precision array of dimensions (LDX,
 N2) that contains the sequences to be transformed
 stored in its columns.

 LDX (input)
 Leading dimension of X. If X and Y are the same
 array, LDX = 2*LDY Else LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY,
 N2) that contains the transform results of the
 input sequences. X and Y can be the same array
 starting at the same memory location, in which
 case the input sequences are overwritten by their
 transform results. Otherwise, it is assumed that
 there is no overlap between X and Y in memory.

 LDY (input)
 Leading dimension of Y. LDY >= N1/2 + 1 Unchanged
 on exit.

 TRIGS (input/output)
 Double precision array of length 2*N1 that con-
 tains the trigonometric weights. The weights are

 computed when the routine is called with IOPT = 0
 and they are used in subsequent calls when IOPT =
 -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least N1.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1) or (LDX not equal 2*LDY when X and
 Y are same array)
 -4 = (LDY < N1/2 + 1)
 -6 = (LWORK not equal 0) and (LWORK < N1)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbbrd - reduce a real general m-by-n band matrix A to upper
 bidiagonal form B by an orthogonal transformation

SYNOPSIS

 SUBROUTINE DGBBRD(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, INFO)

 CHARACTER * 1 VECT
 INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 DOUBLE PRECISION AB(LDAB,*), D(*), E(*), Q(LDQ,*),
 PT(LDPT,*), C(LDC,*), WORK(*)

 SUBROUTINE DGBBRD_64(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, INFO)

 CHARACTER * 1 VECT
 INTEGER*8 M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 DOUBLE PRECISION AB(LDAB,*), D(*), E(*), Q(LDQ,*),
 PT(LDPT,*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBBRD(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E, [Q],
 [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: AB, Q, PT, C

 SUBROUTINE GBBRD_64(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E,
 [Q], [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER(8) :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: AB, Q, PT, C

 C INTERFACE
 #include <sunperf.h>

 void dgbbrd(char vect, int m, int n, int ncc, int kl, int
 ku, double *ab, int ldab, double *d, double *e,

 double *q, int ldq, double *pt, int ldpt, double
 *c, int ldc, int *info);
 void dgbbrd_64(char vect, long m, long n, long ncc, long kl,
 long ku, double *ab, long ldab, double *d, double
 *e, double *q, long ldq, double *pt, long ldpt,
 double *c, long ldc, long *info);

PURPOSE

 dgbbrd reduces a real general m-by-n band matrix A to upper
 bidiagonal form B by an orthogonal transformation: Q' * A *
 P = B.

 The routine computes B, and optionally forms Q or P', or
 computes Q'*C for a given matrix C.

ARGUMENTS

 VECT (input)
 Specifies whether or not the matrices Q and P' are
 to be formed. = 'N': do not form Q or P';
 = 'Q': form Q only;
 = 'P': form P' only;
 = 'B': form both.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 KL (input)
 The number of subdiagonals of the matrix A. KL >=
 0.

 KU (input)
 The number of superdiagonals of the matrix A. KU
 >= 0.

 AB (input/output)
 On entry, the m-by-n band matrix A, stored in rows
 1 to KL+KU+1. The j-th column of A is stored in
 the j-th column of the array AB as follows:
 AB(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl). On exit, A is overwritten by
 values generated during the reduction.
 LDAB (input)
 The leading dimension of the array A. LDAB >=
 KL+KU+1.

 D (output)
 The diagonal elements of the bidiagonal matrix B.

 E (output)
 The superdiagonal elements of the bidiagonal
 matrix B.

 Q (output)
 If VECT = 'Q' or 'B', the m-by-m orthogonal matrix

 Q. If VECT = 'N' or 'P', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.

 PT (output)
 If VECT = 'P' or 'B', the n-by-n orthogonal matrix
 P'. If VECT = 'N' or 'Q', the array PT is not
 referenced.

 LDPT (input)
 The leading dimension of the array PT. LDPT >=
 max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 other-
 wise.

 C (input/output)
 On entry, an m-by-ncc matrix C. On exit, C is
 overwritten by Q'*C. C is not referenced if NCC =
 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.

 WORK (workspace)
 dimension(MAX(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbcon - estimate the reciprocal of the condition number of
 a real general band matrix A, in either the 1-norm or the
 infinity-norm,

SYNOPSIS

 SUBROUTINE DGBCON(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DGBCON_64(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBCON(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GBCON_64(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dgbcon(char norm, int n, int nsub, int nsuper, double
 *a, int lda, int *ipivot, double anorm, double
 *rcond, int *info);

 void dgbcon_64(char norm, long n, long nsub, long nsuper,
 double *a, long lda, long *ipivot, double anorm,
 double *rcond, long *info);

PURPOSE

 dgbcon estimates the reciprocal of the condition number of a
 real general band matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 SGBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension (N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbequ - compute row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number

SYNOPSIS

 SUBROUTINE DGBEQU(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION A(LDA,*), ROWSC(*), COLSC(*)

 SUBROUTINE DGBEQU_64(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION A(LDA,*), ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GBEQU([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GBEQU_64([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgbequ(int m, int n, int nsub, int nsuper, double *a,
 int lda, double *rowsc, double *colsc, double
 *rowcn, double *colcn, double *amax, int *info);

 void dgbequ_64(long m, long n, long nsub, long nsuper, dou-
 ble *a, long lda, double *rowsc, double *colsc,
 double *rowcn, double *colcn, double *amax, long
 *info);

PURPOSE

 dgbequ computes row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number. R returns the row scale factors and C the column
 scale factors, chosen to try to make the largest element in
 each row and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) The band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 ROWSC (output)
 If INFO = 0, or INFO > M, ROWSC contains the row
 scale factors for A.
 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN

 >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbmv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y

SYNOPSIS

 SUBROUTINE DGBMV(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X, INCX,
 BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER M, N, NSUB, NSUPER, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 SUBROUTINE DGBMV_64(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X,
 INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE GBMV([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA], X,
 [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GBMV_64([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA],
 X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgbmv(char transa, int m, int n, int nsub, int nsuper,
 double alpha, double *a, int lda, double *x, int
 incx, double beta, double *y, int incy);
 void dgbmv_64(char transa, long m, long n, long nsub, long
 nsuper, double alpha, double *a, long lda, double
 *x, long incx, double beta, double *y, long incy);

PURPOSE

 dgbmv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y, where alpha
 and beta are scalars, x and y are vectors and A is an m by n
 band matrix, with nsub sub-diagonals and nsuper super-
 diagonals.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 NSUB (input)
 On entry, NSUB specifies the number of sub-
 diagonals of the matrix A. NSUB >= 0. Unchanged
 on exit.

 NSUPER (input)
 On entry, NSUPER specifies the number of super-
 diagonals of the matrix A. NSUPER >= 0. Unchanged
 on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading (nsub + nsuper + 1) by
 n part of the array A must contain the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (nsuper + 1
) of the array, the first super-diagonal starting
 at position 2 in row nsuper, the first sub-
 diagonal starting at position 1 in row (nsuper +

 2), and so on. Elements in the array A that do
 not correspond to elements in the band matrix
 (such as the top left nsuper by nsuper triangle)
 are not referenced. The following program segment
 will transfer a band matrix from conventional full
 matrix storage to band storage:

 DO 20, J = 1, N
 K = NSUPER + 1 - J
 DO 10, I = MAX(1, J - NSUPER), MIN(M, J +
 NSUB)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 nsub + nsuper + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry, the incremented array Y
 must contain the vector y. On exit, Y is overwrit-
 ten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE DGBRFS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DGBRFS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBRFS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA], AF,
 [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GBRFS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void dgbrfs(char transa, int n, int nsub, int nsuper, int
 nrhs, double *a, int lda, double *af, int ldaf,
 int *ipivot, double *b, int ldb, double *x, int
 ldx, double *ferr, double *berr, int *info);

 void dgbrfs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, double *a, long lda, double *af, long
 ldaf, long *ipivot, double *b, long ldb, double
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 dgbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input) The original band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(n,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input)
 Details of the LU factorization of the band matrix

 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB*NSUPER+1.

 IPIVOT (input)
 The pivot indices from SGBTRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SGBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgbsv - compute the solution to a real system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE DGBSV(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DGBSV_64(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB,
 INFO)

 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GBSV([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GBSV_64([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B,
 [LDB], [INFO])

 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgbsv(int n, int nsub, int nsuper, int nrhs, double *a,
 int lda, int *ipivot, double *b, int ldb, int
 *info);

 void dgbsv_64(long n, long nsub, long nsuper, long nrhs,
 double *a, long lda, long *ipivot, double *b, long
 ldb, long *info);

PURPOSE

 dgbsv computes the solution to a real system of linear equa-
 tions A * X = B, where A is a band matrix of order N with KL
 subdiagonals and KU superdiagonals, and X and B are N-by-
 NRHS matrices.

 The LU decomposition with partial pivoting and row inter-
 changes is used to factor A as A = L * U, where L is a pro-
 duct of permutation and unit lower triangular matrices with
 KL subdiagonals, and U is upper triangular with KL+KU super-
 diagonals. The factored form of A is then used to solve the
 system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(NSUB+NSUPER+1+i-j,j) = A(i,j) for
 max(1,j-NSUPER)<=i<=min(N,j+NSUB) On exit, details
 of the factorization: U is stored as an upper tri-
 angular band matrix with NSUB+NSUPER superdiago-
 nals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1. See below
 for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)

 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and the solution has not been
 computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbsvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B, A**T * X = B,
 or A**H * X = B,

SYNOPSIS

 SUBROUTINE DGBSVX(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DGBSVX_64(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBSVX(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GBSVX_64(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A,
 [LDA], AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>

 void dgbsvx(char fact, char transa, int n, int nsub, int
 nsuper, int nrhs, double *a, int lda, double *af,
 int ldaf, int *ipivot, char equed, double *rowsc,
 double *colsc, double *b, int ldb, double *x, int
 ldx, double *rcond, double *ferr, double *berr,
 int *info);

 void dgbsvx_64(char fact, char transa, long n, long nsub,
 long nsuper, long nrhs, double *a, long lda, dou-
 ble *af, long ldaf, long *ipivot, char equed, dou-
 ble *rowsc, double *colsc, double *b, long ldb,
 double *x, long ldx, double *rcond, double *ferr,
 double *berr, long *info);

PURPOSE

 dgbsvx uses the LU factorization to compute the solution to
 a real system of linear equations A * X = B, A**T * X = B,
 or A**H * X = B, where A is a band matrix of order N with KL
 subdiagonals and KU superdiagonals, and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').
 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = L * U,
 where L is a product of permutation and unit lower tri-
 angular
 matrices with KL subdiagonals, and U is upper triangular

 with
 KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)

 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows 1
 to NSUB+NSUPER+1. The j-th column of A is stored
 in the j-th column of the array A as follows:
 A(NSUPER+1+i-j,j) = A(i,j) for max(1,j-
 NSUPER)<=i<=min(N,j+kl)

 If FACT = 'F' and EQUED is not 'N', then A must
 have been equilibrated by the scaling factors in
 ROWSC and/or COLSC. A is not modified if FACT =
 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on
 exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains details of the LU factorization of
 the band matrix A, as computed by SGBTRF. U is
 stored as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. If EQUED .ne. 'N', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns details of the LU factorization of
 A.

 If FACT = 'E', then AF is an output argument and
 on exit returns details of the LU factorization of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = L*U as computed by SGBTRF; row i
 of the matrix was interchanged with row IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument

 and on exit contains the pivot indices from the
 factorization A = L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if EQUED = 'N', B is not modified; if TRANSA = 'N'
 and EQUED = 'ROWSC' or 'B', B is overwritten by
 diag(ROWSC)*B; if TRANSA = 'T' or 'COLSC' and
 EQUED = 'COLSC' or 'B', B is overwritten by
 diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-

 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N) On exit, WORK(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK(1) is much less than 1, then the stability of
 the LU factorization of the (equilibrated) matrix
 A could be poor. This also means that the solution
 X, condition estimator RCOND, and forward error
 bound FERR could be unreliable. If factorization
 fails with 0<INFO<=N, then WORK(1) contains the
 reciprocal pivot growth factor for the leading
 INFO columns of A.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgbtf2 - compute an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE DGBTF2(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 INTEGER M, N, KL, KU, LDAB, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION AB(LDAB,*)

 SUBROUTINE DGBTF2_64(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 INTEGER*8 M, N, KL, KU, LDAB, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE GBTF2([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 INTEGER :: M, N, KL, KU, LDAB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: AB

 SUBROUTINE GBTF2_64([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 INTEGER(8) :: M, N, KL, KU, LDAB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void dgbtf2(int m, int n, int kl, int ku, double *ab, int
 ldab, int *ipiv, int *info);

 void dgbtf2_64(long m, long n, long kl, long ku, double *ab,
 long ldab, long *ipiv, long *info);

PURPOSE

 dgbtf2 computes an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 KL (input)
 The number of subdiagonals within the band of A.
 KL >= 0.

 KU (input)
 The number of superdiagonals within the band of A.
 KU >= 0.

 AB (input/output)
 On entry, the matrix A in band storage, in rows
 KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
 not be set. The j-th column of A is stored in the
 j-th column of the array AB as follows:
 AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with KL+KU
 superdiagonals in rows 1 to KL+KU+1, and the mul-
 tipliers used during the factorization are stored
 in rows KL+KU+2 to 2*KL+KU+1. See below for
 further details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 2*KL+KU+1.

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, KL = 2, KU = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U, because of fill-in
 resulting from the row
 interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgbtrf - compute an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE DGBTRF(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DGBTRF_64(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GBTRF([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GBTRF_64([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgbtrf(int m, int n, int nsub, int nsuper, double *a,
 int lda, int *ipivot, int *info);

 void dgbtrf_64(long m, long n, long nsub, long nsuper, dou-
 ble *a, long lda, long *ipivot, long *info);

PURPOSE

 dgbtrf computes an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. See below for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgbtrs - solve a system of linear equations A * X = B or A'
 * X = B with a general band matrix A using the LU factoriza-
 tion computed by SGBTRF

SYNOPSIS

 SUBROUTINE DGBTRS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DGBTRS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT,
 B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GBTRS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GBTRS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgbtrs(char transa, int n, int nsub, int nsuper, int

 nrhs, double *a, int lda, int *ipivot, double *b,
 int ldb, int *info);
 void dgbtrs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, double *a, long lda, long *ipivot, dou-
 ble *b, long ldb, long *info);

PURPOSE

 dgbtrs solves a system of linear equations
 A * X = B or A' * X = B with a general band matrix A
 using the LU factorization computed by SGBTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgebak - form the right or left eigenvectors of a real gen-
 eral matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by SGEBAL

SYNOPSIS

 SUBROUTINE DGEBAK(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION SCALE(*), V(LDV,*)

 SUBROUTINE DGEBAK_64(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION SCALE(*), V(LDV,*)

 F95 INTERFACE
 SUBROUTINE GEBAK(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: V

 SUBROUTINE GEBAK_64(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: V

 C INTERFACE
 #include <sunperf.h>

 void dgebak(char job, char side, int n, int ilo, int ihi,
 double *scale, int m, double *v, int ldv, int
 *info);

 void dgebak_64(char job, char side, long n, long ilo, long

 ihi, double *scale, long m, double *v, long ldv,
 long *info);

PURPOSE

 dgebak forms the right or left eigenvectors of a real gen-
 eral matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by SGEBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required: = 'N', do nothing, return immediately;
 = 'P', do backward transformation for permutation
 only; = 'S', do backward transformation for scal-
 ing only; = 'B', do backward transformations for
 both permutation and scaling. JOB must be the
 same as the argument JOB supplied to SGEBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by SGEBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 See the description for ILO.

 SCALE (input)
 Details of the permutation and scaling factors, as
 returned by SGEBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by SHSEIN or
 STREVC. On exit, V is overwritten by the
 transformed eigenvectors.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgebal - balance a general real matrix A

SYNOPSIS

 SUBROUTINE DGEBAL(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 INTEGER N, LDA, ILO, IHI, INFO
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 SUBROUTINE DGEBAL_64(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 N, LDA, ILO, IHI, INFO
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAL(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: N, LDA, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEBAL_64(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: N, LDA, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgebal(char job, int n, double *a, int lda, int *ilo,
 int *ihi, double *scale, int *info);

 void dgebal_64(char job, long n, double *a, long lda, long
 *ilo, long *ihi, double *scale, long *info);

PURPOSE

 dgebal balances a general real matrix A. This involves,
 first, permuting A by a similarity transformation to isolate
 eigenvalues in the first 1 to ILO-1 and last IHI+1 to N ele-
 ments on the diagonal; and second, applying a diagonal simi-
 larity transformation to rows and columns ILO to IHI to make
 the rows and columns as close in norm as possible. Both
 steps are optional.

 Balancing may reduce the 1-norm of the matrix, and improve
 the accuracy of the computed eigenvalues and/or eigenvec-
 tors.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A:
 = 'N': none: simply set ILO = 1, IHI = N,
 SCALE(I) = 1.0 for i = 1,...,N; = 'P': permute
 only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 IHI (output)
 See the description for ILO.

 SCALE (output)
 Details of the permutations and scaling factors
 applied to A. If P(j) is the index of the row and
 column interchanged with row and column j and D(j)
 is the scaling factor applied to row and column j,
 then SCALE(j) = P(j) for j = 1,...,ILO-1 = D(j)
 for j = ILO,...,IHI = P(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The permutations consist of row and column interchanges
 which put the matrix in the form

 (T1 X Y)
 P A P = (0 B Z)
 (0 0 T2)

 where T1 and T2 are upper triangular matrices whose eigen-
 values lie along the diagonal. The column indices ILO and
 IHI mark the starting and ending columns of the submatrix B.
 Balancing consists of applying a diagonal similarity
 transformation inv(D) * B * D to make the 1-norms of each
 row of B and its corresponding column nearly equal. The
 output matrix is

 (T1 X*D Y)
 (0 inv(D)*B*D inv(D)*Z).
 (0 0 T2)

 Information about the permutations P and the diagonal matrix
 D is returned in the vector SCALE.

 This subroutine is based on the EISPACK routine BALANC.

 Modified by Tzu-Yi Chen, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgebrd - reduce a general real M-by-N matrix A to upper or
 lower bidiagonal form B by an orthogonal transformation

SYNOPSIS

 SUBROUTINE DGEBRD(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*),
 WORK(*)

 SUBROUTINE DGEBRD_64(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GEBRD([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK], [LWORK],
 [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E, TAUQ, TAUP, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEBRD_64([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK],
 [LWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E, TAUQ, TAUP, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgebrd(int m, int n, double *a, int lda, double *d,
 double *e, double *tauq, double *taup, int *info);

 void dgebrd_64(long m, long n, double *a, long lda, double
 *d, double *e, double *tauq, double *taup, long

 *info);

PURPOSE

 dgebrd reduces a general real M-by-N matrix A to upper or
 lower bidiagonal form B by an orthogonal transformation:
 Q**T * A * P = B.

 If m >= n, B is upper bidiagonal; if m < n, B is lower bidi-
 agonal.

ARGUMENTS

 M (input) The number of rows in the matrix A. M >= 0.

 N (input) The number of columns in the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N general matrix to be reduced.
 On exit, if m >= n, the diagonal and the first
 superdiagonal are overwritten with the upper bidi-
 agonal matrix B; the elements below the diagonal,
 with the array TAUQ, represent the orthogonal
 matrix Q as a product of elementary reflectors,
 and the elements above the first superdiagonal,
 with the array TAUP, represent the orthogonal
 matrix P as a product of elementary reflectors; if
 m < n, the diagonal and the first subdiagonal are
 overwritten with the lower bidiagonal matrix B;
 the elements below the first subdiagonal, with the
 array TAUQ, represent the orthogonal matrix Q as a
 product of elementary reflectors, and the elements
 above the diagonal, with the array TAUP, represent
 the orthogonal matrix P as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 D (output)
 The diagonal elements of the bidiagonal matrix B:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the bidiagonal matrix
 B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-
 1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

 TAUQ (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q. See
 Further Details.

 TAUP (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix P. See
 Further Details.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,M,N). For optimum performance LWORK >=
 (M+N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrices Q and P are represented as products of elemen-
 tary reflectors:

 If m >= n,

 Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are real scalars, and v and u are real
 vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on
 exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is
 stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and
 taup in TAUP(i).

 If m < n,
 Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are real scalars, and v and u are real
 vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on
 exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is
 stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and
 taup in TAUP(i).

 The contents of A on exit are illustrated by the following
 examples:

 m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

 (d e u1 u1 u1) (d u1 u1 u1 u1
 u1)
 (v1 d e u2 u2) (e d u2 u2 u2
 u2)
 (v1 v2 d e u3) (v1 e d u3 u3
 u3)
 (v1 v2 v3 d e) (v1 v2 e d u4

 u4)
 (v1 v2 v3 v4 d) (v1 v2 v3 e d
 u5)
 (v1 v2 v3 v4 v5)

 where d and e denote diagonal and off-diagonal elements of
 B, vi denotes an element of the vector defining H(i), and ui
 an element of the vector defining G(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgecon - estimate the reciprocal of the condition number of
 a general real matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by SGETRF

SYNOPSIS

 SUBROUTINE DGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DGECON_64(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GECON(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GECON_64(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dgecon(char norm, int n, double *a, int lda, double
 anorm, double *rcond, int *info);

 void dgecon_64(char norm, long n, double *a, long lda, dou-
 ble anorm, double *rcond, long *info);

PURPOSE

 dgecon estimates the reciprocal of the condition number of a
 general real matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 SGETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(4*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgeequ - compute row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number

SYNOPSIS

 SUBROUTINE DGEEQU(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 INTEGER M, N, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION A(LDA,*), ROWSC(*), COLSC(*)

 SUBROUTINE DGEEQU_64(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 INTEGER*8 M, N, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION A(LDA,*), ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GEEQU([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 INTEGER :: M, N, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEEQU_64([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgeequ(int m, int n, double *a, int lda, double *rowsc,
 double *colsc, double *rowcn, double *colcn, dou-
 ble *amax, int *info);

 void dgeequ_64(long m, long n, double *a, long lda, double
 *rowsc, double *colsc, double *rowcn, double
 *colcn, double *amax, long *info);

PURPOSE

 dgeequ computes row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number. R
 returns the row scale factors and C the column scale fac-
 tors, chosen to try to make the largest element in each row
 and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input) The M-by-N matrix whose equilibration factors are
 to be computed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 ROWSC (output)
 If INFO = 0 or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN
 >= 0.1, it is not worth scaling by COLSC.
 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero

 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgees - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE DGEES(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, WR, WI, Z,
 LDZ, WORK, LDWORK, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL WORK3(*)
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DGEES_64(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, WR, WI, Z,
 LDZ, WORK, LDWORK, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 WORK3(*)
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEES(JOBZ, SORTEV, SELECT, [N], A, [LDA], NOUT, WR, WI, Z,
 [LDZ], [WORK], [LDWORK], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: WORK3
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 SUBROUTINE GEES_64(JOBZ, SORTEV, SELECT, [N], A, [LDA], NOUT, WR, WI,
 Z, [LDZ], [WORK], [LDWORK], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: WORK3
 REAL(8), DIMENSION(:) :: WR, WI, WORK

 REAL(8), DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>
 void dgees(char jobz, char sortev,
 int(*select)(double,double), int n, double *a, int
 lda, int *nout, double *wr, double *wi, double *z,
 int ldz, int *info);

 void dgees_64(char jobz, char sortev,
 long(*select)(double,double), long n, double *a,
 long lda, long *nout, double *wr, double *wi, dou-
 ble *z, long ldz, long *info);

PURPOSE

 dgees computes for an N-by-N real nonsymmetric matrix A, the
 eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**T).

 Optionally, it also orders the eigenvalues on the diagonal
 of the real Schur form so that selected eigenvalues are at
 the top left. The leading columns of Z then form an ortho-
 normal basis for the invariant subspace corresponding to the
 selected eigenvalues.

 A matrix is in real Schur form if it is upper quasi-
 triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will
 be standardized in the form
 [a b]
 [c a]

 where b*c < 0. The eigenvalues of such a block are a +-
 sqrt(bc).

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to sort to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not
 referenced. An eigenvalue WR(j)+sqrt(-1)*WI(j) is
 selected if SELECT(WR(j),WI(j)) is true; i.e., if
 either one of a complex conjugate pair of eigen-
 values is selected, then both complex eigenvalues
 are selected. Note that a selected complex eigen-
 value may no longer satisfy SELECT(WR(j),WI(j)) =
 .TRUE. after ordering, since ordering may change

 the value of complex eigenvalues (especially if
 the eigenvalue is ill-conditioned); in this case
 INFO is set to N+2 (see INFO below).

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten by its real Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues (after sorting) for which
 SELECT is true. (Complex conjugate pairs for which
 SELECT is true for either eigenvalue count as 2.)

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues in the
 same order that they appear on the diagonal of the
 output Schur form T. Complex conjugate pairs of
 eigenvalues will appear consecutively with the
 eigenvalue having the positive imaginary part
 first.

 WI (output)
 See the description for WR.

 Z (output)
 If JOBZ = 'V', Z contains the orthogonal matrix Z
 of Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.
 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1;
 if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) contains the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the

 eigenvalues; elements 1:ILO-1 and i+1:N of WR and
 WI contain those eigenvalues which have converged;
 if JOBZ = 'V', Z contains the matrix which reduces
 A to its partially converged Schur form. = N+1:
 the eigenvalues could not be reordered because
 some eigenvalues were too close to separate (the
 problem is very ill-conditioned); = N+2: after
 reordering, roundoff changed values of some com-
 plex eigenvalues so that leading eigenvalues in
 the Schur form no longer satisfy SELECT=.TRUE.
 This could also be caused by underflow due to
 scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgeesx - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE DGEESX(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, WR,
 WI, Z, LDZ, SRCONE, RCONV, WORK, LDWORK, IWORK2, LDWRK2, BWORK3,
 INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 INTEGER N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER IWORK2(*)
 LOGICAL SELECT
 LOGICAL BWORK3(*)
 DOUBLE PRECISION SRCONE, RCONV
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DGEESX_64(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT,
 WR, WI, Z, LDZ, SRCONE, RCONV, WORK, LDWORK, IWORK2, LDWRK2,
 BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER*8 IWORK2(*)
 LOGICAL*8 SELECT
 LOGICAL*8 BWORK3(*)
 DOUBLE PRECISION SRCONE, RCONV
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEESX(JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], NOUT,
 WR, WI, Z, [LDZ], SRCONE, RCONV, [WORK], [LDWORK], [IWORK2],
 [LDWRK2], [BWORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER, DIMENSION(:) :: IWORK2
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: BWORK3
 REAL(8) :: SRCONE, RCONV
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 SUBROUTINE GEESX_64(JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], NOUT,
 WR, WI, Z, [LDZ], SRCONE, RCONV, [WORK], [LDWORK], [IWORK2],
 [LDWRK2], [BWORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: BWORK3
 REAL(8) :: SRCONE, RCONV
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>

 void dgeesx(char jobz, char sortev,
 int(*select)(double,double), char sense, int n,
 double *a, int lda, int *nout, double *wr, double
 *wi, double *z, int ldz, double *srcone, double
 *rconv, int *info);

 void dgeesx_64(char jobz, char sortev,
 long(*select)(double,double), char sense, long n,
 double *a, long lda, long *nout, double *wr, dou-
 ble *wi, double *z, long ldz, double *srcone, dou-
 ble *rconv, long *info);

PURPOSE

 dgeesx computes for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**T).

 Optionally, it also orders the eigenvalues on the diagonal
 of the real Schur form so that selected eigenvalues are at
 the top left; computes a reciprocal condition number for the
 average of the selected eigenvalues (RCONDE); and computes a
 reciprocal condition number for the right invariant subspace
 corresponding to the selected eigenvalues (RCONDV). The
 leading columns of Z form an orthonormal basis for this
 invariant subspace.

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see Section 4.10 of the LAPACK Users'
 Guide (where these quantities are called s and sep respec-
 tively).

 A real matrix is in real Schur form if it is upper quasi-
 triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will
 be standardized in the form
 [a b]
 [c a]
 where b*c < 0. The eigenvalues of such a block are a +-
 sqrt(bc).

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to sort to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. An eigenvalue WR(j)+sqrt(-1)*WI(j) is
 selected if SELECT(WR(j),WI(j)) is true; i.e., if
 either one of a complex conjugate pair of eigen-
 values is selected, then both are. Note that a
 selected complex eigenvalue may no longer satisfy
 SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
 ordering may change the value of complex eigen-
 values (especially if the eigenvalue is ill-
 conditioned); in this case INFO may be set to N+3
 (see INFO below).

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for average of selected eigen-
 values only;
 = 'V': Computed for selected right invariant sub-
 space only;
 = 'B': Computed for both. If SENSE = 'E', 'V' or
 'B', SORTEV must equal 'S'.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A is
 overwritten by its real Schur form T.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues (after sorting) for which
 SELECT is true. (Complex conjugate pairs for which
 SELECT is true for either eigenvalue count as 2.)

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues, in the
 same order that they appear on the diagonal of the
 output Schur form T. Complex conjugate pairs of
 eigenvalues appear consecutively with the eigen-
 value having the positive imaginary part first.

 WI (output)
 See the description for WR.

 Z (output)
 If JOBZ = 'V', Z contains the orthogonal matrix Z
 of Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 SRCONE (output)
 If SENSE = 'E' or 'B', SRCONE contains the
 reciprocal condition number for the average of the
 selected eigenvalues. Not referenced if SENSE =
 'N' or 'V'.

 RCONV (output)
 If SENSE = 'V' or 'B', RCONV contains the recipro-
 cal condition number for the selected right
 invariant subspace. Not referenced if SENSE = 'N'
 or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N). Also, if SENSE = 'E' or 'V' or 'B',
 LDWORK >= N+2*NOUT*(N-NOUT), where NOUT is the
 number of selected eigenvalues computed by this
 routine. Note that N+2*NOUT*(N-NOUT) <= N+N*N/2.
 For good performance, LDWORK must generally be
 larger.

 IWORK2 (workspace/output)
 Not referenced if SENSE = 'N' or 'E'. On exit, if
 INFO = 0, IWORK2(1) returns the optimal LDWRK2.

 LDWRK2 (input)
 The dimension of the array IWORK2. LDWRK2 >= 1;
 if SENSE = 'V' or 'B', LDWRK2 >= NOUT*(N-NOUT).

 BWORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of WR and
 WI contain those eigenvalues which have converged;
 if JOBZ = 'V', Z contains the transformation which
 reduces A to its partially converged Schur form.
 = N+1: the eigenvalues could not be reordered
 because some eigenvalues were too close to
 separate (the problem is very ill-conditioned); =
 N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Schur form no longer satisfy
 SELECT=.TRUE. This could also be caused by under-
 flow due to scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgeev - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE DGEEV(JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR,
 WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)

 SUBROUTINE DGEEV_64(JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEEV(JOBVL, JOBVR, [N], A, [LDA], WR, WI, VL, [LDVL], VR,
 [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: A, VL, VR

 SUBROUTINE GEEV_64(JOBVL, JOBVR, [N], A, [LDA], WR, WI, VL, [LDVL],
 VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: A, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dgeev(char jobvl, char jobvr, int n, double *a, int

 lda, double *wr, double *wi, double *vl, int ldvl,
 double *vr, int ldvr, int *info);
 void dgeev_64(char jobvl, char jobvr, long n, double *a,
 long lda, double *wr, double *wi, double *vl, long
 ldvl, double *vr, long ldvr, long *info);

PURPOSE

 dgeev computes for an N-by-N real nonsymmetric matrix A, the
 eigenvalues and, optionally, the left and/or right eigenvec-
 tors.

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

ARGUMENTS

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues. Com-
 plex conjugate pairs of eigenvalues appear con-
 secutively with the eigenvalue having the positive
 imaginary part first.
 WI (output)
 See the description for WR.

 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. If the j-th eigenvalue
 is real, then u(j) = VL(:,j), the j-th column of
 VL. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then u(j) = VL(:,j) +
 i*VL(:,j+1) and

 u(j+1) = VL(:,j) - i*VL(:,j+1).

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. If the j-th eigenvalue
 is real, then v(j) = VR(:,j), the j-th column of
 VR. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then v(j) = VR(:,j) +
 i*VR(:,j+1) and
 v(j+1) = VR(:,j) - i*VR(:,j+1).

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N), and if JOBVL = 'V' or JOBVR = 'V',
 LDWORK >= 4*N. For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors have
 been computed; elements i+1:N of WR and WI contain
 eigenvalues which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgeevx - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE DGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, IWORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER IWORK2(*)
 DOUBLE PRECISION ABNRM
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), SCALE(*), RCONE(*), RCONV(*), WORK(*)

 SUBROUTINE DGEEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
 VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, IWORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER*8 N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER*8 IWORK2(*)
 DOUBLE PRECISION ABNRM
 DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), SCALE(*), RCONE(*), RCONV(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR, WI,
 VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], [LDWORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK2
 REAL(8) :: ABNRM
 REAL(8), DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
 REAL(8), DIMENSION(:,:) :: A, VL, VR

 SUBROUTINE GEEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR,
 WI, VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], [LDWORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER(8) :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2
 REAL(8) :: ABNRM
 REAL(8), DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
 REAL(8), DIMENSION(:,:) :: A, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dgeevx(char balanc, char jobvl, char jobvr, char sense,
 int n, double *a, int lda, double *wr, double *wi,
 double *vl, int ldvl, double *vr, int ldvr, int
 *ilo, int *ihi, double *scale, double *abnrm, dou-
 ble *rcone, double *rconv, int *info);

 void dgeevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, double *a, long lda, double *wr,
 double *wi, double *vl, long ldvl, double *vr,
 long ldvr, long *ilo, long *ihi, double *scale,
 double *abnrm, double *rcone, double *rconv, long
 *info);

PURPOSE

 dgeevx computes for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers
 for the eigenvalues (RCONDE), and reciprocal condition
 numbers for the right
 eigenvectors (RCONDV).

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

 Balancing a matrix means permuting the rows and columns to
 make it more nearly upper triangular, and applying a diago-
 nal similarity transformation D * A * D**(-1), where D is a
 diagonal matrix, to make its rows and columns closer in norm
 and the condition numbers of its eigenvalues and eigenvec-
 tors smaller. The computed reciprocal condition numbers
 correspond to the balanced matrix. Permuting rows and
 columns will not change the condition numbers (in exact
 arithmetic) but diagonal scaling will. For further
 explanation of balancing, see section 4.10.2 of the LAPACK
 Users' Guide.

ARGUMENTS

 BALANC (input)
 Indicates how the input matrix should be diago-
 nally scaled and/or permuted to improve the condi-
 tioning of its eigenvalues. = 'N': Do not diago-
 nally scale or permute;
 = 'P': Perform permutations to make the matrix
 more nearly upper triangular. Do not diagonally
 scale; = 'S': Diagonally scale the matrix, i.e.
 replace A by D*A*D**(-1), where D is a diagonal
 matrix chosen to make the rows and columns of A
 more equal in norm. Do not permute; = 'B': Both
 diagonally scale and permute A.

 Computed reciprocal condition numbers will be for
 the matrix after balancing and/or permuting. Per-
 muting does not change condition numbers (in exact
 arithmetic), but balancing does.

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVL must = 'V'.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVR must = 'V'.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for eigenvalues only;
 = 'V': Computed for right eigenvectors only;
 = 'B': Computed for eigenvalues and right eigen-
 vectors.

 If SENSE = 'E' or 'B', both left and right eigen-
 vectors must also be computed (JOBVL = 'V' and
 JOBVR = 'V').

 N (input) The order of the matrix A. N >= 0.
 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten. If JOBVL = 'V' or JOBVR = 'V',
 A contains the real Schur form of the balanced
 version of the input matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues. Com-
 plex conjugate pairs of eigenvalues will appear
 consecutively with the eigenvalue having the posi-
 tive imaginary part first.

 WI (output)
 See the description for WR.

 VL (output)

 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. If the j-th eigenvalue
 is real, then u(j) = VL(:,j), the j-th column of
 VL. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then u(j) = VL(:,j) +
 i*VL(:,j+1) and
 u(j+1) = VL(:,j) - i*VL(:,j+1).

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. If the j-th eigenvalue
 is real, then v(j) = VR(:,j), the j-th column of
 VR. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then v(j) = VR(:,j) +
 i*VR(:,j+1) and
 v(j+1) = VR(:,j) - i*VR(:,j+1).
 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 IHI (output)
 See the description of ILO.

 SCALE (output)
 Details of the permutations and scaling factors
 applied when balancing A. If P(j) is the index of
 the row and column interchanged with row and
 column j, and D(j) is the scaling factor applied
 to row and column j, then SCALE(J) = P(J), for
 J = 1,...,ILO-1 = D(J), for J = ILO,...,IHI =
 P(J) for J = IHI+1,...,N. The order in which
 the interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix (the maximum
 of the sum of absolute values of elements of any
 column).

 RCONE (output)
 RCONE(j) is the reciprocal condition number of the
 j-th eigenvalue.

 RCONV (output)
 RCONV(j) is the reciprocal condition number of the
 j-th right eigenvector.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. If SENSE = 'N'
 or 'E', LDWORK >= max(1,2*N), and if JOBVL = 'V'
 or JOBVR = 'V', LDWORK >= 3*N. If SENSE = 'V' or
 'B', LDWORK >= N*(N+6). For good performance,
 LDWORK must generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 IWORK2 (workspace)
 dimension(2*N-2) If SENSE = 'N' or 'E', not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors or
 condition numbers have been computed; elements
 1:ILO-1 and i+1:N of WR and WI contain eigenvalues
 which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgegs - routine is deprecated and has been replaced by rou-
 tine SGGES

SYNOPSIS

 SUBROUTINE DGEGS(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 INTEGER N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 SUBROUTINE DGEGS_64(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 INTEGER*8 N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEGS(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 INTEGER :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR

 SUBROUTINE GEGS_64(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 INTEGER(8) :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR

 C INTERFACE
 #include <sunperf.h>

 void dgegs(char jobvsl, char jobvsr, int n, double *a, int
 lda, double *b, int ldb, double *alphar, double

 *alphai, double *beta, double *vsl, int ldvsl,
 double *vsr, int ldvsr, int *info);
 void dgegs_64(char jobvsl, char jobvsr, long n, double *a,
 long lda, double *b, long ldb, double *alphar,
 double *alphai, double *beta, double *vsl, long
 ldvsl, double *vsr, long ldvsr, long *info);

PURPOSE

 dgegs routine is deprecated and has been replaced by routine
 SGGES.

 SGEGS computes for a pair of N-by-N real nonsymmetric
 matrices A, B: the generalized eigenvalues (alphar +/-
 alphai*i, beta), the real Schur form (A, B), and optionally
 left and/or right Schur vectors (VSL and VSR).

 (If only the generalized eigenvalues are needed, use the
 driver SGEGV instead.)

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 The (generalized) Schur form of a pair of matrices is the
 result of multiplying both matrices on the left by one
 orthogonal matrix and both on the right by another orthogo-
 nal matrix, these two orthogonal matrices being chosen so as
 to bring the pair of matrices into (real) Schur form.

 A pair of matrices A, B is in generalized real Schur form if
 B is upper triangular with non-negative diagonal and A is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of A will be "standardized" by making
 the corresponding elements of B have the form:
 [a 0]
 [0 b]

 and the pair of corresponding 2-by-2 blocks in A and B will
 have a complex conjugate pair of generalized eigenvalues.

 The left and right Schur vectors are the columns of VSL and
 VSR, respectively, where VSL and VSR are the orthogonal
 matrices which reduce A and B to Schur form:

 Schur form of (A,B) = ((VSL)**T A (VSR), (VSL)**T B (VSR))

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;

 = 'V': compute the right Schur vectors.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of A. Note: to avoid overflow,
 the Frobenius norm of the matrix A should be less
 than the overflow threshold.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of B. Note: to avoid overflow,
 the Frobenius norm of the matrix B should be less
 than the overflow threshold.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i, j=1,...,N and
 BETA(j),j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) that would result if the 2-
 by-2 diagonal blocks of the real Schur form of
 (A,B) were further reduced to triangular form
 using 2-by-2 complex unitary transformations. If
 ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,4*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 SGEQRF, SORMQR, and SORGQR.) Then compute: NB --
 MAX of the blocksizes for SGEQRF, SORMQR, and
 SORGQR The optimal LDWORK is 2*N + N*(NB+1).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: errors that usually indicate LAPACK problems:
 =N+1: error return from SGGBAL
 =N+2: error return from SGEQRF
 =N+3: error return from SORMQR
 =N+4: error return from SORGQR
 =N+5: error return from SGGHRD
 =N+6: error return from SHGEQZ (other than failed
 iteration) =N+7: error return from SGGBAK (comput-
 ing VSL)
 =N+8: error return from SGGBAK (computing VSR)
 =N+9: error return from SLASCL (various places)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgegv - routine is deprecated and has been replaced by rou-
 tine SGGEV

SYNOPSIS

 SUBROUTINE DGEGV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE DGEGV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEGV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE GEGV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dgegv(char jobvl, char jobvr, int n, double *a, int
 lda, double *b, int ldb, double *alphar, double
 *alphai, double *beta, double *vl, int ldvl, dou-
 ble *vr, int ldvr, int *info);
 void dgegv_64(char jobvl, char jobvr, long n, double *a,
 long lda, double *b, long ldb, double *alphar,
 double *alphai, double *beta, double *vl, long
 ldvl, double *vr, long ldvr, long *info);

PURPOSE

 dgegv routine is deprecated and has been replaced by routine
 SGGEV.

 SGEGV computes for a pair of n-by-n real nonsymmetric
 matrices A and B, the generalized eigenvalues (alphar +/-
 alphai*i, beta), and optionally, the left and/or right gen-
 eralized eigenvectors (VL and VR).

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 A right generalized eigenvector corresponding to a general-
 ized eigenvalue w for a pair of matrices (A,B) is a vector
 r such that (A - w B) r = 0 . A left generalized eigen-
 vector is a vector l such that l**H * (A - w B) = 0, where
 l**H is the
 conjugate-transpose of l.

 Note: this routine performs "full balancing" on A and B --
 see "Further Details", below.

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of A on exit, see
 "Further Details", below.)

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of B on exit, see
 "Further Details", below.)

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 If ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.
 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Real eigenvectors take
 one column, complex take two columns, the first
 for the real part and the second for the imaginary
 part. Complex eigenvectors correspond to an
 eigenvalue with positive imaginary part. Each
 eigenvector will be scaled so the largest com-
 ponent will have abs(real part) + abs(imag. part)
 = 1, *except* that for eigenvalues with
 alpha=beta=0, a zero vector will be returned as
 the corresponding eigenvector. Not referenced if
 JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right generalized eigenvec-
 tors. (See "Purpose", above.) Real eigenvectors
 take one column, complex take two columns, the
 first for the real part and the second for the
 imaginary part. Complex eigenvectors correspond
 to an eigenvalue with positive imaginary part.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1, *except* that for eigenvalues with

 alpha=beta=0, a zero vector will be returned as
 the corresponding eigenvector. Not referenced if
 JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,8*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 SGEQRF, SORMQR, and SORGQR.) Then compute: NB --
 MAX of the blocksizes for SGEQRF, SORMQR, and
 SORGQR; The optimal LDWORK is: 2*N + MAX(6*N,
 N*(NB+1)).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: errors that usually indi-
 cate LAPACK problems:
 =N+1: error return from SGGBAL
 =N+2: error return from SGEQRF
 =N+3: error return from SORMQR
 =N+4: error return from SORGQR
 =N+5: error return from SGGHRD
 =N+6: error return from SHGEQZ (other than failed
 iteration) =N+7: error return from STGEVC
 =N+8: error return from SGGBAK (computing VL)
 =N+9: error return from SGGBAK (computing VR)
 =N+10: error return from SLASCL (various calls)

FURTHER DETAILS

 Balancing

 This driver calls SGGBAL to both permute and scale rows and
 columns of A and B. The permutations PL and PR are chosen
 so that PL*A*PR and PL*B*R will be upper triangular except
 for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i
 and j as close together as possible. The diagonal scaling
 matrices DL and DR are chosen so that the pair
 DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one
 (except for the elements that start out zero.)

 After the eigenvalues and eigenvectors of the balanced

 matrices have been computed, SGGBAK transforms the eigenvec-
 tors back to what they would have been (in perfect arith-
 metic) if they had not been balanced.

 Contents of A and B on Exit
 -------- -- - --- - -- ----

 If any eigenvectors are computed (either JOBVL='V' or
 JOBVR='V' or both), then on exit the arrays A and B will
 contain the real Schur form[*] of the "balanced" versions of
 A and B. If no eigenvectors are computed, then only the
 diagonal blocks will be correct.

 [*] See SHGEQZ, SGEGS, or read the book "Matrix Computa-
 tions",
 by Golub & van Loan, pub. by Johns Hopkins U. Press.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgehrd - reduce a real general matrix A to upper Hessenberg
 form H by an orthogonal similarity transformation

SYNOPSIS

 SUBROUTINE DGEHRD(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 INTEGER N, ILO, IHI, LDA, LWORKIN, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORKIN(*)

 SUBROUTINE DGEHRD_64(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 INTEGER*8 N, ILO, IHI, LDA, LWORKIN, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORKIN(*)

 F95 INTERFACE
 SUBROUTINE GEHRD([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 INTEGER :: N, ILO, IHI, LDA, LWORKIN, INFO
 REAL(8), DIMENSION(:) :: TAU, WORKIN
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEHRD_64([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 INTEGER(8) :: N, ILO, IHI, LDA, LWORKIN, INFO
 REAL(8), DIMENSION(:) :: TAU, WORKIN
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgehrd(int n, int ilo, int ihi, double *a, int lda,
 double *tau, int *info);

 void dgehrd_64(long n, long ilo, long ihi, double *a, long
 lda, double *tau, long *info);

PURPOSE

 dgehrd reduces a real general matrix A to upper Hessenberg
 form H by an orthogonal similarity transformation: Q' * A *
 Q = H .

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGEBAL;
 otherwise they should be set to 1 and N respec-
 tively. See Further Details.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first subdiag-
 onal of A are overwritten with the upper Hessen-
 berg matrix H, and the elements below the first
 subdiagonal, with the array TAU, represent the
 orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details). Elements 1:ILO-1 and
 IHI:N-1 of TAU are set to zero.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The length of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of (ihi-ilo) ele-
 mentary reflectors

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is
 stored on exit in A(i+2:ihi,i), and tau in TAU(i).

 The contents of A are illustrated by the following example,
 with n = 7, ilo = 2 and ihi = 6:

 on entry, on exit,

 (a a a a a a a) (a a h h h h
 a) (a a a a a a) (a h h h
 h a) (a a a a a a) (h h h
 h h h) (a a a a a a) (v2 h
 h h h h) (a a a a a a) (v2
 v3 h h h h) (a a a a a a) (
 v2 v3 v4 h h h) (a) (
 a)

 where a denotes an element of the original matrix A, h
 denotes a modified element of the upper Hessenberg matrix H,
 and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgelqf - compute an LQ factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE DGELQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGELQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GELQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgelqf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dgelqf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dgelqf computes an LQ factorization of a real M-by-N matrix
 A: A = L * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and below the diagonal of the array con-
 tain the m-by-min(m,n) lower trapezoidal matrix L
 (L is lower triangular if m <= n); the elements
 above the diagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
 A(i,i+1:n), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgels - solve overdetermined or underdetermined real linear
 systems involving an M-by-N matrix A, or its transpose,
 using a QR or LQ factorization of A

SYNOPSIS

 SUBROUTINE DGELS(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER M, N, NRHS, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DGELS_64(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, NRHS, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELS([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB], [WORK],
 LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GELS_64([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB],
 [WORK], LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgels (char, int, int, int, double*, int, double*, int,
 int*);

 void dgels_64 (char, long, long, long, double*, long, dou-
 ble*, long, long*);

PURPOSE

 dgels solves overdetermined or underdetermined real linear
 systems involving an M-by-N matrix A, or its transpose,
 using a QR or LQ factorization of A. It is assumed that A
 has full rank.

 The following options are provided:

 1. If TRANS = 'N' and m >= n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A*X ||.

 2. If TRANS = 'N' and m < n: find the minimum norm solution
 of
 an underdetermined system A * X = B.

 3. If TRANS = 'T' and m >= n: find the minimum norm solu-
 tion of
 an undetermined system A**T * X = B.

 4. If TRANS = 'T' and m < n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A**T * X ||.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

ARGUMENTS

 TRANSA (input)
 = 'N': the linear system involves A;
 = 'T': the linear system involves A**T.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >=0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M >=
 N, A is overwritten by details of its QR factori-
 zation as returned by SGEQRF; if M < N, A is
 overwritten by details of its LQ factorization as
 returned by SGELQF.

 LDA (input)

 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the matrix B of right hand side vectors,
 stored columnwise; B is M-by-NRHS if TRANSA = 'N',
 or N-by-NRHS if TRANSA = 'T'. On exit, B is
 overwritten by the solution vectors, stored
 columnwise: if TRANSA = 'N' and m >= n, rows 1 to
 n of B contain the least squares solution vectors;
 the residual sum of squares for the solution in
 each column is given by the sum of squares of ele-
 ments N+1 to M in that column; if TRANSA = 'N' and
 m < n, rows 1 to N of B contain the minimum norm
 solution vectors; if TRANSA = 'T' and m >= n, rows
 1 to M of B contain the minimum norm solution vec-
 tors; if TRANSA = 'T' and m < n, rows 1 to M of B
 contain the least squares solution vectors; the
 residual sum of squares for the solution in each
 column is given by the sum of squares of elements
 M+1 to N in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 MAX(1,M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. LDWORK >= max(
 1, MN + max(MN, NRHS)). For optimal perfor-
 mance, LDWORK >= max(1, MN + max(MN, NRHS)*NB
). where MN = min(M,N) and NB is the optimum
 block size.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgelsd - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE DGELSD(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
 LWORK, IWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), S(*), WORK(*)

 SUBROUTINE DGELSD_64(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 WORK, LWORK, IWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), S(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSD([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [IWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: S, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GELSD_64([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [IWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: S, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE

 #include <sunperf.h>

 void dgelsd(int m, int n, int nrhs, double *a, int lda, dou-
 ble *b, int ldb, double *s, double rcond, int
 *rank, int *info);
 void dgelsd_64(long m, long n, long nrhs, double *a, long
 lda, double *b, long ldb, double *s, double rcond,
 long *rank, long *info);

PURPOSE

 dgelsd computes the minimum-norm solution to a real linear
 least squares problem:
 minimize 2-norm(| b - A*x |)
 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The problem is solved in three steps:
 (1) Reduce the coefficient matrix A to bidiagonal form with
 Householder transformations, reducing the original prob-
 lem
 into a "bidiagonal least squares problem" (BLS)
 (2) Solve the BLS using a divide and conquer approach.
 (3) Apply back all the Householder tranformations to solve
 the original least squares problem.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 M (input) The number of rows of A. M >= 0.

 N (input) The number of columns of A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and RANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,max(M,N)).

 S (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 S(1)/S(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values S(i) <= RCOND*S(1) are treated
 as zero. If RCOND < 0, machine precision is used
 instead.

 RANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than RCOND*S(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. The
 exact minimum amount of workspace needed depends
 on M, N and NRHS. As long as LWORK is at least
 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS *
 (SMLSIZ+1)**2, if M is greater than or equal to N
 or 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS +
 (SMLSIZ+1)**2, if M is less than N, the code will
 execute correctly. SMLSIZ is returned by ILAENV
 and is equal to the maximum size of the subprob-
 lems at the bottom of the computation tree (usu-
 ally about 25), and NLVL = INT(LOG_2(MIN(M,N
)/(SMLSIZ+1))) + 1 For good performance, LWORK
 should generally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where
 MINMN = MIN(M,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Ren-Cang Li, Computer Science Division,
 University of California at Berkeley, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgelss - compute the minimum norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE DGELSS(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), SING(*), WORK(*)

 SUBROUTINE DGELSS_64(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), SING(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSS([M], [N], [NRHS], A, [LDA], B, [LDB], SING, RCOND,
 IRANK, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SING, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GELSS_64([M], [N], [NRHS], A, [LDA], B, [LDB], SING,
 RCOND, IRANK, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SING, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgelss(int m, int n, int nrhs, double *a, int lda, dou-
 ble *b, int ldb, double *sing, double rcond, int
 *irank, int *info);

 void dgelss_64(long m, long n, long nrhs, double *a, long
 lda, double *b, long ldb, double *sing, double
 rcond, long *irank, long *info);

PURPOSE

 dgelss computes the minimum norm solution to a real linear
 least squares problem:

 Minimize 2-norm(| b - A*x |).

 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the first
 min(m,n) rows of A are overwritten with its right
 singular vectors, stored rowwise.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and IRANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.
 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,max(M,N)).

 SING (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 SING(1)/SING(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of

 A. Singular values SING(i) <= RCOND*SING(1) are
 treated as zero. If RCOND < 0, machine precision
 is used instead.

 IRANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than
 RCOND*SING(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1, and
 also: LDWORK >= 3*min(M,N) + max(2*min(M,N),
 max(M,N), NRHS) For good performance, LDWORK
 should generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgelsx - routine is deprecated and has been replaced by rou-
 tine SGELSY

SYNOPSIS

 SUBROUTINE DGELSX(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND, IRANK,
 WORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER JPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DGELSX_64(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND,
 IRANK, WORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER*8 JPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSX([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT, RCOND,
 IRANK, [WORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GELSX_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT,
 RCOND, IRANK, [WORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgelsx(int m, int n, int nrhs, double *a, int lda, dou-
 ble *b, int ldb, int *jpivot, double rcond, int
 *irank, int *info);
 void dgelsx_64(long m, long n, long nrhs, double *a, long
 lda, double *b, long ldb, long *jpivot, double
 rcond, long *irank, long *info);

PURPOSE

 dgelsx routine is deprecated and has been replaced by rou-
 tine SGELSY.

 SGELSX computes the minimum-norm solution to a real linear
 least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by orthogonal transformations from the right, arriving
 at the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)

 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X. If m >=
 n and IRANK = n, the residual sum-of-squares for
 the solution in the i-th column is given by the
 sum of squares of elements N+1:M in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is an initial column, otherwise it is a free
 column. Before the QR factorization of A, all
 initial columns are permuted to the leading posi-
 tions; only the remaining free columns are moved
 as a result of column pivoting during the factori-
 zation. On exit, if JPIVOT(i) = k, then the i-th
 column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 IRANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.

 WORK (workspace)
 (max(min(M,N)+3*N, 2*min(M,N)+NRHS)),
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgelsy - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE DGELSY(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER JPVT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DGELSY_64(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 JPVT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSY([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT, RCOND,
 RANK, [WORK], [LWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GELSY_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT,
 RCOND, RANK, [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE

 #include <sunperf.h>

 void dgelsy(int m, int n, int nrhs, double *a, int lda, dou-
 ble *b, int ldb, int *jpvt, double rcond, int
 *rank, int *info);
 void dgelsy_64(long m, long n, long nrhs, double *a, long
 lda, double *b, long ldb, long *jpvt, double
 rcond, long *rank, long *info);

PURPOSE

 dgelsy computes the minimum-norm solution to a real linear
 least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by orthogonal transformations from the right, arriving
 at the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

 This routine is basically identical to the original xGELSX
 except three differences:
 o The call to the subroutine xGEQPF has been substituted
 by the
 the call to the subroutine xGEQP3. This subroutine is a
 Blas-3
 version of the QR factorization with column pivoting.
 o Matrix B (the right hand side) is updated with Blas-3.
 o The permutation of matrix B (the right hand side) is
 faster and
 more simple.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPVT (input/output)
 On entry, if JPVT(i) .ne. 0, the i-th column of A
 is permuted to the front of AP, otherwise column i
 is a free column. On exit, if JPVT(i) = k, then
 the i-th column of AP was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 RANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. The unblocked
 strategy requires that: LWORK >= MAX(MN+3*N+1,
 2*MN+NRHS), where MN = min(M, N). The block
 algorithm requires that: LWORK >= MAX(
 MN+2*N+NB*(N+1), 2*MN+NB*NRHS), where NB is an
 upper bound on the blocksize returned by ILAENV
 for the routines SGEQP3, STZRZF, STZRQF, SORMQR,
 and SORMRZ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA
 E. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgemm - perform one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C

SYNOPSIS

 SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 INTEGER M, N, K, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE DGEMM_64(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 INTEGER*8 M, N, K, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE GEMM([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 INTEGER :: M, N, K, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 SUBROUTINE GEMM_64([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 INTEGER(8) :: M, N, K, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void dgemm(char transa, char transb, int m, int n, int k,
 double alpha, double *a, int lda, double *b, int

 ldb, double beta, double *c, int ldc);

 void dgemm_64(char transa, char transb, long m, long n, long
 k, double alpha, double *a, long lda, double *b,
 long ldb, double beta, double *c, long ldc);

PURPOSE

 dgemm performs one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C where op(X) is one of

 op(X) = X or op(X) = X',

 alpha and beta are scalars, and A, B and C are matrices,
 with op(A) an m by k matrix, op(B) a k by n matrix
 and C an m by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = A'.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 TRANSB (input)
 On entry, TRANSB specifies the form of op(B) to
 be used in the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = B'.

 Unchanged on exit.

 TRANSB is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of
 the matrix op(A) and of the matrix C. M
 must be at least zero. Unchanged on exit.
 N (input)
 On entry, N specifies the number of columns of
 the matrix op(B) and the number of columns of
 the matrix C. N must be at least zero. Unchanged
 on exit.

 K (input)
 On entry, K specifies the number of columns of
 the matrix op(A) and the number of rows of the

 matrix op(B). K must be at least zero.
 Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 m otherwise. Before entry with TRANSA = 'N' or
 'n', the leading m by k part of the array A
 must contain the matrix A, otherwise the leading
 k by m part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 TRANSA = 'N' or 'n' then LDA >= max(1, m), oth-
 erwise LDA >= max(1, k). Unchanged on exit.

 B (input)
 DOUBLE PRECISION array of DIMENSION (LDB, kb),
 where kb is n when TRANSB = 'N' or 'n', and is
 k otherwise. Before entry with TRANSB = 'N' or
 'n', the leading k by n part of the array B
 must contain the matrix B, otherwise the leading
 n by k part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. When
 TRANSB = 'N' or 'n' then LDB >= max(1, k), oth-
 erwise LDB >= max(1, n). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the
 array C must contain the matrix C, except when
 beta is zero, in which case C need not be set on
 entry. On exit, the array C is overwritten by
 the m by n matrix (alpha*op(A)*op(B) +
 beta*C).

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program. LDC
 >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgemv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y

SYNOPSIS

 SUBROUTINE DGEMV(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER M, N, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 SUBROUTINE DGEMV_64(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE GEMV([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEMV_64([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgemv(char transa, int m, int n, double alpha, double

 *a, int lda, double *x, int incx, double beta,
 double *y, int incy);
 void dgemv_64(char transa, long m, long n, double alpha,
 double *a, long lda, double *x, long incx, double
 beta, double *y, long incy);

PURPOSE

 dgemv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha
 and beta are scalars, x and y are vectors and A is an m by n
 matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry with BETA non-zero, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgeqlf - compute a QL factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE DGEQLF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGEQLF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQLF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEQLF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgeqlf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dgeqlf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dgeqlf computes a QL factorization of a real M-by-N matrix
 A: A = Q * L.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m >=
 n, the lower triangle of the subarray A(m-
 n+1:m,1:n) contains the N-by-N lower triangular
 matrix L; if m <= n, the elements on and below the
 (n-m)-th superdiagonal contain the M-by-N lower
 trapezoidal matrix L; the remaining elements, with
 the array TAU, represent the orthogonal matrix Q
 as a product of elementary reflectors (see Further
 Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with

 v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on
 exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgeqp3 - compute a QR factorization with column pivoting of
 a matrix A

SYNOPSIS

 SUBROUTINE DGEQP3(M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 INTEGER JPVT(*)
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGEQP3_64(M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 INTEGER*8 JPVT(*)
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQP3([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEQP3_64([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgeqp3(int m, int n, double *a, int lda, int *jpvt,
 double *tau, int *info);

 void dgeqp3_64(long m, long n, double *a, long lda, long

 *jpvt, double *tau, long *info);

PURPOSE

 dgeqp3 computes a QR factorization with column pivoting of a
 matrix A: A*P = Q*R using Level 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper trapezoidal matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the orthogonal matrix Q as a product of min(M,N)
 elementary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPVT (input/output)
 On entry, if JPVT(J).ne.0, the J-th column of A is
 permuted to the front of A*P (a leading column);
 if JPVT(J)=0, the J-th column of A is a free
 column. On exit, if JPVT(J)=K, then the J-th
 column of A*P was the the K-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 3*N+1.
 For optimal performance LWORK >= 2*N+(N+1)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real/complex scalar, and v is a real/complex
 vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on
 exit in A(i+1:m,i), and tau in TAU(i).

 Based on contributions by
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 X. Sun, Computer Science Dept., Duke University, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgeqpf - routine is deprecated and has been replaced by rou-
 tine SGEQP3

SYNOPSIS

 SUBROUTINE DGEQPF(M, N, A, LDA, JPIVOT, TAU, WORK, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER JPIVOT(*)
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGEQPF_64(M, N, A, LDA, JPIVOT, TAU, WORK, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 JPIVOT(*)
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQPF([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEQPF_64([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgeqpf(int m, int n, double *a, int lda, int *jpivot,
 double *tau, int *info);

 void dgeqpf_64(long m, long n, double *a, long lda, long
 *jpivot, double *tau, long *info);

PURPOSE

 dgeqpf routine is deprecated and has been replaced by rou-
 tine SGEQP3.

 SGEQPF computes a QR factorization with column pivoting of a
 real M-by-N matrix A: A*P = Q*R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper triangular matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the orthogonal matrix Q as a product of min(m,n)
 elementary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is permuted to the front of A*P (a leading
 column); if JPIVOT(i) = 0, the i-th column of A is
 a free column. On exit, if JPIVOT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(n)

 Each H(i) has the form
 H = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
 A(i+1:m,i).

 The matrix P is represented in jpvt as follows: If

 jpvt(j) = i
 then the jth column of P is the ith canonical unit vector.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgeqrf - compute a QR factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE DGEQRF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGEQRF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQRF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GEQRF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgeqrf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dgeqrf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dgeqrf computes a QR factorization of a real M-by-N matrix
 A: A = Q * R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(M,N)-by-N upper trapezoidal matrix R
 (R is upper triangular if m >= n); the elements
 below the diagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of min(m,n)
 elementary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
 A(i+1:m,i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dger - perform the rank 1 operation A := alpha*x*y' + A

SYNOPSIS

 SUBROUTINE DGER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 INTEGER M, N, INCX, INCY, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(LDA,*)

 SUBROUTINE DGER_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 INTEGER*8 M, N, INCX, INCY, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GER([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 INTEGER :: M, N, INCX, INCY, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GER_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 INTEGER(8) :: M, N, INCX, INCY, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dger(int m, int n, double alpha, double *x, int incx,
 double *y, int incy, double *a, int lda);

 void dger_64(long m, long n, double alpha, double *x, long
 incx, double *y, long incy, double *a, long lda);

PURPOSE

 dger performs the rank 1 operation A := alpha*x*y' + A,
 where alpha is a scalar, x is an m element vector, y is an n
 element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgerfs - improve the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution

SYNOPSIS

 SUBROUTINE DGERFS(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DGERFS_64(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GERFS([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GERFS_64([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void dgerfs(char transa, int n, int nrhs, double *a, int
 lda, double *af, int ldaf, int *ipivot, double *b,
 int ldb, double *x, int ldx, double *ferr, double
 *berr, int *info);

 void dgerfs_64(char transa, long n, long nrhs, double *a,
 long lda, double *af, long ldaf, long *ipivot,
 double *b, long ldb, double *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 dgerfs improves the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original N-by-N matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)

 On entry, the solution matrix X, as computed by
 SGETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgerqf - compute an RQ factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE DGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GERQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GERQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgerqf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dgerqf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dgerqf computes an RQ factorization of a real M-by-N matrix
 A: A = R * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m <=
 n, the upper triangle of the subarray A(1:m,n-
 m+1:n) contains the M-by-M upper triangular matrix
 R; if m >= n, the elements on and above the (m-
 n)-th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAU, represent the orthogonal matrix Q
 as a product of min(m,n) elementary reflectors
 (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with

 v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on
 exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgesdd - compute the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and
 right singular vectors

SYNOPSIS

 SUBROUTINE DGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION A(LDA,*), S(*), U(LDU,*), VT(LDVT,*),
 WORK(*)

 SUBROUTINE DGESDD_64(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION A(LDA,*), S(*), U(LDU,*), VT(LDVT,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GESDD(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: S, WORK
 REAL(8), DIMENSION(:,:) :: A, U, VT

 SUBROUTINE GESDD_64(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: S, WORK

 REAL(8), DIMENSION(:,:) :: A, U, VT

 C INTERFACE
 #include <sunperf.h>
 void dgesdd(char jobz, int m, int n, double *a, int lda,
 double *s, double *u, int ldu, double *vt, int
 ldvt, int *info);

 void dgesdd_64(char jobz, long m, long n, double *a, long
 lda, double *s, double *u, long ldu, double *vt,
 long ldvt, long *info);

PURPOSE

 dgesdd computes the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and
 right singular vectors. If singular vectors are desired, it
 uses a divide-and-conquer algorithm.

 The SVD is written
 = U * SIGMA * transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M orthogonal
 matrix, and V is an N-by-N orthogonal matrix. The diagonal
 elements of SIGMA are the singular values of A; they are
 real and non-negative, and are returned in descending order.
 The first min(m,n) columns of U and V are the left and right
 singular vectors of A.

 Note that the routine returns VT = V**T, not V.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U and all N rows of V**T
 are returned in the arrays U and VT; = 'S': the
 first min(M,N) columns of U and the first min(M,N)
 rows of V**T are returned in the arrays U and VT;
 = 'O': If M >= N, the first N columns of U are
 overwritten on the array A and all rows of V**T
 are returned in the array VT; otherwise, all
 columns of U are returned in the array U and the
 first M rows of V**T are overwritten in the array
 VT; = 'N': no columns of U or rows of V**T are
 computed.

 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=

 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBZ =
 'O', A is overwritten with the first N columns of
 U (the left singular vectors, stored columnwise)
 if M >= N; A is overwritten with the first M rows
 of V**T (the right singular vectors, stored row-
 wise) otherwise. if JOBZ .ne. 'O', the contents
 of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 S (output)
 The singular values of A, sorted so that S(i) >=
 S(i+1).

 U (output)
 UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
 UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or
 JOBZ = 'O' and M < N, U contains the M-by-M
 orthogonal matrix U; if JOBZ = 'S', U contains the
 first min(M,N) columns of U (the left singular
 vectors, stored columnwise); if JOBZ = 'O' and M
 >= N, or JOBZ = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU
 >= M.

 VT (output)
 If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT con-
 tains the N-by-N orthogonal matrix V**T; if JOBZ =
 'S', VT contains the first min(M,N) rows of V**T
 (the right singular vectors, stored rowwise); if
 JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
 if JOBZ = 'S', LDVT >= min(M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK;

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. If
 JOBZ = 'N', LWORK >= 3*min(M,N) +
 max(max(M,N),6*min(M,N)). If JOBZ = 'O', LWORK >=
 3*min(M,N)*min(M,N) + max(max(M,N),5*min(M,N)*
 min(M,N)+4*min(M,N)). If JOBZ = 'S' or 'A' LWORK
 >= 3*min(M,N)*min(M,N) + max(max(M,N),4*min(M,N)*
 min(M,N)+4*min(M,N)). For good performance, LWORK
 should generally be larger. If LWORK < 0 but
 other input arguments are legal, WORK(1) returns
 optimal LWORK.

 IWORK (workspace)
 dimension(8*MIN(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: SBDSDC did not converge, updating process
 failed.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgesv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GESV([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GESV_64([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgesv(int n, int nrhs, double *a, int lda, int *ipivot,
 double *b, int ldb, int *info);

 void dgesv_64(long n, long nrhs, double *a, long lda, long
 *ipivot, double *b, long ldb, long *info);

PURPOSE

 dgesv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row
 interchanges is used to factor A as
 A = P * L * U,
 where P is a permutation matrix, L is unit lower triangular,
 and U is upper triangular. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N coefficient matrix A. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)
 On entry, the N-by-NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N-by-NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, so the solution could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgesvd - compute the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and/or
 right singular vectors

SYNOPSIS

 SUBROUTINE DGESVD(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT, LDVT,
 WORK, LDWORK, INFO)

 CHARACTER * 1 JOBU, JOBVT
 INTEGER M, N, LDA, LDU, LDVT, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), SING(*), U(LDU,*), VT(LDVT,*),
 WORK(*)

 SUBROUTINE DGESVD_64(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT,
 LDVT, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBU, JOBVT
 INTEGER*8 M, N, LDA, LDU, LDVT, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), SING(*), U(LDU,*), VT(LDVT,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GESVD(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU], VT,
 [LDVT], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 INTEGER :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL(8), DIMENSION(:) :: SING, WORK
 REAL(8), DIMENSION(:,:) :: A, U, VT

 SUBROUTINE GESVD_64(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU],
 VT, [LDVT], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL(8), DIMENSION(:) :: SING, WORK
 REAL(8), DIMENSION(:,:) :: A, U, VT

 C INTERFACE
 #include <sunperf.h>

 void dgesvd(char jobu, char jobvt, int m, int n, double *a,

 int lda, double *sing, double *u, int ldu, double
 *vt, int ldvt, int *info);
 void dgesvd_64(char jobu, char jobvt, long m, long n, double
 *a, long lda, double *sing, double *u, long ldu,
 double *vt, long ldvt, long *info);

PURPOSE

 dgesvd computes the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and/or
 right singular vectors. The SVD is written
 = U * SIGMA * transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M orthogonal
 matrix, and V is an N-by-N orthogonal matrix. The diagonal
 elements of SIGMA are the singular values of A; they are
 real and non-negative, and are returned in descending order.
 The first min(m,n) columns of U and V are the left and right
 singular vectors of A.

 Note that the routine returns V**T, not V.

ARGUMENTS

 JOBU (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U are returned in array
 U:
 = 'S': the first min(m,n) columns of U (the left
 singular vectors) are returned in the array U; =
 'O': the first min(m,n) columns of U (the left
 singular vectors) are overwritten on the array A;
 = 'N': no columns of U (no left singular vectors)
 are computed.

 JOBVT (input)
 Specifies options for computing all or part of the
 matrix V**T:
 = 'A': all N rows of V**T are returned in the
 array VT;
 = 'S': the first min(m,n) rows of V**T (the right
 singular vectors) are returned in the array VT; =
 'O': the first min(m,n) rows of V**T (the right
 singular vectors) are overwritten on the array A;
 = 'N': no rows of V**T (no right singular vec-
 tors) are computed.

 JOBVT and JOBU cannot both be 'O'.
 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBU =
 'O', A is overwritten with the first min(m,n)
 columns of U (the left singular vectors, stored
 columnwise); if JOBVT = 'O', A is overwritten with

 the first min(m,n) rows of V**T (the right singu-
 lar vectors, stored rowwise); if JOBU .ne. 'O' and
 JOBVT .ne. 'O', the contents of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 SING (output)
 The singular values of A, sorted so that SING(i)
 >= SING(i+1).

 U (input) (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU =
 'S'. If JOBU = 'A', U contains the M-by-M orthog-
 onal matrix U; if JOBU = 'S', U contains the first
 min(m,n) columns of U (the left singular vectors,
 stored columnwise); if JOBU = 'N' or 'O', U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBU = 'S' or 'A', LDU >= M.

 VT (input)
 If JOBVT = 'A', VT contains the N-by-N orthogonal
 matrix V**T; if JOBVT = 'S', VT contains the first
 min(m,n) rows of V**T (the right singular vectors,
 stored rowwise); if JOBVT = 'N' or 'O', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >=
 min(M,N).
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK; if INFO > 0, WORK(2:MIN(M,N)) contains the
 unconverged superdiagonal elements of an upper
 bidiagonal matrix B whose diagonal is in SING (not
 necessarily sorted). B satisfies A = U * B * VT,
 so it has the same singular values as A, and
 singular vectors related by U and VT.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1.
 LDWORK >= MAX(3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
 For good performance, LDWORK should generally be
 larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if SBDSQR did not converge, INFO specifies
 how many superdiagonals of an intermediate bidiag-
 onal form B did not converge to zero. See the
 description of WORK above for details.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgesvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE DGESVX(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DGESVX_64(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GESVX(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GESVX_64(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void dgesvx(char fact, char transa, int n, int nrhs, double
 *a, int lda, double *af, int ldaf, int *ipivot,
 char equed, double *rowsc, double *colsc, double
 *b, int ldb, double *x, int ldx, double *rcond,
 double *ferr, double *berr, int *info);

 void dgesvx_64(char fact, char transa, long n, long nrhs,
 double *a, long lda, double *af, long ldaf, long
 *ipivot, char equed, double *rowsc, double *colsc,
 double *b, long ldb, double *x, long ldx, double
 *rcond, double *ferr, double *berr, long *info);

PURPOSE

 dgesvx uses the LU factorization to compute the solution to
 a real system of linear equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = P * L * U,
 where P is a permutation matrix, L is a unit lower tri-
 angular
 matrix, and U is upper triangular.
 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the

 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. If FACT = 'F' and
 EQUED is not 'N', then A must have been equili-
 brated by the scaling factors in ROWSC and/or
 COLSC. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)

 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the factors L and U from the fac-
 torization A = P*L*U as computed by SGETRF. If
 EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the equilibrated matrix A
 (see the description of A for the form of the
 equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = P*L*U as computed by SGETRF; row
 i of the matrix was interchanged with row
 IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 TRANSA = 'N' and EQUED = 'ROWSC' or 'B', B is
 overwritten by diag(ROWSC)*B; if TRANSA = 'T' or
 'COLSC' and EQUED = 'COLSC' or 'B', B is overwrit-
 ten by diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(4*N) On exit, WORK(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK(1) is much less than 1, then the stability of

 the LU factorization of the (equilibrated) matrix
 A could be poor. This also means that the solution
 X, condition estimator RCOND, and forward error
 bound FERR could be unreliable. If factorization
 fails with 0<INFO<=N, then WORK(1) contains the
 reciprocal pivot growth factor for the leading
 INFO columns of A.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgetf2 - compute an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE DGETF2(M, N, A, LDA, IPIV, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DGETF2_64(M, N, A, LDA, IPIV, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GETF2([M], [N], A, [LDA], IPIV, [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GETF2_64([M], [N], A, [LDA], IPIV, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgetf2(int m, int n, double *a, int lda, int *ipiv, int
 *info);

 void dgetf2_64(long m, long n, double *a, long lda, long
 *ipiv, long *info);

PURPOSE

 dgetf2 computes an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 2 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the m by n matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The fac-
 torization has been completed, but the factor U is
 exactly singular, and division by zero will occur
 if it is used to solve a system of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgetrf - compute an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE DGETRF(M, N, A, LDA, IPIVOT, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DGETRF_64(M, N, A, LDA, IPIVOT, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GETRF([M], [N], A, [LDA], IPIVOT, [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GETRF_64([M], [N], A, [LDA], IPIVOT, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgetrf(int m, int n, double *a, int lda, int *ipivot,
 int *info);

 void dgetrf_64(long m, long n, double *a, long lda, long
 *ipivot, long *info);

PURPOSE

 dgetrf computes an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgetri - compute the inverse of a matrix using the LU fac-
 torization computed by SGETRF

SYNOPSIS

 SUBROUTINE DGETRI(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DGETRI_64(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GETRI([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE GETRI_64([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dgetri(int n, double *a, int lda, int *ipivot, int
 *info);

 void dgetri_64(long n, double *a, long lda, long *ipivot,
 long *info);

PURPOSE

 dgetri computes the inverse of a matrix using the LU factor-
 ization computed by SGETRF.

 This method inverts U and then computes inv(A) by solving
 the system inv(A)*L = inv(U) for inv(A).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the factors L and U from the factoriza-
 tion A = P*L*U as computed by SGETRF. On exit, if
 INFO = 0, the inverse of the original matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 WORK (workspace)
 On exit, if INFO=0, then WORK(1) returns the
 optimal LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimal performance LDWORK >= N*NB,
 where NB is the optimal blocksize returned by
 ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero; the
 matrix is singular and its inverse could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgetrs - solve a system of linear equations A * X = B or A'
 * X = B with a general N-by-N matrix A using the LU factori-
 zation computed by SGETRF

SYNOPSIS

 SUBROUTINE DGETRS(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DGETRS_64(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GETRS([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GETRS_64([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgetrs(char transa, int n, int nrhs, double *a, int
 lda, int *ipivot, double *b, int ldb, int *info);

 void dgetrs_64(char transa, long n, long nrhs, double *a,
 long lda, long *ipivot, double *b, long ldb, long
 *info);

PURPOSE

 dgetrs solves a system of linear equations
 A * X = B or A' * X = B with a general N-by-N matrix A
 using the LU factorization computed by SGETRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggbak - form the right or left eigenvectors of a real gen-
 eralized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by SGGBAL

SYNOPSIS

 SUBROUTINE DGGBAK(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
 INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*), V(LDV,*)

 SUBROUTINE DGGBAK_64(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*), V(LDV,*)

 F95 INTERFACE
 SUBROUTINE GGBAK(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE
 REAL(8), DIMENSION(:,:) :: V

 SUBROUTINE GGBAK_64(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE
 REAL(8), DIMENSION(:,:) :: V

 C INTERFACE
 #include <sunperf.h>

 void dggbak(char job, char side, int n, int ilo, int ihi,
 double *lscale, double *rscale, int m, double *v,
 int ldv, int *info);

 void dggbak_64(char job, char side, long n, long ilo, long
 ihi, double *lscale, double *rscale, long m,
 double *v, long ldv, long *info);

PURPOSE

 dggbak forms the right or left eigenvectors of a real gen-
 eralized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by SGGBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required:
 = 'N': do nothing, return immediately;
 = 'P': do backward transformation for permutation
 only;
 = 'S': do backward transformation for scaling
 only;
 = 'B': do backward transformations for both per-
 mutation and scaling. JOB must be the same as the
 argument JOB supplied to SGGBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by SGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 See the description for ILO.

 LSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the left side of A and B, as returned
 by SGGBAL.

 RSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the right side of A and B, as returned
 by SGGBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by STGEVC. On
 exit, V is overwritten by the transformed eigen-
 vectors.

 LDV (input)
 The leading dimension of the matrix V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. Ward, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggbal - balance a pair of general real matrices (A,B)

SYNOPSIS

 SUBROUTINE DGGBAL(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 WORK, INFO)

 CHARACTER * 1 JOB
 INTEGER N, LDA, LDB, ILO, IHI, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), LSCALE(*), RSCALE(*),
 WORK(*)

 SUBROUTINE DGGBAL_64(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
 RSCALE, WORK, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 N, LDA, LDB, ILO, IHI, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), LSCALE(*), RSCALE(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGBAL(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: N, LDA, LDB, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GGBAL_64(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: N, LDA, LDB, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dggbal(char job, int n, double *a, int lda, double *b,

 int ldb, int *ilo, int *ihi, double *lscale, dou-
 ble *rscale, int *info);

 void dggbal_64(char job, long n, double *a, long lda, double
 *b, long ldb, long *ilo, long *ihi, double
 *lscale, double *rscale, long *info);

PURPOSE

 dggbal balances a pair of general real matrices (A,B). This
 involves, first, permuting A and B by similarity transforma-
 tions to isolate eigenvalues in the first 1 to ILO$-$1 and
 last IHI+1 to N elements on the diagonal; and second, apply-
 ing a diagonal similarity transformation to rows and columns
 ILO to IHI to make the rows and columns as close in norm as
 possible. Both steps are optional.

 Balancing may reduce the 1-norm of the matrices, and improve
 the accuracy of the computed eigenvalues and/or eigenvectors
 in the generalized eigenvalue problem A*x = lambda*B*x.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A and
 B:
 = 'N': none: simply set ILO = 1, IHI = N,
 LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i =
 1,...,N. = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) On entry, the input matrix B. On exit, B is
 overwritten by the balanced matrix. If JOB = 'N',
 B is not referenced.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If JOB = 'N' or
 'S', ILO = 1 and IHI = N.

 IHI (output)
 See the description for ILO.

 LSCALE (input)
 Details of the permutations and scaling factors
 applied to the left side of A and B. If P(j) is
 the index of the row interchanged with row j, and
 D(j) is the scaling factor applied to row j, then
 LSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j)
 for J = ILO,...,IHI = P(j) for J = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (input)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If P(j) is
 the index of the column interchanged with column
 j, and D(j) is the scaling factor applied to
 column j, then LSCALE(j) = P(j) for J =
 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j)
 for J = IHI+1,...,N. The order in which the
 interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. WARD, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgges - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B),

SYNOPSIS

 SUBROUTINE DGGES(JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL DELCTG
 LOGICAL BWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 SUBROUTINE DGGES_64(JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL*8 DELCTG
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, [DELCTG], [N], A, [LDA], B, [LDB],
 SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK],
 [LWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL :: DELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR

 SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, [DELCTG], [N], A, [LDA], B,
 [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 [WORK], [LWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL(8) :: DELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR
 C INTERFACE
 #include <sunperf.h>

 void dgges(char jobvsl, char jobvsr, char sort,
 int(*delctg)(double,double,double), int n, double
 *a, int lda, double *b, int ldb, int *sdim, double
 *alphar, double *alphai, double *beta, double
 *vsl, int ldvsl, double *vsr, int ldvsr, int
 *info);

 void dgges_64(char jobvsl, char jobvsr, char sort,
 long(*delctg)(double,double,double), long n, dou-
 ble *a, long lda, double *b, long ldb, long *sdim,
 double *alphar, double *alphai, double *beta, dou-
 ble *vsl, long ldvsl, double *vsr, long ldvsr,
 long *info);

PURPOSE

 dgges computes for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 real Schur form (S,T), optionally, the left and/or right
 matrices of Schur vectors (VSL and VSR). This gives the gen-
 eralized Schur factorization

 (A,B) = ((VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T)

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix S and the
 upper triangular matrix T.The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the
 driver SGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0 or both being zero.

 A pair of matrices (S,T) is in generalized real Schur form
 if T is upper triangular with non-negative diagonal and S is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of S will be "standardized" by making
 the corresponding elements of T have the form:
 [a 0]
 [0 b]
 and the pair of corresponding 2-by-2 blocks in S and T will
 have a complex conjugate pair of generalized eigenvalues.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see DELCTG);

 DELCTG (input)
 DELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', DELCTG is not refer-
 enced. If SORT = 'S', DELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j)
 is selected if DELCTG(ALPHAR(j),ALPHAI(j),BETA(j))
 is true; i.e. if either one of a complex conjugate
 pair of eigenvalues is selected, then both complex
 eigenvalues are selected.

 Note that in the ill-conditioned case, a selected
 complex eigenvalue may no longer satisfy
 DELCTG(ALPHAR(j),ALPHAI(j), BETA(j)) = .TRUE.
 after ordering. INFO is to be set to N+2 in this
 case.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.
 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 DELCTG is true. (Complex conjugate pairs for
 which DELCTG is true for either eigenvalue count
 as 2.)

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i, and BETA(j),j=1,...,N
 are the diagonals of the complex Schur form (S,T)
 that would result if the 2-by-2 diagonal blocks of

 the real Schur form of (A,B) were further reduced
 to triangular form using 2-by-2 complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio. How-
 ever, ALPHAR and ALPHAI will be always less than
 and usually comparable with norm(A) in magnitude,
 and BETA always less than and usually comparable
 with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.
 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 8*N+16.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in
 SHGEQZ.
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-

 values in the Generalized Schur form no longer
 satisfy DELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 STGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dggesx - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the real Schur
 form (S,T), and,

SYNOPSIS

 SUBROUTINE DGGESX(JOBVSL, JOBVSR, SORT, DELCTG, SENSE, N, A, LDA, B,
 LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE,
 RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL DELCTG
 LOGICAL BWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*),
 WORK(*)

 SUBROUTINE DGGESX_64(JOBVSL, JOBVSR, SORT, DELCTG, SENSE, N, A, LDA,
 B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 DELCTG
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGESX(JOBVSL, JOBVSR, SORT, [DELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK

 LOGICAL :: DELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE,
 RCONDV, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR
 SUBROUTINE GGESX_64(JOBVSL, JOBVSR, SORT, [DELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: DELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE,
 RCONDV, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR

 C INTERFACE
 #include <sunperf.h>

 void dggesx(char jobvsl, char jobvsr, char sort,
 int(*delctg)(double,double,double), char sense,
 int n, double *a, int lda, double *b, int ldb, int
 *sdim, double *alphar, double *alphai, double
 *beta, double *vsl, int ldvsl, double *vsr, int
 ldvsr, double *rconde, double *rcondv, int *info);

 void dggesx_64(char jobvsl, char jobvsr, char sort,
 long(*delctg)(double,double,double), char sense,
 long n, double *a, long lda, double *b, long ldb,
 long *sdim, double *alphar, double *alphai, double
 *beta, double *vsl, long ldvsl, double *vsr, long
 ldvsr, double *rconde, double *rcondv, long
 *info);

PURPOSE

 dggesx computes for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the real Schur
 form (S,T), and, optionally, the left and/or right matrices
 of Schur vectors (VSL and VSR). This gives the generalized
 Schur factorization
 A,B) = ((VSL) S (VSR)**T, (VSL) T (VSR)**T)

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix S and the
 upper triangular matrix T; computes a reciprocal condition
 number for the average of the selected eigenvalues (RCONDE);
 and computes a reciprocal condition number for the right and
 left deflating subspaces corresponding to the selected
 eigenvalues (RCONDV). The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for

 beta=0 or for both being zero.

 A pair of matrices (S,T) is in generalized real Schur form
 if T is upper triangular with non-negative diagonal and S is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of S will be "standardized" by making
 the corresponding elements of T have the form:
 [a 0]
 [0 b]

 and the pair of corresponding 2-by-2 blocks in S and T will
 have a complex conjugate pair of generalized eigenvalues.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see DELCTG).

 DELCTG (input)
 DELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', DELCTG is not refer-
 enced. If SORT = 'S', DELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j)
 is selected if DELCTG(ALPHAR(j),ALPHAI(j),BETA(j))
 is true; i.e. if either one of a complex conjugate
 pair of eigenvalues is selected, then both complex
 eigenvalues are selected. Note that a selected
 complex eigenvalue may no longer satisfy
 DELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after
 ordering, since ordering may change the value of
 complex eigenvalues (especially if the eigenvalue
 is ill-conditioned), in this case INFO is set to
 N+3.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N' : None are computed;
 = 'E' : Computed for average of selected eigen-
 values only;
 = 'V' : Computed for selected deflating subspaces
 only;
 = 'B' : Computed for both. If SENSE = 'E', 'V',
 or 'B', SORT must equal 'S'.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On

 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 DELCTG is true. (Complex conjugate pairs for
 which DELCTG is true for either eigenvalue count
 as 2.)

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are
 the diagonals of the complex Schur form (S,T) that
 would result if the 2-by-2 diagonal blocks of the
 real Schur form of (A,B) were further reduced to
 triangular form using 2-by-2 complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio. How-
 ever, ALPHAR and ALPHAI will be always less than
 and usually comparable with norm(A) in magnitude,
 and BETA always less than and usually comparable
 with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 RCONDE (output)
 If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2)
 contain the reciprocal condition numbers for the
 average of the selected eigenvalues. Not refer-
 enced if SENSE = 'N' or 'V'.

 RCONDV (output)
 If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2)
 contain the reciprocal condition numbers for the
 selected deflating subspaces. Not referenced if
 SENSE = 'N' or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 8*(N+1)+16. If SENSE = 'E', 'V', or 'B', LWORK >=
 MAX(8*(N+1)+16, 2*SDIM*(N-SDIM)).

 IWORK (workspace)
 Not referenced if SENSE = 'N'.

 LIWORK (input)
 The dimension of the array WORK. LIWORK >= N+6.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in SHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy DELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 STGSEN.

 Further details ===============
 An approximate (asymptotic) bound on the average
 absolute error of the selected eigenvalues is

 EPS * norm((A, B)) / RCONDE(1).

 An approximate (asymptotic) bound on the maximum
 angular error in the computed deflating subspaces
 is

 EPS * norm((A, B)) / RCONDV(2).

 See LAPACK User's Guide, section 4.11 for more
 information.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dggev - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B)

SYNOPSIS

 SUBROUTINE DGGEV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE DGGEV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGEV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE GGEV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dggev(char jobvl, char jobvr, int n, double *a, int
 lda, double *b, int ldb, double *alphar, double

 *alphai, double *beta, double *vl, int ldvl, dou-
 ble *vr, int ldvr, int *info);
 void dggev_64(char jobvl, char jobvr, long n, double *a,
 long lda, double *b, long ldb, double *alphar,
 double *alphai, double *beta, double *vl, long
 ldvl, double *vr, long ldvr, long *info);

PURPOSE

 dggev computes for a pair of N-by-N real nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 The right eigenvector v(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j).

 The left eigenvector u(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B .

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 If ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VL (input)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then u(j) = VL(:,j), the j-th
 column of VL. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then u(j) =
 VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-
 i*VL(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real
 part)+abs(imag. part)=1. Not referenced if JOBVL
 = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then v(j) = VR(:,j), the j-th
 column of VR. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then v(j) =
 VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-
 i*VR(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real
 part)+abs(imag. part)=1. Not referenced if JOBVR
 = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=

 max(1,8*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: =N+1: other than QZ itera-
 tion failed in SHGEQZ.
 =N+2: error return from STGEVC.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggevx - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B)

SYNOPSIS

 SUBROUTINE DGGEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, BWORK,
 INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL BWORK(*)
 DOUBLE PRECISION ABNRM, BBNRM
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), LSCALE(*), RSCALE(*),
 RCONDE(*), RCONDV(*), WORK(*)

 SUBROUTINE DGGEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, BWORK,
 INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION ABNRM, BBNRM
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), VL(LDVL,*), VR(LDVR,*), LSCALE(*), RSCALE(*),
 RCONDE(*), RCONDV(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [IWORK],
 [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO

 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8) :: ABNRM, BBNRM
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, LSCALE,
 RSCALE, RCONDE, RCONDV, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR
 SUBROUTINE GGEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B,
 [LDB], ALPHAR, ALPHAI, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI,
 LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK],
 [IWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8) :: ABNRM, BBNRM
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, LSCALE,
 RSCALE, RCONDE, RCONDV, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dggevx(char balanc, char jobvl, char jobvr, char sense,
 int n, double *a, int lda, double *b, int ldb,
 double *alphar, double *alphai, double *beta, dou-
 ble *vl, int ldvl, double *vr, int ldvr, int *ilo,
 int *ihi, double *lscale, double *rscale, double
 *abnrm, double *bbnrm, double *rconde, double
 *rcondv, int *info);

 void dggevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, double *a, long lda, double *b,
 long ldb, double *alphar, double *alphai, double
 *beta, double *vl, long ldvl, double *vr, long
 ldvr, long *ilo, long *ihi, double *lscale, double
 *rscale, double *abnrm, double *bbnrm, double
 *rconde, double *rcondv, long *info);

PURPOSE

 dggevx computes for a pair of N-by-N real nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal
 condition numbers for the eigenvalues (RCONDE), and recipro-
 cal condition numbers for the right eigenvectors (RCONDV).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.
 The right eigenvector v(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j) .

 The left eigenvector u(j) corresponding to the eigenvalue

 lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B.

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 BALANC (input)
 Specifies the balance option to be performed. =
 'N': do not diagonally scale or permute;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale. Computed recipro-
 cal condition numbers will be for the matrices
 after permuting and/or balancing. Permuting does
 not change condition numbers (in exact arith-
 metic), but balancing does.

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': none are computed;
 = 'E': computed for eigenvalues only;
 = 'V': computed for eigenvectors only;
 = 'B': computed for eigenvalues and eigenvectors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then A contains the first part
 of the real Schur form of the "balanced" versions
 of the input A and B.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then B contains the second part
 of the real Schur form of the "balanced" versions
 of the input A and B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.

 If ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 ALPHA/BETA. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.

 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then u(j) = VL(:,j), the j-th
 column of VL. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then u(j) =
 VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-
 i*VL(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real part) +
 abs(imag. part) = 1. Not referenced if JOBVL =
 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then v(j) = VR(:,j), the j-th
 column of VR. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then v(j) =
 VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-
 i*VR(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real part) +
 abs(imag. part) = 1. Not referenced if JOBVR =
 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If BALANC = 'N'
 or 'S', ILO = 1 and IHI = N.

 IHI (output)
 See the description of ILO.

 LSCALE (output)

 Details of the permutations and scaling factors
 applied to the left side of A and B. If PL(j) is
 the index of the row interchanged with row j, and
 DL(j) is the scaling factor applied to row j, then
 LSCALE(j) = PL(j) for j = 1,...,ILO-1 = DL(j)
 for j = ILO,...,IHI = PL(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (output)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If PR(j) is
 the index of the column interchanged with column
 j, and DR(j) is the scaling factor applied to
 column j, then RSCALE(j) = PR(j) for j =
 1,...,ILO-1 = DR(j) for j = ILO,...,IHI = PR(j)
 for j = IHI+1,...,N The order in which the inter-
 changes are made is N to IHI+1, then 1 to ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix A.

 BBNRM (output)
 The one-norm of the balanced matrix B.

 RCONDE (output)
 If SENSE = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive ele-
 ments of RCONDE are set to the same value. Thus
 RCONDE(j), RCONDV(j), and the j-th columns of VL
 and VR all correspond to the same eigenpair (but
 not in general the j-th eigenpair, unless all
 eigenpairs are selected). If SENSE = 'V', RCONDE
 is not referenced.

 RCONDV (output)
 If SENSE = 'V' or 'B', the estimated reciprocal
 condition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 RCONDV are set to the same value. If the eigen-
 values cannot be reordered to compute RCONDV(j),
 RCONDV(j) is set to 0; this can only occur when
 the true value would be very small anyway. If
 SENSE = 'E', RCONDV is not referenced.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,6*N). If SENSE = 'E', LWORK >= 12*N. If
 SENSE = 'V' or 'B', LWORK >= 2*N*N+12*N+16.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)

 dimension(N+6) If SENSE = 'E', IWORK is not refer-
 enced.

 BWORK (workspace)
 dimension(N) If SENSE = 'N', BWORK is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: =N+1: other than QZ itera-
 tion failed in SHGEQZ.
 =N+2: error return from STGEVC.

FURTHER DETAILS

 Balancing a matrix pair (A,B) includes, first, permuting
 rows and columns to isolate eigenvalues, second, applying
 diagonal similarity transformation to the rows and columns
 to make the rows and columns as close in norm as possible.
 The computed reciprocal condition numbers correspond to the
 balanced matrix. Permuting rows and columns will not change
 the condition numbers (in exact arithmetic) but diagonal
 scaling will. For further explanation of balancing, see
 section 4.11.1.2 of LAPACK Users' Guide.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
 An approximate error bound for the angle between the i-th
 computed eigenvector VL(i) or VR(i) is given by
 PS * norm(ABNRM, BBNRM) / DIF(i).

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see section 4.11 of LAPACK User's Guide.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dggglm - solve a general Gauss-Markov linear model (GLM)
 problem

SYNOPSIS

 SUBROUTINE DGGGLM(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 INTEGER N, M, P, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), D(*), X(*), Y(*),
 WORK(*)

 SUBROUTINE DGGGLM_64(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 INTEGER*8 N, M, P, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), D(*), X(*), Y(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGGLM([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 INTEGER :: N, M, P, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: D, X, Y, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GGGLM_64([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 INTEGER(8) :: N, M, P, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: D, X, Y, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dggglm(int n, int m, int p, double *a, int lda, double
 *b, int ldb, double *d, double *x, double *y, int
 *info);

 void dggglm_64(long n, long m, long p, double *a, long lda,
 double *b, long ldb, double *d, double *x, double

 *y, long *info);

PURPOSE

 dggglm solves a general Gauss-Markov linear model (GLM)
 problem:

 minimize || y ||_2 subject to d = A*x + B*y
 x

 where A is an N-by-M matrix, B is an N-by-P matrix, and d is
 a given N-vector. It is assumed that M <= N <= M+P, and

 rank(A) = M and rank(A B) = N.

 Under these assumptions, the constrained equation is always
 consistent, and there is a unique solution x and a minimal
 2-norm solution y, which is obtained using a generalized QR
 factorization of A and B.

 In particular, if matrix B is square nonsingular, then the
 problem GLM is equivalent to the following weighted linear
 least squares problem

 minimize || inv(B)*(d-A*x) ||_2
 x

 where inv(B) denotes the inverse of B.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. 0 <= M <=
 N.

 P (input) The number of columns of the matrix B. P >= N-M.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, B is
 destroyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 D (input/output)
 On entry, D is the left hand side of the GLM equa-
 tion. On exit, D is destroyed.

 X (output)

 On exit, X and Y are the solutions of the GLM
 problem.

 Y (output)
 See the description of X.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N+M+P). For optimum performance, LDWORK >=
 M+min(N,P)+max(N,P)*NB, where NB is an upper bound
 for the optimal blocksizes for SGEQRF, SGERQF,
 SORMQR and SORMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dgghrd - reduce a pair of real matrices (A,B) to generalized
 upper Hessenberg form using orthogonal transformations,
 where A is a general matrix and B is upper triangular

SYNOPSIS

 SUBROUTINE DGGHRD(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ,
 Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)

 SUBROUTINE DGGHRD_64(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 LDQ, Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)

 F95 INTERFACE
 SUBROUTINE GGHRD(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB], Q,
 [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE GGHRD_64(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 Q, [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void dgghrd(char compq, char compz, int n, int ilo, int ihi,
 double *a, int lda, double *b, int ldb, double *q,
 int ldq, double *z, int ldz, int *info);

 void dgghrd_64(char compq, char compz, long n, long ilo,
 long ihi, double *a, long lda, double *b, long
 ldb, double *q, long ldq, double *z, long ldz,
 long *info);

PURPOSE

 dgghrd reduces a pair of real matrices (A,B) to generalized
 upper Hessenberg form using orthogonal transformations,
 where A is a general matrix and B is upper triangular: Q' *
 A * Z = H and Q' * B * Z = T, where H is upper Hessenberg, T
 is upper triangular, and Q and Z are orthogonal, and ' means
 transpose.

 The orthogonal matrices Q and Z are determined as products
 of Givens rotations. They may either be formed explicitly,
 or they may be postmultiplied into input matrices Q1 and Z1,
 so that
 1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'

ARGUMENTS

 COMPQ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the orthogonal matrix Q is returned; = 'V': Q must
 contain an orthogonal matrix Q1 on entry, and the
 product Q1*Q is returned.

 COMPZ (input)
 = 'N': do not compute Z;
 = 'I': Z is initialized to the unit matrix, and
 the orthogonal matrix Z is returned; = 'V': Z must
 contain an orthogonal matrix Z1 on entry, and the
 product Z1*Z is returned.

 N (input) The order of the matrices A and B. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGGBAL;
 otherwise they should be set to 1 and N respec-
 tively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and
 IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first
 subdiagonal of A are overwritten with the upper
 Hessenberg matrix H, and the rest is set to zero.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-N upper triangular matrix B.
 On exit, the upper triangular matrix T = Q' B Z.
 The elements below the diagonal are set to zero.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 If COMPQ='N': Q is not referenced.
 If COMPQ='I': on entry, Q need not be set, and on
 exit it contains the orthogonal matrix Q, where Q'
 is the product of the Givens transformations which
 are applied to A and B on the left. If COMPQ='V':
 on entry, Q must contain an orthogonal matrix Q1,
 and on exit this is overwritten by Q1*Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= N if
 COMPQ='V' or 'I'; LDQ >= 1 otherwise.

 Z (input/output)
 If COMPZ='N': Z is not referenced.
 If COMPZ='I': on entry, Z need not be set, and on
 exit it contains the orthogonal matrix Z, which is
 the product of the Givens transformations which
 are applied to A and B on the right. If
 COMPZ='V': on entry, Z must contain an orthogonal
 matrix Z1, and on exit this is overwritten by
 Z1*Z.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= N if
 COMPZ='V' or 'I'; LDZ >= 1 otherwise.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 This routine reduces A to Hessenberg and B to triangular
 form by an unblocked reduction, as described in
 _Matrix_Computations_, by Golub and Van Loan (Johns Hopkins
 Press.)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgglse - solve the linear equality-constrained least squares
 (LSE) problem

SYNOPSIS

 SUBROUTINE DGGLSE(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 INTEGER M, N, P, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(*), D(*), X(*),
 WORK(*)

 SUBROUTINE DGGLSE_64(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 INTEGER*8 M, N, P, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(*), D(*), X(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGLSE([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 INTEGER :: M, N, P, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: C, D, X, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GGLSE_64([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 INTEGER(8) :: M, N, P, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: C, D, X, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dgglse(int m, int n, int p, double *a, int lda, double
 *b, int ldb, double *c, double *d, double *x, int
 *info);

 void dgglse_64(long m, long n, long p, double *a, long lda,
 double *b, long ldb, double *c, double *d, double

 *x, long *info);

PURPOSE

 dgglse solves the linear equality-constrained least squares
 (LSE) problem:

 minimize || c - A*x ||_2 subject to B*x = d

 where A is an M-by-N matrix, B is a P-by-N matrix, c is a
 given M-vector, and d is a given P-vector. It is assumed
 that
 P <= N <= M+P, and

 rank(B) = P and rank((A)) = N.
 ((B))

 These conditions ensure that the LSE problem has a unique
 solution, which is obtained using a GRQ factorization of the
 matrices B and A.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. 0 <= P <= N <=
 M+P.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).
 C (input/output)
 On entry, C contains the right hand side vector
 for the least squares part of the LSE problem. On
 exit, the residual sum of squares for the solution
 is given by the sum of squares of elements N-P+1
 to M of vector C.

 D (input/output)
 On entry, D contains the right hand side vector
 for the constrained equation. On exit, D is des-
 troyed.

 X (output)
 On exit, X is the solution of the LSE problem.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M+N+P). For optimum performance LDWORK >=
 P+min(M,N)+max(M,N)*NB, where NB is an upper bound
 for the optimal blocksizes for SGEQRF, SGERQF,
 SORMQR and SORMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggqrf - compute a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B.

SYNOPSIS

 SUBROUTINE DGGQRF(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 INTEGER N, M, P, LDA, LDB, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAUA(*), B(LDB,*), TAUB(*),
 WORK(*)

 SUBROUTINE DGGQRF_64(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 INTEGER*8 N, M, P, LDA, LDB, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAUA(*), B(LDB,*), TAUB(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGQRF([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 INTEGER :: N, M, P, LDA, LDB, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAUA, TAUB, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GGQRF_64([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 INTEGER(8) :: N, M, P, LDA, LDB, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAUA, TAUB, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dggqrf(int n, int m, int p, double *a, int lda, double
 *taua, double *b, int ldb, double *taub, int
 *info);

 void dggqrf_64(long n, long m, long p, double *a, long lda,
 double *taua, double *b, long ldb, double *taub,
 long *info);

PURPOSE

 dggqrf computes a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B:

 A = Q*R, B = Q*T*Z,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P
 orthogonal matrix, and R and T assume one of the forms:

 if N >= M, R = (R11) M , or if N < M, R = (R11 R12
) N,
 (0) N-M N M-N
 M

 where R11 is upper triangular, and

 if N <= P, T = (0 T12) N, or if N > P, T = (T11)
 N-P,
 P-N N (T21) P
 P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR fac-
 torization of A and B implicitly gives the QR factorization
 of inv(B)*A:

 inv(B)*A = Z'*(inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the transpose of the matrix Z.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. M >= 0.

 P (input) The number of columns of the matrix B. P >= 0.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(N,M)-by-M upper trapezoidal matrix R
 (R is upper triangular if N >= M); the elements
 below the diagonal, with the array TAUA, represent
 the orthogonal matrix Q as a product of min(N,M)
 elementary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAUA (output)

 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q (see
 Further Details).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, if N <=
 P, the upper triangle of the subarray B(1:N,P-
 N+1:P) contains the N-by-N upper triangular matrix
 T; if N > P, the elements on and above the (N-P)-
 th subdiagonal contain the N-by-P upper tra-
 pezoidal matrix T; the remaining elements, with
 the array TAUB, represent the orthogonal matrix Z
 as a product of elementary reflectors (see Further
 Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Z (see
 Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the QR factorization of an
 N-by-M matrix, NB2 is the optimal blocksize for
 the RQ factorization of an N-by-P matrix, and NB3
 is the optimal blocksize for a call of SORMQR.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(n,m).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
 A(i+1:n,i), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine SORGQR.

 To use Q to update another matrix, use LAPACK subroutine
 SORMQR.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(n,p).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a real scalar, and v is a real vector with
 v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on
 exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine SORGRQ.
 To use Z to update another matrix, use LAPACK subroutine
 SORMRQ.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggrqf - compute a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B

SYNOPSIS

 SUBROUTINE DGGRQF(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 INTEGER M, P, N, LDA, LDB, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAUA(*), B(LDB,*), TAUB(*),
 WORK(*)

 SUBROUTINE DGGRQF_64(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 INTEGER*8 M, P, N, LDA, LDB, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAUA(*), B(LDB,*), TAUB(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GGRQF([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 INTEGER :: M, P, N, LDA, LDB, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAUA, TAUB, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE GGRQF_64([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, P, N, LDA, LDB, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAUA, TAUB, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dggrqf(int m, int p, int n, double *a, int lda, double
 *taua, double *b, int ldb, double *taub, int
 *info);

 void dggrqf_64(long m, long p, long n, double *a, long lda,
 double *taua, double *b, long ldb, double *taub,
 long *info);

PURPOSE

 dggrqf computes a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B:

 A = R*Q, B = Z*T*Q,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P
 orthogonal matrix, and R and T assume one of the forms:

 if M <= N, R = (0 R12) M, or if M > N, R = (R11)
 M-N,
 N-M M (R21) N
 N

 where R12 or R21 is upper triangular, and

 if P >= N, T = (T11) N , or if P < N, T = (T11 T12
) P,
 (0) P-N P N-P
 N

 where T11 is upper triangular.

 In particular, if B is square and nonsingular, the GRQ fac-
 torization of A and B implicitly gives the RQ factorization
 of A*inv(B):

 A*inv(B) = (R*inv(T))*Z'

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the transpose of the matrix Z.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M <=
 N, the upper triangle of the subarray A(1:M,N-
 M+1:N) contains the M-by-M upper triangular matrix
 R; if M > N, the elements on and above the (M-N)-
 th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAUA, represent the orthogonal matrix Q
 as a product of elementary reflectors (see Further
 Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q (see
 Further Details).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(P,N)-by-N upper trapezoidal matrix T
 (T is upper triangular if P >= N); the elements
 below the diagonal, with the array TAUB, represent
 the orthogonal matrix Z as a product of elementary
 reflectors (see Further Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Z (see
 Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the RQ factorization of an
 M-by-N matrix, NB2 is the optimal blocksize for
 the QR factorization of a P-by-N matrix, and NB3
 is the optimal blocksize for a call of SORMRQ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INF0= -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a real scalar, and v is a real vector with
 v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on
 exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine SORGRQ.

 To use Q to update another matrix, use LAPACK subroutine
 SORMRQ.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(p,n).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in
 B(i+1:p,i), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine SORGQR.
 To use Z to update another matrix, use LAPACK subroutine
 SORMQR.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dggsvd - compute the generalized singular value decomposi-
 tion (GSVD) of an M-by-N real matrix A and P-by-N real
 matrix B

SYNOPSIS

 SUBROUTINE DGGSVD(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER IWORK3(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)

 SUBROUTINE DGGSVD_64(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK3(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVD(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA], B,
 [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK], IWORK3,
 [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK3
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE GGSVD_64(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA],
 B, [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK

 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q

 C INTERFACE
 #include <sunperf.h>
 void dggsvd(char jobu, char jobv, char jobq, int m, int n,
 int p, int *k, int *l, double *a, int lda, double
 *b, int ldb, double *alpha, double *beta, double
 *u, int ldu, double *v, int ldv, double *q, int
 ldq, int *iwork3, int *info);

 void dggsvd_64(char jobu, char jobv, char jobq, long m, long
 n, long p, long *k, long *l, double *a, long lda,
 double *b, long ldb, double *alpha, double *beta,
 double *u, long ldu, double *v, long ldv, double
 *q, long ldq, long *iwork3, long *info);

PURPOSE

 dggsvd computes the generalized singular value decomposition
 (GSVD) of an M-by-N real matrix A and P-by-N real matrix B:

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R)

 where U, V and Q are orthogonal matrices, and Z' is the
 transpose of Z. Let K+L = the effective numerical rank of
 the matrix (A',B')', then R is a K+L-by-K+L nonsingular
 upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-
 (K+L) "diagonal" matrices and of the following structures,
 respectively:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12)
 L (0 0 R22)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)

 P-L (0 0 0)

 N-K-L K M-K K+L-M
 (0 R) = K (0 R11 R12 R13)
 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 (R11 R12 R13) is stored in A(1:M, N-K-L+1:N), and R33 is
 stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the orthogonal
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then
 the GSVD of A and B implicitly gives the SVD of A*inv(B):
 A*inv(B) = U*(D1*inv(D2))*V'.
 If (A',B')' has orthonormal columns, then the GSVD of A and
 B is also equal to the CS decomposition of A and B. Further-
 more, the GSVD can be used to derive the solution of the
 eigenvalue problem:
 A'*A x = lambda* B'*B x.
 In some literature, the GSVD of A and B is presented in the
 form
 U'*A*X = (0 D1), V'*B*X = (0 D2)
 where U and V are orthogonal and X is nonsingular, D1 and D2
 are ``diagonal''. The former GSVD form can be converted to
 the latter form by taking the nonsingular matrix X as

 X = Q*(I 0)
 (0 inv(R)).

ARGUMENTS

 JOBU (input)
 = 'U': Orthogonal matrix U is computed;
 = 'N': U is not computed.
 JOBV (input)
 = 'V': Orthogonal matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Orthogonal matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in the Purpose section. K + L =

 effective numerical rank of (A',B')'.

 L (output)
 See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular matrix R, or part of R. See
 Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix R if M-K-L < 0. See
 Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDA >=
 max(1,P).
 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = C,
 BETA(K+1:K+L) = S, or if M-K-L < 0,
 ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
 BETA(K+1:M) =S, BETA(M+1:K+L) =1 and
 ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0

 BETA (output)
 See the description of ALPHA.

 U (output)
 If JOBU = 'U', U contains the M-by-M orthogonal
 matrix U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (output)
 If JOBV = 'V', V contains the P-by-P orthogonal
 matrix V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (output)
 If JOBQ = 'Q', Q contains the N-by-N orthogonal
 matrix Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension (max(3*N,M,P)+N)

 IWORK3 (output)

 dimension(N) On exit, IWORK3 stores the sorting
 information. More precisely, the following loop
 will sort ALPHA for I = K+1, min(M,K+L) swap
 ALPHA(I) and ALPHA(IWORK3(I)) endfor such that
 ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = 1, the Jacobi-type procedure
 failed to converge. For further details, see sub-
 routine STGSJA.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dggsvp - compute orthogonal matrices U, V and Q such that
 N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >= 0

SYNOPSIS

 SUBROUTINE DGGSVP(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), TAU(*), WORK(*)

 SUBROUTINE DGGSVP_64(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVP(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, [LDB],
 TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], [TAU],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE GGSVP_64(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B,
 [LDB], TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK],
 [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q
 C INTERFACE
 #include <sunperf.h>

 void dggsvp(char jobu, char jobv, char jobq, int m, int p,
 int n, double *a, int lda, double *b, int ldb,
 double tola, double tolb, int *k, int *l, double
 *u, int ldu, double *v, int ldv, double *q, int
 ldq, int *info);

 void dggsvp_64(char jobu, char jobv, char jobq, long m, long
 p, long n, double *a, long lda, double *b, long
 ldb, double tola, double tolb, long *k, long *l,
 double *u, long ldu, double *v, long ldv, double
 *q, long ldq, long *info);

PURPOSE

 dggsvp computes orthogonal matrices U, V and Q such that
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 V'*B*Q = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
 K+L = the effective numerical rank of the (M+P)-by-N matrix
 (A',B')'. Z' denotes the transpose of Z.

 This decomposition is the preprocessing step for computing
 the Generalized Singular Value Decomposition (GSVD), see
 subroutine SGGSVD.

ARGUMENTS

 JOBU (input)
 = 'U': Orthogonal matrix U is computed;
 = 'N': U is not computed.

 JOBV (input)
 = 'V': Orthogonal matrix V is computed;
 = 'N': V is not computed.
 JOBQ (input)
 = 'Q': Orthogonal matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular (or trapezoidal) matrix
 described in the Purpose section.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix described in the Pur-
 pose section.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the thresholds to determine the
 effective numerical rank of matrix B and a sub-
 block of A. Generally, they are set to TOLA =
 MAX(M,N)*norm(A)*MACHEPS, TOLB =
 MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and
 TOLB may affect the size of backward errors of the
 decomposition.

 TOLB (input)
 See the description of TOLA.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 L (output)
 See the description of K.

 U (input) If JOBU = 'U', U contains the orthogonal matrix U.
 If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) If JOBV = 'V', V contains the orthogonal matrix V.
 If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) If JOBQ = 'Q', Q contains the orthogonal matrix Q.
 If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 IWORK (workspace)
 dimension(N)

 TAU (workspace)
 dimension(N)

 WORK (workspace)
 dimension(MAX(3*N,M,P))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The subroutine uses LAPACK subroutine SGEQPF for the QR
 factorization with column pivoting to detect the effective
 numerical rank of the a matrix. It may be replaced by a
 better rank determination strategy.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssco - General sparse solver condition number estimate.

SYNOPSIS

 SUBROUTINE DGSSCO (COND, HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION COND
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSCO - Condition number estimate.

PARAMETERS

 COND - DOUBLE PRECISION
 On exit, an estimate of the condition number of the
 factored matrix. Must be called after the numerical
 factorization subroutine, DGSSFA().

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -700 : Invalid calling sequence - need to call DGSSFA first.
 -710 : Condition number estimate not available (not implemented
 for this HANDLE's matix type).

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssda - Deallocate working storage for the general sparse
 solver.

SYNOPSIS

 SUBROUTINE ZGSSDA (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSDA - Deallocate dynamically allocated working storage.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 none

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssfa - General sparse solver numeric factorization.

SYNOPSIS

 SUBROUTINE DGSSFA (NEQNS, COLSTR, ROWIND, VALUES, HANDLE, IER)

 INTEGER NEQNS, COLSTR(*), ROWIND(*), IER
 DOUBLE PRECISION VALUES(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSFA - Numeric factorization of a sparse matrix.

PARAMETERS

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 coefficient matrix. Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - DOUBLE PRECISION array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the numeric values of
 the sparse matrix to be factored. Unchanged on
 exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on

 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -300 : Invalid calling sequence - need to call DGSSOR first.
 -301 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssfs - General sparse solver one call interface.

SYNOPSIS

 SUBROUTINE DGSSFS (MTXTYP, PIVOT , NEQNS, COLSTR, ROWIND,
 VALUES, NRHS , RHS , LDRHS , ORDMTHD,
 OUTUNT, MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), NRHS, LDRHS,
 OUTUNT, MSGLVL, IER
 CHARACTER*3 ORDMTHD
 DOUBLE PRECISION VALUES(*), RHS(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSFS - General sparse solver one call interface.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, positive-definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, pivot specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER

 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.
 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - DOUBLE PRECISION array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the non-zero numeric
 values of the sparse matrix to be factored.
 Unchanged on exit.

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(*) - DOUBLE PRECISION array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see DGSSUO)

 Unchanged on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array of containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.
 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros is less than NEQNS.
 -105 : NEQNS < 1
 -201 : Failure to dynamically allocate memory.
 -301 : Failure to dynamically allocate memory.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssin - Initialize the general sparse solver.

SYNOPSIS

 SUBROUTINE DGSSIN (MTXTYP, PIVOT, NEQNS, COLSTR, ROWIND, OUTUNT,
 MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), OUTUNT, MSGLVL, IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSIN - Initialize the sparse solver and input the matrix
 structure.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, positive-definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, PIVOT specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros less than NEQNS.
 -105 : NEQNS < 1

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssor - General sparse solver ordering and symbolic
 factorization.

SYNOPSIS

 SUBROUTINE DGSSOR (ORDMTHD, HANDLE, IER)

 CHARACTER*3 ORDMTHD
 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSOR - Orders and symbolically factors a sparse matrix.

PARAMETERS

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see DGSSUO)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -200 : Invalid calling sequence - need to call DGSSIN first.
 -201 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssps - Print general sparse solver statics.

SYNOPSIS

 SUBROUTINE DGSSPS (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSPS - Print solver statistics.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -800 : Invalid calling sequence - need to call DGSSSL first.
 -899 : Printed solver statistics not supported this release.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssrp - Return permutation used by the general sparse
 solver.

SYNOPSIS

 SUBROUTINE DGSSRP (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSRP - Returns the permutation used by the solver for the
 fill-reducing ordering.

PARAMETERS

 PERM(NEQNS) - INTEGER array
 Undefined on entry. PERM(NEQNS) is the permutation
 array used by the sparse solver for the fill-
 reducing ordering. Modified on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -600 : Invalid calling sequence - need to call DGSSOR first.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgsssl - Solve routine for the general sparse solver.

SYNOPSIS

 SUBROUTINE DGSSSL (NRHS, RHS, LDRHS, HANDLE, IER)

 INTEGER NRHS, LDRHS, IER
 DOUBLE PRECISION RHS(LDRHS,NRHS)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSSL - Triangular solve of a factored sparse matrix.

PARAMETERS

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(LDRHS,*) - DOUBLE PRECISION array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -400 : Invalid calling sequence - need to call DGSSFA first.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 dgssuo - User supplied permutation for ordering used in the
 general sparse solver.

SYNOPSIS

 SUBROUTINE DGSSUO (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 DGSSUO - User supplied permutation for ordering. Must be
 called after DGSSIN() (sparse solver initialization) and
 before DGSSOR() (sparse solver ordering).

PARAMETERS

 PERM(NEQNS) - INTEGER array
 On entry, PERM(NEQNS) is a permutation array
 supplied by the user for the fill-reducing ordering.
 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -500 : Invalid calling sequence - need to call DGSSIN first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgtcon - estimate the reciprocal of the condition number of
 a real tridiagonal matrix A using the LU factorization as
 computed by SGTTRF

SYNOPSIS

 SUBROUTINE DGTCON(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM, RCOND,
 WORK, IWORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)

 SUBROUTINE DGTCON_64(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, WORK, IWORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GTCON(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK

 SUBROUTINE GTCON_64(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK

 C INTERFACE
 #include <sunperf.h>
 void dgtcon(char norm, int n, double *low, double *diag,
 double *up1, double *up2, int *ipivot, double
 anorm, double *rcond, int *info);

 void dgtcon_64(char norm, long n, double *low, double *diag,
 double *up1, double *up2, long *ipivot, double
 anorm, double *rcond, long *info);

PURPOSE

 dgtcon estimates the reciprocal of the condition number of a
 real tridiagonal matrix A using the LU factorization as com-
 puted by SGTTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 SGTTRF.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second superdiagonal of
 U.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 dgthr - Gathers specified elements from y into x.

SYNOPSIS

 SUBROUTINE DGTHR(NZ, Y, X, INDX)

 DOUBLE PRECISION Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE DGTHR_64(NZ, Y, X, INDX)

 DOUBLE PRECISION Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHR([NZ], Y, X, INDX)

 REAL(8), DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHR_64([NZ], Y, X, INDX)

 REAL(8), DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 DGTHR - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. Only
 the elements of y whose indices are listed in indx are
 referenced.

 do i = 1, n
 x(i) = y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input)
 Vector in full storage form. Unchanged on exit.

 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.
 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 dgthrz - Gather and zero.

SYNOPSIS

 SUBROUTINE DGTHRZ(NZ, Y, X, INDX)

 DOUBLE PRECISION Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE DGTHRZ_64(NZ, Y, X, INDX)

 DOUBLE PRECISION Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHRZ([NZ], Y, X, INDX)

 REAL(8), DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHRZ_64([NZ], Y, X, INDX)

 REAL(8), DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 DGTHRZ - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. The
 gathered elements of y are set to zero. Only the elements
 of y whose indices are listed in indx are referenced.

 do i = 1, n
 x(i) = y(indx(i))
 y(indx(i)) = 0
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input/output)
 Vector in full storage form. Gathered elements are
 set to zero.
 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgtrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE DGTRFS(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE DGTRFS_64(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GTRFS([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE GTRFS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void dgtrfs(char transa, int n, int nrhs, double *low, dou-
 ble *diag, double *up, double *lowf, double
 *diagf, double *upf1, double *upf2, int *ipivot,
 double *b, int ldb, double *x, int ldx, double
 *ferr, double *berr, int *info);

 void dgtrfs_64(char transa, long n, long nrhs, double *low,
 double *diag, double *up, double *lowf, double
 *diagf, double *upf1, double *upf2, long *ipivot,
 double *b, long ldb, double *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 dgtrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The diagonal elements of A.

 UP (input)
 The (n-1) superdiagonal elements of A.

 LOWF (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 SGTTRF.

 DIAGF (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UPF1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UPF2 (input)
 The (n-2) elements of the second superdiagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SGTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).
 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgtsv - solve the equation A*X = B,

SYNOPSIS

 SUBROUTINE DGTSV(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), B(LDB,*)

 SUBROUTINE DGTSV_64(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GTSV([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE GTSV_64([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dgtsv(int n, int nrhs, double *low, double *diag, dou-
 ble *up, double *b, int ldb, int *info);

 void dgtsv_64(long n, long nrhs, double *low, double *diag,
 double *up, double *b, long ldb, long *info);

PURPOSE

 dgtsv solves the equation

 where A is an n by n tridiagonal matrix, by Gaussian elimi-
 nation with partial pivoting.

 Note that the equation A'*X = B may be solved by inter-
 changing the order of the arguments DU and DL.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-2) elements
 of the second super-diagonal of the upper triangu-
 lar matrix U from the LU factorization of A, in
 LOW(1), ..., LOW(n-2).

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of U.

 UP (input/output)
 On entry, UP must contain the (n-1) super-diagonal
 elements of A.

 On exit, UP is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 B (input/output)
 On entry, the N by NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N by NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero, and the
 solution has not been computed. The factorization
 has not been completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgtsvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B or A**T * X = B,

SYNOPSIS

 SUBROUTINE DGTSVX(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE DGTSVX_64(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GTSVX(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE GTSVX_64(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,

 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void dgtsvx(char fact, char transa, int n, int nrhs, double
 *low, double *diag, double *up, double *lowf, dou-
 ble *diagf, double *upf1, double *upf2, int
 *ipivot, double *b, int ldb, double *x, int ldx,
 double *rcond, double *ferr, double *berr, int
 *info);

 void dgtsvx_64(char fact, char transa, long n, long nrhs,
 double *low, double *diag, double *up, double
 *lowf, double *diagf, double *upf1, double *upf2,
 long *ipivot, double *b, long ldb, double *x, long
 ldx, double *rcond, double *ferr, double *berr,
 long *info);

PURPOSE

 dgtsvx uses the LU factorization to compute the solution to
 a real system of linear equations A * X = B or A**T * X = B,
 where A is a tridiagonal matrix of order N and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the LU decomposition is used to factor the
 matrix A
 as A = L * U, where L is a product of permutation and
 unit lower
 bidiagonal matrices and U is upper triangular with
 nonzeros in
 only the main diagonal and first two superdiagonals.

 2. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form

 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': LOWF, DIAGF,
 UPF1, UPF2, and IPIVOT contain the factored form
 of A; LOW, DIAG, UP, LOWF, DIAGF, UPF1, UPF2 and
 IPIVOT will not be modified. = 'N': The matrix
 will be copied to LOWF, DIAGF, and UPF1 and fac-
 tored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The n diagonal elements of A.
 UP (input/output)
 The (n-1) superdiagonal elements of A.

 LOWF (input/output)
 If FACT = 'F', then LOWF is an input argument and
 on entry contains the (n-1) multipliers that
 define the matrix L from the LU factorization of A
 as computed by SGTTRF.

 If FACT = 'N', then LOWF is an output argument and
 on exit contains the (n-1) multipliers that define
 the matrix L from the LU factorization of A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 upper triangular matrix U from the LU factoriza-
 tion of A.

 If FACT = 'N', then DIAGF is an output argument
 and on exit contains the n diagonal elements of
 the upper triangular matrix U from the LU factori-
 zation of A.

 UPF1 (input/output)
 If FACT = 'F', then UPF1 is an input argument and
 on entry contains the (n-1) elements of the first
 superdiagonal of U.

 If FACT = 'N', then UPF1 is an output argument and
 on exit contains the (n-1) elements of the first
 superdiagonal of U.

 UPF2 (input/output)
 If FACT = 'F', then UPF2 is an input argument and
 on entry contains the (n-2) elements of the second
 superdiagonal of U.

 If FACT = 'N', then UPF2 is an output argument and
 on exit contains the (n-2) elements of the second
 superdiagonal of U.

 IPIVOT (input/output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 LU factorization of A as computed by SGTTRF.
 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the LU
 factorization of A; row i of the matrix was inter-
 changed with row IPIVOT(i). IPIVOT(i) will always
 be either i or i+1; IPIVOT(i) = i indicates a row
 interchange was not required.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)

 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has not been completed unless i = N, but the fac-
 tor U is exactly singular, so the solution and
 error bounds could not be computed. RCOND = 0 is
 returned. = N+1: U is nonsingular, but RCOND is
 less than machine precision, meaning that the
 matrix is singular to working precision.
 Nevertheless, the solution and error bounds are
 computed because there are a number of situations
 where the computed solution can be more accurate
 than the value of RCOND would suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgttrf - compute an LU factorization of a real tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges

SYNOPSIS

 SUBROUTINE DGTTRF(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*)

 SUBROUTINE DGTTRF_64(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*)

 F95 INTERFACE
 SUBROUTINE GTTRF([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2

 SUBROUTINE GTTRF_64([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2

 C INTERFACE
 #include <sunperf.h>

 void dgttrf(int n, double *low, double *diag, double *up1,
 double *up2, int *ipivot, int *info);

 void dgttrf_64(long n, double *low, double *diag, double
 *up1, double *up2, long *ipivot, long *info);

PURPOSE

 dgttrf computes an LU factorization of a real tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges.

 The factorization has the form
 A = L * U
 where L is a product of permutation and unit lower bidiago-
 nal matrices and U is upper triangular with nonzeros in only
 the main diagonal and first two superdiagonals.

ARGUMENTS

 N (input) The order of the matrix A.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-1) multi-
 pliers that define the matrix L from the LU fac-
 torization of A.

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of the upper triangular matrix U from the
 LU factorization of A.

 UP1 (input/output)
 On entry, UP1 must contain the (n-1) super-
 diagonal elements of A.

 On exit, UP1 is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 UP2 (output)
 On exit, UP2 is overwritten by the (n-2) elements
 of the second super-diagonal of U.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dgttrs - solve one of the systems of equations A*X = B or
 A'*X = B,

SYNOPSIS

 SUBROUTINE DGTTRS(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)

 SUBROUTINE DGTTRS_64(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GTTRS([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2, IPIVOT,
 B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE GTTRS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2,
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dgttrs(char transa, int n, int nrhs, double *low, dou-
 ble *diag, double *up1, double *up2, int *ipivot,
 double *b, int ldb, int *info);
 void dgttrs_64(char transa, long n, long nrhs, double *low,
 double *diag, double *up1, double *up2, long
 *ipivot, double *b, long ldb, long *info);

PURPOSE

 dgttrs solves one of the systems of equations
 A*X = B or A'*X = B, with a tridiagonal matrix A using
 the LU factorization computed by SGTTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first super-diagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second super-diagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input/output)
 On entry, the matrix of right hand side vectors B.
 On exit, B is overwritten by the solution vectors
 X.

 LDB (input)
 The leading dimension of the array B. LDB >=

 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dhgeqz - implement a single-/double-shift version of the QZ
 method for finding the generalized eigenvalues
 w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j) of the equation
 det(A-w(i) B) = 0 In addition, the pair A,B may be
 reduced to generalized Schur form

SYNOPSIS

 SUBROUTINE DHGEQZ(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), Q(LDQ,*), Z(LDZ,*), WORK(*)

 SUBROUTINE DHGEQZ_64(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), Q(LDQ,*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HGEQZ(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE HGEQZ_64(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B,
 [LDB], ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void dhgeqz(char job, char compq, char compz, int n, int
 ilo, int ihi, double *a, int lda, double *b, int
 ldb, double *alphar, double *alphai, double *beta,
 double *q, int ldq, double *z, int ldz, int
 *info);

 void dhgeqz_64(char job, char compq, char compz, long n,
 long ilo, long ihi, double *a, long lda, double
 *b, long ldb, double *alphar, double *alphai, dou-
 ble *beta, double *q, long ldq, double *z, long
 ldz, long *info);

PURPOSE

 dhgeqz implements a single-/double-shift version of the QZ
 method for finding the generalized eigenvalues B is upper
 triangular, and A is block upper triangular, where the diag-
 onal blocks are either 1-by-1 or 2-by-2, the 2-by-2 blocks
 having complex generalized eigenvalues (see the description
 of the argument JOB.)

 If JOB='S', then the pair (A,B) is simultaneously reduced to
 Schur form by applying one orthogonal tranformation (usually
 called Q) on the left and another (usually called Z) on the
 right. The 2-by-2 upper-triangular diagonal blocks of B
 corresponding to 2-by-2 blocks of A will be reduced to posi-
 tive diagonal matrices. (I.e., if A(j+1,j) is non-zero,
 then B(j+1,j)=B(j,j+1)=0 and B(j,j) and B(j+1,j+1) will be
 positive.)

 If JOB='E', then at each iteration, the same transformations
 are computed, but they are only applied to those parts of A
 and B which are needed to compute ALPHAR, ALPHAI, and BETAR.

 If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the
 orthogonal transformations used to reduce (A,B) are accumu-
 lated into the arrays Q and Z s.t.:
 (in) A(in) Z(in)* = Q(out) A(out) Z(out)*

 Ref: C.B. Moler & G.W. Stewart, "An Algorithm for General-
 ized Matrixigenvalue Problems", SIAM J. Numer. Anal.,
 10(1973),p. 241--256.

ARGUMENTS

 JOB (input)
 = 'E': compute only ALPHAR, ALPHAI, and BETA. A
 and B will not necessarily be put into generalized
 Schur form. = 'S': put A and B into generalized
 Schur form, as well as computing ALPHAR, ALPHAI,
 and BETA.
 COMPQ (input)
 = 'N': do not modify Q.
 = 'V': multiply the array Q on the right by the
 transpose of the orthogonal tranformation that is
 applied to the left side of A and B to reduce them

 to Schur form. = 'I': like COMPQ='V', except that
 Q will be initialized to the identity first.

 COMPZ (input)
 = 'N': do not modify Z.
 = 'V': multiply the array Z on the right by the
 orthogonal tranformation that is applied to the
 right side of A and B to reduce them to Schur
 form. = 'I': like COMPZ='V', except that Z will
 be initialized to the identity first.

 N (input) The order of the matrices A, B, Q, and Z. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input) On entry, the N-by-N upper Hessenberg matrix A.
 Elements below the subdiagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to generalized Schur form.
 If JOB='E', then on exit A will have been des-
 troyed. The diagonal blocks will be correct, but
 the off-diagonal portion will be meaningless.

 LDA (input)
 The leading dimension of the array A. LDA >= max(
 1, N).

 B (input) On entry, the N-by-N upper triangular matrix B.
 Elements below the diagonal must be zero. 2-by-2
 blocks in B corresponding to 2-by-2 blocks in A
 will be reduced to positive diagonal form. (I.e.,
 if A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0
 and B(j,j) and B(j+1,j+1) will be positive.) If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to Schur form. If JOB='E',
 then on exit B will have been destroyed. Elements
 corresponding to diagonal blocks of A will be
 correct, but the off-diagonal portion will be
 meaningless.

 LDB (input)
 The leading dimension of the array B. LDB >= max(
 1, N).

 ALPHAR (output)
 ALPHAR(1:N) will be set to real parts of the diag-
 onal elements of A that would result from reducing
 A and B to Schur form and then further reducing
 them both to triangular form using unitary
 transformations s.t. the diagonal of B was non-
 negative real. Thus, if A(j,j) is in a 1-by-1
 block (i.e., A(j+1,j)=A(j,j+1)=0), then
 ALPHAR(j)=A(j,j). Note that the (real or complex)
 values (ALPHAR(j) + i*ALPHAI(j))/BETA(j),
 j=1,...,N, are the generalized eigenvalues of the
 matrix pencil A - wB.

 ALPHAI (output)

 ALPHAI(1:N) will be set to imaginary parts of the
 diagonal elements of A that would result from
 reducing A and B to Schur form and then further
 reducing them both to triangular form using uni-
 tary transformations s.t. the diagonal of B was
 non-negative real. Thus, if A(j,j) is in a 1-by-1
 block (i.e., A(j+1,j)=A(j,j+1)=0), then
 ALPHAR(j)=0. Note that the (real or complex)
 values (ALPHAR(j) + i*ALPHAI(j))/BETA(j),
 j=1,...,N, are the generalized eigenvalues of the
 matrix pencil A - wB.

 BETA (output)
 BETA(1:N) will be set to the (real) diagonal ele-
 ments of B that would result from reducing A and B
 to Schur form and then further reducing them both
 to triangular form using unitary transformations
 s.t. the diagonal of B was non-negative real.
 Thus, if A(j,j) is in a 1-by-1 block (i.e.,
 A(j+1,j)=A(j,j+1)=0), then BETA(j)=B(j,j). Note
 that the (real or complex) values (ALPHAR(j) +
 i*ALPHAI(j))/BETA(j), j=1,...,N, are the general-
 ized eigenvalues of the matrix pencil A - wB.
 (Note that BETA(1:N) will always be non-negative,
 and no BETAI is necessary.)

 Q (input/output)
 If COMPQ='N', then Q will not be referenced. If
 COMPQ='V' or 'I', then the transpose of the
 orthogonal transformations which are applied to A
 and B on the left will be applied to the array Q
 on the right.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If COMPQ='V' or 'I', then LDQ >= N.

 Z (input/output)
 If COMPZ='N', then Z will not be referenced. If
 COMPZ='V' or 'I', then the orthogonal transforma-
 tions which are applied to A and B on the right
 will be applied to the array Z on the right.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If COMPZ='V' or 'I', then LDZ >= N.

 WORK (workspace)
 On exit, if INFO >= 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 = 1,...,N: the QZ iteration did not converge.
 (A,B) is not in Schur form, but ALPHAR(i),
 ALPHAI(i), and BETA(i), i=INFO+1,...,N should be
 correct. = N+1,...,2*N: the shift calculation
 failed. (A,B) is not in Schur form, but
 ALPHAR(i), ALPHAI(i), and BETA(i), i=INFO-
 N+1,...,N should be correct. > 2*N: various
 "impossible" errors.

FURTHER DETAILS

 Iteration counters:

 JITER -- counts iterations.
 IITER -- counts iterations run since ILAST was last
 changed. This is therefore reset only when a 1-
 by-1 or
 2-by-2 block deflates off the bottom.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dhsein - use inverse iteration to find specified right
 and/or left eigenvectors of a real upper Hessenberg matrix H

SYNOPSIS

 SUBROUTINE DHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL,
 LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 INTEGER N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER IFAILL(*), IFAILR(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION H(LDH,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)

 SUBROUTINE DHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
 VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER*8 IFAILL(*), IFAILR(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION H(LDH,*), WR(*), WI(*), VL(LDVL,*),
 VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], WR, WI,
 VL, [LDVL], VR, [LDVR], MM, M, [WORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER, DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: H, VL, VR

 SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], WR,
 WI, VL, [LDVL], VR, [LDVR], MM, M, [WORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO

 INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: H, VL, VR
 C INTERFACE
 #include <sunperf.h>

 void dhsein(char side, char eigsrc, char initv, int *select,
 int n, double *h, int ldh, double *wr, double *wi,
 double *vl, int ldvl, double *vr, int ldvr, int
 mm, int *m, int *ifaill, int *ifailr, int *info);

 void dhsein_64(char side, char eigsrc, char initv, long
 *select, long n, double *h, long ldh, double *wr,
 double *wi, double *vl, long ldvl, double *vr,
 long ldvr, long mm, long *m, long *ifaill, long
 *ifailr, long *info);

PURPOSE

 dhsein uses inverse iteration to find specified right and/or
 left eigenvectors of a real upper Hessenberg matrix H.

 The right eigenvector x and the left eigenvector y of the
 matrix H corresponding to an eigenvalue w are defined by:

 H * x = w * x, y**h * H = w * y**h

 where y**h denotes the conjugate transpose of the vector y.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 EIGSRC (input)
 Specifies the source of eigenvalues supplied in
 (WR,WI):
 = 'Q': the eigenvalues were found using SHSEQR;
 thus, if H has zero subdiagonal elements, and so
 is block-triangular, then the j-th eigenvalue can
 be assumed to be an eigenvalue of the block con-
 taining the j-th row/column. This property allows
 SHSEIN to perform inverse iteration on just one
 diagonal block. = 'N': no assumptions are made on
 the correspondence between eigenvalues and diago-
 nal blocks. In this case, SHSEIN must always per-
 form inverse iteration using the whole matrix H.

 INITV (input)
 = 'N': no initial vectors are supplied;
 = 'U': user-supplied initial vectors are stored in
 the arrays VL and/or VR.

 SELECT (input/output)
 Specifies the eigenvectors to be computed. To
 select the real eigenvector corresponding to a
 real eigenvalue WR(j), SELECT(j) must be set to

 .TRUE.. To select the complex eigenvector
 corresponding to a complex eigenvalue
 (WR(j),WI(j)), with complex conjugate
 (WR(j+1),WI(j+1)), either SELECT(j) or SELECT(j+1)
 or both must be set to

 N (input) The order of the matrix H. N >= 0.

 H (input) The upper Hessenberg matrix H.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 WR (input/output)
 On entry, the real and imaginary parts of the
 eigenvalues of H; a complex conjugate pair of
 eigenvalues must be stored in consecutive elements
 of WR and WI. On exit, WR may have been altered
 since close eigenvalues are perturbed slightly in
 searching for independent eigenvectors.

 WI (input)
 See the description of WR.

 VL (input/output)
 On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL
 must contain starting vectors for the inverse
 iteration for the left eigenvectors; the starting
 vector for each eigenvector must be in the same
 column(s) in which the eigenvector will be stored.
 On exit, if SIDE = 'L' or 'B', the left eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VL, in the same order as
 their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part and the second the imaginary part. If
 SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR
 must contain starting vectors for the inverse
 iteration for the right eigenvectors; the starting
 vector for each eigenvector must be in the same
 column(s) in which the eigenvector will be stored.
 On exit, if SIDE = 'R' or 'B', the right eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part and the second the imaginary part. If
 SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 required to store the eigenvectors; each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.

 WORK (workspace)
 dimension((N+2)*N)

 IFAILL (output)
 If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the
 left eigenvector in the i-th column of VL
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILL(i) = 0 if the eigenvector con-
 verged satisfactorily. If the i-th and (i+1)th
 columns of VL hold a complex eigenvector, then
 IFAILL(i) and IFAILL(i+1) are set to the same
 value. If SIDE = 'R', IFAILL is not referenced.

 IFAILR (output)
 If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the
 right eigenvector in the i-th column of VR
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILR(i) = 0 if the eigenvector con-
 verged satisfactorily. If the i-th and (i+1)th
 columns of VR hold a complex eigenvector, then
 IFAILR(i) and IFAILR(i+1) are set to the same
 value. If SIDE = 'L', IFAILR is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, i is the number of eigenvectors
 which failed to converge; see IFAILL and IFAILR
 for further details.

FURTHER DETAILS

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x|+|y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dhseqr - compute the eigenvalues of a real upper Hessenberg
 matrix H and, optionally, the matrices T and Z from the
 Schur decomposition H = Z T Z**T, where T is an upper
 quasi-triangular matrix (the Schur form), and Z is the
 orthogonal matrix of Schur vectors

SYNOPSIS

 SUBROUTINE DHSEQR(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO
 DOUBLE PRECISION H(LDH,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DHSEQR_64(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 INTEGER*8 N, ILO, IHI, LDH, LDZ, LWORK, INFO
 DOUBLE PRECISION H(LDH,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HSEQR(JOB, COMPZ, N, ILO, IHI, H, [LDH], WR, WI, Z, [LDZ],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 INTEGER :: N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: H, Z

 SUBROUTINE HSEQR_64(JOB, COMPZ, N, ILO, IHI, H, [LDH], WR, WI, Z,
 [LDZ], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: H, Z

 C INTERFACE
 #include <sunperf.h>

 void dhseqr(char job, char compz, int n, int ilo, int ihi,

 double *h, int ldh, double *wr, double *wi, double
 *z, int ldz, int *info);
 void dhseqr_64(char job, char compz, long n, long ilo, long
 ihi, double *h, long ldh, double *wr, double *wi,
 double *z, long ldz, long *info);

PURPOSE

 dhseqr computes the eigenvalues of a real upper Hessenberg
 matrix H and, optionally, the matrices T and Z from the
 Schur decomposition H = Z T Z**T, where T is an upper
 quasi-triangular matrix (the Schur form), and Z is the
 orthogonal matrix of Schur vectors.

 Optionally Z may be postmultiplied into an input orthogonal
 matrix Q, so that this routine can give the Schur factoriza-
 tion of a matrix A which has been reduced to the Hessenberg
 form H by the orthogonal matrix Q: A = Q*H*Q**T =
 (QZ)*T*(QZ)**T.

ARGUMENTS

 JOB (input)
 = 'E': compute eigenvalues only;
 = 'S': compute eigenvalues and the Schur form T.

 COMPZ (input)
 = 'N': no Schur vectors are computed;
 = 'I': Z is initialized to the unit matrix and
 the matrix Z of Schur vectors of H is returned; =
 'V': Z must contain an orthogonal matrix Q on
 entry, and the product Q*Z is returned.

 N (input) The order of the matrix H. N >= 0.

 ILO (input)
 It is assumed that H is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGEBAL,
 and then passed to SGEHRD when the matrix output
 by SGEBAL is reduced to Hessenberg form. Otherwise
 ILO and IHI should be set to 1 and N respectively.
 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0,
 if N=0.

 IHI (input)
 See the description of ILO.
 H (input/output)
 On entry, the upper Hessenberg matrix H. On exit,
 if JOB = 'S', H contains the upper quasi-
 triangular matrix T from the Schur decomposition
 (the Schur form); 2-by-2 diagonal blocks
 (corresponding to complex conjugate pairs of
 eigenvalues) are returned in standard form, with
 H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If
 JOB = 'E', the contents of H are unspecified on
 exit.

 LDH (input)
 The leading dimension of the array H. LDH >=

 max(1,N).

 WR (output)
 The real and imaginary parts, respectively, of the
 computed eigenvalues. If two eigenvalues are com-
 puted as a complex conjugate pair, they are stored
 in consecutive elements of WR and WI, say the i-th
 and (i+1)th, with WI(i) > 0 and WI(i+1) < 0. If
 JOB = 'S', the eigenvalues are stored in the same
 order as on the diagonal of the Schur form
 returned in H, with WR(i) = H(i,i) and, if
 H(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) =
 sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).

 WI (output)
 See the description of WR.

 Z (input) If COMPZ = 'N': Z is not referenced.
 If COMPZ = 'I': on entry, Z need not be set, and
 on exit, Z contains the orthogonal matrix Z of the
 Schur vectors of H. If COMPZ = 'V': on entry Z
 must contain an N-by-N matrix Q, which is assumed
 to be equal to the unit matrix except for the sub-
 matrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
 Normally Q is the orthogonal matrix generated by
 SORGHR after the call to SGEHRD which formed the
 Hessenberg matrix H.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 other-
 wise.
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, SHSEQR failed to compute all of
 the eigenvalues in a total of 30*(IHI-ILO+1)
 iterations; elements 1:ilo-1 and i+1:n of WR and
 WI contain those eigenvalues which have been suc-
 cessfully computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 djadmm - Jagged diagonal matrix-matrix multiply (modified
 Ellpack)

SYNOPSIS

 SUBROUTINE DJADMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DJADMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE JADMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a
 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.
 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1) = 0, it is assumed by convention that
 IPERM(I) = I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 djadrp - right permutation of a jagged diagonal matrix

SYNOPSIS

 SUBROUTINE DJADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM,WORK,LWORK)
 INTEGER TRANSP, M, K, MAXNZ, LWORK
 INTEGER INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 DOUBLE PRECISION VAL(*)

 SUBROUTINE DJADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM,WORK,LWORK)
 INTEGER*8 TRANSP, M, K, MAXNZ, LWORK
 INTEGER*8 INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 DOUBLE PRECISION VAL(*)

 F95 INTERFACE

 SUBROUTINE JADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER TRANSP, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: INDX, PNTR, IPERM
 DOUBLE PRECISION, DIMENSION(:) :: VAL

 SUBROUTINE JADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER*8 TRANSP, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: INDX, PNTR, IPERM
 DOUBLE PRECISION, DIMENSION(:) :: VAL

DESCRIPTION

 A <- A P
 A <- A P'
 (' indicates matrix transpose)

 where permutation P is represented by an integer vector IPERM,
 such that IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.

 NOTE: In order to get a symetrically permuted jagged diagonal
 matrix P A P', one can explicitly permute the columns P A by

 calling

 SJADRP(0, M, M, VAL, INDX, PNTR, MAXNZ, IPERM, WORK, LWORK)

 where parameters VAL, INDX, PNTR, MAXNZ, IPERM are the representation
 of A in the jagged diagonal format. The operation makes sense if
 the original matrix A is square.

ARGUMENTS

 TRANSP Indicates how to operate with the permutation matrix
 0 : operate with matrix
 1 : operate with transpose matrix

 M Number of rows in matrix A

 K Number of columns in matrix A

 VAL() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 entries of A. VAL can be viewed as a column major
 ordering of a row permutation of the Ellpack
 representation of A, where the Ellpack representation
 is permuted so that the rows are non-increasing in
 the number of nonzero entries. Values added for
 padding in Ellpack are not included in the
 Jagged-Diagonal format.

 INDX() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 the column indices of the corresponding entries in
 VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length K such that I = IPERM(I').
 Array IPERM represents a permutation P, such that
 IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.
 For example, if
 | 0 0 1 |
 P =| 1 0 0 |
 | 0 1 0 |
 then IPERM = (3, 1, 2).

 WORK() scratch array of length LWORK. LWORK should be at
 least K.

 LWORK length of WORK array

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of the
 WORK array, returns this value as the first entry of
 the WORK array, and no error message related to LWORK
 is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 djadsm - Jagged-diagonal format triangular solve

SYNOPSIS

 SUBROUTINE DJADSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DJADSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE JADSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a

 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1)=0, it's assumed by convention that
 IPERM(I)=I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least 2*M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=2*M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy
 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the JAD representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the JAD representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dlagtf - factorize the matrix (T-lambda*I), where T is an n
 by n tridiagonal matrix and lambda is a scalar, as T-
 lambda*I = PLU

SYNOPSIS

 SUBROUTINE DLAGTF(N, A, LAMBDA, B, C, TOL, D, IN, INFO)

 INTEGER N, INFO
 INTEGER IN(*)
 DOUBLE PRECISION LAMBDA, TOL
 DOUBLE PRECISION A(*), B(*), C(*), D(*)

 SUBROUTINE DLAGTF_64(N, A, LAMBDA, B, C, TOL, D, IN, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IN(*)
 DOUBLE PRECISION LAMBDA, TOL
 DOUBLE PRECISION A(*), B(*), C(*), D(*)

 F95 INTERFACE
 SUBROUTINE LAGTF([N], A, LAMBDA, B, C, TOL, D, IN, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IN
 REAL(8) :: LAMBDA, TOL
 REAL(8), DIMENSION(:) :: A, B, C, D

 SUBROUTINE LAGTF_64([N], A, LAMBDA, B, C, TOL, D, IN, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IN
 REAL(8) :: LAMBDA, TOL
 REAL(8), DIMENSION(:) :: A, B, C, D

 C INTERFACE
 #include <sunperf.h>

 void dlagtf(int n, double *a, double lambda, double *b, dou-
 ble *c, double tol, double *d, int *in, int
 *info);

 void dlagtf_64(long n, double *a, double lambda, double *b,

 double *c, double tol, double *d, long *in, long
 *info);

PURPOSE

 dlagtf factorizes the matrix (T - lambda*I), where T is an n
 by n tridiagonal matrix and lambda is a scalar, as where P
 is a permutation matrix, L is a unit lower tridiagonal
 matrix with at most one non-zero sub-diagonal elements per
 column and U is an upper triangular matrix with at most two
 non-zero super-diagonal elements per column.

 The factorization is obtained by Gaussian elimination with
 partial pivoting and implicit row scaling.

 The parameter LAMBDA is included in the routine so that
 SLAGTF may be used, in conjunction with SLAGTS, to obtain
 eigenvectors of T by inverse iteration.

ARGUMENTS

 N (input) The order of the matrix T.

 A (input/output)
 On entry, A must contain the diagonal elements of
 T.

 On exit, A is overwritten by the n diagonal ele-
 ments of the upper triangular matrix U of the fac-
 torization of T.

 LAMBDA (input)
 On entry, the scalar lambda.

 B (input/output)
 On entry, B must contain the (n-1) super-diagonal
 elements of T.

 On exit, B is overwritten by the (n-1) super-
 diagonal elements of the matrix U of the factori-
 zation of T.

 C (input/output)
 On entry, C must contain the (n-1) sub-diagonal
 elements of T.

 On exit, C is overwritten by the (n-1) sub-
 diagonal elements of the matrix L of the factori-
 zation of T.
 TOL (input/output)
 On entry, a relative tolerance used to indicate
 whether or not the matrix (T - lambda*I) is nearly
 singular. TOL should normally be chose as approxi-
 mately the largest relative error in the elements
 of T. For example, if the elements of T are
 correct to about 4 significant figures, then TOL
 should be set to about 5*10**(-4). If TOL is sup-
 plied as less than eps, where eps is the relative
 machine precision, then the value eps is used in
 place of TOL.

 D (output)
 On exit, D is overwritten by the (n-2) second
 super-diagonal elements of the matrix U of the
 factorization of T.

 IN (output)
 On exit, IN contains details of the permutation
 matrix P. If an interchange occurred at the kth
 step of the elimination, then IN(k) = 1, otherwise
 IN(k) = 0. The element IN(n) returns the smallest
 positive integer j such that

 abs(u(j,j)).le. norm((T - lambda*I)(j))*TOL,

 where norm(A(j)) denotes the sum of the absolute
 values of the jth row of the matrix A. If no such
 j exists then IN(n) is returned as zero. If IN(n)
 is returned as positive, then a diagonal element
 of U is small, indicating that (T - lambda*I) is
 singular or nearly singular,

 INFO (output)
 = 0 : successful exit

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dlamrg - will create a permutation list which will merge the
 elements of A (which is composed of two independently sorted
 sets) into a single set which is sorted in ascending order

SYNOPSIS

 SUBROUTINE DLAMRG(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER N1, N2, TRD1, TRD2
 INTEGER INDEX(*)
 DOUBLE PRECISION A(*)

 SUBROUTINE DLAMRG_64(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER*8 N1, N2, TRD1, TRD2
 INTEGER*8 INDEX(*)
 DOUBLE PRECISION A(*)

 F95 INTERFACE
 SUBROUTINE LAMRG(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER :: N1, N2, TRD1, TRD2
 INTEGER, DIMENSION(:) :: INDEX
 REAL(8), DIMENSION(:) :: A

 SUBROUTINE LAMRG_64(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER(8) :: N1, N2, TRD1, TRD2
 INTEGER(8), DIMENSION(:) :: INDEX
 REAL(8), DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dlamrg(int n1, int n2, double *a, int trd1, int trd2,
 int *index);

 void dlamrg_64(long n1, long n2, double *a, long trd1, long
 trd2, long *index);

PURPOSE

 dlamrg will create a permutation list which will merge the
 elements of A (which is composed of two independently sorted
 sets) into a single set which is sorted in ascending order.

ARGUMENTS

 N1 (input)
 Length of the first sequence to be merged.

 N2 (input)
 Length of the second sequence to be merged.

 A (input) On entry, the first N1 elements of A contain a
 list of numbers which are sorted in either ascend-
 ing or descending order. Likewise for the final
 N2 elements.

 TRD1 (input)
 Describes the stride to be taken through the array
 A for the first N1 elements.
 = -1 subset is sorted in descending order.
 = 1 subset is sorted in ascending order.

 TRD2 (input)
 Describes the stride to be taken through the array
 A for the first N1 elements.
 = -1 subset is sorted in descending order.
 = 1 subset is sorted in ascending order.

 INDEX (output)
 On exit this array will contain a permutation such
 that if B(I) = A(INDEX(I)) for I=1,N1+N2,
 then B will be sorted in ascending order.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dlarz - applies a real elementary reflector H to a real M-
 by-N matrix C, from either the left or the right

SYNOPSIS

 SUBROUTINE DLARZ(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER M, N, L, INCV, LDC
 DOUBLE PRECISION TAU
 DOUBLE PRECISION V(*), C(LDC,*), WORK(*)

 SUBROUTINE DLARZ_64(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER*8 M, N, L, INCV, LDC
 DOUBLE PRECISION TAU
 DOUBLE PRECISION V(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE LARZ(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER :: M, N, L, INCV, LDC
 REAL(8) :: TAU
 REAL(8), DIMENSION(:) :: V, WORK
 REAL(8), DIMENSION(:,:) :: C

 SUBROUTINE LARZ_64(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER(8) :: M, N, L, INCV, LDC
 REAL(8) :: TAU
 REAL(8), DIMENSION(:) :: V, WORK
 REAL(8), DIMENSION(:,:) :: C

 C INTERFACE
 #include <sunperf.h>

 void dlarz(char side, int m, int n, int l, double *v, int
 incv, double tau, double *c, int ldc);

 void dlarz_64(char side, long m, long n, long l, double *v,
 long incv, double tau, double *c, long ldc);

PURPOSE

 dlarz applies a real elementary reflector H to a real M-by-N
 matrix C, from either the left or the right. H is
 represented in the form

 H = I - tau * v * v'

 where tau is a real scalar and v is a real vector.

 If tau = 0, then H is taken to be the unit matrix.

 H is a product of k elementary reflectors as returned by
 STZRZF.

ARGUMENTS

 SIDE (input)
 = 'L': form H * C
 = 'R': form C * H

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 L (input) The number of entries of the vector V containing
 the meaningful part of the Householder vectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 V (input) The vector v in the representation of H as
 returned by STZRZF. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0.

 TAU (input)
 The value tau in the representation of H.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by the matrix H * C if SIDE = 'L', or
 C * H if SIDE = 'R'.
 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' or (M) if SIDE = 'R'

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dlarzb - applies a real block reflector H or its transpose
 H**T to a real distributed M-by-N C from the left or the
 right

SYNOPSIS

 SUBROUTINE DLARZB(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T,
 LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 INTEGER M, N, K, L, LDV, LDT, LDC, LDWORK
 DOUBLE PRECISION V(LDV,*), T(LDT,*), C(LDC,*),
 WORK(LDWORK,*)

 SUBROUTINE DLARZB_64(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV,
 T, LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 INTEGER*8 M, N, K, L, LDV, LDT, LDC, LDWORK
 DOUBLE PRECISION V(LDV,*), T(LDT,*), C(LDC,*),
 WORK(LDWORK,*)

 F95 INTERFACE
 SUBROUTINE LARZB(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V, [LDV],
 T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 INTEGER :: M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL(8), DIMENSION(:,:) :: V, T, C, WORK

 SUBROUTINE LARZB_64(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V,
 [LDV], T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 INTEGER(8) :: M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL(8), DIMENSION(:,:) :: V, T, C, WORK

 C INTERFACE
 #include <sunperf.h>

 void dlarzb(char side, char trans, char direct, char storev,

 int m, int n, int k, int l, double *v, int ldv,
 double *t, int ldt, double *c, int ldc, int
 ldwork);

 void dlarzb_64(char side, char trans, char direct, char
 storev, long m, long n, long k, long l, double *v,
 long ldv, double *t, long ldt, double *c, long
 ldc, long ldwork);

PURPOSE

 dlarzb applies a real block reflector H or its transpose
 H**T to a real distributed M-by-N C from the left or the
 right.

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 SIDE (input)
 = 'L': apply H or H' from the Left
 = 'R': apply H or H' from the Right

 TRANS (input)
 = 'N': apply H (No transpose)
 = 'C': apply H' (Transpose)

 DIRECT (input)
 Indicates how H is formed from a product of ele-
 mentary reflectors = 'F': H = H(1) H(2) . . . H(k)
 (Forward, not supported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Indicates how the vectors which define the elemen-
 tary reflectors are stored:
 = 'C': Columnwise (not sup-
 ported yet)
 = 'R': Rowwise

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 K (input) The order of the matrix T (= the number of elemen-
 tary reflectors whose product defines the block
 reflector).

 L (input) The number of columns of the matrix V containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 V (input) If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= L; if STOREV = 'R', LDV >= K.

 T (input) The triangular K-by-K matrix T in the representa-

 tion of the block reflector.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by H*C or H'*C or C*H or C*H'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 dimension(MAX(M,N),K)

 LDWORK (input)
 The leading dimension of the array WORK. If SIDE
 = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK
 >= max(1,M).

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dlarzt - form the triangular factor T of a real block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors

SYNOPSIS

 SUBROUTINE DLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 INTEGER N, K, LDV, LDT
 DOUBLE PRECISION V(LDV,*), TAU(*), T(LDT,*)

 SUBROUTINE DLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 INTEGER*8 N, K, LDV, LDT
 DOUBLE PRECISION V(LDV,*), TAU(*), T(LDT,*)

 F95 INTERFACE
 SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 INTEGER :: N, K, LDV, LDT
 REAL(8), DIMENSION(:) :: TAU
 REAL(8), DIMENSION(:,:) :: V, T

 SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 INTEGER(8) :: N, K, LDV, LDT
 REAL(8), DIMENSION(:) :: TAU
 REAL(8), DIMENSION(:,:) :: V, T

 C INTERFACE
 #include <sunperf.h>

 void dlarzt(char direct, char storev, int n, int k, double
 *v, int ldv, double *tau, double *t, int ldt);

 void dlarzt_64(char direct, char storev, long n, long k,
 double *v, long ldv, double *tau, double *t, long

 ldt);

PURPOSE

 dlarzt forms the triangular factor T of a real block reflec-
 tor H of order > n, which is defined as a product of k
 elementary reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper
 triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower
 triangular.

 If STOREV = 'C', the vector which defines the elementary
 reflector H(i) is stored in the i-th column of the array V,
 and

 H = I - V * T * V'

 If STOREV = 'R', the vector which defines the elementary
 reflector H(i) is stored in the i-th row of the array V, and

 H = I - V' * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 DIRECT (input)
 Specifies the order in which the elementary
 reflectors are multiplied to form the block
 reflector:
 = 'F': H = H(1) H(2) . . . H(k) (Forward, not sup-
 ported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Specifies how the vectors which define the elemen-
 tary reflectors are stored (see also Further
 Details):
 = 'R': rowwise

 N (input) The order of the block reflector H. N >= 0.

 K (input) The order of the triangular factor T (= the number
 of elementary reflectors). K >= 1.

 V (input) (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R'
 The matrix V. See further details.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i).

 T (input) The k by k triangular factor T of the block

 reflector. If DIRECT = 'F', T is upper triangu-
 lar; if DIRECT = 'B', T is lower triangular. The
 rest of the array is not used.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The shape of the matrix V and the storage of the vectors
 which define the H(i) is best illustrated by the following
 example with n = 5 and k = 3. The elements equal to 1 are
 not stored; the corresponding array elements are modified
 but restored on exit. The rest of the array is not used.

 DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and
 STOREV = 'R':

 ______V_____
 (v1 v2 v3) /
 (v1 v2 v3) (v1 v1 v1 v1 v1 1
)
 V = (v1 v2 v3) (v2 v2 v2 v2 v2 .
 . . 1)
 (v1 v2 v3) (v3 v3 v3 v3 v3 .
 . 1)
 (v1 v2 v3)
 . . .
 1 . .
 1 .
 1

 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and
 STOREV = 'R':

 ______V_____
 1 /
 . 1 (1 v1 v1 v1 v1 v1)
 . . 1 (. 1 . . . v2 v2
 v2 v2 v2)
 . . . (. . 1 . . v3 v3
 v3 v3 v3)
 . . .
 (v1 v2 v3)
 V = (v1 v2 v3)
 (v1 v2 v3)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dlasrt - the numbers in D in increasing order (if ID = 'I')
 or in decreasing order (if ID = 'D')

SYNOPSIS

 SUBROUTINE DLASRT(ID, N, D, INFO)

 CHARACTER * 1 ID
 INTEGER N, INFO
 DOUBLE PRECISION D(*)

 SUBROUTINE DLASRT_64(ID, N, D, INFO)

 CHARACTER * 1 ID
 INTEGER*8 N, INFO
 DOUBLE PRECISION D(*)

 F95 INTERFACE
 SUBROUTINE LASRT(ID, [N], D, [INFO])

 CHARACTER(LEN=1) :: ID
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: D

 SUBROUTINE LASRT_64(ID, [N], D, [INFO])

 CHARACTER(LEN=1) :: ID
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: D

 C INTERFACE
 #include <sunperf.h>

 void dlasrt(char id, int n, double *d, int *info);

 void dlasrt_64(char id, long n, double *d, long *info);

PURPOSE

 dlasrt the numbers in D in increasing order (if ID = 'I') or
 in decreasing order (if ID = 'D').

 Use Quick Sort, reverting to Insertion sort on arrays of
 size <= 20. Dimension of STACK limits N to about 2**32.

ARGUMENTS

 ID (input)
 = 'I': sort D in increasing order;
 = 'D': sort D in decreasing order.

 N (input) The length of the array D.

 D (input/output)
 On entry, the array to be sorted. On exit, D has
 been sorted into increasing order (D(1) <= ... <=
 D(N)) or into decreasing order (D(1) >= ... >=
 D(N)), depending on ID.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dlatzm - routine is deprecated and has been replaced by rou-
 tine SORMRZ

SYNOPSIS

 SUBROUTINE DLATZM(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER M, N, INCV, LDC
 DOUBLE PRECISION TAU
 DOUBLE PRECISION V(*), C1(LDC,*), C2(LDC,*), WORK(*)

 SUBROUTINE DLATZM_64(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER*8 M, N, INCV, LDC
 DOUBLE PRECISION TAU
 DOUBLE PRECISION V(*), C1(LDC,*), C2(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE LATZM(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER :: M, N, INCV, LDC
 REAL(8) :: TAU
 REAL(8), DIMENSION(:) :: V, WORK
 REAL(8), DIMENSION(:,:) :: C1, C2

 SUBROUTINE LATZM_64(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC],
 [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER(8) :: M, N, INCV, LDC
 REAL(8) :: TAU
 REAL(8), DIMENSION(:) :: V, WORK
 REAL(8), DIMENSION(:,:) :: C1, C2

 C INTERFACE
 #include <sunperf.h>

 void dlatzm(char side, int m, int n, double *v, int incv,
 double tau, double *c1, double *c2, int ldc);

 void dlatzm_64(char side, long m, long n, double *v, long
 incv, double tau, double *c1, double *c2, long
 ldc);

PURPOSE

 dlatzm routine is deprecated and has been replaced by rou-
 tine SORMRZ.

 SLATZM applies a Householder matrix generated by STZRQF to a
 matrix.

 Let P = I - tau*u*u', u = (1),
 (v)
 where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector
 if SIDE = 'R'.

 If SIDE equals 'L', let
 C = [C1] 1
 [C2] m-1
 n
 Then C is overwritten by P*C.

 If SIDE equals 'R', let
 C = [C1, C2] m
 1 n-1
 Then C is overwritten by C*P.

ARGUMENTS

 SIDE (input)
 = 'L': form P * C
 = 'R': form C * P

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 V (input) (1 + (M-1)*abs(INCV)) if SIDE = 'L' (1 + (N-
 1)*abs(INCV)) if SIDE = 'R' The vector v in the
 representation of P. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0

 TAU (input)
 The value tau in the representation of P.

 C1 (input/output)
 (LDC,N) if SIDE = 'L' (M,1) if SIDE = 'R' On
 entry, the n-vector C1 if SIDE = 'L', or the m-
 vector C1 if SIDE = 'R'.

 On exit, the first row of P*C if SIDE = 'L', or
 the first column of C*P if SIDE = 'R'.

 C2 (input/output)
 (LDC, N) if SIDE = 'L' (LDC, N-1) if SIDE = 'R'
 On entry, the (m - 1) x n matrix C2 if SIDE = 'L',
 or the m x (n - 1) matrix C2 if SIDE = 'R'.

 On exit, rows 2:m of P*C if SIDE = 'L', or columns
 2:m of C*P if SIDE = 'R'.

 LDC (input)
 The leading dimension of the arrays C1 and C2. LDC
 >= (1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dnrm2 - Return the Euclidian norm of a vector.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DNRM2(N, X, INCX)

 INTEGER N, INCX
 DOUBLE PRECISION X(*)

 DOUBLE PRECISION FUNCTION DNRM2_64(N, X, INCX)

 INTEGER*8 N, INCX
 DOUBLE PRECISION X(*)

 F95 INTERFACE
 REAL(8) FUNCTION NRM2([N], X, [INCX])

 INTEGER :: N, INCX
 REAL(8), DIMENSION(:) :: X

 REAL(8) FUNCTION NRM2_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL(8), DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 double dnrm2(int n, double *x, int incx);

 double dnrm2_64(long n, double *x, long incx);

PURPOSE

 dnrm2 Return the Euclidian norm of a vector x where x is an
 n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dopgtr - generate a real orthogonal matrix Q which is
 defined as the product of n-1 elementary reflectors H(i) of
 order n, as returned by SSPTRD using packed storage

SYNOPSIS

 SUBROUTINE DOPGTR(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDQ, INFO
 DOUBLE PRECISION AP(*), TAU(*), Q(LDQ,*), WORK(*)

 SUBROUTINE DOPGTR_64(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDQ, INFO
 DOUBLE PRECISION AP(*), TAU(*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE OPGTR(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDQ, INFO
 REAL(8), DIMENSION(:) :: AP, TAU, WORK
 REAL(8), DIMENSION(:,:) :: Q

 SUBROUTINE OPGTR_64(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDQ, INFO
 REAL(8), DIMENSION(:) :: AP, TAU, WORK
 REAL(8), DIMENSION(:,:) :: Q

 C INTERFACE
 #include <sunperf.h>

 void dopgtr(char uplo, int n, double *ap, double *tau, dou-
 ble *q, int ldq, int *info);

 void dopgtr_64(char uplo, long n, double *ap, double *tau,
 double *q, long ldq, long *info);

PURPOSE

 dopgtr generates a real orthogonal matrix Q which is defined
 as the product of n-1 elementary reflectors H(i) of order n,
 as returned by SSPTRD using packed storage:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to SSPTRD; = 'L': Lower triangular
 packed storage used in previous call to SSPTRD.

 N (input) The order of the matrix Q. N >= 0.

 AP (input)
 The vectors which define the elementary reflec-
 tors, as returned by SSPTRD.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SSPTRD.

 Q (output)
 The N-by-N orthogonal matrix Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 WORK (workspace)
 dimension(N-1)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dopmtr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DOPMTR(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER M, N, LDC, INFO
 DOUBLE PRECISION AP(*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DOPMTR_64(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER*8 M, N, LDC, INFO
 DOUBLE PRECISION AP(*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE OPMTR(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER :: M, N, LDC, INFO
 REAL(8), DIMENSION(:) :: AP, TAU, WORK
 REAL(8), DIMENSION(:,:) :: C

 SUBROUTINE OPMTR_64(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER(8) :: M, N, LDC, INFO
 REAL(8), DIMENSION(:) :: AP, TAU, WORK
 REAL(8), DIMENSION(:,:) :: C

 C INTERFACE
 #include <sunperf.h>

 void dopmtr(char side, char uplo, char trans, int m, int n,
 double *ap, double *tau, double *c, int ldc, int
 *info);

 void dopmtr_64(char side, char uplo, char trans, long m,
 long n, double *ap, double *tau, double *c, long
 ldc, long *info);

PURPOSE

 dopmtr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by SSPTRD
 using packed storage:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to SSPTRD; = 'L': Lower triangular
 packed storage used in previous call to SSPTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 AP (input)
 (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE =
 'R' The vectors which define the elementary
 reflectors, as returned by SSPTRD. AP is modified
 by the routine but restored on exit.

 TAU (input)
 or (N-1) if SIDE = 'R' TAU(i) must contain the
 scalar factor of the elementary reflector H(i), as
 returned by SSPTRD.
 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorg2l - generate an m by n real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE DORG2L(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORG2L_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORG2L([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORG2L_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorg2l(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorg2l_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorg2l L generates an m by n real matrix Q with orthonormal
 columns, which is defined as the last n columns of a product
 of k elementary reflectors of order m

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by SGEQLF in
 the last k columns of its array argument A. On
 exit, the m by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorg2r - generate an m by n real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE DORG2R(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORG2R_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORG2R([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORG2R_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorg2r(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorg2r_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorg2r R generates an m by n real matrix Q with orthonormal
 columns, which is defined as the first n columns of a pro-
 duct of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. On exit, the m-
 by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgbr - generate one of the real orthogonal matrices Q or
 P**T determined by SGEBRD when reducing a real matrix A to
 bidiagonal form

SYNOPSIS

 SUBROUTINE DORGBR(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 INTEGER M, N, K, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGBR_64(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 INTEGER*8 M, N, K, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGBR(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER :: M, N, K, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGBR_64(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgbr(char vect, int m, int n, int k, double *a, int
 lda, double *tau, int *info);

 void dorgbr_64(char vect, long m, long n, long k, double *a,
 long lda, double *tau, long *info);

PURPOSE

 dorgbr generates one of the real orthogonal matrices Q or
 P**T determined by SGEBRD when reducing a real matrix A to
 bidiagonal form: A = Q * B * P**T. Q and P**T are defined
 as products of elementary reflectors H(i) or G(i) respec-
 tively.

 If VECT = 'Q', A is assumed to have been an M-by-K matrix,
 and Q is of order M:
 if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the
 first n columns of Q, where m >= n >= k;
 if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as
 an M-by-M matrix.

 If VECT = 'P', A is assumed to have been a K-by-N matrix,
 and P**T is of order N:
 if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the
 first m rows of P**T, where n >= m >= k;
 if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns
 P**T as an N-by-N matrix.

ARGUMENTS

 VECT (input)
 Specifies whether the matrix Q or the matrix P**T
 is required, as defined in the transformation
 applied by SGEBRD:
 = 'Q': generate Q;
 = 'P': generate P**T.

 M (input) The number of rows of the matrix Q or P**T to be
 returned. M >= 0.

 N (input) The number of columns of the matrix Q or P**T to
 be returned. N >= 0. If VECT = 'Q', M >= N >=
 min(M,K); if VECT = 'P', N >= M >= min(N,K).

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal M-by-K matrix reduced by SGEBRD. If VECT =
 'P', the number of rows in the original K-by-N
 matrix reduced by SGEBRD. K >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SGEBRD. On exit, the
 M-by-N matrix Q or P**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P'
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i), which determines Q
 or P**T, as returned by SGEBRD in its array argu-
 ment TAUQ or TAUP.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,min(M,N)). For optimum performance LWORK >=
 min(M,N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorghr - generate a real orthogonal matrix Q which is
 defined as the product of IHI-ILO elementary reflectors of
 order N, as returned by SGEHRD

SYNOPSIS

 SUBROUTINE DORGHR(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER N, ILO, IHI, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGHR_64(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER*8 N, ILO, IHI, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGHR([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER :: N, ILO, IHI, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGHR_64([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 INTEGER(8) :: N, ILO, IHI, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorghr(int n, int ilo, int ihi, double *a, int lda,
 double *tau, int *info);

 void dorghr_64(long n, long ilo, long ihi, double *a, long
 lda, double *tau, long *info);

PURPOSE

 dorghr generates a real orthogonal matrix Q which is defined
 as the product of IHI-ILO elementary reflectors of order N,
 as returned by SGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 N (input) The order of the matrix Q. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of SGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if
 N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SGEHRD. On exit, the
 N-by-N orthogonal matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEHRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= IHI-ILO.
 For optimum performance LWORK >= (IHI-ILO)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgl2 - generate an m by n real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE DORGL2(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGL2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGL2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGL2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgl2(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorgl2_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorgl2 generates an m by n real matrix Q with orthonormal
 rows, which is defined as the first m rows of a product of k
 elementary reflectors of order n

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGELQF in the first k
 rows of its array argument A. On exit, the m-by-n
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorglq - generate an M-by-N real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE DORGLQ(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGLQ_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGLQ(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGLQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorglq(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorglq_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorglq generates an M-by-N real matrix Q with orthonormal
 rows, which is defined as the first M rows of a product of K
 elementary reflectors of order N

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGELQF in the first k
 rows of its array argument A. On exit, the M-by-N
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgql - generate an M-by-N real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE DORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGQL(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGQL_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgql(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorgql_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorgql generates an M-by-N real matrix Q with orthonormal
 columns, which is defined as the last N columns of a product
 of K elementary reflectors of order M

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by SGEQLF in
 the last k columns of its array argument A. On
 exit, the M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgqr - generate an M-by-N real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE DORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGQR(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGQR_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgqr(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorgqr_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorgqr generates an M-by-N real matrix Q with orthonormal
 columns, which is defined as the first N columns of a pro-
 duct of K elementary reflectors of order M

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. On exit, the M-
 by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgr2 - generate an m by n real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE DORGR2(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGR2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGR2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgr2(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorgr2_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorgr2 generates an m by n real matrix Q with orthonormal
 rows, which is defined as the last m rows of a product of k
 elementary reflectors of order n

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by SGERQF in the
 last k rows of its array argument A. On exit, the
 m by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgrq - generate an M-by-N real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE DORGRQ(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGRQ_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGRQ(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGRQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgrq(int m, int n, int k, double *a, int lda, double
 *tau, int *info);

 void dorgrq_64(long m, long n, long k, double *a, long lda,
 double *tau, long *info);

PURPOSE

 dorgrq generates an M-by-N real matrix Q with orthonormal
 rows, which is defined as the last M rows of a product of K
 elementary reflectors of order N

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by SGERQF in the
 last k rows of its array argument A. On exit, the
 M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dorgtr - generate a real orthogonal matrix Q which is
 defined as the product of n-1 elementary reflectors of order
 N, as returned by SSYTRD

SYNOPSIS

 SUBROUTINE DORGTR(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DORGTR_64(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGTR(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE ORGTR_64(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dorgtr(char uplo, int n, double *a, int lda, double
 *tau, int *info);

 void dorgtr_64(char uplo, long n, double *a, long lda, dou-
 ble *tau, long *info);

PURPOSE

 dorgtr generates a real orthogonal matrix Q which is defined
 as the product of n-1 elementary reflectors of order N, as
 returned by SSYTRD:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from SSYTRD; = 'L': Lower triangle of A
 contains elementary reflectors from SSYTRD.

 N (input) The order of the matrix Q. N >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SSYTRD. On exit, the
 N-by-N orthogonal matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SSYTRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N-1). For optimum performance LWORK >= (N-
 1)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormbr - VECT = 'Q', SORMBR overwrites the general real M-
 by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMBR(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMBR_64(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormbr(char vect, char side, char trans, int m, int n,
 int k, double *a, int lda, double *tau, double *c,
 int ldc, int *info);

 void dormbr_64(char vect, char side, char trans, long m,
 long n, long k, double *a, long lda, double *tau,
 double *c, long ldc, long *info);

PURPOSE

 dormbr VECT = 'Q', SORMBR overwrites the general real M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N':
 Q * C C * Q TRANS = 'T': Q**T * C C *
 Q**T

 If VECT = 'P', SORMBR overwrites the general real M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R'
 TRANS = 'N': P * C C * P
 TRANS = 'T': P**T * C C * P**T

 Here Q and P**T are the orthogonal matrices determined by
 SGEBRD when reducing a real matrix A to bidiagonal form: A =
 Q * B * P**T. Q and P**T are defined as products of elemen-
 tary reflectors H(i) and G(i) respectively.

 Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq
 is the order of the orthogonal matrix Q or P**T that is
 applied.

 If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 if nq >= k, Q = H(1) H(2) . . . H(k);
 if nq < k, Q = H(1) H(2) . . . H(nq-1).

 If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 if k < nq, P = G(1) G(2) . . . G(k);
 if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

 VECT (input)
 = 'Q': apply Q or Q**T;
 = 'P': apply P or P**T.

 SIDE (input)
 = 'L': apply Q, Q**T, P or P**T from the Left;
 = 'R': apply Q, Q**T, P or P**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q or P;
 = 'T': Transpose, apply Q**T or P**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.
 N (input) The number of columns of the matrix C. N >= 0.

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal matrix reduced by SGEBRD. If VECT = 'P', the
 number of rows in the original matrix reduced by
 SGEBRD. K >= 0.

 A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if

 VECT = 'P' The vectors which define the elementary
 reflectors H(i) and G(i), whose products determine
 the matrices Q and P, as returned by SGEBRD.

 LDA (input)
 The leading dimension of the array A. If VECT =
 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >=
 max(1,min(nq,K)).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i) which determines Q
 or P, as returned by SGEBRD in the array argument
 TAUQ or TAUP.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q or
 P*C or P**T*C or C*P or C*P**T.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormhr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMHR(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMHR_64(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 LDC, WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMHR(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMHR_64(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormhr(char side, char trans, int m, int n, int ilo,
 int ihi, double *a, int lda, double *tau, double
 *c, int ldc, int *info);

 void dormhr_64(char side, char trans, long m, long n, long
 ilo, long ihi, double *a, long lda, double *tau,
 double *c, long ldc, long *info);

PURPOSE

 dormhr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of IHI-ILO elementary reflectors, as returned by
 SGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of SGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <=
 ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI =
 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI
 <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.

 IHI (input)
 See the description of ILO.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by SGEHRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by SGEHRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is

 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormlq - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMLQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMLQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormlq(char side, char trans, int m, int n, int k, dou-
 ble *a, int lda, double *tau, double *c, int ldc,
 int *info);

 void dormlq_64(char side, char trans, long m, long n, long
 k, double *a, long lda, double *tau, double *c,
 long ldc, long *info);

PURPOSE

 dormlq overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by SGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormql - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMQL(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMQL_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormql(char side, char trans, int m, int n, int k, dou-
 ble *a, int lda, double *tau, double *c, int ldc,
 int *info);

 void dormql_64(char side, char trans, long m, long n, long
 k, double *a, long lda, double *tau, double *c,
 long ldc, long *info);

PURPOSE

 dormql overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by SGEQLF in the last k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormqr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMQR(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMQR_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormqr(char side, char trans, int m, int n, int k, dou-
 ble *a, int lda, double *tau, double *c, int ldc,
 int *info);

 void dormqr_64(char side, char trans, long m, long n, long
 k, double *a, long lda, double *tau, double *c,
 long ldc, long *info);

PURPOSE

 dormqr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormrq - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMRQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMRQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormrq(char side, char trans, int m, int n, int k, dou-
 ble *a, int lda, double *tau, double *c, int ldc,
 int *info);

 void dormrq_64(char side, char trans, long m, long n, long
 k, double *a, long lda, double *tau, double *c,
 long ldc, long *info);

PURPOSE

 dormrq overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by SGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dormrz - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, L, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, L, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMRZ(SIDE, TRANS, [M], [N], K, L, A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, L, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMRZ_64(SIDE, TRANS, [M], [N], K, L, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, L, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormrz(char side, char trans, int m, int n, int k, int
 l, double *a, int lda, double *tau, double *c, int

 ldc, int *info);

 void dormrz_64(char side, char trans, long m, long n, long
 k, long l, double *a, long lda, double *tau, dou-
 ble *c, long ldc, long *info);

PURPOSE

 dormrz overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by STZRZF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 L (input) The number of columns of the matrix A containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by STZRZF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by STZRZF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dormtr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE DORMTR(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER M, N, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE DORMTR_64(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER*8 M, N, LDA, LDC, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMTR(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER :: M, N, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE ORMTR_64(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER(8) :: M, N, LDA, LDC, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dormtr(char side, char uplo, char trans, int m, int n,
 double *a, int lda, double *tau, double *c, int
 ldc, int *info);

 void dormtr_64(char side, char uplo, char trans, long m,
 long n, double *a, long lda, double *tau, double
 *c, long ldc, long *info);

PURPOSE

 dormtr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by
 SSYTRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from SSYTRD; = 'L': Lower triangle of A
 contains elementary reflectors from SSYTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by SSYTRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by SSYTRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpbcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite band
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPBTRF

SYNOPSIS

 SUBROUTINE DPBCON(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DPBCON_64(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBCON(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE PBCON_64(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND

 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A
 C INTERFACE
 #include <sunperf.h>

 void dpbcon(char uplo, int n, int ndiag, double *a, int lda,
 double anorm, double *rcond, int *info);

 void dpbcon_64(char uplo, long n, long ndiag, double *a,
 long lda, double anorm, double *rcond, long
 *info);

PURPOSE

 dpbcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite band
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 band matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpbequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite band matrix A and reduce
 its condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE DPBEQU(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 SUBROUTINE DPBEQU_64(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE PBEQU(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE PBEQU_64(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpbequ(char uplo, int n, int ndiag, double *a, int lda,
 double *scale, double *scond, double *amax, int
 *info);
 void dpbequ_64(char uplo, long n, long ndiag, double *a,
 long lda, double *scale, double *scond, double
 *amax, long *info);

PURPOSE

 dpbequ computes row and column scalings intended to equili-
 brate a symmetric positive definite band matrix A and reduce
 its condition number (with respect to the two-norm). S con-
 tains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so
 that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular of A is stored;
 = 'L': Lower triangular of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The upper or lower triangle of the symmetric band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.
 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE DPBRFS(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPBRFS_64(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBRFS(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PBRFS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void dpbrfs(char uplo, int n, int ndiag, int nrhs, double
 *a, int lda, double *af, int ldaf, double *b, int
 ldb, double *x, int ldx, double *ferr, double
 *berr, int *info);

 void dpbrfs_64(char uplo, long n, long ndiag, long nrhs,
 double *a, long lda, double *af, long ldaf, double
 *b, long ldb, double *x, long ldx, double *ferr,
 double *berr, long *info);

PURPOSE

 dpbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A as computed by SPBTRF, in the same
 storage format as A (see A).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SPBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpbstf - compute a split Cholesky factorization of a real
 symmetric positive definite band matrix A

SYNOPSIS

 SUBROUTINE DPBSTF(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, KD, LDAB, INFO
 DOUBLE PRECISION AB(LDAB,*)

 SUBROUTINE DPBSTF_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, KD, LDAB, INFO
 DOUBLE PRECISION AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE PBSTF(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, KD, LDAB, INFO
 REAL(8), DIMENSION(:,:) :: AB

 SUBROUTINE PBSTF_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, KD, LDAB, INFO
 REAL(8), DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void dpbstf(char uplo, int n, int kd, double *ab, int ldab,
 int *info);

 void dpbstf_64(char uplo, long n, long kd, double *ab, long
 ldab, long *info);

PURPOSE

 dpbstf computes a split Cholesky factorization of a real
 symmetric positive definite band matrix A.

 This routine is designed to be used in conjunction with
 SSBGST.
 The factorization has the form A = S**T*S where S is a
 band matrix of the same bandwidth as A and the following
 structure:

 S = (U)
 (M L)

 where U is upper triangular of order m = (n+kd)/2, and L is
 lower triangular of order n-m.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first kd+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the factor S from the split
 Cholesky factorization A = S**T*S. See Further
 Details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the factorization could not be
 completed, because the updated element a(i,i) was
 negative; the matrix A is not positive definite.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 7, KD = 2:

 S = (s11 s12 s13)
 (s22 s23 s24)
 (s33 s34)
 (s44)
 (s53 s54 s55)
 (s64 s65 s66)
 (s75 s76 s77)

 If UPLO = 'U', the array AB holds:

 on entry: on exit:

 * * a13 a24 a35 a46 a57 * * s13 s24 s53
 s64 s75
 * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54
 s65 s76 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33
 s44 s55 s66 s77

 If UPLO = 'L', the array AB holds:

 on entry: on exit:

 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55
 s66 s77 a21 a32 a43 a54 a65 a76 * s12 s23 s34
 s54 s65 s76 * a31 a42 a53 a64 a64 * * s13
 s24 s53 s64 s75 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpbsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPBSV(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DPBSV_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PBSV(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE PBSV_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dpbsv(char uplo, int n, int ndiag, int nrhs, double *a,
 int lda, double *b, int ldb, int *info);

 void dpbsv_64(char uplo, long n, long ndiag, long nrhs, dou-
 ble *a, long lda, double *b, long ldb, long
 *info);

PURPOSE

 dpbsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a lower
 triangular band matrix, with the same number of superdiago-
 nals or subdiagonals as A. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j) for
 max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-j,j)
 = A(i,j) for j<=i<=min(N,j+NDIAG). See below for
 further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpbsvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPBSVX(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPBSVX_64(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBSVX(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PBSVX_64(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF,

 [LDAF], EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>

 void dpbsvx(char fact, char uplo, int n, int ndiag, int
 nrhs, double *a, int lda, double *af, int ldaf,
 char equed, double *scale, double *b, int ldb,
 double *x, int ldx, double *rcond, double *ferr,
 double *berr, int *info);

 void dpbsvx_64(char fact, char uplo, long n, long ndiag,
 long nrhs, double *a, long lda, double *af, long
 ldaf, char equed, double *scale, double *b, long
 ldb, double *x, long ldx, double *rcond, double
 *ferr, double *berr, long *info);

PURPOSE

 dpbsvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a
 lower
 triangular band matrix.
 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the

 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.
 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right-hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array, except if FACT = 'F' and EQUED
 = 'Y', then A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the j-th column of the array A as
 follows: if UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j)
 for max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-
 j,j) = A(i,j) for j<=i<=min(N,j+NDIAG). See

 below for further details.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A (see A). If EQUED = 'Y', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:
 a11 a12 a13
 a22 a23 a24
 a33 a34 a35
 a44 a45 a46
 a55 a56

 (aij=conjg(aji)) a66

 Band storage of the upper triangle of A:

 * * a13 a24 a35 a46
 * a12 a23 a34 a45 a56
 a11 a22 a33 a44 a55 a66

 Similarly, if UPLO = 'L' the format of A is as follows:

 a11 a22 a33 a44 a55 a66
 a21 a32 a43 a54 a65 *
 a31 a42 a53 a64 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpbtf2 - compute the Cholesky factorization of a real sym-
 metric positive definite band matrix A

SYNOPSIS

 SUBROUTINE DPBTF2(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, KD, LDAB, INFO
 DOUBLE PRECISION AB(LDAB,*)

 SUBROUTINE DPBTF2_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, KD, LDAB, INFO
 DOUBLE PRECISION AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE PBTF2(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, KD, LDAB, INFO
 REAL(8), DIMENSION(:,:) :: AB

 SUBROUTINE PBTF2_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, KD, LDAB, INFO
 REAL(8), DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void dpbtf2(char uplo, int n, int kd, double *ab, int ldab,
 int *info);

 void dpbtf2_64(char uplo, long n, long kd, double *ab, long
 ldab, long *info);

PURPOSE

 dpbtf2 computes the Cholesky factorization of a real sym-
 metric positive definite band matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, U' is the transpose
 of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of super-diagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U'*U or A =
 L*L' of the band matrix A, in the same storage
 format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, KD = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpbtrf - compute the Cholesky factorization of a real sym-
 metric positive definite band matrix A

SYNOPSIS

 SUBROUTINE DPBTRF(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DPBTRF_64(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE PBTRF(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE PBTRF_64(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpbtrf(char uplo, int n, int ndiag, double *a, int lda,
 int *info);

 void dpbtrf_64(char uplo, long n, long ndiag, double *a,
 long lda, long *info);

PURPOSE

 dpbtrf computes the Cholesky factorization of a real sym-
 metric positive definite band matrix A.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':
 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56

 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

 Contributed by
 Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March
 23, 1989

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpbtrs - solve a system of linear equations A*X = B with a
 symmetric positive definite band matrix A using the Cholesky
 factorization A = U**T*U or A = L*L**T computed by SPBTRF

SYNOPSIS

 SUBROUTINE DPBTRS(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DPBTRS_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PBTRS(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE PBTRS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dpbtrs(char uplo, int n, int ndiag, int nrhs, double
 *a, int lda, double *b, int ldb, int *info);

 void dpbtrs_64(char uplo, long n, long ndiag, long nrhs,
 double *a, long lda, double *b, long ldb, long
 *info);

PURPOSE

 dpbtrs solves a system of linear equations A*X = B with a
 symmetric positive definite band matrix A using the Cholesky
 factorization A = U**T*U or A = L*L**T computed by SPBTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpocon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite matrix
 using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPOTRF

SYNOPSIS

 SUBROUTINE DPOCON(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DPOCON_64(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE POCON(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE POCON_64(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dpocon(char uplo, int n, double *a, int lda, double
 anorm, double *rcond, int *info);

 void dpocon_64(char uplo, long n, double *a, long lda, dou-
 ble anorm, double *rcond, long *info);

PURPOSE

 dpocon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite matrix
 using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPOTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpoequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite matrix A and reduce its
 condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE DPOEQU(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 INTEGER N, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 SUBROUTINE DPOEQU_64(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE POEQU([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 INTEGER :: N, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE POEQU_64([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 INTEGER(8) :: N, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpoequ(int n, double *a, int lda, double *scale, double
 *scond, double *amax, int *info);

 void dpoequ_64(long n, double *a, long lda, double *scale,
 double *scond, double *amax, long *info);

PURPOSE

 dpoequ computes row and column scalings intended to equili-
 brate a symmetric positive definite matrix A and reduce its
 condition number (with respect to the two-norm). S contains
 the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the
 scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has
 ones on the diagonal. This choice of S puts the condition
 number of B within a factor N of the smallest possible con-
 dition number over all possible diagonal scalings.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input) The N-by-N symmetric positive definite matrix
 whose scaling factors are to be computed. Only
 the diagonal elements of A are referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dporfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite,

SYNOPSIS

 SUBROUTINE DPORFS(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPORFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PORFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PORFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void dporfs(char uplo, int n, int nrhs, double *a, int lda,
 double *af, int ldaf, double *b, int ldb, double
 *x, int ldx, double *ferr, double *berr, int
 *info);

 void dporfs_64(char uplo, long n, long nrhs, double *a, long
 lda, double *af, long ldaf, double *b, long ldb,
 double *x, long ldx, double *ferr, double *berr,
 long *info);

PURPOSE

 dporfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite, and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by

 SPOTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dposv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DPOSV_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE POSV(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE POSV_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dposv(char uplo, int n, int nrhs, double *a, int lda,
 double *b, int ldb, int *info);

 void dposv_64(char uplo, long n, long nrhs, double *a, long
 lda, double *b, long ldb, long *info);

PURPOSE

 dposv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dposvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPOSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPOSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE POSVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE POSVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED

 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void dposvx(char fact, char uplo, int n, int nrhs, double
 *a, int lda, double *af, int ldaf, char equed,
 double *scale, double *b, int ldb, double *x, int
 ldx, double *rcond, double *ferr, double *berr,
 int *info);

 void dposvx_64(char fact, char uplo, long n, long nrhs, dou-
 ble *a, long lda, double *af, long ldaf, char
 equed, double *scale, double *b, long ldb, double
 *x, long ldx, double *rcond, double *ferr, double
 *berr, long *info);

PURPOSE

 dposvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the

 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the symmetric matrix A, except if FACT =
 'F' and EQUED = 'Y', then A must contain the
 equilibrated matrix diag(SCALE)*A*diag(SCALE). If
 UPLO = 'U', the leading N-by-N upper triangular
 part of A contains the upper triangular part of
 the matrix A, and the strictly lower triangular
 part of A is not referenced. If UPLO = 'L', the
 leading N-by-N lower triangular part of A contains
 the lower triangular part of the matrix A, and the
 strictly upper triangular part of A is not refer-
 enced. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=

 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T, in the same storage format as A. If EQUED
 .ne. 'N', then AF is the factored form of the
 equilibrated matrix diag(SCALE)*A*diag(SCALE).

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of

 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpotf2 - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A

SYNOPSIS

 SUBROUTINE DPOTF2(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DPOTF2_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTF2(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE POTF2_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpotf2(char uplo, int n, double *a, int lda, int
 *info);

 void dpotf2_64(char uplo, long n, double *a, long lda, long
 *info);

PURPOSE

 dpotf2 computes the Cholesky factorization of a real sym-
 metric positive definite matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored. = 'U':
 Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U'*U or A = L*L'.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpotrf - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A

SYNOPSIS

 SUBROUTINE DPOTRF(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DPOTRF_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTRF(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE POTRF_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpotrf(char uplo, int n, double *a, int lda, int
 *info);

 void dpotrf_64(char uplo, long n, double *a, long lda, long
 *info);

PURPOSE

 dpotrf computes the Cholesky factorization of a real sym-
 metric positive definite matrix A.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the block version of the algorithm, calling Level 3
 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpotri - compute the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPOTRF

SYNOPSIS

 SUBROUTINE DPOTRI(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DPOTRI_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTRI(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE POTRI_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpotri(char uplo, int n, double *a, int lda, int
 *info);

 void dpotri_64(char uplo, long n, double *a, long lda, long
 *info);

PURPOSE

 dpotri computes the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 as computed by SPOTRF. On exit, the upper or
 lower triangle of the (symmetric) inverse of A,
 overwriting the input factor U or L.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpotrs - solve a system of linear equations A*X = B with a
 symmetric positive definite matrix A using the Cholesky fac-
 torization A = U**T*U or A = L*L**T computed by SPOTRF

SYNOPSIS

 SUBROUTINE DPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE POTRS(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE POTRS_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dpotrs(char uplo, int n, int nrhs, double *a, int lda,
 double *b, int ldb, int *info);

 void dpotrs_64(char uplo, long n, long nrhs, double *a, long
 lda, double *b, long ldb, long *info);

PURPOSE

 dpotrs solves a system of linear equations A*X = B with a
 symmetric positive definite matrix A using the Cholesky fac-
 torization A = U**T*U or A = L*L**T computed by SPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dppcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite packed
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPPTRF

SYNOPSIS

 SUBROUTINE DPPCON(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(*), WORK(*)

 SUBROUTINE DPPCON_64(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PPCON(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 SUBROUTINE PPCON_64(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>

 void dppcon(char uplo, int n, double *a, double anorm, dou-
 ble *rcond, int *info);
 void dppcon_64(char uplo, long n, double *a, double anorm,
 double *rcond, long *info);

PURPOSE

 dppcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite packed
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dppequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm)

SYNOPSIS

 SUBROUTINE DPPEQU(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(*), SCALE(*)

 SUBROUTINE DPPEQU_64(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION A(*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE PPEQU(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: A, SCALE

 SUBROUTINE PPEQU_64(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: A, SCALE

 C INTERFACE
 #include <sunperf.h>

 void dppequ(char uplo, int n, double *a, double *scale, dou-
 ble *scond, double *amax, int *info);

 void dppequ_64(char uplo, long n, double *a, double *scale,

 double *scond, double *amax, long *info);

PURPOSE

 dppequ computes row and column scalings intended to equili-
 brate a symmetric positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm). S contains the scale factors,
 S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 This choice of S puts the condition number of B within a
 factor N of the smallest possible condition number over all
 possible diagonal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE DPPRFS(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE DPPRFS_64(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PPRFS(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE PPRFS_64(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>
 void dpprfs(char uplo, int n, int nrhs, double *a, double
 *af, double *b, int ldb, double *x, int ldx, dou-
 ble *ferr, double *berr, int *info);

 void dpprfs_64(char uplo, long n, long nrhs, double *a, dou-
 ble *af, double *b, long ldb, double *x, long ldx,
 double *ferr, double *berr, long *info);

PURPOSE

 dpprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPPTRF/CPPTRF, packed columnwise in a
 linear array in the same format as A (see A).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 X (input/output)
 On entry, the solution matrix X, as computed by
 SPPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution

 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dppsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPPSV(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 SUBROUTINE DPPSV_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PPSV(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE PPSV_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dppsv(char uplo, int n, int nrhs, double *a, double *b,
 int ldb, int *info);

 void dppsv_64(char uplo, long n, long nrhs, double *a, dou-
 ble *b, long ldb, long *info);

PURPOSE

 dppsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 The Cholesky decomposition is used to factor A as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 in the same storage format as A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dppsvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DPPSVX(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), AF(*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPPSVX_64(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), AF(*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PPSVX(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, AF, SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE PPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, AF, SCALE, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void dppsvx(char fact, char uplo, int n, int nrhs, double
 *a, double *af, char equed, double *scale, double
 *b, int ldb, double *x, int ldx, double *rcond,
 double *ferr, double *berr, int *info);

 void dppsvx_64(char fact, char uplo, long n, long nrhs, dou-
 ble *a, double *af, char equed, double *scale,
 double *b, long ldb, double *x, long ldx, double
 *rcond, double *ferr, double *berr, long *info);

PURPOSE

 dppsvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine

 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array, except if FACT = 'F' and EQUED = 'Y', then
 A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. See below for further details. A is not
 modified if FACT = 'F' or 'N', or if FACT = 'E'
 and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 AF (input/output)
 (N*(N+1)/2) If FACT = 'F', then AF is an input
 argument and on entry contains the triangular fac-
 tor U or L from the Cholesky factorization A =

 U'*U or A = L*L', in the same storage format as A.
 If EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U'*U or A = L*L' of
 the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U'*U or A = L*L' of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated

 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dpptrf - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A stored in packed format

SYNOPSIS

 SUBROUTINE DPPTRF(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 DOUBLE PRECISION A(*)

 SUBROUTINE DPPTRF_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 DOUBLE PRECISION A(*)

 F95 INTERFACE
 SUBROUTINE PPTRF(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: A

 SUBROUTINE PPTRF_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpptrf(char uplo, int n, double *a, int *info);

 void dpptrf_64(char uplo, long n, double *a, long *info);

PURPOSE

 dpptrf computes the Cholesky factorization of a real sym-
 metric positive definite matrix A stored in packed format.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T, in the same storage format as A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpptri - compute the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPPTRF

SYNOPSIS

 SUBROUTINE DPPTRI(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 DOUBLE PRECISION A(*)

 SUBROUTINE DPPTRI_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 DOUBLE PRECISION A(*)

 F95 INTERFACE
 SUBROUTINE PPTRI(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: A

 SUBROUTINE PPTRI_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dpptri(char uplo, int n, double *a, int *info);

 void dpptri_64(char uplo, long n, double *a, long *info);

PURPOSE

 dpptri computes the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor is stored in A;
 = 'L': Lower triangular factor is stored in A.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 packed columnwise as a linear array. The j-th
 column of U or L is stored in the array A as fol-
 lows: if UPLO = 'U', A(i + (j-1)*j/2) = U(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = L(i,j) for j<=i<=n.

 On exit, the upper or lower triangle of the (sym-
 metric) inverse of A, overwriting the input factor
 U or L.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpptrs - solve a system of linear equations A*X = B with a
 symmetric positive definite matrix A in packed storage using
 the Cholesky factorization A = U**T*U or A = L*L**T computed
 by SPPTRF

SYNOPSIS

 SUBROUTINE DPPTRS(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 SUBROUTINE DPPTRS_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PPTRS(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE PPTRS_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dpptrs(char uplo, int n, int nrhs, double *a, double
 *b, int ldb, int *info);

 void dpptrs_64(char uplo, long n, long nrhs, double *a, dou-
 ble *b, long ldb, long *info);

PURPOSE

 dpptrs solves a system of linear equations A*X = B with a
 symmetric positive definite matrix A in packed storage using
 the Cholesky factorization A = U**T*U or A = L*L**T computed
 by SPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dptcon - compute the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite tridiago-
 nal matrix using the factorization A = L*D*L**T or A =
 U**T*D*U computed by SPTTRF

SYNOPSIS

 SUBROUTINE DPTCON(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 INTEGER N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION DIAG(*), OFFD(*), WORK(*)

 SUBROUTINE DPTCON_64(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 INTEGER*8 N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION DIAG(*), OFFD(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTCON([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 INTEGER :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: DIAG, OFFD, WORK

 SUBROUTINE PTCON_64([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 INTEGER(8) :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: DIAG, OFFD, WORK

 C INTERFACE
 #include <sunperf.h>

 void dptcon(int n, double *diag, double *offd, double anorm,
 double *rcond, int *info);

 void dptcon_64(long n, double *diag, double *offd, double
 anorm, double *rcond, long *info);

PURPOSE

 dptcon computes the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite tridiago-
 nal matrix using the factorization A = L*D*L**T or A =
 U**T*D*U computed by SPTTRF.
 Norm(inv(A)) is computed by a direct method, and the
 reciprocal of the condition number is computed as
 RCOND = 1 / (ANORM * norm(inv(A))).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization of A, as computed by
 SPTTRF.

 OFFD (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization of A,
 as computed by SPTTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is the 1-norm of inv(A) computed in
 this routine.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The method used is described in Nicholas J. Higham, "Effi-
 cient Algorithms for Computing the Condition Number of a
 Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No.
 1, January 1986.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF, and then calling
 SBDSQR to compute the singular values of the bidiagonal fac-
 tor

SYNOPSIS

 SUBROUTINE DPTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DPTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE PTEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dpteqr(char compz, int n, double *d, double *e, double
 *z, int ldz, int *info);

 void dpteqr_64(char compz, long n, double *d, double *e,
 double *z, long ldz, long *info);

PURPOSE

 dpteqr computes all eigenvalues and, optionally,
 eigenvectors of a symmetric positive definite tridiagonal
 matrix by first factoring the matrix using SPTTRF, and then
 calling SBDSQR to compute the singular values of the bidiag-
 onal factor.

 This routine computes the eigenvalues of the positive defin-
 ite tridiagonal matrix to high relative accuracy. This
 means that if the eigenvalues range over many orders of mag-
 nitude in size, then the small eigenvalues and corresponding
 eigenvectors will be computed more accurately than, for
 example, with the standard QR method.

 The eigenvectors of a full or band symmetric positive defin-
 ite matrix can also be found if SSYTRD, SSPTRD, or SSBTRD
 has been used to reduce this matrix to tridiagonal form.
 (The reduction to tridiagonal form, however, may preclude
 the possibility of obtaining high relative accuracy in the
 small eigenvalues of the original matrix, if these eigen-
 values range over many orders of magnitude.)

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvectors of original symmetric
 matrix also. Array Z contains the orthogonal
 matrix used to reduce the original matrix to tri-
 diagonal form. = 'I': Compute eigenvectors of
 tridiagonal matrix also.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On normal exit, D contains the eigen-
 values, in descending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', the orthogonal matrix
 used in the reduction to tridiagonal form. On
 exit, if COMPZ = 'V', the orthonormal eigenvectors
 of the original symmetric matrix; if COMPZ = 'I',
 the orthonormal eigenvectors of the tridiagonal
 matrix. If INFO > 0 on exit, Z contains the
 eigenvectors associated with only the stored
 eigenvalues. If COMPZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if COMPZ = 'V' or 'I', LDZ >= max(1,N).

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is: <= N the Cholesky
 factorization of the matrix could not be performed
 because the i-th principal minor was not positive
 definite. > N the SVD algorithm failed to con-
 verge; if INFO = N+i, i off-diagonal elements of
 the bidiagonal factor did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dptrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution

SYNOPSIS

 SUBROUTINE DPTRFS(N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X, LDX,
 FERR, BERR, WORK, INFO)

 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), DIAGF(*), OFFDF(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPTRFS_64(N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X,
 LDX, FERR, BERR, WORK, INFO)

 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), DIAGF(*), OFFDF(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTRFS([N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [INFO])

 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD, DIAGF, OFFDF, FERR,
 BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE PTRFS_64([N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [INFO])

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD, DIAGF, OFFDF, FERR,
 BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void dptrfs(int n, int nrhs, double *diag, double *offd,
 double *diagf, double *offdf, double *b, int ldb,

 double *x, int ldx, double *ferr, double *berr,
 int *info);
 void dptrfs_64(long n, long nrhs, double *diag, double
 *offd, double *diagf, double *offdf, double *b,
 long ldb, double *x, long ldx, double *ferr, dou-
 ble *berr, long *info);

PURPOSE

 dptrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 OFFD (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization computed by SPTTRF.

 OFFDF (input)
 The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the factorization computed by
 SPTTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 X (input/output)
 On entry, the solution matrix X, as computed by
 SPTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dptsv - compute the solution to a real system of linear
 equations A*X = B, where A is an N-by-N symmetric positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

SYNOPSIS

 SUBROUTINE DPTSV(N, NRHS, DIAG, SUB, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*), SUB(*), B(LDB,*)

 SUBROUTINE DPTSV_64(N, NRHS, DIAG, SUB, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*), SUB(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PTSV([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG, SUB
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE PTSV_64([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG, SUB
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dptsv(int n, int nrhs, double *diag, double *sub, dou-
 ble *b, int ldb, int *info);

 void dptsv_64(long n, long nrhs, double *diag, double *sub,
 double *b, long ldb, long *info);

PURPOSE

 dptsv computes the solution to a real system of linear equa-
 tions A*X = B, where A is an N-by-N symmetric positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

 A is factored as A = L*D*L**T, and the factored form of A is
 then used to solve the system of equations.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the factorization A
 = L*DIAG*L**T.

 SUB (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L**T factorization of A. (SUB can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U**T*DIAG*U factorization
 of A.)

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the solution has not
 been computed. The factorization has not been
 completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dptsvx - use the factorization A = L*D*L**T to compute the
 solution to a real system of linear equations A*X = B, where
 A is an N-by-N symmetric positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE DPTSVX(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, INFO)

 CHARACTER * 1 FACT
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION DIAG(*), SUB(*), DIAGF(*), SUBF(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE DPTSVX_64(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, INFO)

 CHARACTER * 1 FACT
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION DIAG(*), SUB(*), DIAGF(*), SUBF(*),
 B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTSVX(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B, [LDB],
 X, [LDX], RCOND, FERR, BERR, [WORK], [INFO])

 CHARACTER(LEN=1) :: FACT
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: DIAG, SUB, DIAGF, SUBF, FERR, BERR,
 WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE PTSVX_64(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [INFO])

 CHARACTER(LEN=1) :: FACT
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: DIAG, SUB, DIAGF, SUBF, FERR, BERR,

 WORK
 REAL(8), DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void dptsvx(char fact, int n, int nrhs, double *diag, double
 *sub, double *diagf, double *subf, double *b, int
 ldb, double *x, int ldx, double *rcond, double
 *ferr, double *berr, int *info);

 void dptsvx_64(char fact, long n, long nrhs, double *diag,
 double *sub, double *diagf, double *subf, double
 *b, long ldb, double *x, long ldx, double *rcond,
 double *ferr, double *berr, long *info);

PURPOSE

 dptsvx uses the factorization A = L*D*L**T to compute the
 solution to a real system of linear equations A*X = B, where
 A is an N-by-N symmetric positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T,
 where L
 is a unit lower bidiagonal matrix and D is diagonal. The
 factorization can also be regarded as having the form
 A = U**T*D*U.

 2. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry,
 DIAGF and SUBF contain the factored form of A.
 DIAG, SUB, DIAGF, and SUBF will not be modified.
 = 'N': The matrix A will be copied to DIAGF and
 SUBF and factored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 SUB (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 diagonal matrix DIAG from the L*DIAG*L**T factori-
 zation of A. If FACT = 'N', then DIAGF is an out-
 put argument and on exit contains the n diagonal
 elements of the diagonal matrix DIAG from the
 L*DIAG*L**T factorization of A.

 SUBF (input/output)
 If FACT = 'F', then SUBF is an input argument and
 on entry contains the (n-1) subdiagonal elements
 of the unit bidiagonal factor L from the
 L*DIAG*L**T factorization of A. If FACT = 'N',
 then SUBF is an output argument and on exit con-
 tains the (n-1) subdiagonal elements of the unit
 bidiagonal factor L from the L*DIAG*L**T factori-
 zation of A.
 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 of INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The reciprocal condition number of the matrix A.
 If RCOND is less than the machine precision (in
 particular, if RCOND = 0), the matrix is singular
 to working precision. This condition is indicated
 by a return code of INFO > 0.

 FERR (output)

 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpttrf - compute the L*D*L' factorization of a real sym-
 metric positive definite tridiagonal matrix A

SYNOPSIS

 SUBROUTINE DPTTRF(N, DIAG, OFFD, INFO)

 INTEGER N, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*)

 SUBROUTINE DPTTRF_64(N, DIAG, OFFD, INFO)

 INTEGER*8 N, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*)

 F95 INTERFACE
 SUBROUTINE PTTRF([N], DIAG, OFFD, [INFO])

 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD

 SUBROUTINE PTTRF_64([N], DIAG, OFFD, [INFO])

 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD

 C INTERFACE
 #include <sunperf.h>

 void dpttrf(int n, double *diag, double *offd, int *info);

 void dpttrf_64(long n, double *diag, double *offd, long
 *info);

PURPOSE

 dpttrf computes the L*D*L' factorization of a real symmetric
 positive definite tridiagonal matrix A. The factorization
 may also be regarded as having the form A = U'*D*U.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the L*DIAG*L' fac-
 torization of A.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L' factorization of A. OFFD can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U'*DIAG*U factorization
 of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite; if k < N, the factorization
 could not be completed, while if k = N, the fac-
 torization was completed, but DIAG(N) = 0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dpttrs - solve a tridiagonal system of the form A * X = B
 using the L*D*L' factorization of A computed by SPTTRF

SYNOPSIS

 SUBROUTINE DPTTRS(N, NRHS, DIAG, OFFD, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)

 SUBROUTINE DPTTRS_64(N, NRHS, DIAG, OFFD, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PTTRS([N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE PTTRS_64([N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dpttrs(int n, int nrhs, double *diag, double *offd,
 double *b, int ldb, int *info);

 void dpttrs_64(long n, long nrhs, double *diag, double
 *offd, double *b, long ldb, long *info);

PURPOSE

 dpttrs solves a tridiagonal system of the form
 A * X = B using the L*D*L' factorization of A computed by
 SPTTRF. D is a diagonal matrix specified in the vector D, L
 is a unit bidiagonal matrix whose subdiagonal is specified
 in the vector E, and X and B are N by NRHS matrices.

ARGUMENTS

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the L*DIAG*L' factorization of A.

 OFFD (input/output)
 The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the L*DIAG*L' factorization of
 A. OFFD can also be regarded as the superdiagonal
 of the unit bidiagonal factor U from the factori-
 zation A = U'*DIAG*U.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dptts2 - solve a tridiagonal system of the form A * X = B
 using the L*D*L' factorization of A computed by SPTTRF

SYNOPSIS

 SUBROUTINE DPTTS2(N, NRHS, D, E, B, LDB)

 INTEGER N, NRHS, LDB
 DOUBLE PRECISION D(*), E(*), B(LDB,*)

 SUBROUTINE DPTTS2_64(N, NRHS, D, E, B, LDB)

 INTEGER*8 N, NRHS, LDB
 DOUBLE PRECISION D(*), E(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE DPTTS2(N, NRHS, D, E, B, LDB)

 INTEGER :: N, NRHS, LDB
 REAL(8), DIMENSION(:) :: D, E
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE DPTTS2_64(N, NRHS, D, E, B, LDB)

 INTEGER(8) :: N, NRHS, LDB
 REAL(8), DIMENSION(:) :: D, E
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dptts2(int n, int nrhs, double *d, double *e, double
 *b, int ldb);

 void dptts2_64(long n, long nrhs, double *d, double *e, dou-
 ble *b, long ldb);

PURPOSE

 dptts2 solves a tridiagonal system of the form
 A * X = B using the L*D*L' factorization of A computed by
 SPTTRF. D is a diagonal matrix specified in the vector D, L
 is a unit bidiagonal matrix whose subdiagonal is specified
 in the vector E, and X and B are N by NRHS matrices.

ARGUMENTS

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 D (input) The n diagonal elements of the diagonal matrix D
 from the L*D*L' factorization of A.

 E (input) The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the L*D*L' factorization of A.
 E can also be regarded as the superdiagonal of the
 unit bidiagonal factor U from the factorization A
 = U'*D*U.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dqdota - compute a double precision constant plus an
 extended precision constant plus the extended precision dot
 product of two double precision vectors x and y.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DQDOTA(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER N, INCX, INCY
 REAL * 16 QC
 DOUBLE PRECISION DB
 DOUBLE PRECISION DX(*), DY(*)

 DOUBLE PRECISION FUNCTION DQDOTA_64(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER*8 N, INCX, INCY
 REAL * 16 QC
 DOUBLE PRECISION DB
 DOUBLE PRECISION DX(*), DY(*)

 F95 INTERFACE
 REAL(8) FUNCTION DQDOTA(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER :: N, INCX, INCY
 REAL(16) :: QC
 REAL(8) :: DB
 REAL(8), DIMENSION(:) :: DX, DY

 REAL(8) FUNCTION DQDOTA_64(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER(8) :: N, INCX, INCY
 REAL(16) :: QC
 REAL(8) :: DB
 REAL(8), DIMENSION(:) :: DX, DY

 C INTERFACE
 #include <sunperf.h>

 double dqdota(int n, double db, long double *qc, double *dx,
 int incx, double *dy, int incy);

 double dqdota_64(long n, double db, long double *qc, double
 *dx, long incx, double *dy, long incy);

PURPOSE

 dqdota compute a double precision constant plus an extended
 precision constant plus the extended precision dot product
 of two double precision vectors x and y.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N <= 0 then the function returns
 the value DB+QC. Unchanged on exit.

 DB (input)
 On entry, the constant that is added to the dot
 product before the result is returned. Unchanged
 on exit.

 QC (input/output)
 On entry, the extended precision constant to be
 added to the dot product. On exit, the extended
 precision result.

 DX (input)
 On entry, the incremented array DX must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of DX. INCX must not be zero. Unchanged
 on exit.

 DY (input)
 On entry, the incremented array DY must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of DY. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dqdoti - compute a constant plus the extended precision dot
 product of two double precision vectors x and y.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DQDOTI(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER N, INCX, INCY
 REAL * 16 QC
 DOUBLE PRECISION DB
 DOUBLE PRECISION DX(*), DY(*)

 DOUBLE PRECISION FUNCTION DQDOTI_64(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER*8 N, INCX, INCY
 REAL * 16 QC
 DOUBLE PRECISION DB
 DOUBLE PRECISION DX(*), DY(*)

 F95 INTERFACE
 REAL(8) FUNCTION DQDOTI(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER :: N, INCX, INCY
 REAL(16) :: QC
 REAL(8) :: DB
 REAL(8), DIMENSION(:) :: DX, DY

 REAL(8) FUNCTION DQDOTI_64(N, DB, QC, DX, INCX, DY, INCY)

 INTEGER(8) :: N, INCX, INCY
 REAL(16) :: QC
 REAL(8) :: DB
 REAL(8), DIMENSION(:) :: DX, DY

 C INTERFACE
 #include <sunperf.h>

 double dqdoti(int n, double db, long double *qc, double *dx,
 int incx, double *dy, int incy);

 double dqdoti_64(long n, double db, long double *qc, double
 *dx, long incx, double *dy, long incy);

PURPOSE

 dqdoti computes a constant plus the double precision dot
 product of x and y where x and y are double precision n-
 vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N <= 0 then the function returns
 the value DB. Unchanged on exit.

 DB (input)
 On entry, the constant that is added to the dot
 product before the result is returned. Unchanged
 on exit.

 QC (output)
 On exit, the extended precision result.

 DX (input)
 On entry, the incremented array DX must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of DX. INCX must not be zero. Unchanged
 on exit.

 DY (input)
 On entry, the incremented array DY must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of DY. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 drot - Apply a Given's rotation constructed by SROTG.

SYNOPSIS

 SUBROUTINE DROT(N, X, INCX, Y, INCY, C, S)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION C, S
 DOUBLE PRECISION X(*), Y(*)

 SUBROUTINE DROT_64(N, X, INCX, Y, INCY, C, S)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION C, S
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE ROT([N], X, [INCX], Y, [INCY], C, S)

 INTEGER :: N, INCX, INCY
 REAL(8) :: C, S
 REAL(8), DIMENSION(:) :: X, Y

 SUBROUTINE ROT_64([N], X, [INCX], Y, [INCY], C, S)

 INTEGER(8) :: N, INCX, INCY
 REAL(8) :: C, S
 REAL(8), DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void drot(int n, double *x, int incx, double *y, int incy,
 double c, double s);

 void drot_64(long n, double *x, long incx, double *y, long
 incy, double c, double s);

PURPOSE

 drot Apply a Given's rotation constructed by SROTG.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input/output)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 C (input) On entry, the C rotation value constructed by
 SROTG. Unchanged on exit.

 S (input) On entry, the S rotation value constructed by
 SROTG. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 drotg - Construct a Given's plane rotation

SYNOPSIS

 SUBROUTINE DROTG(A, B, C, S)

 DOUBLE PRECISION A, B, C, S

 SUBROUTINE DROTG_64(A, B, C, S)

 DOUBLE PRECISION A, B, C, S

 F95 INTERFACE
 SUBROUTINE ROTG(A, B, C, S)

 REAL(8) :: A, B, C, S

 SUBROUTINE ROTG_64(A, B, C, S)

 REAL(8) :: A, B, C, S

 C INTERFACE
 #include <sunperf.h>

 void drotg(double *a, double *b, double *c, double *s);

 void drotg_64(double *a, double *b, double *c, double *s);

PURPOSE

 drotg Construct a Given's plane rotation that will annihi-
 late an element of a vector.

ARGUMENTS

 A (input/output)
 On entry, A contains the entry in the first vector
 that corresponds to the element to be annihilated
 in the second vector. On exit, contains the
 nonzero element of the rotated vector.

 B (input/output)
 On entry, B contains the entry to be annihilated
 in the second vector. On exit, contains either S
 or 1/C depending on which of the input values of A
 and B is larger.

 C (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

 S (output)
 See the description of C.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 droti - Apply an indexed Givens rotation.

SYNOPSIS

 SUBROUTINE DROTI(NZ, X, INDX, Y, C, S)

 INTEGER NZ
 INTEGER INDX(*)
 DOUBLE PRECISION C, S
 DOUBLE PRECISION X(*), Y(*)

 SUBROUTINE DROTI_64(NZ, X, INDX, Y, C, S)

 INTEGER*8 NZ
 INTEGER*8 INDX(*)
 DOUBLE PRECISION C, S
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE ROTI([NZ], X, INDX, Y, C, S)

 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX
 REAL(8) :: C, S
 REAL(8), DIMENSION(:) :: X, Y

 SUBROUTINE ROTI_64([NZ], X, INDX, Y, C, S)

 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX
 REAL(8) :: C, S
 REAL(8), DIMENSION(:) :: X, Y

PURPOSE

 DROTI - Applies a Givens rotation to a sparse vector x
 stored in compressed form and another vector y in full
 storage form

 do i = 1, n
 temp = -s * x(i) + c * y(indx(i))
 x(i) = c * x(i) + s * y(indx(i))
 y(indx(i)) = temp
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.
 X (input)
 Vector containing the values of the compressed form.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input/output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

 C (input)
 Scalar defining the Givens rotation

 S (input)
 Scalar defining the Givens rotation

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 drotm - Apply a Gentleman's modified Given's rotation con-
 structed by SROTMG.

SYNOPSIS

 SUBROUTINE DROTM(N, X, INCX, Y, INCY, PARAM)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*), PARAM(*)

 SUBROUTINE DROTM_64(N, X, INCX, Y, INCY, PARAM)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*), PARAM(*)

 F95 INTERFACE
 SUBROUTINE ROTM([N], X, [INCX], Y, [INCY], PARAM)

 INTEGER :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y, PARAM

 SUBROUTINE ROTM_64([N], X, [INCX], Y, [INCY], PARAM)

 INTEGER(8) :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y, PARAM

 C INTERFACE
 #include <sunperf.h>

 void drotm(int n, double *x, int incx, double *y, int incy,
 double *param);

 void drotm_64(long n, double *x, long incx, double *y, long
 incy, double *param);

PURPOSE

 drotm Apply a Given's rotation constructed by SROTMG.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, X is overwritten by the updated vector x.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 PARAM (input)
 On entry, the rotation values constructed by
 SROTMG. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 drotmg - Construct a Gentleman's modified Given's plane
 rotation

SYNOPSIS

 SUBROUTINE DROTMG(D1, D2, B1, B2, PARAM)

 DOUBLE PRECISION D1, D2, B1, B2
 DOUBLE PRECISION PARAM(*)

 SUBROUTINE DROTMG_64(D1, D2, B1, B2, PARAM)

 DOUBLE PRECISION D1, D2, B1, B2
 DOUBLE PRECISION PARAM(*)

 F95 INTERFACE
 SUBROUTINE ROTMG(D1, D2, B1, B2, PARAM)

 REAL(8) :: D1, D2, B1, B2
 REAL(8), DIMENSION(:) :: PARAM

 SUBROUTINE ROTMG_64(D1, D2, B1, B2, PARAM)

 REAL(8) :: D1, D2, B1, B2
 REAL(8), DIMENSION(:) :: PARAM

 C INTERFACE
 #include <sunperf.h>

 void drotmg(double d1, double d2, double b1, double b2, dou-
 ble *param);

 void drotmg_64(double d1, double d2, double b1, double b2,
 double *param);

PURPOSE

 drotmg Construct Gentleman's modified a Given's plane rota-
 tion that will annihilate an element of a vector.

ARGUMENTS

 D1 (input/output)
 On entry, the first diagonal entry in the H
 matrix. On exit, changed to reflect the effect of
 the transformation.
 D2 (input/output)
 On entry, the second diagonal entry in the H
 matrix. On exit, changed to reflect the effect of
 the transformation.

 B1 (input/output)
 On entry, the first element of the vector to which
 the H matrix is applied. On exit, changed to
 reflect the effect of the transformation.

 B2 (input)
 On entry, the second element of the vector to
 which the H matrix is applied. Unchanged on exit.

 PARAM (output)
 On exit, PARAM(1) describes the form of the rota-
 tion matrix H, and PARAM(2..5) contain the H
 matrix.

 If PARAM(1) = -2 then H = I and no elements of
 PARAM are modified.

 If PARAM(1) = -1 then PARAM(2) = h11, PARAM(3) =
 h21, PARAM(4) = h12, and PARAM(5) = h22.

 If PARAM(1) = 0 then h11 = h22 = 1, PARAM(3) =
 h21, and PARAM(4) = h12.

 If PARAM(1) = 1 then h12 = 1, h21 = -1, PARAM(2) =
 h11, and PARAM(5) = h22.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbev - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE DSBEV(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, NDIAG, LDA, LDZ, INFO
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSBEV_64(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, NDIAG, LDA, LDZ, INFO
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEV(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, NDIAG, LDA, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 SUBROUTINE SBEV_64(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, NDIAG, LDA, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>

 void dsbev(char jobz, char uplo, int n, int ndiag, double
 *a, int lda, double *w, double *z, int ldz, int
 *info);

 void dsbev_64(char jobz, char uplo, long n, long ndiag, dou-

 ble *a, long lda, double *w, double *z, long ldz,
 long *info);

PURPOSE

 dsbev computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows
 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.
 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(MAX(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE DSBEVD(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION AB(LDAB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSBEVD_64(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION AB(LDAB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEVD(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ], [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, Z

 SUBROUTINE SBEVD_64(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ],
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, Z

 C INTERFACE
 #include <sunperf.h>

 void dsbevd(char jobz, char uplo, int n, int kd, double *ab,
 int ldab, double *w, double *z, int ldz, int
 *info);
 void dsbevd_64(char jobz, char uplo, long n, long kd, double
 *ab, long ldab, double *w, double *z, long ldz,
 long *info);

PURPOSE

 dsbevd computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A. If eigenvectors
 are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, AB is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows KD
 and KD+1 of AB, and if UPLO = 'L', the diagonal
 and first subdiagonal of T are returned in the
 first two rows of AB.

 LDAB (input)
 The leading dimension of the array AB. LDAB >= KD
 + 1.

 W (output)

 If INFO = 0, the eigenvalues in ascending order.

 Z (output)
 If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 2, LWORK must be at least 2*N. If JOBZ = 'V' and
 N > 2, LWORK must be at least (1 + 5*N + 2*N**2
).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.
 LIWORK (input)
 The dimension of the array LIWORK. If JOBZ = 'N'
 or N <= 1, LIWORK must be at least 1. If JOBZ =
 'V' and N > 2, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE DSBEVX(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(LDA,*), Q(LDQ,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSBEVX_64(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(LDA,*), Q(LDQ,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEVX(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Q, Z

 SUBROUTINE SBEVX_64(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL

 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Q, Z
 C INTERFACE
 #include <sunperf.h>

 void dsbevx(char jobz, char range, char uplo, int n, int
 ndiag, double *a, int lda, double *q, int ldq,
 double vl, double vu, int il, int iu, double
 abtol, int *nfound, double *w, double *z, int ldz,
 int *ifail, int *info);

 void dsbevx_64(char jobz, char range, char uplo, long n,
 long ndiag, double *a, long lda, double *q, long
 ldq, double vl, double vu, long il, long iu, dou-
 ble abtol, long *nfound, double *w, double *z,
 long ldz, long *ifail, long *info);

PURPOSE

 dsbevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows

 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 Q (output)
 If JOBZ = 'V', the N-by-N orthogonal matrix used
 in the reduction to tridiagonal form. If JOBZ =
 'N', the array Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'V', then LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.
 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(7*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbgst - reduce a real symmetric-definite banded generalized
 eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y,

SYNOPSIS

 SUBROUTINE DSBGST(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
 WORK, INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)

 SUBROUTINE DSBGST_64(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
 LDX, WORK, INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDX, INFO
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGST(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], X,
 [LDX], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, X

 SUBROUTINE SBGST_64(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 X, [LDX], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, X

 C INTERFACE
 #include <sunperf.h>

 void dsbgst(char vect, char uplo, int n, int ka, int kb,
 double *ab, int ldab, double *bb, int ldbb, double
 *x, int ldx, int *info);

 void dsbgst_64(char vect, char uplo, long n, long ka, long
 kb, double *ab, long ldab, double *bb, long ldbb,
 double *x, long ldx, long *info);

PURPOSE

 dsbgst reduces a real symmetric-definite banded generalized
 eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y, such that C has the same bandwidth as A.

 B must have been previously factorized as S**T*S by SPBSTF,
 using a split Cholesky factorization. A is overwritten by C
 = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal
 matrix chosen to preserve the bandwidth of A.

ARGUMENTS

 VECT (input)
 = 'N': do not form the transformation matrix X;
 = 'V': form X.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the transformed matrix X**T*A*X, stored
 in the same format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input)
 The banded factor S from the split Cholesky fac-
 torization of B, as returned by SPBSTF, stored in
 the first KB+1 rows of the array.

 LDBB (input)

 The leading dimension of the array BB. LDBB >=
 KB+1.

 X (output)
 If VECT = 'V', the n-by-n matrix X. If VECT =
 'N', the array X is not referenced.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbgv - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE DSBGV(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*),
 WORK(*)

 SUBROUTINE DSBGV_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, INFO
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGV(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Z

 SUBROUTINE SBGV_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Z

 C INTERFACE
 #include <sunperf.h>

 void dsbgv(char jobz, char uplo, int n, int ka, int kb, dou-

 ble *ab, int ldab, double *bb, int ldbb, double
 *w, double *z, int ldz, int *info);
 void dsbgv_64(char jobz, char uplo, long n, long ka, long
 kb, double *ab, long ldab, double *bb, long ldbb,
 double *w, double *z, long ldz, long *info);

PURPOSE

 dsbgv computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are
 assumed to be symmetric and banded, and B is also positive
 definite.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.
 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-

 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**T*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then SPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsbgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE DSBGVD(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*),
 WORK(*)

 SUBROUTINE DSBGVD_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGVD(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Z

 SUBROUTINE SBGVD_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK

 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Z

 C INTERFACE
 #include <sunperf.h>
 void dsbgvd(char jobz, char uplo, int n, int ka, int kb,
 double *ab, int ldab, double *bb, int ldbb, double
 *w, double *z, int ldz, int *info);

 void dsbgvd_64(char jobz, char uplo, long n, long ka, long
 kb, double *ab, long ldab, double *bb, long ldbb,
 double *w, double *z, long ldz, long *info);

PURPOSE

 dsbgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B
 are assumed to be symmetric and banded, and B is also posi-
 tive definite. If eigenvectors are desired, it uses a
 divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.
 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so Z**T*B*Z = I.
 If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 3*N. If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if LIWORK > 0, IWORK(1) returns the
 optimal LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message

 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then SPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsbgvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE DSBGVX(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB,
 Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), W(*),
 Z(LDZ,*), WORK(*)

 SUBROUTINE DSBGVX_64(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), W(*),
 Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGVX(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Q, Z

 SUBROUTINE SBGVX_64(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,

 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: AB, BB, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void dsbgvx(char jobz, char range, char uplo, int n, int ka,
 int kb, double *ab, int ldab, double *bb, int
 ldbb, double *q, int ldq, double vl, double vu,
 int il, int iu, double abstol, int *m, double *w,
 double *z, int ldz, int *ifail, int *info);

 void dsbgvx_64(char jobz, char range, char uplo, long n,
 long ka, long kb, double *ab, long ldab, double
 *bb, long ldbb, double *q, long ldq, double vl,
 double vu, long il, long iu, double abstol, long
 *m, double *w, double *z, long ldz, long *ifail,
 long *info);

PURPOSE

 dsbgvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B
 are assumed to be symmetric and banded, and B is also posi-
 tive definite. Eigenvalues and eigenvectors can be selected
 by specifying either all eigenvalues, a range of values or a
 range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)

 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 Q (output)
 If JOBZ = 'V', the n-by-n matrix used in the
 reduction of A*x = (lambda)*B*x to standard form,
 i.e. C*x = (lambda)*x, and consequently C to tri-
 diagonal form. If JOBZ = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so Z**T*B*Z = I.
 If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(7*N)

 IWORK (workspace/output)
 dimension(5*N)

 IFAIL (input)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvalues that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0 : successful exit
 < 0 : if INFO = -i, the i-th argument had an ille-
 gal value
 <= N: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in IFAIL. > N
 : SPBSTF returned an error code; i.e., if INFO = N
 + i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsbmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE DSBMV(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 SUBROUTINE DSBMV_64(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SBMV(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SBMV_64(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsbmv(char uplo, int n, int ndiag, double alpha, double
 *a, int lda, double *x, int incx, double beta,
 double *y, int incy);
 void dsbmv_64(char uplo, long n, long ndiag, double alpha,
 double *a, long lda, double *x, long incx, double
 beta, double *y, long incy);

PURPOSE

 dsbmv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric band matrix, with
 ndiag super-diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the band matrix A is
 being supplied as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A
 is being supplied.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry, NDIAG specifies the number of super-
 diagonals of the matrix A. NDIAG >= 0. Unchanged
 on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the symmetric
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row (ndiag + 1) of
 the array, the first super-diagonal starting at
 position 2 in row ndiag, and so on. The top left
 ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer the upper triangular part of a symmetric
 band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)

 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the symmetric
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row 1 of the array,
 the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right ndiag by ndiag
 triangle of the array A is not referenced. The
 following program segment will transfer the lower
 triangular part of a symmetric band matrix from
 conventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsbtrd - reduce a real symmetric band matrix A to symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion

SYNOPSIS

 SUBROUTINE DSBTRD(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER N, KD, LDAB, LDQ, INFO
 DOUBLE PRECISION AB(LDAB,*), D(*), E(*), Q(LDQ,*), WORK(*)

 SUBROUTINE DSBTRD_64(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER*8 N, KD, LDAB, LDQ, INFO
 DOUBLE PRECISION AB(LDAB,*), D(*), E(*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBTRD(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER :: N, KD, LDAB, LDQ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: AB, Q

 SUBROUTINE SBTRD_64(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER(8) :: N, KD, LDAB, LDQ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: AB, Q

 C INTERFACE
 #include <sunperf.h>

 void dsbtrd(char vect, char uplo, int n, int kd, double *ab,

 int ldab, double *d, double *e, double *q, int
 ldq, int *info);

 void dsbtrd_64(char vect, char uplo, long n, long kd, double
 *ab, long ldab, double *d, double *e, double *q,
 long ldq, long *info);

PURPOSE

 dsbtrd reduces a real symmetric band matrix A to symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion: Q**T * A * Q = T.

ARGUMENTS

 VECT (input)
 = 'N': do not form Q;
 = 'V': form Q;
 = 'U': update a matrix X, by forming X*Q.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd). On exit, the diagonal ele-
 ments of AB are overwritten by the diagonal ele-
 ments of the tridiagonal matrix T; if KD > 0, the
 elements on the first superdiagonal (if UPLO =
 'U') or the first subdiagonal (if UPLO = 'L') are
 overwritten by the off-diagonal elements of T; the
 rest of AB is overwritten by values generated dur-
 ing the reduction.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 D (output)
 The diagonal elements of the tridiagonal matrix T.
 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) =
 T(i+1,i) if UPLO = 'L'.

 Q (input/output)
 On entry, if VECT = 'U', then Q must contain an

 N-by-N matrix X; if VECT = 'N' or 'V', then Q need
 not be set.

 On exit: if VECT = 'V', Q contains the N-by-N
 orthogonal matrix Q; if VECT = 'U', Q contains the
 product X*Q; if VECT = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1,
 and LDQ >= N if VECT = 'V' or 'U'.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Modified by Linda Kaufman, Bell Labs.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE DSCAL(N, ALPHA, Y, INCY)

 INTEGER N, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION Y(*)

 SUBROUTINE DSCAL_64(N, ALPHA, Y, INCY)

 INTEGER*8 N, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION Y(*)

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 INTEGER :: N, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: Y

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 INTEGER(8) :: N, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: Y

 C INTERFACE
 #include <sunperf.h>

 void dscal(int n, double alpha, double *y, int incy);

 void dscal_64(long n, double alpha, double *y, long incy);

PURPOSE

 dscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the
 subroutine to have any visible effect. Unchanged
 on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 dsctr - Scatters elements from x into y.

SYNOPSIS

 SUBROUTINE DSCTR(NZ, X, INDX, Y)

 DOUBLE PRECISION X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE DSCTR_64(NZ, X, INDX, Y)

 DOUBLE PRECISION X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE SCTR([NZ], X, INDX, Y)

 REAL(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE SCTR_64([NZ], X, INDX, Y)

 REAL(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 DSCTR - Scatters the components of a sparse vector x stored
 in compressed form into specified components of a vector y
 in full storage form.

 do i = 1, n
 y(indx(i)) = x(i)
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector containing the values to be scattered from
 compressed form into full storage form. Unchanged
 on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector whose elements specified by indx have been
 set to the corresponding entries of x. Only the
 elements corresponding to the indices in indx have
 been modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsdot - compute the double precision dot product of two sin-
 gle precision vectors x and y.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DSDOT(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 REAL X(*), Y(*)

 DOUBLE PRECISION FUNCTION DSDOT_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 REAL X(*), Y(*)

 F95 INTERFACE
 REAL(8) FUNCTION DSDOT(N, X, INCX, Y, INCY)

 INTEGER :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 REAL(8) FUNCTION DSDOT_64(N, X, INCX, Y, INCY)

 INTEGER(8) :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 double dsdot(int n, float *x, int incx, float *y, int incy);

 double dsdot_64(long n, float *x, long incx, float *y, long
 incy);

PURPOSE

 dsdot compute the double precision dot product of x and y
 where x and y are single precision n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y.
 Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 dsecnd - return the user time for a process in seconds

SYNOPSIS

 DOUBLE PRECISION FUNCTION DSECND()

 DOUBLE PRECISION FUNCTION DSECND_64()

 F95 INTERFACE
 REAL(8) FUNCTION DSECND()

 REAL(8) FUNCTION DSECND_64()

 C INTERFACE
 #include <sunperf.h>

 double dsecnd();

 double dsecnd_64();

PURPOSE

 dsecnd returns the user time for a process in seconds. This
 version gets the time from the system function ETIME.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dsinqb - synthesize a Fourier sequence from its representa-
 tion in terms of a sine series with odd wave numbers. The
 SINQ operations are unnormalized inverses of themselves, so
 a call to SINQF followed by a call to SINQB will multiply
 the input sequence by 4 * N.

SYNOPSIS

 SUBROUTINE DSINQB(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DSINQB_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQB([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINQB_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dsinqb(int n, double *x, double *wsave);

 void dsinqb_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave sine synthesis of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15) for scalar subroutines, initialized by
 SINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dsinqf - compute the Fourier coefficients in a sine series
 representation with only odd wave numbers. The SINQ opera-
 tions are unnormalized inverses of themselves, so a call to
 SINQF followed by a call to SINQB will multiply the input
 sequence by 4 * N.

SYNOPSIS

 SUBROUTINE DSINQF(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DSINQF_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQF([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINQF_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dsinqf(int n, double *x, double *wsave);

 void dsinqf_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave sine transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15) for scalar subroutines, initialized by
 SINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dsinqi - initialize the array xWSAVE, which is used in both
 SINQF and SINQB.

SYNOPSIS

 SUBROUTINE DSINQI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DSINQI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE SINQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dsinqi(int n, double *wsave);

 void dsinqi_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. SINQI needs to be called only once to

 initialize WSAVE before calling SINQF and/or SINQB
 if N and WSAVE remain unchanged between these
 calls. Thus, subsequent transforms or inverse
 transforms of same size can be obtained faster
 than the first since they do not require initiali-
 zation of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dsint - compute the discrete Fourier sine transform of an
 odd sequence. The SINT transforms are unnormalized inverses
 of themselves, so a call of SINT followed by another call of
 SINT will multiply the input sequence by 2 * (N+1).

SYNOPSIS

 SUBROUTINE DSINT(N, X, WSAVE)

 INTEGER N
 DOUBLE PRECISION X(*), WSAVE(*)

 SUBROUTINE DSINT_64(N, X, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINT([N], X, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINT_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dsint(int n, double *x, double *wsave);

 void dsint_64(long n, double *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N+1 is a pro-
 duct of small primes. N >= 0.

 X (input/output)

 On entry, an array of length N containing the
 sequence to be transformed. On exit, the sine
 transform of the input.
 WSAVE (input/output)
 On entry, an array with dimension of at least
 int(2.5 * N + 15) initialized by SINTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 dsinti - initialize the array WSAVE, which is used in sub-
 routine SINT.

SYNOPSIS

 SUBROUTINE DSINTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE DSINTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE SINTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void dsinti(int n, double *wsave);

 void dsinti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input/output)
 On entry, an array of dimension (2N + N/2 + 15) or
 greater. SINTI is called once to initialize WSAVE
 before calling SINT and need not be called again
 between calls to SINT if N and WSAVE remain

 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dskymm - Skyline format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE DSKYMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DSKYMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(K+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(M+1)-PNTR(1) (lower triangular)
 PNTR() size = (K+1) (upper triangular)
 PNTR() size = (M+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in skyline format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general (NOT SUPPORTED)
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).
 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 The SKY data structure is not supported for a general matrix
 structure (DESCRA(1)=0).

 Also not supported:
 1. lower triangular matrix A of size m by n where m > n
 2. upper triangular matrix A of size m by n where m < n

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dskysm - Skyline format triangular solve

SYNOPSIS

 SUBROUTINE DSKYSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DSKYSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(M+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(K+1)-PNTR(1) (lower triangular)
 PNTR() size = (M+1) (upper triangular)
 PNTR() size = (K+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in skyline format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A')).
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row or column scaling (see section
 NOTES for further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. Also not supported:
 a. lower triangular matrix A of size m by n where m > n
 b. upper triangular matrix A of size m by n where m < n

 2. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 3. If UNITD =4, the routine scales the rows of A if
 DESCRA(2)=1 and the columns of A if DESCRA(2)=2 such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in this particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows (columns) have been scaled. UNITD=2 if DESCRA(2)=1 and
 UNITD=3 if DESCRA(2)=2 should be used for the next calls to
 the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 (column) number which 2-norm is exactly zero.

 4. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the SKY representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the SKY representation.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF

SYNOPSIS

 SUBROUTINE DSPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, IWORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(*), WORK(*)

 SUBROUTINE DSPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, IWORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [IWORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 SUBROUTINE SPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>
 void dspcon(char uplo, int n, double *a, int *ipivot, double
 anorm, double *rcond, int *info);

 void dspcon_64(char uplo, long n, double *a, long *ipivot,
 double anorm, double *rcond, long *info);

PURPOSE

 dspcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspev - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE DSPEV(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION A(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPEV_64(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION A(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEV(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: A, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPEV_64(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: A, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dspev(char jobz, char uplo, int n, double *a, double
 *w, double *z, int ldz, int *info);

 void dspev_64(char jobz, char uplo, long n, double *a, dou-
 ble *w, double *z, long ldz, long *info);

PURPOSE

 dspev computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE DSPEVD(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION AP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPEVD_64(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION AP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEVD(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: AP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPEVD_64(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: AP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dspevd(char jobz, char uplo, int n, double *ap, double
 *w, double *z, int ldz, int *info);
 void dspevd_64(char jobz, char uplo, long n, double *ap,
 double *w, double *z, long ldz, long *info);

PURPOSE

 dspevd computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage. If
 eigenvectors are desired, it uses a divide and conquer algo-
 rithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, AP is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least 2*N. If JOBZ = 'V' and
 N > 1, LWORK must be at least 1 + 6*N + N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK must be at least 1. If JOBZ =
 'V' and N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE DSPEVX(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPEVX_64(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEVX(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: A, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPEVX_64(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: A, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void dspevx(char jobz, char range, char uplo, int n, double
 *a, double vl, double vu, int il, int iu, double
 abtol, int *nfound, double *w, double *z, int ldz,
 int *ifail, int *info);

 void dspevx_64(char jobz, char range, char uplo, long n,
 double *a, double vl, double vu, long il, long iu,
 double abtol, long *nfound, double *w, double *z,
 long ldz, long *ifail, long *info);

PURPOSE

 dspevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage.
 Eigenvalues/vectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.
 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 If INFO = 0, the selected eigenvalues in ascending
 order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)

 dimension(8*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspgst - reduce a real symmetric-definite generalized eigen-
 problem to standard form, using packed storage

SYNOPSIS

 SUBROUTINE DSPGST(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, INFO
 DOUBLE PRECISION AP(*), BP(*)

 SUBROUTINE DSPGST_64(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, INFO
 DOUBLE PRECISION AP(*), BP(*)

 F95 INTERFACE
 SUBROUTINE SPGST(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, INFO
 REAL(8), DIMENSION(:) :: AP, BP

 SUBROUTINE SPGST_64(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, INFO
 REAL(8), DIMENSION(:) :: AP, BP

 C INTERFACE
 #include <sunperf.h>

 void dspgst(int itype, char uplo, int n, double *ap, double
 *bp, int *info);

 void dspgst_64(long itype, char uplo, long n, double *ap,
 double *bp, long *info);

PURPOSE

 dspgst reduces a real symmetric-definite generalized eigen-
 problem to standard form, using packed storage.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**T or
 L**T*A*L.

 B must have been previously factorized as U**T*U or L*L**T
 by SPPTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T);
 = 2 or 3: compute U*A*U**T or L**T*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**T*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**T.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 BP (input)
 The triangular factor from the Cholesky factoriza-
 tion of B, stored in the same format as A, as
 returned by SPPTRF.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspgv - compute all the eigenvalues and, optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSPGV(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDZ, INFO
 DOUBLE PRECISION A(*), B(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPGV_64(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDZ, INFO
 DOUBLE PRECISION A(*), B(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGV(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDZ, INFO
 REAL(8), DIMENSION(:) :: A, B, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPGV_64(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDZ, INFO
 REAL(8), DIMENSION(:) :: A, B, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dspgv(int itype, char jobz, char uplo, int n, double
 *a, double *b, double *w, double *z, int ldz, int
 *info);

 void dspgv_64(long itype, char jobz, char uplo, long n, dou-
 ble *a, double *b, double *w, double *z, long ldz,
 long *info);

PURPOSE

 dspgv computes all the eigenvalues and, optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed format, and B is also positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 (N*(N+1)/2) On entry, the upper or lower triangle
 of the symmetric matrix A, packed columnwise in a
 linear array. The j-th column of A is stored in
 the array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of A are destroyed.

 B (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array B as follows: if UPLO = 'U', B(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', B(i +
 (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.
 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEV returned an error code:
 <= N: if INFO = i, SSPEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero. > N: if INFO
 = n + i, for 1 <= i <= n, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dspgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSPGVD(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPGVD_64(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGVD(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: AP, BP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPGVD_64(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ],
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: AP, BP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dspgvd(int itype, char jobz, char uplo, int n, double
 *ap, double *bp, double *w, double *z, int ldz,
 int *info);

 void dspgvd_64(long itype, char jobz, char uplo, long n,
 double *ap, double *bp, double *w, double *z, long
 ldz, long *info);

PURPOSE

 dspgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed format, and B is also positive definite.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the sym-

 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 2*N. If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEVD returned an error code:
 <= N: if INFO = i, SSPEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no

 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dspgvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSPGVX(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSPGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGVX(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, [LDZ], [WORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: AP, BP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE SPGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU,
 IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: ITYPE, N, IL, IU, M, LDZ, INFO

 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: AP, BP, W, WORK
 REAL(8), DIMENSION(:,:) :: Z
 C INTERFACE
 #include <sunperf.h>

 void dspgvx(int itype, char jobz, char range, char uplo, int
 n, double *ap, double *bp, double vl, double vu,
 int il, int iu, double abstol, int *m, double *w,
 double *z, int ldz, int *ifail, int *info);

 void dspgvx_64(long itype, char jobz, char range, char uplo,
 long n, double *ap, double *bp, double vl, double
 vu, long il, long iu, double abstol, long *m, dou-
 ble *w, double *z, long ldz, long *ifail, long
 *info);

PURPOSE

 dspgvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite eigenprob-
 lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed storage, and B is also positive definite.
 Eigenvalues and eigenvectors can be selected by specifying
 either a range of values or a range of indices for the
 desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A and B are stored;
 = 'L': Lower triangle of A and B are stored.
 N (input) The order of the matrix pencil (A,B). N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix

 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).
 WORK (workspace)
 dimension(8*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEVX returned an error code:
 <= N: if INFO = i, SSPEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE DSPMV(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(*), X(*), Y(*)

 SUBROUTINE DSPMV_64(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SPMV(UPLO, N, ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: A, X, Y

 SUBROUTINE SPMV_64(UPLO, N, ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: A, X, Y

 C INTERFACE
 #include <sunperf.h>

 void dspmv(char uplo, int n, double alpha, double *a, double
 *x, int incx, double beta, double *y, int incy);

 void dspmv_64(char uplo, long n, double alpha, double *a,
 double *x, long incx, double beta, double *y, long
 incy);

PURPOSE

 dspmv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric matrix, supplied
 in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array A
 must contain the lower triangular part of the sym-
 metric matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.
 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the

 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspr - perform the symmetric rank 1 operation A :=
 alpha*x*x' + A

SYNOPSIS

 SUBROUTINE DSPR(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 INTEGER N, INCX
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), A(*)

 SUBROUTINE DSPR_64(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), A(*)

 F95 INTERFACE
 SUBROUTINE SPR(UPLO, N, ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, A

 SUBROUTINE SPR_64(UPLO, N, ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, A

 C INTERFACE
 #include <sunperf.h>

 void dspr(char uplo, int n, double alpha, double *x, int
 incx, double *a);

 void dspr_64(char uplo, long n, double alpha, double *x,
 long incx, double *a);

PURPOSE

 dspr performs the symmetric rank 1 operation A := alpha*x*x'
 + A, where alpha is a real scalar, x is an n element vector
 and A is an n by n symmetric matrix, supplied in packed
 form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain
 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dspr2 - perform the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A

SYNOPSIS

 SUBROUTINE DSPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(*)

 SUBROUTINE DSPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(*)

 F95 INTERFACE
 SUBROUTINE SPR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y, A

 SUBROUTINE SPR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y, A

 C INTERFACE
 #include <sunperf.h>

 void dspr2(char uplo, int n, double alpha, double *x, int
 incx, double *y, int incy, double *a);

 void dspr2_64(char uplo, long n, double alpha, double *x,
 long incx, double *y, long incy, double *a);

PURPOSE

 dspr2 performs the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and
 y are n element vectors and A is an n by n symmetric matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.
 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain

 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE DSPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE DSPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE SPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>
 void dsprfs(char uplo, int n, int nrhs, double *a, double
 *af, int *ipivot, double *b, int ldb, double *x,
 int ldx, double *ferr, double *berr, int *info);

 void dsprfs_64(char uplo, long n, long nrhs, double *a, dou-
 ble *af, long *ipivot, double *b, long ldb, double
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 dsprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.
 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SSPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=

 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dspsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DSPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(*), B(LDB,*)

 SUBROUTINE DSPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SPSV(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE SPSV_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dspsv(char uplo, int n, int nrhs, double *a, int
 *ipivot, double *b, int ldb, int *info);

 void dspsv_64(char uplo, long n, long nrhs, double *a, long
 *ipivot, double *b, long ldb, long *info);

PURPOSE

 dspsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is symmetric and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by SSPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by SSPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dspsvx - use the diagonal pivoting factorization A =
 U*D*U**T or A = L*D*L**T to compute the solution to a real
 system of linear equations A * X = B, where A is an N-by-N
 symmetric matrix stored in packed format and X and B are N-
 by-NRHS matrices

SYNOPSIS

 SUBROUTINE DSPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE DSPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE SPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void dspsvx(char fact, char uplo, int n, int nrhs, double
 *a, double *af, int *ipivot, double *b, int ldb,
 double *x, int ldx, double *rcond, double *ferr,
 double *berr, int *info);

 void dspsvx_64(char fact, char uplo, long n, long nrhs, dou-
 ble *a, double *af, long *ipivot, double *b, long
 ldb, double *x, long ldx, double *rcond, double
 *ferr, double *berr, long *info);

PURPOSE

 dspsvx uses the diagonal pivoting factorization A = U*D*U**T
 or A = L*D*L**T to compute the solution to a real system of
 linear equations A * X = B, where A is an N-by-N symmetric
 matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is symmetric and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.
 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates

 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 (N*(N+1)/2) If FACT = 'F', then AF is an input
 argument and on entry contains the block diagonal
 matrix D and the multipliers used to obtain the
 factor U or L from the factorization A = U*D*U**T
 or A = L*D*L**T as computed by SSPTRF, stored as a
 packed triangular matrix in the same storage for-
 mat as A.

 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by SSPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 SSPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges

 and the block structure of D, as determined by
 SSPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.
 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsptrd - reduce a real symmetric matrix A stored in packed
 form to symmetric tridiagonal form T by an orthogonal simi-
 larity transformation

SYNOPSIS

 SUBROUTINE DSPTRD(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 DOUBLE PRECISION AP(*), D(*), E(*), TAU(*)

 SUBROUTINE DSPTRD_64(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 DOUBLE PRECISION AP(*), D(*), E(*), TAU(*)

 F95 INTERFACE
 SUBROUTINE SPTRD(UPLO, N, AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: AP, D, E, TAU

 SUBROUTINE SPTRD_64(UPLO, N, AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: AP, D, E, TAU

 C INTERFACE
 #include <sunperf.h>

 void dsptrd(char uplo, int n, double *ap, double *d, double
 *e, double *tau, int *info);

 void dsptrd_64(char uplo, long n, double *ap, double *d,
 double *e, double *tau, long *info);

PURPOSE

 dsptrd reduces a real symmetric matrix A stored in packed
 form to symmetric tridiagonal form T by an orthogonal simi-
 larity transformation: Q**T * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit,
 if UPLO = 'U', the diagonal and first superdiago-
 nal of A are overwritten by the corresponding ele-
 ments of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
 overwriting A(1:i-1,i+1), and tau is stored in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
 overwriting A(i+2:n,i), and tau is stored in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsptrf - compute the factorization of a real symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method

SYNOPSIS

 SUBROUTINE DSPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(*)

 SUBROUTINE DSPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(*)

 F95 INTERFACE
 SUBROUTINE SPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A

 SUBROUTINE SPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsptrf(char uplo, int n, double *a, int *ipivot, int
 *info);

 void dsptrf_64(char uplo, long n, double *a, long *ipivot,
 long *info);

PURPOSE

 dsptrf computes the factorization of a real symmetric matrix
 A stored in packed format using the Bunch-Kaufman diagonal
 pivoting method:

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsptri - compute the inverse of a real symmetric indefinite
 matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by SSPTRF

SYNOPSIS

 SUBROUTINE DSPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(*), WORK(*)

 SUBROUTINE DSPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPTRI(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A, WORK

 SUBROUTINE SPTRI_64(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>

 void dsptri(char uplo, int n, double *a, int *ipivot, int
 *info);

 void dsptri_64(char uplo, long n, double *a, long *ipivot,
 long *info);

PURPOSE

 dsptri computes the inverse of a real symmetric indefinite
 matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by SSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by SSPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsptrs - solve a system of linear equations A*X = B with a
 real symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF

SYNOPSIS

 SUBROUTINE DSPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(*), B(LDB,*)

 SUBROUTINE DSPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SPTRS(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE SPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dsptrs(char uplo, int n, int nrhs, double *a, int
 *ipivot, double *b, int ldb, int *info);

 void dsptrs_64(char uplo, long n, long nrhs, double *a, long
 *ipivot, double *b, long ldb, long *info);

PURPOSE

 dsptrs solves a system of linear equations A*X = B with a
 real symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstebz - compute the eigenvalues of a symmetric tridiagonal
 matrix T

SYNOPSIS

 SUBROUTINE DSTEBZ(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)

 CHARACTER * 1 RANGE, ORDER
 INTEGER N, IL, IU, M, NSPLIT, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 SUBROUTINE DSTEBZ_64(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
 M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)

 CHARACTER * 1 RANGE, ORDER
 INTEGER*8 N, IL, IU, M, NSPLIT, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEBZ(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: RANGE, ORDER
 INTEGER :: N, IL, IU, M, NSPLIT, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEBZ_64(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: RANGE, ORDER
 INTEGER(8) :: N, IL, IU, M, NSPLIT, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK

 C INTERFACE

 #include <sunperf.h>

 void dstebz(char range, char order, int n, double vl, double
 vu, int il, int iu, double abstol, double *d,
 double *e, int *m, int *nsplit, double *w, int
 *iblock, int *isplit, int *info);

 void dstebz_64(char range, char order, long n, double vl,
 double vu, long il, long iu, double abstol, double
 *d, double *e, long *m, long *nsplit, double *w,
 long *iblock, long *isplit, long *info);

PURPOSE

 dstebz computes the eigenvalues of a symmetric tridiagonal
 matrix T. The user may ask for all eigenvalues, all eigen-
 values in the half-open interval (VL, VU], or the IL-th
 through IU-th eigenvalues.

 To avoid overflow, the matrix must be scaled so that its
 largest element is no greater than overflow**(1/2) *
 underflow**(1/4) in absolute value, and for greatest
 accuracy, it should not be much smaller than that.

 See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiago-
 nal Matrix", Report CS41, Computer Science Dept., Stanford
 University, July 21, 1966.

ARGUMENTS

 RANGE (input)
 = 'A': ("All") all eigenvalues will be found.
 = 'V': ("Value") all eigenvalues in the half-open
 interval (VL, VU] will be found. = 'I': ("Index")
 the IL-th through IU-th eigenvalues (of the entire
 matrix) will be found.

 ORDER (input)
 = 'B': ("By Block") the eigenvalues will be
 grouped by split-off block (see IBLOCK, ISPLIT)
 and ordered from smallest to largest within the
 block. = 'E': ("Entire matrix") the eigenvalues
 for the entire matrix will be ordered from smal-
 lest to largest.

 N (input) The order of the tridiagonal matrix T. N >= 0.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. Eigen-
 values less than or equal to VL, or greater than
 VU, will not be returned. VL < VU. Not
 referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be

 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute tolerance for the eigenvalues. An
 eigenvalue (or cluster) is considered to be
 located if it has been determined to lie in an
 interval whose width is ABSTOL or less. If ABSTOL
 is less than or equal to zero, then ULP*|T| will
 be used, where |T| means the 1-norm of T.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) off-diagonal elements of the tridiagonal
 matrix T.

 M (output)
 The actual number of eigenvalues found. 0 <= M <=
 N. (See also the description of INFO=2,3.)

 NSPLIT (output)
 The number of diagonal blocks in the matrix T. 1
 <= NSPLIT <= N.

 W (output)
 On exit, the first M elements of W will contain
 the eigenvalues. (SSTEBZ may use the remaining
 N-M elements as workspace.)

 IBLOCK (output)
 At each row/column j where E(j) is zero or small,
 the matrix T is considered to split into a block
 diagonal matrix. On exit, if INFO = 0, IBLOCK(i)
 specifies to which block (from 1 to the number of
 blocks) the eigenvalue W(i) belongs. (SSTEBZ may
 use the remaining N-M elements as workspace.)

 ISPLIT (output)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2), etc.,
 and the NSPLIT-th consists of rows/columns
 ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
 (Only the first NSPLIT elements will actually be
 used, but since the user cannot know a priori what
 value NSPLIT will have, N words must be reserved
 for ISPLIT.)

 WORK (workspace)
 dimension(4*N)

 IWORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: some or all of the eigenvalues failed to
 converge or
 were not computed:
 =1 or 3: Bisection failed to converge for some
 eigenvalues; these eigenvalues are flagged by a
 negative block number. The effect is that the
 eigenvalues may not be as accurate as the absolute
 and relative tolerances. This is generally caused
 by unexpectedly inaccurate arithmetic. =2 or 3:
 RANGE='I' only: Not all of the eigenvalues IL:IU
 were found.
 Effect: M < IU+1-IL
 Cause: non-monotonic arithmetic, causing the
 Sturm sequence to be non-monotonic. Cure:
 recalculate, using RANGE='A', and pick
 out eigenvalues IL:IU. = 4: RANGE='I', and the
 Gershgorin interval initially used was too small.
 No eigenvalues were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dstedc - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method

SYNOPSIS

 SUBROUTINE DSTEDC(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
 INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEDC_64(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEDC(COMPZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEDC_64(COMPZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dstedc(char compz, int n, double *d, double *e, double
 *z, int ldz, int *info);
 void dstedc_64(char compz, long n, double *d, double *e,
 double *z, long ldz, long *info);

PURPOSE

 dstedc computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method. The eigenvectors of a full or band real
 symmetric matrix can also be found if SSYTRD or SSPTRD or
 SSBTRD has been used to reduce this matrix to tridiagonal
 form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLAED3 for details.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'I': Compute eigenvectors of tridiagonal matrix
 also.
 = 'V': Compute eigenvectors of original dense
 symmetric matrix also. On entry, Z contains the
 orthogonal matrix used to reduce the original
 matrix to tridiagonal form.

 N (input) The dimension of the symmetric tridiagonal matrix.
 N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the subdiagonal elements of the tridiag-
 onal matrix. On exit, E has been destroyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 orthogonal matrix used in the reduction to tridi-
 agonal form. On exit, if INFO = 0, then if COMPZ
 = 'V', Z contains the orthonormal eigenvectors of
 the original symmetric matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If eigenvectors are desired, then LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If COMPZ = 'N'
 or N <= 1 then LWORK must be at least 1. If COMPZ
 = 'V' and N > 1 then LWORK must be at least (1 +
 3*N + 2*N*lg N + 3*N**2), where lg(N) = smal-
 lest integer k such that 2**k >= N. If COMPZ =
 'I' and N > 1 then LWORK must be at least (1 +
 4*N + N**2).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If COMPZ = 'N'
 or N <= 1 then LIWORK must be at least 1. If
 COMPZ = 'V' and N > 1 then LIWORK must be at least
 (6 + 6*N + 5*N*lg N). If COMPZ = 'I' and N > 1
 then LIWORK must be at least (3 + 5*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an eigen-
 value while working on the submatrix lying in rows
 and columns INFO/(N+1) through mod(INFO,N+1).

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA
 Modified by Francoise Tisseur, University of Tennessee.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that
 L_i D_i L_i^T is a relatively robust representation

SYNOPSIS

 SUBROUTINE DSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEGR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEGR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL

 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void dstegr(char jobz, char range, int n, double *d, double
 *e, double vl, double vu, int il, int iu, double
 abstol, int *m, double *w, double *z, int ldz, int
 *isuppz, int *info);

 void dstegr_64(char jobz, char range, long n, double *d,
 double *e, double vl, double vu, long il, long iu,
 double abstol, long *m, double *w, double *z, long
 ldz, long *isuppz, long *info);

PURPOSE

 dstegr b) Compute the eigenvalues, lambda_j, of L_i D_i
 L_i^T to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB/CSD-97-971, UC Berkeley, May 1997.

 Note 1 : Currently SSTEGR is only set up to find ALL the n
 eigenvalues and eigenvectors of T in O(n^2) time
 Note 2 : Currently the routine SSTEIN is called when an
 appropriate sigma_i cannot be chosen in step (c) above.
 SSTEIN invokes modified Gram-Schmidt when eigenvalues are
 close.
 Note 3 : SSTEGR works only on machines which follow ieee-754
 floating-point standard in their handling of infinities and
 NaNs. Normal execution of SSTEGR may create NaNs and infin-
 ities and hence may abort due to a floating point exception
 in environments which do not conform to the ieee standard.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix T. On exit, D is overwritten.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix T in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E is overwritten.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the
 eigenvalues/eigenvectors. IF JOBZ = 'V', the
 eigenvalues and eigenvectors output have residual
 norms bounded by ABSTOL, and the dot products
 between different eigenvectors are bounded by
 ABSTOL. If ABSTOL is less than N*EPS*|T|, then
 N*EPS*|T| will be used in its place, where EPS is
 the machine precision and |T| is the 1-norm of the
 tridiagonal matrix. The eigenvalues are computed
 to an accuracy of EPS*|T| irrespective of ABSTOL.
 If high relative accuracy is important, set ABSTOL
 to DLAMCH('Safe minimum'). See Barlow and Dem-
 mel "Computing Accurate Eigensystems of Scaled
 Diagonally Dominant Matrices", LAPACK Working Note
 #7 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix T corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must

 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,18*N)
 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N)

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = 1, internal error in SLARRE, if
 INFO = 2, internal error in SLARRV.

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstein - compute the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration

SYNOPSIS

 SUBROUTINE DSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 INTEGER N, M, LDZ, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
 IWORK, IFAIL, INFO)

 INTEGER*8 N, M, LDZ, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 INTEGER :: N, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 INTEGER(8) :: N, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dstein(int n, double *d, double *e, int m, double *w,
 int *iblock, int *isplit, double *z, int ldz, int
 *ifail, int *info);

 void dstein_64(long n, double *d, double *e, long m, double
 *w, long *iblock, long *isplit, double *z, long
 ldz, long *ifail, long *info);

PURPOSE

 dstein computes the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration.

 The maximum number of iterations allowed for each eigenvec-
 tor is specified by an internal parameter MAXITS (currently
 set to 5).

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) subdiagonal elements of the tridiagonal
 matrix T, in elements 1 to N-1. E(N) need not be
 set.

 M (input) The number of eigenvectors to be found. 0 <= M <=
 N.

 W (input) The first M elements of W contain the eigenvalues
 for which eigenvectors are to be computed. The
 eigenvalues should be grouped by split-off block
 and ordered from smallest to largest within the
 block. (The output array W from SSTEBZ with
 ORDER = 'B' is expected here.)

 IBLOCK (input)
 The submatrix indices associated with the
 corresponding eigenvalues in W; IBLOCK(i)=1 if
 eigenvalue W(i) belongs to the first submatrix
 from the top, =2 if W(i) belongs to the second
 submatrix, etc. (The output array IBLOCK from
 SSTEBZ is expected here.)

 ISPLIT (input)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2),
 etc. (The output array ISPLIT from SSTEBZ is
 expected here.)
 Z (output)
 The computed eigenvectors. The eigenvector asso-
 ciated with the eigenvalue W(i) is stored in the
 i-th column of Z. Any vector which fails to con-
 verge is set to its current iterate after MAXITS
 iterations.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=

 max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK (workspace)
 dimension(N)

 IFAIL (output)
 On normal exit, all elements of IFAIL are zero.
 If one or more eigenvectors fail to converge after
 MAXITS iterations, then their indices are stored
 in array IFAIL.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge in MAXITS iterations. Their indices are
 stored in array IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method

SYNOPSIS

 SUBROUTINE DSTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEQR(COMPZ, N, D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEQR_64(COMPZ, N, D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dsteqr(char compz, int n, double *d, double *e, double
 *z, int ldz, int *info);

 void dsteqr_64(char compz, long n, double *d, double *e,
 double *z, long ldz, long *info);

PURPOSE

 dsteqr computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method. The eigenvectors of a full or band symmetric
 matrix can also be found if SSYTRD or SSPTRD or SSBTRD has
 been used to reduce this matrix to tridiagonal form.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvalues and eigenvectors of
 the original symmetric matrix. On entry, Z must
 contain the orthogonal matrix used to reduce the
 original matrix to tridiagonal form. = 'I': Com-
 pute eigenvalues and eigenvectors of the tridiago-
 nal matrix. Z is initialized to the identity
 matrix.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 orthogonal matrix used in the reduction to tridi-
 agonal form. On exit, if INFO = 0, then if COMPZ
 = 'V', Z contains the orthonormal eigenvectors of
 the original symmetric matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if eigenvectors are desired, then LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(max(1,2*N-2)) If COMPZ = 'N', then WORK
 is not referenced.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm has failed to find all the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero; on exit, D and E contain the elements of a
 symmetric tridiagonal matrix which is orthogonally
 similar to the original matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsterf - compute all eigenvalues of a symmetric tridiagonal
 matrix using the Pal-Walker-Kahan variant of the QL or QR
 algorithm

SYNOPSIS

 SUBROUTINE DSTERF(N, D, E, INFO)

 INTEGER N, INFO
 DOUBLE PRECISION D(*), E(*)

 SUBROUTINE DSTERF_64(N, D, E, INFO)

 INTEGER*8 N, INFO
 DOUBLE PRECISION D(*), E(*)

 F95 INTERFACE
 SUBROUTINE STERF([N], D, E, [INFO])

 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: D, E

 SUBROUTINE STERF_64([N], D, E, [INFO])

 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void dsterf(int n, double *d, double *e, int *info);

 void dsterf_64(long n, double *d, double *e, long *info);

PURPOSE

 dsterf computes all eigenvalues of a symmetric tridiagonal
 matrix using the Pal-Walker-Kahan variant of the QL or QR
 algorithm.

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On exit, if INFO = 0, the eigenvalues
 in ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm failed to find all of the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstev - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix A

SYNOPSIS

 SUBROUTINE DSTEV(JOBZ, N, DIAG, OFFD, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEV_64(JOBZ, N, DIAG, OFFD, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION DIAG(*), OFFD(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEV(JOBZ, N, DIAG, OFFD, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEV_64(JOBZ, N, DIAG, OFFD, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: DIAG, OFFD, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dstev(char jobz, int n, double *diag, double *offd,
 double *z, int ldz, int *info);

 void dstev_64(char jobz, long n, double *diag, double *offd,
 double *z, long ldz, long *info);

PURPOSE

 dstev computes all eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 N (input) The order of the matrix. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, if INFO = 0, the eigen-
 values in ascending order.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A, stored in elements 1 to N-1
 of OFFD; OFFD(N) need not be set, but is used by
 the routine. On exit, the contents of OFFD are
 destroyed.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with DIAG(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 If JOBZ = 'N', WORK is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of OFFD did not
 converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix

SYNOPSIS

 SUBROUTINE DSTEVD(JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
 INFO)

 CHARACTER * 1 JOBZ
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEVD_64(JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVD(JOBZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEVD_64(JOBZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void dstevd(char jobz, int n, double *d, double *e, double
 *z, int ldz, int *info);
 void dstevd_64(char jobz, long n, double *d, double *e, dou-
 ble *z, long ldz, long *info);

PURPOSE

 dstevd computes all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix. If eigenvectors
 are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, if INFO = 0, the eigen-
 values in ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A, stored in elements 1 to N-1
 of E; E(N) need not be set, but is used by the
 routine. On exit, the contents of E are des-
 troyed.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with D(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).
 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOBZ = 'N'
 or N <= 1 then LWORK must be at least 1. If JOBZ
 = 'V' and N > 1 then LWORK must be at least (1 +
 4*N + N**2).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of

 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1 then LIWORK must be at least 1. If JOBZ
 = 'V' and N > 1 then LIWORK must be at least
 3+5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of E did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dstevr - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix T

SYNOPSIS

 SUBROUTINE DSTEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEVR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL

 REAL(8), DIMENSION(:) :: D, E, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void dstevr(char jobz, char range, int n, double *d, double
 *e, double vl, double vu, int il, int iu, double
 abstol, int *m, double *w, double *z, int ldz, int
 *isuppz, int *info);

 void dstevr_64(char jobz, char range, long n, double *d,
 double *e, double vl, double vu, long il, long iu,
 double abstol, long *m, double *w, double *z, long
 ldz, long *isuppz, long *info);

PURPOSE

 dstevr computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, SSTEVR calls SSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 SSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.

 Note 1 : SSTEVR calls SSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. SSTEVR calls SSTEBZ and SSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of SSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in
 environments which do not handle NaNs and infinities in the

 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, D may be multiplied by a
 constant factor chosen to avoid over/underflow in
 computing the eigenvalues.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E may be multi-
 plied by a constant factor chosen to avoid
 over/underflow in computing the eigenvalues.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal

 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but
 future releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.
 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). Note: the user
 must ensure that at least max(1,M) columns are
 supplied in the array Z; if RANGE = 'V', the exact
 value of M is not known in advance and an upper
 bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 20*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 (and minimal) LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 10*N.

 If LIWORK = -1, then a workspace query is assumed;

 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix A

SYNOPSIS

 SUBROUTINE DSTEVX(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION DIAG(*), OFFD(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSTEVX_64(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION DIAG(*), OFFD(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVX(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: DIAG, OFFD, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 SUBROUTINE STEVX_64(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: DIAG, OFFD, W, WORK
 REAL(8), DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void dstevx(char jobz, char range, int n, double *diag, dou-
 ble *offd, double vl, double vu, int il, int iu,
 double abtol, int *nfound, double *w, double *z,
 int ldz, int *ifail, int *info);

 void dstevx_64(char jobz, char range, long n, double *diag,
 double *offd, double vl, double vu, long il, long
 iu, double abtol, long *nfound, double *w, double
 *z, long ldz, long *ifail, long *info);

PURPOSE

 dstevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix A. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, DIAG may be multiplied by
 a constant factor chosen to avoid over/underflow
 in computing the eigenvalues.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A in elements 1 to N-1 of OFFD;
 OFFD(N) need not be set. On exit, OFFD may be
 multiplied by a constant factor chosen to avoid
 over/underflow in computing the eigenvalues.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1

 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge (INFO > 0), then that column
 of Z contains the latest approximation to the
 eigenvector, and the index of the eigenvector is
 returned in IFAIL. If JOBZ = 'N', then Z is not
 referenced. Note: the user must ensure that at
 least max(1,NFOUND) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of NFOUND
 is not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND

 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dstsv - compute the solution to a system of linear equations
 A * X = B where A is a symmetric tridiagonal matrix

SYNOPSIS

 SUBROUTINE DSTSV(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)

 SUBROUTINE DSTSV_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE STSV(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE STSV_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dstsv(int n, int nrhs, double *l, double *d, double
 *subl, double *b, int ldb, int *ipiv, int *info);

 void dstsv_64(long n, long nrhs, double *l, double *d, dou-
 ble *subl, double *b, long ldb, long *ipiv, long
 *info);

PURPOSE

 dstsv computes the solution to a system of linear equations
 A * X = B where A is a symmetric tridiagonal matrix.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides in B.

 L (input/output)
 REAL array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 REAL array, dimension (N)
 On exit, part of the factorization of A.

 B (input/output)
 The columns of B contain the right hand sides.

 LDB (input)
 The leading dimension of B as specified in a type
 or DIMENSION statement.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsttrf - compute the factorization of a symmetric tridiago-
 nal matrix A

SYNOPSIS

 SUBROUTINE DSTTRF(N, L, D, SUBL, IPIV, INFO)

 INTEGER N, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*)

 SUBROUTINE DSTTRF_64(N, L, D, SUBL, IPIV, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*)

 F95 INTERFACE
 SUBROUTINE STTRF([N], L, D, SUBL, IPIV, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL

 SUBROUTINE STTRF_64([N], L, D, SUBL, IPIV, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL

 C INTERFACE
 #include <sunperf.h>

 void dsttrf(int n, double *l, double *d, double *subl, int
 *ipiv, int *info);

 void dsttrf_64(long n, double *l, double *d, double *subl,
 long *ipiv, long *info);

PURPOSE

 dsttrf computes the factorization of a complex Hermitian
 tridiagonal matrix A.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 L (input/output)
 REAL array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the L*D*L**H factoriza-
 tion of A.

 SUBL (output)
 REAL array, dimension (N)
 On exit, part of the factorization of A.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsttrs - computes the solution to a real system of linear
 equations A * X = B

SYNOPSIS

 SUBROUTINE DSTTRS(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)

 SUBROUTINE DSTTRS_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE STTRS(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE STTRS_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: L, D, SUBL
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dsttrs(int n, int nrhs, double *l, double *d, double
 *subl, double *b, int ldb, int *ipiv, int *info);

 void dsttrs_64(long n, long nrhs, double *l, double *d, dou-
 ble *subl, double *b, long ldb, long *ipiv, long
 *info);

PURPOSE

 dsttrs computes the solution to a real system of linear
 equations A * X = B, where A is an N-by-N symmetric tridiag-
 onal matrix and X and B are N-by-NRHS matrices.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 INTEGER
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 L (input) REAL array, dimension (N-1)
 On entry, the subdiagonal elements of LL and DD.

 D (input) REAL array, dimension (N)
 On entry, the diagonal elements of DD.

 SUBL (input)
 REAL array, dimension (N-2)
 On entry, the second subdiagonal elements of LL.

 B (input/output)
 REAL array, dimension
 (LDB, NRHS) On entry, the N-by-NRHS right hand
 side matrix B. On exit, if INFO = 0, the N-by-
 NRHS solution matrix X.

 LDB (input)
 INTEGER
 The leading dimension of the array B. LDB >=
 max(1, N)

 IPIV (output)
 INTEGER array, dimension (N)
 Details of the interchanges and block pivot. If
 IPIV(K) > 0, 1 by 1 pivot, and if IPIV(K) = K + 1
 an interchange done; If IPIV(K) < 0, 2 by 2
 pivot, no interchange required.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dswap - Exchange vectors x and y.

SYNOPSIS

 SUBROUTINE DSWAP(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 SUBROUTINE DSWAP_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SWAP([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 SUBROUTINE SWAP_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL(8), DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void dswap(int n, double *x, int incx, double *y, int incy);

 void dswap_64(long n, double *x, long incx, double *y, long
 incy);

PURPOSE

 dswap Exchange x and y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, the y vector.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, the x vector.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsycon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric matrix A using the factori-
 zation A = U*D*U**T or A = L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE DSYCON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 IWORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DSYCON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 IWORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYCON(UPLO, N, A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYCON_64(UPLO, N, A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dsycon(char uplo, int n, double *a, int lda, int
 *ipivot, double anorm, double *rcond, int *info);

 void dsycon_64(char uplo, long n, double *a, long lda, long
 *ipivot, double anorm, double *rcond, long *info);

PURPOSE

 dsycon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric matrix A using the factori-
 zation A = U*D*U**T or A = L*D*L**T computed by SSYTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyev - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE DSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), W(*), WORK(*)

 SUBROUTINE DSYEV_64(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDA, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEV(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYEV_64(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsyev(char jobz, char uplo, int n, double *a, int lda,
 double *w, int *info);

 void dsyev_64(char jobz, char uplo, long n, double *a, long
 lda, double *w, long *info);

PURPOSE

 dsyev computes all eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,3*N-1). For optimal efficiency, LDWORK >=
 (NB+2)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsyevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE DSYEVD(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDA, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION A(LDA,*), W(*), WORK(*)

 SUBROUTINE DSYEVD_64(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDA, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION A(LDA,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVD(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDA, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYEVD_64(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDA, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE

 #include <sunperf.h>

 void dsyevd(char jobz, char uplo, int n, double *a, int lda,
 double *w, int *info);
 void dsyevd_64(char jobz, char uplo, long n, double *a, long
 lda, double *w, long *info);

PURPOSE

 dsyevd computes all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

 Because of large use of BLAS of level 3, SSYEVD needs N**2
 more workspace than SSYEVX.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least 2*N+1. If JOBZ = 'V'
 and N > 1, LWORK must be at least 1 + 6*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK must be at least 1. If JOBZ = 'N' and N >
 1, LIWORK must be at least 1. If JOBZ = 'V' and
 N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA
 Modified by Francoise Tisseur, University of Tennessee.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsyevr - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix T

SYNOPSIS

 SUBROUTINE DSYEVR(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSYEVR_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVR(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 SUBROUTINE SYEVR_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO

 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z
 C INTERFACE
 #include <sunperf.h>

 void dsyevr(char jobz, char range, char uplo, int n, double
 *a, int lda, double vl, double vu, int il, int iu,
 double abstol, int *m, double *w, double *z, int
 ldz, int *isuppz, int *info);

 void dsyevr_64(char jobz, char range, char uplo, long n,
 double *a, long lda, double vl, double vu, long
 il, long iu, double abstol, long *m, double *w,
 double *z, long ldz, long *isuppz, long *info);

PURPOSE

 dsyevr computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, SSYEVR calls SSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 SSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.
 Note 1 : SSYEVR calls SSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. SSYEVR calls SSTEBZ and SSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of SSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in

 environments which do not handle NaNs and infinities in the
 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is

 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but furu-
 tre releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,26*N). For optimal efficiency, LWORK >=
 (NB+6)*N, where NB is the max of the blocksize for
 SSYTRD and SORMTR returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first

 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE DSYEVX(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSYEVX_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVX(JOBZ, RANGE, UPLO, N, A, [LDA], VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [LDWORK], [IWORK2], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z

 SUBROUTINE SYEVX_64(JOBZ, RANGE, UPLO, N, A, [LDA], VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [LDWORK], [IWORK2], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL(8) :: VL, VU, ABTOL

 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, Z
 C INTERFACE
 #include <sunperf.h>

 void dsyevx(char jobz, char range, char uplo, int n, double
 *a, int lda, double vl, double vu, int il, int iu,
 double abtol, int *nfound, double *w, double *z,
 int ldz, int *ifail, int *info);

 void dsyevx_64(char jobz, char range, char uplo, long n,
 double *a, long lda, double vl, double vu, long
 il, long iu, double abtol, long *nfound, double
 *w, double *z, long ldz, long *ifail, long *info);

PURPOSE

 dsyevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.
 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 On normal exit, the first NFOUND elements contain
 the selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,8*N). For optimal efficiency, LDWORK >=
 (NB+3)*N, where NB is the max of the blocksize for
 SSYTRD and SORMTR returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 IWORK2 (workspace)
 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsygs2 - reduce a real symmetric-definite generalized eigen-
 problem to standard form

SYNOPSIS

 SUBROUTINE DSYGS2(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DSYGS2_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYGS2(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYGS2_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsygs2(int itype, char uplo, int n, double *a, int lda,
 double *b, int ldb, int *info);

 void dsygs2_64(long itype, char uplo, long n, double *a,
 long lda, double *b, long ldb, long *info);

PURPOSE

 dsygs2 reduces a real symmetric-definite generalized eigen-
 problem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.

 B must have been previously factorized as U'*U or L*L' by
 SPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
 = 2 or 3: compute U*A*U' or L'*A*L.

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored, and how
 B has been factorized. = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by SPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsygst - reduce a real symmetric-definite generalized eigen-
 problem to standard form

SYNOPSIS

 SUBROUTINE DSYGST(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DSYGST_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYGST(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYGST_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsygst(int itype, char uplo, int n, double *a, int lda,
 double *b, int ldb, int *info);

 void dsygst_64(long itype, char uplo, long n, double *a,
 long lda, double *b, long ldb, long *info);

PURPOSE

 dsygst reduces a real symmetric-definite generalized eigen-
 problem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**T or
 L**T*A*L.

 B must have been previously factorized as U**T*U or L*L**T
 by SPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T);
 = 2 or 3: compute U*A*U**T or L**T*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**T*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**T.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by SPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsygv - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSYGV(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), WORK(*)

 SUBROUTINE DSYGV_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGV(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYGV_64(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsygv(int itype, char jobz, char uplo, int n, double
 *a, int lda, double *b, int ldb, double *w, int

 *info);

 void dsygv_64(long itype, char jobz, char uplo, long n, dou-
 ble *a, long lda, double *b, long ldb, double *w,
 long *info);

PURPOSE

 dsygv computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also
 positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the symmetric positive definite matrix
 B. If UPLO = 'U', the leading N-by-N upper tri-
 angular part of B contains the upper triangular
 part of the matrix B. If UPLO = 'L', the leading
 N-by-N lower triangular part of B contains the
 lower triangular part of the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,3*N-1). For optimal efficiency, LDWORK >=
 (NB+2)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPOTRF or SSYEV returned an error code:
 <= N: if INFO = i, SSYEV failed to converge; i
 off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero; > N:
 if INFO = N + i, for 1 <= i <= N, then the leading
 minor of order i of B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsygvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSYGVD(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), WORK(*)

 SUBROUTINE DSYGVD_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGVD(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYGVD_64(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W,
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsygvd(int itype, char jobz, char uplo, int n, double
 *a, int lda, double *b, int ldb, double *w, int
 *info);

 void dsygvd_64(long itype, char jobz, char uplo, long n,
 double *a, long lda, double *b, long ldb, double
 *w, long *info);

PURPOSE

 dsygvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also positive definite. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if

 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the symmetric matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 2*N+1. If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N
 + 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >=
 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPOTRF or SSYEVD returned an error code:
 <= N: if INFO = i, SSYEVD failed to converge; i

 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsygvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE DSYGVX(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE DSYGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION A(LDA,*), B(LDB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGVX(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [IWORK],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Z

 SUBROUTINE SYGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [IWORK],

 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Z

 C INTERFACE
 #include <sunperf.h>

 void dsygvx(int itype, char jobz, char range, char uplo, int
 n, double *a, int lda, double *b, int ldb, double
 vl, double vu, int il, int iu, double abstol, int
 *m, double *w, double *z, int ldz, int *ifail, int
 *info);

 void dsygvx_64(long itype, char jobz, char range, char uplo,
 long n, double *a, long lda, double *b, long ldb,
 double vl, double vu, long il, long iu, double
 abstol, long *m, double *w, double *z, long ldz,
 long *ifail, long *info);

PURPOSE

 dsygvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite eigenprob-
 lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also positive definite. Eigenvalues and eigenvec-
 tors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A and B are stored;
 = 'L': Lower triangle of A and B are stored.

 N (input) The order of the matrix pencil (A,B). N >= 0.

 A (input/output)

 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, the lower triangle (if UPLO='L') or the
 upper triangle (if UPLO='U') of A, including the
 diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the symmetric matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.
 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when

 ABSTOL is set to twice the underflow threshold
 2*DLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.
 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,8*N). For optimal efficiency, LWORK >=
 (NB+3)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: SPOTRF or SSYEVX returned an error code:
 <= N: if INFO = i, SSYEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsymm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 INTEGER M, N, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE DSYMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 INTEGER*8 M, N, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 INTEGER :: M, N, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 SUBROUTINE SYMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 INTEGER(8) :: M, N, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void dsymm(char side, char uplo, int m, int n, double alpha,
 double *a, int lda, double *b, int ldb, double

 beta, double *c, int ldc);

 void dsymm_64(char side, char uplo, long m, long n, double
 alpha, double *a, long lda, double *b, long ldb,
 double beta, double *c, long ldc);

PURPOSE

 dsymm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is a symmetric matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the symmetric
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the symmetric
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the symmetric matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.
 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, ka),
 where ka is m when SIDE = 'L' or 'l' and is n
 otherwise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading m by m upper triangular part of the
 array A must contain the upper triangular part

 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the
 array B must contain the matrix B. Unchanged on
 exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the
 array C must contain the matrix C, except when
 beta is zero, in which case C need not be set on
 entry. On exit, the array C is overwritten by
 the m by n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsymv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE DSYMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 SUBROUTINE DSYMV_64(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INCX, INCY
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SYMV(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYMV_64(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INCX, INCY
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsymv(char uplo, int n, double alpha, double *a, int
 lda, double *x, int incx, double beta, double *y,
 int incy);

 void dsymv_64(char uplo, long n, double alpha, double *a,
 long lda, double *x, long incx, double beta, dou-
 ble *y, long incy);

PURPOSE

 dsymv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. Before entry with UPLO = 'L'
 or 'l', the leading n by n lower triangular part
 of the array A must contain the lower triangular
 part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyr - perform the symmetric rank 1 operation A :=
 alpha*x*x' + A

SYNOPSIS

 SUBROUTINE DSYR(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), A(LDA,*)

 SUBROUTINE DSYR_64(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYR(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYR_64(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsyr(char uplo, int n, double alpha, double *x, int
 incx, double *a, int lda);

 void dsyr_64(char uplo, long n, double alpha, double *x,

 long incx, double *a, long lda);

PURPOSE

 dsyr performs the symmetric rank 1 operation A := alpha*x*x'
 + A, where alpha is a real scalar, x is an n element vector
 and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the symmetric matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyr2 - perform the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A

SYNOPSIS

 SUBROUTINE DSYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(LDA,*)

 SUBROUTINE DSYR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY, LDA
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION X(*), Y(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY, LDA
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:) :: X, Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsyr2(char uplo, int n, double alpha, double *x, int
 incx, double *y, int incy, double *a, int lda);

 void dsyr2_64(char uplo, long n, double alpha, double *x,

 long incx, double *y, long incy, double *a, long
 lda);

PURPOSE

 dsyr2 performs the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and
 y are n element vectors and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.
 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the symmetric matrix

 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyr2k - perform one of the symmetric rank 2k operations C
 := alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C

SYNOPSIS

 SUBROUTINE DSYR2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER N, K, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE DSYR2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER*8 N, K, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYR2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER :: N, K, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 SUBROUTINE SYR2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER(8) :: N, K, LDA, LDB, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void dsyr2k(char uplo, char transa, int n, int k, double

 alpha, double *a, int lda, double *b, int ldb,
 double beta, double *c, int ldc);
 void dsyr2k_64(char uplo, char transa, long n, long k, dou-
 ble alpha, double *a, long lda, double *b, long
 ldb, double beta, double *c, long ldc);

PURPOSE

 dsyr2k performs one of the symmetric rank 2k operations C :=
 alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C where alpha and beta are scalars, C is
 an n by n symmetric matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*B' + alpha*B*A'
 + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*B + alpha*B'*A
 + beta*C.

 TRANSA = 'C' or 'c' C := alpha*A'*B + alpha*B'*A
 + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.
 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'T' or 't' or 'C' or
 'c', K specifies the number of rows of the
 matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.

 Unchanged on exit.

 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 DOUBLE PRECISION array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 DOUBLE PRECISION array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE DSYRFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DSYRFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYRFS(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE SYRFS_64(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void dsyrfs(char uplo, int n, int nrhs, double *a, int lda,
 double *af, int ldaf, int *ipivot, double *b, int
 ldb, double *x, int ldx, double *ferr, double
 *berr, int *info);

 void dsyrfs_64(char uplo, long n, long nrhs, double *a, long
 lda, double *af, long ldaf, long *ipivot, double
 *b, long ldb, double *x, long ldx, double *ferr,
 double *berr, long *info);

PURPOSE

 dsyrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by SSYTRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SSYTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsyrk - perform one of the symmetric rank k operations C
 := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C

SYNOPSIS

 SUBROUTINE DSYRK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER N, K, LDA, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), C(LDC,*)

 SUBROUTINE DSYRK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER*8 N, K, LDA, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYRK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER :: N, K, LDA, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, C

 SUBROUTINE SYRK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER(8) :: N, K, LDA, LDC
 REAL(8) :: ALPHA, BETA
 REAL(8), DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void dsyrk(char uplo, char transa, int n, int k, double
 alpha, double *a, int lda, double beta, double *c,
 int ldc);

 void dsyrk_64(char uplo, char transa, long n, long k, double
 alpha, double *a, long lda, double beta, double
 *c, long ldc);

PURPOSE

 dsyrk performs one of the symmetric rank k operations C :=
 alpha*A*A' + beta*C or C := alpha*A'*A + beta*C where alpha
 and beta are scalars, C is an n by n symmetric matrix and
 A is an n by k matrix in the first case and a k by n
 matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*A + beta*C.

 TRANSA = 'C' or 'c' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'T' or 't' or 'C'
 or 'c', K specifies the number of rows of the
 matrix A. K must be at least zero. Unchanged on
 exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or

 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 DOUBLE PRECISION array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsysv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE DSYSV(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE DSYSV_64(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYSV(UPLO, N, NRHS, A, [LDA], IPIV, B, [LDB], [WORK],
 [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYSV_64(UPLO, N, NRHS, A, [LDA], IPIV, B, [LDB], [WORK],
 [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsysv(char uplo, int n, int nrhs, double *a, int lda,
 int *ipiv, double *b, int ldb, int *info);
 void dsysv_64(char uplo, long n, long nrhs, double *a, long
 lda, long *ipiv, double *b, long ldb, long *info);

PURPOSE

 dsysv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by SSYTRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by SSYTRF. If IPIV(k) >
 0, then rows and columns k and IPIV(k) were inter-
 changed, and D(k,k) is a 1-by-1 diagonal block.
 If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then
 rows and columns k-1 and -IPIV(k) were inter-
 changed and D(k-1:k,k-1:k) is a 2-by-2 diagonal

 block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
 then rows and columns k+1 and -IPIV(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of WORK. LWORK >= 1, and for best per-
 formance LWORK >= N*NB, where NB is the optimal
 blocksize for SSYTRF.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsysvx - use the diagonal pivoting factorization to compute
 the solution to a real system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE DSYSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE DSYSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYSVX(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE SYSVX_64(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void dsysvx(char fact, char uplo, int n, int nrhs, double
 *a, int lda, double *af, int ldaf, int *ipivot,
 double *b, int ldb, double *x, int ldx, double
 *rcond, double *ferr, double *berr, int *info);

 void dsysvx_64(char fact, char uplo, long n, long nrhs, dou-
 ble *a, long lda, double *af, long ldaf, long
 *ipivot, double *b, long ldb, double *x, long ldx,
 double *rcond, double *ferr, double *berr, long
 *info);

PURPOSE

 dsysvx uses the diagonal pivoting factorization to compute
 the solution to a real system of linear equations A * X = B,
 where A is an N-by-N symmetric matrix and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is symmetric and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.
 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. AF and
 IPIVOT will not be modified. = 'N': The matrix A
 will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by SSYTRF.
 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 SSYTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 SSYTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 3*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for SSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsytd2 - reduce a real symmetric matrix A to symmetric tri-
 diagonal form T by an orthogonal similarity transformation

SYNOPSIS

 SUBROUTINE DSYTD2(UPLO, N, A, LDA, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAU(*)

 SUBROUTINE DSYTD2_64(UPLO, N, A, LDA, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAU(*)

 F95 INTERFACE
 SUBROUTINE SYTD2(UPLO, N, A, [LDA], D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:) :: D, E, TAU
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYTD2_64(UPLO, N, A, [LDA], D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:) :: D, E, TAU
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsytd2(char uplo, int n, double *a, int lda, double *d,
 double *e, double *tau, int *info);

 void dsytd2_64(char uplo, long n, double *a, long lda, dou-
 ble *d, double *e, double *tau, long *info);

PURPOSE

 dsytd2 reduces a real symmetric matrix A to symmetric tridi-
 agonal form T by an orthogonal similarity transformation: Q'
 * A * Q = T.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
 A(i+2:n,i), and tau in TAU(i).

 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsytf2 - compute the factorization of a real symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE DSYTF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DSYTF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYTF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYTF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsytf2(char uplo, int n, double *a, int lda, int *ipiv,
 int *info);

 void dsytf2_64(char uplo, long n, double *a, long lda, long

 *ipiv, long *info);

PURPOSE

 dsytf2 computes the factorization of a real symmetric matrix
 A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the transpose of U, and D
 is symmetric and block diagonal with 1-by-1 and 2-by-2 diag-
 onal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsytrd - reduce a real symmetric matrix A to real symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion

SYNOPSIS

 SUBROUTINE DSYTRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAU(*), WORK(*)

 SUBROUTINE DSYTRD_64(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), D(*), E(*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRD(UPLO, N, A, [LDA], D, E, TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E, TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYTRD_64(UPLO, N, A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E, TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsytrd(char uplo, int n, double *a, int lda, double *d,
 double *e, double *tau, int *info);

 void dsytrd_64(char uplo, long n, double *a, long lda, dou-

 ble *d, double *e, double *tau, long *info);

PURPOSE

 dsytrd reduces a real symmetric matrix A to real symmetric
 tridiagonal form T by an orthogonal similarity
 transformation: Q**T * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. For

 optimum performance LWORK >= N*NB, where NB is the
 optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
 A(i+2:n,i), and tau in TAU(i).
 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dsytrf - compute the factorization of a real symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE DSYTRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DSYTRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRF(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYTRF_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsytrf(char uplo, int n, double *a, int lda, int

 *ipivot, int *info);

 void dsytrf_64(char uplo, long n, double *a, long lda, long
 *ipivot, long *info);

PURPOSE

 dsytrf computes the factorization of a real symmetric matrix
 A using the Bunch-Kaufman diagonal pivoting method. The
 form of the factorization is

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsytri - compute the inverse of a real symmetric indefinite
 matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE DSYTRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DSYTRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRI(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE SYTRI_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dsytri(char uplo, int n, double *a, int lda, int
 *ipivot, int *info);

 void dsytri_64(char uplo, long n, double *a, long lda, long
 *ipivot, long *info);

PURPOSE

 dsytri computes the inverse of a real symmetric indefinite
 matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by SSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by SSYTRF.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dsytrs - solve a system of linear equations A*X = B with a
 real symmetric matrix A using the factorization A = U*D*U**T
 or A = L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE DSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYTRS(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE SYTRS_64(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dsytrs(char uplo, int n, int nrhs, double *a, int lda,
 int *ipivot, double *b, int ldb, int *info);

 void dsytrs_64(char uplo, long n, long nrhs, double *a, long
 lda, long *ipivot, double *b, long ldb, long

 *info);

PURPOSE

 dsytrs solves a system of linear equations A*X = B with a
 real symmetric matrix A using the factorization A = U*D*U**T
 or A = L*D*L**T computed by SSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtbcon - estimate the reciprocal of the condition number of
 a triangular band matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE DTBCON(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, NDIAG, LDA, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DTBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, NDIAG, LDA, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TBCON(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, NDIAG, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dtbcon(char norm, char uplo, char diag, int n, int
 ndiag, double *a, int lda, double *rcond, int
 *info);

 void dtbcon_64(char norm, char uplo, char diag, long n, long
 ndiag, double *a, long lda, double *rcond, long
 *info);

PURPOSE

 dtbcon estimates the reciprocal of the condition number of a
 triangular band matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtbmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE DTBMV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 SUBROUTINE DTBMV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TBMV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TBMV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtbmv(char uplo, char transa, char diag, int n, int
 ndiag, double *a, int lda, double *y, int incy);

 void dtbmv_64(char uplo, char transa, char diag, long n,
 long ndiag, double *a, long lda, double *y, long
 incy);

PURPOSE

 dtbmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular band
 matrix, with (ndiag + 1) diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=
 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain

 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtbrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix

SYNOPSIS

 SUBROUTINE DTBRFS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE DTBRFS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TBRFS(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, B, X

 SUBROUTINE TBRFS_64(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, B, X

 C INTERFACE
 #include <sunperf.h>
 void dtbrfs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, double *a, int lda, double *b,
 int ldb, double *x, int ldx, double *ferr, double
 *berr, int *info);

 void dtbrfs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, double *a, long lda, double
 *b, long ldb, double *x, long ldx, double *ferr,
 double *berr, long *info);

PURPOSE

 dtbrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix.

 The solution matrix X must be computed by STBTRS or some
 other means before entering this routine. STBRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.
 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtbsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE DTBSV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 SUBROUTINE DTBSV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TBSV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TBSV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtbsv(char uplo, char transa, char diag, int n, int
 ndiag, double *a, int lda, double *y, int incy);

 void dtbsv_64(char uplo, char transa, char diag, long n,
 long ndiag, double *a, long lda, double *y, long
 incy);

PURPOSE

 dtbsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular band
 matrix, with (ndiag + 1) diagonals.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=

 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 (ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtbtrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE DTBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DTBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dtbtrs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, double *a, int lda, double *b,
 int ldb, int *info);

 void dtbtrs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, double *a, long lda, double

 *b, long ldb, long *info);

PURPOSE

 dtbtrs solves a triangular system of the form

 where A is a triangular band matrix of order N, and B is an
 N-by NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of A. The j-th
 column of A is stored in the j-th column of the
 array A as follows: if UPLO = 'U', A(kd+1+i-j,j)
 = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
 A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If
 DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtgevc - compute some or all of the right and/or left gen-
 eralized eigenvectors of a pair of real upper triangular
 matrices (A,B)

SYNOPSIS

 SUBROUTINE DTGEVC(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)

 SUBROUTINE DTGEVC_64(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE TGEVC(SIDE, HOWMNY, SELECT, N, A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE TGEVC_64(SIDE, HOWMNY, SELECT, N, A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>
 void dtgevc(char side, char howmny, int *select, int n, dou-
 ble *a, int lda, double *b, int ldb, double *vl,
 int ldvl, double *vr, int ldvr, int mm, int *m,
 int *info);

 void dtgevc_64(char side, char howmny, long *select, long n,
 double *a, long lda, double *b, long ldb, double
 *vl, long ldvl, double *vr, long ldvr, long mm,
 long *m, long *info);

PURPOSE

 dtgevc computes some or all of the right and/or left gen-
 eralized eigenvectors of a pair of real upper triangular
 matrices (A,B).

 The right generalized eigenvector x and the left generalized
 eigenvector y of (A,B) corresponding to a generalized eigen-
 value w are defined by:

 (A - wB) * x = 0 and y**H * (A - wB) = 0

 where y**H denotes the conjugate tranpose of y.

 If an eigenvalue w is determined by zero diagonal elements
 of both A and B, a unit vector is returned as the
 corresponding eigenvector.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of (A,B), or the products Z*X and/or Q*Y, where Z and Q are
 input orthogonal matrices. If (A,B) was obtained from the
 generalized real-Schur factorization of an original pair of
 matrices
 (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
 then Z*X and Q*Y are the matrices of right or left eigenvec-
 tors of A.

 A must be block upper triangular, with 1-by-1 and 2-by-2
 diagonal blocks. Corresponding to each 2-by-2 diagonal
 block is a complex conjugate pair of eigenvalues and eigen-
 vectors; only one
 eigenvector of the pair is computed, namely the one
 corresponding to the eigenvalue with positive imaginary
 part.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvectors;
 = 'B': compute all right and/or left eigenvectors,

 and backtransform them using the input matrices
 supplied in VR and/or VL; = 'S': compute selected
 right and/or left eigenvectors, specified by the
 logical array SELECT.

 SELECT (input)
 If HOWMNY='S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY='A' or 'B', SELECT is
 not referenced. To select the real eigenvector
 corresponding to the real eigenvalue w(j),
 SELECT(j) must be set to .TRUE. To select the
 complex eigenvector corresponding to a complex
 conjugate pair w(j) and w(j+1), either SELECT(j)
 or SELECT(j+1) must be set to .TRUE..

 N (input) The order of the matrices A and B. N >= 0.

 A (input) The upper quasi-triangular matrix A.

 LDA (input)
 The leading dimension of array A. LDA >= max(1,
 N).

 B (input) The upper triangular matrix B. If A has a 2-by-2
 diagonal block, then the corresponding 2-by-2
 block of B must be diagonal with positive ele-
 ments.

 LDB (input)
 The leading dimension of array B. LDB >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of left Schur vectors returned
 by SHGEQZ). On exit, if SIDE = 'L' or 'B', VL
 contains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Q*Y; if HOWMNY = 'S', the left eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 A complex eigenvector corresponding to a complex
 eigenvalue is stored in two consecutive columns,
 the first holding the real part, and the second
 the imaginary part.

 LDVL (input)
 The leading dimension of array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 orthogonal matrix Z of right Schur vectors
 returned by SHGEQZ). On exit, if SIDE = 'R' or
 'B', VR contains: if HOWMNY = 'A', the matrix X
 of right eigenvectors of (A,B); if HOWMNY = 'B',
 the matrix Z*X; if HOWMNY = 'S', the right eigen-
 vectors of (A,B) specified by SELECT, stored con-
 secutively in the columns of VR, in the same order

 as their eigenvalues. If SIDE = 'L', VR is not
 referenced.

 A complex eigenvector corresponding to a complex
 eigenvalue is stored in two consecutive columns,
 the first holding the real part and the second the
 imaginary part.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.

 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the 2-by-2 block (INFO:INFO+1) does not have
 a complex eigenvalue.

FURTHER DETAILS

 Allocation of workspace:
 ---------- -- ---------

 WORK(j) = 1-norm of j-th column of A, above the diago-
 nal
 WORK(N+j) = 1-norm of j-th column of B, above the diag-
 onal
 WORK(2*N+1:3*N) = real part of eigenvector
 WORK(3*N+1:4*N) = imaginary part of eigenvector
 WORK(4*N+1:5*N) = real part of back-transformed eigen-
 vector
 WORK(5*N+1:6*N) = imaginary part of back-transformed
 eigenvector

 Rowwise vs. columnwise solution methods:
 ------- -- ---------- -------- -------

 Finding a generalized eigenvector consists basically of
 solving the singular triangular system

 (A - w B) x = 0 (for right) or: (A - w B)**H y = 0
 (for left)

 Consider finding the i-th right eigenvector (assume all
 eigenvalues are real). The equation to be solved is:
 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. .
 .,1

 k=j k=j

 where C = (A - w B) (The components v(i+1:n) are 0.)

 The "rowwise" method is:

 (1) v(i) := 1
 for j = i-1,. . .,1:
 i
 (2) compute s = - sum C(j,k) v(k) and
 k=j+1
 (3) v(j) := s / C(j,j)

 Step 2 is sometimes called the "dot product" step, since it
 is an inner product between the j-th row and the portion of
 the eigenvector that has been computed so far.

 The "columnwise" method consists basically in doing the sums
 for all the rows in parallel. As each v(j) is computed, the
 contribution of v(j) times the j-th column of C is added to
 the partial sums. Since FORTRAN arrays are stored column-
 wise, this has the advantage that at each step, the elements
 of C that are accessed are adjacent to one another, whereas
 with the rowwise method, the elements accessed at a step are
 spaced LDA (and LDB) words apart.

 When finding left eigenvectors, the matrix in question is
 the transpose of the one in storage, so the rowwise method
 then actually accesses columns of A and B at each step, and
 so is the preferred method.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtgexc - reorder the generalized real Schur decomposition of
 a real matrix pair (A,B) using an orthogonal equivalence
 transformation (A, B) = Q * (A, B) * Z',

SYNOPSIS

 SUBROUTINE DTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, WORK, LWORK, INFO)

 INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL WANTQ, WANTZ
 DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*),
 WORK(*)

 SUBROUTINE DTGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, WORK, LWORK, INFO)

 INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL*8 WANTQ, WANTZ
 DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE TGEXC(WANTQ, WANTZ, N, A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [WORK], [LWORK], [INFO])

 INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL :: WANTQ, WANTZ
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE TGEXC_64(WANTQ, WANTZ, N, A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [WORK], [LWORK], [INFO])

 INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL(8) :: WANTQ, WANTZ
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void dtgexc(int wantq, int wantz, int n, double *a, int lda,
 double *b, int ldb, double *q, int ldq, double *z,
 int ldz, int *ifst, int *ilst, int *info);
 void dtgexc_64(long wantq, long wantz, long n, double *a,
 long lda, double *b, long ldb, double *q, long
 ldq, double *z, long ldz, long *ifst, long *ilst,
 long *info);

PURPOSE

 dtgexc reorders the generalized real Schur decomposition of
 a real matrix pair (A,B) using an orthogonal equivalence
 transformation

 so that the diagonal block of (A, B) with row index IFST is
 moved to row ILST.

 (A, B) must be in generalized real Schur canonical form (as
 returned by SGGES), i.e. A is block upper triangular with
 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

 Optionally, the matrices Q and Z of generalized Schur vec-
 tors are updated.

 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

ARGUMENTS

 WANTQ (input)

 WANTZ (input)

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the matrix A in generalized real Schur
 canonical form. On exit, the updated matrix A,
 again in generalized real Schur canonical form.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the matrix B in generalized real Schur
 canonical form (A,B). On exit, the updated matrix
 B, again in generalized real Schur canonical form
 (A,B).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 On entry, if WANTQ = .TRUE., the orthogonal matrix
 Q. On exit, the updated matrix Q. If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., the orthogonal matrix
 Z. On exit, the updated matrix Z. If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If WANTZ = .TRUE., LDZ >= N.

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 (A, B). The block with row index IFST is moved to
 row ILST, by a sequence of swapping between adja-
 cent blocks. On exit, if IFST pointed on entry to
 the second row of a 2-by-2 block, it is changed to
 point to the first row; ILST always points to the
 first row of the block in its final position
 (which may differ from its input value by +1 or
 -1). 1 <= IFST, ILST <= N.

 ILST (input/output)
 See the description of IFST.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 4*N +
 16.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 =0: successful exit.
 <0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1: The transformed matrix pair (A, B) would be
 too far from generalized Schur form; the problem
 is ill- conditioned. (A, B) may have been par-
 tially reordered, and ILST points to the first row
 of the current position of the block being moved.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale

 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtgsen - reorder the generalized real Schur decomposition of
 a real matrix pair (A, B) (in terms of an orthonormal
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix A and the
 upper triangular B

SYNOPSIS

 SUBROUTINE DTGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,
 LWORK, IWORK, LIWORK, INFO)

 INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL WANTQ, WANTZ
 LOGICAL SELECT(*)
 DOUBLE PRECISION PL, PR
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), Q(LDQ,*), Z(LDZ,*), DIF(*), WORK(*)

 SUBROUTINE DTGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,
 LWORK, IWORK, LIWORK, INFO)

 INTEGER*8 IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 WANTQ, WANTZ
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION PL, PR
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),
 BETA(*), Q(LDQ,*), Z(LDZ,*), DIF(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 INTEGER :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO

 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: WANTQ, WANTZ
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8) :: PL, PR
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, DIF, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z
 SUBROUTINE TGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 INTEGER(8) :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: WANTQ, WANTZ
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8) :: PL, PR
 REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, DIF, WORK
 REAL(8), DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void dtgsen(int ijob, int wantq, int wantz, int *select, int
 n, double *a, int lda, double *b, int ldb, double
 *alphar, double *alphai, double *beta, double *q,
 int ldq, double *z, int ldz, int *m, double *pl,
 double *pr, double *dif, int *info);

 void dtgsen_64(long ijob, long wantq, long wantz, long
 *select, long n, double *a, long lda, double *b,
 long ldb, double *alphar, double *alphai, double
 *beta, double *q, long ldq, double *z, long ldz,
 long *m, double *pl, double *pr, double *dif, long
 *info);

PURPOSE

 dtgsen reorders the generalized real Schur decomposition of
 a real matrix pair (A, B) (in terms of an orthonormal
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix A and the
 upper triangular B. The leading columns of Q and Z form
 orthonormal bases of the corresponding left and right eigen-
 spaces (deflating subspaces). (A, B) must be in generalized
 real Schur canonical form (as returned by SGGES), i.e. A is
 block upper triangular with 1-by-1 and 2-by-2 diagonal
 blocks. B is upper triangular.

 DTGSEN also computes the generalized eigenvalues

 w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, DTGSEN computes the estimates of reciprocal
 condition numbers for eigenvalues and eigenspaces. These are
 Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)],
 i.e. the separation(s) between the matrix pairs (A11, B11)
 and (A22,B22) that correspond to the selected cluster and
 the eigenvalues outside the cluster, resp., and norms of
 "projections" onto left and right eigenspaces w.r.t. the

 selected cluster in the (1,1)-block.

ARGUMENTS

 IJOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (PL and PR) or the
 deflating subspaces (Difu and Difl):
 =0: Only reorder w.r.t. SELECT. No extras.
 =1: Reciprocal of norms of "projections" onto left
 and right eigenspaces w.r.t. the selected cluster
 (PL and PR). =2: Upper bounds on Difu and Difl.
 F-norm-based estimate
 (DIF(1:2)).
 =3: Estimate of Difu and Difl. 1-norm-based esti-
 mate
 (DIF(1:2)). About 5 times as expensive as IJOB =
 2. =4: Compute PL, PR and DIF (i.e. 0, 1 and 2
 above): Economic version to get it all. =5: Com-
 pute PL, PR and DIF (i.e. 0, 1 and 3 above)

 WANTQ (input)

 WANTZ (input)

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select a real eigenvalue w(j),
 SELECT(j) must be set to w(j) and w(j+1),
 corresponding to a 2-by-2 diagonal block, either
 SELECT(j) or SELECT(j+1) or both must be set to
 either both included in the cluster or both
 excluded.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper quasi-triangular matrix A,
 with (A, B) in generalized real Schur canonical
 form. On exit, A is overwritten by the reordered
 matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the upper triangular matrix B, with (A,
 B) in generalized real Schur canonical form. On
 exit, B is overwritten by the reordered matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are
 the diagonals of the complex Schur form (S,T) that
 would result if the 2-by-2 diagonal blocks of the
 real generalized Schur form of (A,B) were further

 reduced to triangular form using complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.

 Q (input/output)
 On entry, if WANTQ = .TRUE., Q is an N-by-N
 matrix. On exit, Q has been postmultiplied by the
 left orthogonal transformation matrix which
 reorder (A, B); The leading M columns of Q form
 orthonormal bases for the specified pair of left
 eigenspaces (deflating subspaces). If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., Z is an N-by-N
 matrix. On exit, Z has been postmultiplied by the
 left orthogonal transformation matrix which
 reorder (A, B); The leading M columns of Z form
 orthonormal bases for the specified pair of left
 eigenspaces (deflating subspaces). If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1; If
 WANTZ = .TRUE., LDZ >= N.

 M (output)
 The dimension of the specified pair of left and
 right eigen- spaces (deflating subspaces). 0 <= M
 <= N.

 PL (output)
 If IJOB = 1, 4 or 5, PL, PR are lower bounds on
 the reciprocal of the norm of "projections" onto
 left and right eigenspaces with respect to the
 selected cluster. 0 < PL, PR <= 1. If M = 0 or M
 = N, PL = PR = 1. If IJOB = 0, 2 or 3, PL and PR
 are not referenced.

 PR (output)
 See the description of PL.

 DIF (output)
 If IJOB >= 2, DIF(1:2) store the estimates of Difu
 and Difl.
 If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper
 bounds on
 Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-
 norm-based estimates of Difu and Difl. If M = 0
 or N, DIF(1:2) = F-norm([A, B]). If IJOB = 0 or
 1, DIF is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 4*N+16.
 If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-
 M)). If IJOB = 3 or 5, LWORK >= MAX(4*N+16,
 4*M*(N-M)).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 If IJOB = 0, IWORK is not referenced. Otherwise,
 on exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 1. If
 IJOB = 1, 2 or 4, LIWORK >= N+6. If IJOB = 3 or
 5, LIWORK >= MAX(2*M*(N-M), N+6).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 =0: Successful exit.
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 =1: Reordering of (A, B) failed because the
 transformed matrix pair (A, B) would be too far
 from generalized Schur form; the problem is very
 ill-conditioned. (A, B) may have been partially
 reordered. If requested, 0 is returned in DIF(*),
 PL and PR.

FURTHER DETAILS

 DTGSEN first collects the selected eigenvalues by computing
 orthogonal U and W that move them to the top left corner of
 (A, B). In other words, the selected eigenvalues are the
 eigenvalues of (A11, B11) in:

 U'*(A, B)*W = (A11 A12) (B11 B12) n1
 (0 A22),(0 B22) n2
 n1 n2 n1 n2

 where N = n1+n2 and U' means the transpose of U. The first
 n1 columns of U and W span the specified pair of left and
 right eigenspaces (deflating subspaces) of (A, B).

 If (A, B) has been obtained from the generalized real Schur
 decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then
 the reordered generalized real Schur form of (C, D) is given
 by

 (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',

 and the first n1 columns of Q*U and Z*W span the correspond-
 ing deflating subspaces of (C, D) (Q and Z store Q*U and
 Z*W, resp.).

 Note that if the selected eigenvalue is sufficiently ill-
 conditioned, then its value may differ significantly from
 its value before reordering.

 The reciprocal condition numbers of the left and right
 eigenspaces spanned by the first n1 columns of U and W (or
 Q*U and Z*W) may be returned in DIF(1:2), corresponding to
 Difu and Difl, resp.

 The Difu and Difl are defined as:
 ifu[(A11, B11), (A22, B22)] = sigma-min(Zu)
 and

 where sigma-min(Zu) is the smallest singular value of the
 (2*n1*n2)-by-(2*n1*n2) matrix
 u = [kron(In2, A11) -kron(A22', In1)]
 [kron(In2, B11) -kron(B22', In1)].

 Here, Inx is the identity matrix of size nx and A22' is the
 transpose of A22. kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 When DIF(2) is small, small changes in (A, B) can cause
 large changes in the deflating subspace. An approximate
 (asymptotic) bound on the maximum angular error in the com-
 puted deflating subspaces is PS * norm((A, B)) / DIF(2),

 where EPS is the machine precision.

 The reciprocal norm of the projectors on the left and right
 eigenspaces associated with (A11, B11) may be returned in PL
 and PR. They are computed as follows. First we compute L
 and R so that P*(A, B)*Q is block diagonal, where
 = (I -L) n1 Q = (I R) n1
 (0 I) n2 and (0 I) n2
 n1 n2 n1 n2

 and (L, R) is the solution to the generalized Sylvester
 equation 11*R - L*A22 = -A12

 Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-
 norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on
 the average absolute error of the selected eigenvalues is
 PS * norm((A, B)) / PL.

 There are also global error bounds which valid for perturba-
 tions up to a certain restriction: A lower bound (x) on the
 smallest F-norm(E,F) for which an eigenvalue of (A11, B11)
 may move and coalesce with an eigenvalue of (A22, B22) under
 perturbation (E,F), (i.e. (A + E, B + F), is

 x =
 min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

 An approximate bound on x can be computed from DIF(1:2), PL
 and PR.

 If y = (F-norm(E,F) / x) <= 1, the angles between the per-
 turbed (L', R') and unperturbed (L, R) left and right
 deflating subspaces associated with the selected cluster in
 the (1,1)-blocks can be bounded as

 max-angle(L, L') <= arctan(y * PL / (1 - y * (1 - PL *
 PL)**(1/2))
 max-angle(R, R') <= arctan(y * PR / (1 - y * (1 - PR *
 PR)**(1/2))

 See LAPACK User's Guide section 4.11 or the following refer-
 ences for more information.

 Note that if the default method for computing the
 Frobenius-norm- based estimate DIF is not wanted (see
 SLATDF), then the parameter IDIFJB (see below) should be
 changed from 3 to 4 (routine SLATDF (IJOB = 2 will be
 used)). See STGSYL for more details.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software,
 Report UMINF - 94.04, Department of Computing Science,
 Umea
 University, S-901 87 Umea, Sweden, 1994. Also as LAPACK
 Working
 Note 87. To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtgsja - compute the generalized singular value decomposi-
 tion (GSVD) of two real upper triangular (or trapezoidal)
 matrices A and B

SYNOPSIS

 SUBROUTINE DTGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)

 SUBROUTINE DTGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, [LDA], B, [LDB],
 TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, [LDA], B,
 [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCY-
 CLE, INFO
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK
 REAL(8), DIMENSION(:,:) :: A, B, U, V, Q
 C INTERFACE
 #include <sunperf.h>

 void dtgsja(char jobu, char jobv, char jobq, int m, int p,
 int n, int k, int l, double *a, int lda, double
 *b, int ldb, double tola, double tolb, double
 *alpha, double *beta, double *u, int ldu, double
 *v, int ldv, double *q, int ldq, int *ncycle, int
 *info);

 void dtgsja_64(char jobu, char jobv, char jobq, long m, long
 p, long n, long k, long l, double *a, long lda,
 double *b, long ldb, double tola, double tolb,
 double *alpha, double *beta, double *u, long ldu,
 double *v, long ldv, double *q, long ldq, long
 *ncycle, long *info);

PURPOSE

 dtgsja computes the generalized singular value decomposition
 (GSVD) of two real upper triangular (or trapezoidal)
 matrices A and B.

 On entry, it is assumed that matrices A and B have the fol-
 lowing forms, which may be obtained by the preprocessing
 subroutine SGGSVP from a general M-by-N matrix A and P-by-N
 matrix B:

 N-K-L K L
 A = K (0 A12 A13) if M-K-L >= 0;
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 A = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 B = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.

 On exit,

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R),

 where U, V and Q are orthogonal matrices, Z' denotes the
 transpose of Z, R is a nonsingular upper triangular matrix,
 and D1 and D2 are ``diagonal'' matrices, which are of the
 following structures:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12) K
 L (0 0 R22) L

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M

 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where
 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 R = (R11 R12 R13) is stored in A(1:M, N-K-L+1:N) and R33
 is stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The computation of the orthogonal transformation matrices U,
 V or Q is optional. These matrices may either be formed
 explicitly, or they may be postmultiplied into input
 matrices U1, V1, or Q1.
 STGSJA essentially uses a variant of Kogbetliantz algorithm
 to reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix
 A23 and L-by-L matrix B13 to the form:
 U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
 where U1, V1 and Q1 are orthogonal matrix, and Z' is the
 transpose of Z. C1 and S1 are diagonal matrices satisfying
 C1**2 + S1**2 = I,
 and R1 is an L-by-L nonsingular upper triangular matrix.

ARGUMENTS

 JOBU (input)
 = 'U': U must contain an orthogonal matrix U1 on
 entry, and the product U1*U is returned; = 'I': U
 is initialized to the unit matrix, and the orthog-
 onal matrix U is returned; = 'N': U is not com-
 puted.

 JOBV (input)
 = 'V': V must contain an orthogonal matrix V1 on
 entry, and the product V1*V is returned; = 'I': V
 is initialized to the unit matrix, and the orthog-
 onal matrix V is returned; = 'N': V is not com-
 puted.

 JOBQ (input)
 = 'Q': Q must contain an orthogonal matrix Q1 on
 entry, and the product Q1*Q is returned; = 'I': Q
 is initialized to the unit matrix, and the orthog-
 onal matrix Q is returned; = 'N': Q is not com-
 puted.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 K (input) K and L specify the subblocks in the input
 matrices A and B:
 A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 =
 B(1:L,N-L+1:N) of A and B, whose GSVD is going to
 be computed by STGSJA. See Further details.

 L (input) See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A(N-
 K+1:N,1:MIN(K+L,M)) contains the triangular
 matrix R or part of R. See Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, if neces-
 sary, B(M-K+1:L,N+M-K-L+1:N) contains a part of R.
 See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the convergence criteria for the
 Jacobi- Kogbetliantz iteration procedure. Gen-
 erally, they are the same as used in the prepro-
 cessing step, say TOLA = max(M,N)*norm(A)*MACHEPS,
 TOLB = max(P,N)*norm(B)*MACHEPS.

 TOLB (input)

 See the description of TOLA.

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = diag(C),
 BETA(K+1:K+L) = diag(S), or if M-K-L < 0,
 ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore,
 if K+L < N, ALPHA(K+L+1:N) = 0 and
 BETA(K+L+1:N) = 0.
 BETA (output)
 See the description of ALPHA.

 U (input) On entry, if JOBU = 'U', U must contain a matrix
 U1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBU = 'I', U contains the
 orthogonal matrix U; if JOBU = 'U', U contains the
 product U1*U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) On entry, if JOBV = 'V', V must contain a matrix
 V1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBV = 'I', V contains the
 orthogonal matrix V; if JOBV = 'V', V contains the
 product V1*V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) On entry, if JOBQ = 'Q', Q must contain a matrix
 Q1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBQ = 'I', Q contains the
 orthogonal matrix Q; if JOBQ = 'Q', Q contains the
 product Q1*Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 NCYCLE (output)
 The number of cycles required for convergence.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1: the procedure does not converge after MAXIT
 cycles.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtgsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 generalized real Schur canonical form (or of any matrix pair
 (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z'
 denotes the transpose of Z

SYNOPSIS

 SUBROUTINE DTGSNA(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 S(*), DIF(*), WORK(*)

 SUBROUTINE DTGSNA_64(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 S(*), DIF(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSNA(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, DIF, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE TGSNA_64(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,

 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, DIF, WORK
 REAL(8), DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void dtgsna(char job, char howmnt, int *select, int n, dou-
 ble *a, int lda, double *b, int ldb, double *vl,
 int ldvl, double *vr, int ldvr, double *s, double
 *dif, int mm, int *m, int *info);

 void dtgsna_64(char job, char howmnt, long *select, long n,
 double *a, long lda, double *b, long ldb, double
 *vl, long ldvl, double *vr, long ldvr, double *s,
 double *dif, long mm, long *m, long *info);

PURPOSE

 dtgsna estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 generalized real Schur canonical form (or of any matrix pair
 (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z'
 denotes the transpose of Z.

 (A, B) must be in generalized real Schur form (as returned
 by SGGES), i.e. A is block upper triangular with 1-by-1 and
 2-by-2 diagonal blocks. B is upper triangular.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (DIF):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (DIF);
 = 'B': for both eigenvalues and eigenvectors (S
 and DIF).

 HOWMNT (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNT = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the eigenpair
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select condition numbers
 corresponding to a complex conjugate pair of
 eigenvalues w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) or both, must be set to .TRUE.. If

 HOWMNT = 'A', SELECT is not referenced.

 N (input) The order of the square matrix pair (A, B). N >=
 0.

 A (input) The upper quasi-triangular matrix A in the pair
 (A,B).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B in the pair (A,B).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VL, as
 returned by STGEVC. If JOB = 'V', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1.
 If JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns ov VR, as
 returned by STGEVC. If JOB = 'V', VR is not
 referenced.
 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1.
 If JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive ele-
 ments of S are set to the same value. Thus S(j),
 DIF(j), and the j-th columns of VL and VR all
 correspond to the same eigenpair (but not in gen-
 eral the j-th eigenpair, unless all eigenpairs are
 selected). If JOB = 'V', S is not referenced.

 DIF (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 DIF are set to the same value. If the eigenvalues
 cannot be reordered to compute DIF(j), DIF(j) is
 set to 0; this can only occur when the true value
 would be very small anyway. If JOB = 'E', DIF is
 not referenced.

 MM (input)

 The number of elements in the arrays S and DIF. MM
 >= M.

 M (output)
 The number of elements of the arrays S and DIF
 used to store the specified condition numbers; for
 each selected real eigenvalue one element is used,
 and for each selected complex conjugate pair of
 eigenvalues, two elements are used. If HOWMNT =
 'A', M is set to N.

 WORK (workspace)
 If JOB = 'E', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N. If
 JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(N+6) If JOB = 'E', IWORK is not refer-
 enced.

 INFO (output)
 =0: Successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value

FURTHER DETAILS

 The reciprocal of the condition number of a generalized
 eigenvalue w = (a, b) is defined as
 (w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))

 where u and v are the left and right eigenvectors of (A, B)
 corresponding to w; |z| denotes the absolute value of the
 complex number, and norm(u) denotes the 2-norm of the vector
 u.
 The pair (a, b) corresponds to an eigenvalue w = a/b (=
 u'Av/u'Bv) of the matrix pair (A, B). If both a and b equal
 zero, then (A B) is singular and S(I) = -1 is returned.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(A, B) / S(I)

 where EPS is the machine precision.

 The reciprocal of the condition number DIF(i) of right
 eigenvector u and left eigenvector v corresponding to the
 generalized eigenvalue w is defined as follows:

 a) If the i-th eigenvalue w = (a,b) is real

 Suppose U and V are orthogonal transformations such that

 U'*(A, B)*V = (S, T) = (a *) (b *)
 1
 (0 S22),(0 T22)
 n-1
 1 n-1 1 n-1

 Then the reciprocal condition number DIF(i) is
 Difl((a, b), (S22, T22)) = sigma-min(Zl),

 where sigma-min(Zl) denotes the smallest singular value
 of the
 2(n-1)-by-2(n-1) matrix

 Zl = [kron(a, In-1) -kron(1, S22)]
 [kron(b, In-1) -kron(1, T22)] .

 Here In-1 is the identity matrix of size n-1. kron(X, Y)
 is the
 Kronecker product between the matrices X and Y.

 Note that if the default method for computing DIF(i) is
 wanted
 (see SLATDF), then the parameter DIFDRI (see below)
 should be
 changed from 3 to 4 (routine SLATDF(IJOB = 2 will be
 used)).
 See STGSYL for more details.

 b) If the i-th and (i+1)-th eigenvalues are complex conju-
 gate pair,

 Suppose U and V are orthogonal transformations such that

 U'*(A, B)*V = (S, T) = (S11 *) (T11 *
) 2
 (0 S22),(0
 T22) n-2
 2 n-2 2 n-2

 and (S11, T11) corresponds to the complex conjugate
 eigenvalue
 pair (w, conjg(w)). There exist unitary matrices U1 and
 V1 such
 that

 U1'*S11*V1 = (s11 s12) and U1'*T11*V1 = (t11 t12
)
 (0 s22) (0 t22
)

 where the generalized eigenvalues w = s11/t11 and
 conjg(w) = s22/t22.

 Then the reciprocal condition number DIF(i) is bounded by

 min(d1, max(1, |real(s11)/real(s22)|)*d2)

 where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1),
 where
 Z1 is the complex 2-by-2 matrix

 Z1 = [s11 -s22]
 [t11 -t22],

 This is done by computing (using real arithmetic) the
 roots of the characteristical polynomial det(Z1' * Z1 -
 lambda I),
 where Z1' denotes the conjugate transpose of Z1 and
 det(X) denotes
 the determinant of X.

 and d2 is an upper bound on Difl((S11, T11), (S22, T22)),
 i.e. an
 upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-
 2)

 Z2 = [kron(S11', In-2) -kron(I2, S22)]
 [kron(T11', In-2) -kron(I2, T22)]

 Note that if the default method for computing DIF is
 wanted (see
 SLATDF), then the parameter DIFDRI (see below) should be
 changed
 from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See
 STGSYL
 for more details.

 For each eigenvalue/vector specified by SELECT, DIF stores a
 Frobenius norm-based estimate of Difl.

 An approximate error bound for the i-th computed eigenvector
 VL(i) or VR(i) is given by

 EPS * norm(A, B) / DIF(i).

 See ref. [2-3] for more details and further references.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software,
 Report UMINF - 94.04, Department of Computing Science,
 Umea
 University, S-901 87 Umea, Sweden, 1994. Also as LAPACK
 Working
 Note 87. To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and

 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtgsyl - solve the generalized Sylvester equation

SYNOPSIS

 SUBROUTINE DTGSYL(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION SCALE, DIF
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
 E(LDE,*), F(LDF,*), WORK(*)

 SUBROUTINE DTGSYL_64(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 INTEGER*8 IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION SCALE, DIF
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
 E(LDE,*), F(LDF,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSYL(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C, [LDC],
 D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: TRANS
 INTEGER :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: SCALE, DIF
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B, C, D, E, F

 SUBROUTINE TGSYL_64(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK],

 [IWORK], [INFO])

 CHARACTER(LEN=1) :: TRANS
 INTEGER(8) :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF,
 LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8) :: SCALE, DIF
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A, B, C, D, E, F

 C INTERFACE
 #include <sunperf.h>

 void dtgsyl(char trans, int ijob, int m, int n, double *a,
 int lda, double *b, int ldb, double *c, int ldc,
 double *d, int ldd, double *e, int lde, double *f,
 int ldf, double *scale, double *dif, int *info);

 void dtgsyl_64(char trans, long ijob, long m, long n, double
 *a, long lda, double *b, long ldb, double *c, long
 ldc, double *d, long ldd, double *e, long lde,
 double *f, long ldf, double *scale, double *dif,
 long *info);

PURPOSE

 dtgsyl solves the generalized Sylvester equation:

 A * R - L * B = scale * C (1)
 D * R - L * E = scale * F

 where R and L are unknown m-by-n matrices, (A, D), (B, E)
 and (C, F) are given matrix pairs of size m-by-m, n-by-n and
 m-by-n, respectively, with real entries. (A, D) and (B, E)
 must be in generalized (real) Schur canonical form, i.e. A,
 B are upper quasi triangular and D, E are upper triangular.

 The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an
 output scaling factor chosen to avoid overflow.

 In matrix notation (1) is equivalent to solve Zx = scale b,
 where Z is defined as

 Z = [kron(In, A) -kron(B', Im)] (2)
 [kron(In, D) -kron(E', Im)].

 Here Ik is the identity matrix of size k and X' is the tran-
 spose of X. kron(X, Y) is the Kronecker product between the
 matrices X and Y.

 If TRANS = 'T', STGSYL solves the transposed system Z'*y =
 scale*b, which is equivalent to solve for R and L in

 A' * R + D' * L = scale * C (3)
 R * B' + L * E' = scale * (-F)

 This case (TRANS = 'T') is used to compute an one-norm-based
 estimate of Dif[(A,D), (B,E)], the separation between the
 matrix pairs (A,D) and (B,E), using SLACON.

 If IJOB >= 1, STGSYL computes a Frobenius norm-based esti-
 mate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower

 bound on the reciprocal of the smallest singular value of Z.
 See [1-2] for more information.

 This is a level 3 BLAS algorithm.

ARGUMENTS

 TRANS (input)
 = 'N', solve the generalized Sylvester equation
 (1). = 'T', solve the 'transposed' system (3).

 IJOB (input)
 Specifies what kind of functionality to be per-
 formed. =0: solve (1) only.
 =1: The functionality of 0 and 3.
 =2: The functionality of 0 and 4.
 =3: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (look ahead strategy IJOB = 1 is used).
 =4: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (SGECON on sub-systems is used). Not
 referenced if TRANS = 'T'.

 M (input) The order of the matrices A and D, and the row
 dimension of the matrices C, F, R and L.

 N (input) The order of the matrices B and E, and the column
 dimension of the matrices C, F, R and L.

 A (input) The upper quasi triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1, M).

 B (input) The upper quasi triangular matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1, N).
 C (input/output)
 On entry, C contains the right-hand-side of the
 first matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, C has been overwritten by the
 solution R. If IJOB = 3 or 4 and TRANS = 'N', C
 holds R, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1, M).

 D (input) The upper triangular matrix D.

 LDD (input)
 The leading dimension of the array D. LDD >=
 max(1, M).

 E (input) The upper triangular matrix E.

 LDE (input)
 The leading dimension of the array E. LDE >=
 max(1, N).

 F (input/output)
 On entry, F contains the right-hand-side of the
 second matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, F has been overwritten by the
 solution L. If IJOB = 3 or 4 and TRANS = 'N', F
 holds L, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDF (input)
 The leading dimension of the array F. LDF >=
 max(1, M).

 SCALE (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] =
 sigma_min(Z), where Z as in (2). If IJOB = 0 or
 TRANS = 'T', SCALE is not touched.
 DIF (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] =
 sigma_min(Z), where Z as in (2). If IJOB = 0 or
 TRANS = 'T', SCALE is not touched.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK > = 1. If
 IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(M+N+2)

 INFO (output)
 =0: successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 >0: (A, D) and (B, E) have common or close eigen-
 values.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -

 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

 [2] B. Kagstrom, A Perturbation Analysis of the Generalized
 Sylvester
 Equation (AR - LB, DR - LE) = (C, F), SIAM J. Matrix
 Anal.
 Appl., 15(4):1045-1060, 1994

 [3] B. Kagstrom and L. Westin, Generalized Schur Methods
 with
 Condition Estimators for Solving the Generalized Sylves-
 ter
 Equation, IEEE Transactions on Automatic Control, Vol.
 34, No. 7,
 July 1989, pp 745-751.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtpcon - estimate the reciprocal of the condition number of
 a packed triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE DTPCON(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), WORK(*)

 SUBROUTINE DTPCON_64(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TPCON(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 SUBROUTINE TPCON_64(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: A, WORK

 C INTERFACE

 #include <sunperf.h>

 void dtpcon(char norm, char uplo, char diag, int n, double
 *a, double *rcond, int *info);
 void dtpcon_64(char norm, char uplo, char diag, long n, dou-
 ble *a, double *rcond, long *info);

PURPOSE

 dtpcon estimates the reciprocal of the condition number of a
 packed triangular matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).
 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtpmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE DTPMV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, INCY
 DOUBLE PRECISION A(*), Y(*)

 SUBROUTINE DTPMV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, INCY
 DOUBLE PRECISION A(*), Y(*)

 F95 INTERFACE
 SUBROUTINE TPMV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, INCY
 REAL(8), DIMENSION(:) :: A, Y

 SUBROUTINE TPMV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, INCY
 REAL(8), DIMENSION(:) :: A, Y

 C INTERFACE
 #include <sunperf.h>

 void dtpmv(char uplo, char transa, char diag, int n, double
 *a, double *y, int incy);

 void dtpmv_64(char uplo, char transa, char diag, long n,
 double *a, double *y, long incy);

PURPOSE

 dtpmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'
 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)

 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtprfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix

SYNOPSIS

 SUBROUTINE DTPRFS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE DTPRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE TPRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: A, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 SUBROUTINE TPRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: A, FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>
 void dtprfs(char uplo, char transa, char diag, int n, int
 nrhs, double *a, double *b, int ldb, double *x,
 int ldx, double *ferr, double *berr, int *info);

 void dtprfs_64(char uplo, char transa, char diag, long n,
 long nrhs, double *a, double *b, long ldb, double
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 dtprfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix.

 The solution matrix X must be computed by STPTRS or some
 other means before entering this routine. STPRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtpsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE DTPSV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, INCY
 DOUBLE PRECISION A(*), Y(*)

 SUBROUTINE DTPSV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, INCY
 DOUBLE PRECISION A(*), Y(*)

 F95 INTERFACE
 SUBROUTINE TPSV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, INCY
 REAL(8), DIMENSION(:) :: A, Y

 SUBROUTINE TPSV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, INCY
 REAL(8), DIMENSION(:) :: A, Y

 C INTERFACE
 #include <sunperf.h>

 void dtpsv(char uplo, char transa, char diag, int n, double
 *a, double *y, int incy);

 void dtpsv_64(char uplo, char transa, char diag, long n,
 double *a, double *y, long incy);

PURPOSE

 dtpsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular matrix,
 supplied in packed form.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'

 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtptri - compute the inverse of a real upper or lower tri-
 angular matrix A stored in packed format

SYNOPSIS

 SUBROUTINE DTPTRI(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, INFO
 DOUBLE PRECISION A(*)

 SUBROUTINE DTPTRI_64(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, INFO
 DOUBLE PRECISION A(*)

 F95 INTERFACE
 SUBROUTINE TPTRI(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: A

 SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtptri(char uplo, char diag, int n, double *a, int
 *info);

 void dtptri_64(char uplo, char diag, long n, double *a, long
 *info);

PURPOSE

 dtptri computes the inverse of a real upper or lower tri-
 angular matrix A stored in packed format.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangular matrix A,
 stored columnwise in a linear array. The j-th
 column of A is stored in the array A as follows:
 if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j) for
 1<=i<=j; if UPLO = 'L', A(i + (j-1)*((2*n-j)/2) =
 A(i,j) for j<=i<=n. See below for further
 details. On exit, the (triangular) inverse of the
 original matrix, in the same packed storage for-
 mat.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

FURTHER DETAILS

 A triangular matrix A can be transferred to packed storage
 using one of the following program segments:

 UPLO = 'U': UPLO = 'L':

 JC = 1 JC = 1
 DO 2 J = 1, N DO 2 J = 1, N
 DO 1 I = 1, J DO 1 I = J, N
 A(JC+I-1) = A(I,J) A(JC+I-J) =
 A(I,J)
 1 CONTINUE 1 CONTINUE
 JC = JC + J JC = JC + N - J +
 1
 2 CONTINUE 2 CONTINUE

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtptrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE DTPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 SUBROUTINE DTPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 SUBROUTINE TPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: A
 REAL(8), DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void dtptrs(char uplo, char transa, char diag, int n, int
 nrhs, double *a, double *b, int ldb, int *info);

 void dtptrs_64(char uplo, char transa, char diag, long n,
 long nrhs, double *a, double *b, long ldb, long
 *info);

PURPOSE

 dtptrs solves a triangular system of the form

 where A is a triangular matrix of order N stored in packed
 format, and B is an N-by-NRHS matrix. A check is made to
 verify that A is nonsingular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrans - transpose and scale source matrix

SYNOPSIS

 SUBROUTINE DTRANS(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 INTEGER M, N
 DOUBLE PRECISION SCALE
 DOUBLE PRECISION SOURCE(*), DEST(*)

 SUBROUTINE DTRANS_64(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N
 DOUBLE PRECISION SCALE
 DOUBLE PRECISION SOURCE(*), DEST(*)

 F95 INTERFACE
 SUBROUTINE TRANS([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N
 REAL(8) :: SCALE
 REAL(8), DIMENSION(:) :: SOURCE, DEST

 SUBROUTINE TRANS_64([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N
 REAL(8) :: SCALE
 REAL(8), DIMENSION(:) :: SOURCE, DEST

 C INTERFACE
 #include <sunperf.h>

 void dtrans(char place, double scale, double *source, int m,
 int n, double *dest);

 void dtrans_64(char place, double scale, double *source,
 long m, long n, double *dest);

PURPOSE

 dtrans scales and transposes the source matrix. The N2 x N1
 result is written into SOURCE when PLACE = 'I' or 'i', and
 DEST when PLACE = 'O' or 'o'.
 PLACE = 'I' or 'i': SOURCE = SCALE * SOURCE'

 PLACE = 'O' or 'o': DEST = SCALE * SOURCE'

ARGUMENTS

 PLACE (input)
 Type of transpose. 'I' or 'i' for in-place, 'O'
 or 'o' for out-of-place. 'I' is default.

 SCALE (input)
 Scale factor on the SOURCE matrix.

 SOURCE (input/output)
 (M, N) on input. Array of (N, M) on output if
 in-place transpose.

 M (input)
 Number of rows in the SOURCE matrix on input.

 N (input)
 Number of columns in the SOURCE matrix on input.

 DEST (output)
 Scaled and transposed SOURCE matrix if out-of-
 place transpose. Not referenced if in-place tran-
 spose.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrcon - estimate the reciprocal of the condition number of
 a triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE DTRCON(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 SUBROUTINE DTRCON_64(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRCON(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TRCON_64(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK

 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void dtrcon(char norm, char uplo, char diag, int n, double
 *a, int lda, double *rcond, int *info);

 void dtrcon_64(char norm, char uplo, char diag, long n, dou-
 ble *a, long lda, double *rcond, long *info);

PURPOSE

 dtrcon estimates the reciprocal of the condition number of a
 triangular matrix A, in either the 1-norm or the infinity-
 norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtrevc - compute some or all of the right and/or left eigen-
 vectors of a real upper quasi-triangular matrix T

SYNOPSIS

 SUBROUTINE DTREVC(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE DTREVC_64(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TREVC(SIDE, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: T, VL, VR

 SUBROUTINE TREVC_64(SIDE, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL],
 VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: T, VL, VR

 C INTERFACE

 #include <sunperf.h>

 void dtrevc(char side, char howmny, int *select, int n, dou-
 ble *t, int ldt, double *vl, int ldvl, double *vr,
 int ldvr, int mm, int *m, int *info);
 void dtrevc_64(char side, char howmny, long *select, long n,
 double *t, long ldt, double *vl, long ldvl, double
 *vr, long ldvr, long mm, long *m, long *info);

PURPOSE

 dtrevc computes some or all of the right and/or left eigen-
 vectors of a real upper quasi-triangular matrix T.

 The right eigenvector x and the left eigenvector y of T
 corresponding to an eigenvalue w are defined by:

 T*x = w*x, y'*T = w*y'

 where y' denotes the conjugate transpose of the vector y.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of T, or the products Q*X and/or Q*Y, where Q is an input
 orthogonal
 matrix. If T was obtained from the real-Schur factorization
 of an original matrix A = Q*T*Q', then Q*X and Q*Y are the
 matrices of right or left eigenvectors of A.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign. Corresponding to each 2-by-2 diagonal block is a com-
 plex conjugate pair of eigenvalues and eigenvectors; only
 one eigenvector of the pair is computed, namely the one
 corresponding to the eigenvalue with positive imaginary
 part.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvec-
 tors;
 = 'B': compute all right and/or left eigenvec-
 tors, and backtransform them using the input
 matrices supplied in VR and/or VL; = 'S': compute
 selected right and/or left eigenvectors, specified
 by the logical array SELECT.
 SELECT (input/output)
 If HOWMNY = 'S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY = 'A' or 'B', SELECT is
 not referenced. To select the real eigenvector
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select the complex

 eigenvector corresponding to a complex conjugate
 pair w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) must be set to .TRUE.; then on exit
 SELECT(j) is .TRUE. and SELECT(j+1) is .FALSE..

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 The upper quasi-triangular matrix T in Schur
 canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of Schur vectors returned by
 SHSEQR). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of T; VL has the same quasi-lower
 triangular form as T'. If T(i,i) is a real eigen-
 value, then the i-th column VL(i) of VL is its
 corresponding eigenvector. If T(i:i+1,i:i+1) is a
 2-by-2 block whose eigenvalues are complex-
 conjugate eigenvalues of T, then VL(i)+sqrt(-
 1)*VL(i+1) is the complex eigenvector correspond-
 ing to the eigenvalue with positive real part. if
 HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the
 left eigenvectors of T specified by SELECT, stored
 consecutively in the columns of VL, in the same
 order as their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part, and the second the imaginary part. If
 SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1
 otherwise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of Schur vectors returned by
 SHSEQR). On exit, if SIDE = 'R' or 'B', VR con-
 tains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of T; VR has the same quasi-upper
 triangular form as T. If T(i,i) is a real eigen-
 value, then the i-th column VR(i) of VR is its
 corresponding eigenvector. If T(i:i+1,i:i+1) is a
 2-by-2 block whose eigenvalues are complex-
 conjugate eigenvalues of T, then VR(i)+sqrt(-
 1)*VR(i+1) is the complex eigenvector correspond-
 ing to the eigenvalue with positive real part. if
 HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the
 right eigenvectors of T specified by SELECT,
 stored consecutively in the columns of VR, in the
 same order as their eigenvalues. A complex eigen-
 vector corresponding to a complex eigenvalue is
 stored in two consecutive columns, the first hold-
 ing the real part and the second the imaginary

 part. If SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 The algorithm used in this program is basically backward
 (forward) substitution, with scaling to make the the code
 robust against possible overflow.

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x| + |y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrexc - reorder the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that the diagonal block of T with
 row index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE DTREXC(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)

 CHARACTER * 1 COMPQ
 INTEGER N, LDT, LDQ, IFST, ILST, INFO
 DOUBLE PRECISION T(LDT,*), Q(LDQ,*), WORK(*)

 SUBROUTINE DTREXC_64(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK,
 INFO)

 CHARACTER * 1 COMPQ
 INTEGER*8 N, LDT, LDQ, IFST, ILST, INFO
 DOUBLE PRECISION T(LDT,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TREXC(COMPQ, N, T, [LDT], Q, [LDQ], IFST, ILST, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: COMPQ
 INTEGER :: N, LDT, LDQ, IFST, ILST, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: T, Q

 SUBROUTINE TREXC_64(COMPQ, N, T, [LDT], Q, [LDQ], IFST, ILST, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: COMPQ
 INTEGER(8) :: N, LDT, LDQ, IFST, ILST, INFO
 REAL(8), DIMENSION(:) :: WORK
 REAL(8), DIMENSION(:,:) :: T, Q

 C INTERFACE
 #include <sunperf.h>

 void dtrexc(char compq, int n, double *t, int ldt, double
 *q, int ldq, int *ifst, int *ilst, int *info);

 void dtrexc_64(char compq, long n, double *t, long ldt, dou-

 ble *q, long ldq, long *ifst, long *ilst, long
 *info);

PURPOSE

 dtrexc reorders the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that the diagonal block of T with
 row index IFST is moved to row ILST.

 The real Schur form T is reordered by an orthogonal similar-
 ity transformation Z**T*T*Z, and optionally the matrix Q of
 Schur vectors is updated by postmultiplying it with Z.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper quasi-triangular matrix T, in
 Schur Schur canonical form. On exit, the reor-
 dered upper quasi-triangular matrix, again in
 Schur canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the orthogonal transformation
 matrix Z which reorders T. If COMPQ = 'N', Q is
 not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 T. The block with row index IFST is moved to row
 ILST, by a sequence of transpositions between
 adjacent blocks. On exit, if IFST pointed on
 entry to the second row of a 2-by-2 block, it is
 changed to point to the first row; ILST always
 points to the first row of the block in its final
 position (which may differ from its input value by
 +1 or -1). 1 <= IFST <= N; 1 <= ILST <= N.

 ILST (input/output)
 See the description of IFST.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: two adjacent blocks were too close to swap
 (the problem is very ill-conditioned); T may have
 been partially reordered, and ILST points to the
 first row of the current position of the block
 being moved.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrmm - perform one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A)

SYNOPSIS

 SUBROUTINE DTRMM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER M, N, LDA, LDB
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DTRMM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER*8 M, N, LDA, LDB
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRMM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER :: M, N, LDA, LDB
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE TRMM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER(8) :: M, N, LDA, LDB
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dtrmm(char side, char uplo, char transa, char diag, int
 m, int n, double alpha, double *a, int lda, double

 *b, int ldb);

 void dtrmm_64(char side, char uplo, char transa, char diag,
 long m, long n, double alpha, double *a, long lda,
 double *b, long ldb);

PURPOSE

 dtrmm performs one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) multi-
 plies B from the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit

 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, k),
 where k is m when SIDE = 'L' or 'l' and is n
 when SIDE = 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be one. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), when
 SIDE = 'R' or 'r' then LDA >= max(1, n).
 Unchanged on exit.

 B (input/output)
 DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the
 array B must contain the matrix B, and on exit
 is overwritten by the transformed matrix.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE DTRMV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 SUBROUTINE DTRMV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TRMV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TRMV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtrmv(char uplo, char transa, char diag, int n, double
 *a, int lda, double *y, int incy);

 void dtrmv_64(char uplo, char transa, char diag, long n,
 double *a, long lda, double *y, long incy);

PURPOSE

 dtrmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not
 referenced. Before entry with UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the
 array A must contain the lower triangular matrix
 and the strictly upper triangular part of A is not
 referenced. Note that when DIAG = 'U' or 'u',
 the diagonal elements of A are not referenced

 either, but are assumed to be unity. Unchanged on
 exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix

SYNOPSIS

 SUBROUTINE DTRRFS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDA, LDB, LDX, INFO
 INTEGER WORK2(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE DTRRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDA, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 DOUBLE PRECISION A(LDA,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDA, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, B, X

 SUBROUTINE TRRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDA, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK
 REAL(8), DIMENSION(:,:) :: A, B, X

 C INTERFACE
 #include <sunperf.h>
 void dtrrfs(char uplo, char transa, char diag, int n, int
 nrhs, double *a, int lda, double *b, int ldb, dou-
 ble *x, int ldx, double *ferr, double *berr, int
 *info);

 void dtrrfs_64(char uplo, char transa, char diag, long n,
 long nrhs, double *a, long lda, double *b, long
 ldb, double *x, long ldx, double *ferr, double
 *berr, long *info);

PURPOSE

 dtrrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix.

 The solution matrix X must be computed by STRTRS or some
 other means before entering this routine. STRRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=

 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtrsen - reorder the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that a selected cluster of eigen-
 values appears in the leading diagonal blocks of the upper
 quasi-triangular matrix T,

SYNOPSIS

 SUBROUTINE DTRSEN(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, M,
 S, SEP, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 INTEGER N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION S, SEP
 DOUBLE PRECISION T(LDT,*), Q(LDQ,*), WR(*), WI(*), WORK(*)

 SUBROUTINE DTRSEN_64(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
 M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 INTEGER*8 N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION S, SEP
 DOUBLE PRECISION T(LDT,*), Q(LDQ,*), WR(*), WI(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRSEN(JOB, COMPQ, SELECT, N, T, [LDT], Q, [LDQ], WR, WI,
 M, S, SEP, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 INTEGER :: N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8) :: S, SEP
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: T, Q

 SUBROUTINE TRSEN_64(JOB, COMPQ, SELECT, N, T, [LDT], Q, [LDQ], WR,
 WI, M, S, SEP, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 INTEGER(8) :: N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8) :: S, SEP
 REAL(8), DIMENSION(:) :: WR, WI, WORK
 REAL(8), DIMENSION(:,:) :: T, Q
 C INTERFACE
 #include <sunperf.h>

 void dtrsen(char job, char compq, int *select, int n, double
 *t, int ldt, double *q, int ldq, double *wr, dou-
 ble *wi, int *m, double *s, double *sep, int
 *info);

 void dtrsen_64(char job, char compq, long *select, long n,
 double *t, long ldt, double *q, long ldq, double
 *wr, double *wi, long *m, double *s, double *sep,
 long *info);

PURPOSE

 dtrsen reorders the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that a selected cluster of eigen-
 values appears in the leading diagonal blocks of the upper
 quasi-triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace.

 Optionally the routine computes the reciprocal condition
 numbers of the cluster of eigenvalues and/or the invariant
 subspace.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elemnts equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (S) or the invari-
 ant subspace (SEP):
 = 'N': none;
 = 'E': for eigenvalues only (S);
 = 'V': for invariant subspace only (SEP);
 = 'B': for both eigenvalues and invariant subspace
 (S and SEP).

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select a real eigenvalue w(j),
 SELECT(j) must be set to w(j) and w(j+1),

 corresponding to a 2-by-2 diagonal block, either
 SELECT(j) or SELECT(j+1) or both must be set to
 either both included in the cluster or both
 excluded.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper quasi-triangular matrix T, in
 Schur canonical form. On exit, T is overwritten
 by the reordered matrix T, again in Schur canoni-
 cal form, with the selected eigenvalues in the
 leading diagonal blocks.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the orthogonal transformation
 matrix which reorders T; the leading M columns of
 Q form an orthonormal basis for the specified
 invariant subspace. If COMPQ = 'N', Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if COMPQ = 'V', LDQ >= N.

 WR (output)
 The real and imaginary parts, respectively, of the
 reordered eigenvalues of T. The eigenvalues are
 stored in the same order as on the diagonal of T,
 with WR(i) = T(i,i) and, if T(i:i+1,i:i+1) is a
 2-by-2 diagonal block, WI(i) > 0 and WI(i+1) =
 -WI(i). Note that if a complex eigenvalue is suf-
 ficiently ill-conditioned, then its value may
 differ significantly from its value before reord-
 ering.

 WI (output)
 See the description of WR.

 M (output)
 The dimension of the specified invariant subspace.
 0 < = M <= N.

 S (output)
 If JOB = 'E' or 'B', S is a lower bound on the
 reciprocal condition number for the selected clus-
 ter of eigenvalues. S cannot underestimate the
 true reciprocal condition number by more than a
 factor of sqrt(N). If M = 0 or N, S = 1. If JOB =
 'N' or 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', SEP is the estimated recipro-
 cal condition number of the specified invariant
 subspace. If M = 0 or N, SEP = norm(T). If JOB =
 'N' or 'E', SEP is not referenced.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal

 LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOB = 'N',
 LWORK >= max(1,N); if JOB = 'E', LWORK >= M*(N-M);
 if JOB = 'V' or 'B', LWORK >= 2*M*(N-M).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 If JOB = 'N' or 'E', IWORK is not referenced.

 LIWORK (input)
 The dimension of the array IWORK. If JOB = 'N' or
 'E', LIWORK >= 1; if JOB = 'V' or 'B', LIWORK >=
 M*(N-M).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: reordering of T failed because some eigen-
 values are too close to separate (the problem is
 very ill-conditioned); T may have been partially
 reordered, and WR and WI contain the eigenvalues
 in the same order as in T; S and SEP (if
 requested) are set to zero.

FURTHER DETAILS

 STRSEN first collects the selected eigenvalues by computing
 an orthogonal transformation Z to move them to the top left
 corner of T. In other words, the selected eigenvalues are
 the eigenvalues of T11 in:

 Z'*T*Z = (T11 T12) n1
 (0 T22) n2
 n1 n2

 where N = n1+n2 and Z' means the transpose of Z. The first
 n1 columns of Z span the specified invariant subspace of T.

 If T has been obtained from the real Schur factorization of
 a matrix A = Q*T*Q', then the reordered real Schur factori-
 zation of A is given by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the
 first n1 columns of Q*Z span the corresponding invariant
 subspace of A.

 The reciprocal condition number of the average of the eigen-
 values of T11 may be returned in S. S lies between 0 (very
 badly conditioned) and 1 (very well conditioned). It is com-
 puted as follows. First we compute R so that

 P = (I R) n1
 (0 0) n2
 n1 n2

 is the projector on the invariant subspace associated with
 T11. R is the solution of the Sylvester equation:

 T11*R - R*T22 = T12.

 Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M)
 denote the two-norm of M. Then S is computed as the lower
 bound
 (1 + F-norm(R)**2)**(-1/2)

 on the reciprocal of 2-norm(P), the true reciprocal condi-
 tion number. S cannot underestimate 1 / 2-norm(P) by more
 than a factor of sqrt(N).

 An approximate error bound for the computed average of the
 eigenvalues of T11 is

 EPS * norm(T) / S

 where EPS is the machine precision.

 The reciprocal condition number of the right invariant sub-
 space spanned by the first n1 columns of Z (or of Q*Z) is
 returned in SEP. SEP is defined as the separation of T11
 and T22:

 sep(T11, T22) = sigma-min(C)

 where sigma-min(C) is the smallest singular value of the
 n1*n2-by-n1*n2 matrix

 C = kprod(I(n2), T11) - kprod(transpose(T22), I(n1))

 I(m) is an m by m identity matrix, and kprod denotes the
 Kronecker product. We estimate sigma-min(C) by the recipro-
 cal of an estimate of the 1-norm of inverse(C). The true
 reciprocal 1-norm of inverse(C) cannot differ from sigma-
 min(C) by more than a factor of sqrt(n1*n2).

 When SEP is small, small changes in T can cause large
 changes in the invariant subspace. An approximate bound on
 the maximum angular error in the computed right invariant
 subspace is

 EPS * norm(T) / SEP

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrsm - solve one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B

SYNOPSIS

 SUBROUTINE DTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER M, N, LDA, LDB
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DTRSM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER*8 M, N, LDA, LDB
 DOUBLE PRECISION ALPHA
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRSM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER :: M, N, LDA, LDB
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE TRSM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER(8) :: M, N, LDA, LDB
 REAL(8) :: ALPHA
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dtrsm(char side, char uplo, char transa, char diag, int
 m, int n, double alpha, double *a, int lda, double

 *b, int ldb);

 void dtrsm_64(char side, char uplo, char transa, char diag,
 long m, long n, double alpha, double *a, long lda,
 double *b, long ldb);

PURPOSE

 dtrsm solves one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B where alpha is a scalar, X
 and B are m by n matrices, A is a unit, or non-unit, upper
 or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 The matrix X is overwritten on B.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) appears
 on the left or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.
 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 DOUBLE PRECISION array of DIMENSION (LDA, k),
 where k is m when SIDE = 'L' or 'l' and is n
 when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.
 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.
 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be one. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), when
 SIDE = 'R' or 'r' then LDA >= max(1, n).
 Unchanged on exit.

 B (input/output)
 DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the
 array B must contain the right-hand side
 matrix B, and on exit is overwritten by the
 solution matrix X.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. LDB
 >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtrsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a real upper
 quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 orthogonal)

SYNOPSIS

 SUBROUTINE DTRSNA(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
 S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER WORK1(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*),
 SEP(*), WORK(LDWORK,*)

 SUBROUTINE DTRSNA_64(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER*8 WORK1(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*),
 SEP(*), WORK(LDWORK,*)

 F95 INTERFACE
 SUBROUTINE TRSNA(JOB, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER, DIMENSION(:) :: WORK1
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, SEP
 REAL(8), DIMENSION(:,:) :: T, VL, VR, WORK

 SUBROUTINE TRSNA_64(JOB, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: WORK1
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, SEP
 REAL(8), DIMENSION(:,:) :: T, VL, VR, WORK
 C INTERFACE
 #include <sunperf.h>

 void dtrsna(char job, char howmny, int *select, int n, dou-
 ble *t, int ldt, double *vl, int ldvl, double *vr,
 int ldvr, double *s, double *sep, int mm, int *m,
 int ldwork, int *info);

 void dtrsna_64(char job, char howmny, long *select, long n,
 double *t, long ldt, double *vl, long ldvl, double
 *vr, long ldvr, double *s, double *sep, long mm,
 long *m, long ldwork, long *info);

PURPOSE

 dtrsna estimates reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a real upper
 quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 orthogonal).

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (SEP):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (SEP);
 = 'B': for both eigenvalues and eigenvectors (S
 and SEP).

 HOWMNY (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNY = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the eigenpair
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select condition numbers
 corresponding to a complex conjugate pair of
 eigenvalues w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) or both, must be set to .TRUE.. If
 HOWMNY = 'A', SELECT is not referenced.

 N (input) The order of the matrix T. N >= 0.

 T (input) The upper quasi-triangular matrix T, in Schur
 canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of T (or of any Q*T*Q**T with Q orthogo-
 nal), corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VL, as returned by
 SHSEIN or STREVC. If JOB = 'V', VL is not refer-
 enced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and if JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of T (or of any Q*T*Q**T with Q orthogo-
 nal), corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VR, as returned by
 SHSEIN or STREVC. If JOB = 'V', VR is not refer-
 enced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 and if JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive
 elements of S are set to the same value. Thus
 S(j), SEP(j), and the j-th columns of VL and VR
 all correspond to the same eigenpair (but not in
 general the j-th eigenpair, unless all eigenpairs
 are selected). If JOB = 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 SEP are set to the same value. If the eigenvalues
 cannot be reordered to compute SEP(j), SEP(j) is
 set to 0; this can only occur when the true value
 would be very small anyway. If JOB = 'E', SEP is
 not referenced.

 MM (input)
 The number of elements in the arrays S (if JOB =
 'E' or 'B') and/or SEP (if JOB = 'V' or 'B'). MM
 >= M.

 M (output)
 The number of elements of the arrays S and/or SEP
 actually used to store the estimated condition

 numbers. If HOWMNY = 'A', M is set to N.

 WORK (workspace)
 dimension(LDWORK,N+1) If JOB = 'E', WORK is not
 referenced.

 LDWORK (input)
 The leading dimension of the array WORK. LDWORK
 >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

 WORK1 (workspace)
 dimension(N) If JOB = 'E', WORK1 is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of an eigenvalue
 lambda is defined as

 S(lambda) = |v'*u| / (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of T
 corresponding to lambda; v' denotes the conjugate-transpose
 of v, and norm(u) denotes the Euclidean norm. These recipro-
 cal condition numbers always lie between zero (very badly
 conditioned) and one (very well conditioned). If n = 1,
 S(lambda) is defined to be 1.

 An approximate error bound for a computed eigenvalue W(i) is
 given by

 EPS * norm(T) / S(i)

 where EPS is the machine precision.

 The reciprocal of the condition number of the right eigen-
 vector u corresponding to lambda is defined as follows. Sup-
 pose

 T = (lambda c)
 (0 T22)

 Then the reciprocal condition number is

 SEP(lambda, T22) = sigma-min(T22 - lambda*I)

 where sigma-min denotes the smallest singular value. We
 approximate the smallest singular value by the reciprocal of
 an estimate of the one-norm of the inverse of T22 -
 lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).

 An approximate error bound for a computed right eigenvector
 VR(i) is given by

 EPS * norm(T) / SEP(i)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE DTRSV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 SUBROUTINE DTRSV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, LDA, INCY
 DOUBLE PRECISION A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TRSV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TRSV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, LDA, INCY
 REAL(8), DIMENSION(:) :: Y
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtrsv(char uplo, char transa, char diag, int n, double
 *a, int lda, double *y, int incy);

 void dtrsv_64(char uplo, char transa, char diag, long n,
 double *a, long lda, double *y, long incy);

PURPOSE

 dtrsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular matrix.
 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced. Before entry with UPLO = 'L' or 'l', the
 leading n by n lower triangular part of the array
 A must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-

 enced. Note that when DIAG = 'U' or 'u', the
 diagonal elements of A are not referenced either,
 but are assumed to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrsyl - solve the real Sylvester matrix equation

SYNOPSIS

 SUBROUTINE DTRSYL(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
 SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
 DOUBLE PRECISION SCALE
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE DTRSYL_64(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 LDC, SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 INTEGER*8 ISGN, M, N, LDA, LDB, LDC, INFO
 DOUBLE PRECISION SCALE
 DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE TRSYL(TRANA, TRANB, ISGN, M, N, A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 INTEGER :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL(8) :: SCALE
 REAL(8), DIMENSION(:,:) :: A, B, C

 SUBROUTINE TRSYL_64(TRANA, TRANB, ISGN, M, N, A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 INTEGER(8) :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL(8) :: SCALE
 REAL(8), DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void dtrsyl(char trana, char tranb, int isgn, int m, int n,
 double *a, int lda, double *b, int ldb, double *c,
 int ldc, double *scale, int *info);

 void dtrsyl_64(char trana, char tranb, long isgn, long m,
 long n, double *a, long lda, double *b, long ldb,
 double *c, long ldc, double *scale, long *info);

PURPOSE

 dtrsyl solves the real Sylvester matrix equation:

 op(A)*X + X*op(B) = scale*C or
 op(A)*X - X*op(B) = scale*C,

 where op(A) = A or A**T, and A and B are both upper quasi-
 triangular. A is M-by-M and B is N-by-N; the right hand side
 C and the solution X are M-by-N; and scale is an output
 scale factor, set <= 1 to avoid overflow in X.

 A and B must be in Schur canonical form (as returned by
 SHSEQR), that is, block upper triangular with 1-by-1 and 2-
 by-2 diagonal blocks; each 2-by-2 diagonal block has its
 diagonal elements equal and its off-diagonal elements of
 opposite sign.

ARGUMENTS

 TRANA (input)
 Specifies the option op(A):
 = 'N': op(A) = A (No transpose)
 = 'T': op(A) = A**T (Transpose)
 = 'C': op(A) = A**H (Conjugate transpose = Tran-
 spose)

 TRANB (input)
 Specifies the option op(B):
 = 'N': op(B) = B (No transpose)
 = 'T': op(B) = B**T (Transpose)
 = 'C': op(B) = B**H (Conjugate transpose = Tran-
 spose)

 ISGN (input)
 Specifies the sign in the equation:
 = +1: solve op(A)*X + X*op(B) = scale*C
 = -1: solve op(A)*X - X*op(B) = scale*C

 M (input) The order of the matrix A, and the number of rows
 in the matrices X and C. M >= 0.

 N (input) The order of the matrix B, and the number of
 columns in the matrices X and C. N >= 0.

 A (input) The upper quasi-triangular matrix A, in Schur
 canonical form.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input) The upper quasi-triangular matrix B, in Schur
 canonical form.

 LDB (input)

 The leading dimension of the array B. LDB >=
 max(1,N).

 C (input/output)
 On entry, the M-by-N right hand side matrix C. On
 exit, C is overwritten by the solution matrix X.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M)

 SCALE (output)
 The scale factor, scale, set <= 1 to avoid over-
 flow in X.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: A and B have common or very close eigen-
 values; perturbed values were used to solve the
 equation (but the matrices A and B are unchanged).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrti2 - compute the inverse of a real upper or lower tri-
 angular matrix

SYNOPSIS

 SUBROUTINE DTRTI2(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DTRTI2_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE TRTI2(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TRTI2_64(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtrti2(char uplo, char diag, int n, double *a, int lda,
 int *info);

 void dtrti2_64(char uplo, char diag, long n, double *a, long
 lda, long *info);

PURPOSE

 dtrti2 computes the inverse of a real upper or lower tri-
 angular matrix.

 This is the Level 2 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 Specifies whether the matrix A is upper or lower
 triangular. = 'U': Upper triangular
 = 'L': Lower triangular

 DIAG (input)
 Specifies whether or not the matrix A is unit tri-
 angular. = 'N': Non-unit triangular
 = 'U': Unit triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 On exit, the (triangular) inverse of the original
 matrix, in the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrtri - compute the inverse of a real upper or lower tri-
 angular matrix A

SYNOPSIS

 SUBROUTINE DTRTRI(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 SUBROUTINE DTRTRI_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION A(LDA,*)

 F95 INTERFACE
 SUBROUTINE TRTRI(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TRTRI_64(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtrtri(char uplo, char diag, int n, double *a, int lda,
 int *info);

 void dtrtri_64(char uplo, char diag, long n, double *a, long
 lda, long *info);

PURPOSE

 dtrtri computes the inverse of a real upper or lower tri-
 angular matrix A.

 This is the Level 3 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1. On exit, the
 (triangular) inverse of the original matrix, in
 the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dtrtrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE DTRTRS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 SUBROUTINE DTRTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 DOUBLE PRECISION A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRTRS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 SUBROUTINE TRTRS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL(8), DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void dtrtrs(char uplo, char transa, char diag, int n, int
 nrhs, double *a, int lda, double *b, int ldb, int
 *info);

 void dtrtrs_64(char uplo, char transa, char diag, long n,
 long nrhs, double *a, long lda, double *b, long
 ldb, long *info);

PURPOSE

 dtrtrs solves a triangular system of the form
 where A is a triangular matrix of order N, and B is an N-
 by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A

 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtzrqf - routine is deprecated and has been replaced by rou-
 tine STZRZF

SYNOPSIS

 SUBROUTINE DTZRQF(M, N, A, LDA, TAU, INFO)

 INTEGER M, N, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*)

 SUBROUTINE DTZRQF_64(M, N, A, LDA, TAU, INFO)

 INTEGER*8 M, N, LDA, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*)

 F95 INTERFACE
 SUBROUTINE TZRQF(M, N, A, [LDA], TAU, [INFO])

 INTEGER :: M, N, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TZRQF_64(M, N, A, [LDA], TAU, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 REAL(8), DIMENSION(:) :: TAU
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtzrqf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dtzrqf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dtzrqf routine is deprecated and has been replaced by rou-
 tine STZRZF.

 STZRQF reduces the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations.

 The upper trapezoidal matrix A is factored as
 A = (R 0) * Z,

 where Z is an N-by-N orthogonal matrix and R is an M-by-M
 upper triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= M.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the
 orthogonal matrix Z as a product of M elementary
 reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.

 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 dtzrzf - reduce the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations

SYNOPSIS

 SUBROUTINE DTZRZF(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE DTZRZF_64(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TZRZF([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 SUBROUTINE TZRZF_64([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: TAU, WORK
 REAL(8), DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void dtzrzf(int m, int n, double *a, int lda, double *tau,
 int *info);

 void dtzrzf_64(long m, long n, double *a, long lda, double
 *tau, long *info);

PURPOSE

 dtzrzf reduces the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations.

 The upper trapezoidal matrix A is factored as

 A = (R 0) * Z,
 where Z is an N-by-N orthogonal matrix and R is an M-by-M
 upper triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the
 orthogonal matrix Z as a product of M elementary
 reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.
 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dvbrmm - variable block sparse row format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE DVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DVBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL*8 ALPHA, BETA
 REAL*8, DIMENSION(:) :: VAL
 REAL*8, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL*8 ALPHA, BETA
 REAL*8, DIMENSION(:) :: VAL
 REAL*8, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are matrices,
 A is a matrix represented in variable block sparse row format
 and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.
 INDX() integer array of length BNNZ+1 where BNNZ is the number of
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block

 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
 rows in matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 CPNTR() integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is
 the number of columns in matrix A.
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. For a general matrix (DESCRA(1)=0), array CPNTR can be
 different from RPNTR. For all other matrix types, RPNTR
 must equal CPNTR and a single array can be passed for both
 arguments.

 2. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

 SUBROUTINE SVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 dvbrsm - variable block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE DVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE DVBRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION, DIMENSION(:) :: VAL, DV
 DOUBLE PRECISION, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in variable block sparse row
 format and op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array containing the block entries of the block
 diagonal matrix D. The size of the J-th block is
 RPNTR(J+1)-RPNTR(J) and each block contains matrix
 entries stored column-major. The total length of
 array DV is given by the formula:

 sum over J from 1 to MB:
 ((RPNTR(J+1)-RPNTR(J))*(RPNTR(J+1)-RPNTR(J)))

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal block
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible

 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.

 INDX() integer array of length BNNZ+1 where BNNZ is the number
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block
 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A. Block column
 indices MUST be sorted in increasing order for each block
 row.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number
 of rows in square triangular matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments

 CPNTR() integer array of length MB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(MB+1) is set to M+CPNTR(1).
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments
 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 M = RPNTR(MB+1)-RPNTR(1).

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the VBR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,
 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 SUBROUTINE DVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dwiener - perform Wiener deconvolution of two signals

SYNOPSIS

 SUBROUTINE DWIENER(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER N_POINTS, ISW, IERR
 DOUBLE PRECISION ACOR(*), XCOR(*), FLTR(*), EROP(*)

 SUBROUTINE DWIENER_64(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER*8 N_POINTS, ISW, IERR
 DOUBLE PRECISION ACOR(*), XCOR(*), FLTR(*), EROP(*)

 F95 INTERFACE
 SUBROUTINE WIENER(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER :: N_POINTS, ISW, IERR
 REAL(8), DIMENSION(:) :: ACOR, XCOR, FLTR, EROP

 SUBROUTINE WIENER_64(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER(8) :: N_POINTS, ISW, IERR
 REAL(8), DIMENSION(:) :: ACOR, XCOR, FLTR, EROP

 C INTERFACE
 #include <sunperf.h>

 void dwiener(int n_points, double *acor, double *xcor, dou-
 ble *fltr, double *erop, int *isw, int *ierr);

 void dwiener_64(long n_points, double *acor, double *xcor,
 double *fltr, double *erop, long *isw, long
 *ierr);

PURPOSE

 dwiener performs Wiener deconvolution of two signals.

ARGUMENTS

 N_POINTS (input)
 On entry, the number of points in the input corre-
 lations. Unchanged on exit.
 ACOR (input)
 On entry, autocorrelation coefficients. Unchanged
 on exit.

 XCOR (input)
 On entry, cross-correlation coefficients.
 Unchanged on exit.

 FLTR (output)
 On exit, filter coefficients.

 EROP (output)
 On exit, the prediction error.

 ISW (input)
 On entry, if ISW .EQ. 0 then perform spiking
 deconvolution, otherwise perform general deconvo-
 lution. Unchanged on exit.

 IERR (output)
 On exit, the deconvolution was successful iff IERR
 .EQ. 0, otherwise there was an error.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dzasum - Return the sum of the absolute values of a vector
 x.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DZASUM(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER N, INCX

 DOUBLE PRECISION FUNCTION DZASUM_64(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 REAL(8) FUNCTION ASUM([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER :: N, INCX

 REAL(8) FUNCTION ASUM_64([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 double dzasum(int n, doublecomplex *x, int incx);

 double dzasum_64(long n, doublecomplex *x, long incx);

PURPOSE

 dzasum Return the sum of the absolute values of the elements
 of x where x is an n-vector. This is the sum of the abso-
 lute values of the real and complex elements and not the sum
 of the squares of the real and complex elements.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 dznrm2 - Return the Euclidian norm of a vector.

SYNOPSIS

 DOUBLE PRECISION FUNCTION DZNRM2(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER N, INCX

 DOUBLE PRECISION FUNCTION DZNRM2_64(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 REAL(8) FUNCTION NRM2([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER :: N, INCX

 REAL(8) FUNCTION NRM2_64([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 double dznrm2(int n, doublecomplex *x, int incx);

 double dznrm2_64(long n, doublecomplex *x, long incx);

PURPOSE

 dznrm2 Return the Euclidian norm of a vector x where x is an
 n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 ezfftb - computes a periodic sequence from its Fourier coef-
 ficients. EZFFTB is a simplified but slower version of
 RFFTB.

SYNOPSIS

 SUBROUTINE EZFFTB(N, R, AZERO, A, B, WSAVE)

 INTEGER N
 REAL AZERO
 REAL R(*), A(*), B(*), WSAVE(*)

 SUBROUTINE EZFFTB_64(N, R, AZERO, A, B, WSAVE)

 INTEGER*8 N
 REAL AZERO
 REAL R(*), A(*), B(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE EZFFTB(N, R, AZERO, A, B, WSAVE)

 INTEGER :: N
 REAL :: AZERO
 REAL, DIMENSION(:) :: R, A, B, WSAVE

 SUBROUTINE EZFFTB_64(N, R, AZERO, A, B, WSAVE)

 INTEGER(8) :: N
 REAL :: AZERO
 REAL, DIMENSION(:) :: R, A, B, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void ezfftb(int n, float *r, float azero, float *a, float
 *b, float *wsave);

 void ezfftb_64(long n, float *r, float azero, float *a,
 float *b, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be synthesized. The
 method is most efficient when N is the product of
 small primes. N >= 0.

 R (output)
 On exit, the Fourier synthesis of the inputs.
 AZERO (input)
 On entry, the constant Fourier coefficient A0.
 Unchanged on exit.

 A (input/output)
 On entry, arrays that contain the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 B (input/output)
 On entry, arrays that contain the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15), initialized by EZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 ezfftf - computes the Fourier coefficients of a periodic
 sequence. EZFFTF is a simplified but slower version of
 RFFTF.

SYNOPSIS

 SUBROUTINE EZFFTF(N, R, AZERO, A, B, WSAVE)

 INTEGER N
 REAL AZERO
 REAL R(*), A(*), B(*), WSAVE(*)

 SUBROUTINE EZFFTF_64(N, R, AZERO, A, B, WSAVE)

 INTEGER*8 N
 REAL AZERO
 REAL R(*), A(*), B(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE EZFFTF(N, R, AZERO, A, B, WSAVE)

 INTEGER :: N
 REAL :: AZERO
 REAL, DIMENSION(:) :: R, A, B, WSAVE

 SUBROUTINE EZFFTF_64(N, R, AZERO, A, B, WSAVE)

 INTEGER(8) :: N
 REAL :: AZERO
 REAL, DIMENSION(:) :: R, A, B, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void ezfftf(int n, float *r, float azero, float *a, float
 *b, float *wsave);

 void ezfftf_64(long n, float *r, float azero, float *a,
 float *b, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is the product of
 small primes. N >= 0.

 R (output)
 A real array of length N containing the sequence
 to be transformed. On exit, R is unchanged.

 AZERO (output)
 On exit, the sum from i=1 to i=n of r(i)/n.

 A (input/output)
 On entry, arrays that contain the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 B (input/output)
 On entry, arrays that contain the remaining
 Fourier coefficients. On exit, these arrays are
 unchanged.

 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15), initialized by EZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 ezffti - initializes the array WSAVE, which is used in both
 EZFFTF and EZFFTB.

SYNOPSIS

 SUBROUTINE EZFFTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE EZFFTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE EZFFTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE EZFFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void ezffti(int n, float *wsave);

 void ezffti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array with a dimension of at least (3
 * N + 15). The same work array can be used for
 both EZFFTF and EZFFTB as long as N remains
 unchanged. Different WSAVE arrays are required
 for different values of N. This initialization

 does not have to be repeated between calls to
 EZFFTF or EZFFTB as long as N and WSAVE remain
 unchanged, thus subsequent transforms can be
 obtained faster than the first.

Contents

NAME●

OVERVIEW●

MAPPING●

NOTES●

NAME

 fft - Fast Fourier transform subroutines

OVERVIEW

 The signal processing software in Sun Performance Library
 includes a set of routines based on public domain packages
 FFTPACK and VFFPACK that computes the Fast Fourier
 Transform. These routines are now being replaced by a new
 interface (Perflib interface).

MAPPING

 Below is a mapping of routines from the FFTPACK interface
 and the new Perflib interface. See individual man pages for
 more detail.

 FFTPACK interface Perflib interface

 RFFTF (DFFTF) SFFTC (DFFTZ)
 RFFTB (DFFTB) CFFTS (ZFFTD)
 CFFTF (ZFFTF) CFFTC (ZFFTZ)
 EZFFTF (DEZFFTF) SFFTC (DFFTZ)
 EZFFTB (DEZFFTB) CFFTS (ZFFTD)
 CFFTB (ZFFTB) CFFTC (ZFFTZ)
 RFFT2F (DFFT2F) SFFT2C (DFFT2Z)
 RFFT2B (DFFT2B) CFFT2S (ZFFT2D)
 CFFT2F (ZFFT2F) CFFT2C (ZFFT2Z)
 CFFT2B (ZFFT2B) CFFT2C (ZFFT2Z)
 RFFT3F (DFFT3F) SFFT3C (DFFT3Z)
 RFFT3B (DFFT3B) CFFT3S (ZFFT3D)
 CFFT3B (ZFFT3B) CFFT3C (ZFFT3Z)
 CFFT3F (ZFFT3F) CFFT3C (ZFFT3Z)
 VCFFTF (VZFFTF) CFFTCM (ZFFTZM)
 VCFFTB (VZFFTB) CFFTCM (ZFFTZM)
 VRFFTF (VDFFTF) SFFTCM (DFFTZM)
 VRFFTB (VDFFTB) CFFTSM (ZFFTDM)
 RFFTI (DFFTI) SFFTC (DFFTZ), CFFTS (ZFFTD)
 CFFTI (ZFFTI) CFFTC (ZFFTZ)
 EZFFTI (DEZFFTI) SFFTC (DFFTZ), CFFTS (ZFFTD)
 RFFT2I (DFFT2I) SFFTC2 (DFFTZ2), CFFTS2 (ZFFTD2)
 RFFT3I (DFFT3I) SFFTC3 (DFFTZ3), CFFTS3 (ZFFTD3)
 CFFT2I (ZFFT2I) CFFTC2 (ZFFTZ2)
 CFFT3I (ZFFT3I) CFFTC3 (ZFFTZ3)
 VCFFTI (VZFFTI) CFFTCM (ZFFTZM)

 VRFFTI (VDFFTI) SFFTCM (DFFTZM), CFFTSM (ZFFTDM)

NOTES

 Unlike the FFTPACK interface, the Perflib interface does not
 provide separate routines for initialization. Computation
 and initialization can be selected by an argument in the
 calling sequence of each routine. Similar to the FFTPACK
 routines, the weight and factor tables need to be initial-
 ized once for a particular transform length. Once these
 tables are initialized, they can be used repeatedly to com-
 pute the forward and inverse tranforms for different data
 sets until, of course, the transform length is changed. The
 appropriate transform routine is then called to initialize
 the tables for the new length.

 The Perflib interface gives the user the option of computing
 the FFT in-place (input overwritten by transform results) or
 out-of-place (input unchanged) in every routine. When an
 out-of-place transform is requested, the input and output
 arrays must not overlap in memory. In-place transforms
 require that there be perfect overlay between the input and
 output arrays. That is, the arrays must begin at the same
 memory location. The routines assume (and therefore do not
 check) that these conditions are satisfied. In some cases,
 the dimension(s) of the input and output arrays are related
 to each other. Below is a summary of requirements of the
 array dimensions. LDX1 and LDX are leading dimensions of
 the input arrays and LDY1 and LDY are leading dimensions of
 the output arrays. LDX2 and LDY2 are the second dimensions
 of the input and output arrays, respectively. N1 and N2 are
 the first and second actual dimensions of the problem.

 Routine name in-place out-of-place

 SFFTCM, DFFTZM LDX = 2*LDY LDX >= N1
 LDY >= N1/2+1 LDY >= N1/2+1

 CFFTSM, ZFFTDM LDX >= N1/2+1 LDX >= N1/2+1
 LDY = 2*LDX LDY >= N1

 CFFTCM, ZFFTZM LDX >= N1 LDX >= N1
 LDY = LDX LDY >= N1

 SFFTC2, DFFTZ2 LDX = 2*LDY LDX >= N1
 LDY >= N1/2+1 LDY >= N1/2+1

 CFFTS2, ZFFTD2 LDX >= N1/2+1 LDX >= N1/2+1
 LDY = 2*LDX LDY >= 2*LDX; LDY is even

 CFFTC2, ZFFTZ2 LDX >= N1 LDX >= N1
 LDY = LDX LDY >= N1

 CFFTS3, ZFFTD3 LDX1 >= N1/2+1 LDX1 >= N1/2+1
 LDX2 >= N2 LDX2 >= N2
 LDY1 = 2*LDX1 LDY1 >= 2*LDX1; LDY1 is
 even
 LDY2 = LDX2 LDY2 >= N2

 CFFTC3, ZFFTZ3 LDX1 >= N1 LDX1 >= N1
 LDX2 >= N2 LDX2 >= N2
 LDY1 = LDX1 LDY1 >= N1

 LDY2 = LDX2 LDY2 >= N2

 SFFTC3, DFFTZ3 LDX1 = 2*LDY1 LDX1 >= N1
 LDX2 >= N2 LDX2 >= N2
 LDY1 >= N1/2+1 LDY1 >= N1/2+1
 LDY2 = LDX2 LDY2 >= N2

 In routines that compute transforms between complex and real
 data type such as SFFTC2 or CFFTS3 even though the transform
 length is N1, only (N1/2+1) complex data points are refer-
 enced or computed. These data points make up the
 positive-frequency half of the spectrum of the Discrete
 Fourier Transform. The remaining N1-(N1/2+1) data points
 can be easily derived since they are complex conjugates and
 therefore are not stored or referenced.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 icamax - return the index of the element with largest abso-
 lute value.

SYNOPSIS

 INTEGER FUNCTION ICAMAX(N, X, INCX)

 COMPLEX X(*)
 INTEGER N, INCX

 INTEGER*8 FUNCTION ICAMAX_64(N, X, INCX)

 COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 INTEGER FUNCTION IAMAX([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER :: N, INCX

 INTEGER(8) FUNCTION IAMAX_64([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 int icamax(int n, complex *x, int incx);

 long icamax_64(long n, complex *x, long incx);

PURPOSE

 icamax return the index of the element in x with largest
 absolute value where x is an n-vector and absolute value is
 defined as the sum of the absolute value of the real part
 and the absolute value of the imaginary part.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

NOTES

 If the vector contains all NaNs, the function returns 1. If
 the vector contains valid complex numbers and one or more
 NaNs, the routine returns the index of the element contain-
 ing the largest absolute value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 idamax - return the index of the element with largest abso-
 lute value.

SYNOPSIS

 INTEGER FUNCTION IDAMAX(N, X, INCX)

 INTEGER N, INCX
 DOUBLE PRECISION X(*)

 INTEGER*8 FUNCTION IDAMAX_64(N, X, INCX)

 INTEGER*8 N, INCX
 DOUBLE PRECISION X(*)

 F95 INTERFACE
 INTEGER FUNCTION IAMAX([N], X, [INCX])

 INTEGER :: N, INCX
 REAL(8), DIMENSION(:) :: X

 INTEGER(8) FUNCTION IAMAX_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL(8), DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 int idamax(int n, double *x, int incx);

 long idamax_64(long n, double *x, long incx);

PURPOSE

 idamax return the index of the element in x with largest
 absolute value where x is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

NOTES

 If the vector contains all NaNs, the function returns 1. If
 the vector contains valid floating point numbers and one or
 more NaNs, the routine returns the index of the lement con-
 taining the largest absolute value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ilaenv - The name of the calling subroutine, in either upper
 case or lower case.

SYNOPSIS

 INTEGER FUNCTION ILAENV(ISPEC, NAME, OPTS, N1, N2, N3, N4)

 CHARACTER * 6 NAME CHARACTER * 4 OPTS
 INTEGER ISPEC, N1, N2, N3, N4

 INTEGER*8 FUNCTION ILAENV_64(ISPEC, NAME, OPTS, N1, N2, N3, N4)

 CHARACTER * 6 NAME CHARACTER * 4 OPTS
 INTEGER*8 ISPEC, N1, N2, N3, N4

 F95 INTERFACE
 INTEGER FUNCTION ILAENV(ISPEC, NAME, OPTS, N1, N2, N3, N4)

 CHARACTER(LEN=6) :: NAME CHARACTER(LEN=4) :: OPTS
 INTEGER :: ISPEC, N1, N2, N3, N4

 INTEGER(8) FUNCTION ILAENV_64(ISPEC, NAME, OPTS, N1, N2, N3, N4)

 CHARACTER(LEN=6) :: NAME CHARACTER(LEN=4) :: OPTS
 INTEGER(8) :: ISPEC, N1, N2, N3, N4

 C INTERFACE
 #include <sunperf.h>

 int ilaenv(int ispec, char *name, char *opts, int n1, int
 n2, int n3, int n4);

 long ilaenv_64(long ispec, char *name, char *opts, long n1,
 long n2, long n3, long n4);

PURPOSE

 ilaenv is called from the LAPACK routines to choose
 problem-dependent parameters for the local environment. See
 ISPEC for a description of the parameters.

 This version provides a set of parameters which should give
 good, but not optimal, performance on many of the currently
 available computers. Users are encouraged to modify this
 subroutine to set the tuning parameters for their particular
 machine using the option and problem size information in the
 arguments.
 This routine will not function correctly if it is converted
 to all lower case. Converting it to all upper case is
 allowed.

ARGUMENTS

 ISPEC (input)
 Specifies the parameter to be returned as the
 value of ILAENV. = 1: the optimal blocksize; if
 this value is 1, an unblocked algorithm will give
 the best performance. = 2: the minimum block size
 for which the block routine should be used; if the
 usable block size is less than this value, an
 unblocked routine should be used. = 3: the cross-
 over point (in a block routine, for N less than
 this value, an unblocked routine should be used) =
 4: the number of shifts, used in the nonsymmetric
 eigenvalue routines = 5: the minimum column dimen-
 sion for blocking to be used; rectangular blocks
 must have dimension at least k by m, where k is
 given by ILAENV(2,...) and m by ILAENV(5,...) =
 6: the crossover point for the SVD (when reducing
 an m by n matrix to bidiagonal form, if
 max(m,n)/min(m,n) exceeds this value, a QR factor-
 ization is used first to reduce the matrix to a
 triangular form.) = 7: the number of processors
 = 8: the crossover point for the multishift QR and
 QZ methods for nonsymmetric eigenvalue problems.
 = 9: maximum size of the subproblems at the bottom
 of the computation tree in the divide-and-conquer
 algorithm (used by xGELSD and xGESDD) =10: ieee
 NaN arithmetic can be trusted not to trap
 =11: infinity arithmetic can be trusted not to
 trap

 NAME (input)
 The name of the calling subroutine, in either
 upper case or lower case.

 OPTS (input)
 The character options to the subroutine NAME, con-
 catenated into a single character string. For
 example, UPLO = 'U', TRANS = 'T', and DIAG = 'N'
 for a triangular routine would be specified as
 OPTS = 'UTN'.

 N1 (input)
 INTEGER

 N2 (input)
 INTEGER
 N3 (input)
 INTEGER

 N4 (input)
 INTEGER
 N1, N2, N3, N4 are problem dimensions for the sub-
 routine NAME; these may not all be required.
 >= 0: the value of the parameter specified by
 ISPEC
 < 0: if ILAENV = -k, the k-th argument had an
 illegal value.
 < 0: if ILAENV = -k, the k-th argument had an
 illegal value.

FURTHER DETAILS

 The following conventions have been used when calling ILAENV
 from the LAPACK routines:
 1) OPTS is a concatenation of all of the character options
 to
 subroutine NAME, in the same order that they appear in
 the
 argument list for NAME, even if they are not used in
 determining
 the value of the parameter specified by ISPEC.
 2) The problem dimensions N1, N2, N3, N4 are specified in
 the order
 that they appear in the argument list for NAME. N1 is
 used
 first, N2 second, and so on, and unused problem dimen-
 sions are
 passed a value of -1.
 3) The parameter value returned by ILAENV is checked for
 validity in
 the calling subroutine. For example, ILAENV is used to
 retrieve
 the optimal blocksize for STRTRI as follows:

 NB = ILAENV(1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1)
 IF(NB.LE.1) NB = MAX(1, N)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 isamax - return the index of the element with largest abso-
 lute value.

SYNOPSIS

 INTEGER FUNCTION ISAMAX(N, X, INCX)

 INTEGER N, INCX
 REAL X(*)

 INTEGER*8 FUNCTION ISAMAX_64(N, X, INCX)

 INTEGER*8 N, INCX
 REAL X(*)

 F95 INTERFACE
 INTEGER FUNCTION IAMAX([N], X, [INCX])

 INTEGER :: N, INCX
 REAL, DIMENSION(:) :: X

 INTEGER(8) FUNCTION IAMAX_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL, DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 int isamax(int n, float *x, int incx);

 long isamax_64(long n, float *x, long incx);

PURPOSE

 isamax return the index of the element in x with largest
 absolute value where x is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

NOTES

 If the vector contains all NaNs, the function returns 1. If
 the vector contains valid floating point numbers and one or
 more NaNs, the routine returns the index of the element con-
 taining the largest absolute value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 izamax - return the index of the element with largest abso-
 lute value.

SYNOPSIS

 INTEGER FUNCTION IZAMAX(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER N, INCX

 INTEGER*8 FUNCTION IZAMAX_64(N, X, INCX)

 DOUBLE COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 INTEGER FUNCTION IAMAX([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER :: N, INCX

 INTEGER(8) FUNCTION IAMAX_64([N], X, [INCX])

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 int izamax(int n, doublecomplex *x, int incx);

 long izamax_64(long n, doublecomplex *x, long incx);

PURPOSE

 izamax return the index of the element in x with largest
 absolute value where x is an n-vector and absolute value is
 defined as the sum of the absolute value of the real part
 and the absolute value of the imaginary part.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

NOTES

 If the vector contains all NaNs, the function returns 1. If
 the vector contains valid double complex numbers and one or
 more NaNs, the routine returns the index of the element con-
 taining the largest absolute value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 lsame - returns .TRUE. if CA is the same letter as CB
 regardless of case

SYNOPSIS

 LOGICAL FUNCTION LSAME(CA, CB)

 CHARACTER * 1 CA, CB

 LOGICAL*8 FUNCTION LSAME_64(CA, CB)

 CHARACTER * 1 CA, CB

 F95 INTERFACE
 LOGICAL FUNCTION LSAME(CA, CB)

 CHARACTER(LEN=1) :: CA, CB

 LOGICAL(8) FUNCTION LSAME_64(CA, CB)

 CHARACTER(LEN=1) :: CA, CB

 C INTERFACE
 #include <sunperf.h>

 int lsame(char ca, char cb);

 long lsame_64(char ca, char cb);

PURPOSE

 lsame returns .TRUE. if CA is the same letter as CB regard-
 less of case.

ARGUMENTS

 CA (input)
 On entry, CA is a single character to compare with
 CB. Unchanged on exit.

 CB (input)
 On entry, CB is a single character to compare with
 CA. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft2b - compute a periodic sequence from its Fourier coef-
 ficients. The RFFT operations are unnormalized, so a call
 of RFFT2F followed by a call of RFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE RFFT2B(PLACE, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER M, N, LDA, LDB, LWORK
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE RFFT2B_64(PLACE, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N, LDA, LDB, LWORK
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2B(PLACE, [M], [N], A, [LDA], B, [LDB], WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE FFT2B_64(PLACE, [M], [N], A, [LDA], B, [LDB], WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void rfft2b(char place, int m, int n, float *a, int lda,
 float *b, int ldb, float *work, int lwork);

 void rfft2b_64(char place, long m, long n, float *a, long
 lda, float *b, long ldb, float *work, long lwork);

ARGUMENTS

 PLACE (input)
 Character. If PLACE = 'I' or 'i' (for in-place) ,
 the input and output data are stored in array A.
 If PLACE = 'O' or 'o' (for out-of-place), the
 input data is stored in array B while the output
 is stored in A.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most most efficient when N is
 a product of small primes. N >= 0; when N = 0,
 the subroutine returns immediately without chang-
 ing any data.

 A (input/output)
 Real array of dimension (LDA,N). On entry, the
 two-dimensional array A(LDA,N) contains the input
 data to be transformed if an in-place transform is
 requested. Otherwise, it is not referenced. Upon
 exit, results are stored in A(1:M,1:N).

 LDA (input)
 Integer specifying the leading dimension of A. If
 an out-of-place transform is desired LDA >= M.
 Else if an in-place transform is desired LDA >=
 2*(M/2+1).

 B (input/output)
 Real array of dimension (2*LDB, N). On entry, if
 an out-of-place transform is requested B contains
 the input data. Otherwise, B is not referenced.
 B is unchanged upon exit.

 LDB (input)
 Integer. If an out-of-place transform is desired,
 2*LDB is the leading dimension of the array B
 which contains the data to be transformed and
 2*LDB >= 2*(M/2+1). Otherwise it is not refer-
 enced.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by RFFT2I.

 LWORK (input)
 Integer. LWORK >= (M + 2*N + MAX(M, 2*N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft2f - compute the Fourier coefficients of a periodic
 sequence. The RFFT operations are unnormalized, so a call
 of RFFT2F followed by a call of RFFT2B will multiply the
 input sequence by M*N.

SYNOPSIS

 SUBROUTINE RFFT2F(PLACE, FULL, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER M, N, LDA, LDB, LWORK
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE RFFT2F_64(PLACE, FULL, M, N, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER*8 M, N, LDA, LDB, LWORK
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2F(PLACE, FULL, [M], [N], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER :: M, N, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE FFT2F_64(PLACE, FULL, [M], [N], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER(8) :: M, N, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void rfft2f(char place, char full, int m, int n, float *a,
 int lda, float *b, int ldb, float *work, int
 lwork);

 void rfft2f_64(char place, char full, long m, long n, float
 *a, long lda, float *b, long ldb, float *work,

 long lwork);

ARGUMENTS

 PLACE (input)
 Character. If PLACE = 'I' or 'i' (for in-place) ,
 the input and output data are stored in array A.
 If PLACE = 'O' or 'o' (for out-of-place), the
 input data is stored in array B while the output
 is stored in A.

 FULL (input)
 Indicates whether or not to generate the full
 result matrix. 'F' or 'f' will cause RFFT2F to
 generate the full result matrix. Otherwise only a
 partial matrix that takes advantage of symmetry
 will be generated.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most most efficient when N is
 a product of small primes. N >= 0; when N = 0,
 the subroutine returns immediately without chang-
 ing any data.

 A (input/output)
 On entry, a two-dimensional array A(LDA,N) that
 contains the data to be transformed. Upon exit, A
 is unchanged if an out-of-place transform is done.
 If an in-place transform with partial result is
 requested, A(1:(M/2+1)*2,1:N) will contain the
 transformed results. If an in-place transform
 with full result is requested, A(1:2*M,1:N) will
 contain complete transformed results.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA must be even if the
 transformed sequences are to be stored in A.
 If PLACE = ('O' or 'o') LDA >= M
 If PLACE = ('I' or 'i') LDA must be even. If
 FULL = ('F' or 'f'), LDA >= 2*M
 FULL is not ('F' or 'f'), LDA >= (M/2+1)*2
 B (input/output)
 Upon exit, a two-dimensional array B(2*LDB,N) that
 contains the transformed results if an out-of-
 place transform is done. Otherwise, B is not
 used.
 If an out-of-place transform is done and FULL is
 not 'F' or 'f', B(1:(M/2+1)*2,1:N) will contain
 the partial transformed results. If FULL = 'F' or
 'f', B(1:2*M,1:N) will contain the complete
 transformed results.

 LDB (input)
 2*LDB is the leading dimension of the array B. If
 an in-place transform is desired LDB is ignored.

 If PLACE is ('O' or 'o') and
 FULL is ('F' or 'f'), LDB >= M
 FULL is not ('F' or 'f'), LDB >= M/2+1
 Note that even though LDB is used in the argument
 list, 2*LDB is the actual leading dimension of B.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by RFFT2I.

 LWORK (input)
 Integer. LWORK >= (M + 2*N + MAX(M, 2*N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft2i - initialize the array WSAVE, which is used in both
 the forward and backward transforms.

SYNOPSIS

 SUBROUTINE RFFT2I(M, N, WORK)

 INTEGER M, N
 REAL WORK(*)

 SUBROUTINE RFFT2I_64(M, N, WORK)

 INTEGER*8 M, N
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2I(M, N, WORK)

 INTEGER :: M, N
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT2I_64(M, N, WORK)

 INTEGER(8) :: M, N
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void rfft2i(int m, int n, float *work);

 void rfft2i_64(long m, long n, float *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 WORK (input/output)
 On entry, an array of dimension (M + 2*N + MAX(M,
 2*N) + 30) or greater. RFFT2I needs to be called

 only once to initialize array WORK before calling
 RFFT2F and/or RFFT2B if M, N and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft3b - compute a periodic sequence from its Fourier coef-
 ficients. The RFFT operations are unnormalized, so a call
 of RFFT3F followed by a call of RFFT3B will multiply the
 input sequence by M*N*K.

SYNOPSIS

 SUBROUTINE RFFT3B(PLACE, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER M, N, K, LDA, LDB, LWORK
 REAL A(LDA,N,*), B(LDB,N,*), WORK(*)

 SUBROUTINE RFFT3B_64(PLACE, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N, K, LDA, LDB, LWORK
 REAL A(LDA,N,*), B(LDB,N,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3B(PLACE, [M], [N], [K], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N, K, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:,:) :: A, B

 SUBROUTINE FFT3B_64(PLACE, [M], [N], [K], A, [LDA], B, [LDB], WORK,
 LWORK)

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N, K, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void rfft3b(char place, int m, int n, int k, float *a, int
 lda, float *b, int ldb, float *work, int lwork);

 void rfft3b_64(char place, long m, long n, long k, float *a,
 long lda, float *b, long ldb, float *work, long
 lwork);

ARGUMENTS

 PLACE (input)
 Select an in-place ('I' or 'i') or out-of-place
 ('O' or 'o') transform.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most efficient when N is a
 product of small primes. N >= 0; when N = 0, the
 subroutine returns immediately without changing
 any data.

 K (input) Integer specifying the number of planes to be
 transformed. It is most efficient when K is a
 product of small primes. K >= 0; when K = 0, the
 subroutine returns immediately without changing
 any data.

 A (input/output)
 On entry, the three-dimensional array A(LDA,N,K)
 contains the data to be transformed if an in-place
 transform is requested. Otherwise, it is not
 referenced. Upon exit, results are stored in
 A(1:M,1:N,1:K).

 LDA (input)
 Integer specifying the leading dimension of A. If
 an out-of-place transform is desired LDA >= M.
 Else if an in-place transform is desired LDA >=
 2*(M/2+1).

 B (input/output)
 Real array of dimension B(2*LDB,N,K). On entry,
 if an out-of-place transform is requested
 B(1:2*(M/2+1),1:N,1:K) contains the input data.
 Otherwise, B is not referenced. B is unchanged
 upon exit.

 LDB (input)
 If an out-of-place transform is desired, 2*LDB is
 the leading dimension of the array B which con-
 tains the data to be transformed and 2*LDB >=
 2*(M/2+1). Otherwise it is not referenced.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. On input, WORK must have been initialized
 by RFFT3I.

 LWORK (input)
 Integer. LWORK >= (M + 2*(N + K) + 4*K + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft3f - compute the Fourier coefficients of a real periodic
 sequence. The RFFT operations are unnormalized, so a call
 of RFFT3F followed by a call of RFFT3B will multiply the
 input sequence by M*N*K.

SYNOPSIS

 SUBROUTINE RFFT3F(PLACE, FULL, M, N, K, A, LDA, B, LDB, WORK, LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER M, N, K, LDA, LDB, LWORK
 REAL A(LDA,N,*), B(LDB,N,*), WORK(*)

 SUBROUTINE RFFT3F_64(PLACE, FULL, M, N, K, A, LDA, B, LDB, WORK,
 LWORK)

 CHARACTER * 1 PLACE, FULL
 INTEGER*8 M, N, K, LDA, LDB, LWORK
 REAL A(LDA,N,*), B(LDB,N,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3F(PLACE, FULL, [M], [N], [K], A, [LDA], B, [LDB],
 WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER :: M, N, K, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:,:) :: A, B

 SUBROUTINE FFT3F_64(PLACE, FULL, [M], [N], [K], A, [LDA], B, [LDB],
 WORK, LWORK)

 CHARACTER(LEN=1) :: PLACE, FULL
 INTEGER(8) :: M, N, K, LDA, LDB, LWORK
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void rfft3f(char place, char full, int m, int n, int k,
 float *a, int lda, float *b, int ldb, float *work,
 int lwork);

 void rfft3f_64(char place, char full, long m, long n, long

 k, float *a, long lda, float *b, long ldb, float
 *work, long lwork);

ARGUMENTS

 PLACE (input)
 Select an in-place ('I' or 'i') or out-of-place
 ('O' or 'o') transform.

 FULL (input)
 Select a full ('F' or 'f') or partial (' ')
 representation of the results. If the caller
 selects full representation then an MxNxK real
 array will transform to produce an MxNxK complex
 array. If the caller does not select full
 representation then an MxNxK real array will
 transform to a (M/2+1)xNxK complex array that
 takes advantage of the symmetry properties of a
 transformed real sequence.

 M (input) Integer specifying the number of rows to be
 transformed. It is most efficient when M is a
 product of small primes. M >= 0; when M = 0, the
 subroutine returns immediately without changing
 any data.

 N (input) Integer specifying the number of columns to be
 transformed. It is most efficient when N is a
 product of small primes. N >= 0; when N = 0, the
 subroutine returns immediately without changing
 any data.

 K (input) Integer specifying the number of planes to be
 transformed. It is most efficient when K is a
 product of small primes. K >= 0; when K = 0, the
 subroutine returns immediately without changing
 any data.

 A (input/output)
 On entry, a three-dimensional array A(LDA,N,K)
 that contains input data to be transformed. On
 exit, if an in-place transform is done and FULL is
 not 'F' or 'f', A(1:2*(M/2+1),1:N,1:K) will con-
 tain the partial transformed results. If FULL =
 'F' or 'f', A(1:2*M,1:N,1:K) will contain the com-
 plete transformed results.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA must be even if the
 transformed sequences are to be stored in A.
 If PLACE = ('O' or 'o') LDA >= M
 If PLACE = ('I' or 'i') LDA must be even. If
 FULL = ('F' or 'f'), LDA >= 2*M
 FULL is not ('F' or 'f'), LDA >= 2*(M/2+1)

 B (input/output)
 Upon exit, a three-dimensional array B(2*LDB,N,K)
 that contains the transformed results if an out-
 of-place transform is done. Otherwise, B is not
 used.
 If an out-of-place transform is done and FULL is

 not 'F' or 'f', B(1:2*(M/2+1),1:N,1:K) will con-
 tain the partial transformed results. If FULL =
 'F' or 'f', B(1:2*M,1:N,1:K) will contain the com-
 plete transformed results.

 LDB (input)
 2*LDB is the leading dimension of the array B. If
 an in-place transform is desired LDB is ignored.
 If PLACE is ('O' or 'o') and
 FULL is ('F' or 'f'), then LDB >= M
 FULL is not ('F' or 'f'), then LDB >= M/2 + 1
 Note that even though LDB is used in the argument
 list, 2*LDB is the actual leading dimension of B.

 WORK (input/output)
 One-dimensional real array of length at least
 LWORK. WORK must have been initialized by RFFT3I.

 LWORK (input)
 Integer. LWORK >= (M + 2*(N + K) + 4*K + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfft3i - initialize the array WSAVE, which is used in both
 RFFT3F and RFFT3B.

SYNOPSIS

 SUBROUTINE RFFT3I(M, N, K, WORK)

 INTEGER M, N, K
 REAL WORK(*)

 SUBROUTINE RFFT3I_64(M, N, K, WORK)

 INTEGER*8 M, N, K
 REAL WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3I(M, N, K, WORK)

 INTEGER :: M, N, K
 REAL, DIMENSION(:) :: WORK

 SUBROUTINE FFT3I_64(M, N, K, WORK)

 INTEGER(8) :: M, N, K
 REAL, DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void rfft3i(int m, int n, int k, float *work);

 void rfft3i_64(long m, long n, long k, float *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 K (input) Number of planes to be transformed. K >= 0.

 WORK (input/output)

 On entry, an array of dimension (M + 2*(N + K) +
 4*K + 45) or greater. RFFT3I needs to be called
 only once to initialize array WORK before calling
 RFFT3F and/or RFFT3B if M, N, K and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfftb - compute a periodic sequence from its Fourier coeffi-
 cients. The RFFT operations are unnormalized, so a call of
 RFFTF followed by a call of RFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE RFFTB(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE RFFTB_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([N], X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE FFTB_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void rfftb(int n, float *x, float *wsave);

 void rfftb_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the

 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (2 *
 N + 15) or greater and must have been initialized
 by RFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rfftf - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 RFFTF followed by a call of RFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE RFFTF(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE RFFTF_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([N], X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE FFTF_64([N], X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void rfftf(int n, float *x, float *wsave);

 void rfftf_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the

 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (2 *
 N + 15) or greater and must have been initialized
 by RFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 rffti - initialize the array WSAVE, which is used in both
 RFFTF and RFFTB.

SYNOPSIS

 SUBROUTINE RFFTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE RFFTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE FFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void rffti(int n, float *wsave);

 void rffti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. RFFTI needs to be called only once to
 initialize array WORK before calling RFFTF and/or
 RFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 rfftopt - compute the length of the closest fast FFT

SYNOPSIS

 INTEGER FUNCTION RFFTOPT(LEN)

 INTEGER LEN

 INTEGER*8 FUNCTION RFFTOPT_64(LEN)

 INTEGER*8 LEN

 F95 INTERFACE
 INTEGER FUNCTION RFFTOPT(LEN)

 INTEGER :: LEN

 INTEGER(8) FUNCTION RFFTOPT_64(LEN)

 INTEGER(8) :: LEN

 C INTERFACE
 #include <sunperf.h>

 int rfftopt(int len);

 long rfftopt_64(long len);

PURPOSE

 rfftopt computes the length of the closest fast FFT. Fast
 Fourier transform algorithms, including those used in Per-
 formance Library, work best with vector lengths that are
 products of small primes. For example, an FFT of length
 32=2**5 will run faster than an FFT of prime length 31
 because 32 is a product of small primes and 31 is not. If
 your application is such that you can taper or zero pad your
 vector to a larger length then this function may help you
 select a better length and run your FFT faster.

 RFFTOPT will return an integer no smaller than the input
 argument N that is the closest number that is the product of

 small primes. RFFTOPT will return 16 for an input of N=16
 and return 18=2*3*3 for an input of N=17.

 Note that the length computed here is not guaranteed to be
 optimal, only to be a
 product of small primes. Also, the value returned may
 change as the underlying
 FFTs become capable of handling larger primes. For exam-
 ple, passing in N=51 to day will return 52=2*2*13 rather
 than 51=3*17 because the FFTs in Performance Li brary do not
 have fast radix 17 code. In the future, radix 17 code may
 be added
 and then N=51 will return 51.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sasum - Return the sum of the absolute values of a vector x.

SYNOPSIS

 REAL FUNCTION SASUM(N, X, INCX)

 INTEGER N, INCX
 REAL X(*)

 REAL FUNCTION SASUM_64(N, X, INCX)

 INTEGER*8 N, INCX
 REAL X(*)

 F95 INTERFACE
 REAL FUNCTION ASUM([N], X, [INCX])

 INTEGER :: N, INCX
 REAL, DIMENSION(:) :: X

 REAL FUNCTION ASUM_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL, DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 float sasum(int n, float *x, int incx);

 float sasum_64(long n, float *x, long incx);

PURPOSE

 sasum Return the sum of the absolute values of x where x is
 an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 saxpy - compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE SAXPY(N, ALPHA, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 REAL ALPHA
 REAL X(*), Y(*)

 SUBROUTINE SAXPY_64(N, ALPHA, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 REAL ALPHA
 REAL X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE AXPY([N], ALPHA, X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y

 SUBROUTINE AXPY_64([N], ALPHA, X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void saxpy(int n, float alpha, float *x, int incx, float *y,
 int incy);

 void saxpy_64(long n, float alpha, float *x, long incx,
 float *y, long incy);

PURPOSE

 saxpy compute y := alpha * x + y where alpha is a scalar and
 x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 saxpyi - Compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE SAXPYI(NZ, A, X, INDX, Y)

 REAL A
 REAL X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE SAXPYI_64(NZ, A, X, INDX, Y)

 REAL A
 REAL X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE AXPYI([NZ], [A], X, INDX, Y)

 REAL :: A
 REAL, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE AXPYI_64([NZ], [A], X, INDX, Y)

 REAL :: A
 REAL, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 SAXPYI Compute y := alpha * x + y where alpha is a scalar, x
 is a sparse vector, and y is a vector in full storage form

 do i = 1, n
 y(indx(i)) = alpha * x(i) + y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 A (input)
 On entry, A(LPHA) specifies the scaling value.
 Unchanged on exit. A is defaulted to 1.0E0 for F95
 INTERFACE.
 X (input)
 Vector containing the values of the compressed form.
 Unchanged on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbcomm - block coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SBCOMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BJNDX(BNNZ)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBCOMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BJNDX(BNNZ)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BCOMM(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, KB, BNNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BCOMM_64(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, KB, BNNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block coordinate format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the non-zero block entries of A, in any order.
 Each block is stored in standard column-major form.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BJNDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BNNZ number of block entries

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbdimm - block diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SBDIMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBDIMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDIMM(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BDIMM_64(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block diagonal format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LB*LB*BLDA-by-NBDIAG scalar array
 consisting of the NBDIAG nonzero block diagonal in
 any order. Each dense block is stored in standard
 column-major form.

 BLDA leading block dimension of VAL().

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 block diagonals of A in VAL. Lower triangular
 block diagonals have negative offsets, the main
 block diagonal has offset 0, and upper triangular

 block diagonals have positive offset.

 NBDIAG the number of non-zero block diagonals in A.
 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbdism - block diagonal format triangular solve

SYNOPSIS

 SUBROUTINE SBDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE SBDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block diagonal format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of length MB*LB*LB containing the elements of
 the diagonal blocks of the matrix D. The size of each
 square block is LB-by-LB and each block
 is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() Two-dimensional LB*LB*BLDA-by-NBDIAG scalar array

 consisting of the NBDIAG non-zero block diagonal.
 Each dense block is stored in standard column-major form.

 BLDA Leading block dimension of VAL(). Should be greater
 than or equal to MB.

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero block
 diagonals of A in VAL. Lower triangular block diagonals
 have negative offsets, the main block diagonal has offset
 0, and upper triangular block diagonals have positive offset.
 Elements of IBDIAG MUST be sorted in increasing order.

 NBDIAG The number of non-zero block diagonals in A.

 LB Dimension of dense blocks composing A.

 B() Rectangular array with first dimension LDB.

 LDB Leading dimension of B.

 BETA Scalar parameter.

 C() Rectangular array with first dimension LDC.

 LDC Leading dimension of C.

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK array,
 returns this value as the first entry of the WORK array,
 and no error message related to LWORK is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0, the lower or upper triangular part of
 each diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BDI representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sbdsdc - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B

SYNOPSIS

 SUBROUTINE SBDSDC(UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 WORK, IWORK, INFO)

 CHARACTER * 1 UPLO, COMPQ
 INTEGER N, LDU, LDVT, INFO
 INTEGER IQ(*), IWORK(*)
 REAL D(*), E(*), U(LDU,*), VT(LDVT,*), Q(*), WORK(*)

 SUBROUTINE SBDSDC_64(UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 WORK, IWORK, INFO)

 CHARACTER * 1 UPLO, COMPQ
 INTEGER*8 N, LDU, LDVT, INFO
 INTEGER*8 IQ(*), IWORK(*)
 REAL D(*), E(*), U(LDU,*), VT(LDVT,*), Q(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSDC(UPLO, COMPQ, [N], D, E, U, [LDU], VT, [LDVT], [Q], [IQ],
 [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO, COMPQ
 INTEGER :: N, LDU, LDVT, INFO
 INTEGER, DIMENSION(:) :: IQ, IWORK
 REAL, DIMENSION(:) :: D, E, Q, WORK
 REAL, DIMENSION(:,:) :: U, VT

 SUBROUTINE BDSDC_64(UPLO, COMPQ, [N], D, E, U, [LDU], VT, [LDVT], [Q],
 [IQ], [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO, COMPQ
 INTEGER(8) :: N, LDU, LDVT, INFO
 INTEGER(8), DIMENSION(:) :: IQ, IWORK
 REAL, DIMENSION(:) :: D, E, Q, WORK
 REAL, DIMENSION(:,:) :: U, VT

 C INTERFACE

 #include <sunperf.h>

 void sbdsdc(char uplo, char compq, int n, float *d, float
 *e, float *u, int ldu, float *vt, int ldvt, float
 *q, int *iq, int *info);
 void sbdsdc_64(char uplo, char compq, long n, float *d,
 float *e, float *u, long ldu, float *vt, long
 ldvt, float *q, long *iq, long *info);

PURPOSE

 sbdsdc computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = U * S
 * VT, using a divide and conquer method, where S is a diago-
 nal matrix with non-negative diagonal elements (the singular
 values of B), and U and VT are orthogonal matrices of left
 and right singular vectors, respectively. SBDSDC can be used
 to compute all singular values, and optionally, singular
 vectors or singular vectors in compact form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLASD3 for details.

 The code currently call SLASDQ if singular values only are
 desired. However, it can be slightly modified to compute
 singular values using the divide and conquer method.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal.
 = 'L': B is lower bidiagonal.

 COMPQ (input)
 Specifies whether singular vectors are to be com-
 puted as follows:
 = 'N': Compute singular values only;
 = 'P': Compute singular values and compute singu-
 lar vectors in compact form; = 'I': Compute
 singular values and singular vectors.

 N (input) The order of the matrix B. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B.
 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of the bidiagonal matrix whose SVD is
 desired. On exit, E has been destroyed.

 U (output)
 If COMPQ = 'I', then: On exit, if INFO = 0, U
 contains the left singular vectors of the bidiago-

 nal matrix. For other values of COMPQ, U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1.
 If singular vectors are desired, then LDU >= max(
 1, N).

 VT (output)
 If COMPQ = 'I', then: On exit, if INFO = 0, VT'
 contains the right singular vectors of the bidiag-
 onal matrix. For other values of COMPQ, VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1.
 If singular vectors are desired, then LDVT >= max(
 1, N).

 Q (input) If COMPQ = 'P', then: On exit, if INFO = 0, Q
 and IQ contain the left and right singular vectors
 in a compact form, requiring O(N log N) space
 instead of 2*N**2. In particular, Q contains all
 the REAL data in LDQ >= N*(11 + 2*SMLSIZ +
 8*INT(LOG_2(N/(SMLSIZ+1)))) words of memory, where
 SMLSIZ is returned by ILAENV and is equal to the
 maximum size of the subproblems at the bottom of
 the computation tree (usually about 25). For
 other values of COMPQ, Q is not referenced.

 IQ (output)
 If COMPQ = 'P', then: On exit, if INFO = 0, Q
 and IQ contain the left and right singular vectors
 in a compact form, requiring O(N log N) space
 instead of 2*N**2. In particular, IQ contains all
 INTEGER data in LDIQ >= N*(3 +
 3*INT(LOG_2(N/(SMLSIZ+1)))) words of memory, where
 SMLSIZ is returned by ILAENV and is equal to the
 maximum size of the subproblems at the bottom of
 the computation tree (usually about 25). For
 other values of COMPQ, IQ is not referenced.

 WORK (workspace)
 If COMPQ = 'N' then LWORK >= (2 * N). If COMPQ =
 'P' then LWORK >= (6 * N). If COMPQ = 'I' then
 LWORK >= (3 * N**2 + 4 * N).

 IWORK (workspace)
 dimension(8*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an singular
 value. The update process of divide and conquer
 failed.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sbdsqr - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B.

SYNOPSIS

 SUBROUTINE SBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
 LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL D(*), E(*), VT(LDVT,*), U(LDU,*), C(LDC,*), WORK(*)

 SUBROUTINE SBDSQR_64(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
 C, LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL D(*), E(*), VT(LDVT,*), U(LDU,*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSQR(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: VT, U, C

 SUBROUTINE BDSQR_64(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: VT, U, C

 C INTERFACE
 #include <sunperf.h>

 void sbdsqr(char uplo, int n, int ncvt, int nru, int ncc,
 float *d, float *e, float *vt, int ldvt, float *u,
 int ldu, float *c, int ldc, int *info);

 void sbdsqr_64(char uplo, long n, long ncvt, long nru, long
 ncc, float *d, float *e, float *vt, long ldvt,
 float *u, long ldu, float *c, long ldc, long
 *info);

PURPOSE

 sbdsqr computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = Q * S
 * P' (P' denotes the transpose of P), where S is a diagonal
 matrix with non-negative diagonal elements (the singular
 values of B), and Q and P are orthogonal matrices.

 The routine computes S, and optionally computes U * Q, P' *
 VT, or Q' * C, for given real input matrices U, VT, and C.

 See "Computing Small Singular Values of Bidiagonal Matrices
 With Guaranteed High Relative Accuracy," by J. Demmel and W.
 Kahan, LAPACK Working Note #3 (or SIAM J. Sci. Statist. Com-
 put. vol. 11, no. 5, pp. 873-912, Sept 1990) and
 "Accurate singular values and differential qd algorithms,"
 by B. Parlett and V. Fernando, Technical Report CPAM-554,
 Mathematics Department, University of California at Berke-
 ley, July 1992 for a detailed description of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal;
 = 'L': B is lower bidiagonal.

 N (input) The order of the matrix B. N >= 0.

 NCVT (input)
 The number of columns of the matrix VT. NCVT >= 0.

 NRU (input)
 The number of rows of the matrix U. NRU >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B in decreasing order.

 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of the bidiagonal matrix whose SVD is
 desired. On normal exit (INFO = 0), E is
 destroyed. If the algorithm does not converge
 (INFO > 0), D and E will contain the diagonal and
 superdiagonal elements of a bidiagonal matrix
 orthogonally equivalent to the one given as input.
 E(N) is used for workspace.

 VT (input/output)
 On entry, an N-by-NCVT matrix VT. On exit, VT is
 overwritten by P' * VT. VT is not referenced if

 NCVT = 0.

 LDVT (input)
 The leading dimension of the array VT. LDVT >=
 max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.

 U (input/output)
 On entry, an NRU-by-N matrix U. On exit, U is
 overwritten by U * Q. U is not referenced if NRU
 = 0.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,NRU).

 C (input/output)
 On entry, an N-by-NCC matrix C. On exit, C is
 overwritten by Q' * C. C is not referenced if NCC
 = 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,N) if NCC > 0; LDC >=1 if NCC = 0.

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm did not converge; D and E con-
 tain the elements of a bidiagonal matrix which is
 orthogonally similar to the input matrix B; if
 INFO = i, i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbelmm - block Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SBELMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBELMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BELMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block Ellpack format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense
 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.
 LB row and column dimension of the dense blocks composing
 VAL.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbelsm - block Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE SBELSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE SBELSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BELSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense

 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ. The block column indices MUST be sorted
 in increasing order for each block row.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.

 LB row and column dimension of the dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the minimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BEL representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbscmm - block sparse column matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBSCMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(KB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the block entries stored column-major within each
 dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BPNTRB() integer array of length KB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column
 of A.
 BPNTRE() integer array of length KB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX

 of the last block entry of the J-th block column
 of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbscsm - block sparse column format triangular solve

SYNOPSIS

 SUBROUTINE SBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)- BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse column format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.
 The block row indices MUST be sorted
 in increasing order for each block column.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block column of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSC representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL SBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbsrmm - block sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBSRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix A is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting
 of the block entries stored column-major within
 each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.
 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse row format (see for example Y.Saad, "Iterative
 Methods for Sparse Linear Systems", WPS, 1996). Its data
 structure consists of three array instead of the four used
 in the current implementation. The main difference is that
 only one array, IA, containing the pointers to the beginning
 of each block row in the arrays VAL and BINDX is used
 instead of two arrays BPNTRB and BPNTRE. To use the routine
 with this kind of block sparse row format the following
 calling sequence should be used

 CALL SBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sbsrsm - block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE SBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SBSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse row format
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.
 The block column indices MUST be sorted
 in increasing order for each block row.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 2. It is known that there exists another representation of
 the block sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 row format the following calling sequence should be used

 CALL SBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 scasum - Return the sum of the absolute values of a vector
 x.

SYNOPSIS

 REAL FUNCTION SCASUM(N, X, INCX)

 COMPLEX X(*)
 INTEGER N, INCX

 REAL FUNCTION SCASUM_64(N, X, INCX)

 COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 REAL FUNCTION ASUM([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER :: N, INCX

 REAL FUNCTION ASUM_64([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 float scasum(int n, complex *x, int incx);

 float scasum_64(long n, complex *x, long incx);

PURPOSE

 scasum Return the sum of the absolute values of the elements
 of x where x is an n-vector. This is the sum of the abso-
 lute values of the real and complex elements and not the sum
 of the squares of the real and complex elements.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 scnrm2 - Return the Euclidian norm of a vector.

SYNOPSIS

 REAL FUNCTION SCNRM2(N, X, INCX)

 COMPLEX X(*)
 INTEGER N, INCX

 REAL FUNCTION SCNRM2_64(N, X, INCX)

 COMPLEX X(*)
 INTEGER*8 N, INCX

 F95 INTERFACE
 REAL FUNCTION NRM2([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER :: N, INCX

 REAL FUNCTION NRM2_64([N], X, [INCX])

 COMPLEX, DIMENSION(:) :: X
 INTEGER(8) :: N, INCX

 C INTERFACE
 #include <sunperf.h>

 float scnrm2(int n, complex *x, int incx);

 float scnrm2_64(long n, complex *x, long incx);

PURPOSE

 scnrm2 Return the Euclidian norm of a vector x where x is an
 n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NOTES●

NAME

 scnvcor - compute the convolution or correlation of real
 vectors

SYNOPSIS

 SUBROUTINE SCNVCOR(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 INTEGER NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK
 REAL X(*), Y(*), Z(*), WORK(*)

 SUBROUTINE SCNVCOR_64(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 INTEGER*8 NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK
 REAL X(*), Y(*), Z(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE CNVCOR(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 INTEGER :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK
 REAL, DIMENSION(:) :: X, Y, Z, WORK

 SUBROUTINE CNVCOR_64(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M,
 Y, IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 INTEGER(8) :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK
 REAL, DIMENSION(:) :: X, Y, Z, WORK

 C INTERFACE
 #include <sunperf.h>

 void scnvcor(char cnvcor, char four, int nx, float *x, int
 ifx, int incx, int ny, int npre, int m, float *y,
 int ify, int inc1y, int inc2y, int nz, int k,
 float *z, int ifz, int inc1z, int inc2z, float
 *work, int lwork);
 void scnvcor_64(char cnvcor, char four, long nx, float *x,
 long ifx, long incx, long ny, long npre, long m,
 float *y, long ify, long inc1y, long inc2y, long
 nz, long k, float *z, long ifz, long inc1z, long
 inc2z, float *work, long lwork);

PURPOSE

 scnvcor computes the convolution or correlation of real vec-
 tors.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' if convolution is desired, 'R' or 'r'
 if correlation is desired.

 FOUR (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' if the computation should be
 done directly from the definition. The Fourier
 transform method is generally faster, but it may
 introduce noticeable errors into certain results,
 notably when both the filter and data vectors con-
 sist entirely of integers or vectors where ele-
 ments of either the filter vector or a given data
 vector differ significantly in magnitude from the
 1-norm of the vector.

 NX (input)
 Length of the filter vector. NX >= 0. SCNVCOR
 will return immediately if NX = 0.

 X (input)
 Filter vector.

 IFX (input)
 Index of the first element of X. NX >= IFX >= 1.

 INCX (input)
 Stride between elements of the filter vector in X.
 INCX > 0.

 NY (input)
 Length of the input vectors. NY >= 0. SCNVCOR
 will return immediately if NY = 0.
 NPRE (input)
 The number of implicit zeros prepended to the Y
 vectors. NPRE >= 0.

 M (input)
 Number of input vectors. M >= 0. SCNVCOR will
 return immediately if M = 0.

 Y (input)

 Input vectors.

 IFY (input)
 Index of the first element of Y. NY >= IFY >= 1.

 INC1Y (input)
 Stride between elements of the input vectors in Y.
 INC1Y > 0.

 INC2Y (input)
 Stride between the input vectors in Y. INC2Y > 0.

 NZ (input)
 Length of the output vectors. NZ >= 0. SCNVCOR
 will return immediately if NZ = 0. See the Notes
 section below for information about how this argu-
 ment interacts with NX and NY to control circular
 versus end-off shifting.

 K (input)
 Number of Z vectors. K >= 0. If K = 0 then
 SCNVCOR will return immediately. If K < M then
 only the first K input vectors will be processed.
 If K > M then M input vectors will be processed.

 Z (output)
 Result vectors.

 IFZ (input)
 Index of the first element of Z. NZ >= IFZ >= 1.

 INC1Z (input)
 Stride between elements of the output vectors in
 Z. INC1Z > 0.

 INC2Z (input)
 Stride between the output vectors in Z. INC2Z >
 0.

 WORK (input/output)
 Scratch space. Before the first call to SCNVCOR
 with particular values of the integer arguments
 the first element of WORK must be set to zero. If
 WORK is written between calls to SCNVCOR or if
 SCNVCOR is called with different values of the
 integer arguments then the first element of WORK
 must again be set to zero before each call. If
 WORK has not been written and the same values of
 the integer arguments are used then the first ele-
 ment of WORK to zero. This can avoid certain ini-
 tializations that store their results into WORK,
 and avoiding the initialization can make SCNVCOR
 run faster.

 LWORK (input)
 Length of WORK. LWORK >= 4*max(NX,NPRE+NY,NZ)+15.

NOTES

 If any vector overlaps a writable vector, either because of
 argument aliasing or ill-chosen values of the various INC
 arguments, the results are undefined and may vary from one
 run to the next.

 The most common form of the computation, and the case that
 executes fastest, is applying a filter vector X to a series
 of vectors stored in the columns of Y with the result placed
 into the columns of Z. In that case, INCX = 1, INC1Y = 1,
 INC2Y >= NY, INC1Z = 1, INC2Z >= NZ. Another common form is
 applying a filter vector X to a series of vectors stored in
 the rows of Y and store the result in the row of Z, in which
 case INCX = 1, INC1Y >= NY, INC2Y = 1, INC1Z >= NZ, and
 INC2Z = 1.

 A common use of convolution is to compute the products of
 polynomials. The following code uses SCNVCOR to compute the
 product of 1 + 2x + 3x**2 and 4 + 5x + 6x**2:

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 scnvcor2 - compute the convolution or correlation of real
 matrices

SYNOPSIS

 SUBROUTINE SCNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 COMPLEX WORKIN(*)
 INTEGER MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK
 REAL X(LDX,*), Y(LDY,*), Z(LDZ,*)

 SUBROUTINE SCNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 COMPLEX WORKIN(*)
 INTEGER*8 MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK
 REAL X(LDX,*), Y(LDY,*), Z(LDZ,*)

 F95 INTERFACE
 SUBROUTINE CNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX, DIMENSION(:) :: WORKIN
 INTEGER :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 REAL, DIMENSION(:,:) :: X, Y, Z

 SUBROUTINE CNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX, DIMENSION(:) :: WORKIN
 INTEGER(8) :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 REAL, DIMENSION(:,:) :: X, Y, Z
 C INTERFACE
 #include <sunperf.h>

 void scnvcor2(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, int mx, int
 nx, float *x, int ldx, int my, int ny, int mpre,
 int npre, float *y, int ldy, int mz, int nz, float
 *z, int ldz, complex *workin, int lwork);

 void scnvcor2_64(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, long mx,
 long nx, float *x, long ldx, long my, long ny,
 long mpre, long npre, float *y, long ldy, long mz,
 long nz, float *z, long ldz, complex *workin, long
 lwork);

PURPOSE

 scnvcor2 computes the convolution or correlation of real
 matrices.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' to compute convolution, 'R' or 'r' to
 compute correlation.

 METHOD (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' to compute directly from the
 definition.

 TRANSX (input)
 'N' or 'n' if X is the filter matrix, 'T' or 't'
 if transpose(X) is the filter matrix.

 SCRATCHX (input)
 'N' or 'n' if X must be preserved, 'S' or 's' if X
 can be used as scratch space. The contents of X
 are undefined after returning from a call in which
 X is allowed to be used for scratch.

 TRANSY (input)
 'N' or 'n' if Y is the input matrix, 'T' or 't' if
 transpose(Y) is the input matrix.

 SCRATCHY (input)
 'N' or 'n' if Y must be preserved, 'S' or 's' if Y
 can be used as scratch space. The contents of Y
 are undefined after returning from a call in which
 Y is allowed to be used for scratch.

 MX (input)
 Number of rows in the filter matrix. MX >= 0.

 NX (input)
 Number of columns in the filter matrix. NX >= 0.

 X (input) dimension(LDX,NX)
 On entry, the filter matrix. Unchanged on exit if
 SCRATCHX is 'N' or 'n', undefined on exit if
 SCRATCHX is 'S' or 's'.

 LDX (input)
 Leading dimension of the array that contains the
 filter matrix.

 MY (input)
 Number of rows in the input matrix. MY >= 0.

 NY (input)
 Number of columns in the input matrix. NY >= 0.

 MPRE (input)
 Number of implicit zeros to prepend to each row of
 the input matrix. MPRE >= 0.

 NPRE (input)
 Number of implicit zeros to prepend to each column
 of the input matrix. NPRE >= 0.

 Y (input) dimension(LDY,*)
 Input matrix. Unchanged on exit if SCRATCHY is
 'N' or 'n', undefined on exit if SCRATCHY is 'S'
 or 's'.

 LDY (input)
 Leading dimension of the array that contains the
 input matrix.
 MZ (input)
 Number of rows in the output matrix. MZ >= 0.
 SCNVCOR2 will return immediately if MZ = 0.

 NZ (input)
 Number of columns in the output matrix. NZ >= 0.
 SCNVCOR2 will return immediately if NZ = 0.

 Z (output)
 dimension(LDZ,*)
 Result matrix.

 LDZ (input)
 Leading dimension of the array that contains the
 result matrix. LDZ >= MAX(1,MZ).

 WORKIN (input/output)
 (input/scratch) dimension(LWORK)
 On entry for the first call to SCNVCOR2,
 REAL(WORKIN(1)) must contain 0.0. After the first
 call, REAL(WORKIN(1)) must be set to 0.0 iff WOR-
 KIN has been altered since the last call to this
 subroutine or if the sizes of the arrays have
 changed.

 LWORK (input)
 Length of the work vector. The upper bound of the
 workspace length requirement is 2 * (MYC + NYC) +
 15, where MYC = MAX(MAX(MX,NX), MAX(MY,NY)+NPRE)

 and NYC = MAX(MAX(MX,NX), MAX(MY,NY)+MPRE). If
 LWORK indicates a workspace that is too small, the
 routine will allocate its own workspace. If the
 FFT is not used, the value of LWORK is unimpor-
 tant.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 scoomm - coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SCOOMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), JNDX(NNZ)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SCOOMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), JNDX(NNZ)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE COOMM(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER TRANSA, M, K, NNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, JNDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE COOMM_64(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, JNDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in coordinate format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the
 non-zero entries of A, in any order.

 INDX() integer array of length NNZ consisting of the
 corresponding row indices of the entries of A.

 JNDX() integer array of length NNZ consisting of the
 corresponding column indices of the entries of A.

 NNZ number of non-zero elements in A.
 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 scopy - Copy x to y

SYNOPSIS

 SUBROUTINE SCOPY(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 REAL X(*), Y(*)

 SUBROUTINE SCOPY_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 REAL X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE COPY([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 SUBROUTINE COPY_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void scopy(int n, float *x, int incx, float *y, int incy);

 void scopy_64(long n, float *x, long incx, float *y, long
 incy);

PURPOSE

 scopy Copy x to y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (output)
 (1 + (m - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 scscmm - compressed sparse column format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE SCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(K), PNTRE(K)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SCSCMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(K), PNTRE(K)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(K)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the row
 indices of nonzero entries of A.

 PNTRB() integer array of length K such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.
 PNTRE() integer array of length K such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 scscsm - compressed sparse column format triangular solve

SYNOPSIS

 SUBROUTINE SCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SCSCSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse column
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic column scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the row indices
 of nonzero entries of A. (Row indices MUST be sorted in
 increasing order for each column).

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the columns of A such
 that their 2-norms are one. The scaling may improve the

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 accuracy of the computed solution. Corresponding entries of
 VAL are changed only in the particular case. On return DV
 matrix stored as a vector contains the diagonal matrix by
 which the columns have been scaled. UNITD=3 should be used
 for the next calls to the routine with overwritten VAL and
 DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the column
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSC representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSC representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 scsrmm - compressed sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SCSRMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the
 column indices of nonzero entries of A.

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.
 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 scsrsm - compressed sparse row format triangular solve

SYNOPSIS

 SUBROUTINE SCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SCSRSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse row
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of
 the scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the column
 indices of nonzero entries of A (column indices MUST be
 sorted in increasing order for each row)

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSR representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSR representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA, C,
 * LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sdiamm - diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SDIAMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 REAL ALPHA, BETA
 REAL VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SDIAMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 REAL ALPHA, BETA

 F95 INTERFACE

 SUBROUTINE DIAMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIAMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in diagonal format and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)
 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sdiasm - diagonal format triangular solve

SYNOPSIS

 SUBROUTINE SDIASM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 REAL ALPHA, BETA
 REAL DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SDIASM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 REAL ALPHA, BETA
 REAL DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIASM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: DV
 REAL, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIASM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: DV
 REAL, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in diagonal format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)

 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.
 Elements of IDIAG of MUST be sorted in increasing order.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the DIA representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the DIA representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sdisna - compute the reciprocal condition numbers for the
 eigenvectors of a real symmetric or complex Hermitian matrix
 or for the left or right singular vectors of a general m-
 by-n matrix

SYNOPSIS

 SUBROUTINE SDISNA(JOB, M, N, D, SEP, INFO)

 CHARACTER * 1 JOB
 INTEGER M, N, INFO
 REAL D(*), SEP(*)

 SUBROUTINE SDISNA_64(JOB, M, N, D, SEP, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 M, N, INFO
 REAL D(*), SEP(*)

 F95 INTERFACE
 SUBROUTINE DISNA(JOB, M, N, D, SEP, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: M, N, INFO
 REAL, DIMENSION(:) :: D, SEP

 SUBROUTINE DISNA_64(JOB, M, N, D, SEP, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: M, N, INFO
 REAL, DIMENSION(:) :: D, SEP

 C INTERFACE
 #include <sunperf.h>

 void sdisna(char job, int m, int n, float *d, float *sep,
 int *info);

 void sdisna_64(char job, long m, long n, float *d, float
 *sep, long *info);

PURPOSE

 sdisna computes the reciprocal condition numbers for the
 eigenvectors of a real symmetric or complex Hermitian matrix
 or for the left or right singular vectors of a general m-
 by-n matrix. The reciprocal condition number is the 'gap'
 between the corresponding eigenvalue or singular value and
 the nearest other one.

 The bound on the error, measured by angle in radians, in the
 I-th computed vector is given by

 SLAMCH('E') * (ANORM / SEP(I))

 where ANORM = 2-norm(A) = max(abs(D(j))). SEP(I) is not
 allowed to be smaller than SLAMCH('E')*ANORM in order to
 limit the size of the error bound.

 SDISNA may also be used to compute error bounds for eigen-
 vectors of the generalized symmetric definite eigenproblem.

ARGUMENTS

 JOB (input)
 Specifies for which problem the reciprocal condi-
 tion numbers should be computed:
 = 'E': the eigenvectors of a symmetric/Hermitian
 matrix;
 = 'L': the left singular vectors of a general
 matrix;
 = 'R': the right singular vectors of a general
 matrix.

 M (input) The number of rows of the matrix. M >= 0.

 N (input) If JOB = 'L' or 'R', the number of columns of the
 matrix, in which case N >= 0. Ignored if JOB =
 'E'.

 D (input) dimension (min(M,N)) if JOB = 'L' or 'R' The
 eigenvalues (if JOB = 'E') or singular values (if
 JOB = 'L' or 'R') of the matrix, in either
 increasing or decreasing order. If singular
 values, they must be non-negative.

 SEP (output)
 dimension (min(M,N)) if JOB = 'L' or 'R' The
 reciprocal condition numbers of the vectors.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an
 illegal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sdot - compute the dot product of two vectors x and y.

SYNOPSIS

 REAL FUNCTION SDOT(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 REAL X(*), Y(*)

 REAL FUNCTION SDOT_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 REAL X(*), Y(*)

 F95 INTERFACE
 REAL FUNCTION DOT([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 REAL FUNCTION DOT_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 float sdot(int n, float *x, int incx, float *y, int incy);

 float sdot_64(long n, float *x, long incx, float *y, long
 incy);

PURPOSE

 sdot compute the dot product of x and y where x and y are
 n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y.
 Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 sdoti - Compute the indexed dot product.

SYNOPSIS

 REAL FUNCTION SDOTI(NZ, X, INDX, Y)

 REAL X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 REAL FUNCTION SDOTI_64(NZ, X, INDX, Y)

 REAL X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 REAL FUNCTION DOTI([NZ], X, INDX, Y)

 REAL, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 REAL FUNCTION DOTI_64([NZ], X, INDX, Y)

 REAL, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 SDOTI Compute the indexed dot product of a real sparse
 vector x stored in compressed form with a real vector y in
 full storage form.

 dot = 0
 do i = 1, n
 dot = dot + x(i) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sdsdot - compute a constant plus the double precision dot
 product of two single precision vectors x and y

SYNOPSIS

 REAL FUNCTION SDSDOT(N, SB, SX, INCX, SY, INCY)

 INTEGER N, INCX, INCY
 REAL SB
 REAL SX(*), SY(*)

 REAL FUNCTION SDSDOT_64(N, SB, SX, INCX, SY, INCY)

 INTEGER*8 N, INCX, INCY
 REAL SB
 REAL SX(*), SY(*)

 F95 INTERFACE
 REAL FUNCTION SDSDOT(N, SB, SX, INCX, SY, INCY)

 INTEGER :: N, INCX, INCY
 REAL :: SB
 REAL, DIMENSION(:) :: SX, SY

 REAL FUNCTION SDSDOT_64(N, SB, SX, INCX, SY, INCY)

 INTEGER(8) :: N, INCX, INCY
 REAL :: SB
 REAL, DIMENSION(:) :: SX, SY

 C INTERFACE
 #include <sunperf.h>

 float sdsdot(int n, float sb, float *sx, int incx, float
 *sy, int incy);

 float sdsdot_64(long n, float sb, float *sx, long incx,
 float *sy, long incy);

PURPOSE

 sdsdot Computes a constant plus the double precision dot
 product of x and y where x and y are single precision n-
 vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.

 SB (input)
 On entry, the constant that is added to the dot
 product before the result is returned. Unchanged
 on exit.

 SX (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array SX must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of SX. INCX must not be zero. Unchanged
 on exit.

 SY (input)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array SY must contain the vector y.
 Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of SY. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 second - return the user time for a process in seconds

SYNOPSIS

 REAL FUNCTION SECOND()

 REAL FUNCTION SECOND_64()

 F95 INTERFACE
 REAL FUNCTION SECOND()

 REAL FUNCTION SECOND_64()

 C INTERFACE
 #include <sunperf.h>

 float second();

 float second_64();

PURPOSE

 second returns the user time for a process in seconds. This
 version gets the time from the system function ETIME.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sellmm - Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SELLMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 REAL ALPHA, BETA
 REAL VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SELLMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 REAL ALPHA, BETA
 REAL VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in Ellpack format format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)
 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sellsm - Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE SELLSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 REAL ALPHA, BETA
 REAL DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SELLSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 REAL ALPHA, BETA
 REAL DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: DV
 REAL, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: DV
 REAL, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)

 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.
 The column indices MUST be sorted in increasing order
 for each row.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the ELL representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the ELL representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 sfftc - initialize the trigonometric weight and factor
 tables or compute the forward Fast Fourier Transform of a
 real sequence.

SYNOPSIS

 SUBROUTINE SFFTC(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 COMPLEX Y(*)
 REAL X(*), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE SFFTC_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 REAL X(*), SCALE, TRIGS(*), WORK(*)
 COMPLEX Y(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void sfftc_ (int *iopt, int *n, float *scale, float *x, com-
 plex *y, float *trigs, int *ifac, float *work, int
 *lwork, int *ierr);

 void sfftc_64_ (long *iopt, long *n, float *scale, float *x,
 complex *y, float *trigs, long *ifac, float *work,
 long *lwork, long *ierr);

PURPOSE

 sfftc initializes the trigonometric weight and factor tables
 or computes the forward Fast Fourier Transform of a real
 sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)
 In real-to-complex transform of length N, the (N/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) On entry, X is a real array whose first N elements
 contain the sequence to be transformed.

 Y (output)
 Complex array whose first (N/2+1) elements contain
 the transform results. X and Y may be the same
 array starting at the same memory location, in
 which case the dimension of X must be at least
 2*(N/2+1). Otherwise, it is assumed that there is

 no overlap between X and Y in memory.

 TRIGS (input/output)
 Real array of length 2*N that contains the tri-
 gonometric weights. The weights are computed when
 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = -1.
 Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least N. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 sfftc2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional forward Fast Fourier
 Transform of a two-dimensional real array.

SYNOPSIS

 SUBROUTINE SFFTC2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 COMPLEX Y(LDY, *)
 REAL X(LDX, *), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE SFFTC2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL X(LDX, *), SCALE, TRIGS(*), WORK(*)
 COMPLEX Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 & IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void sfftc2_ (int *iopt, int *n1, int *n2, float *scale,
 float *x, int *ldx, complex *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void sfftc2_64_ (long *iopt, long *n1, long *n2, float
 *scale, float *x, long *ldx, complex *y, long

 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 sfftc2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional forward Fast Fourier
 Transform of a two-dimensional real array. In computing the
 two-dimensional FFT, one-dimensional FFTs are computed along
 the columns of the input array. One-dimensional FFTs are
 then computed along the rows of the intermediate results.

 N2-1 N1-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 In real-to-complex transform of length N1, the (N1/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes N2 >= 0. Unchanged on
 exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a complex array of dimensions (LDX, N2) that
 contains input data to be transformed. X and Y
 can be the same array.

 LDX (input)
 Leading dimension of X. LDX >= N1 if X is not the
 same array as Y. Else, LDX = 2*LDY. Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY, N2) that
 contains the transform results. X and Y can be
 the same array starting at the same memory loca-
 tion, in which case the input data are overwritten
 by their transform results. Otherwise, it is
 assumed that there is no overlap between X and Y
 in memory.

 LDY (input)

 Leading dimension of Y. LDY >= N1/2+1 Unchanged
 on exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2) that contains the
 trigonometric weights. The weights are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least MAX(N1,
 2*N2)*NCPUS, where NCPUS is the number of threads
 used to execute the routine. The user can also
 choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1) or (LDX not equal 2*LDY when X and
 Y are same array)
 -5 = (LDY < N1/2+1)
 -6 = (LWORK not equal 0) and (LWORK <
 MAX(N1,2*N2)*NCPUS)
 -7 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 Y(N1/2+1:LDY,:) is used as scratch space. Upon returning,
 the original contents of Y(N1/2+1:LDY,:) will be lost,
 whereas Y(1:N1/2+1,1:N2) contains the transform results.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 sfftc3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional forward Fast Fourier
 Transform of a three-dimensional complex array.

SYNOPSIS

 SUBROUTINE SFFTC3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX Y(LDY1, LDY2, *)
 REAL X(LDX1, LDX2, *), SCALE, TRIGS(*), WORK(*)

 SUBROUTINE SFFTC3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 COMPLEX Y(LDY1, LDY2, *)
 REAL X(LDX1, LDX2, *), SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR
 C INTERFACE
 #include <sunperf.h>

 void sfftc3_ (int *iopt, int *n1, int *n2, int *n3, float
 *scale, float *x, int *ldx1, int *ldx2, complex
 *y, int *ldy1, int *ldy2, float *trigs, int *ifac,
 float *work, int *lwork, int *ierr);

 void sfftc3_64_ (long *iopt, long *n1, long *n2, long *n3,
 float *scale, float *x, long *ldx1, long *ldx2,
 complex *y, long *ldy1, long *ldy2, float *trigs,
 long *ifac, float *work, long *lwork, long *ierr);

PURPOSE

 sfftc3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional forward Fast
 Fourier Transform of a three-dimensional complex array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.
 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a real array of dimensions (LDX1, LDX2, N3)
 that contains input data to be transformed. X can
 be same array as Y.

 LDX1 (input)
 first dimension of X. If X is not same array as
 Y, LDX1 >= N1 Else, LDX1 = 2*LDY1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY1, LDY2,
 N3) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. LDY1 >= N1/2+1 Unchanged on
 exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same
 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Real array of length 2*(N1+N2+N3) that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The
 factors are computed when the routine is called
 with IOPT = 0 and they are used in subsequent
 calls when IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least (MAX(N,2*N2,2*N3)
 + 16*N3) * NCPUS where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1) or (LDX not equal 2*LDY when X
 and Y are same array)
 -6 = (LDX2 < N2)
 -7 = (LDY1 < N1/2+1)
 -8 = (LDY2 < N2) or (LDY2 not equal LDX2 when X
 and Y are same array)
 -9 = (LWORK not equal 0) and (LWORK <
 (MAX(N,2*N2,2*N3) + 16*N3)*NCPUS)
 -10 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 This routine uses Y((N1/2+1)+1:LDY1,:,:) as scratch space.
 Therefore, the original contents of this subarray will be
 lost upon returning from routine while subarray
 Y(1:N1/2+1,1:N2,1:N3) contains the transform results.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 sfftcm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional forward Fast Fourier
 Transform of a set of real data sequences stored in a two-
 dimensional array.

SYNOPSIS

 SUBROUTINE SFFTCM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL X(LDX, *), SCALE, TRIGS(*), WORK(*)
 COMPLEX Y(LDY, *)

 SUBROUTINE SFFTCM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 REAL X(LDX, *), SCALE, TRIGS(*), WORK(*)
 COMPLEX Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER*4, INTENT(IN) :: IOPT
 INTEGER*4, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER*4, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER*4, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL, INTENT(IN), OPTIONAL :: SCALE
 REAL, INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX, INTENT(OUT), DIMENSION(:,:) :: Y
 REAL, INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL, INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void sfftcm_ (int *iopt, int *n1, int *n2, float *scale,
 float *x, int *ldx, complex *y, int *ldy, float
 *trigs, int *ifac, float *work, int *lwork, int
 *ierr);

 void sfftcm_64_ (long *iopt, long *n1, long *n2, float
 *scale, float *x, long *ldx, complex *y, long

 *ldy, float *trigs, long *ifac, float *work, long
 *lwork, long *ierr);

PURPOSE

 sfftcm initializes the trigonometric weight and factor
 tables or computes the one-dimensional forward Fast Fourier
 Transform of a set of real data sequences stored in a
 two-dimensional array:

 N1-1
 Y(k,l) = scale * SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N1)
 In real-to-complex transform of length N1, the (N1/2+1) com-
 plex output data points stored are the positive-frequency
 half of the spectrum of the discrete Fourier transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.

 SCALE (input)
 Real scalar by which transform results are scaled.
 Unchanged on exit. SCALE is defaulted to 1.0 for
 F95 INTERFACE.

 X (input) X is a real array of dimensions (LDX, N2) that
 contains the sequences to be transformed stored in
 its columns.

 LDX (input)
 Leading dimension of X. If X and Y are the same
 array, LDX = 2*LDY Else LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a complex array of dimensions (LDY, N2) that
 contains the transform results of the input
 sequences. X and Y can be the same array starting
 at the same memory location, in which case the
 input sequences are overwritten by their transform
 results. Otherwise, it is assumed that there is
 no overlap between X and Y in memory.

 LDY (input)
 Leading dimension of Y. LDY >= N1/2 + 1 Unchanged
 on exit.

 TRIGS (input/output)
 Real array of length 2*N1 that contains the tri-
 gonometric weights. The weights are computed when

 the routine is called with IOPT = 0 and they are
 used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = -1.
 Unchanged on exit.

 WORK (workspace)
 Real array of dimension at least N1. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1) or (LDX not equal 2*LDY when X and
 Y are same array)
 -4 = (LDY < N1/2 + 1)
 -6 = (LWORK not equal 0) and (LWORK < N1)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbbrd - reduce a real general m-by-n band matrix A to upper
 bidiagonal form B by an orthogonal transformation

SYNOPSIS

 SUBROUTINE SGBBRD(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, INFO)

 CHARACTER * 1 VECT
 INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL AB(LDAB,*), D(*), E(*), Q(LDQ,*), PT(LDPT,*), C(LDC,*),
 WORK(*)

 SUBROUTINE SGBBRD_64(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, INFO)

 CHARACTER * 1 VECT
 INTEGER*8 M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL AB(LDAB,*), D(*), E(*), Q(LDQ,*), PT(LDPT,*), C(LDC,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE GBBRD(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E, [Q],
 [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: AB, Q, PT, C

 SUBROUTINE GBBRD_64(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E,
 [Q], [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER(8) :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: AB, Q, PT, C

 C INTERFACE
 #include <sunperf.h>

 void sgbbrd(char vect, int m, int n, int ncc, int kl, int
 ku, float *ab, int ldab, float *d, float *e, float

 *q, int ldq, float *pt, int ldpt, float *c, int
 ldc, int *info);
 void sgbbrd_64(char vect, long m, long n, long ncc, long kl,
 long ku, float *ab, long ldab, float *d, float *e,
 float *q, long ldq, float *pt, long ldpt, float
 *c, long ldc, long *info);

PURPOSE

 sgbbrd reduces a real general m-by-n band matrix A to upper
 bidiagonal form B by an orthogonal transformation: Q' * A *
 P = B.

 The routine computes B, and optionally forms Q or P', or
 computes Q'*C for a given matrix C.

ARGUMENTS

 VECT (input)
 Specifies whether or not the matrices Q and P' are
 to be formed. = 'N': do not form Q or P';
 = 'Q': form Q only;
 = 'P': form P' only;
 = 'B': form both.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 KL (input)
 The number of subdiagonals of the matrix A. KL >=
 0.

 KU (input)
 The number of superdiagonals of the matrix A. KU
 >= 0.

 AB (input/output)
 On entry, the m-by-n band matrix A, stored in rows
 1 to KL+KU+1. The j-th column of A is stored in
 the j-th column of the array AB as follows:
 AB(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl). On exit, A is overwritten by
 values generated during the reduction.
 LDAB (input)
 The leading dimension of the array A. LDAB >=
 KL+KU+1.

 D (output)
 The diagonal elements of the bidiagonal matrix B.

 E (output)
 The superdiagonal elements of the bidiagonal
 matrix B.

 Q (output)
 If VECT = 'Q' or 'B', the m-by-m orthogonal matrix

 Q. If VECT = 'N' or 'P', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.

 PT (output)
 If VECT = 'P' or 'B', the n-by-n orthogonal matrix
 P'. If VECT = 'N' or 'Q', the array PT is not
 referenced.

 LDPT (input)
 The leading dimension of the array PT. LDPT >=
 max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 other-
 wise.

 C (input/output)
 On entry, an m-by-ncc matrix C. On exit, C is
 overwritten by Q'*C. C is not referenced if NCC =
 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.

 WORK (workspace)
 dimension(MAX(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbcon - estimate the reciprocal of the condition number of
 a real general band matrix A, in either the 1-norm or the
 infinity-norm,

SYNOPSIS

 SUBROUTINE SGBCON(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SGBCON_64(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBCON(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GBCON_64(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK

 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void sgbcon(char norm, int n, int nsub, int nsuper, float
 *a, int lda, int *ipivot, float anorm, float
 *rcond, int *info);

 void sgbcon_64(char norm, long n, long nsub, long nsuper,
 float *a, long lda, long *ipivot, float anorm,
 float *rcond, long *info);

PURPOSE

 sgbcon estimates the reciprocal of the condition number of a
 real general band matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 SGBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension (N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbequ - compute row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number

SYNOPSIS

 SUBROUTINE SGBEQU(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 REAL ROWCN, COLCN, AMAX
 REAL A(LDA,*), ROWSC(*), COLSC(*)

 SUBROUTINE SGBEQU_64(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 REAL ROWCN, COLCN, AMAX
 REAL A(LDA,*), ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GBEQU([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 REAL :: ROWCN, COLCN, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GBEQU_64([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 REAL :: ROWCN, COLCN, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgbequ(int m, int n, int nsub, int nsuper, float *a,
 int lda, float *rowsc, float *colsc, float *rowcn,
 float *colcn, float *amax, int *info);

 void sgbequ_64(long m, long n, long nsub, long nsuper, float
 *a, long lda, float *rowsc, float *colsc, float
 *rowcn, float *colcn, float *amax, long *info);

PURPOSE

 sgbequ computes row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number. R returns the row scale factors and C the column
 scale factors, chosen to try to make the largest element in
 each row and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) The band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 ROWSC (output)
 If INFO = 0, or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.
 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN
 >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbmv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y

SYNOPSIS

 SUBROUTINE SGBMV(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X, INCX,
 BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 SUBROUTINE SGBMV_64(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X,
 INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE GBMV([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA], X,
 [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GBMV_64([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA],
 X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgbmv(char transa, int m, int n, int nsub, int nsuper,
 float alpha, float *a, int lda, float *x, int
 incx, float beta, float *y, int incy);
 void sgbmv_64(char transa, long m, long n, long nsub, long
 nsuper, float alpha, float *a, long lda, float *x,
 long incx, float beta, float *y, long incy);

PURPOSE

 sgbmv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y, where alpha
 and beta are scalars, x and y are vectors and A is an m by n
 band matrix, with nsub sub-diagonals and nsuper super-
 diagonals.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 NSUB (input)
 On entry, NSUB specifies the number of sub-
 diagonals of the matrix A. NSUB >= 0. Unchanged
 on exit.

 NSUPER (input)
 On entry, NSUPER specifies the number of super-
 diagonals of the matrix A. NSUPER >= 0. Unchanged
 on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading (nsub + nsuper + 1) by
 n part of the array A must contain the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (nsuper + 1
) of the array, the first super-diagonal starting
 at position 2 in row nsuper, the first sub-
 diagonal starting at position 1 in row (nsuper +

 2), and so on. Elements in the array A that do
 not correspond to elements in the band matrix
 (such as the top left nsuper by nsuper triangle)
 are not referenced. The following program segment
 will transfer a band matrix from conventional full
 matrix storage to band storage:

 DO 20, J = 1, N
 K = NSUPER + 1 - J
 DO 10, I = MAX(1, J - NSUPER), MIN(M, J +
 NSUB)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 nsub + nsuper + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry, the incremented array Y
 must contain the vector y. On exit, Y is overwrit-
 ten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE SGBRFS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SGBRFS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBRFS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA], AF,
 [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GBRFS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void sgbrfs(char transa, int n, int nsub, int nsuper, int
 nrhs, float *a, int lda, float *af, int ldaf, int
 *ipivot, float *b, int ldb, float *x, int ldx,
 float *ferr, float *berr, int *info);

 void sgbrfs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, float *a, long lda, float *af, long
 ldaf, long *ipivot, float *b, long ldb, float *x,
 long ldx, float *ferr, float *berr, long *info);

PURPOSE

 sgbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(n,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input)
 Details of the LU factorization of the band matrix

 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB*NSUPER+1.

 IPIVOT (input)
 The pivot indices from SGBTRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SGBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgbsv - compute the solution to a real system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE SGBSV(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SGBSV_64(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB,
 INFO)

 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GBSV([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GBSV_64([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B,
 [LDB], [INFO])

 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgbsv(int n, int nsub, int nsuper, int nrhs, float *a,
 int lda, int *ipivot, float *b, int ldb, int
 *info);

 void sgbsv_64(long n, long nsub, long nsuper, long nrhs,
 float *a, long lda, long *ipivot, float *b, long
 ldb, long *info);

PURPOSE

 sgbsv computes the solution to a real system of linear equa-
 tions A * X = B, where A is a band matrix of order N with KL
 subdiagonals and KU superdiagonals, and X and B are N-by-
 NRHS matrices.

 The LU decomposition with partial pivoting and row inter-
 changes is used to factor A as A = L * U, where L is a pro-
 duct of permutation and unit lower triangular matrices with
 KL subdiagonals, and U is upper triangular with KL+KU super-
 diagonals. The factored form of A is then used to solve the
 system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(NSUB+NSUPER+1+i-j,j) = A(i,j) for
 max(1,j-NSUPER)<=i<=min(N,j+NSUB) On exit, details
 of the factorization: U is stored as an upper tri-
 angular band matrix with NSUB+NSUPER superdiago-
 nals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1. See below
 for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)

 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and the solution has not been
 computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbsvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B, A**T * X = B,
 or A**H * X = B,

SYNOPSIS

 SUBROUTINE SGBSVX(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE SGBSVX_64(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GBSVX(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GBSVX_64(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A,
 [LDA], AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>

 void sgbsvx(char fact, char transa, int n, int nsub, int
 nsuper, int nrhs, float *a, int lda, float *af,
 int ldaf, int *ipivot, char equed, float *rowsc,
 float *colsc, float *b, int ldb, float *x, int
 ldx, float *rcond, float *ferr, float *berr, int
 *info);

 void sgbsvx_64(char fact, char transa, long n, long nsub,
 long nsuper, long nrhs, float *a, long lda, float
 *af, long ldaf, long *ipivot, char equed, float
 *rowsc, float *colsc, float *b, long ldb, float
 *x, long ldx, float *rcond, float *ferr, float
 *berr, long *info);

PURPOSE

 sgbsvx uses the LU factorization to compute the solution to
 a real system of linear equations A * X = B, A**T * X = B,
 or A**H * X = B, where A is a band matrix of order N with KL
 subdiagonals and KU superdiagonals, and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').
 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = L * U,
 where L is a product of permutation and unit lower tri-
 angular
 matrices with KL subdiagonals, and U is upper triangular

 with
 KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)

 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows 1
 to NSUB+NSUPER+1. The j-th column of A is stored
 in the j-th column of the array A as follows:
 A(NSUPER+1+i-j,j) = A(i,j) for max(1,j-
 NSUPER)<=i<=min(N,j+kl)

 If FACT = 'F' and EQUED is not 'N', then A must
 have been equilibrated by the scaling factors in
 ROWSC and/or COLSC. A is not modified if FACT =
 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on
 exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains details of the LU factorization of
 the band matrix A, as computed by SGBTRF. U is
 stored as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. If EQUED .ne. 'N', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns details of the LU factorization of
 A.

 If FACT = 'E', then AF is an output argument and
 on exit returns details of the LU factorization of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = L*U as computed by SGBTRF; row i
 of the matrix was interchanged with row IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument

 and on exit contains the pivot indices from the
 factorization A = L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if EQUED = 'N', B is not modified; if TRANSA = 'N'
 and EQUED = 'ROWSC' or 'B', B is overwritten by
 diag(ROWSC)*B; if TRANSA = 'T' or 'COLSC' and
 EQUED = 'COLSC' or 'B', B is overwritten by
 diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-

 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N) On exit, WORK(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK(1) is much less than 1, then the stability of
 the LU factorization of the (equilibrated) matrix
 A could be poor. This also means that the solution
 X, condition estimator RCOND, and forward error
 bound FERR could be unreliable. If factorization
 fails with 0<INFO<=N, then WORK(1) contains the
 reciprocal pivot growth factor for the leading
 INFO columns of A.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgbtf2 - compute an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE SGBTF2(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 INTEGER M, N, KL, KU, LDAB, INFO
 INTEGER IPIV(*)
 REAL AB(LDAB,*)

 SUBROUTINE SGBTF2_64(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 INTEGER*8 M, N, KL, KU, LDAB, INFO
 INTEGER*8 IPIV(*)
 REAL AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE GBTF2([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 INTEGER :: M, N, KL, KU, LDAB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: AB

 SUBROUTINE GBTF2_64([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 INTEGER(8) :: M, N, KL, KU, LDAB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void sgbtf2(int m, int n, int kl, int ku, float *ab, int
 ldab, int *ipiv, int *info);

 void sgbtf2_64(long m, long n, long kl, long ku, float *ab,
 long ldab, long *ipiv, long *info);

PURPOSE

 sgbtf2 computes an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 KL (input)
 The number of subdiagonals within the band of A.
 KL >= 0.

 KU (input)
 The number of superdiagonals within the band of A.
 KU >= 0.

 AB (input/output)
 On entry, the matrix A in band storage, in rows
 KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
 not be set. The j-th column of A is stored in the
 j-th column of the array AB as follows:
 AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with KL+KU
 superdiagonals in rows 1 to KL+KU+1, and the mul-
 tipliers used during the factorization are stored
 in rows KL+KU+2 to 2*KL+KU+1. See below for
 further details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 2*KL+KU+1.

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, KL = 2, KU = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U, because of fill-in
 resulting from the row
 interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgbtrf - compute an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE SGBTRF(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*)

 SUBROUTINE SGBTRF_64(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GBTRF([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GBTRF_64([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgbtrf(int m, int n, int nsub, int nsuper, float *a,
 int lda, int *ipivot, int *info);

 void sgbtrf_64(long m, long n, long nsub, long nsuper, float
 *a, long lda, long *ipivot, long *info);

PURPOSE

 sgbtrf computes an LU factorization of a real m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. See below for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgbtrs - solve a system of linear equations A * X = B or A'
 * X = B with a general band matrix A using the LU factoriza-
 tion computed by SGBTRF

SYNOPSIS

 SUBROUTINE SGBTRS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SGBTRS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT,
 B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GBTRS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GBTRS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgbtrs(char transa, int n, int nsub, int nsuper, int

 nrhs, float *a, int lda, int *ipivot, float *b,
 int ldb, int *info);
 void sgbtrs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, float *a, long lda, long *ipivot, float
 *b, long ldb, long *info);

PURPOSE

 sgbtrs solves a system of linear equations
 A * X = B or A' * X = B with a general band matrix A
 using the LU factorization computed by SGBTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by SGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgebak - form the right or left eigenvectors of a real gen-
 eral matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by SGEBAL

SYNOPSIS

 SUBROUTINE SGEBAK(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER N, ILO, IHI, M, LDV, INFO
 REAL SCALE(*), V(LDV,*)

 SUBROUTINE SGEBAK_64(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 REAL SCALE(*), V(LDV,*)

 F95 INTERFACE
 SUBROUTINE GEBAK(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: V

 SUBROUTINE GEBAK_64(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: V

 C INTERFACE
 #include <sunperf.h>

 void sgebak(char job, char side, int n, int ilo, int ihi,
 float *scale, int m, float *v, int ldv, int
 *info);

 void sgebak_64(char job, char side, long n, long ilo, long

 ihi, float *scale, long m, float *v, long ldv,
 long *info);

PURPOSE

 sgebak forms the right or left eigenvectors of a real gen-
 eral matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by SGEBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required: = 'N', do nothing, return immediately;
 = 'P', do backward transformation for permutation
 only; = 'S', do backward transformation for scal-
 ing only; = 'B', do backward transformations for
 both permutation and scaling. JOB must be the
 same as the argument JOB supplied to SGEBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by SGEBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 See the description for ILO.

 SCALE (input)
 Details of the permutation and scaling factors, as
 returned by SGEBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by SHSEIN or
 STREVC. On exit, V is overwritten by the
 transformed eigenvectors.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgebal - balance a general real matrix A

SYNOPSIS

 SUBROUTINE SGEBAL(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 INTEGER N, LDA, ILO, IHI, INFO
 REAL A(LDA,*), SCALE(*)

 SUBROUTINE SGEBAL_64(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 N, LDA, ILO, IHI, INFO
 REAL A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAL(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: N, LDA, ILO, IHI, INFO
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEBAL_64(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: N, LDA, ILO, IHI, INFO
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgebal(char job, int n, float *a, int lda, int *ilo,
 int *ihi, float *scale, int *info);

 void sgebal_64(char job, long n, float *a, long lda, long
 *ilo, long *ihi, float *scale, long *info);

PURPOSE

 sgebal balances a general real matrix A. This involves,
 first, permuting A by a similarity transformation to isolate
 eigenvalues in the first 1 to ILO-1 and last IHI+1 to N ele-
 ments on the diagonal; and second, applying a diagonal simi-
 larity transformation to rows and columns ILO to IHI to make
 the rows and columns as close in norm as possible. Both
 steps are optional.

 Balancing may reduce the 1-norm of the matrix, and improve
 the accuracy of the computed eigenvalues and/or eigenvec-
 tors.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A:
 = 'N': none: simply set ILO = 1, IHI = N,
 SCALE(I) = 1.0 for i = 1,...,N; = 'P': permute
 only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 IHI (output)
 See the description for ILO.

 SCALE (output)
 Details of the permutations and scaling factors
 applied to A. If P(j) is the index of the row and
 column interchanged with row and column j and D(j)
 is the scaling factor applied to row and column j,
 then SCALE(j) = P(j) for j = 1,...,ILO-1 = D(j)
 for j = ILO,...,IHI = P(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The permutations consist of row and column interchanges
 which put the matrix in the form

 (T1 X Y)
 P A P = (0 B Z)
 (0 0 T2)

 where T1 and T2 are upper triangular matrices whose eigen-
 values lie along the diagonal. The column indices ILO and
 IHI mark the starting and ending columns of the submatrix B.
 Balancing consists of applying a diagonal similarity
 transformation inv(D) * B * D to make the 1-norms of each
 row of B and its corresponding column nearly equal. The
 output matrix is

 (T1 X*D Y)
 (0 inv(D)*B*D inv(D)*Z).
 (0 0 T2)

 Information about the permutations P and the diagonal matrix
 D is returned in the vector SCALE.

 This subroutine is based on the EISPACK routine BALANC.

 Modified by Tzu-Yi Chen, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgebrd - reduce a general real M-by-N matrix A to upper or
 lower bidiagonal form B by an orthogonal transformation

SYNOPSIS

 SUBROUTINE SGEBRD(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 REAL A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*), WORK(*)

 SUBROUTINE SGEBRD_64(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 REAL A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEBRD([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK], [LWORK],
 [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E, TAUQ, TAUP, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEBRD_64([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK],
 [LWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E, TAUQ, TAUP, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgebrd(int m, int n, float *a, int lda, float *d, float
 *e, float *tauq, float *taup, int *info);

 void sgebrd_64(long m, long n, float *a, long lda, float *d,
 float *e, float *tauq, float *taup, long *info);

PURPOSE

 sgebrd reduces a general real M-by-N matrix A to upper or
 lower bidiagonal form B by an orthogonal transformation:
 Q**T * A * P = B.

 If m >= n, B is upper bidiagonal; if m < n, B is lower
 bidiagonal.

ARGUMENTS

 M (input) The number of rows in the matrix A. M >= 0.

 N (input) The number of columns in the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N general matrix to be reduced.
 On exit, if m >= n, the diagonal and the first
 superdiagonal are overwritten with the upper bidi-
 agonal matrix B; the elements below the diagonal,
 with the array TAUQ, represent the orthogonal
 matrix Q as a product of elementary reflectors,
 and the elements above the first superdiagonal,
 with the array TAUP, represent the orthogonal
 matrix P as a product of elementary reflectors; if
 m < n, the diagonal and the first subdiagonal are
 overwritten with the lower bidiagonal matrix B;
 the elements below the first subdiagonal, with the
 array TAUQ, represent the orthogonal matrix Q as a
 product of elementary reflectors, and the elements
 above the diagonal, with the array TAUP, represent
 the orthogonal matrix P as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 D (output)
 The diagonal elements of the bidiagonal matrix B:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the bidiagonal matrix
 B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-
 1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

 TAUQ (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q. See
 Further Details.
 TAUP (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix P. See
 Further Details.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)

 The length of the array WORK. LWORK >=
 max(1,M,N). For optimum performance LWORK >=
 (M+N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrices Q and P are represented as products of elemen-
 tary reflectors:

 If m >= n,

 Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are real scalars, and v and u are real
 vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on
 exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is
 stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and
 taup in TAUP(i).

 If m < n,

 Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)

 Each H(i) and G(i) has the form:
 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are real scalars, and v and u are real
 vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on
 exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is
 stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and
 taup in TAUP(i).

 The contents of A on exit are illustrated by the following
 examples:

 m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

 (d e u1 u1 u1) (d u1 u1 u1 u1
 u1)
 (v1 d e u2 u2) (e d u2 u2 u2
 u2)
 (v1 v2 d e u3) (v1 e d u3 u3
 u3)
 (v1 v2 v3 d e) (v1 v2 e d u4
 u4)
 (v1 v2 v3 v4 d) (v1 v2 v3 e d
 u5)
 (v1 v2 v3 v4 v5)

 where d and e denote diagonal and off-diagonal elements of
 B, vi denotes an element of the vector defining H(i), and ui
 an element of the vector defining G(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgecon - estimate the reciprocal of the condition number of
 a general real matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by SGETRF

SYNOPSIS

 SUBROUTINE SGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SGECON_64(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GECON(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GECON_64(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void sgecon(char norm, int n, float *a, int lda, float
 anorm, float *rcond, int *info);

 void sgecon_64(char norm, long n, float *a, long lda, float
 anorm, float *rcond, long *info);

PURPOSE

 sgecon estimates the reciprocal of the condition number of a
 general real matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 SGETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(4*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgeequ - compute row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number

SYNOPSIS

 SUBROUTINE SGEEQU(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 INTEGER M, N, LDA, INFO
 REAL ROWCN, COLCN, AMAX
 REAL A(LDA,*), ROWSC(*), COLSC(*)

 SUBROUTINE SGEEQU_64(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 INTEGER*8 M, N, LDA, INFO
 REAL ROWCN, COLCN, AMAX
 REAL A(LDA,*), ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GEEQU([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 INTEGER :: M, N, LDA, INFO
 REAL :: ROWCN, COLCN, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEEQU_64([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 REAL :: ROWCN, COLCN, AMAX
 REAL, DIMENSION(:) :: ROWSC, COLSC
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgeequ(int m, int n, float *a, int lda, float *rowsc,
 float *colsc, float *rowcn, float *colcn, float
 *amax, int *info);

 void sgeequ_64(long m, long n, float *a, long lda, float
 *rowsc, float *colsc, float *rowcn, float *colcn,
 float *amax, long *info);

PURPOSE

 sgeequ computes row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number. R
 returns the row scale factors and C the column scale fac-
 tors, chosen to try to make the largest element in each row
 and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input) The M-by-N matrix whose equilibration factors are
 to be computed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 ROWSC (output)
 If INFO = 0 or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN
 >= 0.1, it is not worth scaling by COLSC.
 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero

 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgees - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE SGEES(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, WR, WI, Z,
 LDZ, WORK, LDWORK, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL WORK3(*)
 REAL A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SGEES_64(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, WR, WI, Z,
 LDZ, WORK, LDWORK, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 WORK3(*)
 REAL A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEES(JOBZ, SORTEV, SELECT, [N], A, [LDA], NOUT, WR, WI, Z,
 [LDZ], [WORK], [LDWORK], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: WORK3
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: A, Z

 SUBROUTINE GEES_64(JOBZ, SORTEV, SELECT, [N], A, [LDA], NOUT, WR, WI,
 Z, [LDZ], [WORK], [LDWORK], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: WORK3
 REAL, DIMENSION(:) :: WR, WI, WORK

 REAL, DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>
 void sgees(char jobz, char sortev,
 int(*select)(float,float), int n, float *a, int
 lda, int *nout, float *wr, float *wi, float *z,
 int ldz, int *info);

 void sgees_64(char jobz, char sortev,
 long(*select)(float,float), long n, float *a, long
 lda, long *nout, float *wr, float *wi, float *z,
 long ldz, long *info);

PURPOSE

 sgees computes for an N-by-N real nonsymmetric matrix A, the
 eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**T).

 Optionally, it also orders the eigenvalues on the diagonal
 of the real Schur form so that selected eigenvalues are at
 the top left. The leading columns of Z then form an ortho-
 normal basis for the invariant subspace corresponding to the
 selected eigenvalues.

 A matrix is in real Schur form if it is upper quasi-
 triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will
 be standardized in the form
 [a b]
 [c a]

 where b*c < 0. The eigenvalues of such a block are a +-
 sqrt(bc).

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to sort to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not
 referenced. An eigenvalue WR(j)+sqrt(-1)*WI(j) is
 selected if SELECT(WR(j),WI(j)) is true; i.e., if
 either one of a complex conjugate pair of eigen-
 values is selected, then both complex eigenvalues
 are selected. Note that a selected complex eigen-
 value may no longer satisfy SELECT(WR(j),WI(j)) =
 .TRUE. after ordering, since ordering may change

 the value of complex eigenvalues (especially if
 the eigenvalue is ill-conditioned); in this case
 INFO is set to N+2 (see INFO below).

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten by its real Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues (after sorting) for which
 SELECT is true. (Complex conjugate pairs for which
 SELECT is true for either eigenvalue count as 2.)

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues in the
 same order that they appear on the diagonal of the
 output Schur form T. Complex conjugate pairs of
 eigenvalues will appear consecutively with the
 eigenvalue having the positive imaginary part
 first.

 WI (output)
 See the description for WR.

 Z (output)
 If JOBZ = 'V', Z contains the orthogonal matrix Z
 of Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.
 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1;
 if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) contains the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the

 eigenvalues; elements 1:ILO-1 and i+1:N of WR and
 WI contain those eigenvalues which have converged;
 if JOBZ = 'V', Z contains the matrix which reduces
 A to its partially converged Schur form. = N+1:
 the eigenvalues could not be reordered because
 some eigenvalues were too close to separate (the
 problem is very ill-conditioned); = N+2: after
 reordering, roundoff changed values of some com-
 plex eigenvalues so that leading eigenvalues in
 the Schur form no longer satisfy SELECT=.TRUE.
 This could also be caused by underflow due to
 scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgeesx - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE SGEESX(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, WR,
 WI, Z, LDZ, SRCONE, RCONV, WORK, LDWORK, IWORK2, LDWRK2, BWORK3,
 INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 INTEGER N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER IWORK2(*)
 LOGICAL SELECT
 LOGICAL BWORK3(*)
 REAL SRCONE, RCONV
 REAL A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SGEESX_64(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT,
 WR, WI, Z, LDZ, SRCONE, RCONV, WORK, LDWORK, IWORK2, LDWRK2,
 BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER*8 IWORK2(*)
 LOGICAL*8 SELECT
 LOGICAL*8 BWORK3(*)
 REAL SRCONE, RCONV
 REAL A(LDA,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEESX(JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], NOUT,
 WR, WI, Z, [LDZ], SRCONE, RCONV, [WORK], [LDWORK], [IWORK2],
 [LDWRK2], [BWORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER, DIMENSION(:) :: IWORK2
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: BWORK3
 REAL :: SRCONE, RCONV
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: A, Z

 SUBROUTINE GEESX_64(JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], NOUT,
 WR, WI, Z, [LDZ], SRCONE, RCONV, [WORK], [LDWORK], [IWORK2],
 [LDWRK2], [BWORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, LDWRK2, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: BWORK3
 REAL :: SRCONE, RCONV
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>

 void sgeesx(char jobz, char sortev,
 int(*select)(float,float), char sense, int n,
 float *a, int lda, int *nout, float *wr, float
 *wi, float *z, int ldz, float *srcone, float
 *rconv, int *info);

 void sgeesx_64(char jobz, char sortev,
 long(*select)(float,float), char sense, long n,
 float *a, long lda, long *nout, float *wr, float
 *wi, float *z, long ldz, float *srcone, float
 *rconv, long *info);

PURPOSE

 sgeesx computes for an N-by-N real nonsymmetric matrix A,
 the eigenvalues, the real Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**T).

 Optionally, it also orders the eigenvalues on the diagonal
 of the real Schur form so that selected eigenvalues are at
 the top left; computes a reciprocal condition number for the
 average of the selected eigenvalues (RCONDE); and computes a
 reciprocal condition number for the right invariant subspace
 corresponding to the selected eigenvalues (RCONDV). The
 leading columns of Z form an orthonormal basis for this
 invariant subspace.

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see Section 4.10 of the LAPACK Users'
 Guide (where these quantities are called s and sep respec-
 tively).

 A real matrix is in real Schur form if it is upper quasi-
 triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will
 be standardized in the form
 [a b]
 [c a]
 where b*c < 0. The eigenvalues of such a block are a +-
 sqrt(bc).

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to sort to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. An eigenvalue WR(j)+sqrt(-1)*WI(j) is
 selected if SELECT(WR(j),WI(j)) is true; i.e., if
 either one of a complex conjugate pair of eigen-
 values is selected, then both are. Note that a
 selected complex eigenvalue may no longer satisfy
 SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
 ordering may change the value of complex eigen-
 values (especially if the eigenvalue is ill-
 conditioned); in this case INFO may be set to N+3
 (see INFO below).

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for average of selected eigen-
 values only;
 = 'V': Computed for selected right invariant sub-
 space only;
 = 'B': Computed for both. If SENSE = 'E', 'V' or
 'B', SORTEV must equal 'S'.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A is
 overwritten by its real Schur form T.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues (after sorting) for which
 SELECT is true. (Complex conjugate pairs for which
 SELECT is true for either eigenvalue count as 2.)

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues, in the
 same order that they appear on the diagonal of the
 output Schur form T. Complex conjugate pairs of
 eigenvalues appear consecutively with the eigen-
 value having the positive imaginary part first.

 WI (output)
 See the description for WR.

 Z (output)
 If JOBZ = 'V', Z contains the orthogonal matrix Z
 of Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 SRCONE (output)
 If SENSE = 'E' or 'B', SRCONE contains the
 reciprocal condition number for the average of the
 selected eigenvalues. Not referenced if SENSE =
 'N' or 'V'.

 RCONV (output)
 If SENSE = 'V' or 'B', RCONV contains the recipro-
 cal condition number for the selected right
 invariant subspace. Not referenced if SENSE = 'N'
 or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N). Also, if SENSE = 'E' or 'V' or 'B',
 LDWORK >= N+2*NOUT*(N-NOUT), where NOUT is the
 number of selected eigenvalues computed by this
 routine. Note that N+2*NOUT*(N-NOUT) <= N+N*N/2.
 For good performance, LDWORK must generally be
 larger.

 IWORK2 (workspace/output)
 Not referenced if SENSE = 'N' or 'E'. On exit, if
 INFO = 0, IWORK2(1) returns the optimal LDWRK2.

 LDWRK2 (input)
 The dimension of the array IWORK2. LDWRK2 >= 1;
 if SENSE = 'V' or 'B', LDWRK2 >= NOUT*(N-NOUT).

 BWORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of WR and
 WI contain those eigenvalues which have converged;
 if JOBZ = 'V', Z contains the transformation which
 reduces A to its partially converged Schur form.
 = N+1: the eigenvalues could not be reordered
 because some eigenvalues were too close to
 separate (the problem is very ill-conditioned); =
 N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Schur form no longer satisfy
 SELECT=.TRUE. This could also be caused by under-
 flow due to scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgeev - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE SGEEV(JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR,
 WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE SGEEV_64(JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEEV(JOBVL, JOBVR, [N], A, [LDA], WR, WI, VL, [LDVL], VR,
 [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: A, VL, VR

 SUBROUTINE GEEV_64(JOBVL, JOBVR, [N], A, [LDA], WR, WI, VL, [LDVL],
 VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: A, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void sgeev(char jobvl, char jobvr, int n, float *a, int lda,
 float *wr, float *wi, float *vl, int ldvl, float
 *vr, int ldvr, int *info);

 void sgeev_64(char jobvl, char jobvr, long n, float *a, long
 lda, float *wr, float *wi, float *vl, long ldvl,
 float *vr, long ldvr, long *info);

PURPOSE

 sgeev computes for an N-by-N real nonsymmetric matrix A, the
 eigenvalues and, optionally, the left and/or right eigenvec-
 tors.

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

ARGUMENTS

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues. Com-
 plex conjugate pairs of eigenvalues appear con-
 secutively with the eigenvalue having the positive
 imaginary part first.

 WI (output)
 See the description for WR.
 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. If the j-th eigenvalue
 is real, then u(j) = VL(:,j), the j-th column of
 VL. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then u(j) = VL(:,j) +
 i*VL(:,j+1) and
 u(j+1) = VL(:,j) - i*VL(:,j+1).

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. If the j-th eigenvalue
 is real, then v(j) = VR(:,j), the j-th column of
 VR. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then v(j) = VR(:,j) +
 i*VR(:,j+1) and
 v(j+1) = VR(:,j) - i*VR(:,j+1).

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,3*N), and if JOBVL = 'V' or JOBVR = 'V',
 LDWORK >= 4*N. For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors have
 been computed; elements i+1:N of WR and WI contain
 eigenvalues which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgeevx - compute for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE SGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, IWORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER IWORK2(*)
 REAL ABNRM
 REAL A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*),
 SCALE(*), RCONE(*), RCONV(*), WORK(*)

 SUBROUTINE SGEEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
 VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, IWORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER*8 N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER*8 IWORK2(*)
 REAL ABNRM
 REAL A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*),
 SCALE(*), RCONE(*), RCONV(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR, WI,
 VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], [LDWORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK2
 REAL :: ABNRM
 REAL, DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
 REAL, DIMENSION(:,:) :: A, VL, VR

 SUBROUTINE GEEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR,
 WI, VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], [LDWORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER(8) :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2
 REAL :: ABNRM
 REAL, DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
 REAL, DIMENSION(:,:) :: A, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void sgeevx(char balanc, char jobvl, char jobvr, char sense,
 int n, float *a, int lda, float *wr, float *wi,
 float *vl, int ldvl, float *vr, int ldvr, int
 *ilo, int *ihi, float *scale, float *abnrm, float
 *rcone, float *rconv, int *info);

 void sgeevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, float *a, long lda, float *wr,
 float *wi, float *vl, long ldvl, float *vr, long
 ldvr, long *ilo, long *ihi, float *scale, float
 *abnrm, float *rcone, float *rconv, long *info);

PURPOSE

 sgeevx computes for an N-by-N real nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers
 for the eigenvalues (RCONDE), and reciprocal condition
 numbers for the right
 eigenvectors (RCONDV).

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

 Balancing a matrix means permuting the rows and columns to
 make it more nearly upper triangular, and applying a diago-
 nal similarity transformation D * A * D**(-1), where D is a
 diagonal matrix, to make its rows and columns closer in norm
 and the condition numbers of its eigenvalues and eigenvec-
 tors smaller. The computed reciprocal condition numbers
 correspond to the balanced matrix. Permuting rows and
 columns will not change the condition numbers (in exact
 arithmetic) but diagonal scaling will. For further explana-
 tion of balancing, see section 4.10.2 of the LAPACK Users'
 Guide.

ARGUMENTS

 BALANC (input)
 Indicates how the input matrix should be diago-
 nally scaled and/or permuted to improve the condi-
 tioning of its eigenvalues. = 'N': Do not diago-
 nally scale or permute;
 = 'P': Perform permutations to make the matrix
 more nearly upper triangular. Do not diagonally
 scale; = 'S': Diagonally scale the matrix, i.e.
 replace A by D*A*D**(-1), where D is a diagonal
 matrix chosen to make the rows and columns of A
 more equal in norm. Do not permute; = 'B': Both
 diagonally scale and permute A.

 Computed reciprocal condition numbers will be for
 the matrix after balancing and/or permuting. Per-
 muting does not change condition numbers (in exact
 arithmetic), but balancing does.

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVL must = 'V'.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVR must = 'V'.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for eigenvalues only;
 = 'V': Computed for right eigenvectors only;
 = 'B': Computed for eigenvalues and right eigen-
 vectors.

 If SENSE = 'E' or 'B', both left and right eigen-
 vectors must also be computed (JOBVL = 'V' and
 JOBVR = 'V').

 N (input) The order of the matrix A. N >= 0.
 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten. If JOBVL = 'V' or JOBVR = 'V',
 A contains the real Schur form of the balanced
 version of the input matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 WR (output)
 WR and WI contain the real and imaginary parts,
 respectively, of the computed eigenvalues. Com-
 plex conjugate pairs of eigenvalues will appear
 consecutively with the eigenvalue having the posi-
 tive imaginary part first.

 WI (output)
 See the description for WR.

 VL (output)

 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. If the j-th eigenvalue
 is real, then u(j) = VL(:,j), the j-th column of
 VL. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then u(j) = VL(:,j) +
 i*VL(:,j+1) and
 u(j+1) = VL(:,j) - i*VL(:,j+1).

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. If the j-th eigenvalue
 is real, then v(j) = VR(:,j), the j-th column of
 VR. If the j-th and (j+1)-st eigenvalues form a
 complex conjugate pair, then v(j) = VR(:,j) +
 i*VR(:,j+1) and
 v(j+1) = VR(:,j) - i*VR(:,j+1).
 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 IHI (output)
 See the description of ILO.

 SCALE (output)
 Details of the permutations and scaling factors
 applied when balancing A. If P(j) is the index of
 the row and column interchanged with row and
 column j, and D(j) is the scaling factor applied
 to row and column j, then SCALE(J) = P(J), for
 J = 1,...,ILO-1 = D(J), for J = ILO,...,IHI =
 P(J) for J = IHI+1,...,N. The order in which
 the interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix (the maximum
 of the sum of absolute values of elements of any
 column).

 RCONE (output)
 RCONE(j) is the reciprocal condition number of the
 j-th eigenvalue.

 RCONV (output)
 RCONV(j) is the reciprocal condition number of the
 j-th right eigenvector.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. If SENSE = 'N'
 or 'E', LDWORK >= max(1,2*N), and if JOBVL = 'V'
 or JOBVR = 'V', LDWORK >= 3*N. If SENSE = 'V' or
 'B', LDWORK >= N*(N+6). For good performance,
 LDWORK must generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 IWORK2 (workspace)
 dimension(2*N-2) If SENSE = 'N' or 'E', not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors or
 condition numbers have been computed; elements
 1:ILO-1 and i+1:N of WR and WI contain eigenvalues
 which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgegs - routine is deprecated and has been replaced by rou-
 tine SGGES

SYNOPSIS

 SUBROUTINE SGEGS(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 INTEGER N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 SUBROUTINE SGEGS_64(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 INTEGER*8 N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEGS(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 INTEGER :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR

 SUBROUTINE GEGS_64(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 INTEGER(8) :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR

 C INTERFACE
 #include <sunperf.h>

 void sgegs(char jobvsl, char jobvsr, int n, float *a, int
 lda, float *b, int ldb, float *alphar, float

 *alphai, float *beta, float *vsl, int ldvsl, float
 *vsr, int ldvsr, int *info);
 void sgegs_64(char jobvsl, char jobvsr, long n, float *a,
 long lda, float *b, long ldb, float *alphar, float
 *alphai, float *beta, float *vsl, long ldvsl,
 float *vsr, long ldvsr, long *info);

PURPOSE

 sgegs routine is deprecated and has been replaced by routine
 SGGES.

 SGEGS computes for a pair of N-by-N real nonsymmetric
 matrices A, B: the generalized eigenvalues (alphar +/-
 alphai*i, beta), the real Schur form (A, B), and optionally
 left and/or right Schur vectors (VSL and VSR).

 (If only the generalized eigenvalues are needed, use the
 driver SGEGV instead.)

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 The (generalized) Schur form of a pair of matrices is the
 result of multiplying both matrices on the left by one
 orthogonal matrix and both on the right by another orthogo-
 nal matrix, these two orthogonal matrices being chosen so as
 to bring the pair of matrices into (real) Schur form.

 A pair of matrices A, B is in generalized real Schur form if
 B is upper triangular with non-negative diagonal and A is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of A will be "standardized" by making
 the corresponding elements of B have the form:
 [a 0]
 [0 b]

 and the pair of corresponding 2-by-2 blocks in A and B will
 have a complex conjugate pair of generalized eigenvalues.

 The left and right Schur vectors are the columns of VSL and
 VSR, respectively, where VSL and VSR are the orthogonal
 matrices which reduce A and B to Schur form:

 Schur form of (A,B) = ((VSL)**T A (VSR), (VSL)**T B (VSR))

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;

 = 'V': compute the right Schur vectors.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of A. Note: to avoid overflow,
 the Frobenius norm of the matrix A should be less
 than the overflow threshold.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of B. Note: to avoid overflow,
 the Frobenius norm of the matrix B should be less
 than the overflow threshold.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i, j=1,...,N and
 BETA(j),j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) that would result if the 2-
 by-2 diagonal blocks of the real Schur form of
 (A,B) were further reduced to triangular form
 using 2-by-2 complex unitary transformations. If
 ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,4*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 SGEQRF, SORMQR, and SORGQR.) Then compute: NB --
 MAX of the blocksizes for SGEQRF, SORMQR, and
 SORGQR The optimal LDWORK is 2*N + N*(NB+1).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: errors that usually indicate LAPACK problems:
 =N+1: error return from SGGBAL
 =N+2: error return from SGEQRF
 =N+3: error return from SORMQR
 =N+4: error return from SORGQR
 =N+5: error return from SGGHRD
 =N+6: error return from SHGEQZ (other than failed
 iteration) =N+7: error return from SGGBAK (comput-
 ing VSL)
 =N+8: error return from SGGBAK (computing VSR)
 =N+9: error return from SLASCL (various places)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgegv - routine is deprecated and has been replaced by rou-
 tine SGGEV

SYNOPSIS

 SUBROUTINE SGEGV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE SGEGV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEGV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE GEGV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void sgegv(char jobvl, char jobvr, int n, float *a, int lda,
 float *b, int ldb, float *alphar, float *alphai,
 float *beta, float *vl, int ldvl, float *vr, int
 ldvr, int *info);
 void sgegv_64(char jobvl, char jobvr, long n, float *a, long
 lda, float *b, long ldb, float *alphar, float
 *alphai, float *beta, float *vl, long ldvl, float
 *vr, long ldvr, long *info);

PURPOSE

 sgegv routine is deprecated and has been replaced by routine
 SGGEV.

 SGEGV computes for a pair of n-by-n real nonsymmetric
 matrices A and B, the generalized eigenvalues (alphar +/-
 alphai*i, beta), and optionally, the left and/or right gen-
 eralized eigenvectors (VL and VR).

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 A right generalized eigenvector corresponding to a general-
 ized eigenvalue w for a pair of matrices (A,B) is a vector
 r such that (A - w B) r = 0 . A left generalized eigen-
 vector is a vector l such that l**H * (A - w B) = 0, where
 l**H is the
 conjugate-transpose of l.

 Note: this routine performs "full balancing" on A and B --
 see "Further Details", below.

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of A on exit, see
 "Further Details", below.)

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of B on exit, see
 "Further Details", below.)

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 If ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.
 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Real eigenvectors take
 one column, complex take two columns, the first
 for the real part and the second for the imaginary
 part. Complex eigenvectors correspond to an
 eigenvalue with positive imaginary part. Each
 eigenvector will be scaled so the largest com-
 ponent will have abs(real part) + abs(imag. part)
 = 1, *except* that for eigenvalues with
 alpha=beta=0, a zero vector will be returned as
 the corresponding eigenvector. Not referenced if
 JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right generalized eigenvec-
 tors. (See "Purpose", above.) Real eigenvectors
 take one column, complex take two columns, the
 first for the real part and the second for the
 imaginary part. Complex eigenvectors correspond
 to an eigenvalue with positive imaginary part.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1, *except* that for eigenvalues with

 alpha=beta=0, a zero vector will be returned as
 the corresponding eigenvector. Not referenced if
 JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,8*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 SGEQRF, SORMQR, and SORGQR.) Then compute: NB --
 MAX of the blocksizes for SGEQRF, SORMQR, and
 SORGQR; The optimal LDWORK is: 2*N + MAX(6*N,
 N*(NB+1)).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: errors that usually indi-
 cate LAPACK problems:
 =N+1: error return from SGGBAL
 =N+2: error return from SGEQRF
 =N+3: error return from SORMQR
 =N+4: error return from SORGQR
 =N+5: error return from SGGHRD
 =N+6: error return from SHGEQZ (other than failed
 iteration) =N+7: error return from STGEVC
 =N+8: error return from SGGBAK (computing VL)
 =N+9: error return from SGGBAK (computing VR)
 =N+10: error return from SLASCL (various calls)

FURTHER DETAILS

 Balancing

 This driver calls SGGBAL to both permute and scale rows and
 columns of A and B. The permutations PL and PR are chosen
 so that PL*A*PR and PL*B*R will be upper triangular except
 for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i
 and j as close together as possible. The diagonal scaling
 matrices DL and DR are chosen so that the pair
 DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one
 (except for the elements that start out zero.)

 After the eigenvalues and eigenvectors of the balanced

 matrices have been computed, SGGBAK transforms the eigenvec-
 tors back to what they would have been (in perfect arith-
 metic) if they had not been balanced.

 Contents of A and B on Exit
 -------- -- - --- - -- ----

 If any eigenvectors are computed (either JOBVL='V' or
 JOBVR='V' or both), then on exit the arrays A and B will
 contain the real Schur form[*] of the "balanced" versions of
 A and B. If no eigenvectors are computed, then only the
 diagonal blocks will be correct.

 [*] See SHGEQZ, SGEGS, or read the book "Matrix Computa-
 tions",
 by Golub & van Loan, pub. by Johns Hopkins U. Press.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgehrd - reduce a real general matrix A to upper Hessenberg
 form H by an orthogonal similarity transformation

SYNOPSIS

 SUBROUTINE SGEHRD(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 INTEGER N, ILO, IHI, LDA, LWORKIN, INFO
 REAL A(LDA,*), TAU(*), WORKIN(*)

 SUBROUTINE SGEHRD_64(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 INTEGER*8 N, ILO, IHI, LDA, LWORKIN, INFO
 REAL A(LDA,*), TAU(*), WORKIN(*)

 F95 INTERFACE
 SUBROUTINE GEHRD([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 INTEGER :: N, ILO, IHI, LDA, LWORKIN, INFO
 REAL, DIMENSION(:) :: TAU, WORKIN
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEHRD_64([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 INTEGER(8) :: N, ILO, IHI, LDA, LWORKIN, INFO
 REAL, DIMENSION(:) :: TAU, WORKIN
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgehrd(int n, int ilo, int ihi, float *a, int lda,
 float *tau, int *info);

 void sgehrd_64(long n, long ilo, long ihi, float *a, long
 lda, float *tau, long *info);

PURPOSE

 sgehrd reduces a real general matrix A to upper Hessenberg
 form H by an orthogonal similarity transformation: Q' * A *
 Q = H .

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGEBAL;
 otherwise they should be set to 1 and N respec-
 tively. See Further Details.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first subdiag-
 onal of A are overwritten with the upper Hessen-
 berg matrix H, and the elements below the first
 subdiagonal, with the array TAU, represent the
 orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details). Elements 1:ILO-1 and
 IHI:N-1 of TAU are set to zero.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The length of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of (ihi-ilo) ele-
 mentary reflectors

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is
 stored on exit in A(i+2:ihi,i), and tau in TAU(i).

 The contents of A are illustrated by the following example,
 with n = 7, ilo = 2 and ihi = 6:

 on entry, on exit,

 (a a a a a a a) (a a h h h h
 a) (a a a a a a) (a h h h
 h a) (a a a a a a) (h h h
 h h h) (a a a a a a) (v2 h
 h h h h) (a a a a a a) (v2
 v3 h h h h) (a a a a a a) (
 v2 v3 v4 h h h) (a) (
 a)

 where a denotes an element of the original matrix A, h
 denotes a modified element of the upper Hessenberg matrix H,
 and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgelqf - compute an LQ factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE SGELQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGELQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GELQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgelqf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void sgelqf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 sgelqf computes an LQ factorization of a real M-by-N matrix
 A: A = L * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and below the diagonal of the array con-
 tain the m-by-min(m,n) lower trapezoidal matrix L
 (L is lower triangular if m <= n); the elements
 above the diagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
 A(i,i+1:n), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgels - solve overdetermined or underdetermined real linear
 systems involving an M-by-N matrix A, or its transpose,
 using a QR or LQ factorization of A

SYNOPSIS

 SUBROUTINE SGELS(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE SGELS_64(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELS([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB], [WORK],
 LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GELS_64([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB],
 [WORK], LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, NRHS, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgels (char, int, int, int, float*, int, float*, int,
 int*);

 void sgels_64 (char, long, long, long, float*, long, float*,
 long, long*);

PURPOSE

 sgels solves overdetermined or underdetermined real linear
 systems involving an M-by-N matrix A, or its transpose,
 using a QR or LQ factorization of A. It is assumed that A
 has full rank.

 The following options are provided:

 1. If TRANS = 'N' and m >= n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A*X ||.

 2. If TRANS = 'N' and m < n: find the minimum norm solution
 of
 an underdetermined system A * X = B.

 3. If TRANS = 'T' and m >= n: find the minimum norm solu-
 tion of
 an undetermined system A**T * X = B.

 4. If TRANS = 'T' and m < n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A**T * X ||.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

ARGUMENTS

 TRANSA (input)
 = 'N': the linear system involves A;
 = 'T': the linear system involves A**T.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >=0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M >=
 N, A is overwritten by details of its QR factori-
 zation as returned by SGEQRF; if M < N, A is
 overwritten by details of its LQ factorization as
 returned by SGELQF.

 LDA (input)

 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the matrix B of right hand side vectors,
 stored columnwise; B is M-by-NRHS if TRANSA = 'N',
 or N-by-NRHS if TRANSA = 'T'. On exit, B is
 overwritten by the solution vectors, stored
 columnwise: if TRANSA = 'N' and m >= n, rows 1 to
 n of B contain the least squares solution vectors;
 the residual sum of squares for the solution in
 each column is given by the sum of squares of ele-
 ments N+1 to M in that column; if TRANSA = 'N' and
 m < n, rows 1 to N of B contain the minimum norm
 solution vectors; if TRANSA = 'T' and m >= n, rows
 1 to M of B contain the minimum norm solution vec-
 tors; if TRANSA = 'T' and m < n, rows 1 to M of B
 contain the least squares solution vectors; the
 residual sum of squares for the solution in each
 column is given by the sum of squares of elements
 M+1 to N in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 MAX(1,M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. LDWORK >= max(
 1, MN + max(MN, NRHS)). For optimal perfor-
 mance, LDWORK >= max(1, MN + max(MN, NRHS)*NB
). where MN = min(M,N) and NB is the optimum
 block size.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgelsd - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE SGELSD(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
 LWORK, IWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER IWORK(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), S(*), WORK(*)

 SUBROUTINE SGELSD_64(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 WORK, LWORK, IWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 IWORK(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), S(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSD([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [IWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: RCOND
 REAL, DIMENSION(:) :: S, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GELSD_64([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [IWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL :: RCOND
 REAL, DIMENSION(:) :: S, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE

 #include <sunperf.h>

 void sgelsd(int m, int n, int nrhs, float *a, int lda, float
 *b, int ldb, float *s, float rcond, int *rank, int
 *info);
 void sgelsd_64(long m, long n, long nrhs, float *a, long
 lda, float *b, long ldb, float *s, float rcond,
 long *rank, long *info);

PURPOSE

 sgelsd computes the minimum-norm solution to a real linear
 least squares problem:
 minimize 2-norm(| b - A*x |)
 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The problem is solved in three steps:
 (1) Reduce the coefficient matrix A to bidiagonal form with
 Householder transformations, reducing the original prob-
 lem
 into a "bidiagonal least squares problem" (BLS)
 (2) Solve the BLS using a divide and conquer approach.
 (3) Apply back all the Householder tranformations to solve
 the original least squares problem.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 M (input) The number of rows of A. M >= 0.

 N (input) The number of columns of A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and RANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,max(M,N)).

 S (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 S(1)/S(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values S(i) <= RCOND*S(1) are treated
 as zero. If RCOND < 0, machine precision is used
 instead.

 RANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than RCOND*S(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. The
 exact minimum amount of workspace needed depends
 on M, N and NRHS. As long as LWORK is at least
 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS *
 (SMLSIZ+1)**2, if M is greater than or equal to N
 or 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS +
 (SMLSIZ+1)**2, if M is less than N, the code will
 execute correctly. SMLSIZ is returned by ILAENV
 and is equal to the maximum size of the subprob-
 lems at the bottom of the computation tree (usu-
 ally about 25), and NLVL = INT(LOG_2(MIN(M,N
)/(SMLSIZ+1))) + 1 For good performance, LWORK
 should generally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where
 MINMN = MIN(M,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Ren-Cang Li, Computer Science Division,
 University of California at Berkeley, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgelss - compute the minimum norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE SGELSS(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), SING(*), WORK(*)

 SUBROUTINE SGELSS_64(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), SING(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSS([M], [N], [NRHS], A, [LDA], B, [LDB], SING, RCOND,
 IRANK, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SING, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GELSS_64([M], [N], [NRHS], A, [LDA], B, [LDB], SING,
 RCOND, IRANK, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: SING, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgelss(int m, int n, int nrhs, float *a, int lda, float
 *b, int ldb, float *sing, float rcond, int *irank,
 int *info);

 void sgelss_64(long m, long n, long nrhs, float *a, long
 lda, float *b, long ldb, float *sing, float rcond,
 long *irank, long *info);

PURPOSE

 sgelss computes the minimum norm solution to a real linear
 least squares problem:

 Minimize 2-norm(| b - A*x |).

 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the first
 min(m,n) rows of A are overwritten with its right
 singular vectors, stored rowwise.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and IRANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.
 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,max(M,N)).

 SING (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 SING(1)/SING(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of

 A. Singular values SING(i) <= RCOND*SING(1) are
 treated as zero. If RCOND < 0, machine precision
 is used instead.

 IRANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than
 RCOND*SING(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1, and
 also: LDWORK >= 3*min(M,N) + max(2*min(M,N),
 max(M,N), NRHS) For good performance, LDWORK
 should generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgelsx - routine is deprecated and has been replaced by rou-
 tine SGELSY

SYNOPSIS

 SUBROUTINE SGELSX(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND, IRANK,
 WORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER JPIVOT(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE SGELSX_64(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND,
 IRANK, WORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER*8 JPIVOT(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSX([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT, RCOND,
 IRANK, [WORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GELSX_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT,
 RCOND, IRANK, [WORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgelsx(int m, int n, int nrhs, float *a, int lda, float
 *b, int ldb, int *jpivot, float rcond, int *irank,
 int *info);
 void sgelsx_64(long m, long n, long nrhs, float *a, long
 lda, float *b, long ldb, long *jpivot, float
 rcond, long *irank, long *info);

PURPOSE

 sgelsx routine is deprecated and has been replaced by rou-
 tine SGELSY.

 SGELSX computes the minimum-norm solution to a real linear
 least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by orthogonal transformations from the right, arriving
 at the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)

 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X. If m >=
 n and IRANK = n, the residual sum-of-squares for
 the solution in the i-th column is given by the
 sum of squares of elements N+1:M in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is an initial column, otherwise it is a free
 column. Before the QR factorization of A, all
 initial columns are permuted to the leading posi-
 tions; only the remaining free columns are moved
 as a result of column pivoting during the factori-
 zation. On exit, if JPIVOT(i) = k, then the i-th
 column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 IRANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.

 WORK (workspace)
 (max(min(M,N)+3*N, 2*min(M,N)+NRHS)),
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgelsy - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE SGELSY(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, INFO)

 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER JPVT(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE SGELSY_64(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, INFO)

 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 JPVT(*)
 REAL RCOND
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GELSY([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT, RCOND,
 RANK, [WORK], [LWORK], [INFO])

 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GELSY_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT,
 RCOND, RANK, [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE

 #include <sunperf.h>

 void sgelsy(int m, int n, int nrhs, float *a, int lda, float
 *b, int ldb, int *jpvt, float rcond, int *rank,
 int *info);
 void sgelsy_64(long m, long n, long nrhs, float *a, long
 lda, float *b, long ldb, long *jpvt, float rcond,
 long *rank, long *info);

PURPOSE

 sgelsy computes the minimum-norm solution to a real linear
 least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by orthogonal transformations from the right, arriving
 at the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

 This routine is basically identical to the original xGELSX
 except three differences:
 o The call to the subroutine xGEQPF has been substituted
 by the
 the call to the subroutine xGEQP3. This subroutine is a
 Blas-3
 version of the QR factorization with column pivoting.
 o Matrix B (the right hand side) is updated with Blas-3.
 o The permutation of matrix B (the right hand side) is
 faster and
 more simple.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPVT (input/output)
 On entry, if JPVT(i) .ne. 0, the i-th column of A
 is permuted to the front of AP, otherwise column i
 is a free column. On exit, if JPVT(i) = k, then
 the i-th column of AP was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 RANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. The unblocked
 strategy requires that: LWORK >= MAX(MN+3*N+1,
 2*MN+NRHS), where MN = min(M, N). The block
 algorithm requires that: LWORK >= MAX(
 MN+2*N+NB*(N+1), 2*MN+NB*NRHS), where NB is an
 upper bound on the blocksize returned by ILAENV
 for the routines SGEQP3, STZRZF, STZRQF, SORMQR,
 and SORMRZ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA
 E. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgemm - perform one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C

SYNOPSIS

 SUBROUTINE SGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 INTEGER M, N, K, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE SGEMM_64(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 INTEGER*8 M, N, K, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE GEMM([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 INTEGER :: M, N, K, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 SUBROUTINE GEMM_64([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 INTEGER(8) :: M, N, K, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void sgemm(char transa, char transb, int m, int n, int k,
 float alpha, float *a, int lda, float *b, int ldb,

 float beta, float *c, int ldc);

 void sgemm_64(char transa, char transb, long m, long n, long
 k, float alpha, float *a, long lda, float *b, long
 ldb, float beta, float *c, long ldc);

PURPOSE

 sgemm performs one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C where op(X) is one of

 op(X) = X or op(X) = X',

 alpha and beta are scalars, and A, B and C are matrices,
 with op(A) an m by k matrix, op(B) a k by n matrix
 and C an m by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = A'.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 TRANSB (input)
 On entry, TRANSB specifies the form of op(B) to
 be used in the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = B'.

 Unchanged on exit.

 TRANSB is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of
 the matrix op(A) and of the matrix C. M
 must be at least zero. Unchanged on exit.
 N (input)
 On entry, N specifies the number of columns of
 the matrix op(B) and the number of columns of
 the matrix C. N must be at least zero. Unchanged
 on exit.

 K (input)
 On entry, K specifies the number of columns of
 the matrix op(A) and the number of rows of the

 matrix op(B). K must be at least zero.
 Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 REAL array of DIMENSION (LDA, ka), where ka is k
 when TRANSA = 'N' or 'n', and is m otherwise.
 Before entry with TRANSA = 'N' or 'n', the lead-
 ing m by k part of the array A must contain the
 matrix A, otherwise the leading k by m part of
 the array A must contain the matrix A.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 TRANSA = 'N' or 'n' then LDA >= max(1, m), oth-
 erwise LDA >= max(1, k). Unchanged on exit.

 B (input)
 REAL array of DIMENSION (LDB, kb), where kb is n
 when TRANSB = 'N' or 'n', and is k otherwise.
 Before entry with TRANSB = 'N' or 'n', the lead-
 ing k by n part of the array B must contain the
 matrix B, otherwise the leading n by k part of
 the array B must contain the matrix B.
 Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. When
 TRANSB = 'N' or 'n' then LDB >= max(1, k), oth-
 erwise LDB >= max(1, n). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 REAL array of DIMENSION (LDC, n). Before entry,
 the leading m by n part of the array C must
 contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n matrix (alpha*op(A)*op(B) + beta*C).

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program. LDC
 >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgemv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y or y := alpha*A'*x + beta*y

SYNOPSIS

 SUBROUTINE SGEMV(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 INTEGER M, N, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 SUBROUTINE SGEMV_64(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 TRANSA
 INTEGER*8 M, N, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE GEMV([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: M, N, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEMV_64([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: M, N, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgemv(char transa, int m, int n, float alpha, float *a,

 int lda, float *x, int incx, float beta, float *y,
 int incy);
 void sgemv_64(char transa, long m, long n, float alpha,
 float *a, long lda, float *x, long incx, float
 beta, float *y, long incy);

PURPOSE

 sgemv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha
 and beta are scalars, x and y are vectors and A is an m by n
 matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry with BETA non-zero, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgeqlf - compute a QL factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE SGEQLF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGEQLF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQLF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEQLF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgeqlf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void sgeqlf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 sgeqlf computes a QL factorization of a real M-by-N matrix
 A: A = Q * L.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m >=
 n, the lower triangle of the subarray A(m-
 n+1:m,1:n) contains the N-by-N lower triangular
 matrix L; if m <= n, the elements on and below the
 (n-m)-th superdiagonal contain the M-by-N lower
 trapezoidal matrix L; the remaining elements, with
 the array TAU, represent the orthogonal matrix Q
 as a product of elementary reflectors (see Further
 Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with

 v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on
 exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgeqp3 - compute a QR factorization with column pivoting of
 a matrix A

SYNOPSIS

 SUBROUTINE SGEQP3(M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 INTEGER JPVT(*)
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGEQP3_64(M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 INTEGER*8 JPVT(*)
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQP3([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEQP3_64([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgeqp3(int m, int n, float *a, int lda, int *jpvt,
 float *tau, int *info);

 void sgeqp3_64(long m, long n, float *a, long lda, long

 *jpvt, float *tau, long *info);

PURPOSE

 sgeqp3 computes a QR factorization with column pivoting of a
 matrix A: A*P = Q*R using Level 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper trapezoidal matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the orthogonal matrix Q as a product of min(M,N)
 elementary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPVT (input/output)
 On entry, if JPVT(J).ne.0, the J-th column of A is
 permuted to the front of A*P (a leading column);
 if JPVT(J)=0, the J-th column of A is a free
 column. On exit, if JPVT(J)=K, then the J-th
 column of A*P was the the K-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 3*N+1.
 For optimal performance LWORK >= 2*N+(N+1)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real/complex scalar, and v is a real/complex
 vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on
 exit in A(i+1:m,i), and tau in TAU(i).

 Based on contributions by
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 X. Sun, Computer Science Dept., Duke University, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgeqpf - routine is deprecated and has been replaced by rou-
 tine SGEQP3

SYNOPSIS

 SUBROUTINE SGEQPF(M, N, A, LDA, JPIVOT, TAU, WORK, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER JPIVOT(*)
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGEQPF_64(M, N, A, LDA, JPIVOT, TAU, WORK, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 JPIVOT(*)
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQPF([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEQPF_64([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgeqpf(int m, int n, float *a, int lda, int *jpivot,
 float *tau, int *info);

 void sgeqpf_64(long m, long n, float *a, long lda, long
 *jpivot, float *tau, long *info);

PURPOSE

 sgeqpf routine is deprecated and has been replaced by rou-
 tine SGEQP3.

 SGEQPF computes a QR factorization with column pivoting of a
 real M-by-N matrix A: A*P = Q*R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper triangular matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the orthogonal matrix Q as a product of min(m,n)
 elementary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is permuted to the front of A*P (a leading
 column); if JPIVOT(i) = 0, the i-th column of A is
 a free column. On exit, if JPIVOT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(n)

 Each H(i) has the form
 H = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
 A(i+1:m,i).

 The matrix P is represented in jpvt as follows: If

 jpvt(j) = i
 then the jth column of P is the ith canonical unit vector.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgeqrf - compute a QR factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE SGEQRF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGEQRF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GEQRF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GEQRF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgeqrf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void sgeqrf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 sgeqrf computes a QR factorization of a real M-by-N matrix
 A: A = Q * R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(M,N)-by-N upper trapezoidal matrix R
 (R is upper triangular if m >= n); the elements
 below the diagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of min(m,n)
 elementary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
 A(i+1:m,i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sger - perform the rank 1 operation A := alpha*x*y' + A

SYNOPSIS

 SUBROUTINE SGER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 INTEGER M, N, INCX, INCY, LDA
 REAL ALPHA
 REAL X(*), Y(*), A(LDA,*)

 SUBROUTINE SGER_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 INTEGER*8 M, N, INCX, INCY, LDA
 REAL ALPHA
 REAL X(*), Y(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GER([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 INTEGER :: M, N, INCX, INCY, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GER_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 INTEGER(8) :: M, N, INCX, INCY, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sger(int m, int n, float alpha, float *x, int incx,
 float *y, int incy, float *a, int lda);

 void sger_64(long m, long n, float alpha, float *x, long
 incx, float *y, long incy, float *a, long lda);

PURPOSE

 sger performs the rank 1 operation A := alpha*x*y' + A,
 where alpha is a scalar, x is an m element vector, y is an n
 element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgerfs - improve the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution

SYNOPSIS

 SUBROUTINE SGERFS(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SGERFS_64(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GERFS([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GERFS_64([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void sgerfs(char transa, int n, int nrhs, float *a, int lda,
 float *af, int ldaf, int *ipivot, float *b, int
 ldb, float *x, int ldx, float *ferr, float *berr,
 int *info);

 void sgerfs_64(char transa, long n, long nrhs, float *a,
 long lda, float *af, long ldaf, long *ipivot,
 float *b, long ldb, float *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 sgerfs improves the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original N-by-N matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)

 On entry, the solution matrix X, as computed by
 SGETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgerqf - compute an RQ factorization of a real M-by-N matrix
 A

SYNOPSIS

 SUBROUTINE SGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GERQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GERQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgerqf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void sgerqf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 sgerqf computes an RQ factorization of a real M-by-N matrix
 A: A = R * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m <=
 n, the upper triangle of the subarray A(1:m,n-
 m+1:n) contains the M-by-M upper triangular matrix
 R; if m >= n, the elements on and above the (m-
 n)-th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAU, represent the orthogonal matrix Q
 as a product of min(m,n) elementary reflectors
 (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with

 v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on
 exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgesdd - compute the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and
 right singular vectors

SYNOPSIS

 SUBROUTINE SGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER IWORK(*)
 REAL A(LDA,*), S(*), U(LDU,*), VT(LDVT,*), WORK(*)

 SUBROUTINE SGESDD_64(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER*8 IWORK(*)
 REAL A(LDA,*), S(*), U(LDU,*), VT(LDVT,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GESDD(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: S, WORK
 REAL, DIMENSION(:,:) :: A, U, VT

 SUBROUTINE GESDD_64(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: S, WORK
 REAL, DIMENSION(:,:) :: A, U, VT

 C INTERFACE
 #include <sunperf.h>

 void sgesdd(char jobz, int m, int n, float *a, int lda,
 float *s, float *u, int ldu, float *vt, int ldvt,
 int *info);
 void sgesdd_64(char jobz, long m, long n, float *a, long
 lda, float *s, float *u, long ldu, float *vt, long
 ldvt, long *info);

PURPOSE

 sgesdd computes the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and
 right singular vectors. If singular vectors are desired, it
 uses a divide-and-conquer algorithm.

 The SVD is written
 = U * SIGMA * transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M orthogonal
 matrix, and V is an N-by-N orthogonal matrix. The diagonal
 elements of SIGMA are the singular values of A; they are
 real and non-negative, and are returned in descending order.
 The first min(m,n) columns of U and V are the left and right
 singular vectors of A.

 Note that the routine returns VT = V**T, not V.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U and all N rows of V**T
 are returned in the arrays U and VT; = 'S': the
 first min(M,N) columns of U and the first min(M,N)
 rows of V**T are returned in the arrays U and VT;
 = 'O': If M >= N, the first N columns of U are
 overwritten on the array A and all rows of V**T
 are returned in the array VT; otherwise, all
 columns of U are returned in the array U and the
 first M rows of V**T are overwritten in the array
 VT; = 'N': no columns of U or rows of V**T are
 computed.

 M (input) The number of rows of the input matrix A. M >= 0.
 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)

 On entry, the M-by-N matrix A. On exit, if JOBZ =
 'O', A is overwritten with the first N columns of
 U (the left singular vectors, stored columnwise)
 if M >= N; A is overwritten with the first M rows
 of V**T (the right singular vectors, stored row-
 wise) otherwise. if JOBZ .ne. 'O', the contents
 of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 S (output)
 The singular values of A, sorted so that S(i) >=
 S(i+1).

 U (output)
 UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
 UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or
 JOBZ = 'O' and M < N, U contains the M-by-M
 orthogonal matrix U; if JOBZ = 'S', U contains the
 first min(M,N) columns of U (the left singular
 vectors, stored columnwise); if JOBZ = 'O' and M
 >= N, or JOBZ = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU
 >= M.

 VT (output)
 If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT con-
 tains the N-by-N orthogonal matrix V**T; if JOBZ =
 'S', VT contains the first min(M,N) rows of V**T
 (the right singular vectors, stored rowwise); if
 JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
 if JOBZ = 'S', LDVT >= min(M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK;

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. If
 JOBZ = 'N', LWORK >= 3*min(M,N) +
 max(max(M,N),6*min(M,N)). If JOBZ = 'O', LWORK >=
 3*min(M,N)*min(M,N) + max(max(M,N),5*min(M,N)*
 min(M,N)+4*min(M,N)). If JOBZ = 'S' or 'A' LWORK
 >= 3*min(M,N)*min(M,N) + max(max(M,N),4*min(M,N)*
 min(M,N)+4*min(M,N)). For good performance, LWORK
 should generally be larger. If LWORK < 0 but
 other input arguments are legal, WORK(1) returns
 optimal LWORK.

 IWORK (workspace)
 dimension(8*MIN(M,N))

 INFO (output)
 = 0: successful exit.

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: SBDSDC did not converge, updating process
 failed.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgesv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GESV([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GESV_64([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgesv(int n, int nrhs, float *a, int lda, int *ipivot,
 float *b, int ldb, int *info);

 void sgesv_64(long n, long nrhs, float *a, long lda, long
 *ipivot, float *b, long ldb, long *info);

PURPOSE

 sgesv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row
 interchanges is used to factor A as
 A = P * L * U,
 where P is a permutation matrix, L is unit lower triangular,
 and U is upper triangular. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N coefficient matrix A. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)
 On entry, the N-by-NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N-by-NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, so the solution could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgesvd - compute the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and/or
 right singular vectors

SYNOPSIS

 SUBROUTINE SGESVD(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT, LDVT,
 WORK, LDWORK, INFO)

 CHARACTER * 1 JOBU, JOBVT
 INTEGER M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL A(LDA,*), SING(*), U(LDU,*), VT(LDVT,*), WORK(*)

 SUBROUTINE SGESVD_64(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT,
 LDVT, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBU, JOBVT
 INTEGER*8 M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL A(LDA,*), SING(*), U(LDU,*), VT(LDVT,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GESVD(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU], VT,
 [LDVT], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 INTEGER :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL, DIMENSION(:) :: SING, WORK
 REAL, DIMENSION(:,:) :: A, U, VT

 SUBROUTINE GESVD_64(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU],
 VT, [LDVT], [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL, DIMENSION(:) :: SING, WORK
 REAL, DIMENSION(:,:) :: A, U, VT

 C INTERFACE
 #include <sunperf.h>

 void sgesvd(char jobu, char jobvt, int m, int n, float *a,
 int lda, float *sing, float *u, int ldu, float
 *vt, int ldvt, int *info);

 void sgesvd_64(char jobu, char jobvt, long m, long n, float
 *a, long lda, float *sing, float *u, long ldu,
 float *vt, long ldvt, long *info);

PURPOSE

 sgesvd computes the singular value decomposition (SVD) of a
 real M-by-N matrix A, optionally computing the left and/or
 right singular vectors. The SVD is written
 = U * SIGMA * transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M orthogonal
 matrix, and V is an N-by-N orthogonal matrix. The diagonal
 elements of SIGMA are the singular values of A; they are
 real and non-negative, and are returned in descending order.
 The first min(m,n) columns of U and V are the left and right
 singular vectors of A.

 Note that the routine returns V**T, not V.

ARGUMENTS

 JOBU (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U are returned in array
 U:
 = 'S': the first min(m,n) columns of U (the left
 singular vectors) are returned in the array U; =
 'O': the first min(m,n) columns of U (the left
 singular vectors) are overwritten on the array A;
 = 'N': no columns of U (no left singular vectors)
 are computed.

 JOBVT (input)
 Specifies options for computing all or part of the
 matrix V**T:
 = 'A': all N rows of V**T are returned in the
 array VT;
 = 'S': the first min(m,n) rows of V**T (the right
 singular vectors) are returned in the array VT; =
 'O': the first min(m,n) rows of V**T (the right
 singular vectors) are overwritten on the array A;
 = 'N': no rows of V**T (no right singular vec-
 tors) are computed.

 JOBVT and JOBU cannot both be 'O'.

 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.
 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBU =
 'O', A is overwritten with the first min(m,n)
 columns of U (the left singular vectors, stored
 columnwise); if JOBVT = 'O', A is overwritten with
 the first min(m,n) rows of V**T (the right singu-

 lar vectors, stored rowwise); if JOBU .ne. 'O' and
 JOBVT .ne. 'O', the contents of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 SING (output)
 The singular values of A, sorted so that SING(i)
 >= SING(i+1).

 U (input) (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU =
 'S'. If JOBU = 'A', U contains the M-by-M orthog-
 onal matrix U; if JOBU = 'S', U contains the first
 min(m,n) columns of U (the left singular vectors,
 stored columnwise); if JOBU = 'N' or 'O', U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBU = 'S' or 'A', LDU >= M.

 VT (input)
 If JOBVT = 'A', VT contains the N-by-N orthogonal
 matrix V**T; if JOBVT = 'S', VT contains the first
 min(m,n) rows of V**T (the right singular vectors,
 stored rowwise); if JOBVT = 'N' or 'O', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >=
 min(M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK; if INFO > 0, WORK(2:MIN(M,N)) contains the
 unconverged superdiagonal elements of an upper
 bidiagonal matrix B whose diagonal is in SING (not
 necessarily sorted). B satisfies A = U * B * VT,
 so it has the same singular values as A, and
 singular vectors related by U and VT.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1.
 LDWORK >= MAX(3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
 For good performance, LDWORK should generally be
 larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if SBDSQR did not converge, INFO specifies
 how many superdiagonals of an intermediate bidiag-
 onal form B did not converge to zero. See the
 description of WORK above for details.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgesvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE SGESVX(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE SGESVX_64(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), ROWSC(*), COLSC(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GESVX(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE GESVX_64(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void sgesvx(char fact, char transa, int n, int nrhs, float
 *a, int lda, float *af, int ldaf, int *ipivot,
 char equed, float *rowsc, float *colsc, float *b,
 int ldb, float *x, int ldx, float *rcond, float
 *ferr, float *berr, int *info);

 void sgesvx_64(char fact, char transa, long n, long nrhs,
 float *a, long lda, float *af, long ldaf, long
 *ipivot, char equed, float *rowsc, float *colsc,
 float *b, long ldb, float *x, long ldx, float
 *rcond, float *ferr, float *berr, long *info);

PURPOSE

 sgesvx uses the LU factorization to compute the solution to
 a real system of linear equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = P * L * U,
 where P is a permutation matrix, L is a unit lower tri-
 angular
 matrix, and U is upper triangular.
 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the

 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. If FACT = 'F' and
 EQUED is not 'N', then A must have been equili-
 brated by the scaling factors in ROWSC and/or
 COLSC. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)

 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the factors L and U from the fac-
 torization A = P*L*U as computed by SGETRF. If
 EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the equilibrated matrix A
 (see the description of A for the form of the
 equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = P*L*U as computed by SGETRF; row
 i of the matrix was interchanged with row
 IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 TRANSA = 'N' and EQUED = 'ROWSC' or 'B', B is
 overwritten by diag(ROWSC)*B; if TRANSA = 'T' or
 'COLSC' and EQUED = 'COLSC' or 'B', B is overwrit-
 ten by diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).
 WORK (workspace)
 dimension(4*N) On exit, WORK(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK(1) is much less than 1, then the stability of

 the LU factorization of the (equilibrated) matrix
 A could be poor. This also means that the solution
 X, condition estimator RCOND, and forward error
 bound FERR could be unreliable. If factorization
 fails with 0<INFO<=N, then WORK(1) contains the
 reciprocal pivot growth factor for the leading
 INFO columns of A.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgetf2 - compute an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE SGETF2(M, N, A, LDA, IPIV, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER IPIV(*)
 REAL A(LDA,*)

 SUBROUTINE SGETF2_64(M, N, A, LDA, IPIV, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIV(*)
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GETF2([M], [N], A, [LDA], IPIV, [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GETF2_64([M], [N], A, [LDA], IPIV, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgetf2(int m, int n, float *a, int lda, int *ipiv, int
 *info);

 void sgetf2_64(long m, long n, float *a, long lda, long
 *ipiv, long *info);

PURPOSE

 sgetf2 computes an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 2 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the m by n matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The fac-
 torization has been completed, but the factor U is
 exactly singular, and division by zero will occur
 if it is used to solve a system of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgetrf - compute an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE SGETRF(M, N, A, LDA, IPIVOT, INFO)

 INTEGER M, N, LDA, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*)

 SUBROUTINE SGETRF_64(M, N, A, LDA, IPIVOT, INFO)

 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE GETRF([M], [N], A, [LDA], IPIVOT, [INFO])

 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GETRF_64([M], [N], A, [LDA], IPIVOT, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgetrf(int m, int n, float *a, int lda, int *ipivot,
 int *info);

 void sgetrf_64(long m, long n, float *a, long lda, long
 *ipivot, long *info);

PURPOSE

 sgetrf computes an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgetri - compute the inverse of a matrix using the LU fac-
 torization computed by SGETRF

SYNOPSIS

 SUBROUTINE SGETRI(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SGETRI_64(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GETRI([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE GETRI_64([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sgetri(int n, float *a, int lda, int *ipivot, int
 *info);

 void sgetri_64(long n, float *a, long lda, long *ipivot,
 long *info);

PURPOSE

 sgetri computes the inverse of a matrix using the LU factor-
 ization computed by SGETRF.

 This method inverts U and then computes inv(A) by solving
 the system inv(A)*L = inv(U) for inv(A).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the factors L and U from the factoriza-
 tion A = P*L*U as computed by SGETRF. On exit, if
 INFO = 0, the inverse of the original matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 WORK (workspace)
 On exit, if INFO=0, then WORK(1) returns the
 optimal LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimal performance LDWORK >= N*NB,
 where NB is the optimal blocksize returned by
 ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero; the
 matrix is singular and its inverse could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgetrs - solve a system of linear equations A * X = B or A'
 * X = B with a general N-by-N matrix A using the LU factori-
 zation computed by SGETRF

SYNOPSIS

 SUBROUTINE SGETRS(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SGETRS_64(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GETRS([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GETRS_64([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgetrs(char transa, int n, int nrhs, float *a, int lda,
 int *ipivot, float *b, int ldb, int *info);

 void sgetrs_64(char transa, long n, long nrhs, float *a,
 long lda, long *ipivot, float *b, long ldb, long
 *info);

PURPOSE

 sgetrs solves a system of linear equations
 A * X = B or A' * X = B with a general N-by-N matrix A
 using the LU factorization computed by SGETRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by SGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from SGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggbak - form the right or left eigenvectors of a real gen-
 eralized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by SGGBAL

SYNOPSIS

 SUBROUTINE SGGBAK(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
 INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER N, ILO, IHI, M, LDV, INFO
 REAL LSCALE(*), RSCALE(*), V(LDV,*)

 SUBROUTINE SGGBAK_64(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 REAL LSCALE(*), RSCALE(*), V(LDV,*)

 F95 INTERFACE
 SUBROUTINE GGBAK(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE
 REAL, DIMENSION(:,:) :: V

 SUBROUTINE GGBAK_64(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE
 REAL, DIMENSION(:,:) :: V

 C INTERFACE
 #include <sunperf.h>

 void sggbak(char job, char side, int n, int ilo, int ihi,
 float *lscale, float *rscale, int m, float *v, int
 ldv, int *info);

 void sggbak_64(char job, char side, long n, long ilo, long
 ihi, float *lscale, float *rscale, long m, float
 *v, long ldv, long *info);

PURPOSE

 sggbak forms the right or left eigenvectors of a real gen-
 eralized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by SGGBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required:
 = 'N': do nothing, return immediately;
 = 'P': do backward transformation for permutation
 only;
 = 'S': do backward transformation for scaling
 only;
 = 'B': do backward transformations for both per-
 mutation and scaling. JOB must be the same as the
 argument JOB supplied to SGGBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by SGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 See the description for ILO.

 LSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the left side of A and B, as returned
 by SGGBAL.

 RSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the right side of A and B, as returned
 by SGGBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by STGEVC. On
 exit, V is overwritten by the transformed eigen-
 vectors.

 LDV (input)
 The leading dimension of the matrix V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. Ward, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggbal - balance a pair of general real matrices (A,B)

SYNOPSIS

 SUBROUTINE SGGBAL(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 WORK, INFO)

 CHARACTER * 1 JOB
 INTEGER N, LDA, LDB, ILO, IHI, INFO
 REAL A(LDA,*), B(LDB,*), LSCALE(*), RSCALE(*), WORK(*)

 SUBROUTINE SGGBAL_64(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
 RSCALE, WORK, INFO)

 CHARACTER * 1 JOB
 INTEGER*8 N, LDA, LDB, ILO, IHI, INFO
 REAL A(LDA,*), B(LDB,*), LSCALE(*), RSCALE(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGBAL(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER :: N, LDA, LDB, ILO, IHI, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GGBAL_64(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 INTEGER(8) :: N, LDA, LDB, ILO, IHI, INFO
 REAL, DIMENSION(:) :: LSCALE, RSCALE, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sggbal(char job, int n, float *a, int lda, float *b,
 int ldb, int *ilo, int *ihi, float *lscale, float
 *rscale, int *info);

 void sggbal_64(char job, long n, float *a, long lda, float
 *b, long ldb, long *ilo, long *ihi, float *lscale,
 float *rscale, long *info);

PURPOSE

 sggbal balances a pair of general real matrices (A,B). This
 involves, first, permuting A and B by similarity transforma-
 tions to isolate eigenvalues in the first 1 to ILO$-$1 and
 last IHI+1 to N elements on the diagonal; and second, apply-
 ing a diagonal similarity transformation to rows and columns
 ILO to IHI to make the rows and columns as close in norm as
 possible. Both steps are optional.

 Balancing may reduce the 1-norm of the matrices, and improve
 the accuracy of the computed eigenvalues and/or eigenvectors
 in the generalized eigenvalue problem A*x = lambda*B*x.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A and
 B:
 = 'N': none: simply set ILO = 1, IHI = N,
 LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i =
 1,...,N. = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) On entry, the input matrix B. On exit, B is
 overwritten by the balanced matrix. If JOB = 'N',
 B is not referenced.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If JOB = 'N' or
 'S', ILO = 1 and IHI = N.

 IHI (output)
 See the description for ILO.

 LSCALE (input)
 Details of the permutations and scaling factors

 applied to the left side of A and B. If P(j) is
 the index of the row interchanged with row j, and
 D(j) is the scaling factor applied to row j, then
 LSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j)
 for J = ILO,...,IHI = P(j) for J = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (input)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If P(j) is
 the index of the column interchanged with column
 j, and D(j) is the scaling factor applied to
 column j, then LSCALE(j) = P(j) for J =
 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j)
 for J = IHI+1,...,N. The order in which the
 interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. WARD, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgges - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B),

SYNOPSIS

 SUBROUTINE SGGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL SELCTG
 LOGICAL BWORK(*)
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 SUBROUTINE SGGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
 SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL*8 SELCTG
 LOGICAL*8 BWORK(*)
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, [SELCTG], [N], A, [LDA], B, [LDB],
 SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK],
 [LWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL :: SELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR

 SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, [SELCTG], [N], A, [LDA], B,
 [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 [WORK], [LWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL(8) :: SELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR
 C INTERFACE
 #include <sunperf.h>

 void sgges(char jobvsl, char jobvsr, char sort,
 int(*selctg)(float,float,float), int n, float *a,
 int lda, float *b, int ldb, int *sdim, float
 *alphar, float *alphai, float *beta, float *vsl,
 int ldvsl, float *vsr, int ldvsr, int *info);

 void sgges_64(char jobvsl, char jobvsr, char sort,
 long(*selctg)(float,float,float), long n, float
 *a, long lda, float *b, long ldb, long *sdim,
 float *alphar, float *alphai, float *beta, float
 *vsl, long ldvsl, float *vsr, long ldvsr, long
 *info);

PURPOSE

 sgges computes for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 real Schur form (S,T), optionally, the left and/or right
 matrices of Schur vectors (VSL and VSR). This gives the gen-
 eralized Schur factorization

 (A,B) = ((VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T)

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix S and the
 upper triangular matrix T.The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the
 driver SGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0 or both being zero.

 A pair of matrices (S,T) is in generalized real Schur form
 if T is upper triangular with non-negative diagonal and S is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of S will be "standardized" by making
 the corresponding elements of T have the form:
 [a 0]
 [0 b]

 and the pair of corresponding 2-by-2 blocks in S and T will
 have a complex conjugate pair of generalized eigenvalues.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see SELCTG);

 SELCTG (input)
 SELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', SELCTG is not refer-
 enced. If SORT = 'S', SELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j)
 is selected if SELCTG(ALPHAR(j),ALPHAI(j),BETA(j))
 is true; i.e. if either one of a complex conjugate
 pair of eigenvalues is selected, then both complex
 eigenvalues are selected.

 Note that in the ill-conditioned case, a selected
 complex eigenvalue may no longer satisfy
 SELCTG(ALPHAR(j),ALPHAI(j), BETA(j)) = .TRUE.
 after ordering. INFO is to be set to N+2 in this
 case.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 SELCTG is true. (Complex conjugate pairs for
 which SELCTG is true for either eigenvalue count
 as 2.)

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i, and BETA(j),j=1,...,N
 are the diagonals of the complex Schur form (S,T)

 that would result if the 2-by-2 diagonal blocks of
 the real Schur form of (A,B) were further reduced
 to triangular form using 2-by-2 complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio. How-
 ever, ALPHAR and ALPHAI will be always less than
 and usually comparable with norm(A) in magnitude,
 and BETA always less than and usually comparable
 with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.
 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 8*N+16.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in
 SHGEQZ.
 =N+2: after reordering, roundoff changed values of

 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy SELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 STGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sggesx - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the real Schur
 form (S,T), and,

SYNOPSIS

 SUBROUTINE SGGESX(JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, B,
 LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE,
 RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELCTG
 LOGICAL BWORK(*)
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*), WORK(*)

 SUBROUTINE SGGESX_64(JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
 B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELCTG
 LOGICAL*8 BWORK(*)
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGESX(JOBVSL, JOBVSR, SORT, [SELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: SELCTG
 LOGICAL, DIMENSION(:) :: BWORK

 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE, RCONDV,
 WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR
 SUBROUTINE GGESX_64(JOBVSL, JOBVSR, SORT, [SELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR],
 RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: SELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE, RCONDV,
 WORK
 REAL, DIMENSION(:,:) :: A, B, VSL, VSR

 C INTERFACE
 #include <sunperf.h>

 void sggesx(char jobvsl, char jobvsr, char sort,
 int(*selctg)(float,float,float), char sense, int
 n, float *a, int lda, float *b, int ldb, int
 *sdim, float *alphar, float *alphai, float *beta,
 float *vsl, int ldvsl, float *vsr, int ldvsr,
 float *rconde, float *rcondv, int *info);

 void sggesx_64(char jobvsl, char jobvsr, char sort,
 long(*selctg)(float,float,float), char sense, long
 n, float *a, long lda, float *b, long ldb, long
 *sdim, float *alphar, float *alphai, float *beta,
 float *vsl, long ldvsl, float *vsr, long ldvsr,
 float *rconde, float *rcondv, long *info);

PURPOSE

 sggesx computes for a pair of N-by-N real nonsymmetric
 matrices (A,B), the generalized eigenvalues, the real Schur
 form (S,T), and, optionally, the left and/or right matrices
 of Schur vectors (VSL and VSR). This gives the generalized
 Schur factorization
 A,B) = ((VSL) S (VSR)**T, (VSL) T (VSR)**T)

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix S and the
 upper triangular matrix T; computes a reciprocal condition
 number for the average of the selected eigenvalues (RCONDE);
 and computes a reciprocal condition number for the right and
 left deflating subspaces corresponding to the selected
 eigenvalues (RCONDV). The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0 or for both being zero.

 A pair of matrices (S,T) is in generalized real Schur form

 if T is upper triangular with non-negative diagonal and S is
 block upper triangular with 1-by-1 and 2-by-2 blocks. 1-
 by-1 blocks correspond to real generalized eigenvalues,
 while 2-by-2 blocks of S will be "standardized" by making
 the corresponding elements of T have the form:
 [a 0]
 [0 b]

 and the pair of corresponding 2-by-2 blocks in S and T will
 have a complex conjugate pair of generalized eigenvalues.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see SELCTG).

 SELCTG (input)
 SELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', SELCTG is not refer-
 enced. If SORT = 'S', SELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j)
 is selected if SELCTG(ALPHAR(j),ALPHAI(j),BETA(j))
 is true; i.e. if either one of a complex conjugate
 pair of eigenvalues is selected, then both complex
 eigenvalues are selected. Note that a selected
 complex eigenvalue may no longer satisfy
 SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after
 ordering, since ordering may change the value of
 complex eigenvalues (especially if the eigenvalue
 is ill-conditioned), in this case INFO is set to
 N+3.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N' : None are computed;
 = 'E' : Computed for average of selected eigen-
 values only;
 = 'V' : Computed for selected deflating subspaces
 only;
 = 'B' : Computed for both. If SENSE = 'E', 'V',
 or 'B', SORT must equal 'S'.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 SELCTG is true. (Complex conjugate pairs for
 which SELCTG is true for either eigenvalue count
 as 2.)

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are
 the diagonals of the complex Schur form (S,T) that
 would result if the 2-by-2 diagonal blocks of the
 real Schur form of (A,B) were further reduced to
 triangular form using 2-by-2 complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio. How-
 ever, ALPHAR and ALPHAI will be always less than
 and usually comparable with norm(A) in magnitude,
 and BETA always less than and usually comparable
 with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 RCONDE (output)
 If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2)

 contain the reciprocal condition numbers for the
 average of the selected eigenvalues. Not refer-
 enced if SENSE = 'N' or 'V'.

 RCONDV (output)
 If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2)
 contain the reciprocal condition numbers for the
 selected deflating subspaces. Not referenced if
 SENSE = 'N' or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 8*(N+1)+16. If SENSE = 'E', 'V', or 'B', LWORK >=
 MAX(8*(N+1)+16, 2*SDIM*(N-SDIM)).

 IWORK (workspace)
 Not referenced if SENSE = 'N'.

 LIWORK (input)
 The dimension of the array WORK. LIWORK >= N+6.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHAR(j), ALPHAI(j), and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in SHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy SELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 STGSEN.

 Further details ===============

 An approximate (asymptotic) bound on the average
 absolute error of the selected eigenvalues is

 EPS * norm((A, B)) / RCONDE(1).

 An approximate (asymptotic) bound on the maximum
 angular error in the computed deflating subspaces
 is

 EPS * norm((A, B)) / RCONDV(2).

 See LAPACK User's Guide, section 4.11 for more
 information.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sggev - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B)

SYNOPSIS

 SUBROUTINE SGGEV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE SGGEV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
 BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGEV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE GGEV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHAR,
 ALPHAI, BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void sggev(char jobvl, char jobvr, int n, float *a, int lda,
 float *b, int ldb, float *alphar, float *alphai,

 float *beta, float *vl, int ldvl, float *vr, int
 ldvr, int *info);
 void sggev_64(char jobvl, char jobvr, long n, float *a, long
 lda, float *b, long ldb, float *alphar, float
 *alphai, float *beta, float *vl, long ldvl, float
 *vr, long ldvr, long *info);

PURPOSE

 sggev computes for a pair of N-by-N real nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 The right eigenvector v(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j).

 The left eigenvector u(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B .

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 If ALPHAI(j) is zero, then the j-th eigenvalue is
 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 alpha/beta. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description for ALPHAR.

 BETA (output)
 See the description for ALPHAR.

 VL (input)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then u(j) = VL(:,j), the j-th
 column of VL. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then u(j) =
 VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-
 i*VL(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real
 part)+abs(imag. part)=1. Not referenced if JOBVL
 = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then v(j) = VR(:,j), the j-th
 column of VR. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then v(j) =
 VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-
 i*VR(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real
 part)+abs(imag. part)=1. Not referenced if JOBVR
 = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=

 max(1,8*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: =N+1: other than QZ itera-
 tion failed in SHGEQZ.
 =N+2: error return from STGEVC.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggevx - compute for a pair of N-by-N real nonsymmetric
 matrices (A,B)

SYNOPSIS

 SUBROUTINE SGGEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, BWORK,
 INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL BWORK(*)
 REAL ABNRM, BBNRM
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), LSCALE(*), RSCALE(*), RCONDE(*),
 RCONDV(*), WORK(*)

 SUBROUTINE SGGEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, BWORK,
 INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 BWORK(*)
 REAL ABNRM, BBNRM
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), LSCALE(*), RSCALE(*), RCONDE(*),
 RCONDV(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [IWORK],
 [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO

 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: BWORK
 REAL :: ABNRM, BBNRM
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, LSCALE, RSCALE,
 RCONDE, RCONDV, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR
 SUBROUTINE GGEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B,
 [LDB], ALPHAR, ALPHAI, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI,
 LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK],
 [IWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL :: ABNRM, BBNRM
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, LSCALE, RSCALE,
 RCONDE, RCONDV, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void sggevx(char balanc, char jobvl, char jobvr, char sense,
 int n, float *a, int lda, float *b, int ldb, float
 *alphar, float *alphai, float *beta, float *vl,
 int ldvl, float *vr, int ldvr, int *ilo, int *ihi,
 float *lscale, float *rscale, float *abnrm, float
 *bbnrm, float *rconde, float *rcondv, int *info);

 void sggevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, float *a, long lda, float *b, long
 ldb, float *alphar, float *alphai, float *beta,
 float *vl, long ldvl, float *vr, long ldvr, long
 *ilo, long *ihi, float *lscale, float *rscale,
 float *abnrm, float *bbnrm, float *rconde, float
 *rcondv, long *info);

PURPOSE

 sggevx computes for a pair of N-by-N real nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal
 condition numbers for the eigenvalues (RCONDE), and recipro-
 cal condition numbers for the right eigenvectors (RCONDV).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.
 The right eigenvector v(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j) .

 The left eigenvector u(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B.

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 BALANC (input)
 Specifies the balance option to be performed. =
 'N': do not diagonally scale or permute;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale. Computed recipro-
 cal condition numbers will be for the matrices
 after permuting and/or balancing. Permuting does
 not change condition numbers (in exact arith-
 metic), but balancing does.

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': none are computed;
 = 'E': computed for eigenvalues only;
 = 'V': computed for eigenvectors only;
 = 'B': computed for eigenvalues and eigenvectors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then A contains the first part
 of the real Schur form of the "balanced" versions
 of the input A and B.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then B contains the second part
 of the real Schur form of the "balanced" versions
 of the input A and B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 If ALPHAI(j) is zero, then the j-th eigenvalue is

 real; if positive, then the j-th and (j+1)-st
 eigenvalues are a complex conjugate pair, with
 ALPHAI(j+1) negative.

 Note: the quotients ALPHAR(j)/BETA(j) and
 ALPHAI(j)/BETA(j) may easily over- or underflow,
 and BETA(j) may even be zero. Thus, the user
 should avoid naively computing the ratio
 ALPHA/BETA. However, ALPHAR and ALPHAI will be
 always less than and usually comparable with
 norm(A) in magnitude, and BETA always less than
 and usually comparable with norm(B).

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.

 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then u(j) = VL(:,j), the j-th
 column of VL. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then u(j) =
 VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-
 i*VL(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real part) +
 abs(imag. part) = 1. Not referenced if JOBVL =
 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If the j-th
 eigenvalue is real, then v(j) = VR(:,j), the j-th
 column of VR. If the j-th and (j+1)-th eigenvalues
 form a complex conjugate pair, then v(j) =
 VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-
 i*VR(:,j+1). Each eigenvector will be scaled so
 the largest component have abs(real part) +
 abs(imag. part) = 1. Not referenced if JOBVR =
 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If BALANC = 'N'
 or 'S', ILO = 1 and IHI = N.

 IHI (output)
 See the description of ILO.

 LSCALE (output)
 Details of the permutations and scaling factors

 applied to the left side of A and B. If PL(j) is
 the index of the row interchanged with row j, and
 DL(j) is the scaling factor applied to row j, then
 LSCALE(j) = PL(j) for j = 1,...,ILO-1 = DL(j)
 for j = ILO,...,IHI = PL(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (output)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If PR(j) is
 the index of the column interchanged with column
 j, and DR(j) is the scaling factor applied to
 column j, then RSCALE(j) = PR(j) for j =
 1,...,ILO-1 = DR(j) for j = ILO,...,IHI = PR(j)
 for j = IHI+1,...,N The order in which the inter-
 changes are made is N to IHI+1, then 1 to ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix A.

 BBNRM (output)
 The one-norm of the balanced matrix B.

 RCONDE (output)
 If SENSE = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive ele-
 ments of RCONDE are set to the same value. Thus
 RCONDE(j), RCONDV(j), and the j-th columns of VL
 and VR all correspond to the same eigenpair (but
 not in general the j-th eigenpair, unless all
 eigenpairs are selected). If SENSE = 'V', RCONDE
 is not referenced.

 RCONDV (output)
 If SENSE = 'V' or 'B', the estimated reciprocal
 condition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 RCONDV are set to the same value. If the eigen-
 values cannot be reordered to compute RCONDV(j),
 RCONDV(j) is set to 0; this can only occur when
 the true value would be very small anyway. If
 SENSE = 'E', RCONDV is not referenced.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,6*N). If SENSE = 'E', LWORK >= 12*N. If
 SENSE = 'V' or 'B', LWORK >= 2*N*N+12*N+16.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(N+6) If SENSE = 'E', IWORK is not refer-

 enced.

 BWORK (workspace)
 dimension(N) If SENSE = 'N', BWORK is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHAR(j),
 ALPHAI(j), and BETA(j) should be correct for
 j=INFO+1,...,N. > N: =N+1: other than QZ itera-
 tion failed in SHGEQZ.
 =N+2: error return from STGEVC.

FURTHER DETAILS

 Balancing a matrix pair (A,B) includes, first, permuting
 rows and columns to isolate eigenvalues, second, applying
 diagonal similarity transformation to the rows and columns
 to make the rows and columns as close in norm as possible.
 The computed reciprocal condition numbers correspond to the
 balanced matrix. Permuting rows and columns will not change
 the condition numbers (in exact arithmetic) but diagonal
 scaling will. For further explanation of balancing, see
 section 4.11.1.2 of LAPACK Users' Guide.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
 An approximate error bound for the angle between the i-th
 computed eigenvector VL(i) or VR(i) is given by
 PS * norm(ABNRM, BBNRM) / DIF(i).

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see section 4.11 of LAPACK User's Guide.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sggglm - solve a general Gauss-Markov linear model (GLM)
 problem

SYNOPSIS

 SUBROUTINE SGGGLM(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 INTEGER N, M, P, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)

 SUBROUTINE SGGGLM_64(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 INTEGER*8 N, M, P, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGGLM([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 INTEGER :: N, M, P, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: D, X, Y, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GGGLM_64([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 INTEGER(8) :: N, M, P, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: D, X, Y, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sggglm(int n, int m, int p, float *a, int lda, float
 *b, int ldb, float *d, float *x, float *y, int
 *info);

 void sggglm_64(long n, long m, long p, float *a, long lda,
 float *b, long ldb, float *d, float *x, float *y,
 long *info);

PURPOSE

 sggglm solves a general Gauss-Markov linear model (GLM)
 problem:
 minimize || y ||_2 subject to d = A*x + B*y
 x

 where A is an N-by-M matrix, B is an N-by-P matrix, and d is
 a given N-vector. It is assumed that M <= N <= M+P, and

 rank(A) = M and rank(A B) = N.

 Under these assumptions, the constrained equation is always
 consistent, and there is a unique solution x and a minimal
 2-norm solution y, which is obtained using a generalized QR
 factorization of A and B.

 In particular, if matrix B is square nonsingular, then the
 problem GLM is equivalent to the following weighted linear
 least squares problem

 minimize || inv(B)*(d-A*x) ||_2
 x

 where inv(B) denotes the inverse of B.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. 0 <= M <=
 N.

 P (input) The number of columns of the matrix B. P >= N-M.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 D (input/output)
 On entry, D is the left hand side of the GLM equa-
 tion. On exit, D is destroyed.

 X (output)
 On exit, X and Y are the solutions of the GLM
 problem.

 Y (output)
 See the description of X.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N+M+P). For optimum performance, LDWORK >=
 M+min(N,P)+max(N,P)*NB, where NB is an upper bound
 for the optimal blocksizes for SGEQRF, SGERQF,
 SORMQR and SORMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sgghrd - reduce a pair of real matrices (A,B) to generalized
 upper Hessenberg form using orthogonal transformations,
 where A is a general matrix and B is upper triangular

SYNOPSIS

 SUBROUTINE SGGHRD(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ,
 Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)

 SUBROUTINE SGGHRD_64(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 LDQ, Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)

 F95 INTERFACE
 SUBROUTINE GGHRD(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB], Q,
 [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE GGHRD_64(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 Q, [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void sgghrd(char compq, char compz, int n, int ilo, int ihi,
 float *a, int lda, float *b, int ldb, float *q,
 int ldq, float *z, int ldz, int *info);

 void sgghrd_64(char compq, char compz, long n, long ilo,
 long ihi, float *a, long lda, float *b, long ldb,
 float *q, long ldq, float *z, long ldz, long
 *info);

PURPOSE

 sgghrd reduces a pair of real matrices (A,B) to generalized
 upper Hessenberg form using orthogonal transformations,
 where A is a general matrix and B is upper triangular: Q' *
 A * Z = H and Q' * B * Z = T, where H is upper Hessenberg, T
 is upper triangular, and Q and Z are orthogonal, and ' means
 transpose.

 The orthogonal matrices Q and Z are determined as products
 of Givens rotations. They may either be formed explicitly,
 or they may be postmultiplied into input matrices Q1 and Z1,
 so that
 1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'

ARGUMENTS

 COMPQ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the orthogonal matrix Q is returned; = 'V': Q must
 contain an orthogonal matrix Q1 on entry, and the
 product Q1*Q is returned.

 COMPZ (input)
 = 'N': do not compute Z;
 = 'I': Z is initialized to the unit matrix, and
 the orthogonal matrix Z is returned; = 'V': Z must
 contain an orthogonal matrix Z1 on entry, and the
 product Z1*Z is returned.

 N (input) The order of the matrices A and B. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGGBAL;
 otherwise they should be set to 1 and N respec-
 tively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and
 IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first
 subdiagonal of A are overwritten with the upper
 Hessenberg matrix H, and the rest is set to zero.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-N upper triangular matrix B.
 On exit, the upper triangular matrix T = Q' B Z.
 The elements below the diagonal are set to zero.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 If COMPQ='N': Q is not referenced.
 If COMPQ='I': on entry, Q need not be set, and on
 exit it contains the orthogonal matrix Q, where Q'
 is the product of the Givens transformations which
 are applied to A and B on the left. If COMPQ='V':
 on entry, Q must contain an orthogonal matrix Q1,
 and on exit this is overwritten by Q1*Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= N if
 COMPQ='V' or 'I'; LDQ >= 1 otherwise.

 Z (input/output)
 If COMPZ='N': Z is not referenced.
 If COMPZ='I': on entry, Z need not be set, and on
 exit it contains the orthogonal matrix Z, which is
 the product of the Givens transformations which
 are applied to A and B on the right. If
 COMPZ='V': on entry, Z must contain an orthogonal
 matrix Z1, and on exit this is overwritten by
 Z1*Z.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= N if
 COMPZ='V' or 'I'; LDZ >= 1 otherwise.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 This routine reduces A to Hessenberg and B to triangular
 form by an unblocked reduction, as described in
 _Matrix_Computations_, by Golub and Van Loan (Johns Hopkins
 Press.)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgglse - solve the linear equality-constrained least squares
 (LSE) problem

SYNOPSIS

 SUBROUTINE SGGLSE(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 INTEGER M, N, P, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)

 SUBROUTINE SGGLSE_64(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 INTEGER*8 M, N, P, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGLSE([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 INTEGER :: M, N, P, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: C, D, X, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GGLSE_64([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 INTEGER(8) :: M, N, P, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: C, D, X, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sgglse(int m, int n, int p, float *a, int lda, float
 *b, int ldb, float *c, float *d, float *x, int
 *info);

 void sgglse_64(long m, long n, long p, float *a, long lda,
 float *b, long ldb, float *c, float *d, float *x,
 long *info);

PURPOSE

 sgglse solves the linear equality-constrained least squares
 (LSE) problem:
 minimize || c - A*x ||_2 subject to B*x = d

 where A is an M-by-N matrix, B is a P-by-N matrix, c is a
 given M-vector, and d is a given P-vector. It is assumed
 that
 P <= N <= M+P, and

 rank(B) = P and rank((A)) = N.
 ((B))

 These conditions ensure that the LSE problem has a unique
 solution, which is obtained using a GRQ factorization of the
 matrices B and A.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. 0 <= P <= N <=
 M+P.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 C (input/output)
 On entry, C contains the right hand side vector
 for the least squares part of the LSE problem. On
 exit, the residual sum of squares for the solution
 is given by the sum of squares of elements N-P+1
 to M of vector C.

 D (input/output)
 On entry, D contains the right hand side vector
 for the constrained equation. On exit, D is des-
 troyed.

 X (output)
 On exit, X is the solution of the LSE problem.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M+N+P). For optimum performance LDWORK >=
 P+min(M,N)+max(M,N)*NB, where NB is an upper bound
 for the optimal blocksizes for SGEQRF, SGERQF,
 SORMQR and SORMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggqrf - compute a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B.

SYNOPSIS

 SUBROUTINE SGGQRF(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 INTEGER N, M, P, LDA, LDB, LWORK, INFO
 REAL A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)

 SUBROUTINE SGGQRF_64(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 INTEGER*8 N, M, P, LDA, LDB, LWORK, INFO
 REAL A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGQRF([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 INTEGER :: N, M, P, LDA, LDB, LWORK, INFO
 REAL, DIMENSION(:) :: TAUA, TAUB, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GGQRF_64([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 INTEGER(8) :: N, M, P, LDA, LDB, LWORK, INFO
 REAL, DIMENSION(:) :: TAUA, TAUB, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sggqrf(int n, int m, int p, float *a, int lda, float
 *taua, float *b, int ldb, float *taub, int *info);

 void sggqrf_64(long n, long m, long p, float *a, long lda,
 float *taua, float *b, long ldb, float *taub, long
 *info);

PURPOSE

 sggqrf computes a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B:
 A = Q*R, B = Q*T*Z,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P
 orthogonal matrix, and R and T assume one of the forms:

 if N >= M, R = (R11) M , or if N < M, R = (R11 R12
) N,
 (0) N-M N M-N
 M

 where R11 is upper triangular, and

 if N <= P, T = (0 T12) N, or if N > P, T = (T11)
 N-P,
 P-N N (T21) P
 P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR fac-
 torization of A and B implicitly gives the QR factorization
 of inv(B)*A:

 inv(B)*A = Z'*(inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the transpose of the matrix Z.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. M >= 0.

 P (input) The number of columns of the matrix B. P >= 0.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(N,M)-by-M upper trapezoidal matrix R
 (R is upper triangular if N >= M); the elements
 below the diagonal, with the array TAUA, represent
 the orthogonal matrix Q as a product of min(N,M)
 elementary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q (see
 Further Details).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, if N <=
 P, the upper triangle of the subarray B(1:N,P-
 N+1:P) contains the N-by-N upper triangular matrix
 T; if N > P, the elements on and above the (N-P)-
 th subdiagonal contain the N-by-P upper tra-
 pezoidal matrix T; the remaining elements, with
 the array TAUB, represent the orthogonal matrix Z
 as a product of elementary reflectors (see Further
 Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Z (see
 Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the QR factorization of an
 N-by-M matrix, NB2 is the optimal blocksize for
 the RQ factorization of an N-by-P matrix, and NB3
 is the optimal blocksize for a call of SORMQR.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(n,m).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
 A(i+1:n,i), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine SORGQR.
 To use Q to update another matrix, use LAPACK subroutine
 SORMQR.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(n,p).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a real scalar, and v is a real vector with
 v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on
 exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine SORGRQ.
 To use Z to update another matrix, use LAPACK subroutine
 SORMRQ.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggrqf - compute a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B

SYNOPSIS

 SUBROUTINE SGGRQF(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 INTEGER M, P, N, LDA, LDB, LWORK, INFO
 REAL A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)

 SUBROUTINE SGGRQF_64(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 INTEGER*8 M, P, N, LDA, LDB, LWORK, INFO
 REAL A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGRQF([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 INTEGER :: M, P, N, LDA, LDB, LWORK, INFO
 REAL, DIMENSION(:) :: TAUA, TAUB, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE GGRQF_64([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, P, N, LDA, LDB, LWORK, INFO
 REAL, DIMENSION(:) :: TAUA, TAUB, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sggrqf(int m, int p, int n, float *a, int lda, float
 *taua, float *b, int ldb, float *taub, int *info);

 void sggrqf_64(long m, long p, long n, float *a, long lda,
 float *taua, float *b, long ldb, float *taub, long
 *info);

PURPOSE

 sggrqf computes a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B:
 A = R*Q, B = Z*T*Q,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P
 orthogonal matrix, and R and T assume one of the forms:

 if M <= N, R = (0 R12) M, or if M > N, R = (R11)
 M-N,
 N-M M (R21) N
 N

 where R12 or R21 is upper triangular, and

 if P >= N, T = (T11) N , or if P < N, T = (T11 T12
) P,
 (0) P-N P N-P
 N

 where T11 is upper triangular.

 In particular, if B is square and nonsingular, the GRQ fac-
 torization of A and B implicitly gives the RQ factorization
 of A*inv(B):

 A*inv(B) = (R*inv(T))*Z'

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the transpose of the matrix Z.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M <=
 N, the upper triangle of the subarray A(1:M,N-
 M+1:N) contains the M-by-M upper triangular matrix
 R; if M > N, the elements on and above the (M-N)-
 th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAUA, represent the orthogonal matrix Q
 as a product of elementary reflectors (see Further
 Details).
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Q (see
 Further Details).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(P,N)-by-N upper trapezoidal matrix T
 (T is upper triangular if P >= N); the elements
 below the diagonal, with the array TAUB, represent
 the orthogonal matrix Z as a product of elementary
 reflectors (see Further Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the orthogonal matrix Z (see
 Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the RQ factorization of an
 M-by-N matrix, NB2 is the optimal blocksize for
 the QR factorization of a P-by-N matrix, and NB3
 is the optimal blocksize for a call of SORMRQ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INF0= -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a real scalar, and v is a real vector with
 v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on
 exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine SORGRQ.
 To use Q to update another matrix, use LAPACK subroutine
 SORMRQ.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(p,n).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in
 B(i+1:p,i), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine SORGQR.
 To use Z to update another matrix, use LAPACK subroutine
 SORMQR.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sggsvd - compute the generalized singular value decomposi-
 tion (GSVD) of an M-by-N real matrix A and P-by-N real
 matrix B

SYNOPSIS

 SUBROUTINE SGGSVD(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER IWORK3(*)
 REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*),
 V(LDV,*), Q(LDQ,*), WORK(*)

 SUBROUTINE SGGSVD_64(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK3(*)
 REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*),
 V(LDV,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVD(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA], B,
 [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK], IWORK3,
 [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK3
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE GGSVD_64(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA],
 B, [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK

 REAL, DIMENSION(:,:) :: A, B, U, V, Q

 C INTERFACE
 #include <sunperf.h>
 void sggsvd(char jobu, char jobv, char jobq, int m, int n,
 int p, int *k, int *l, float *a, int lda, float
 *b, int ldb, float *alpha, float *beta, float *u,
 int ldu, float *v, int ldv, float *q, int ldq, int
 *iwork3, int *info);

 void sggsvd_64(char jobu, char jobv, char jobq, long m, long
 n, long p, long *k, long *l, float *a, long lda,
 float *b, long ldb, float *alpha, float *beta,
 float *u, long ldu, float *v, long ldv, float *q,
 long ldq, long *iwork3, long *info);

PURPOSE

 sggsvd computes the generalized singular value decomposition
 (GSVD) of an M-by-N real matrix A and P-by-N real matrix B:

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R)

 where U, V and Q are orthogonal matrices, and Z' is the
 transpose of Z. Let K+L = the effective numerical rank of
 the matrix (A',B')', then R is a K+L-by-K+L nonsingular
 upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-
 (K+L) "diagonal" matrices and of the following structures,
 respectively:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12)
 L (0 0 R22)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)

 P-L (0 0 0)

 N-K-L K M-K K+L-M
 (0 R) = K (0 R11 R12 R13)
 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 (R11 R12 R13) is stored in A(1:M, N-K-L+1:N), and R33 is
 stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the orthogonal
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then
 the GSVD of A and B implicitly gives the SVD of A*inv(B):
 A*inv(B) = U*(D1*inv(D2))*V'.
 If (A',B')' has orthonormal columns, then the GSVD of A and
 B is also equal to the CS decomposition of A and B. Further-
 more, the GSVD can be used to derive the solution of the
 eigenvalue problem:
 A'*A x = lambda* B'*B x.
 In some literature, the GSVD of A and B is presented in the
 form
 U'*A*X = (0 D1), V'*B*X = (0 D2)
 where U and V are orthogonal and X is nonsingular, D1 and D2
 are ``diagonal''. The former GSVD form can be converted to
 the latter form by taking the nonsingular matrix X as

 X = Q*(I 0)
 (0 inv(R)).

ARGUMENTS

 JOBU (input)
 = 'U': Orthogonal matrix U is computed;
 = 'N': U is not computed.
 JOBV (input)
 = 'V': Orthogonal matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Orthogonal matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in the Purpose section. K + L =

 effective numerical rank of (A',B')'.

 L (output)
 See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular matrix R, or part of R. See
 Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix R if M-K-L < 0. See
 Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDA >=
 max(1,P).
 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = C,
 BETA(K+1:K+L) = S, or if M-K-L < 0,
 ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
 BETA(K+1:M) =S, BETA(M+1:K+L) =1 and
 ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0

 BETA (output)
 See the description of ALPHA.

 U (output)
 If JOBU = 'U', U contains the M-by-M orthogonal
 matrix U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (output)
 If JOBV = 'V', V contains the P-by-P orthogonal
 matrix V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (output)
 If JOBQ = 'Q', Q contains the N-by-N orthogonal
 matrix Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension (max(3*N,M,P)+N)

 IWORK3 (output)

 dimension(N) On exit, IWORK3 stores the sorting
 information. More precisely, the following loop
 will sort ALPHA for I = K+1, min(M,K+L) swap
 ALPHA(I) and ALPHA(IWORK3(I)) endfor such that
 ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = 1, the Jacobi-type procedure
 failed to converge. For further details, see sub-
 routine STGSJA.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sggsvp - compute orthogonal matrices U, V and Q such that
 N-K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >= 0

SYNOPSIS

 SUBROUTINE SGGSVP(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER IWORK(*)
 REAL TOLA, TOLB
 REAL A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 TAU(*), WORK(*)

 SUBROUTINE SGGSVP_64(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK(*)
 REAL TOLA, TOLB
 REAL A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*),
 TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVP(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, [LDB],
 TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], [TAU],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE GGSVP_64(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B,
 [LDB], TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK],
 [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, B, U, V, Q
 C INTERFACE
 #include <sunperf.h>

 void sggsvp(char jobu, char jobv, char jobq, int m, int p,
 int n, float *a, int lda, float *b, int ldb, float
 tola, float tolb, int *k, int *l, float *u, int
 ldu, float *v, int ldv, float *q, int ldq, int
 *info);

 void sggsvp_64(char jobu, char jobv, char jobq, long m, long
 p, long n, float *a, long lda, float *b, long ldb,
 float tola, float tolb, long *k, long *l, float
 *u, long ldu, float *v, long ldv, float *q, long
 ldq, long *info);

PURPOSE

 sggsvp computes orthogonal matrices U, V and Q such that
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 V'*B*Q = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
 K+L = the effective numerical rank of the (M+P)-by-N matrix
 (A',B')'. Z' denotes the transpose of Z.

 This decomposition is the preprocessing step for computing
 the Generalized Singular Value Decomposition (GSVD), see
 subroutine SGGSVD.

ARGUMENTS

 JOBU (input)
 = 'U': Orthogonal matrix U is computed;
 = 'N': U is not computed.

 JOBV (input)
 = 'V': Orthogonal matrix V is computed;
 = 'N': V is not computed.
 JOBQ (input)
 = 'Q': Orthogonal matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular (or trapezoidal) matrix
 described in the Purpose section.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix described in the Pur-
 pose section.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the thresholds to determine the
 effective numerical rank of matrix B and a sub-
 block of A. Generally, they are set to TOLA =
 MAX(M,N)*norm(A)*MACHEPS, TOLB =
 MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and
 TOLB may affect the size of backward errors of the
 decomposition.

 TOLB (input)
 See the description of TOLA.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 L (output)
 See the description of K.

 U (input) If JOBU = 'U', U contains the orthogonal matrix U.
 If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) If JOBV = 'V', V contains the orthogonal matrix V.
 If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) If JOBQ = 'Q', Q contains the orthogonal matrix Q.
 If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 IWORK (workspace)
 dimension(N)

 TAU (workspace)
 dimension(N)

 WORK (workspace)
 dimension(MAX(3*N,M,P))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The subroutine uses LAPACK subroutine SGEQPF for the QR
 factorization with column pivoting to detect the effective
 numerical rank of the a matrix. It may be replaced by a
 better rank determination strategy.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssco - General sparse solver condition number estimate.

SYNOPSIS

 SUBROUTINE SGSSCO (COND, HANDLE, IER)

 INTEGER IER
 REAL COND
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSCO - Condition number estimate.

PARAMETERS

 COND - REAL
 On exit, an estimate of the condition number of the
 factored matrix. Must be called after the numerical
 factorization subroutine, SGSSFA().

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -700 : Invalid calling sequence - need to call SGSSFA first.
 -710 : Condition number estimate not available (not implemented
 for this HANDLE's matix type).

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssda - Deallocate working storage for the general sparse
 solver.

SYNOPSIS

 SUBROUTINE SGSSDA (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSDA - Deallocate dynamically allocated working storage.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 none

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssfa - General sparse solver numeric factorization.

SYNOPSIS

 SUBROUTINE SGSSFA (NEQNS, COLSTR, ROWIND, VALUES, HANDLE, IER)

 INTEGER NEQNS, COLSTR(*), ROWIND(*), IER
 REAL VALUES(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSFA - Numeric factorization of a sparse matrix.

PARAMETERS

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 coefficient matrix. Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - REAL array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the numeric values of
 the sparse matrix to be factored. Unchanged on
 exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on

 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -300 : Invalid calling sequence - need to call SGSSOR first.
 -301 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssfs - General sparse solver one call interface.

SYNOPSIS

 SUBROUTINE SGSSFS (MTXTYP, PIVOT , NEQNS, COLSTR, ROWIND,
 VALUES, NRHS , RHS , LDRHS , ORDMTHD,
 OUTUNT, MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), NRHS, LDRHS,
 OUTUNT, MSGLVL, IER
 CHARACTER*3 ORDMTHD
 REAL VALUES(*), RHS(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSFS - General sparse solver one call interface.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, positive-definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, pivot specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER

 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.
 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - REAL array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the non-zero numeric
 values of the sparse matrix to be factored.
 Unchanged on exit.

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(*) - REAL array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see SGSSUO)

 Unchanged on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array of containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.
 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros is less than NEQNS.
 -105 : NEQNS < 1
 -201 : Failure to dynamically allocate memory.
 -301 : Failure to dynamically allocate memory.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssin - Initialize the general sparse solver.

SYNOPSIS

 SUBROUTINE SGSSIN (MTXTYP, PIVOT, NEQNS, COLSTR, ROWIND, OUTUNT,
 MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), OUTUNT, MSGLVL, IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSIN - Initialize the sparse solver and input the matrix
 structure.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, positive-definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, PIVOT specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros less than NEQNS.
 -105 : NEQNS < 1

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssor - General sparse solver ordering and symbolic
 factorization.

SYNOPSIS

 SUBROUTINE SGSSOR (ORDMTHD, HANDLE, IER)

 CHARACTER*3 ORDMTHD
 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSOR - Orders and symbolically factors a sparse matrix.

PARAMETERS

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see SGSSUO)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -200 : Invalid calling sequence - need to call SGSSIN first.
 -201 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssps - Print general sparse solver statics.

SYNOPSIS

 SUBROUTINE SGSSPS (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSPS - Print solver statistics.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -800 : Invalid calling sequence - need to call SGSSSL first.
 -899 : Printed solver statistics not supported this release.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssrp - Return permutation used by the general sparse
 solver.

SYNOPSIS

 SUBROUTINE SGSSRP (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSRP - Returns the permutation used by the solver for the
 fill-reducing ordering.

PARAMETERS

 PERM(NEQNS) - INTEGER array
 Undefined on entry. PERM(NEQNS) is the permutation
 array used by the sparse solver for the fill-
 reducing ordering. Modified on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -600 : Invalid calling sequence - need to call SGSSOR first.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgsssl - Solve routine for the general sparse solver.

SYNOPSIS

 SUBROUTINE SGSSSL (NRHS, RHS, LDRHS, HANDLE, IER)

 INTEGER NRHS, LDRHS, IER
 REAL RHS(LDRHS,NRHS)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSSL - Triangular solve of a factored sparse matrix.

PARAMETERS

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(LDRHS,*) - REAL array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -400 : Invalid calling sequence - need to call SGSSFA first.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 sgssuo - User supplied permutation for ordering used in the
 general sparse solver.

SYNOPSIS

 SUBROUTINE SGSSUO (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 SGSSUO - User supplied permutation for ordering. Must be
 called after SGSSIN() (sparse solver initialization) and
 before SGSSOR() (sparse solver ordering).

PARAMETERS

 PERM(NEQNS) - INTEGER array
 On entry, PERM(NEQNS) is a permutation array
 supplied by the user for the fill-reducing ordering.
 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -500 : Invalid calling sequence - need to call SGSSIN first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgtcon - estimate the reciprocal of the condition number of
 a real tridiagonal matrix A using the LU factorization as
 computed by SGTTRF

SYNOPSIS

 SUBROUTINE SGTCON(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM, RCOND,
 WORK, IWORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER N, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)

 SUBROUTINE SGTCON_64(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, WORK, IWORK2, INFO)

 CHARACTER * 1 NORM
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GTCON(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK

 SUBROUTINE GTCON_64(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [IWORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK

 C INTERFACE
 #include <sunperf.h>
 void sgtcon(char norm, int n, float *low, float *diag, float
 *up1, float *up2, int *ipivot, float anorm, float
 *rcond, int *info);

 void sgtcon_64(char norm, long n, float *low, float *diag,
 float *up1, float *up2, long *ipivot, float anorm,
 float *rcond, long *info);

PURPOSE

 sgtcon estimates the reciprocal of the condition number of a
 real tridiagonal matrix A using the LU factorization as com-
 puted by SGTTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 SGTTRF.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second superdiagonal of
 U.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 sgthr - Gathers specified elements from y into x.

SYNOPSIS

 SUBROUTINE SGTHR(NZ, Y, X, INDX)

 REAL Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE SGTHR_64(NZ, Y, X, INDX)

 REAL Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHR([NZ], Y, X, INDX)

 REAL, DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHR_64([NZ], Y, X, INDX)

 REAL, DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 SGTHR - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. Only
 the elements of y whose indices are listed in indx are
 referenced.

 do i = 1, n
 x(i) = y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input)
 Vector in full storage form. Unchanged on exit.

 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.
 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 sgthrz - Gather and zero.

SYNOPSIS

 SUBROUTINE SGTHRZ(NZ, Y, X, INDX)

 REAL Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE SGTHRZ_64(NZ, Y, X, INDX)

 REAL Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHRZ([NZ], Y, X, INDX)

 REAL, DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHRZ_64([NZ], Y, X, INDX)

 REAL, DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 SGTHRZ - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. The
 gathered elements of y are set to zero. Only the elements
 of y whose indices are listed in indx are referenced.

 do i = 1, n
 x(i) = y(indx(i))
 y(indx(i)) = 0
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input/output)
 Vector in full storage form. Gathered elements are
 set to zero.
 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgtrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE SGTRFS(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE SGTRFS_64(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GTRFS([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE GTRFS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void sgtrfs(char transa, int n, int nrhs, float *low, float
 *diag, float *up, float *lowf, float *diagf, float
 *upf1, float *upf2, int *ipivot, float *b, int
 ldb, float *x, int ldx, float *ferr, float *berr,
 int *info);

 void sgtrfs_64(char transa, long n, long nrhs, float *low,
 float *diag, float *up, float *lowf, float *diagf,
 float *upf1, float *upf2, long *ipivot, float *b,
 long ldb, float *x, long ldx, float *ferr, float
 *berr, long *info);

PURPOSE

 sgtrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The diagonal elements of A.

 UP (input)
 The (n-1) superdiagonal elements of A.

 LOWF (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 SGTTRF.

 DIAGF (input)
 The n diagonal elements of the upper triangular

 matrix U from the LU factorization of A.

 UPF1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UPF2 (input)
 The (n-2) elements of the second superdiagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SGTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each
 solution vector X(j) (the j-th column of the solu-
 tion matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgtsv - solve the equation A*X = B,

SYNOPSIS

 SUBROUTINE SGTSV(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 REAL LOW(*), DIAG(*), UP(*), B(LDB,*)

 SUBROUTINE SGTSV_64(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 REAL LOW(*), DIAG(*), UP(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GTSV([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: LOW, DIAG, UP
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE GTSV_64([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: LOW, DIAG, UP
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sgtsv(int n, int nrhs, float *low, float *diag, float
 *up, float *b, int ldb, int *info);

 void sgtsv_64(long n, long nrhs, float *low, float *diag,
 float *up, float *b, long ldb, long *info);

PURPOSE

 sgtsv solves the equation

 where A is an n by n tridiagonal matrix, by Gaussian elimi-
 nation with partial pivoting.

 Note that the equation A'*X = B may be solved by inter-
 changing the order of the arguments DU and DL.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-2) elements
 of the second super-diagonal of the upper triangu-
 lar matrix U from the LU factorization of A, in
 LOW(1), ..., LOW(n-2).

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of U.

 UP (input/output)
 On entry, UP must contain the (n-1) super-diagonal
 elements of A.

 On exit, UP is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 B (input/output)
 On entry, the N by NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N by NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero, and the
 solution has not been computed. The factorization
 has not been completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgtsvx - use the LU factorization to compute the solution to
 a real system of linear equations A * X = B or A**T * X = B,

SYNOPSIS

 SUBROUTINE SGTSVX(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE SGTSVX_64(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*), UPF1(*),
 UPF2(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GTSVX(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE GTSVX_64(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void sgtsvx(char fact, char transa, int n, int nrhs, float
 *low, float *diag, float *up, float *lowf, float
 *diagf, float *upf1, float *upf2, int *ipivot,
 float *b, int ldb, float *x, int ldx, float
 *rcond, float *ferr, float *berr, int *info);

 void sgtsvx_64(char fact, char transa, long n, long nrhs,
 float *low, float *diag, float *up, float *lowf,
 float *diagf, float *upf1, float *upf2, long
 *ipivot, float *b, long ldb, float *x, long ldx,
 float *rcond, float *ferr, float *berr, long
 *info);

PURPOSE

 sgtsvx uses the LU factorization to compute the solution to
 a real system of linear equations A * X = B or A**T * X = B,
 where A is a tridiagonal matrix of order N and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the LU decomposition is used to factor the
 matrix A
 as A = L * U, where L is a product of permutation and
 unit lower
 bidiagonal matrices and U is upper triangular with
 nonzeros in
 only the main diagonal and first two superdiagonals.

 2. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.
 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution

 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': LOWF, DIAGF,
 UPF1, UPF2, and IPIVOT contain the factored form
 of A; LOW, DIAG, UP, LOWF, DIAGF, UPF1, UPF2 and
 IPIVOT will not be modified. = 'N': The matrix
 will be copied to LOWF, DIAGF, and UPF1 and fac-
 tored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The n diagonal elements of A.

 UP (input/output)
 The (n-1) superdiagonal elements of A.
 LOWF (input/output)
 If FACT = 'F', then LOWF is an input argument and
 on entry contains the (n-1) multipliers that
 define the matrix L from the LU factorization of A
 as computed by SGTTRF.

 If FACT = 'N', then LOWF is an output argument and
 on exit contains the (n-1) multipliers that define
 the matrix L from the LU factorization of A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 upper triangular matrix U from the LU factoriza-
 tion of A.

 If FACT = 'N', then DIAGF is an output argument
 and on exit contains the n diagonal elements of
 the upper triangular matrix U from the LU factori-
 zation of A.

 UPF1 (input/output)
 If FACT = 'F', then UPF1 is an input argument and
 on entry contains the (n-1) elements of the first

 superdiagonal of U.

 If FACT = 'N', then UPF1 is an output argument and
 on exit contains the (n-1) elements of the first
 superdiagonal of U.

 UPF2 (input/output)
 If FACT = 'F', then UPF2 is an input argument and
 on entry contains the (n-2) elements of the second
 superdiagonal of U.

 If FACT = 'N', then UPF2 is an output argument and
 on exit contains the (n-2) elements of the second
 superdiagonal of U.

 IPIVOT (input/output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 LU factorization of A as computed by SGTTRF.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the LU
 factorization of A; row i of the matrix was inter-
 changed with row IPIVOT(i). IPIVOT(i) will always
 be either i or i+1; IPIVOT(i) = i indicates a row
 interchange was not required.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an

 exact solution).

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has not been completed unless i = N, but the fac-
 tor U is exactly singular, so the solution and
 error bounds could not be computed. RCOND = 0 is
 returned. = N+1: U is nonsingular, but RCOND is
 less than machine precision, meaning that the
 matrix is singular to working precision.
 Nevertheless, the solution and error bounds are
 computed because there are a number of situations
 where the computed solution can be more accurate
 than the value of RCOND would suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgttrf - compute an LU factorization of a real tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges

SYNOPSIS

 SUBROUTINE SGTTRF(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL LOW(*), DIAG(*), UP1(*), UP2(*)

 SUBROUTINE SGTTRF_64(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL LOW(*), DIAG(*), UP1(*), UP2(*)

 F95 INTERFACE
 SUBROUTINE GTTRF([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2

 SUBROUTINE GTTRF_64([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2

 C INTERFACE
 #include <sunperf.h>

 void sgttrf(int n, float *low, float *diag, float *up1,
 float *up2, int *ipivot, int *info);

 void sgttrf_64(long n, float *low, float *diag, float *up1,
 float *up2, long *ipivot, long *info);

PURPOSE

 sgttrf computes an LU factorization of a real tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges.

 The factorization has the form
 A = L * U
 where L is a product of permutation and unit lower bidiago-
 nal matrices and U is upper triangular with nonzeros in only
 the main diagonal and first two superdiagonals.

ARGUMENTS

 N (input) The order of the matrix A.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-1) multi-
 pliers that define the matrix L from the LU fac-
 torization of A.

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of the upper triangular matrix U from the
 LU factorization of A.

 UP1 (input/output)
 On entry, UP1 must contain the (n-1) super-
 diagonal elements of A.

 On exit, UP1 is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 UP2 (output)
 On exit, UP2 is overwritten by the (n-2) elements
 of the second super-diagonal of U.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sgttrs - solve one of the systems of equations A*X = B or
 A'*X = B,

SYNOPSIS

 SUBROUTINE SGTTRS(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 REAL LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)

 SUBROUTINE SGTTRS_64(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE GTTRS([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2, IPIVOT,
 B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE GTTRS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2,
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: LOW, DIAG, UP1, UP2
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sgttrs(char transa, int n, int nrhs, float *low, float
 *diag, float *up1, float *up2, int *ipivot, float
 *b, int ldb, int *info);
 void sgttrs_64(char transa, long n, long nrhs, float *low,
 float *diag, float *up1, float *up2, long *ipivot,
 float *b, long ldb, long *info);

PURPOSE

 sgttrs solves one of the systems of equations
 A*X = B or A'*X = B, with a tridiagonal matrix A using
 the LU factorization computed by SGTTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A'* X = B (Transpose)
 = 'C': A'* X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first super-diagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second super-diagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input/output)
 On entry, the matrix of right hand side vectors B.
 On exit, B is overwritten by the solution vectors
 X.

 LDB (input)
 The leading dimension of the array B. LDB >=

 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 shgeqz - implement a single-/double-shift version of the QZ
 method for finding the generalized eigenvalues
 w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j) of the equation
 det(A-w(i) B) = 0 In addition, the pair A,B may be
 reduced to generalized Schur form

SYNOPSIS

 SUBROUTINE SHGEQZ(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)

 SUBROUTINE SHGEQZ_64(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HGEQZ(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE HGEQZ_64(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B,
 [LDB], ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void shgeqz(char job, char compq, char compz, int n, int
 ilo, int ihi, float *a, int lda, float *b, int
 ldb, float *alphar, float *alphai, float *beta,
 float *q, int ldq, float *z, int ldz, int *info);

 void shgeqz_64(char job, char compq, char compz, long n,
 long ilo, long ihi, float *a, long lda, float *b,
 long ldb, float *alphar, float *alphai, float
 *beta, float *q, long ldq, float *z, long ldz,
 long *info);

PURPOSE

 shgeqz implements a single-/double-shift version of the QZ
 method for finding the generalized eigenvalues B is upper
 triangular, and A is block upper triangular, where the diag-
 onal blocks are either 1-by-1 or 2-by-2, the 2-by-2 blocks
 having complex generalized eigenvalues (see the description
 of the argument JOB.)

 If JOB='S', then the pair (A,B) is simultaneously reduced to
 Schur form by applying one orthogonal tranformation (usually
 called Q) on the left and another (usually called Z) on the
 right. The 2-by-2 upper-triangular diagonal blocks of B
 corresponding to 2-by-2 blocks of A will be reduced to posi-
 tive diagonal matrices. (I.e., if A(j+1,j) is non-zero,
 then B(j+1,j)=B(j,j+1)=0 and B(j,j) and B(j+1,j+1) will be
 positive.)

 If JOB='E', then at each iteration, the same transformations
 are computed, but they are only applied to those parts of A
 and B which are needed to compute ALPHAR, ALPHAI, and BETAR.

 If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the
 orthogonal transformations used to reduce (A,B) are accumu-
 lated into the arrays Q and Z s.t.:
 (in) A(in) Z(in)* = Q(out) A(out) Z(out)*

 Ref: C.B. Moler & G.W. Stewart, "An Algorithm for General-
 ized Matrixigenvalue Problems", SIAM J. Numer. Anal.,
 10(1973),p. 241--256.

ARGUMENTS

 JOB (input)
 = 'E': compute only ALPHAR, ALPHAI, and BETA. A
 and B will not necessarily be put into generalized
 Schur form. = 'S': put A and B into generalized
 Schur form, as well as computing ALPHAR, ALPHAI,
 and BETA.

 COMPQ (input)
 = 'N': do not modify Q.
 = 'V': multiply the array Q on the right by the
 transpose of the orthogonal tranformation that is
 applied to the left side of A and B to reduce them

 to Schur form. = 'I': like COMPQ='V', except that
 Q will be initialized to the identity first.

 COMPZ (input)
 = 'N': do not modify Z.
 = 'V': multiply the array Z on the right by the
 orthogonal tranformation that is applied to the
 right side of A and B to reduce them to Schur
 form. = 'I': like COMPZ='V', except that Z will
 be initialized to the identity first.

 N (input) The order of the matrices A, B, Q, and Z. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input) On entry, the N-by-N upper Hessenberg matrix A.
 Elements below the subdiagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to generalized Schur form.
 If JOB='E', then on exit A will have been des-
 troyed. The diagonal blocks will be correct, but
 the off-diagonal portion will be meaningless.

 LDA (input)
 The leading dimension of the array A. LDA >= max(
 1, N).

 B (input) On entry, the N-by-N upper triangular matrix B.
 Elements below the diagonal must be zero. 2-by-2
 blocks in B corresponding to 2-by-2 blocks in A
 will be reduced to positive diagonal form. (I.e.,
 if A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0
 and B(j,j) and B(j+1,j+1) will be positive.) If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to Schur form. If JOB='E',
 then on exit B will have been destroyed. Elements
 corresponding to diagonal blocks of A will be
 correct, but the off-diagonal portion will be
 meaningless.

 LDB (input)
 The leading dimension of the array B. LDB >= max(
 1, N).

 ALPHAR (output)
 ALPHAR(1:N) will be set to real parts of the diag-
 onal elements of A that would result from reducing
 A and B to Schur form and then further reducing
 them both to triangular form using unitary
 transformations s.t. the diagonal of B was non-
 negative real. Thus, if A(j,j) is in a 1-by-1
 block (i.e., A(j+1,j)=A(j,j+1)=0), then
 ALPHAR(j)=A(j,j). Note that the (real or complex)
 values (ALPHAR(j) + i*ALPHAI(j))/BETA(j),
 j=1,...,N, are the generalized eigenvalues of the
 matrix pencil A - wB.

 ALPHAI (output)

 ALPHAI(1:N) will be set to imaginary parts of the
 diagonal elements of A that would result from
 reducing A and B to Schur form and then further
 reducing them both to triangular form using uni-
 tary transformations s.t. the diagonal of B was
 non-negative real. Thus, if A(j,j) is in a 1-by-1
 block (i.e., A(j+1,j)=A(j,j+1)=0), then
 ALPHAR(j)=0. Note that the (real or complex)
 values (ALPHAR(j) + i*ALPHAI(j))/BETA(j),
 j=1,...,N, are the generalized eigenvalues of the
 matrix pencil A - wB.

 BETA (output)
 BETA(1:N) will be set to the (real) diagonal ele-
 ments of B that would result from reducing A and B
 to Schur form and then further reducing them both
 to triangular form using unitary transformations
 s.t. the diagonal of B was non-negative real.
 Thus, if A(j,j) is in a 1-by-1 block (i.e.,
 A(j+1,j)=A(j,j+1)=0), then BETA(j)=B(j,j). Note
 that the (real or complex) values (ALPHAR(j) +
 i*ALPHAI(j))/BETA(j), j=1,...,N, are the general-
 ized eigenvalues of the matrix pencil A - wB.
 (Note that BETA(1:N) will always be non-negative,
 and no BETAI is necessary.)
 Q (input/output)
 If COMPQ='N', then Q will not be referenced. If
 COMPQ='V' or 'I', then the transpose of the
 orthogonal transformations which are applied to A
 and B on the left will be applied to the array Q
 on the right.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If COMPQ='V' or 'I', then LDQ >= N.

 Z (input/output)
 If COMPZ='N', then Z will not be referenced. If
 COMPZ='V' or 'I', then the orthogonal transforma-
 tions which are applied to A and B on the right
 will be applied to the array Z on the right.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If COMPZ='V' or 'I', then LDZ >= N.

 WORK (workspace)
 On exit, if INFO >= 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

 = 1,...,N: the QZ iteration did not converge.
 (A,B) is not in Schur form, but ALPHAR(i),
 ALPHAI(i), and BETA(i), i=INFO+1,...,N should be
 correct. = N+1,...,2*N: the shift calculation
 failed. (A,B) is not in Schur form, but
 ALPHAR(i), ALPHAI(i), and BETA(i), i=INFO-
 N+1,...,N should be correct. > 2*N: various
 "impossible" errors.

FURTHER DETAILS

 Iteration counters:

 JITER -- counts iterations.
 IITER -- counts iterations run since ILAST was last
 changed. This is therefore reset only when a 1-
 by-1 or
 2-by-2 block deflates off the bottom.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 shsein - use inverse iteration to find specified right
 and/or left eigenvectors of a real upper Hessenberg matrix H

SYNOPSIS

 SUBROUTINE SHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL,
 LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 INTEGER N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER IFAILL(*), IFAILR(*)
 LOGICAL SELECT(*)
 REAL H(LDH,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE SHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
 VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER*8 IFAILL(*), IFAILR(*)
 LOGICAL*8 SELECT(*)
 REAL H(LDH,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], WR, WI,
 VL, [LDVL], VR, [LDVR], MM, M, [WORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER, DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: H, VL, VR

 SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], WR,
 WI, VL, [LDVL], VR, [LDVR], MM, M, [WORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL(8), DIMENSION(:) :: SELECT

 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: H, VL, VR

 C INTERFACE
 #include <sunperf.h>
 void shsein(char side, char eigsrc, char initv, int *select,
 int n, float *h, int ldh, float *wr, float *wi,
 float *vl, int ldvl, float *vr, int ldvr, int mm,
 int *m, int *ifaill, int *ifailr, int *info);

 void shsein_64(char side, char eigsrc, char initv, long
 *select, long n, float *h, long ldh, float *wr,
 float *wi, float *vl, long ldvl, float *vr, long
 ldvr, long mm, long *m, long *ifaill, long
 *ifailr, long *info);

PURPOSE

 shsein uses inverse iteration to find specified right and/or
 left eigenvectors of a real upper Hessenberg matrix H.

 The right eigenvector x and the left eigenvector y of the
 matrix H corresponding to an eigenvalue w are defined by:

 H * x = w * x, y**h * H = w * y**h

 where y**h denotes the conjugate transpose of the vector y.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 EIGSRC (input)
 Specifies the source of eigenvalues supplied in
 (WR,WI):
 = 'Q': the eigenvalues were found using SHSEQR;
 thus, if H has zero subdiagonal elements, and so
 is block-triangular, then the j-th eigenvalue can
 be assumed to be an eigenvalue of the block con-
 taining the j-th row/column. This property allows
 SHSEIN to perform inverse iteration on just one
 diagonal block. = 'N': no assumptions are made on
 the correspondence between eigenvalues and diago-
 nal blocks. In this case, SHSEIN must always per-
 form inverse iteration using the whole matrix H.

 INITV (input)
 = 'N': no initial vectors are supplied;
 = 'U': user-supplied initial vectors are stored in
 the arrays VL and/or VR.
 SELECT (input/output)
 Specifies the eigenvectors to be computed. To
 select the real eigenvector corresponding to a
 real eigenvalue WR(j), SELECT(j) must be set to
 .TRUE.. To select the complex eigenvector
 corresponding to a complex eigenvalue
 (WR(j),WI(j)), with complex conjugate

 (WR(j+1),WI(j+1)), either SELECT(j) or SELECT(j+1)
 or both must be set to

 N (input) The order of the matrix H. N >= 0.

 H (input) The upper Hessenberg matrix H.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 WR (input/output)
 On entry, the real and imaginary parts of the
 eigenvalues of H; a complex conjugate pair of
 eigenvalues must be stored in consecutive elements
 of WR and WI. On exit, WR may have been altered
 since close eigenvalues are perturbed slightly in
 searching for independent eigenvectors.

 WI (input)
 See the description of WR.

 VL (input/output)
 On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL
 must contain starting vectors for the inverse
 iteration for the left eigenvectors; the starting
 vector for each eigenvector must be in the same
 column(s) in which the eigenvector will be stored.
 On exit, if SIDE = 'L' or 'B', the left eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VL, in the same order as
 their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part and the second the imaginary part. If
 SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR
 must contain starting vectors for the inverse
 iteration for the right eigenvectors; the starting
 vector for each eigenvector must be in the same
 column(s) in which the eigenvector will be stored.
 On exit, if SIDE = 'R' or 'B', the right eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part and the second the imaginary part. If
 SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.

 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 required to store the eigenvectors; each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.

 WORK (workspace)
 dimension((N+2)*N)

 IFAILL (output)
 If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the
 left eigenvector in the i-th column of VL
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILL(i) = 0 if the eigenvector con-
 verged satisfactorily. If the i-th and (i+1)th
 columns of VL hold a complex eigenvector, then
 IFAILL(i) and IFAILL(i+1) are set to the same
 value. If SIDE = 'R', IFAILL is not referenced.
 IFAILR (output)
 If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the
 right eigenvector in the i-th column of VR
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILR(i) = 0 if the eigenvector con-
 verged satisfactorily. If the i-th and (i+1)th
 columns of VR hold a complex eigenvector, then
 IFAILR(i) and IFAILR(i+1) are set to the same
 value. If SIDE = 'L', IFAILR is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, i is the number of eigenvectors
 which failed to converge; see IFAILL and IFAILR
 for further details.

FURTHER DETAILS

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x|+|y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 shseqr - compute the eigenvalues of a real upper Hessenberg
 matrix H and, optionally, the matrices T and Z from the
 Schur decomposition H = Z T Z**T, where T is an upper
 quasi-triangular matrix (the Schur form), and Z is the
 orthogonal matrix of Schur vectors

SYNOPSIS

 SUBROUTINE SHSEQR(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL H(LDH,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SHSEQR_64(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 INTEGER*8 N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL H(LDH,*), WR(*), WI(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE HSEQR(JOB, COMPZ, N, ILO, IHI, H, [LDH], WR, WI, Z, [LDZ],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 INTEGER :: N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: H, Z

 SUBROUTINE HSEQR_64(JOB, COMPZ, N, ILO, IHI, H, [LDH], WR, WI, Z,
 [LDZ], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 INTEGER(8) :: N, ILO, IHI, LDH, LDZ, LWORK, INFO
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: H, Z

 C INTERFACE
 #include <sunperf.h>

 void shseqr(char job, char compz, int n, int ilo, int ihi,

 float *h, int ldh, float *wr, float *wi, float *z,
 int ldz, int *info);
 void shseqr_64(char job, char compz, long n, long ilo, long
 ihi, float *h, long ldh, float *wr, float *wi,
 float *z, long ldz, long *info);

PURPOSE

 shseqr computes the eigenvalues of a real upper Hessenberg
 matrix H and, optionally, the matrices T and Z from the
 Schur decomposition H = Z T Z**T, where T is an upper
 quasi-triangular matrix (the Schur form), and Z is the
 orthogonal matrix of Schur vectors.

 Optionally Z may be postmultiplied into an input orthogonal
 matrix Q, so that this routine can give the Schur factoriza-
 tion of a matrix A which has been reduced to the Hessenberg
 form H by the orthogonal matrix Q: A = Q*H*Q**T =
 (QZ)*T*(QZ)**T.

ARGUMENTS

 JOB (input)
 = 'E': compute eigenvalues only;
 = 'S': compute eigenvalues and the Schur form T.

 COMPZ (input)
 = 'N': no Schur vectors are computed;
 = 'I': Z is initialized to the unit matrix and
 the matrix Z of Schur vectors of H is returned; =
 'V': Z must contain an orthogonal matrix Q on
 entry, and the product Q*Z is returned.

 N (input) The order of the matrix H. N >= 0.

 ILO (input)
 It is assumed that H is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to SGEBAL,
 and then passed to SGEHRD when the matrix output
 by SGEBAL is reduced to Hessenberg form. Otherwise
 ILO and IHI should be set to 1 and N respectively.
 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0,
 if N=0.

 IHI (input)
 See the description of ILO.
 H (input/output)
 On entry, the upper Hessenberg matrix H. On exit,
 if JOB = 'S', H contains the upper quasi-
 triangular matrix T from the Schur decomposition
 (the Schur form); 2-by-2 diagonal blocks
 (corresponding to complex conjugate pairs of
 eigenvalues) are returned in standard form, with
 H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If
 JOB = 'E', the contents of H are unspecified on
 exit.

 LDH (input)
 The leading dimension of the array H. LDH >=

 max(1,N).

 WR (output)
 The real and imaginary parts, respectively, of the
 computed eigenvalues. If two eigenvalues are com-
 puted as a complex conjugate pair, they are stored
 in consecutive elements of WR and WI, say the i-th
 and (i+1)th, with WI(i) > 0 and WI(i+1) < 0. If
 JOB = 'S', the eigenvalues are stored in the same
 order as on the diagonal of the Schur form
 returned in H, with WR(i) = H(i,i) and, if
 H(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) =
 sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).

 WI (output)
 See the description of WR.

 Z (input) If COMPZ = 'N': Z is not referenced.
 If COMPZ = 'I': on entry, Z need not be set, and
 on exit, Z contains the orthogonal matrix Z of the
 Schur vectors of H. If COMPZ = 'V': on entry Z
 must contain an N-by-N matrix Q, which is assumed
 to be equal to the unit matrix except for the sub-
 matrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
 Normally Q is the orthogonal matrix generated by
 SORGHR after the call to SGEHRD which formed the
 Hessenberg matrix H.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 other-
 wise.
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, SHSEQR failed to compute all of
 the eigenvalues in a total of 30*(IHI-ILO+1)
 iterations; elements 1:ilo-1 and i+1:n of WR and
 WI contain those eigenvalues which have been suc-
 cessfully computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sinqb - synthesize a Fourier sequence from its representa-
 tion in terms of a sine series with odd wave numbers. The
 SINQ operations are unnormalized inverses of themselves, so
 a call to SINQF followed by a call to SINQB will multiply
 the input sequence by 4 * N.

SYNOPSIS

 SUBROUTINE SINQB(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE SINQB_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQB(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINQB_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void sinqb(int n, float *x, float *wsave);

 void sinqb_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave sine synthesis of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3 *
 N + 15) for scalar subroutines, initialized by
 SINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sinqf - compute the Fourier coefficients in a sine series
 representation with only odd wave numbers. The SINQ opera-
 tions are unnormalized inverses of themselves, so a call to
 SINQF followed by a call to SINQB will multiply the input
 sequence by 4 * N.

SYNOPSIS

 SUBROUTINE SINQF(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE SINQF_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQF(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINQF_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void sinqf(int n, float *x, float *wsave);

 void sinqf_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. On exit, the
 quarter-wave sine transform of the input.
 WSAVE (input)
 On entry, an array with dimension of at least (3
 * N + 15) for scalar subroutines, initialized by
 SINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sinqi - initialize the array xWSAVE, which is used in both
 SINQF and SINQB.

SYNOPSIS

 SUBROUTINE SINQI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE SINQI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE SINQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void sinqi(int n, float *wsave);

 void sinqi_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (3 * N + 15) or
 greater. SINQI needs to be called only once to

 initialize WSAVE before calling SINQF and/or SINQB
 if N and WSAVE remain unchanged between these
 calls. Thus, subsequent transforms or inverse
 transforms of same size can be obtained faster
 than the first since they do not require initiali-
 zation of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sint - compute the discrete Fourier sine transform of an odd
 sequence. The SINT transforms are unnormalized inverses of
 themselves, so a call of SINT followed by another call of
 SINT will multiply the input sequence by 2 * (N+1).

SYNOPSIS

 SUBROUTINE SINT(N, X, WSAVE)

 INTEGER N
 REAL X(*), WSAVE(*)

 SUBROUTINE SINT_64(N, X, WSAVE)

 INTEGER*8 N
 REAL X(*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINT(N, X, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: X, WSAVE

 SUBROUTINE SINT_64(N, X, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: X, WSAVE

 C INTERFACE
 #include <sunperf.h>

 void sint(int n, float *x, float *wsave);

 void sint_64(long n, float *x, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N+1 is a pro-
 duct of small primes. N >= 0.

 X (input/output)

 On entry, an array of length N containing the
 sequence to be transformed. On exit, the sine
 transform of the input.
 WSAVE (input/output)
 On entry, an array with dimension of at least
 int(2.5 * N + 15) initialized by SINTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sinti - initialize the array WSAVE, which is used in subrou-
 tine SINT.

SYNOPSIS

 SUBROUTINE SINTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE SINTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE SINTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void sinti(int n, float *wsave);

 void sinti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input/output)
 On entry, an array of dimension (2N + N/2 + 15) or
 greater. SINTI is called once to initialize WSAVE
 before calling SINT and need not be called again
 between calls to SINT if N and WSAVE remain

 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sjadmm - Jagged diagonal matrix-matrix multiply (modified
 Ellpack)

SYNOPSIS

 SUBROUTINE SJADMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SJADMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE JADMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a
 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.
 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1) = 0, it is assumed by convention that
 IPERM(I) = I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sjadrp - right permutation of a jagged diagonal matrix

SYNOPSIS

 SUBROUTINE SJADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, WORK, LWORK)
 INTEGER TRANSP, M, K, MAXNZ, LWORK
 INTEGER INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 REAL VAL(*)

 SUBROUTINE SJADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, WORK, LWORK)
 INTEGER*8 TRANSP, M, K, MAXNZ, LWORK
 INTEGER*8 INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 REAL VAL(*)

 F95 INTERFACE

 SUBROUTINE JADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER TRANSP, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: INDX, PNTR, IPERM
 REAL, DIMENSION(:) :: VAL

 SUBROUTINE JADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER*8 TRANSP, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: INDX, PNTR, IPERM
 REAL, DIMENSION(:) :: VAL

DESCRIPTION

 A <- A P
 A <- A P'
 (' indicates matrix transpose)

 where permutation P is represented by an integer vector IPERM,
 such that IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.

 NOTE: In order to get a symetrically permuted jagged diagonal
 matrix P A P', one can explicitly permute the columns P A by

 calling

 SJADRP(0, M, M, VAL, INDX, PNTR, MAXNZ, IPERM, WORK, LWORK)

 where parameters VAL, INDX, PNTR, MAXNZ, IPERM are the representation
 of A in the jagged diagonal format. The operation makes sense if
 the original matrix A is square.

ARGUMENTS

 TRANSP Indicates how to operate with the permutation matrix
 0 : operate with matrix
 1 : operate with transpose matrix

 M Number of rows in matrix A

 K Number of columns in matrix A

 VAL() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 entries of A. VAL can be viewed as a column major
 ordering of a row permutation of the Ellpack
 representation of A, where the Ellpack representation
 is permuted so that the rows are non-increasing in
 the number of nonzero entries. Values added for
 padding in Ellpack are not included in the
 Jagged-Diagonal format.

 INDX() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 the column indices of the corresponding entries in
 VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length K such that I = IPERM(I').
 Array IPERM represents a permutation P, such that
 IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.
 For example, if
 | 0 0 1 |
 P =| 1 0 0 |
 | 0 1 0 |
 then IPERM = (3, 1, 2).

 WORK() scratch array of length LWORK. LWORK should be at
 least K.

 LWORK length of WORK array

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of the
 WORK array, returns this value as the first entry of
 the WORK array, and no error message related to LWORK
 is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sjadsm - Jagged-diagonal format triangular solve

SYNOPSIS

 SUBROUTINE SJADSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SJADSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE JADSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a

 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1)=0, it's assumed by convention that
 IPERM(I)=I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least 2*M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=2*M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy
 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the JAD representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the JAD representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 slagtf - factorize the matrix (T-lambda*I), where T is an n
 by n tridiagonal matrix and lambda is a scalar, as T-
 lambda*I = PLU

SYNOPSIS

 SUBROUTINE SLAGTF(N, A, LAMBDA, B, C, TOL, D, IN, INFO)

 INTEGER N, INFO
 INTEGER IN(*)
 REAL LAMBDA, TOL
 REAL A(*), B(*), C(*), D(*)

 SUBROUTINE SLAGTF_64(N, A, LAMBDA, B, C, TOL, D, IN, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IN(*)
 REAL LAMBDA, TOL
 REAL A(*), B(*), C(*), D(*)

 F95 INTERFACE
 SUBROUTINE LAGTF([N], A, LAMBDA, B, C, TOL, D, IN, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IN
 REAL :: LAMBDA, TOL
 REAL, DIMENSION(:) :: A, B, C, D

 SUBROUTINE LAGTF_64([N], A, LAMBDA, B, C, TOL, D, IN, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IN
 REAL :: LAMBDA, TOL
 REAL, DIMENSION(:) :: A, B, C, D

 C INTERFACE
 #include <sunperf.h>

 void slagtf(int n, float *a, float lambda, float *b, float
 *c, float tol, float *d, int *in, int *info);

 void slagtf_64(long n, float *a, float lambda, float *b,
 float *c, float tol, float *d, long *in, long

 *info);

PURPOSE

 slagtf factorizes the matrix (T - lambda*I), where T is an n
 by n tridiagonal matrix and lambda is a scalar, as where P
 is a permutation matrix, L is a unit lower tridiagonal
 matrix with at most one non-zero sub-diagonal elements per
 column and U is an upper triangular matrix with at most two
 non-zero super-diagonal elements per column.

 The factorization is obtained by Gaussian elimination with
 partial pivoting and implicit row scaling.

 The parameter LAMBDA is included in the routine so that
 SLAGTF may be used, in conjunction with SLAGTS, to obtain
 eigenvectors of T by inverse iteration.

ARGUMENTS

 N (input) The order of the matrix T.

 A (input/output)
 On entry, A must contain the diagonal elements of
 T.

 On exit, A is overwritten by the n diagonal ele-
 ments of the upper triangular matrix U of the fac-
 torization of T.

 LAMBDA (input)
 On entry, the scalar lambda.

 B (input/output)
 On entry, B must contain the (n-1) super-diagonal
 elements of T.

 On exit, B is overwritten by the (n-1) super-
 diagonal elements of the matrix U of the factori-
 zation of T.

 C (input/output)
 On entry, C must contain the (n-1) sub-diagonal
 elements of T.

 On exit, C is overwritten by the (n-1) sub-
 diagonal elements of the matrix L of the factori-
 zation of T.
 TOL (input/output)
 On entry, a relative tolerance used to indicate
 whether or not the matrix (T - lambda*I) is nearly
 singular. TOL should normally be chose as approxi-
 mately the largest relative error in the elements
 of T. For example, if the elements of T are
 correct to about 4 significant figures, then TOL
 should be set to about 5*10**(-4). If TOL is sup-
 plied as less than eps, where eps is the relative
 machine precision, then the value eps is used in
 place of TOL.

 D (output)
 On exit, D is overwritten by the (n-2) second
 super-diagonal elements of the matrix U of the
 factorization of T.

 IN (output)
 On exit, IN contains details of the permutation
 matrix P. If an interchange occurred at the kth
 step of the elimination, then IN(k) = 1, otherwise
 IN(k) = 0. The element IN(n) returns the smallest
 positive integer j such that

 abs(u(j,j)).le. norm((T - lambda*I)(j))*TOL,

 where norm(A(j)) denotes the sum of the absolute
 values of the jth row of the matrix A. If no such
 j exists then IN(n) is returned as zero. If IN(n)
 is returned as positive, then a diagonal element
 of U is small, indicating that (T - lambda*I) is
 singular or nearly singular,

 INFO (output)
 = 0 : successful exit

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 slamrg - will create a permutation list which will merge the
 elements of A (which is composed of two independently sorted
 sets) into a single set which is sorted in ascending order

SYNOPSIS

 SUBROUTINE SLAMRG(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER N1, N2, TRD1, TRD2
 INTEGER INDEX(*)
 REAL A(*)

 SUBROUTINE SLAMRG_64(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER*8 N1, N2, TRD1, TRD2
 INTEGER*8 INDEX(*)
 REAL A(*)

 F95 INTERFACE
 SUBROUTINE LAMRG(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER :: N1, N2, TRD1, TRD2
 INTEGER, DIMENSION(:) :: INDEX
 REAL, DIMENSION(:) :: A

 SUBROUTINE LAMRG_64(N1, N2, A, TRD1, TRD2, INDEX)

 INTEGER(8) :: N1, N2, TRD1, TRD2
 INTEGER(8), DIMENSION(:) :: INDEX
 REAL, DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void slamrg(int n1, int n2, float *a, int trd1, int trd2,
 int *index);

 void slamrg_64(long n1, long n2, float *a, long trd1, long
 trd2, long *index);

PURPOSE

 slamrg will create a permutation list which will merge the
 elements of A (which is composed of two independently sorted
 sets) into a single set which is sorted in ascending order.

ARGUMENTS

 N1 (input)
 Length of the first sequence to be merged.

 N2 (input)
 Length of the second sequence to be merged.

 A (input) On entry, the first N1 elements of A contain a
 list of numbers which are sorted in either ascend-
 ing or descending order. Likewise for the final
 N2 elements.

 TRD1 (input)
 Describes the stride to be taken through the array
 A for the first N1 elements.
 = -1 subset is sorted in descending order.
 = 1 subset is sorted in ascending order.

 TRD2 (input)
 Describes the stride to be taken through the array
 A for the first N1 elements.
 = -1 subset is sorted in descending order.
 = 1 subset is sorted in ascending order.

 INDEX (output)
 On exit this array will contain a permutation such
 that if B(I) = A(INDEX(I)) for I=1,N1+N2,
 then B will be sorted in ascending order.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 slarz - applies a real elementary reflector H to a real M-
 by-N matrix C, from either the left or the right

SYNOPSIS

 SUBROUTINE SLARZ(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER M, N, L, INCV, LDC
 REAL TAU
 REAL V(*), C(LDC,*), WORK(*)

 SUBROUTINE SLARZ_64(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER*8 M, N, L, INCV, LDC
 REAL TAU
 REAL V(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE LARZ(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER :: M, N, L, INCV, LDC
 REAL :: TAU
 REAL, DIMENSION(:) :: V, WORK
 REAL, DIMENSION(:,:) :: C

 SUBROUTINE LARZ_64(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER(8) :: M, N, L, INCV, LDC
 REAL :: TAU
 REAL, DIMENSION(:) :: V, WORK
 REAL, DIMENSION(:,:) :: C

 C INTERFACE
 #include <sunperf.h>

 void slarz(char side, int m, int n, int l, float *v, int
 incv, float tau, float *c, int ldc);

 void slarz_64(char side, long m, long n, long l, float *v,
 long incv, float tau, float *c, long ldc);

PURPOSE

 slarz applies a real elementary reflector H to a real M-by-N
 matrix C, from either the left or the right. H is
 represented in the form

 H = I - tau * v * v'

 where tau is a real scalar and v is a real vector.

 If tau = 0, then H is taken to be the unit matrix.

 H is a product of k elementary reflectors as returned by
 STZRZF.

ARGUMENTS

 SIDE (input)
 = 'L': form H * C
 = 'R': form C * H

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 L (input) The number of entries of the vector V containing
 the meaningful part of the Householder vectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 V (input) The vector v in the representation of H as
 returned by STZRZF. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0.

 TAU (input)
 The value tau in the representation of H.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by the matrix H * C if SIDE = 'L', or
 C * H if SIDE = 'R'.
 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' or (M) if SIDE = 'R'

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 slarzb - applies a real block reflector H or its transpose
 H**T to a real distributed M-by-N C from the left or the
 right

SYNOPSIS

 SUBROUTINE SLARZB(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T,
 LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 INTEGER M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)

 SUBROUTINE SLARZB_64(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV,
 T, LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 INTEGER*8 M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)

 F95 INTERFACE
 SUBROUTINE LARZB(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V, [LDV],
 T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 INTEGER :: M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL, DIMENSION(:,:) :: V, T, C, WORK

 SUBROUTINE LARZB_64(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V,
 [LDV], T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 INTEGER(8) :: M, N, K, L, LDV, LDT, LDC, LDWORK
 REAL, DIMENSION(:,:) :: V, T, C, WORK

 C INTERFACE
 #include <sunperf.h>

 void slarzb(char side, char trans, char direct, char storev,
 int m, int n, int k, int l, float *v, int ldv,
 float *t, int ldt, float *c, int ldc, int ldwork);

 void slarzb_64(char side, char trans, char direct, char
 storev, long m, long n, long k, long l, float *v,
 long ldv, float *t, long ldt, float *c, long ldc,
 long ldwork);

PURPOSE

 slarzb applies a real block reflector H or its transpose
 H**T to a real distributed M-by-N C from the left or the
 right.

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 SIDE (input)
 = 'L': apply H or H' from the Left
 = 'R': apply H or H' from the Right

 TRANS (input)
 = 'N': apply H (No transpose)
 = 'C': apply H' (Transpose)

 DIRECT (input)
 Indicates how H is formed from a product of ele-
 mentary reflectors = 'F': H = H(1) H(2) . . . H(k)
 (Forward, not supported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Indicates how the vectors which define the elemen-
 tary reflectors are stored:
 = 'C': Columnwise (not sup-
 ported yet)
 = 'R': Rowwise

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 K (input) The order of the matrix T (= the number of elemen-
 tary reflectors whose product defines the block
 reflector).

 L (input) The number of columns of the matrix V containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.
 V (input) If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= L; if STOREV = 'R', LDV >= K.

 T (input) The triangular K-by-K matrix T in the representa-
 tion of the block reflector.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by H*C or H'*C or C*H or C*H'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 dimension(MAX(M,N),K)

 LDWORK (input)
 The leading dimension of the array WORK. If SIDE
 = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK
 >= max(1,M).

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 slarzt - form the triangular factor T of a real block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors

SYNOPSIS

 SUBROUTINE SLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 INTEGER N, K, LDV, LDT
 REAL V(LDV,*), TAU(*), T(LDT,*)

 SUBROUTINE SLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 INTEGER*8 N, K, LDV, LDT
 REAL V(LDV,*), TAU(*), T(LDT,*)

 F95 INTERFACE
 SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 INTEGER :: N, K, LDV, LDT
 REAL, DIMENSION(:) :: TAU
 REAL, DIMENSION(:,:) :: V, T

 SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 INTEGER(8) :: N, K, LDV, LDT
 REAL, DIMENSION(:) :: TAU
 REAL, DIMENSION(:,:) :: V, T

 C INTERFACE
 #include <sunperf.h>

 void slarzt(char direct, char storev, int n, int k, float
 *v, int ldv, float *tau, float *t, int ldt);

 void slarzt_64(char direct, char storev, long n, long k,
 float *v, long ldv, float *tau, float *t, long

 ldt);

PURPOSE

 slarzt forms the triangular factor T of a real block reflec-
 tor H of order > n, which is defined as a product of k
 elementary reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper
 triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower
 triangular.

 If STOREV = 'C', the vector which defines the elementary
 reflector H(i) is stored in the i-th column of the array V,
 and

 H = I - V * T * V'

 If STOREV = 'R', the vector which defines the elementary
 reflector H(i) is stored in the i-th row of the array V, and

 H = I - V' * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 DIRECT (input)
 Specifies the order in which the elementary
 reflectors are multiplied to form the block
 reflector:
 = 'F': H = H(1) H(2) . . . H(k) (Forward, not sup-
 ported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Specifies how the vectors which define the elemen-
 tary reflectors are stored (see also Further
 Details):
 = 'R': rowwise

 N (input) The order of the block reflector H. N >= 0.

 K (input) The order of the triangular factor T (= the number
 of elementary reflectors). K >= 1.

 V (input) (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R'
 The matrix V. See further details.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i).

 T (input) The k by k triangular factor T of the block

 reflector. If DIRECT = 'F', T is upper triangu-
 lar; if DIRECT = 'B', T is lower triangular. The
 rest of the array is not used.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The shape of the matrix V and the storage of the vectors
 which define the H(i) is best illustrated by the following
 example with n = 5 and k = 3. The elements equal to 1 are
 not stored; the corresponding array elements are modified
 but restored on exit. The rest of the array is not used.

 DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and
 STOREV = 'R':

 ______V_____
 (v1 v2 v3) /
 (v1 v2 v3) (v1 v1 v1 v1 v1 1
)
 V = (v1 v2 v3) (v2 v2 v2 v2 v2 .
 . . 1)
 (v1 v2 v3) (v3 v3 v3 v3 v3 .
 . 1)
 (v1 v2 v3)
 . . .
 1 . .
 1 .
 1

 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and
 STOREV = 'R':

 ______V_____
 1 /
 . 1 (1 v1 v1 v1 v1 v1)
 . . 1 (. 1 . . . v2 v2
 v2 v2 v2)
 . . . (. . 1 . . v3 v3
 v3 v3 v3)
 . . .
 (v1 v2 v3)
 V = (v1 v2 v3)
 (v1 v2 v3)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 slasrt - the numbers in D in increasing order (if ID = 'I')
 or in decreasing order (if ID = 'D')

SYNOPSIS

 SUBROUTINE SLASRT(ID, N, D, INFO)

 CHARACTER * 1 ID
 INTEGER N, INFO
 REAL D(*)

 SUBROUTINE SLASRT_64(ID, N, D, INFO)

 CHARACTER * 1 ID
 INTEGER*8 N, INFO
 REAL D(*)

 F95 INTERFACE
 SUBROUTINE LASRT(ID, [N], D, [INFO])

 CHARACTER(LEN=1) :: ID
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: D

 SUBROUTINE LASRT_64(ID, [N], D, [INFO])

 CHARACTER(LEN=1) :: ID
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: D

 C INTERFACE
 #include <sunperf.h>

 void slasrt(char id, int n, float *d, int *info);

 void slasrt_64(char id, long n, float *d, long *info);

PURPOSE

 slasrt the numbers in D in increasing order (if ID = 'I') or
 in decreasing order (if ID = 'D').

 Use Quick Sort, reverting to Insertion sort on arrays of
 size <= 20. Dimension of STACK limits N to about 2**32.

ARGUMENTS

 ID (input)
 = 'I': sort D in increasing order;
 = 'D': sort D in decreasing order.

 N (input) The length of the array D.

 D (input/output)
 On entry, the array to be sorted. On exit, D has
 been sorted into increasing order (D(1) <= ... <=
 D(N)) or into decreasing order (D(1) >= ... >=
 D(N)), depending on ID.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 slatzm - routine is deprecated and has been replaced by rou-
 tine SORMRZ

SYNOPSIS

 SUBROUTINE SLATZM(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER M, N, INCV, LDC
 REAL TAU
 REAL V(*), C1(LDC,*), C2(LDC,*), WORK(*)

 SUBROUTINE SLATZM_64(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 INTEGER*8 M, N, INCV, LDC
 REAL TAU
 REAL V(*), C1(LDC,*), C2(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE LATZM(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER :: M, N, INCV, LDC
 REAL :: TAU
 REAL, DIMENSION(:) :: V, WORK
 REAL, DIMENSION(:,:) :: C1, C2

 SUBROUTINE LATZM_64(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC],
 [WORK])

 CHARACTER(LEN=1) :: SIDE
 INTEGER(8) :: M, N, INCV, LDC
 REAL :: TAU
 REAL, DIMENSION(:) :: V, WORK
 REAL, DIMENSION(:,:) :: C1, C2

 C INTERFACE
 #include <sunperf.h>

 void slatzm(char side, int m, int n, float *v, int incv,
 float tau, float *c1, float *c2, int ldc);

 void slatzm_64(char side, long m, long n, float *v, long
 incv, float tau, float *c1, float *c2, long ldc);

PURPOSE

 slatzm routine is deprecated and has been replaced by rou-
 tine SORMRZ.

 SLATZM applies a Householder matrix generated by STZRQF to a
 matrix.

 Let P = I - tau*u*u', u = (1),
 (v)
 where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector
 if SIDE = 'R'.

 If SIDE equals 'L', let
 C = [C1] 1
 [C2] m-1
 n
 Then C is overwritten by P*C.

 If SIDE equals 'R', let
 C = [C1, C2] m
 1 n-1
 Then C is overwritten by C*P.

ARGUMENTS

 SIDE (input)
 = 'L': form P * C
 = 'R': form C * P

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 V (input) (1 + (M-1)*abs(INCV)) if SIDE = 'L' (1 + (N-
 1)*abs(INCV)) if SIDE = 'R' The vector v in the
 representation of P. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0

 TAU (input)
 The value tau in the representation of P.

 C1 (input/output)
 (LDC,N) if SIDE = 'L' (M,1) if SIDE = 'R' On
 entry, the n-vector C1 if SIDE = 'L', or the m-
 vector C1 if SIDE = 'R'.

 On exit, the first row of P*C if SIDE = 'L', or
 the first column of C*P if SIDE = 'R'.

 C2 (input/output)
 (LDC, N) if SIDE = 'L' (LDC, N-1) if SIDE = 'R'
 On entry, the (m - 1) x n matrix C2 if SIDE = 'L',
 or the m x (n - 1) matrix C2 if SIDE = 'R'.

 On exit, rows 2:m of P*C if SIDE = 'L', or columns
 2:m of C*P if SIDE = 'R'.

 LDC (input)
 The leading dimension of the arrays C1 and C2. LDC
 >= (1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 snrm2 - Return the Euclidian norm of a vector.

SYNOPSIS

 REAL FUNCTION SNRM2(N, X, INCX)

 INTEGER N, INCX
 REAL X(*)

 REAL FUNCTION SNRM2_64(N, X, INCX)

 INTEGER*8 N, INCX
 REAL X(*)

 F95 INTERFACE
 REAL FUNCTION NRM2([N], X, [INCX])

 INTEGER :: N, INCX
 REAL, DIMENSION(:) :: X

 REAL FUNCTION NRM2_64([N], X, [INCX])

 INTEGER(8) :: N, INCX
 REAL, DIMENSION(:) :: X

 C INTERFACE
 #include <sunperf.h>

 float snrm2(int n, float *x, int incx);

 float snrm2_64(long n, float *x, long incx);

PURPOSE

 snrm2 Return the Euclidian norm of a vector x where x is an
 n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must be positive. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sopgtr - generate a real orthogonal matrix Q which is
 defined as the product of n-1 elementary reflectors H(i) of
 order n, as returned by SSPTRD using packed storage

SYNOPSIS

 SUBROUTINE SOPGTR(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDQ, INFO
 REAL AP(*), TAU(*), Q(LDQ,*), WORK(*)

 SUBROUTINE SOPGTR_64(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDQ, INFO
 REAL AP(*), TAU(*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE OPGTR(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDQ, INFO
 REAL, DIMENSION(:) :: AP, TAU, WORK
 REAL, DIMENSION(:,:) :: Q

 SUBROUTINE OPGTR_64(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDQ, INFO
 REAL, DIMENSION(:) :: AP, TAU, WORK
 REAL, DIMENSION(:,:) :: Q

 C INTERFACE
 #include <sunperf.h>

 void sopgtr(char uplo, int n, float *ap, float *tau, float
 *q, int ldq, int *info);

 void sopgtr_64(char uplo, long n, float *ap, float *tau,
 float *q, long ldq, long *info);

PURPOSE

 sopgtr generates a real orthogonal matrix Q which is defined
 as the product of n-1 elementary reflectors H(i) of order n,
 as returned by SSPTRD using packed storage:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to SSPTRD; = 'L': Lower triangular
 packed storage used in previous call to SSPTRD.

 N (input) The order of the matrix Q. N >= 0.

 AP (input)
 The vectors which define the elementary reflec-
 tors, as returned by SSPTRD.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SSPTRD.

 Q (output)
 The N-by-N orthogonal matrix Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 WORK (workspace)
 dimension(N-1)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sopmtr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SOPMTR(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER M, N, LDC, INFO
 REAL AP(*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SOPMTR_64(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER*8 M, N, LDC, INFO
 REAL AP(*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE OPMTR(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER :: M, N, LDC, INFO
 REAL, DIMENSION(:) :: AP, TAU, WORK
 REAL, DIMENSION(:,:) :: C

 SUBROUTINE OPMTR_64(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER(8) :: M, N, LDC, INFO
 REAL, DIMENSION(:) :: AP, TAU, WORK
 REAL, DIMENSION(:,:) :: C

 C INTERFACE
 #include <sunperf.h>

 void sopmtr(char side, char uplo, char trans, int m, int n,
 float *ap, float *tau, float *c, int ldc, int
 *info);

 void sopmtr_64(char side, char uplo, char trans, long m,
 long n, float *ap, float *tau, float *c, long ldc,
 long *info);

PURPOSE

 sopmtr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by SSPTRD
 using packed storage:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to SSPTRD; = 'L': Lower triangular
 packed storage used in previous call to SSPTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 AP (input)
 (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE =
 'R' The vectors which define the elementary
 reflectors, as returned by SSPTRD. AP is modified
 by the routine but restored on exit.

 TAU (input)
 or (N-1) if SIDE = 'R' TAU(i) must contain the
 scalar factor of the elementary reflector H(i), as
 returned by SSPTRD.
 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorg2l - generate an m by n real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE SORG2L(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORG2L_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORG2L([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORG2L_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorg2l(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorg2l_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorg2l L generates an m by n real matrix Q with orthonormal
 columns, which is defined as the last n columns of a product
 of k elementary reflectors of order m

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by SGEQLF in
 the last k columns of its array argument A. On
 exit, the m by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorg2r - generate an m by n real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE SORG2R(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORG2R_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORG2R([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORG2R_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorg2r(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorg2r_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorg2r R generates an m by n real matrix Q with orthonormal
 columns, which is defined as the first n columns of a pro-
 duct of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. On exit, the m-
 by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgbr - generate one of the real orthogonal matrices Q or
 P**T determined by SGEBRD when reducing a real matrix A to
 bidiagonal form

SYNOPSIS

 SUBROUTINE SORGBR(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 INTEGER M, N, K, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGBR_64(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 INTEGER*8 M, N, K, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGBR(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER :: M, N, K, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGBR_64(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgbr(char vect, int m, int n, int k, float *a, int
 lda, float *tau, int *info);

 void sorgbr_64(char vect, long m, long n, long k, float *a,
 long lda, float *tau, long *info);

PURPOSE

 sorgbr generates one of the real orthogonal matrices Q or
 P**T determined by SGEBRD when reducing a real matrix A to
 bidiagonal form: A = Q * B * P**T. Q and P**T are defined
 as products of elementary reflectors H(i) or G(i) respec-
 tively.

 If VECT = 'Q', A is assumed to have been an M-by-K matrix,
 and Q is of order M:
 if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the
 first n columns of Q, where m >= n >= k;
 if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as
 an M-by-M matrix.

 If VECT = 'P', A is assumed to have been a K-by-N matrix,
 and P**T is of order N:
 if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the
 first m rows of P**T, where n >= m >= k;
 if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns
 P**T as an N-by-N matrix.

ARGUMENTS

 VECT (input)
 Specifies whether the matrix Q or the matrix P**T
 is required, as defined in the transformation
 applied by SGEBRD:
 = 'Q': generate Q;
 = 'P': generate P**T.

 M (input) The number of rows of the matrix Q or P**T to be
 returned. M >= 0.

 N (input) The number of columns of the matrix Q or P**T to
 be returned. N >= 0. If VECT = 'Q', M >= N >=
 min(M,K); if VECT = 'P', N >= M >= min(N,K).

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal M-by-K matrix reduced by SGEBRD. If VECT =
 'P', the number of rows in the original K-by-N
 matrix reduced by SGEBRD. K >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SGEBRD. On exit, the
 M-by-N matrix Q or P**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P'
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i), which determines Q
 or P**T, as returned by SGEBRD in its array argu-
 ment TAUQ or TAUP.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,min(M,N)). For optimum performance LWORK >=
 min(M,N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorghr - generate a real orthogonal matrix Q which is
 defined as the product of IHI-ILO elementary reflectors of
 order N, as returned by SGEHRD

SYNOPSIS

 SUBROUTINE SORGHR(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER N, ILO, IHI, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGHR_64(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER*8 N, ILO, IHI, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGHR([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER :: N, ILO, IHI, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGHR_64([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 INTEGER(8) :: N, ILO, IHI, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorghr(int n, int ilo, int ihi, float *a, int lda,
 float *tau, int *info);

 void sorghr_64(long n, long ilo, long ihi, float *a, long
 lda, float *tau, long *info);

PURPOSE

 sorghr generates a real orthogonal matrix Q which is defined
 as the product of IHI-ILO elementary reflectors of order N,
 as returned by SGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 N (input) The order of the matrix Q. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of SGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if
 N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SGEHRD. On exit, the
 N-by-N orthogonal matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEHRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= IHI-ILO.
 For optimum performance LWORK >= (IHI-ILO)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgl2 - generate an m by n real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE SORGL2(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGL2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGL2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGL2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgl2(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorgl2_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorgl2 generates an m by n real matrix Q with orthonormal
 rows, which is defined as the first m rows of a product of k
 elementary reflectors of order n

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGELQF in the first k
 rows of its array argument A. On exit, the m-by-n
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorglq - generate an M-by-N real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE SORGLQ(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGLQ_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGLQ(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGLQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorglq(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorglq_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorglq generates an M-by-N real matrix Q with orthonormal
 rows, which is defined as the first M rows of a product of K
 elementary reflectors of order N

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGELQF in the first k
 rows of its array argument A. On exit, the M-by-N
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgql - generate an M-by-N real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE SORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGQL(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGQL_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgql(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorgql_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorgql generates an M-by-N real matrix Q with orthonormal
 columns, which is defined as the last N columns of a product
 of K elementary reflectors of order M

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by SGEQLF in
 the last k columns of its array argument A. On
 exit, the M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgqr - generate an M-by-N real matrix Q with orthonormal
 columns,

SYNOPSIS

 SUBROUTINE SORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGQR(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGQR_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgqr(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorgqr_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorgqr generates an M-by-N real matrix Q with orthonormal
 columns, which is defined as the first N columns of a pro-
 duct of K elementary reflectors of order M

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. On exit, the M-
 by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgr2 - generate an m by n real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE SORGR2(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 INTEGER*8 M, N, K, LDA, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGR2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGR2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 INTEGER(8) :: M, N, K, LDA, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgr2(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorgr2_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorgr2 generates an m by n real matrix Q with orthonormal
 rows, which is defined as the last m rows of a product of k
 elementary reflectors of order n

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by SGERQF in the
 last k rows of its array argument A. On exit, the
 m by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgrq - generate an M-by-N real matrix Q with orthonormal
 rows,

SYNOPSIS

 SUBROUTINE SORGRQ(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGRQ_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

 INTEGER*8 M, N, K, LDA, LDWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGRQ(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 INTEGER :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGRQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LDWORK],
 [INFO])

 INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgrq(int m, int n, int k, float *a, int lda, float
 *tau, int *info);

 void sorgrq_64(long m, long n, long k, float *a, long lda,
 float *tau, long *info);

PURPOSE

 sorgrq generates an M-by-N real matrix Q with orthonormal
 rows, which is defined as the last M rows of a product of K
 elementary reflectors of order N

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by SGERQF in the
 last k rows of its array argument A. On exit, the
 M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sorgtr - generate a real orthogonal matrix Q which is
 defined as the product of n-1 elementary reflectors of order
 N, as returned by SSYTRD

SYNOPSIS

 SUBROUTINE SORGTR(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE SORGTR_64(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORGTR(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE ORGTR_64(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void sorgtr(char uplo, int n, float *a, int lda, float *tau,
 int *info);

 void sorgtr_64(char uplo, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 sorgtr generates a real orthogonal matrix Q which is defined
 as the product of n-1 elementary reflectors of order N, as
 returned by SSYTRD:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from SSYTRD; = 'L': Lower triangle of A
 contains elementary reflectors from SSYTRD.

 N (input) The order of the matrix Q. N >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by SSYTRD. On exit, the
 N-by-N orthogonal matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SSYTRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N-1). For optimum performance LWORK >= (N-
 1)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormbr - VECT = 'Q', SORMBR overwrites the general real M-
 by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMBR(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMBR_64(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormbr(char vect, char side, char trans, int m, int n,
 int k, float *a, int lda, float *tau, float *c,
 int ldc, int *info);

 void sormbr_64(char vect, char side, char trans, long m,
 long n, long k, float *a, long lda, float *tau,
 float *c, long ldc, long *info);

PURPOSE

 sormbr VECT = 'Q', SORMBR overwrites the general real M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N':
 Q * C C * Q TRANS = 'T': Q**T * C C *
 Q**T

 If VECT = 'P', SORMBR overwrites the general real M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R'
 TRANS = 'N': P * C C * P
 TRANS = 'T': P**T * C C * P**T

 Here Q and P**T are the orthogonal matrices determined by
 SGEBRD when reducing a real matrix A to bidiagonal form: A =
 Q * B * P**T. Q and P**T are defined as products of elemen-
 tary reflectors H(i) and G(i) respectively.

 Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq
 is the order of the orthogonal matrix Q or P**T that is
 applied.

 If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 if nq >= k, Q = H(1) H(2) . . . H(k);
 if nq < k, Q = H(1) H(2) . . . H(nq-1).

 If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 if k < nq, P = G(1) G(2) . . . G(k);
 if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

 VECT (input)
 = 'Q': apply Q or Q**T;
 = 'P': apply P or P**T.

 SIDE (input)
 = 'L': apply Q, Q**T, P or P**T from the Left;
 = 'R': apply Q, Q**T, P or P**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q or P;
 = 'T': Transpose, apply Q**T or P**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.
 N (input) The number of columns of the matrix C. N >= 0.

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal matrix reduced by SGEBRD. If VECT = 'P', the
 number of rows in the original matrix reduced by
 SGEBRD. K >= 0.

 A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if

 VECT = 'P' The vectors which define the elementary
 reflectors H(i) and G(i), whose products determine
 the matrices Q and P, as returned by SGEBRD.

 LDA (input)
 The leading dimension of the array A. If VECT =
 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >=
 max(1,min(nq,K)).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i) which determines Q
 or P, as returned by SGEBRD in the array argument
 TAUQ or TAUP.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q or
 P*C or P**T*C or C*P or C*P**T.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormhr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMHR(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMHR_64(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 LDC, WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMHR(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMHR_64(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormhr(char side, char trans, int m, int n, int ilo,
 int ihi, float *a, int lda, float *tau, float *c,
 int ldc, int *info);

 void sormhr_64(char side, char trans, long m, long n, long
 ilo, long ihi, float *a, long lda, float *tau,
 float *c, long ldc, long *info);

PURPOSE

 sormhr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of IHI-ILO elementary reflectors, as returned by
 SGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of SGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <=
 ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI =
 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI
 <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.

 IHI (input)
 See the description of ILO.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by SGEHRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by SGEHRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is

 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormlq - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMLQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMLQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormlq(char side, char trans, int m, int n, int k,
 float *a, int lda, float *tau, float *c, int ldc,
 int *info);

 void sormlq_64(char side, char trans, long m, long n, long
 k, float *a, long lda, float *tau, float *c, long
 ldc, long *info);

PURPOSE

 sormlq overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by SGELQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by SGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGELQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormql - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMQL(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMQL_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormql(char side, char trans, int m, int n, int k,
 float *a, int lda, float *tau, float *c, int ldc,
 int *info);

 void sormql_64(char side, char trans, long m, long n, long
 k, float *a, long lda, float *tau, float *c, long
 ldc, long *info);

PURPOSE

 sormql overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by SGEQLF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by SGEQLF in the last k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQLF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormqr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMQR(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMQR_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormqr(char side, char trans, int m, int n, int k,
 float *a, int lda, float *tau, float *c, int ldc,
 int *info);

 void sormqr_64(char side, char trans, long m, long n, long
 k, float *a, long lda, float *tau, float *c, long
 ldc, long *info);

PURPOSE

 sormqr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by SGEQRF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by SGEQRF in the first k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGEQRF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormrq - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMRQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMRQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormrq(char side, char trans, int m, int n, int k,
 float *a, int lda, float *tau, float *c, int ldc,
 int *info);

 void sormrq_64(char side, char trans, long m, long n, long
 k, float *a, long lda, float *tau, float *c, long
 ldc, long *info);

PURPOSE

 sormrq overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by SGERQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by SGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by SGERQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sormrz - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER M, N, K, L, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 INTEGER*8 M, N, K, L, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMRZ(SIDE, TRANS, [M], [N], K, L, A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER :: M, N, K, L, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMRZ_64(SIDE, TRANS, [M], [N], K, L, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 INTEGER(8) :: M, N, K, L, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormrz(char side, char trans, int m, int n, int k, int
 l, float *a, int lda, float *tau, float *c, int

 ldc, int *info);

 void sormrz_64(char side, char trans, long m, long n, long
 k, long l, float *a, long lda, float *tau, float
 *c, long ldc, long *info);

PURPOSE

 sormrz overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by STZRZF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 L (input) The number of columns of the matrix A containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by STZRZF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by STZRZF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sormtr - overwrite the general real M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE SORMTR(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER M, N, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 SUBROUTINE SORMTR_64(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 INTEGER*8 M, N, LDA, LDC, LWORK, INFO
 REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE ORMTR(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER :: M, N, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE ORMTR_64(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 INTEGER(8) :: M, N, LDA, LDC, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void sormtr(char side, char uplo, char trans, int m, int n,
 float *a, int lda, float *tau, float *c, int ldc,
 int *info);

 void sormtr_64(char side, char uplo, char trans, long m,
 long n, float *a, long lda, float *tau, float *c,
 long ldc, long *info);

PURPOSE

 sormtr overwrites the general real M-by-N matrix C with
 TRANS = 'T': Q**T * C C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by
 SSYTRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**T from the Left;
 = 'R': apply Q or Q**T from the Right.

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from SSYTRD; = 'L': Lower triangle of A
 contains elementary reflectors from SSYTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'T': Transpose, apply Q**T.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by SSYTRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by SSYTRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spbcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite band
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPBTRF

SYNOPSIS

 SUBROUTINE SPBCON(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 INTEGER WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SPBCON_64(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 INTEGER*8 WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBCON(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE PBCON_64(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND

 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A
 C INTERFACE
 #include <sunperf.h>

 void spbcon(char uplo, int n, int ndiag, float *a, int lda,
 float anorm, float *rcond, int *info);

 void spbcon_64(char uplo, long n, long ndiag, float *a, long
 lda, float anorm, float *rcond, long *info);

PURPOSE

 spbcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite band
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 band matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spbequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite band matrix A and reduce
 its condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE SPBEQU(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 REAL SCOND, AMAX
 REAL A(LDA,*), SCALE(*)

 SUBROUTINE SPBEQU_64(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 REAL SCOND, AMAX
 REAL A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE PBEQU(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE PBEQU_64(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spbequ(char uplo, int n, int ndiag, float *a, int lda,
 float *scale, float *scond, float *amax, int
 *info);
 void spbequ_64(char uplo, long n, long ndiag, float *a, long
 lda, float *scale, float *scond, float *amax, long
 *info);

PURPOSE

 spbequ computes row and column scalings intended to equili-
 brate a symmetric positive definite band matrix A and reduce
 its condition number (with respect to the two-norm). S con-
 tains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so
 that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular of A is stored;
 = 'L': Lower triangular of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The upper or lower triangle of the symmetric band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.
 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE SPBRFS(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SPBRFS_64(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBRFS(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PBRFS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void spbrfs(char uplo, int n, int ndiag, int nrhs, float *a,
 int lda, float *af, int ldaf, float *b, int ldb,
 float *x, int ldx, float *ferr, float *berr, int
 *info);

 void spbrfs_64(char uplo, long n, long ndiag, long nrhs,
 float *a, long lda, float *af, long ldaf, float
 *b, long ldb, float *x, long ldx, float *ferr,
 float *berr, long *info);

PURPOSE

 spbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A as computed by SPBTRF, in the same
 storage format as A (see A).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SPBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spbstf - compute a split Cholesky factorization of a real
 symmetric positive definite band matrix A

SYNOPSIS

 SUBROUTINE SPBSTF(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, KD, LDAB, INFO
 REAL AB(LDAB,*)

 SUBROUTINE SPBSTF_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, KD, LDAB, INFO
 REAL AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE PBSTF(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, KD, LDAB, INFO
 REAL, DIMENSION(:,:) :: AB

 SUBROUTINE PBSTF_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, KD, LDAB, INFO
 REAL, DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void spbstf(char uplo, int n, int kd, float *ab, int ldab,
 int *info);

 void spbstf_64(char uplo, long n, long kd, float *ab, long
 ldab, long *info);

PURPOSE

 spbstf computes a split Cholesky factorization of a real
 symmetric positive definite band matrix A.

 This routine is designed to be used in conjunction with
 SSBGST.
 The factorization has the form A = S**T*S where S is a
 band matrix of the same bandwidth as A and the following
 structure:

 S = (U)
 (M L)

 where U is upper triangular of order m = (n+kd)/2, and L is
 lower triangular of order n-m.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first kd+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the factor S from the split
 Cholesky factorization A = S**T*S. See Further
 Details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the factorization could not be
 completed, because the updated element a(i,i) was
 negative; the matrix A is not positive definite.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 7, KD = 2:

 S = (s11 s12 s13)
 (s22 s23 s24)
 (s33 s34)
 (s44)
 (s53 s54 s55)
 (s64 s65 s66)
 (s75 s76 s77)

 If UPLO = 'U', the array AB holds:

 on entry: on exit:

 * * a13 a24 a35 a46 a57 * * s13 s24 s53
 s64 s75
 * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54
 s65 s76 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33
 s44 s55 s66 s77

 If UPLO = 'L', the array AB holds:

 on entry: on exit:

 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55
 s66 s77 a21 a32 a43 a54 a65 a76 * s12 s23 s34
 s54 s65 s76 * a31 a42 a53 a64 a64 * * s13
 s24 s53 s64 s75 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spbsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPBSV(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SPBSV_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PBSV(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE PBSV_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void spbsv(char uplo, int n, int ndiag, int nrhs, float *a,
 int lda, float *b, int ldb, int *info);

 void spbsv_64(char uplo, long n, long ndiag, long nrhs,
 float *a, long lda, float *b, long ldb, long
 *info);

PURPOSE

 spbsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a lower
 triangular band matrix, with the same number of superdiago-
 nals or subdiagonals as A. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j) for
 max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-j,j)
 = A(i,j) for j<=i<=min(N,j+NDIAG). See below for
 further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spbsvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPBSVX(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE SPBSVX_64(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PBSVX(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PBSVX_64(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF,

 [LDAF], EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>

 void spbsvx(char fact, char uplo, int n, int ndiag, int
 nrhs, float *a, int lda, float *af, int ldaf, char
 equed, float *scale, float *b, int ldb, float *x,
 int ldx, float *rcond, float *ferr, float *berr,
 int *info);

 void spbsvx_64(char fact, char uplo, long n, long ndiag,
 long nrhs, float *a, long lda, float *af, long
 ldaf, char equed, float *scale, float *b, long
 ldb, float *x, long ldx, float *rcond, float
 *ferr, float *berr, long *info);

PURPOSE

 spbsvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a
 lower
 triangular band matrix.
 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the

 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.
 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right-hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array, except if FACT = 'F' and EQUED
 = 'Y', then A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the j-th column of the array A as
 follows: if UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j)
 for max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-
 j,j) = A(i,j) for j<=i<=min(N,j+NDIAG). See

 below for further details.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A (see A). If EQUED = 'Y', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:
 a11 a12 a13
 a22 a23 a24
 a33 a34 a35
 a44 a45 a46
 a55 a56

 (aij=conjg(aji)) a66

 Band storage of the upper triangle of A:

 * * a13 a24 a35 a46
 * a12 a23 a34 a45 a56
 a11 a22 a33 a44 a55 a66

 Similarly, if UPLO = 'L' the format of A is as follows:

 a11 a22 a33 a44 a55 a66
 a21 a32 a43 a54 a65 *
 a31 a42 a53 a64 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spbtf2 - compute the Cholesky factorization of a real sym-
 metric positive definite band matrix A

SYNOPSIS

 SUBROUTINE SPBTF2(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, KD, LDAB, INFO
 REAL AB(LDAB,*)

 SUBROUTINE SPBTF2_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, KD, LDAB, INFO
 REAL AB(LDAB,*)

 F95 INTERFACE
 SUBROUTINE PBTF2(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, KD, LDAB, INFO
 REAL, DIMENSION(:,:) :: AB

 SUBROUTINE PBTF2_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, KD, LDAB, INFO
 REAL, DIMENSION(:,:) :: AB

 C INTERFACE
 #include <sunperf.h>

 void spbtf2(char uplo, int n, int kd, float *ab, int ldab,
 int *info);

 void spbtf2_64(char uplo, long n, long kd, float *ab, long
 ldab, long *info);

PURPOSE

 spbtf2 computes the Cholesky factorization of a real sym-
 metric positive definite band matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, U' is the transpose
 of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of super-diagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U'*U or A =
 L*L' of the band matrix A, in the same storage
 format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, KD = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spbtrf - compute the Cholesky factorization of a real sym-
 metric positive definite band matrix A

SYNOPSIS

 SUBROUTINE SPBTRF(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE SPBTRF_64(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE PBTRF(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE PBTRF_64(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spbtrf(char uplo, int n, int ndiag, float *a, int lda,
 int *info);

 void spbtrf_64(char uplo, long n, long ndiag, float *a, long
 lda, long *info);

PURPOSE

 spbtrf computes the Cholesky factorization of a real sym-
 metric positive definite band matrix A.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':
 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56

 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

 Contributed by
 Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March
 23, 1989

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spbtrs - solve a system of linear equations A*X = B with a
 symmetric positive definite band matrix A using the Cholesky
 factorization A = U**T*U or A = L*L**T computed by SPBTRF

SYNOPSIS

 SUBROUTINE SPBTRS(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SPBTRS_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PBTRS(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE PBTRS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void spbtrs(char uplo, int n, int ndiag, int nrhs, float *a,
 int lda, float *b, int ldb, int *info);

 void spbtrs_64(char uplo, long n, long ndiag, long nrhs,
 float *a, long lda, float *b, long ldb, long
 *info);

PURPOSE

 spbtrs solves a system of linear equations A*X = B with a
 symmetric positive definite band matrix A using the Cholesky
 factorization A = U**T*U or A = L*L**T computed by SPBTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spocon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite matrix
 using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPOTRF

SYNOPSIS

 SUBROUTINE SPOCON(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SPOCON_64(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE POCON(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE POCON_64(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK

 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void spocon(char uplo, int n, float *a, int lda, float
 anorm, float *rcond, int *info);

 void spocon_64(char uplo, long n, float *a, long lda, float
 anorm, float *rcond, long *info);

PURPOSE

 spocon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite matrix
 using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPOTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spoequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite matrix A and reduce its
 condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE SPOEQU(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 INTEGER N, LDA, INFO
 REAL SCOND, AMAX
 REAL A(LDA,*), SCALE(*)

 SUBROUTINE SPOEQU_64(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 INTEGER*8 N, LDA, INFO
 REAL SCOND, AMAX
 REAL A(LDA,*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE POEQU([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 INTEGER :: N, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE POEQU_64([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 INTEGER(8) :: N, LDA, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: SCALE
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spoequ(int n, float *a, int lda, float *scale, float
 *scond, float *amax, int *info);

 void spoequ_64(long n, float *a, long lda, float *scale,
 float *scond, float *amax, long *info);

PURPOSE

 spoequ computes row and column scalings intended to equili-
 brate a symmetric positive definite matrix A and reduce its
 condition number (with respect to the two-norm). S contains
 the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the
 scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has
 ones on the diagonal. This choice of S puts the condition
 number of B within a factor N of the smallest possible con-
 dition number over all possible diagonal scalings.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input) The N-by-N symmetric positive definite matrix
 whose scaling factors are to be computed. Only
 the diagonal elements of A are referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sporfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite,

SYNOPSIS

 SUBROUTINE SPORFS(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SPORFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PORFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE PORFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void sporfs(char uplo, int n, int nrhs, float *a, int lda,
 float *af, int ldaf, float *b, int ldb, float *x,
 int ldx, float *ferr, float *berr, int *info);

 void sporfs_64(char uplo, long n, long nrhs, float *a, long
 lda, float *af, long ldaf, float *b, long ldb,
 float *x, long ldx, float *ferr, float *berr, long
 *info);

PURPOSE

 sporfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite, and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SPOTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sposv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SPOSV_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE POSV(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE POSV_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void sposv(char uplo, int n, int nrhs, float *a, int lda,
 float *b, int ldb, int *info);

 void sposv_64(char uplo, long n, long nrhs, float *a, long
 lda, float *b, long ldb, long *info);

PURPOSE

 sposv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sposvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPOSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE SPOSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), SCALE(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE POSVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE POSVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED

 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void sposvx(char fact, char uplo, int n, int nrhs, float *a,
 int lda, float *af, int ldaf, char equed, float
 *scale, float *b, int ldb, float *x, int ldx,
 float *rcond, float *ferr, float *berr, int
 *info);

 void sposvx_64(char fact, char uplo, long n, long nrhs,
 float *a, long lda, float *af, long ldaf, char
 equed, float *scale, float *b, long ldb, float *x,
 long ldx, float *rcond, float *ferr, float *berr,
 long *info);

PURPOSE

 sposvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the

 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the symmetric matrix A, except if FACT =
 'F' and EQUED = 'Y', then A must contain the
 equilibrated matrix diag(SCALE)*A*diag(SCALE). If
 UPLO = 'U', the leading N-by-N upper triangular
 part of A contains the upper triangular part of
 the matrix A, and the strictly lower triangular
 part of A is not referenced. If UPLO = 'L', the
 leading N-by-N lower triangular part of A contains
 the lower triangular part of the matrix A, and the
 strictly upper triangular part of A is not refer-
 enced. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=

 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T, in the same storage format as A. If EQUED
 .ne. 'N', then AF is the factored form of the
 equilibrated matrix diag(SCALE)*A*diag(SCALE).

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**T*U or A =
 L*L**T of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of

 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spotf2 - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A

SYNOPSIS

 SUBROUTINE SPOTF2(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE SPOTF2_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTF2(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE POTF2_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spotf2(char uplo, int n, float *a, int lda, int *info);

 void spotf2_64(char uplo, long n, float *a, long lda, long
 *info);

PURPOSE

 spotf2 computes the Cholesky factorization of a real sym-
 metric positive definite matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix and L is lower
 triangular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored. = 'U':
 Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U'*U or A = L*L'.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spotrf - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A

SYNOPSIS

 SUBROUTINE SPOTRF(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE SPOTRF_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTRF(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE POTRF_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spotrf(char uplo, int n, float *a, int lda, int *info);

 void spotrf_64(char uplo, long n, float *a, long lda, long
 *info);

PURPOSE

 spotrf computes the Cholesky factorization of a real sym-
 metric positive definite matrix A.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower
 triangular.

 This is the block version of the algorithm, calling Level 3
 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spotri - compute the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPOTRF

SYNOPSIS

 SUBROUTINE SPOTRI(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE SPOTRI_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE POTRI(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE POTRI_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spotri(char uplo, int n, float *a, int lda, int *info);

 void spotri_64(char uplo, long n, float *a, long lda, long
 *info);

PURPOSE

 spotri computes the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 as computed by SPOTRF. On exit, the upper or
 lower triangle of the (symmetric) inverse of A,
 overwriting the input factor U or L.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spotrs - solve a system of linear equations A*X = B with a
 symmetric positive definite matrix A using the Cholesky fac-
 torization A = U**T*U or A = L*L**T computed by SPOTRF

SYNOPSIS

 SUBROUTINE SPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE POTRS(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE POTRS_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void spotrs(char uplo, int n, int nrhs, float *a, int lda,
 float *b, int ldb, int *info);

 void spotrs_64(char uplo, long n, long nrhs, float *a, long
 lda, float *b, long ldb, long *info);

PURPOSE

 spotrs solves a system of linear equations A*X = B with a
 symmetric positive definite matrix A using the Cholesky fac-
 torization A = U**T*U or A = L*L**T computed by SPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sppcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite packed
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPPTRF

SYNOPSIS

 SUBROUTINE SPPCON(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER WORK2(*)
 REAL ANORM, RCOND
 REAL A(*), WORK(*)

 SUBROUTINE SPPCON_64(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 WORK2(*)
 REAL ANORM, RCOND
 REAL A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PPCON(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: A, WORK

 SUBROUTINE PPCON_64(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>

 void sppcon(char uplo, int n, float *a, float anorm, float
 *rcond, int *info);
 void sppcon_64(char uplo, long n, float *a, float anorm,
 float *rcond, long *info);

PURPOSE

 sppcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite packed
 matrix using the Cholesky factorization A = U**T*U or A =
 L*L**T computed by SPPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 ANORM (input)
 The 1-norm (or infinity-norm) of the symmetric
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sppequ - compute row and column scalings intended to equili-
 brate a symmetric positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm)

SYNOPSIS

 SUBROUTINE SPPEQU(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 REAL SCOND, AMAX
 REAL A(*), SCALE(*)

 SUBROUTINE SPPEQU_64(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 REAL SCOND, AMAX
 REAL A(*), SCALE(*)

 F95 INTERFACE
 SUBROUTINE PPEQU(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: A, SCALE

 SUBROUTINE PPEQU_64(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL :: SCOND, AMAX
 REAL, DIMENSION(:) :: A, SCALE

 C INTERFACE
 #include <sunperf.h>

 void sppequ(char uplo, int n, float *a, float *scale, float
 *scond, float *amax, int *info);

 void sppequ_64(char uplo, long n, float *a, float *scale,

 float *scond, float *amax, long *info);

PURPOSE

 sppequ computes row and column scalings intended to equili-
 brate a symmetric positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm). S contains the scale factors,
 S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 This choice of S puts the condition number of B within a
 factor N of the smallest possible condition number over all
 possible diagonal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE SPPRFS(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE SPPRFS_64(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE PPRFS(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE PPRFS_64(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>
 void spprfs(char uplo, int n, int nrhs, float *a, float *af,
 float *b, int ldb, float *x, int ldx, float *ferr,
 float *berr, int *info);

 void spprfs_64(char uplo, long n, long nrhs, float *a, float
 *af, float *b, long ldb, float *x, long ldx, float
 *ferr, float *berr, long *info);

PURPOSE

 spprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, as com-
 puted by SPPTRF/CPPTRF, packed columnwise in a
 linear array in the same format as A (see A).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 X (input/output)
 On entry, the solution matrix X, as computed by
 SPPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution

 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sppsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPPSV(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 SUBROUTINE SPPSV_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PPSV(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE PPSV_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sppsv(char uplo, int n, int nrhs, float *a, float *b,
 int ldb, int *info);

 void sppsv_64(char uplo, long n, long nrhs, float *a, float
 *b, long ldb, long *info);

PURPOSE

 sppsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 The Cholesky decomposition is used to factor A as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 in the same storage format as A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sppsvx - use the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SPPSVX(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(*), AF(*), SCALE(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SPPSVX_64(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(*), AF(*), SCALE(*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PPSVX(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, AF, SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE PPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, AF, SCALE, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void sppsvx(char fact, char uplo, int n, int nrhs, float *a,
 float *af, char equed, float *scale, float *b, int
 ldb, float *x, int ldx, float *rcond, float *ferr,
 float *berr, int *info);

 void sppsvx_64(char fact, char uplo, long n, long nrhs,
 float *a, float *af, char equed, float *scale,
 float *b, long ldb, float *x, long ldx, float
 *rcond, float *ferr, float *berr, long *info);

PURPOSE

 sppsvx uses the Cholesky factorization A = U**T*U or A =
 L*L**T to compute the solution to a real system of linear
 equations
 A * X = B, where A is an N-by-N symmetric positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**T* U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine

 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array, except if FACT = 'F' and EQUED = 'Y', then
 A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. See below for further details. A is not
 modified if FACT = 'F' or 'N', or if FACT = 'E'
 and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 AF (input/output)
 (N*(N+1)/2) If FACT = 'F', then AF is an input
 argument and on entry contains the triangular fac-
 tor U or L from the Cholesky factorization A =

 U'*U or A = L*L', in the same storage format as A.
 If EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U'*U or A = L*L' of
 the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U'*U or A = L*L' of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated

 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 spptrf - compute the Cholesky factorization of a real sym-
 metric positive definite matrix A stored in packed format

SYNOPSIS

 SUBROUTINE SPPTRF(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 REAL A(*)

 SUBROUTINE SPPTRF_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 REAL A(*)

 F95 INTERFACE
 SUBROUTINE PPTRF(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: A

 SUBROUTINE PPTRF_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spptrf(char uplo, int n, float *a, int *info);

 void spptrf_64(char uplo, long n, float *a, long *info);

PURPOSE

 spptrf computes the Cholesky factorization of a real sym-
 metric positive definite matrix A stored in packed format.

 The factorization has the form
 A = U**T * U, if UPLO = 'U', or
 A = L * L**T, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**T*U or A =
 L*L**T, in the same storage format as A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spptri - compute the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPPTRF

SYNOPSIS

 SUBROUTINE SPPTRI(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 REAL A(*)

 SUBROUTINE SPPTRI_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 REAL A(*)

 F95 INTERFACE
 SUBROUTINE PPTRI(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: A

 SUBROUTINE PPTRI_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void spptri(char uplo, int n, float *a, int *info);

 void spptri_64(char uplo, long n, float *a, long *info);

PURPOSE

 spptri computes the inverse of a real symmetric positive
 definite matrix A using the Cholesky factorization A =
 U**T*U or A = L*L**T computed by SPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor is stored in A;
 = 'L': Lower triangular factor is stored in A.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**T*U or A = L*L**T,
 packed columnwise as a linear array. The j-th
 column of U or L is stored in the array A as fol-
 lows: if UPLO = 'U', A(i + (j-1)*j/2) = U(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = L(i,j) for j<=i<=n.

 On exit, the upper or lower triangle of the (sym-
 metric) inverse of A, overwriting the input factor
 U or L.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spptrs - solve a system of linear equations A*X = B with a
 symmetric positive definite matrix A in packed storage using
 the Cholesky factorization A = U**T*U or A = L*L**T computed
 by SPPTRF

SYNOPSIS

 SUBROUTINE SPPTRS(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 SUBROUTINE SPPTRS_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PPTRS(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE PPTRS_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void spptrs(char uplo, int n, int nrhs, float *a, float *b,
 int ldb, int *info);

 void spptrs_64(char uplo, long n, long nrhs, float *a, float
 *b, long ldb, long *info);

PURPOSE

 spptrs solves a system of linear equations A*X = B with a
 symmetric positive definite matrix A in packed storage using
 the Cholesky factorization A = U**T*U or A = L*L**T computed
 by SPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**T*U or A = L*L**T, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sptcon - compute the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite tridiago-
 nal matrix using the factorization A = L*D*L**T or A =
 U**T*D*U computed by SPTTRF

SYNOPSIS

 SUBROUTINE SPTCON(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 INTEGER N, INFO
 REAL ANORM, RCOND
 REAL DIAG(*), OFFD(*), WORK(*)

 SUBROUTINE SPTCON_64(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 INTEGER*8 N, INFO
 REAL ANORM, RCOND
 REAL DIAG(*), OFFD(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTCON([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 INTEGER :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: DIAG, OFFD, WORK

 SUBROUTINE PTCON_64([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 INTEGER(8) :: N, INFO
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: DIAG, OFFD, WORK

 C INTERFACE
 #include <sunperf.h>

 void sptcon(int n, float *diag, float *offd, float anorm,
 float *rcond, int *info);

 void sptcon_64(long n, float *diag, float *offd, float
 anorm, float *rcond, long *info);

PURPOSE

 sptcon computes the reciprocal of the condition number (in
 the 1-norm) of a real symmetric positive definite tridiago-
 nal matrix using the factorization A = L*D*L**T or A =
 U**T*D*U computed by SPTTRF.
 Norm(inv(A)) is computed by a direct method, and the
 reciprocal of the condition number is computed as
 RCOND = 1 / (ANORM * norm(inv(A))).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization of A, as computed by
 SPTTRF.

 OFFD (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization of A,
 as computed by SPTTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is the 1-norm of inv(A) computed in
 this routine.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The method used is described in Nicholas J. Higham, "Effi-
 cient Algorithms for Computing the Condition Number of a
 Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No.
 1, January 1986.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF, and then calling
 SBDSQR to compute the singular values of the bidiagonal fac-
 tor

SYNOPSIS

 SUBROUTINE SPTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, INFO
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SPTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, INFO
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE PTEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void spteqr(char compz, int n, float *d, float *e, float *z,
 int ldz, int *info);

 void spteqr_64(char compz, long n, float *d, float *e, float
 *z, long ldz, long *info);

PURPOSE

 spteqr computes all eigenvalues and, optionally,
 eigenvectors of a symmetric positive definite tridiagonal
 matrix by first factoring the matrix using SPTTRF, and then
 calling SBDSQR to compute the singular values of the bidiag-
 onal factor.

 This routine computes the eigenvalues of the positive defin-
 ite tridiagonal matrix to high relative accuracy. This
 means that if the eigenvalues range over many orders of mag-
 nitude in size, then the small eigenvalues and corresponding
 eigenvectors will be computed more accurately than, for
 example, with the standard QR method.

 The eigenvectors of a full or band symmetric positive defin-
 ite matrix can also be found if SSYTRD, SSPTRD, or SSBTRD
 has been used to reduce this matrix to tridiagonal form.
 (The reduction to tridiagonal form, however, may preclude
 the possibility of obtaining high relative accuracy in the
 small eigenvalues of the original matrix, if these eigen-
 values range over many orders of magnitude.)

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvectors of original symmetric
 matrix also. Array Z contains the orthogonal
 matrix used to reduce the original matrix to tri-
 diagonal form. = 'I': Compute eigenvectors of
 tridiagonal matrix also.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On normal exit, D contains the eigen-
 values, in descending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', the orthogonal matrix
 used in the reduction to tridiagonal form. On
 exit, if COMPZ = 'V', the orthonormal eigenvectors
 of the original symmetric matrix; if COMPZ = 'I',
 the orthonormal eigenvectors of the tridiagonal
 matrix. If INFO > 0 on exit, Z contains the
 eigenvectors associated with only the stored
 eigenvalues. If COMPZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if COMPZ = 'V' or 'I', LDZ >= max(1,N).

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is: <= N the Cholesky
 factorization of the matrix could not be performed
 because the i-th principal minor was not positive
 definite. > N the SVD algorithm failed to con-
 verge; if INFO = N+i, i off-diagonal elements of
 the bidiagonal factor did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sptrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution

SYNOPSIS

 SUBROUTINE SPTRFS(N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X, LDX,
 FERR, BERR, WORK, INFO)

 INTEGER N, NRHS, LDB, LDX, INFO
 REAL DIAG(*), OFFD(*), DIAGF(*), OFFDF(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE SPTRFS_64(N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X,
 LDX, FERR, BERR, WORK, INFO)

 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL DIAG(*), OFFD(*), DIAGF(*), OFFDF(*), B(LDB,*),
 X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTRFS([N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [INFO])

 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD, DIAGF, OFFDF, FERR, BERR,
 WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE PTRFS_64([N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [INFO])

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD, DIAGF, OFFDF, FERR, BERR,
 WORK
 REAL, DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void sptrfs(int n, int nrhs, float *diag, float *offd, float
 *diagf, float *offdf, float *b, int ldb, float *x,

 int ldx, float *ferr, float *berr, int *info);

 void sptrfs_64(long n, long nrhs, float *diag, float *offd,
 float *diagf, float *offdf, float *b, long ldb,
 float *x, long ldx, float *ferr, float *berr, long
 *info);

PURPOSE

 sptrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 OFFD (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization computed by SPTTRF.

 OFFDF (input)
 The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the factorization computed by
 SPTTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SPTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in

 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sptsv - compute the solution to a real system of linear
 equations A*X = B, where A is an N-by-N symmetric positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

SYNOPSIS

 SUBROUTINE SPTSV(N, NRHS, DIAG, SUB, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 REAL DIAG(*), SUB(*), B(LDB,*)

 SUBROUTINE SPTSV_64(N, NRHS, DIAG, SUB, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 REAL DIAG(*), SUB(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PTSV([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG, SUB
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE PTSV_64([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG, SUB
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sptsv(int n, int nrhs, float *diag, float *sub, float
 *b, int ldb, int *info);

 void sptsv_64(long n, long nrhs, float *diag, float *sub,
 float *b, long ldb, long *info);

PURPOSE

 sptsv computes the solution to a real system of linear equa-
 tions A*X = B, where A is an N-by-N symmetric positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

 A is factored as A = L*D*L**T, and the factored form of A is
 then used to solve the system of equations.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the factorization A
 = L*DIAG*L**T.

 SUB (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L**T factorization of A. (SUB can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U**T*DIAG*U factorization
 of A.)

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the solution has not
 been computed. The factorization has not been
 completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sptsvx - use the factorization A = L*D*L**T to compute the
 solution to a real system of linear equations A*X = B, where
 A is an N-by-N symmetric positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE SPTSVX(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, INFO)

 CHARACTER * 1 FACT
 INTEGER N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL DIAG(*), SUB(*), DIAGF(*), SUBF(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 SUBROUTINE SPTSVX_64(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, INFO)

 CHARACTER * 1 FACT
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 REAL RCOND
 REAL DIAG(*), SUB(*), DIAGF(*), SUBF(*), B(LDB,*), X(LDX,*),
 FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTSVX(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B, [LDB],
 X, [LDX], RCOND, FERR, BERR, [WORK], [INFO])

 CHARACTER(LEN=1) :: FACT
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: DIAG, SUB, DIAGF, SUBF, FERR, BERR,
 WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE PTSVX_64(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [INFO])

 CHARACTER(LEN=1) :: FACT
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL :: RCOND
 REAL, DIMENSION(:) :: DIAG, SUB, DIAGF, SUBF, FERR, BERR,

 WORK
 REAL, DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void sptsvx(char fact, int n, int nrhs, float *diag, float
 *sub, float *diagf, float *subf, float *b, int
 ldb, float *x, int ldx, float *rcond, float *ferr,
 float *berr, int *info);

 void sptsvx_64(char fact, long n, long nrhs, float *diag,
 float *sub, float *diagf, float *subf, float *b,
 long ldb, float *x, long ldx, float *rcond, float
 *ferr, float *berr, long *info);

PURPOSE

 sptsvx uses the factorization A = L*D*L**T to compute the
 solution to a real system of linear equations A*X = B, where
 A is an N-by-N symmetric positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T,
 where L
 is a unit lower bidiagonal matrix and D is diagonal. The
 factorization can also be regarded as having the form
 A = U**T*D*U.

 2. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry,
 DIAGF and SUBF contain the factored form of A.
 DIAG, SUB, DIAGF, and SUBF will not be modified.
 = 'N': The matrix A will be copied to DIAGF and
 SUBF and factored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 SUB (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 diagonal matrix DIAG from the L*DIAG*L**T factori-
 zation of A. If FACT = 'N', then DIAGF is an out-
 put argument and on exit contains the n diagonal
 elements of the diagonal matrix DIAG from the
 L*DIAG*L**T factorization of A.

 SUBF (input/output)
 If FACT = 'F', then SUBF is an input argument and
 on entry contains the (n-1) subdiagonal elements
 of the unit bidiagonal factor L from the
 L*DIAG*L**T factorization of A. If FACT = 'N',
 then SUBF is an output argument and on exit con-
 tains the (n-1) subdiagonal elements of the unit
 bidiagonal factor L from the L*DIAG*L**T factori-
 zation of A.
 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 of INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The reciprocal condition number of the matrix A.
 If RCOND is less than the machine precision (in
 particular, if RCOND = 0), the matrix is singular
 to working precision. This condition is indicated
 by a return code of INFO > 0.

 FERR (output)

 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spttrf - compute the L*D*L' factorization of a real sym-
 metric positive definite tridiagonal matrix A

SYNOPSIS

 SUBROUTINE SPTTRF(N, DIAG, OFFD, INFO)

 INTEGER N, INFO
 REAL DIAG(*), OFFD(*)

 SUBROUTINE SPTTRF_64(N, DIAG, OFFD, INFO)

 INTEGER*8 N, INFO
 REAL DIAG(*), OFFD(*)

 F95 INTERFACE
 SUBROUTINE PTTRF([N], DIAG, OFFD, [INFO])

 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD

 SUBROUTINE PTTRF_64([N], DIAG, OFFD, [INFO])

 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD

 C INTERFACE
 #include <sunperf.h>

 void spttrf(int n, float *diag, float *offd, int *info);

 void spttrf_64(long n, float *diag, float *offd, long
 *info);

PURPOSE

 spttrf computes the L*D*L' factorization of a real symmetric
 positive definite tridiagonal matrix A. The factorization
 may also be regarded as having the form A = U'*D*U.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the L*DIAG*L' fac-
 torization of A.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L' factorization of A. OFFD can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U'*DIAG*U factorization
 of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite; if k < N, the factorization
 could not be completed, while if k = N, the fac-
 torization was completed, but DIAG(N) = 0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 spttrs - solve a tridiagonal system of the form A * X = B
 using the L*D*L' factorization of A computed by SPTTRF

SYNOPSIS

 SUBROUTINE SPTTRS(N, NRHS, DIAG, OFFD, B, LDB, INFO)

 INTEGER N, NRHS, LDB, INFO
 REAL DIAG(*), OFFD(*), B(LDB,*)

 SUBROUTINE SPTTRS_64(N, NRHS, DIAG, OFFD, B, LDB, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 REAL DIAG(*), OFFD(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE PTTRS([N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE PTTRS_64([N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void spttrs(int n, int nrhs, float *diag, float *offd, float
 *b, int ldb, int *info);

 void spttrs_64(long n, long nrhs, float *diag, float *offd,
 float *b, long ldb, long *info);

PURPOSE

 spttrs solves a tridiagonal system of the form
 A * X = B using the L*D*L' factorization of A computed by
 SPTTRF. D is a diagonal matrix specified in the vector D, L
 is a unit bidiagonal matrix whose subdiagonal is specified
 in the vector E, and X and B are N by NRHS matrices.

ARGUMENTS

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the L*DIAG*L' factorization of A.

 OFFD (input/output)
 The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the L*DIAG*L' factorization of
 A. OFFD can also be regarded as the superdiagonal
 of the unit bidiagonal factor U from the factori-
 zation A = U'*DIAG*U.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sptts2 - solve a tridiagonal system of the form A * X = B
 using the L*D*L' factorization of A computed by SPTTRF

SYNOPSIS

 SUBROUTINE SPTTS2(N, NRHS, D, E, B, LDB)

 INTEGER N, NRHS, LDB
 REAL D(*), E(*), B(LDB,*)

 SUBROUTINE SPTTS2_64(N, NRHS, D, E, B, LDB)

 INTEGER*8 N, NRHS, LDB
 REAL D(*), E(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SPTTS2(N, NRHS, D, E, B, LDB)

 INTEGER :: N, NRHS, LDB
 REAL, DIMENSION(:) :: D, E
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE SPTTS2_64(N, NRHS, D, E, B, LDB)

 INTEGER(8) :: N, NRHS, LDB
 REAL, DIMENSION(:) :: D, E
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sptts2(int n, int nrhs, float *d, float *e, float *b,
 int ldb);

 void sptts2_64(long n, long nrhs, float *d, float *e, float
 *b, long ldb);

PURPOSE

 sptts2 solves a tridiagonal system of the form
 A * X = B using the L*D*L' factorization of A computed by
 SPTTRF. D is a diagonal matrix specified in the vector D, L
 is a unit bidiagonal matrix whose subdiagonal is specified
 in the vector E, and X and B are N by NRHS matrices.

ARGUMENTS

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 D (input) The n diagonal elements of the diagonal matrix D
 from the L*D*L' factorization of A.

 E (input) The (n-1) subdiagonal elements of the unit bidiag-
 onal factor L from the L*D*L' factorization of A.
 E can also be regarded as the superdiagonal of the
 unit bidiagonal factor U from the factorization A
 = U'*D*U.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 srot - Apply a Given's rotation constructed by SROTG.

SYNOPSIS

 SUBROUTINE SROT(N, X, INCX, Y, INCY, C, S)

 INTEGER N, INCX, INCY
 REAL C, S
 REAL X(*), Y(*)

 SUBROUTINE SROT_64(N, X, INCX, Y, INCY, C, S)

 INTEGER*8 N, INCX, INCY
 REAL C, S
 REAL X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE ROT([N], X, [INCX], Y, [INCY], C, S)

 INTEGER :: N, INCX, INCY
 REAL :: C, S
 REAL, DIMENSION(:) :: X, Y

 SUBROUTINE ROT_64([N], X, [INCX], Y, [INCY], C, S)

 INTEGER(8) :: N, INCX, INCY
 REAL :: C, S
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void srot(int n, float *x, int incx, float *y, int incy,
 float c, float s);

 void srot_64(long n, float *x, long incx, float *y, long
 incy, float c, float s);

PURPOSE

 srot Apply a Given's rotation constructed by SROTG.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 X (input/output)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 C (input) On entry, the C rotation value constructed by
 SROTG. Unchanged on exit.

 S (input) On entry, the S rotation value constructed by
 SROTG. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 srotg - Construct a Given's plane rotation

SYNOPSIS

 SUBROUTINE SROTG(A, B, C, S)

 REAL A, B, C, S

 SUBROUTINE SROTG_64(A, B, C, S)

 REAL A, B, C, S

 F95 INTERFACE
 SUBROUTINE ROTG(A, B, C, S)

 REAL :: A, B, C, S

 SUBROUTINE ROTG_64(A, B, C, S)

 REAL :: A, B, C, S

 C INTERFACE
 #include <sunperf.h>

 void srotg(float *a, float *b, float *c, float *s);

 void srotg_64(float *a, float *b, float *c, float *s);

PURPOSE

 srotg Construct a Given's plane rotation that will annihi-
 late an element of a vector.

ARGUMENTS

 A (input/output)
 On entry, A contains the entry in the first vector
 that corresponds to the element to be annihilated
 in the second vector. On exit, contains the
 nonzero element of the rotated vector.

 B (input/output)
 On entry, B contains the entry to be annihilated
 in the second vector. On exit, contains either S
 or 1/C depending on which of the input values of A
 and B is larger.

 C (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

 S (output)
 See the description of C.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 sroti - Apply an indexed Givens rotation.

SYNOPSIS

 SUBROUTINE SROTI(NZ, X, INDX, Y, C, S)

 INTEGER NZ
 INTEGER INDX(*)
 REAL C, S
 REAL X(*), Y(*)

 SUBROUTINE SROTI_64(NZ, X, INDX, Y, C, S)

 INTEGER*8 NZ
 INTEGER*8 INDX(*)
 REAL C, S
 REAL X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE ROTI([NZ], X, INDX, Y, C, S)

 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX
 REAL :: C, S
 REAL, DIMENSION(:) :: X, Y

 SUBROUTINE ROTI_64([NZ], X, INDX, Y, C, S)

 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX
 REAL :: C, S
 REAL, DIMENSION(:) :: X, Y

PURPOSE

 SROTI - Applies a Givens rotation to a sparse vector x
 stored in compressed form and another vector y in full
 storage form

 do i = 1, n
 temp = -s * x(i) + c * y(indx(i))
 x(i) = c * x(i) + s * y(indx(i))
 y(indx(i)) = temp
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.
 X (input)
 Vector containing the values of the compressed form.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input/output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

 C (input)
 Scalar defining the Givens rotation

 S (input)
 Scalar defining the Givens rotation

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 srotm - Apply a Gentleman's modified Given's rotation con-
 structed by SROTMG.

SYNOPSIS

 SUBROUTINE SROTM(N, X, INCX, Y, INCY, PARAM)

 INTEGER N, INCX, INCY
 REAL X(*), Y(*), PARAM(*)

 SUBROUTINE SROTM_64(N, X, INCX, Y, INCY, PARAM)

 INTEGER*8 N, INCX, INCY
 REAL X(*), Y(*), PARAM(*)

 F95 INTERFACE
 SUBROUTINE ROTM([N], X, [INCX], Y, [INCY], PARAM)

 INTEGER :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y, PARAM

 SUBROUTINE ROTM_64([N], X, [INCX], Y, [INCY], PARAM)

 INTEGER(8) :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y, PARAM

 C INTERFACE
 #include <sunperf.h>

 void srotm(int n, float *x, int incx, float *y, int incy,
 float *param);

 void srotm_64(long n, float *x, long incx, float *y, long
 incy, float *param);

PURPOSE

 srotm Apply a Given's rotation constructed by SROTMG.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, X is overwritten by the updated vector x.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 PARAM (input)
 On entry, the rotation values constructed by
 SROTMG. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 srotmg - Construct a Gentleman's modified Given's plane
 rotation

SYNOPSIS

 SUBROUTINE SROTMG(D1, D2, B1, B2, PARAM)

 REAL D1, D2, B1, B2
 REAL PARAM(*)

 SUBROUTINE SROTMG_64(D1, D2, B1, B2, PARAM)

 REAL D1, D2, B1, B2
 REAL PARAM(*)

 F95 INTERFACE
 SUBROUTINE ROTMG(D1, D2, B1, B2, PARAM)

 REAL :: D1, D2, B1, B2
 REAL, DIMENSION(:) :: PARAM

 SUBROUTINE ROTMG_64(D1, D2, B1, B2, PARAM)

 REAL :: D1, D2, B1, B2
 REAL, DIMENSION(:) :: PARAM

 C INTERFACE
 #include <sunperf.h>

 void srotmg(float d1, float d2, float b1, float b2, float
 *param);

 void srotmg_64(float d1, float d2, float b1, float b2, float
 *param);

PURPOSE

 srotmg Construct Gentleman's modified a Given's plane rota-
 tion that will annihilate an element of a vector.

ARGUMENTS

 D1 (input/output)
 On entry, the first diagonal entry in the H
 matrix. On exit, changed to reflect the effect of
 the transformation.
 D2 (input/output)
 On entry, the second diagonal entry in the H
 matrix. On exit, changed to reflect the effect of
 the transformation.

 B1 (input/output)
 On entry, the first element of the vector to which
 the H matrix is applied. On exit, changed to
 reflect the effect of the transformation.

 B2 (input)
 On entry, the second element of the vector to
 which the H matrix is applied. Unchanged on exit.

 PARAM (output)
 On exit, PARAM(1) describes the form of the rota-
 tion matrix H, and PARAM(2..5) contain the H
 matrix.

 If PARAM(1) = -2 then H = I and no elements of
 PARAM are modified.

 If PARAM(1) = -1 then PARAM(2) = h11, PARAM(3) =
 h21, PARAM(4) = h12, and PARAM(5) = h22.

 If PARAM(1) = 0 then h11 = h22 = 1, PARAM(3) =
 h21, and PARAM(4) = h12.

 If PARAM(1) = 1 then h12 = 1, h21 = -1, PARAM(2) =
 h11, and PARAM(5) = h22.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbev - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE SSBEV(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, NDIAG, LDA, LDZ, INFO
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSBEV_64(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, NDIAG, LDA, LDZ, INFO
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEV(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, NDIAG, LDA, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z

 SUBROUTINE SBEV_64(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, NDIAG, LDA, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z

 C INTERFACE
 #include <sunperf.h>

 void ssbev(char jobz, char uplo, int n, int ndiag, float *a,
 int lda, float *w, float *z, int ldz, int *info);

 void ssbev_64(char jobz, char uplo, long n, long ndiag,
 float *a, long lda, float *w, float *z, long ldz,

 long *info);

PURPOSE

 ssbev computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows
 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.
 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(MAX(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE SSBEVD(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL AB(LDAB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSBEVD_64(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL AB(LDAB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEVD(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ], [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, Z

 SUBROUTINE SBEVD_64(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ],
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KD, LDAB, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, Z

 C INTERFACE
 #include <sunperf.h>

 void ssbevd(char jobz, char uplo, int n, int kd, float *ab,
 int ldab, float *w, float *z, int ldz, int *info);
 void ssbevd_64(char jobz, char uplo, long n, long kd, float
 *ab, long ldab, float *w, float *z, long ldz, long
 *info);

PURPOSE

 ssbevd computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A. If eigenvectors
 are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, AB is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows KD
 and KD+1 of AB, and if UPLO = 'L', the diagonal
 and first subdiagonal of T are returned in the
 first two rows of AB.

 LDAB (input)
 The leading dimension of the array AB. LDAB >= KD
 + 1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (output)
 If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 2, LWORK must be at least 2*N. If JOBZ = 'V' and
 N > 2, LWORK must be at least (1 + 5*N + 2*N**2
).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.
 LIWORK (input)
 The dimension of the array LIWORK. If JOBZ = 'N'
 or N <= 1, LIWORK must be at least 1. If JOBZ =
 'V' and N > 2, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric band matrix A

SYNOPSIS

 SUBROUTINE SSBEVX(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(LDA,*), Q(LDQ,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSBEVX_64(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(LDA,*), Q(LDQ,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBEVX(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Q, Z

 SUBROUTINE SBEVX_64(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL

 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Q, Z
 C INTERFACE
 #include <sunperf.h>

 void ssbevx(char jobz, char range, char uplo, int n, int
 ndiag, float *a, int lda, float *q, int ldq, float
 vl, float vu, int il, int iu, float abtol, int
 *nfound, float *w, float *z, int ldz, int *ifail,
 int *info);

 void ssbevx_64(char jobz, char range, char uplo, long n,
 long ndiag, float *a, long lda, float *q, long
 ldq, float vl, float vu, long il, long iu, float
 abtol, long *nfound, float *w, float *z, long ldz,
 long *ifail, long *info);

PURPOSE

 ssbevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric band matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows

 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 Q (output)
 If JOBZ = 'V', the N-by-N orthogonal matrix used
 in the reduction to tridiagonal form. If JOBZ =
 'N', the array Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'V', then LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.
 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(7*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbgst - reduce a real symmetric-definite banded generalized
 eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y,

SYNOPSIS

 SUBROUTINE SSBGST(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
 WORK, INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)

 SUBROUTINE SSBGST_64(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
 LDX, WORK, INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGST(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], X,
 [LDX], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: AB, BB, X

 SUBROUTINE SBGST_64(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 X, [LDX], [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: AB, BB, X

 C INTERFACE
 #include <sunperf.h>

 void ssbgst(char vect, char uplo, int n, int ka, int kb,
 float *ab, int ldab, float *bb, int ldbb, float
 *x, int ldx, int *info);

 void ssbgst_64(char vect, char uplo, long n, long ka, long
 kb, float *ab, long ldab, float *bb, long ldbb,
 float *x, long ldx, long *info);

PURPOSE

 ssbgst reduces a real symmetric-definite banded generalized
 eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y, such that C has the same bandwidth as A.

 B must have been previously factorized as S**T*S by SPBSTF,
 using a split Cholesky factorization. A is overwritten by C
 = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal
 matrix chosen to preserve the bandwidth of A.

ARGUMENTS

 VECT (input)
 = 'N': do not form the transformation matrix X;
 = 'V': form X.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the transformed matrix X**T*A*X, stored
 in the same format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input)
 The banded factor S from the split Cholesky fac-
 torization of B, as returned by SPBSTF, stored in
 the first KB+1 rows of the array.

 LDBB (input)

 The leading dimension of the array BB. LDBB >=
 KB+1.

 X (output)
 If VECT = 'V', the n-by-n matrix X. If VECT =
 'N', the array X is not referenced.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbgv - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE SSBGV(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSBGV_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGV(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Z

 SUBROUTINE SBGV_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Z

 C INTERFACE
 #include <sunperf.h>

 void ssbgv(char jobz, char uplo, int n, int ka, int kb,
 float *ab, int ldab, float *bb, int ldbb, float
 *w, float *z, int ldz, int *info);

 void ssbgv_64(char jobz, char uplo, long n, long ka, long
 kb, float *ab, long ldab, float *bb, long ldbb,
 float *w, float *z, long ldz, long *info);

PURPOSE

 ssbgv computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are
 assumed to be symmetric and banded, and B is also positive
 definite.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.
 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**T*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then SPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssbgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE SSBGVD(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSBGVD_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL AB(LDAB,*), BB(LDBB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGVD(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Z

 SUBROUTINE SBGVD_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Z

 C INTERFACE
 #include <sunperf.h>

 void ssbgvd(char jobz, char uplo, int n, int ka, int kb,
 float *ab, int ldab, float *bb, int ldbb, float
 *w, float *z, int ldz, int *info);

 void ssbgvd_64(char jobz, char uplo, long n, long ka, long
 kb, float *ab, long ldab, float *bb, long ldbb,
 float *w, float *z, long ldz, long *info);

PURPOSE

 ssbgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B
 are assumed to be symmetric and banded, and B is also posi-
 tive definite. If eigenvectors are desired, it uses a
 divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so Z**T*B*Z = I.
 If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 3*N. If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if LIWORK > 0, IWORK(1) returns the
 optimal LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message

 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then SPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssbgvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE SSBGVX(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB,
 Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), W(*), Z(LDZ,*),
 WORK(*)

 SUBROUTINE SSBGVX_64(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), W(*), Z(LDZ,*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE SBGVX(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Q, Z

 SUBROUTINE SBGVX_64(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,

 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: AB, BB, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void ssbgvx(char jobz, char range, char uplo, int n, int ka,
 int kb, float *ab, int ldab, float *bb, int ldbb,
 float *q, int ldq, float vl, float vu, int il, int
 iu, float abstol, int *m, float *w, float *z, int
 ldz, int *ifail, int *info);

 void ssbgvx_64(char jobz, char range, char uplo, long n,
 long ka, long kb, float *ab, long ldab, float *bb,
 long ldbb, float *q, long ldq, float vl, float vu,
 long il, long iu, float abstol, long *m, float *w,
 float *z, long ldz, long *ifail, long *info);

PURPOSE

 ssbgvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite banded
 eigenproblem, of the form A*x=(lambda)*B*x. Here A and B
 are assumed to be symmetric and banded, and B is also posi-
 tive definite. Eigenvalues and eigenvectors can be selected
 by specifying either all eigenvalues, a range of values or a
 range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if

 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**T*S, as returned by SPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 Q (output)
 If JOBZ = 'V', the n-by-n matrix used in the
 reduction of A*x = (lambda)*B*x to standard form,
 i.e. C*x = (lambda)*x, and consequently C to tri-
 diagonal form. If JOBZ = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)

 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so Z**T*B*Z = I.
 If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(7*N)

 IWORK (workspace/output)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvalues that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0 : successful exit
 < 0 : if INFO = -i, the i-th argument had an ille-
 gal value
 <= N: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in IFAIL. > N
 : SPBSTF returned an error code; i.e., if INFO = N
 + i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssbmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE SSBMV(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 INTEGER N, NDIAG, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 SUBROUTINE SSBMV_64(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NDIAG, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SBMV(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NDIAG, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SBMV_64(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NDIAG, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssbmv(char uplo, int n, int ndiag, float alpha, float
 *a, int lda, float *x, int incx, float beta, float
 *y, int incy);
 void ssbmv_64(char uplo, long n, long ndiag, float alpha,
 float *a, long lda, float *x, long incx, float
 beta, float *y, long incy);

PURPOSE

 ssbmv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric band matrix, with
 ndiag super-diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the band matrix A is
 being supplied as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A
 is being supplied.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry, NDIAG specifies the number of super-
 diagonals of the matrix A. NDIAG >= 0. Unchanged
 on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the symmetric
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row (ndiag + 1) of
 the array, the first super-diagonal starting at
 position 2 in row ndiag, and so on. The top left
 ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer the upper triangular part of a symmetric
 band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)

 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the symmetric
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row 1 of the array,
 the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right ndiag by ndiag
 triangle of the array A is not referenced. The
 following program segment will transfer the lower
 triangular part of a symmetric band matrix from
 conventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssbtrd - reduce a real symmetric band matrix A to symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion

SYNOPSIS

 SUBROUTINE SSBTRD(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER N, KD, LDAB, LDQ, INFO
 REAL AB(LDAB,*), D(*), E(*), Q(LDQ,*), WORK(*)

 SUBROUTINE SSBTRD_64(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 INTEGER*8 N, KD, LDAB, LDQ, INFO
 REAL AB(LDAB,*), D(*), E(*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SBTRD(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER :: N, KD, LDAB, LDQ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: AB, Q

 SUBROUTINE SBTRD_64(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 INTEGER(8) :: N, KD, LDAB, LDQ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: AB, Q

 C INTERFACE
 #include <sunperf.h>

 void ssbtrd(char vect, char uplo, int n, int kd, float *ab,

 int ldab, float *d, float *e, float *q, int ldq,
 int *info);

 void ssbtrd_64(char vect, char uplo, long n, long kd, float
 *ab, long ldab, float *d, float *e, float *q, long
 ldq, long *info);

PURPOSE

 ssbtrd reduces a real symmetric band matrix A to symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion: Q**T * A * Q = T.

ARGUMENTS

 VECT (input)
 = 'N': do not form Q;
 = 'V': form Q;
 = 'U': update a matrix X, by forming X*Q.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the sym-
 metric band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd). On exit, the diagonal ele-
 ments of AB are overwritten by the diagonal ele-
 ments of the tridiagonal matrix T; if KD > 0, the
 elements on the first superdiagonal (if UPLO =
 'U') or the first subdiagonal (if UPLO = 'L') are
 overwritten by the off-diagonal elements of T; the
 rest of AB is overwritten by values generated dur-
 ing the reduction.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 D (output)
 The diagonal elements of the tridiagonal matrix T.
 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) =
 T(i+1,i) if UPLO = 'L'.

 Q (input/output)
 On entry, if VECT = 'U', then Q must contain an

 N-by-N matrix X; if VECT = 'N' or 'V', then Q need
 not be set.

 On exit: if VECT = 'V', Q contains the N-by-N
 orthogonal matrix Q; if VECT = 'U', Q contains the
 product X*Q; if VECT = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1,
 and LDQ >= N if VECT = 'V' or 'U'.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Modified by Linda Kaufman, Bell Labs.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE SSCAL(N, ALPHA, Y, INCY)

 INTEGER N, INCY
 REAL ALPHA
 REAL Y(*)

 SUBROUTINE SSCAL_64(N, ALPHA, Y, INCY)

 INTEGER*8 N, INCY
 REAL ALPHA
 REAL Y(*)

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 INTEGER :: N, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: Y

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 INTEGER(8) :: N, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: Y

 C INTERFACE
 #include <sunperf.h>

 void sscal(int n, float alpha, float *y, int incy);

 void sscal_64(long n, float alpha, float *y, long incy);

PURPOSE

 sscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the
 subroutine to have any visible effect. Unchanged
 on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 ssctr - Scatters elements from x into y.

SYNOPSIS

 SUBROUTINE SSCTR(NZ, X, INDX, Y)

 REAL X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE SSCTR_64(NZ, X, INDX, Y)

 REAL X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE SCTR([NZ], X, INDX, Y)

 REAL, DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE SCTR_64([NZ], X, INDX, Y)

 REAL, DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 SSCTR - Scatters the components of a sparse vector x stored
 in compressed form into specified components of a vector y
 in full storage form.

 do i = 1, n
 y(indx(i)) = x(i)
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector containing the values to be scattered from
 compressed form into full storage form. Unchanged
 on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector whose elements specified by indx have been
 set to the corresponding entries of x. Only the
 elements corresponding to the indices in indx have
 been modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sskymm - Skyline format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE SSKYMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SSKYMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 REAL ALPHA, BETA
 REAL VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(K+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(M+1)-PNTR(1) (lower triangular)
 PNTR() size = (K+1) (upper triangular)
 PNTR() size = (M+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in skyline format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general (NOT SUPPORTED)
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).
 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 The SKY data structure is not supported for a general matrix
 structure (DESCRA(1)=0).

 Also not supported:
 1. lower triangular matrix A of size m by n where m > n
 2. upper triangular matrix A of size m by n where m < n

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 sskysm - Skyline format triangular solve

SYNOPSIS

 SUBROUTINE SSKYSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SSKYSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 REAL ALPHA, BETA
 REAL DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(M+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(K+1)-PNTR(1) (lower triangular)
 PNTR() size = (M+1) (upper triangular)
 PNTR() size = (K+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in skyline format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A')).
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row or column scaling (see section
 NOTES for further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. Also not supported:
 a. lower triangular matrix A of size m by n where m > n
 b. upper triangular matrix A of size m by n where m < n

 2. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 3. If UNITD =4, the routine scales the rows of A if
 DESCRA(2)=1 and the columns of A if DESCRA(2)=2 such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in this particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows (columns) have been scaled. UNITD=2 if DESCRA(2)=1 and
 UNITD=3 if DESCRA(2)=2 should be used for the next calls to
 the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 (column) number which 2-norm is exactly zero.

 4. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the SKY representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the SKY representation.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF

SYNOPSIS

 SUBROUTINE SSPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, IWORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL A(*), WORK(*)

 SUBROUTINE SSPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, IWORK2,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [IWORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: A, WORK

 SUBROUTINE SPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>
 void sspcon(char uplo, int n, float *a, int *ipivot, float
 anorm, float *rcond, int *info);

 void sspcon_64(char uplo, long n, float *a, long *ipivot,
 float anorm, float *rcond, long *info);

PURPOSE

 sspcon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspev - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE SSPEV(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDZ, INFO
 REAL A(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPEV_64(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDZ, INFO
 REAL A(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEV(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: A, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPEV_64(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: A, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sspev(char jobz, char uplo, int n, float *a, float *w,
 float *z, int ldz, int *info);

 void sspev_64(char jobz, char uplo, long n, float *a, float
 *w, float *z, long ldz, long *info);

PURPOSE

 sspev computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE SSPEVD(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL AP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPEVD_64(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL AP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEVD(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: AP, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPEVD_64(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: AP, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sspevd(char jobz, char uplo, int n, float *ap, float
 *w, float *z, int ldz, int *info);
 void sspevd_64(char jobz, char uplo, long n, float *ap,
 float *w, float *z, long ldz, long *info);

PURPOSE

 sspevd computes all the eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage. If
 eigenvectors are desired, it uses a divide and conquer algo-
 rithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, AP is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least 2*N. If JOBZ = 'V' and
 N > 1, LWORK must be at least 1 + 6*N + N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK must be at least 1. If JOBZ =
 'V' and N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric matrix A in packed storage

SYNOPSIS

 SUBROUTINE SSPEVX(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPEVX_64(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPEVX(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: A, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPEVX_64(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: A, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void sspevx(char jobz, char range, char uplo, int n, float
 *a, float vl, float vu, int il, int iu, float
 abtol, int *nfound, float *w, float *z, int ldz,
 int *ifail, int *info);

 void sspevx_64(char jobz, char range, char uplo, long n,
 float *a, float vl, float vu, long il, long iu,
 float abtol, long *nfound, float *w, float *z,
 long ldz, long *ifail, long *info);

PURPOSE

 sspevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A in packed storage.
 Eigenvalues/vectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.
 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 If INFO = 0, the selected eigenvalues in ascending
 order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)

 dimension(8*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspgst - reduce a real symmetric-definite generalized eigen-
 problem to standard form, using packed storage

SYNOPSIS

 SUBROUTINE SSPGST(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, INFO
 REAL AP(*), BP(*)

 SUBROUTINE SSPGST_64(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, INFO
 REAL AP(*), BP(*)

 F95 INTERFACE
 SUBROUTINE SPGST(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, INFO
 REAL, DIMENSION(:) :: AP, BP

 SUBROUTINE SPGST_64(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, INFO
 REAL, DIMENSION(:) :: AP, BP

 C INTERFACE
 #include <sunperf.h>

 void sspgst(int itype, char uplo, int n, float *ap, float
 *bp, int *info);

 void sspgst_64(long itype, char uplo, long n, float *ap,
 float *bp, long *info);

PURPOSE

 sspgst reduces a real symmetric-definite generalized eigen-
 problem to standard form, using packed storage.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**T or
 L**T*A*L.

 B must have been previously factorized as U**T*U or L*L**T
 by SPPTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T);
 = 2 or 3: compute U*A*U**T or L**T*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**T*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**T.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 BP (input)
 The triangular factor from the Cholesky factoriza-
 tion of B, stored in the same format as A, as
 returned by SPPTRF.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspgv - compute all the eigenvalues and, optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSPGV(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDZ, INFO
 REAL A(*), B(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPGV_64(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDZ, INFO
 REAL A(*), B(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGV(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDZ, INFO
 REAL, DIMENSION(:) :: A, B, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPGV_64(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDZ, INFO
 REAL, DIMENSION(:) :: A, B, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sspgv(int itype, char jobz, char uplo, int n, float *a,
 float *b, float *w, float *z, int ldz, int *info);

 void sspgv_64(long itype, char jobz, char uplo, long n,
 float *a, float *b, float *w, float *z, long ldz,
 long *info);

PURPOSE

 sspgv computes all the eigenvalues and, optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed format, and B is also positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 (N*(N+1)/2) On entry, the upper or lower triangle
 of the symmetric matrix A, packed columnwise in a
 linear array. The j-th column of A is stored in
 the array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of A are destroyed.

 B (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array B as follows: if UPLO = 'U', B(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', B(i +
 (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.
 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEV returned an error code:
 <= N: if INFO = i, SSPEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero. > N: if INFO
 = n + i, for 1 <= i <= n, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sspgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSPGVD(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPGVD_64(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGVD(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: AP, BP, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPGVD_64(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ],
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: AP, BP, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sspgvd(int itype, char jobz, char uplo, int n, float
 *ap, float *bp, float *w, float *z, int ldz, int
 *info);

 void sspgvd_64(long itype, char jobz, char uplo, long n,
 float *ap, float *bp, float *w, float *z, long
 ldz, long *info);

PURPOSE

 sspgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed format, and B is also positive definite.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the sym-

 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 2*N. If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEVD returned an error code:
 <= N: if INFO = i, SSPEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no

 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sspgvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSPGVX(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSPGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL AP(*), BP(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPGVX(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, [LDZ], [WORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: AP, BP, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE SPGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU,
 IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: ITYPE, N, IL, IU, M, LDZ, INFO

 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: AP, BP, W, WORK
 REAL, DIMENSION(:,:) :: Z
 C INTERFACE
 #include <sunperf.h>

 void sspgvx(int itype, char jobz, char range, char uplo, int
 n, float *ap, float *bp, float vl, float vu, int
 il, int iu, float abstol, int *m, float *w, float
 *z, int ldz, int *ifail, int *info);

 void sspgvx_64(long itype, char jobz, char range, char uplo,
 long n, float *ap, float *bp, float vl, float vu,
 long il, long iu, float abstol, long *m, float *w,
 float *z, long ldz, long *ifail, long *info);

PURPOSE

 sspgvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite eigenprob-
 lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
 stored in packed storage, and B is also positive definite.
 Eigenvalues and eigenvectors can be selected by specifying
 either a range of values or a range of indices for the
 desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A and B are stored;
 = 'L': Lower triangle of A and B are stored.

 N (input) The order of the matrix pencil (A,B). N >= 0.
 AP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**T*U or B = L*L**T,
 in the same storage format as B.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to
 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-

 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(8*N)
 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPPTRF or SSPEVX returned an error code:
 <= N: if INFO = i, SSPEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE SSPMV(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY
 REAL ALPHA, BETA
 REAL A(*), X(*), Y(*)

 SUBROUTINE SSPMV_64(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY
 REAL ALPHA, BETA
 REAL A(*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SPMV(UPLO, N, ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: A, X, Y

 SUBROUTINE SPMV_64(UPLO, N, ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: A, X, Y

 C INTERFACE
 #include <sunperf.h>

 void sspmv(char uplo, int n, float alpha, float *a, float
 *x, int incx, float beta, float *y, int incy);

 void sspmv_64(char uplo, long n, float alpha, float *a,
 float *x, long incx, float beta, float *y, long
 incy);

PURPOSE

 sspmv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric matrix, supplied
 in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array A
 must contain the lower triangular part of the sym-
 metric matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.
 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the

 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspr - perform the symmetric rank 1 operation A :=
 alpha*x*x' + A

SYNOPSIS

 SUBROUTINE SSPR(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 INTEGER N, INCX
 REAL ALPHA
 REAL X(*), A(*)

 SUBROUTINE SSPR_64(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX
 REAL ALPHA
 REAL X(*), A(*)

 F95 INTERFACE
 SUBROUTINE SPR(UPLO, N, ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, A

 SUBROUTINE SPR_64(UPLO, N, ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, A

 C INTERFACE
 #include <sunperf.h>

 void sspr(char uplo, int n, float alpha, float *x, int incx,
 float *a);

 void sspr_64(char uplo, long n, float alpha, float *x, long
 incx, float *a);

PURPOSE

 sspr performs the symmetric rank 1 operation A := alpha*x*x'
 + A, where alpha is a real scalar, x is an n element vector
 and A is an n by n symmetric matrix, supplied in packed
 form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain
 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sspr2 - perform the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A

SYNOPSIS

 SUBROUTINE SSPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY
 REAL ALPHA
 REAL X(*), Y(*), A(*)

 SUBROUTINE SSPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY
 REAL ALPHA
 REAL X(*), Y(*), A(*)

 F95 INTERFACE
 SUBROUTINE SPR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y, A

 SUBROUTINE SPR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y, A

 C INTERFACE
 #include <sunperf.h>

 void sspr2(char uplo, int n, float alpha, float *x, int
 incx, float *y, int incy, float *a);

 void sspr2_64(char uplo, long n, float alpha, float *x, long
 incx, float *y, long incy, float *a);

PURPOSE

 sspr2 performs the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and
 y are n element vectors and A is an n by n symmetric matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.
 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the symmetric matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain

 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE SSPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE SSPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE SPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE SPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>
 void ssprfs(char uplo, int n, int nrhs, float *a, float *af,
 int *ipivot, float *b, int ldb, float *x, int ldx,
 float *ferr, float *berr, int *info);

 void ssprfs_64(char uplo, long n, long nrhs, float *a, float
 *af, long *ipivot, float *b, long ldb, float *x,
 long ldx, float *ferr, float *berr, long *info);

PURPOSE

 ssprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.
 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SSPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sspsv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SSPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(*), B(LDB,*)

 SUBROUTINE SSPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SPSV(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE SPSV_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sspsv(char uplo, int n, int nrhs, float *a, int
 *ipivot, float *b, int ldb, int *info);

 void sspsv_64(char uplo, long n, long nrhs, float *a, long
 *ipivot, float *b, long ldb, long *info);

PURPOSE

 sspsv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is symmetric and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by SSPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by SSPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sspsvx - use the diagonal pivoting factorization A =
 U*D*U**T or A = L*D*L**T to compute the solution to a real
 system of linear equations A * X = B, where A is an N-by-N
 symmetric matrix stored in packed format and X and B are N-
 by-NRHS matrices

SYNOPSIS

 SUBROUTINE SSPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 SUBROUTINE SSPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(*), AF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*),
 WORK(*)

 F95 INTERFACE
 SUBROUTINE SPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE SPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, AF, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X
 C INTERFACE
 #include <sunperf.h>

 void sspsvx(char fact, char uplo, int n, int nrhs, float *a,
 float *af, int *ipivot, float *b, int ldb, float
 *x, int ldx, float *rcond, float *ferr, float
 *berr, int *info);

 void sspsvx_64(char fact, char uplo, long n, long nrhs,
 float *a, float *af, long *ipivot, float *b, long
 ldb, float *x, long ldx, float *rcond, float
 *ferr, float *berr, long *info);

PURPOSE

 sspsvx uses the diagonal pivoting factorization A = U*D*U**T
 or A = L*D*L**T to compute the solution to a real system of
 linear equations A * X = B, where A is an N-by-N symmetric
 matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is symmetric and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.
 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates

 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 (N*(N+1)/2) If FACT = 'F', then AF is an input
 argument and on entry contains the block diagonal
 matrix D and the multipliers used to obtain the
 factor U or L from the factorization A = U*D*U**T
 or A = L*D*L**T as computed by SSPTRF, stored as a
 packed triangular matrix in the same storage for-
 mat as A.

 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by SSPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 SSPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges

 and the block structure of D, as determined by
 SSPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.
 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssptrd - reduce a real symmetric matrix A stored in packed
 form to symmetric tridiagonal form T by an orthogonal simi-
 larity transformation

SYNOPSIS

 SUBROUTINE SSPTRD(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 REAL AP(*), D(*), E(*), TAU(*)

 SUBROUTINE SSPTRD_64(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 REAL AP(*), D(*), E(*), TAU(*)

 F95 INTERFACE
 SUBROUTINE SPTRD(UPLO, N, AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: AP, D, E, TAU

 SUBROUTINE SPTRD_64(UPLO, N, AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: AP, D, E, TAU

 C INTERFACE
 #include <sunperf.h>

 void ssptrd(char uplo, int n, float *ap, float *d, float *e,
 float *tau, int *info);

 void ssptrd_64(char uplo, long n, float *ap, float *d, float
 *e, float *tau, long *info);

PURPOSE

 ssptrd reduces a real symmetric matrix A stored in packed
 form to symmetric tridiagonal form T by an orthogonal simi-
 larity transformation: Q**T * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit,
 if UPLO = 'U', the diagonal and first superdiago-
 nal of A are overwritten by the corresponding ele-
 ments of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
 overwriting A(1:i-1,i+1), and tau is stored in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
 overwriting A(i+2:n,i), and tau is stored in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssptrf - compute the factorization of a real symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method

SYNOPSIS

 SUBROUTINE SSPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL A(*)

 SUBROUTINE SSPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(*)

 F95 INTERFACE
 SUBROUTINE SPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A

 SUBROUTINE SPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssptrf(char uplo, int n, float *a, int *ipivot, int
 *info);

 void ssptrf_64(char uplo, long n, float *a, long *ipivot,
 long *info);

PURPOSE

 ssptrf computes the factorization of a real symmetric matrix
 A stored in packed format using the Bunch-Kaufman diagonal
 pivoting method:

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssptri - compute the inverse of a real symmetric indefinite
 matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by SSPTRF

SYNOPSIS

 SUBROUTINE SSPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 REAL A(*), WORK(*)

 SUBROUTINE SSPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SPTRI(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A, WORK

 SUBROUTINE SPTRI_64(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A, WORK

 C INTERFACE
 #include <sunperf.h>

 void ssptri(char uplo, int n, float *a, int *ipivot, int
 *info);

 void ssptri_64(char uplo, long n, float *a, long *ipivot,
 long *info);

PURPOSE

 ssptri computes the inverse of a real symmetric indefinite
 matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by SSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by SSPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssptrs - solve a system of linear equations A*X = B with a
 real symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF

SYNOPSIS

 SUBROUTINE SSPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(*), B(LDB,*)

 SUBROUTINE SSPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SPTRS(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE SPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void ssptrs(char uplo, int n, int nrhs, float *a, int
 *ipivot, float *b, int ldb, int *info);

 void ssptrs_64(char uplo, long n, long nrhs, float *a, long
 *ipivot, float *b, long ldb, long *info);

PURPOSE

 ssptrs solves a system of linear equations A*X = B with a
 real symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 SSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstebz - compute the eigenvalues of a symmetric tridiagonal
 matrix T

SYNOPSIS

 SUBROUTINE SSTEBZ(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)

 CHARACTER * 1 RANGE, ORDER
 INTEGER N, IL, IU, M, NSPLIT, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), WORK(*)

 SUBROUTINE SSTEBZ_64(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
 M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)

 CHARACTER * 1 RANGE, ORDER
 INTEGER*8 N, IL, IU, M, NSPLIT, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEBZ(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: RANGE, ORDER
 INTEGER :: N, IL, IU, M, NSPLIT, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEBZ_64(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
 NSPLIT, W, IBLOCK, ISPLIT, [WORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: RANGE, ORDER
 INTEGER(8) :: N, IL, IU, M, NSPLIT, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK

 C INTERFACE

 #include <sunperf.h>

 void sstebz(char range, char order, int n, float vl, float
 vu, int il, int iu, float abstol, float *d, float
 *e, int *m, int *nsplit, float *w, int *iblock,
 int *isplit, int *info);

 void sstebz_64(char range, char order, long n, float vl,
 float vu, long il, long iu, float abstol, float
 *d, float *e, long *m, long *nsplit, float *w,
 long *iblock, long *isplit, long *info);

PURPOSE

 sstebz computes the eigenvalues of a symmetric tridiagonal
 matrix T. The user may ask for all eigenvalues, all eigen-
 values in the half-open interval (VL, VU], or the IL-th
 through IU-th eigenvalues.

 To avoid overflow, the matrix must be scaled so that its
 largest element is no greater than overflow**(1/2) *
 underflow**(1/4) in absolute value, and for greatest
 accuracy, it should not be much smaller than that.

 See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiago-
 nal Matrix", Report CS41, Computer Science Dept., Stanford
 University, July 21, 1966.

ARGUMENTS

 RANGE (input)
 = 'A': ("All") all eigenvalues will be found.
 = 'V': ("Value") all eigenvalues in the half-open
 interval (VL, VU] will be found. = 'I': ("Index")
 the IL-th through IU-th eigenvalues (of the entire
 matrix) will be found.

 ORDER (input)
 = 'B': ("By Block") the eigenvalues will be
 grouped by split-off block (see IBLOCK, ISPLIT)
 and ordered from smallest to largest within the
 block. = 'E': ("Entire matrix") the eigenvalues
 for the entire matrix will be ordered from smal-
 lest to largest.

 N (input) The order of the tridiagonal matrix T. N >= 0.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. Eigen-
 values less than or equal to VL, or greater than
 VU, will not be returned. VL < VU. Not
 referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be

 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute tolerance for the eigenvalues. An
 eigenvalue (or cluster) is considered to be
 located if it has been determined to lie in an
 interval whose width is ABSTOL or less. If ABSTOL
 is less than or equal to zero, then ULP*|T| will
 be used, where |T| means the 1-norm of T.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) off-diagonal elements of the tridiagonal
 matrix T.

 M (output)
 The actual number of eigenvalues found. 0 <= M <=
 N. (See also the description of INFO=2,3.)

 NSPLIT (output)
 The number of diagonal blocks in the matrix T. 1
 <= NSPLIT <= N.

 W (output)
 On exit, the first M elements of W will contain
 the eigenvalues. (SSTEBZ may use the remaining
 N-M elements as workspace.)

 IBLOCK (output)
 At each row/column j where E(j) is zero or small,
 the matrix T is considered to split into a block
 diagonal matrix. On exit, if INFO = 0, IBLOCK(i)
 specifies to which block (from 1 to the number of
 blocks) the eigenvalue W(i) belongs. (SSTEBZ may
 use the remaining N-M elements as workspace.)

 ISPLIT (output)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2), etc.,
 and the NSPLIT-th consists of rows/columns
 ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
 (Only the first NSPLIT elements will actually be
 used, but since the user cannot know a priori what
 value NSPLIT will have, N words must be reserved
 for ISPLIT.)

 WORK (workspace)
 dimension(4*N)

 IWORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: some or all of the eigenvalues failed to
 converge or
 were not computed:
 =1 or 3: Bisection failed to converge for some
 eigenvalues; these eigenvalues are flagged by a
 negative block number. The effect is that the
 eigenvalues may not be as accurate as the absolute
 and relative tolerances. This is generally caused
 by unexpectedly inaccurate arithmetic. =2 or 3:
 RANGE='I' only: Not all of the eigenvalues IL:IU
 were found.
 Effect: M < IU+1-IL
 Cause: non-monotonic arithmetic, causing the
 Sturm sequence to be non-monotonic. Cure:
 recalculate, using RANGE='A', and pick
 out eigenvalues IL:IU. = 4: RANGE='I', and the
 Gershgorin interval initially used was too small.
 No eigenvalues were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sstedc - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method

SYNOPSIS

 SUBROUTINE SSTEDC(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
 INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEDC_64(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEDC(COMPZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEDC_64(COMPZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sstedc(char compz, int n, float *d, float *e, float *z,
 int ldz, int *info);
 void sstedc_64(char compz, long n, float *d, float *e, float
 *z, long ldz, long *info);

PURPOSE

 sstedc computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method. The eigenvectors of a full or band real
 symmetric matrix can also be found if SSYTRD or SSPTRD or
 SSBTRD has been used to reduce this matrix to tridiagonal
 form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLAED3 for details.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'I': Compute eigenvectors of tridiagonal matrix
 also.
 = 'V': Compute eigenvectors of original dense
 symmetric matrix also. On entry, Z contains the
 orthogonal matrix used to reduce the original
 matrix to tridiagonal form.

 N (input) The dimension of the symmetric tridiagonal matrix.
 N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the subdiagonal elements of the tridiag-
 onal matrix. On exit, E has been destroyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 orthogonal matrix used in the reduction to tridi-
 agonal form. On exit, if INFO = 0, then if COMPZ
 = 'V', Z contains the orthonormal eigenvectors of
 the original symmetric matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If eigenvectors are desired, then LDZ >= max(1,N).

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If COMPZ = 'N'
 or N <= 1 then LWORK must be at least 1. If COMPZ
 = 'V' and N > 1 then LWORK must be at least (1 +
 3*N + 2*N*lg N + 3*N**2), where lg(N) = smal-
 lest integer k such that 2**k >= N. If COMPZ =
 'I' and N > 1 then LWORK must be at least (1 +
 4*N + N**2).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If COMPZ = 'N'
 or N <= 1 then LIWORK must be at least 1. If
 COMPZ = 'V' and N > 1 then LIWORK must be at least
 (6 + 6*N + 5*N*lg N). If COMPZ = 'I' and N > 1
 then LIWORK must be at least (3 + 5*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an eigen-
 value while working on the submatrix lying in rows
 and columns INFO/(N+1) through mod(INFO,N+1).

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA
 Modified by Francoise Tisseur, University of Tennessee.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that
 L_i D_i L_i^T is a relatively robust representation

SYNOPSIS

 SUBROUTINE SSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEGR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEGR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL

 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void sstegr(char jobz, char range, int n, float *d, float
 *e, float vl, float vu, int il, int iu, float
 abstol, int *m, float *w, float *z, int ldz, int
 *isuppz, int *info);

 void sstegr_64(char jobz, char range, long n, float *d,
 float *e, float vl, float vu, long il, long iu,
 float abstol, long *m, float *w, float *z, long
 ldz, long *isuppz, long *info);

PURPOSE

 sstegr b) Compute the eigenvalues, lambda_j, of L_i D_i
 L_i^T to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB/CSD-97-971, UC Berkeley, May 1997.

 Note 1 : Currently SSTEGR is only set up to find ALL the n
 eigenvalues and eigenvectors of T in O(n^2) time
 Note 2 : Currently the routine SSTEIN is called when an
 appropriate sigma_i cannot be chosen in step (c) above.
 SSTEIN invokes modified Gram-Schmidt when eigenvalues are
 close.
 Note 3 : SSTEGR works only on machines which follow ieee-754
 floating-point standard in their handling of infinities and
 NaNs. Normal execution of SSTEGR may create NaNs and infin-
 ities and hence may abort due to a floating point exception
 in environments which do not conform to the ieee standard.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix T. On exit, D is overwritten.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix T in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E is overwritten.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the
 eigenvalues/eigenvectors. IF JOBZ = 'V', the
 eigenvalues and eigenvectors output have residual
 norms bounded by ABSTOL, and the dot products
 between different eigenvectors are bounded by
 ABSTOL. If ABSTOL is less than N*EPS*|T|, then
 N*EPS*|T| will be used in its place, where EPS is
 the machine precision and |T| is the 1-norm of the
 tridiagonal matrix. The eigenvalues are computed
 to an accuracy of EPS*|T| irrespective of ABSTOL.
 If high relative accuracy is important, set ABSTOL
 to DLAMCH('Safe minimum'). See Barlow and Dem-
 mel "Computing Accurate Eigensystems of Scaled
 Diagonally Dominant Matrices", LAPACK Working Note
 #7 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix T corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must

 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,18*N)
 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N)

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = 1, internal error in SLARRE, if
 INFO = 2, internal error in SLARRV.

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstein - compute the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration

SYNOPSIS

 SUBROUTINE SSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 INTEGER N, M, LDZ, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
 IWORK, IFAIL, INFO)

 INTEGER*8 N, M, LDZ, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 INTEGER :: N, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 INTEGER(8) :: N, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sstein(int n, float *d, float *e, int m, float *w, int
 *iblock, int *isplit, float *z, int ldz, int
 *ifail, int *info);

 void sstein_64(long n, float *d, float *e, long m, float *w,
 long *iblock, long *isplit, float *z, long ldz,
 long *ifail, long *info);

PURPOSE

 sstein computes the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration.

 The maximum number of iterations allowed for each eigenvec-
 tor is specified by an internal parameter MAXITS (currently
 set to 5).

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) subdiagonal elements of the tridiagonal
 matrix T, in elements 1 to N-1. E(N) need not be
 set.

 M (input) The number of eigenvectors to be found. 0 <= M <=
 N.

 W (input) The first M elements of W contain the eigenvalues
 for which eigenvectors are to be computed. The
 eigenvalues should be grouped by split-off block
 and ordered from smallest to largest within the
 block. (The output array W from SSTEBZ with
 ORDER = 'B' is expected here.)

 IBLOCK (input)
 The submatrix indices associated with the
 corresponding eigenvalues in W; IBLOCK(i)=1 if
 eigenvalue W(i) belongs to the first submatrix
 from the top, =2 if W(i) belongs to the second
 submatrix, etc. (The output array IBLOCK from
 SSTEBZ is expected here.)

 ISPLIT (input)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2),
 etc. (The output array ISPLIT from SSTEBZ is
 expected here.)
 Z (output)
 The computed eigenvectors. The eigenvector asso-
 ciated with the eigenvalue W(i) is stored in the
 i-th column of Z. Any vector which fails to con-
 verge is set to its current iterate after MAXITS
 iterations.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=

 max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK (workspace)
 dimension(N)

 IFAIL (output)
 On normal exit, all elements of IFAIL are zero.
 If one or more eigenvectors fail to converge after
 MAXITS iterations, then their indices are stored
 in array IFAIL.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge in MAXITS iterations. Their indices are
 stored in array IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method

SYNOPSIS

 SUBROUTINE SSTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER N, LDZ, INFO
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 INTEGER*8 N, LDZ, INFO
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEQR(COMPZ, N, D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEQR_64(COMPZ, N, D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void ssteqr(char compz, int n, float *d, float *e, float *z,
 int ldz, int *info);

 void ssteqr_64(char compz, long n, float *d, float *e, float
 *z, long ldz, long *info);

PURPOSE

 ssteqr computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method. The eigenvectors of a full or band symmetric
 matrix can also be found if SSYTRD or SSPTRD or SSBTRD has
 been used to reduce this matrix to tridiagonal form.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvalues and eigenvectors of
 the original symmetric matrix. On entry, Z must
 contain the orthogonal matrix used to reduce the
 original matrix to tridiagonal form. = 'I': Com-
 pute eigenvalues and eigenvectors of the tridiago-
 nal matrix. Z is initialized to the identity
 matrix.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 orthogonal matrix used in the reduction to tridi-
 agonal form. On exit, if INFO = 0, then if COMPZ
 = 'V', Z contains the orthonormal eigenvectors of
 the original symmetric matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if eigenvectors are desired, then LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(max(1,2*N-2)) If COMPZ = 'N', then WORK
 is not referenced.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm has failed to find all the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero; on exit, D and E contain the elements of a
 symmetric tridiagonal matrix which is orthogonally
 similar to the original matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssterf - compute all eigenvalues of a symmetric tridiagonal
 matrix using the Pal-Walker-Kahan variant of the QL or QR
 algorithm

SYNOPSIS

 SUBROUTINE SSTERF(N, D, E, INFO)

 INTEGER N, INFO
 REAL D(*), E(*)

 SUBROUTINE SSTERF_64(N, D, E, INFO)

 INTEGER*8 N, INFO
 REAL D(*), E(*)

 F95 INTERFACE
 SUBROUTINE STERF([N], D, E, [INFO])

 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: D, E

 SUBROUTINE STERF_64([N], D, E, [INFO])

 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void ssterf(int n, float *d, float *e, int *info);

 void ssterf_64(long n, float *d, float *e, long *info);

PURPOSE

 ssterf computes all eigenvalues of a symmetric tridiagonal
 matrix using the Pal-Walker-Kahan variant of the QL or QR
 algorithm.

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On exit, if INFO = 0, the eigenvalues
 in ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm failed to find all of the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstev - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix A

SYNOPSIS

 SUBROUTINE SSTEV(JOBZ, N, DIAG, OFFD, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER N, LDZ, INFO
 REAL DIAG(*), OFFD(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEV_64(JOBZ, N, DIAG, OFFD, Z, LDZ, WORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 N, LDZ, INFO
 REAL DIAG(*), OFFD(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEV(JOBZ, N, DIAG, OFFD, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: N, LDZ, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEV_64(JOBZ, N, DIAG, OFFD, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: N, LDZ, INFO
 REAL, DIMENSION(:) :: DIAG, OFFD, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sstev(char jobz, int n, float *diag, float *offd, float
 *z, int ldz, int *info);

 void sstev_64(char jobz, long n, float *diag, float *offd,
 float *z, long ldz, long *info);

PURPOSE

 sstev computes all eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 N (input) The order of the matrix. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, if INFO = 0, the eigen-
 values in ascending order.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A, stored in elements 1 to N-1
 of OFFD; OFFD(N) need not be set, but is used by
 the routine. On exit, the contents of OFFD are
 destroyed.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with DIAG(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 If JOBZ = 'N', WORK is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of OFFD did not
 converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix

SYNOPSIS

 SUBROUTINE SSTEVD(JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
 INFO)

 CHARACTER * 1 JOBZ
 INTEGER N, LDZ, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEVD_64(JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ
 INTEGER*8 N, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL D(*), E(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVD(JOBZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEVD_64(JOBZ, N, D, E, Z, [LDZ], [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 INTEGER(8) :: N, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: D, E, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>

 void sstevd(char jobz, int n, float *d, float *e, float *z,
 int ldz, int *info);
 void sstevd_64(char jobz, long n, float *d, float *e, float
 *z, long ldz, long *info);

PURPOSE

 sstevd computes all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric tridiagonal matrix. If eigenvectors
 are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, if INFO = 0, the eigen-
 values in ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A, stored in elements 1 to N-1
 of E; E(N) need not be set, but is used by the
 routine. On exit, the contents of E are des-
 troyed.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with D(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).
 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOBZ = 'N'
 or N <= 1 then LWORK must be at least 1. If JOBZ
 = 'V' and N > 1 then LWORK must be at least (1 +
 4*N + N**2).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of

 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If JOBZ = 'N'
 or N <= 1 then LIWORK must be at least 1. If JOBZ
 = 'V' and N > 1 then LIWORK must be at least
 3+5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of E did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 sstevr - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix T

SYNOPSIS

 SUBROUTINE SSTEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEVR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL

 REAL, DIMENSION(:) :: D, E, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void sstevr(char jobz, char range, int n, float *d, float
 *e, float vl, float vu, int il, int iu, float
 abstol, int *m, float *w, float *z, int ldz, int
 *isuppz, int *info);

 void sstevr_64(char jobz, char range, long n, float *d,
 float *e, float vl, float vu, long il, long iu,
 float abstol, long *m, float *w, float *z, long
 ldz, long *isuppz, long *info);

PURPOSE

 sstevr computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, SSTEVR calls SSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 SSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.

 Note 1 : SSTEVR calls SSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. SSTEVR calls SSTEBZ and SSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of SSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in
 environments which do not handle NaNs and infinities in the

 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, D may be multiplied by a
 constant factor chosen to avoid over/underflow in
 computing the eigenvalues.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E may be multi-
 plied by a constant factor chosen to avoid
 over/underflow in computing the eigenvalues.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal

 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but
 future releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.
 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). Note: the user
 must ensure that at least max(1,M) columns are
 supplied in the array Z; if RANGE = 'V', the exact
 value of M is not known in advance and an upper
 bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 20*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 (and minimal) LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 10*N.

 If LIWORK = -1, then a workspace query is assumed;

 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix A

SYNOPSIS

 SUBROUTINE SSTEVX(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL DIAG(*), OFFD(*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSTEVX_64(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL DIAG(*), OFFD(*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEVX(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: DIAG, OFFD, W, WORK
 REAL, DIMENSION(:,:) :: Z

 SUBROUTINE STEVX_64(JOBZ, RANGE, N, DIAG, OFFD, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [IWORK2], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: DIAG, OFFD, W, WORK
 REAL, DIMENSION(:,:) :: Z

 C INTERFACE
 #include <sunperf.h>
 void sstevx(char jobz, char range, int n, float *diag, float
 *offd, float vl, float vu, int il, int iu, float
 abtol, int *nfound, float *w, float *z, int ldz,
 int *ifail, int *info);

 void sstevx_64(char jobz, char range, long n, float *diag,
 float *offd, float vl, float vu, long il, long iu,
 float abtol, long *nfound, float *w, float *z,
 long ldz, long *ifail, long *info);

PURPOSE

 sstevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix A. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, DIAG may be multiplied by
 a constant factor chosen to avoid over/underflow
 in computing the eigenvalues.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A in elements 1 to N-1 of OFFD;
 OFFD(N) need not be set. On exit, OFFD may be
 multiplied by a constant factor chosen to avoid
 over/underflow in computing the eigenvalues.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1

 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge (INFO > 0), then that column
 of Z contains the latest approximation to the
 eigenvector, and the index of the eigenvector is
 returned in IFAIL. If JOBZ = 'N', then Z is not
 referenced. Note: the user must ensure that at
 least max(1,NFOUND) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of NFOUND
 is not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK2 (workspace)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND

 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sstsv - compute the solution to a system of linear equations
 A * X = B where A is a symmetric tridiagonal matrix

SYNOPSIS

 SUBROUTINE SSTSV(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)
 REAL L(*), D(*), SUBL(*), B(LDB,*)

 SUBROUTINE SSTSV_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)
 REAL L(*), D(*), SUBL(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE STSV(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE STSV_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void sstsv(int n, int nrhs, float *l, float *d, float *subl,
 float *b, int ldb, int *ipiv, int *info);

 void sstsv_64(long n, long nrhs, float *l, float *d, float
 *subl, float *b, long ldb, long *ipiv, long
 *info);

PURPOSE

 sstsv computes the solution to a system of linear equations
 A * X = B where A is a symmetric tridiagonal matrix.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides in B.

 L (input/output)
 REAL array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 REAL array, dimension (N)
 On exit, part of the factorization of A.

 B (input/output)
 The columns of B contain the right hand sides.

 LDB (input)
 The leading dimension of B as specified in a type
 or DIMENSION statement.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssttrf - compute the factorization of a symmetric tridiago-
 nal matrix A

SYNOPSIS

 SUBROUTINE SSTTRF(N, L, D, SUBL, IPIV, INFO)

 INTEGER N, INFO
 INTEGER IPIV(*)
 REAL L(*), D(*), SUBL(*)

 SUBROUTINE SSTTRF_64(N, L, D, SUBL, IPIV, INFO)

 INTEGER*8 N, INFO
 INTEGER*8 IPIV(*)
 REAL L(*), D(*), SUBL(*)

 F95 INTERFACE
 SUBROUTINE STTRF([N], L, D, SUBL, IPIV, [INFO])

 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL

 SUBROUTINE STTRF_64([N], L, D, SUBL, IPIV, [INFO])

 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL

 C INTERFACE
 #include <sunperf.h>

 void ssttrf(int n, float *l, float *d, float *subl, int
 *ipiv, int *info);

 void ssttrf_64(long n, float *l, float *d, float *subl, long
 *ipiv, long *info);

PURPOSE

 ssttrf computes the factorization of a complex Hermitian
 tridiagonal matrix A.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 L (input/output)
 REAL array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the L*D*L**H factoriza-
 tion of A.

 SUBL (output)
 REAL array, dimension (N)
 On exit, part of the factorization of A.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssttrs - computes the solution to a real system of linear
 equations A * X = B

SYNOPSIS

 SUBROUTINE SSTTRS(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)
 REAL L(*), D(*), SUBL(*), B(LDB,*)

 SUBROUTINE SSTTRS_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)
 REAL L(*), D(*), SUBL(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE STTRS(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE STTRS_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:) :: L, D, SUBL
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void ssttrs(int n, int nrhs, float *l, float *d, float
 *subl, float *b, int ldb, int *ipiv, int *info);

 void ssttrs_64(long n, long nrhs, float *l, float *d, float
 *subl, float *b, long ldb, long *ipiv, long
 *info);

PURPOSE

 ssttrs computes the solution to a real system of linear
 equations A * X = B, where A is an N-by-N symmetric tridiag-
 onal matrix and X and B are N-by-NRHS matrices.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 INTEGER
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 L (input) REAL array, dimension (N-1)
 On entry, the subdiagonal elements of LL and DD.

 D (input) REAL array, dimension (N)
 On entry, the diagonal elements of DD.

 SUBL (input)
 REAL array, dimension (N-2)
 On entry, the second subdiagonal elements of LL.

 B (input/output)
 REAL array, dimension
 (LDB, NRHS) On entry, the N-by-NRHS right hand
 side matrix B. On exit, if INFO = 0, the N-by-
 NRHS solution matrix X.

 LDB (input)
 INTEGER
 The leading dimension of the array B. LDB >=
 max(1, N)

 IPIV (output)
 INTEGER array, dimension (N)
 Details of the interchanges and block pivot. If
 IPIV(K) > 0, 1 by 1 pivot, and if IPIV(K) = K + 1
 an interchange done; If IPIV(K) < 0, 2 by 2
 pivot, no interchange required.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 sswap - Exchange vectors x and y.

SYNOPSIS

 SUBROUTINE SSWAP(N, X, INCX, Y, INCY)

 INTEGER N, INCX, INCY
 REAL X(*), Y(*)

 SUBROUTINE SSWAP_64(N, X, INCX, Y, INCY)

 INTEGER*8 N, INCX, INCY
 REAL X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SWAP([N], X, [INCX], Y, [INCY])

 INTEGER :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 SUBROUTINE SWAP_64([N], X, [INCX], Y, [INCY])

 INTEGER(8) :: N, INCX, INCY
 REAL, DIMENSION(:) :: X, Y

 C INTERFACE
 #include <sunperf.h>

 void sswap(int n, float *x, int incx, float *y, int incy);

 void sswap_64(long n, float *x, long incx, float *y, long
 incy);

PURPOSE

 sswap Exchange x and y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, the y vector.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, the x vector.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssycon - estimate the reciprocal of the condition number (in
 the 1-norm) of a real symmetric matrix A using the factori-
 zation A = U*D*U**T or A = L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE SSYCON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 IWORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SSYCON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 IWORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*), IWORK2(*)
 REAL ANORM, RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYCON(UPLO, N, A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYCON_64(UPLO, N, A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [IWORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, IWORK2
 REAL :: ANORM, RCOND
 REAL, DIMENSION(:) :: WORK

 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void ssycon(char uplo, int n, float *a, int lda, int
 *ipivot, float anorm, float *rcond, int *info);

 void ssycon_64(char uplo, long n, float *a, long lda, long
 *ipivot, float anorm, float *rcond, long *info);

PURPOSE

 ssycon estimates the reciprocal of the condition number (in
 the 1-norm) of a real symmetric matrix A using the factori-
 zation A = U*D*U**T or A = L*D*L**T computed by SSYTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 IWORK2 (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyev - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE SSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDA, LDWORK, INFO
 REAL A(LDA,*), W(*), WORK(*)

 SUBROUTINE SSYEV_64(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDA, LDWORK, INFO
 REAL A(LDA,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEV(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYEV_64(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDA, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssyev(char jobz, char uplo, int n, float *a, int lda,
 float *w, int *info);

 void ssyev_64(char jobz, char uplo, long n, float *a, long
 lda, float *w, long *info);

PURPOSE

 ssyev computes all eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,3*N-1). For optimal efficiency, LDWORK >=
 (NB+2)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssyevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE SSYEVD(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER N, LDA, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL A(LDA,*), W(*), WORK(*)

 SUBROUTINE SSYEVD_64(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 N, LDA, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL A(LDA,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVD(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LWORK], [IWORK],
 [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: N, LDA, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYEVD_64(JOBZ, UPLO, N, A, [LDA], W, [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: N, LDA, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE

 #include <sunperf.h>

 void ssyevd(char jobz, char uplo, int n, float *a, int lda,
 float *w, int *info);
 void ssyevd_64(char jobz, char uplo, long n, float *a, long
 lda, float *w, long *info);

PURPOSE

 ssyevd computes all eigenvalues and, optionally, eigenvec-
 tors of a real symmetric matrix A. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

 Because of large use of BLAS of level 3, SSYEVD needs N**2
 more workspace than SSYEVX.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 dimension (LWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least 2*N+1. If JOBZ = 'V'
 and N > 1, LWORK must be at least 1 + 6*N +
 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK must be at least 1. If JOBZ = 'N' and N >
 1, LIWORK must be at least 1. If JOBZ = 'V' and
 N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA
 Modified by Francoise Tisseur, University of Tennessee.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssyevr - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric tridiagonal matrix T

SYNOPSIS

 SUBROUTINE SSYEVR(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSYEVR_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 REAL VL, VU, ABSTOL
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVR(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z

 SUBROUTINE SYEVR_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, LDA, IL, IU, M, LDZ, LWORK, LIWORK, INFO

 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z
 C INTERFACE
 #include <sunperf.h>

 void ssyevr(char jobz, char range, char uplo, int n, float
 *a, int lda, float vl, float vu, int il, int iu,
 float abstol, int *m, float *w, float *z, int ldz,
 int *isuppz, int *info);

 void ssyevr_64(char jobz, char range, char uplo, long n,
 float *a, long lda, float vl, float vu, long il,
 long iu, float abstol, long *m, float *w, float
 *z, long ldz, long *isuppz, long *info);

PURPOSE

 ssyevr computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, SSYEVR calls SSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 SSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.
 Note 1 : SSYEVR calls SSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. SSYEVR calls SSTEBZ and SSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of SSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in

 environments which do not handle NaNs and infinities in the
 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is

 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but furu-
 tre releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,26*N). For optimal efficiency, LWORK >=
 (NB+6)*N, where NB is the max of the blocksize for
 SSYTRD and SORMTR returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first

 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyevx - compute selected eigenvalues and, optionally,
 eigenvectors of a real symmetric matrix A

SYNOPSIS

 SUBROUTINE SSYEVX(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSYEVX_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, IWORK2, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER*8 IWORK2(*), IFAIL(*)
 REAL VL, VU, ABTOL
 REAL A(LDA,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYEVX(JOBZ, RANGE, UPLO, N, A, [LDA], VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [LDWORK], [IWORK2], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z

 SUBROUTINE SYEVX_64(JOBZ, RANGE, UPLO, N, A, [LDA], VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, [LDZ], [WORK], [LDWORK], [IWORK2], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK2, IFAIL
 REAL :: VL, VU, ABTOL

 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, Z
 C INTERFACE
 #include <sunperf.h>

 void ssyevx(char jobz, char range, char uplo, int n, float
 *a, int lda, float vl, float vu, int il, int iu,
 float abtol, int *nfound, float *w, float *z, int
 ldz, int *ifail, int *info);

 void ssyevx_64(char jobz, char range, char uplo, long n,
 float *a, long lda, float vl, float vu, long il,
 long iu, float abtol, long *nfound, float *w,
 float *z, long ldz, long *ifail, long *info);

PURPOSE

 ssyevx computes selected eigenvalues and, optionally, eigen-
 vectors of a real symmetric matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.
 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 On normal exit, the first NFOUND elements contain
 the selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,8*N). For optimal efficiency, LDWORK >=
 (NB+3)*N, where NB is the max of the blocksize for
 SSYTRD and SORMTR returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 IWORK2 (workspace)
 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssygs2 - reduce a real symmetric-definite generalized eigen-
 problem to standard form

SYNOPSIS

 SUBROUTINE SSYGS2(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SSYGS2_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYGS2(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYGS2_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssygs2(int itype, char uplo, int n, float *a, int lda,
 float *b, int ldb, int *info);

 void ssygs2_64(long itype, char uplo, long n, float *a, long
 lda, float *b, long ldb, long *info);

PURPOSE

 ssygs2 reduces a real symmetric-definite generalized eigen-
 problem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.

 B must have been previously factorized as U'*U or L*L' by
 SPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
 = 2 or 3: compute U*A*U' or L'*A*L.

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored, and how
 B has been factorized. = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by SPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssygst - reduce a real symmetric-definite generalized eigen-
 problem to standard form

SYNOPSIS

 SUBROUTINE SSYGST(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER ITYPE, N, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SSYGST_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYGST(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: ITYPE, N, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYGST_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssygst(int itype, char uplo, int n, float *a, int lda,
 float *b, int ldb, int *info);

 void ssygst_64(long itype, char uplo, long n, float *a, long
 lda, float *b, long ldb, long *info);

PURPOSE

 ssygst reduces a real symmetric-definite generalized eigen-
 problem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**T or
 L**T*A*L.

 B must have been previously factorized as U**T*U or L*L**T
 by SPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**T)*A*inv(U) or
 inv(L)*A*inv(L**T);
 = 2 or 3: compute U*A*U**T or L**T*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**T*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**T.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by SPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssygv - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSYGV(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), W(*), WORK(*)

 SUBROUTINE SSYGV_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL A(LDA,*), B(LDB,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGV(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYGV_64(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssygv(int itype, char jobz, char uplo, int n, float *a,
 int lda, float *b, int ldb, float *w, int *info);

 void ssygv_64(long itype, char jobz, char uplo, long n,
 float *a, long lda, float *b, long ldb, float *w,
 long *info);

PURPOSE

 ssygv computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also
 positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 B (input/output)
 On entry, the symmetric positive definite matrix
 B. If UPLO = 'U', the leading N-by-N upper tri-
 angular part of B contains the upper triangular
 part of the matrix B. If UPLO = 'L', the leading
 N-by-N lower triangular part of B contains the
 lower triangular part of the matrix B.

 On exit, if INFO <= N, the part of B containing

 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,3*N-1). For optimal efficiency, LDWORK >=
 (NB+2)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPOTRF or SSYEV returned an error code:
 <= N: if INFO = i, SSYEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssygvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSYGVD(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 REAL A(LDA,*), B(LDB,*), W(*), WORK(*)

 SUBROUTINE SSYGVD_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 REAL A(LDA,*), B(LDB,*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGVD(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYGVD_64(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W,
 [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssygvd(int itype, char jobz, char uplo, int n, float
 *a, int lda, float *b, int ldb, float *w, int
 *info);

 void ssygvd_64(long itype, char jobz, char uplo, long n,
 float *a, long lda, float *b, long ldb, float *w,
 long *info);

PURPOSE

 ssygvd computes all the eigenvalues, and optionally, the
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also positive definite. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if

 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the symmetric matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >=
 2*N+1. If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N
 + 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >=
 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: SPOTRF or SSYEVD returned an error code:
 <= N: if INFO = i, SSYEVD failed to converge; i

 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssygvx - compute selected eigenvalues, and optionally,
 eigenvectors of a real generalized symmetric-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE SSYGVX(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL A(LDA,*), B(LDB,*), W(*), Z(LDZ,*), WORK(*)

 SUBROUTINE SSYGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 INTEGER*8 ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 REAL VL, VU, ABSTOL
 REAL A(LDA,*), B(LDB,*), W(*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYGVX(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [IWORK],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B, Z

 SUBROUTINE SYGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [IWORK],

 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 INTEGER(8) :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL :: VL, VU, ABSTOL
 REAL, DIMENSION(:) :: W, WORK
 REAL, DIMENSION(:,:) :: A, B, Z

 C INTERFACE
 #include <sunperf.h>

 void ssygvx(int itype, char jobz, char range, char uplo, int
 n, float *a, int lda, float *b, int ldb, float vl,
 float vu, int il, int iu, float abstol, int *m,
 float *w, float *z, int ldz, int *ifail, int
 *info);

 void ssygvx_64(long itype, char jobz, char range, char uplo,
 long n, float *a, long lda, float *b, long ldb,
 float vl, float vu, long il, long iu, float
 abstol, long *m, float *w, float *z, long ldz,
 long *ifail, long *info);

PURPOSE

 ssygvx computes selected eigenvalues, and optionally, eigen-
 vectors of a real generalized symmetric-definite eigenprob-
 lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be symmetric
 and B is also positive definite. Eigenvalues and eigenvec-
 tors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A and B are stored;
 = 'L': Lower triangle of A and B are stored.

 N (input) The order of the matrix pencil (A,B). N >= 0.

 A (input/output)

 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, the lower triangle (if UPLO='L') or the
 upper triangle (if UPLO='U') of A, including the
 diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the symmetric matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**T*U
 or B = L*L**T.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 See the description of VL.
 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 See the description of IL.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when

 ABSTOL is set to twice the underflow threshold
 2*DLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.
 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,8*N). For optimal efficiency, LWORK >=
 (NB+3)*N, where NB is the blocksize for SSYTRD
 returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: SPOTRF or SSYEVX returned an error code:
 <= N: if INFO = i, SSYEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssymm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE SSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 INTEGER M, N, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE SSYMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 INTEGER*8 M, N, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 INTEGER :: M, N, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 SUBROUTINE SYMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 INTEGER(8) :: M, N, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void ssymm(char side, char uplo, int m, int n, float alpha,
 float *a, int lda, float *b, int ldb, float beta,

 float *c, int ldc);

 void ssymm_64(char side, char uplo, long m, long n, float
 alpha, float *a, long lda, float *b, long ldb,
 float beta, float *c, long ldc);

PURPOSE

 ssymm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is a symmetric matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the symmetric
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the symmetric
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the symmetric matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.
 A (input)
 REAL array of DIMENSION (LDA, ka), where ka is m
 when SIDE = 'L' or 'l' and is n otherwise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading m by m upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower

 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 REAL array of DIMENSION (LDB, n). Before entry,
 the leading m by n part of the array B must
 contain the matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.
 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 REAL array of DIMENSION (LDC, n). Before entry,
 the leading m by n part of the array C must
 contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssymv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE SSYMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 SUBROUTINE SSYMV_64(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INCX, INCY
 REAL ALPHA, BETA
 REAL A(LDA,*), X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE SYMV(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYMV_64(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INCX, INCY
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssymv(char uplo, int n, float alpha, float *a, int lda,
 float *x, int incx, float beta, float *y, int
 incy);

 void ssymv_64(char uplo, long n, float alpha, float *a, long
 lda, float *x, long incx, float beta, float *y,
 long incy);

PURPOSE

 ssymv performs the matrix-vector operation y := alpha*A*x +
 beta*y, where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. Before entry with UPLO = 'L'
 or 'l', the leading n by n lower triangular part
 of the array A must contain the lower triangular
 part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyr - perform the symmetric rank 1 operation A :=
 alpha*x*x' + A

SYNOPSIS

 SUBROUTINE SSYR(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, LDA
 REAL ALPHA
 REAL X(*), A(LDA,*)

 SUBROUTINE SSYR_64(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, LDA
 REAL ALPHA
 REAL X(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYR(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYR_64(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssyr(char uplo, int n, float alpha, float *x, int incx,
 float *a, int lda);

 void ssyr_64(char uplo, long n, float alpha, float *x, long

 incx, float *a, long lda);

PURPOSE

 ssyr performs the symmetric rank 1 operation A := alpha*x*x'
 + A, where alpha is a real scalar, x is an n element vector
 and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the symmetric matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyr2 - perform the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A

SYNOPSIS

 SUBROUTINE SSYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER N, INCX, INCY, LDA
 REAL ALPHA
 REAL X(*), Y(*), A(LDA,*)

 SUBROUTINE SSYR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 INTEGER*8 N, INCX, INCY, LDA
 REAL ALPHA
 REAL X(*), Y(*), A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, INCX, INCY, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, INCX, INCY, LDA
 REAL :: ALPHA
 REAL, DIMENSION(:) :: X, Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssyr2(char uplo, int n, float alpha, float *x, int
 incx, float *y, int incy, float *a, int lda);

 void ssyr2_64(char uplo, long n, float alpha, float *x, long

 incx, float *y, long incy, float *a, long lda);

PURPOSE

 ssyr2 performs the symmetric rank 2 operation A :=
 alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and
 y are n element vectors and A is an n by n symmetric matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.
 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the symmetric
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the symmetric matrix
 and the strictly upper triangular part of A is not

 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyr2k - perform one of the symmetric rank 2k operations C
 := alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C

SYNOPSIS

 SUBROUTINE SSYR2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER N, K, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE SSYR2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER*8 N, K, LDA, LDB, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYR2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER :: N, K, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 SUBROUTINE SYR2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER(8) :: N, K, LDA, LDB, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void ssyr2k(char uplo, char transa, int n, int k, float

 alpha, float *a, int lda, float *b, int ldb, float
 beta, float *c, int ldc);
 void ssyr2k_64(char uplo, char transa, long n, long k, float
 alpha, float *a, long lda, float *b, long ldb,
 float beta, float *c, long ldc);

PURPOSE

 ssyr2k performs one of the symmetric rank 2k operations C :=
 alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C where alpha and beta are scalars, C is
 an n by n symmetric matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*B' + alpha*B*A'
 + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*B + alpha*B'*A
 + beta*C.

 TRANSA = 'C' or 'c' C := alpha*A'*B + alpha*B'*A
 + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.
 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'T' or 't' or 'C' or
 'c', K specifies the number of rows of the
 matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.

 Unchanged on exit.

 A (input)
 REAL array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 REAL array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 REAL array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE SSYRFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SSYRFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYRFS(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE SYRFS_64(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 C INTERFACE
 #include <sunperf.h>
 void ssyrfs(char uplo, int n, int nrhs, float *a, int lda,
 float *af, int ldaf, int *ipivot, float *b, int
 ldb, float *x, int ldx, float *ferr, float *berr,
 int *info);

 void ssyrfs_64(char uplo, long n, long nrhs, float *a, long
 lda, float *af, long ldaf, long *ipivot, float *b,
 long ldb, float *x, long ldx, float *ferr, float
 *berr, long *info);

PURPOSE

 ssyrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by SSYTRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 SSYTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssyrk - perform one of the symmetric rank k operations C
 := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C

SYNOPSIS

 SUBROUTINE SSYRK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER N, K, LDA, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), C(LDC,*)

 SUBROUTINE SSYRK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 INTEGER*8 N, K, LDA, LDC
 REAL ALPHA, BETA
 REAL A(LDA,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE SYRK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER :: N, K, LDA, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, C

 SUBROUTINE SYRK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 INTEGER(8) :: N, K, LDA, LDC
 REAL :: ALPHA, BETA
 REAL, DIMENSION(:,:) :: A, C

 C INTERFACE
 #include <sunperf.h>

 void ssyrk(char uplo, char transa, int n, int k, float
 alpha, float *a, int lda, float beta, float *c,
 int ldc);

 void ssyrk_64(char uplo, char transa, long n, long k, float
 alpha, float *a, long lda, float beta, float *c,
 long ldc);

PURPOSE

 ssyrk performs one of the symmetric rank k operations C :=
 alpha*A*A' + beta*C or C := alpha*A'*A + beta*C where alpha
 and beta are scalars, C is an n by n symmetric matrix and
 A is an n by k matrix in the first case and a k by n
 matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*A + beta*C.

 TRANSA = 'C' or 'c' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'T' or 't' or 'C'
 or 'c', K specifies the number of rows of the
 matrix A. K must be at least zero. Unchanged on
 exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 REAL array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or

 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 REAL array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssysv - compute the solution to a real system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE SSYSV(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*), WORK(*)

 SUBROUTINE SSYSV_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK,
 LDWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYSV(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYSV_64(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssysv(char uplo, int n, int nrhs, float *a, int lda,
 int *ipivot, float *b, int ldb, int *info);
 void ssysv_64(char uplo, long n, long nrhs, float *a, long
 lda, long *ipivot, float *b, long ldb, long
 *info);

PURPOSE

 ssysv computes the solution to a real system of linear equa-
 tions
 A * X = B, where A is an N-by-N symmetric matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by SSYTRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by SSYTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were

 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 1, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for SSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssysvx - use the diagonal pivoting factorization to compute
 the solution to a real system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE SSYSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 SUBROUTINE SSYSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*), WORK2(*)
 REAL RCOND
 REAL A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), FERR(*),
 BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYSVX(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X

 SUBROUTINE SYSVX_64(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT, WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, AF, B, X
 C INTERFACE
 #include <sunperf.h>

 void ssysvx(char fact, char uplo, int n, int nrhs, float *a,
 int lda, float *af, int ldaf, int *ipivot, float
 *b, int ldb, float *x, int ldx, float *rcond,
 float *ferr, float *berr, int *info);

 void ssysvx_64(char fact, char uplo, long n, long nrhs,
 float *a, long lda, float *af, long ldaf, long
 *ipivot, float *b, long ldb, float *x, long ldx,
 float *rcond, float *ferr, float *berr, long
 *info);

PURPOSE

 ssysvx uses the diagonal pivoting factorization to compute
 the solution to a real system of linear equations A * X = B,
 where A is an N-by-N symmetric matrix and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is symmetric and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.
 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. AF and
 IPIVOT will not be modified. = 'N': The matrix A
 will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by SSYTRF.
 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 SSYTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 SSYTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 3*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for SSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssytd2 - reduce a real symmetric matrix A to symmetric tri-
 diagonal form T by an orthogonal similarity transformation

SYNOPSIS

 SUBROUTINE SSYTD2(UPLO, N, A, LDA, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 REAL A(LDA,*), D(*), E(*), TAU(*)

 SUBROUTINE SSYTD2_64(UPLO, N, A, LDA, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*), D(*), E(*), TAU(*)

 F95 INTERFACE
 SUBROUTINE SYTD2(UPLO, N, A, [LDA], D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:) :: D, E, TAU
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYTD2_64(UPLO, N, A, [LDA], D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:) :: D, E, TAU
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssytd2(char uplo, int n, float *a, int lda, float *d,
 float *e, float *tau, int *info);

 void ssytd2_64(char uplo, long n, float *a, long lda, float
 *d, float *e, float *tau, long *info);

PURPOSE

 ssytd2 reduces a real symmetric matrix A to symmetric tridi-
 agonal form T by an orthogonal similarity transformation: Q'
 * A * Q = T.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
 A(i+2:n,i), and tau in TAU(i).

 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssytf2 - compute the factorization of a real symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE SSYTF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)
 REAL A(LDA,*)

 SUBROUTINE SSYTF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE SYTF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYTF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssytf2(char uplo, int n, float *a, int lda, int *ipiv,
 int *info);

 void ssytf2_64(char uplo, long n, float *a, long lda, long

 *ipiv, long *info);

PURPOSE

 ssytf2 computes the factorization of a real symmetric matrix
 A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the transpose of U, and D
 is symmetric and block diagonal with 1-by-1 and 2-by-2 diag-
 onal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssytrd - reduce a real symmetric matrix A to real symmetric
 tridiagonal form T by an orthogonal similarity transforma-
 tion

SYNOPSIS

 SUBROUTINE SSYTRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LWORK, INFO
 REAL A(LDA,*), D(*), E(*), TAU(*), WORK(*)

 SUBROUTINE SSYTRD_64(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LWORK, INFO
 REAL A(LDA,*), D(*), E(*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRD(UPLO, N, A, [LDA], D, E, TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E, TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYTRD_64(UPLO, N, A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: D, E, TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssytrd(char uplo, int n, float *a, int lda, float *d,
 float *e, float *tau, int *info);

 void ssytrd_64(char uplo, long n, float *a, long lda, float

 *d, float *e, float *tau, long *info);

PURPOSE

 ssytrd reduces a real symmetric matrix A to real symmetric
 tridiagonal form T by an orthogonal similarity
 transformation: Q**T * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the orthogonal matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the orthogonal matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. For

 optimum performance LWORK >= N*NB, where NB is the
 optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real scalar, and v is a real vector with
 v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
 A(i+2:n,i), and tau in TAU(i).
 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ssytrf - compute the factorization of a real symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE SSYTRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SSYTRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRF(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYTRF_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssytrf(char uplo, int n, float *a, int lda, int

 *ipivot, int *info);

 void ssytrf_64(char uplo, long n, float *a, long lda, long
 *ipivot, long *info);

PURPOSE

 ssytrf computes the factorization of a real symmetric matrix
 A using the Bunch-Kaufman diagonal pivoting method. The
 form of the factorization is

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssytri - compute the inverse of a real symmetric indefinite
 matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE SSYTRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 SUBROUTINE SSYTRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE SYTRI(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE SYTRI_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void ssytri(char uplo, int n, float *a, int lda, int
 *ipivot, int *info);

 void ssytri_64(char uplo, long n, float *a, long lda, long
 *ipivot, long *info);

PURPOSE

 ssytri computes the inverse of a real symmetric indefinite
 matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by SSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by SSYTRF.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ssytrs - solve a system of linear equations A*X = B with a
 real symmetric matrix A using the factorization A = U*D*U**T
 or A = L*D*L**T computed by SSYTRF

SYNOPSIS

 SUBROUTINE SSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE SSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE SYTRS(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE SYTRS_64(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void ssytrs(char uplo, int n, int nrhs, float *a, int lda,
 int *ipivot, float *b, int ldb, int *info);

 void ssytrs_64(char uplo, long n, long nrhs, float *a, long
 lda, long *ipivot, float *b, long ldb, long

 *info);

PURPOSE

 ssytrs solves a system of linear equations A*X = B with a
 real symmetric matrix A using the factorization A = U*D*U**T
 or A = L*D*L**T computed by SSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 SSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by SSYTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stbcon - estimate the reciprocal of the condition number of
 a triangular band matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE STBCON(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, NDIAG, LDA, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE STBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, NDIAG, LDA, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TBCON(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, NDIAG, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK

 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void stbcon(char norm, char uplo, char diag, int n, int
 ndiag, float *a, int lda, float *rcond, int
 *info);

 void stbcon_64(char norm, char uplo, char diag, long n, long
 ndiag, float *a, long lda, float *rcond, long
 *info);

PURPOSE

 stbcon estimates the reciprocal of the condition number of a
 triangular band matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stbmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE STBMV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, LDA, INCY
 REAL A(LDA,*), Y(*)

 SUBROUTINE STBMV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, LDA, INCY
 REAL A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TBMV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TBMV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void stbmv(char uplo, char transa, char diag, int n, int
 ndiag, float *a, int lda, float *y, int incy);

 void stbmv_64(char uplo, char transa, char diag, long n,
 long ndiag, float *a, long lda, float *y, long
 incy);

PURPOSE

 stbmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular band
 matrix, with (ndiag + 1) diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=
 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain

 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stbrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix

SYNOPSIS

 SUBROUTINE STBRFS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(LDA,*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE STBRFS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(LDA,*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TBRFS(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, B, X

 SUBROUTINE TBRFS_64(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, B, X

 C INTERFACE
 #include <sunperf.h>

 void stbrfs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, float *a, int lda, float *b, int
 ldb, float *x, int ldx, float *ferr, float *berr,
 int *info);

 void stbrfs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, float *a, long lda, float
 *b, long ldb, float *x, long ldx, float *ferr,
 float *berr, long *info);

PURPOSE

 stbrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix.

 The solution matrix X must be computed by STBTRS or some
 other means before entering this routine. STBRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)

 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stbsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE STBSV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, LDA, INCY
 REAL A(LDA,*), Y(*)

 SUBROUTINE STBSV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, LDA, INCY
 REAL A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TBSV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TBSV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void stbsv(char uplo, char transa, char diag, int n, int
 ndiag, float *a, int lda, float *y, int incy);

 void stbsv_64(char uplo, char transa, char diag, long n,
 long ndiag, float *a, long lda, float *y, long
 incy);

PURPOSE

 stbsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular band
 matrix, with (ndiag + 1) diagonals.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=

 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 (ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stbtrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE STBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE STBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void stbtrs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, float *a, int lda, float *b, int
 ldb, int *info);

 void stbtrs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, float *a, long lda, float

 *b, long ldb, long *info);

PURPOSE

 stbtrs solves a triangular system of the form

 where A is a triangular band matrix of order N, and B is an
 N-by NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of A. The j-th
 column of A is stored in the j-th column of the
 array A as follows: if UPLO = 'U', A(kd+1+i-j,j)
 = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
 A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If
 DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stgevc - compute some or all of the right and/or left gen-
 eralized eigenvectors of a pair of real upper triangular
 matrices (A,B)

SYNOPSIS

 SUBROUTINE STGEVC(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 REAL A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE STGEVC_64(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 REAL A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGEVC(SIDE, HOWMNY, SELECT, N, A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE TGEVC_64(SIDE, HOWMNY, SELECT, N, A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void stgevc(char side, char howmny, int *select, int n,
 float *a, int lda, float *b, int ldb, float *vl,
 int ldvl, float *vr, int ldvr, int mm, int *m, int
 *info);

 void stgevc_64(char side, char howmny, long *select, long n,
 float *a, long lda, float *b, long ldb, float *vl,
 long ldvl, float *vr, long ldvr, long mm, long *m,
 long *info);

PURPOSE

 stgevc computes some or all of the right and/or left gen-
 eralized eigenvectors of a pair of real upper triangular
 matrices (A,B).

 The right generalized eigenvector x and the left generalized
 eigenvector y of (A,B) corresponding to a generalized eigen-
 value w are defined by:

 (A - wB) * x = 0 and y**H * (A - wB) = 0

 where y**H denotes the conjugate tranpose of y.

 If an eigenvalue w is determined by zero diagonal elements
 of both A and B, a unit vector is returned as the
 corresponding eigenvector.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of (A,B), or the products Z*X and/or Q*Y, where Z and Q are
 input orthogonal matrices. If (A,B) was obtained from the
 generalized real-Schur factorization of an original pair of
 matrices
 (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
 then Z*X and Q*Y are the matrices of right or left eigenvec-
 tors of A.

 A must be block upper triangular, with 1-by-1 and 2-by-2
 diagonal blocks. Corresponding to each 2-by-2 diagonal
 block is a complex conjugate pair of eigenvalues and eigen-
 vectors; only one
 eigenvector of the pair is computed, namely the one
 corresponding to the eigenvalue with positive imaginary
 part.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.
 HOWMNY (input)
 = 'A': compute all right and/or left eigenvectors;
 = 'B': compute all right and/or left eigenvectors,
 and backtransform them using the input matrices
 supplied in VR and/or VL; = 'S': compute selected

 right and/or left eigenvectors, specified by the
 logical array SELECT.

 SELECT (input)
 If HOWMNY='S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY='A' or 'B', SELECT is
 not referenced. To select the real eigenvector
 corresponding to the real eigenvalue w(j),
 SELECT(j) must be set to .TRUE. To select the
 complex eigenvector corresponding to a complex
 conjugate pair w(j) and w(j+1), either SELECT(j)
 or SELECT(j+1) must be set to .TRUE..

 N (input) The order of the matrices A and B. N >= 0.

 A (input) The upper quasi-triangular matrix A.

 LDA (input)
 The leading dimension of array A. LDA >= max(1,
 N).

 B (input) The upper triangular matrix B. If A has a 2-by-2
 diagonal block, then the corresponding 2-by-2
 block of B must be diagonal with positive ele-
 ments.

 LDB (input)
 The leading dimension of array B. LDB >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of left Schur vectors returned
 by SHGEQZ). On exit, if SIDE = 'L' or 'B', VL
 contains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Q*Y; if HOWMNY = 'S', the left eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 A complex eigenvector corresponding to a complex
 eigenvalue is stored in two consecutive columns,
 the first holding the real part, and the second
 the imaginary part.

 LDVL (input)
 The leading dimension of array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 orthogonal matrix Z of right Schur vectors
 returned by SHGEQZ). On exit, if SIDE = 'R' or
 'B', VR contains: if HOWMNY = 'A', the matrix X
 of right eigenvectors of (A,B); if HOWMNY = 'B',
 the matrix Z*X; if HOWMNY = 'S', the right eigen-
 vectors of (A,B) specified by SELECT, stored con-
 secutively in the columns of VR, in the same order
 as their eigenvalues. If SIDE = 'L', VR is not
 referenced.

 A complex eigenvector corresponding to a complex
 eigenvalue is stored in two consecutive columns,
 the first holding the real part and the second the
 imaginary part.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.
 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the 2-by-2 block (INFO:INFO+1) does not have
 a complex eigenvalue.

FURTHER DETAILS

 Allocation of workspace:
 ---------- -- ---------

 WORK(j) = 1-norm of j-th column of A, above the diago-
 nal
 WORK(N+j) = 1-norm of j-th column of B, above the diag-
 onal
 WORK(2*N+1:3*N) = real part of eigenvector
 WORK(3*N+1:4*N) = imaginary part of eigenvector
 WORK(4*N+1:5*N) = real part of back-transformed eigen-
 vector
 WORK(5*N+1:6*N) = imaginary part of back-transformed
 eigenvector

 Rowwise vs. columnwise solution methods:
 ------- -- ---------- -------- -------

 Finding a generalized eigenvector consists basically of
 solving the singular triangular system

 (A - w B) x = 0 (for right) or: (A - w B)**H y = 0
 (for left)

 Consider finding the i-th right eigenvector (assume all
 eigenvalues are real). The equation to be solved is:
 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. .
 .,1
 k=j k=j

 where C = (A - w B) (The components v(i+1:n) are 0.)

 The "rowwise" method is:

 (1) v(i) := 1
 for j = i-1,. . .,1:
 i
 (2) compute s = - sum C(j,k) v(k) and
 k=j+1

 (3) v(j) := s / C(j,j)
 Step 2 is sometimes called the "dot product" step, since it
 is an inner product between the j-th row and the portion of
 the eigenvector that has been computed so far.

 The "columnwise" method consists basically in doing the sums
 for all the rows in parallel. As each v(j) is computed, the
 contribution of v(j) times the j-th column of C is added to
 the partial sums. Since FORTRAN arrays are stored column-
 wise, this has the advantage that at each step, the elements
 of C that are accessed are adjacent to one another, whereas
 with the rowwise method, the elements accessed at a step are
 spaced LDA (and LDB) words apart.

 When finding left eigenvectors, the matrix in question is
 the transpose of the one in storage, so the rowwise method
 then actually accesses columns of A and B at each step, and
 so is the preferred method.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stgexc - reorder the generalized real Schur decomposition of
 a real matrix pair (A,B) using an orthogonal equivalence
 transformation (A, B) = Q * (A, B) * Z',

SYNOPSIS

 SUBROUTINE STGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, WORK, LWORK, INFO)

 INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL WANTQ, WANTZ
 REAL A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*), WORK(*)

 SUBROUTINE STGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, WORK, LWORK, INFO)

 INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL*8 WANTQ, WANTZ
 REAL A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGEXC(WANTQ, WANTZ, N, A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [WORK], [LWORK], [INFO])

 INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL :: WANTQ, WANTZ
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 SUBROUTINE TGEXC_64(WANTQ, WANTZ, N, A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [WORK], [LWORK], [INFO])

 INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
 LOGICAL(8) :: WANTQ, WANTZ
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void stgexc(int wantq, int wantz, int n, float *a, int lda,

 float *b, int ldb, float *q, int ldq, float *z,
 int ldz, int *ifst, int *ilst, int *info);

 void stgexc_64(long wantq, long wantz, long n, float *a,
 long lda, float *b, long ldb, float *q, long ldq,
 float *z, long ldz, long *ifst, long *ilst, long
 *info);

PURPOSE

 stgexc reorders the generalized real Schur decomposition of
 a real matrix pair (A,B) using an orthogonal equivalence
 transformation

 so that the diagonal block of (A, B) with row index IFST is
 moved to row ILST.

 (A, B) must be in generalized real Schur canonical form (as
 returned by SGGES), i.e. A is block upper triangular with
 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

 Optionally, the matrices Q and Z of generalized Schur vec-
 tors are updated.

 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

ARGUMENTS

 WANTQ (input)

 WANTZ (input)

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the matrix A in generalized real Schur
 canonical form. On exit, the updated matrix A,
 again in generalized real Schur canonical form.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the matrix B in generalized real Schur
 canonical form (A,B). On exit, the updated matrix
 B, again in generalized real Schur canonical form
 (A,B).
 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 On entry, if WANTQ = .TRUE., the orthogonal matrix
 Q. On exit, the updated matrix Q. If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.

 If WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., the orthogonal matrix
 Z. On exit, the updated matrix Z. If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If WANTZ = .TRUE., LDZ >= N.

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 (A, B). The block with row index IFST is moved to
 row ILST, by a sequence of swapping between adja-
 cent blocks. On exit, if IFST pointed on entry to
 the second row of a 2-by-2 block, it is changed to
 point to the first row; ILST always points to the
 first row of the block in its final position
 (which may differ from its input value by +1 or
 -1). 1 <= IFST, ILST <= N.

 ILST (input/output)
 See the description of IFST.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 4*N +
 16.
 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 =0: successful exit.
 <0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1: The transformed matrix pair (A, B) would be
 too far from generalized Schur form; the problem
 is ill- conditioned. (A, B) may have been par-
 tially reordered, and ILST points to the first row
 of the current position of the block being moved.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stgsen - reorder the generalized real Schur decomposition of
 a real matrix pair (A, B) (in terms of an orthonormal
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix A and the
 upper triangular B

SYNOPSIS

 SUBROUTINE STGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,
 LWORK, IWORK, LIWORK, INFO)

 INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL WANTQ, WANTZ
 LOGICAL SELECT(*)
 REAL PL, PR
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), DIF(*), WORK(*)

 SUBROUTINE STGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,
 LWORK, IWORK, LIWORK, INFO)

 INTEGER*8 IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 WANTQ, WANTZ
 LOGICAL*8 SELECT(*)
 REAL PL, PR
 REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), DIF(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 INTEGER :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO

 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: WANTQ, WANTZ
 LOGICAL, DIMENSION(:) :: SELECT
 REAL :: PL, PR
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, DIF, WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z
 SUBROUTINE TGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHAR, ALPHAI, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK],
 [LWORK], [IWORK], [LIWORK], [INFO])

 INTEGER(8) :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: WANTQ, WANTZ
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL :: PL, PR
 REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, DIF, WORK
 REAL, DIMENSION(:,:) :: A, B, Q, Z

 C INTERFACE
 #include <sunperf.h>

 void stgsen(int ijob, int wantq, int wantz, int *select, int
 n, float *a, int lda, float *b, int ldb, float
 *alphar, float *alphai, float *beta, float *q, int
 ldq, float *z, int ldz, int *m, float *pl, float
 *pr, float *dif, int *info);

 void stgsen_64(long ijob, long wantq, long wantz, long
 *select, long n, float *a, long lda, float *b,
 long ldb, float *alphar, float *alphai, float
 *beta, float *q, long ldq, float *z, long ldz,
 long *m, float *pl, float *pr, float *dif, long
 *info);

PURPOSE

 stgsen reorders the generalized real Schur decomposition of
 a real matrix pair (A, B) (in terms of an orthonormal
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper quasi-triangular matrix A and the
 upper triangular B. The leading columns of Q and Z form
 orthonormal bases of the corresponding left and right eigen-
 spaces (deflating subspaces). (A, B) must be in generalized
 real Schur canonical form (as returned by SGGES), i.e. A is
 block upper triangular with 1-by-1 and 2-by-2 diagonal
 blocks. B is upper triangular.

 STGSEN also computes the generalized eigenvalues

 w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, STGSEN computes the estimates of reciprocal
 condition numbers for eigenvalues and eigenspaces. These are
 Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)],
 i.e. the separation(s) between the matrix pairs (A11, B11)
 and (A22,B22) that correspond to the selected cluster and
 the eigenvalues outside the cluster, resp., and norms of
 "projections" onto left and right eigenspaces w.r.t. the

 selected cluster in the (1,1)-block.

ARGUMENTS

 IJOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (PL and PR) or the
 deflating subspaces (Difu and Difl):
 =0: Only reorder w.r.t. SELECT. No extras.
 =1: Reciprocal of norms of "projections" onto left
 and right eigenspaces w.r.t. the selected cluster
 (PL and PR). =2: Upper bounds on Difu and Difl.
 F-norm-based estimate
 (DIF(1:2)).
 =3: Estimate of Difu and Difl. 1-norm-based esti-
 mate
 (DIF(1:2)). About 5 times as expensive as IJOB =
 2. =4: Compute PL, PR and DIF (i.e. 0, 1 and 2
 above): Economic version to get it all. =5: Com-
 pute PL, PR and DIF (i.e. 0, 1 and 3 above)

 WANTQ (input)

 WANTZ (input)

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select a real eigenvalue w(j),
 SELECT(j) must be set to w(j) and w(j+1),
 corresponding to a 2-by-2 diagonal block, either
 SELECT(j) or SELECT(j+1) or both must be set to
 either both included in the cluster or both
 excluded.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper quasi-triangular matrix A,
 with (A, B) in generalized real Schur canonical
 form. On exit, A is overwritten by the reordered
 matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the upper triangular matrix B, with (A,
 B) in generalized real Schur canonical form. On
 exit, B is overwritten by the reordered matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ALPHAR (output)
 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
 j=1,...,N, will be the generalized eigenvalues.
 ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are
 the diagonals of the complex Schur form (S,T) that
 would result if the 2-by-2 diagonal blocks of the
 real generalized Schur form of (A,B) were further

 reduced to triangular form using complex unitary
 transformations. If ALPHAI(j) is zero, then the
 j-th eigenvalue is real; if positive, then the j-
 th and (j+1)-st eigenvalues are a complex conju-
 gate pair, with ALPHAI(j+1) negative.

 ALPHAI (output)
 See the description of ALPHAR.

 BETA (output)
 See the description of ALPHAR.

 Q (input/output)
 On entry, if WANTQ = .TRUE., Q is an N-by-N
 matrix. On exit, Q has been postmultiplied by the
 left orthogonal transformation matrix which
 reorder (A, B); The leading M columns of Q form
 orthonormal bases for the specified pair of left
 eigenspaces (deflating subspaces). If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., Z is an N-by-N
 matrix. On exit, Z has been postmultiplied by the
 left orthogonal transformation matrix which
 reorder (A, B); The leading M columns of Z form
 orthonormal bases for the specified pair of left
 eigenspaces (deflating subspaces). If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1; If
 WANTZ = .TRUE., LDZ >= N.

 M (output)
 The dimension of the specified pair of left and
 right eigen- spaces (deflating subspaces). 0 <= M
 <= N.

 PL (output)
 If IJOB = 1, 4 or 5, PL, PR are lower bounds on
 the reciprocal of the norm of "projections" onto
 left and right eigenspaces with respect to the
 selected cluster. 0 < PL, PR <= 1. If M = 0 or M
 = N, PL = PR = 1. If IJOB = 0, 2 or 3, PL and PR
 are not referenced.

 PR (output)
 See the description of PL.

 DIF (output)
 If IJOB >= 2, DIF(1:2) store the estimates of Difu
 and Difl.
 If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper
 bounds on
 Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-
 norm-based estimates of Difu and Difl. If M = 0
 or N, DIF(1:2) = F-norm([A, B]). If IJOB = 0 or
 1, DIF is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 4*N+16.
 If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-
 M)). If IJOB = 3 or 5, LWORK >= MAX(4*N+16,
 4*M*(N-M)).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 If IJOB = 0, IWORK is not referenced. Otherwise,
 on exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 1. If
 IJOB = 1, 2 or 4, LIWORK >= N+6. If IJOB = 3 or
 5, LIWORK >= MAX(2*M*(N-M), N+6).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 =0: Successful exit.
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 =1: Reordering of (A, B) failed because the
 transformed matrix pair (A, B) would be too far
 from generalized Schur form; the problem is very
 ill-conditioned. (A, B) may have been partially
 reordered. If requested, 0 is returned in DIF(*),
 PL and PR.

FURTHER DETAILS

 STGSEN first collects the selected eigenvalues by computing
 orthogonal U and W that move them to the top left corner of
 (A, B). In other words, the selected eigenvalues are the
 eigenvalues of (A11, B11) in:

 U'*(A, B)*W = (A11 A12) (B11 B12) n1
 (0 A22),(0 B22) n2
 n1 n2 n1 n2

 where N = n1+n2 and U' means the transpose of U. The first
 n1 columns of U and W span the specified pair of left and
 right eigenspaces (deflating subspaces) of (A, B).

 If (A, B) has been obtained from the generalized real Schur
 decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then
 the reordered generalized real Schur form of (C, D) is given
 by

 (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',

 and the first n1 columns of Q*U and Z*W span the correspond-
 ing deflating subspaces of (C, D) (Q and Z store Q*U and
 Z*W, resp.).

 Note that if the selected eigenvalue is sufficiently ill-
 conditioned, then its value may differ significantly from
 its value before reordering.

 The reciprocal condition numbers of the left and right
 eigenspaces spanned by the first n1 columns of U and W (or
 Q*U and Z*W) may be returned in DIF(1:2), corresponding to
 Difu and Difl, resp.

 The Difu and Difl are defined as:
 ifu[(A11, B11), (A22, B22)] = sigma-min(Zu)
 and

 where sigma-min(Zu) is the smallest singular value of the
 (2*n1*n2)-by-(2*n1*n2) matrix
 u = [kron(In2, A11) -kron(A22', In1)]
 [kron(In2, B11) -kron(B22', In1)].

 Here, Inx is the identity matrix of size nx and A22' is the
 transpose of A22. kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 When DIF(2) is small, small changes in (A, B) can cause
 large changes in the deflating subspace. An approximate
 (asymptotic) bound on the maximum angular error in the com-
 puted deflating subspaces is PS * norm((A, B)) / DIF(2),

 where EPS is the machine precision.

 The reciprocal norm of the projectors on the left and right
 eigenspaces associated with (A11, B11) may be returned in PL
 and PR. They are computed as follows. First we compute L
 and R so that P*(A, B)*Q is block diagonal, where
 = (I -L) n1 Q = (I R) n1
 (0 I) n2 and (0 I) n2
 n1 n2 n1 n2

 and (L, R) is the solution to the generalized Sylvester
 equation 11*R - L*A22 = -A12

 Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-
 norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on
 the average absolute error of the selected eigenvalues is
 PS * norm((A, B)) / PL.

 There are also global error bounds which valid for perturba-
 tions up to a certain restriction: A lower bound (x) on the
 smallest F-norm(E,F) for which an eigenvalue of (A11, B11)
 may move and coalesce with an eigenvalue of (A22, B22) under
 perturbation (E,F), (i.e. (A + E, B + F), is

 x =
 min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

 An approximate bound on x can be computed from DIF(1:2), PL
 and PR.

 If y = (F-norm(E,F) / x) <= 1, the angles between the per-
 turbed (L', R') and unperturbed (L, R) left and right
 deflating subspaces associated with the selected cluster in
 the (1,1)-blocks can be bounded as

 max-angle(L, L') <= arctan(y * PL / (1 - y * (1 - PL *
 PL)**(1/2))
 max-angle(R, R') <= arctan(y * PR / (1 - y * (1 - PR *
 PR)**(1/2))

 See LAPACK User's Guide section 4.11 or the following refer-
 ences for more information.

 Note that if the default method for computing the
 Frobenius-norm- based estimate DIF is not wanted (see
 SLATDF), then the parameter IDIFJB (see below) should be
 changed from 3 to 4 (routine SLATDF (IJOB = 2 will be
 used)). See STGSYL for more details.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software,
 Report UMINF - 94.04, Department of Computing Science,
 Umea
 University, S-901 87 Umea, Sweden, 1994. Also as LAPACK
 Working
 Note 87. To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stgsja - compute the generalized singular value decomposi-
 tion (GSVD) of two real upper triangular (or trapezoidal)
 matrices A and B

SYNOPSIS

 SUBROUTINE STGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
 REAL TOLA, TOLB
 REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*),
 V(LDV,*), Q(LDQ,*), WORK(*)

 SUBROUTINE STGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL TOLA, TOLB
 REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*),
 V(LDV,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, [LDA], B, [LDB],
 TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, U, V, Q

 SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, [LDA], B,
 [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCY-
 CLE, INFO
 REAL :: TOLA, TOLB
 REAL, DIMENSION(:) :: ALPHA, BETA, WORK
 REAL, DIMENSION(:,:) :: A, B, U, V, Q
 C INTERFACE
 #include <sunperf.h>

 void stgsja(char jobu, char jobv, char jobq, int m, int p,
 int n, int k, int l, float *a, int lda, float *b,
 int ldb, float tola, float tolb, float *alpha,
 float *beta, float *u, int ldu, float *v, int ldv,
 float *q, int ldq, int *ncycle, int *info);

 void stgsja_64(char jobu, char jobv, char jobq, long m, long
 p, long n, long k, long l, float *a, long lda,
 float *b, long ldb, float tola, float tolb, float
 *alpha, float *beta, float *u, long ldu, float *v,
 long ldv, float *q, long ldq, long *ncycle, long
 *info);

PURPOSE

 stgsja computes the generalized singular value decomposition
 (GSVD) of two real upper triangular (or trapezoidal)
 matrices A and B.

 On entry, it is assumed that matrices A and B have the fol-
 lowing forms, which may be obtained by the preprocessing
 subroutine SGGSVP from a general M-by-N matrix A and P-by-N
 matrix B:

 N-K-L K L
 A = K (0 A12 A13) if M-K-L >= 0;
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 A = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 B = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.

 On exit,

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R),

 where U, V and Q are orthogonal matrices, Z' denotes the
 transpose of Z, R is a nonsingular upper triangular matrix,
 and D1 and D2 are ``diagonal'' matrices, which are of the
 following structures:
 If M-K-L >= 0,

 K L
 D1 = K (I 0)

 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12) K
 L (0 0 R22) L

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M

 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where
 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 R = (R11 R12 R13) is stored in A(1:M, N-K-L+1:N) and R33
 is stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The computation of the orthogonal transformation matrices U,
 V or Q is optional. These matrices may either be formed
 explicitly, or they may be postmultiplied into input
 matrices U1, V1, or Q1.
 STGSJA essentially uses a variant of Kogbetliantz algorithm
 to reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix
 A23 and L-by-L matrix B13 to the form:
 U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
 where U1, V1 and Q1 are orthogonal matrix, and Z' is the
 transpose of Z. C1 and S1 are diagonal matrices satisfying
 C1**2 + S1**2 = I,
 and R1 is an L-by-L nonsingular upper triangular matrix.

ARGUMENTS

 JOBU (input)
 = 'U': U must contain an orthogonal matrix U1 on
 entry, and the product U1*U is returned; = 'I': U
 is initialized to the unit matrix, and the orthog-
 onal matrix U is returned; = 'N': U is not com-
 puted.

 JOBV (input)
 = 'V': V must contain an orthogonal matrix V1 on
 entry, and the product V1*V is returned; = 'I': V
 is initialized to the unit matrix, and the orthog-
 onal matrix V is returned; = 'N': V is not com-
 puted.

 JOBQ (input)
 = 'Q': Q must contain an orthogonal matrix Q1 on
 entry, and the product Q1*Q is returned; = 'I': Q
 is initialized to the unit matrix, and the orthog-
 onal matrix Q is returned; = 'N': Q is not com-
 puted.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 K (input) K and L specify the subblocks in the input
 matrices A and B:
 A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 =
 B(1:L,N-L+1:N) of A and B, whose GSVD is going to
 be computed by STGSJA. See Further details.
 L (input) See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A(N-
 K+1:N,1:MIN(K+L,M)) contains the triangular
 matrix R or part of R. See Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, if neces-
 sary, B(M-K+1:L,N+M-K-L+1:N) contains a part of R.
 See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the convergence criteria for the
 Jacobi- Kogbetliantz iteration procedure. Gen-
 erally, they are the same as used in the prepro-
 cessing step, say TOLA = max(M,N)*norm(A)*MACHEPS,
 TOLB = max(P,N)*norm(B)*MACHEPS.

 TOLB (input)
 See the description of TOLA.

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = diag(C),
 BETA(K+1:K+L) = diag(S), or if M-K-L < 0,
 ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore,
 if K+L < N, ALPHA(K+L+1:N) = 0 and
 BETA(K+L+1:N) = 0.

 BETA (output)
 See the description of ALPHA.
 U (input) On entry, if JOBU = 'U', U must contain a matrix
 U1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBU = 'I', U contains the
 orthogonal matrix U; if JOBU = 'U', U contains the
 product U1*U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) On entry, if JOBV = 'V', V must contain a matrix
 V1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBV = 'I', V contains the
 orthogonal matrix V; if JOBV = 'V', V contains the
 product V1*V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) On entry, if JOBQ = 'Q', Q must contain a matrix
 Q1 (usually the orthogonal matrix returned by
 SGGSVP). On exit, if JOBQ = 'I', Q contains the
 orthogonal matrix Q; if JOBQ = 'Q', Q contains the
 product Q1*Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 NCYCLE (output)
 The number of cycles required for convergence.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1: the procedure does not converge after MAXIT
 cycles.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stgsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 generalized real Schur canonical form (or of any matrix pair
 (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z'
 denotes the transpose of Z

SYNOPSIS

 SUBROUTINE STGSNA(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 REAL A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), S(*),
 DIF(*), WORK(*)

 SUBROUTINE STGSNA_64(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 REAL A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), S(*),
 DIF(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSNA(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, DIF, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 SUBROUTINE TGSNA_64(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,

 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, DIF, WORK
 REAL, DIMENSION(:,:) :: A, B, VL, VR

 C INTERFACE
 #include <sunperf.h>

 void stgsna(char job, char howmnt, int *select, int n, float
 *a, int lda, float *b, int ldb, float *vl, int
 ldvl, float *vr, int ldvr, float *s, float *dif,
 int mm, int *m, int *info);

 void stgsna_64(char job, char howmnt, long *select, long n,
 float *a, long lda, float *b, long ldb, float *vl,
 long ldvl, float *vr, long ldvr, float *s, float
 *dif, long mm, long *m, long *info);

PURPOSE

 stgsna estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 generalized real Schur canonical form (or of any matrix pair
 (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z'
 denotes the transpose of Z.

 (A, B) must be in generalized real Schur form (as returned
 by SGGES), i.e. A is block upper triangular with 1-by-1 and
 2-by-2 diagonal blocks. B is upper triangular.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (DIF):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (DIF);
 = 'B': for both eigenvalues and eigenvectors (S
 and DIF).

 HOWMNT (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNT = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the eigenpair
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select condition numbers
 corresponding to a complex conjugate pair of
 eigenvalues w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) or both, must be set to .TRUE.. If

 HOWMNT = 'A', SELECT is not referenced.

 N (input) The order of the square matrix pair (A, B). N >=
 0.

 A (input) The upper quasi-triangular matrix A in the pair
 (A,B).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B in the pair (A,B).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VL, as
 returned by STGEVC. If JOB = 'V', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1.
 If JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns ov VR, as
 returned by STGEVC. If JOB = 'V', VR is not
 referenced.
 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1.
 If JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive ele-
 ments of S are set to the same value. Thus S(j),
 DIF(j), and the j-th columns of VL and VR all
 correspond to the same eigenpair (but not in gen-
 eral the j-th eigenpair, unless all eigenpairs are
 selected). If JOB = 'V', S is not referenced.

 DIF (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 DIF are set to the same value. If the eigenvalues
 cannot be reordered to compute DIF(j), DIF(j) is
 set to 0; this can only occur when the true value
 would be very small anyway. If JOB = 'E', DIF is
 not referenced.

 MM (input)

 The number of elements in the arrays S and DIF. MM
 >= M.

 M (output)
 The number of elements of the arrays S and DIF
 used to store the specified condition numbers; for
 each selected real eigenvalue one element is used,
 and for each selected complex conjugate pair of
 eigenvalues, two elements are used. If HOWMNT =
 'A', M is set to N.

 WORK (workspace)
 If JOB = 'E', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N. If
 JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(N+6) If JOB = 'E', IWORK is not refer-
 enced.

 INFO (output)
 =0: Successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value

FURTHER DETAILS

 The reciprocal of the condition number of a generalized
 eigenvalue w = (a, b) is defined as
 (w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))

 where u and v are the left and right eigenvectors of (A, B)
 corresponding to w; |z| denotes the absolute value of the
 complex number, and norm(u) denotes the 2-norm of the vector
 u.
 The pair (a, b) corresponds to an eigenvalue w = a/b (=
 u'Av/u'Bv) of the matrix pair (A, B). If both a and b equal
 zero, then (A B) is singular and S(I) = -1 is returned.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(A, B) / S(I)

 where EPS is the machine precision.

 The reciprocal of the condition number DIF(i) of right
 eigenvector u and left eigenvector v corresponding to the
 generalized eigenvalue w is defined as follows:

 a) If the i-th eigenvalue w = (a,b) is real

 Suppose U and V are orthogonal transformations such that

 U'*(A, B)*V = (S, T) = (a *) (b *)
 1
 (0 S22),(0 T22)
 n-1
 1 n-1 1 n-1

 Then the reciprocal condition number DIF(i) is
 Difl((a, b), (S22, T22)) = sigma-min(Zl),

 where sigma-min(Zl) denotes the smallest singular value
 of the
 2(n-1)-by-2(n-1) matrix

 Zl = [kron(a, In-1) -kron(1, S22)]
 [kron(b, In-1) -kron(1, T22)] .

 Here In-1 is the identity matrix of size n-1. kron(X, Y)
 is the
 Kronecker product between the matrices X and Y.

 Note that if the default method for computing DIF(i) is
 wanted
 (see SLATDF), then the parameter DIFDRI (see below)
 should be
 changed from 3 to 4 (routine SLATDF(IJOB = 2 will be
 used)).
 See STGSYL for more details.

 b) If the i-th and (i+1)-th eigenvalues are complex conju-
 gate pair,

 Suppose U and V are orthogonal transformations such that

 U'*(A, B)*V = (S, T) = (S11 *) (T11 *
) 2
 (0 S22),(0
 T22) n-2
 2 n-2 2 n-2

 and (S11, T11) corresponds to the complex conjugate
 eigenvalue
 pair (w, conjg(w)). There exist unitary matrices U1 and
 V1 such
 that

 U1'*S11*V1 = (s11 s12) and U1'*T11*V1 = (t11 t12
)
 (0 s22) (0 t22
)

 where the generalized eigenvalues w = s11/t11 and
 conjg(w) = s22/t22.

 Then the reciprocal condition number DIF(i) is bounded by

 min(d1, max(1, |real(s11)/real(s22)|)*d2)

 where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1),
 where
 Z1 is the complex 2-by-2 matrix

 Z1 = [s11 -s22]
 [t11 -t22],

 This is done by computing (using real arithmetic) the
 roots of the characteristical polynomial det(Z1' * Z1 -
 lambda I),
 where Z1' denotes the conjugate transpose of Z1 and
 det(X) denotes
 the determinant of X.

 and d2 is an upper bound on Difl((S11, T11), (S22, T22)),
 i.e. an
 upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-
 2)

 Z2 = [kron(S11', In-2) -kron(I2, S22)]
 [kron(T11', In-2) -kron(I2, T22)]

 Note that if the default method for computing DIF is
 wanted (see
 SLATDF), then the parameter DIFDRI (see below) should be
 changed
 from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See
 STGSYL
 for more details.

 For each eigenvalue/vector specified by SELECT, DIF stores a
 Frobenius norm-based estimate of Difl.

 An approximate error bound for the i-th computed eigenvector
 VL(i) or VR(i) is given by

 EPS * norm(A, B) / DIF(i).

 See ref. [2-3] for more details and further references.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software,
 Report UMINF - 94.04, Department of Computing Science,
 Umea
 University, S-901 87 Umea, Sweden, 1994. Also as LAPACK
 Working
 Note 87. To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and

 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stgsyl - solve the generalized Sylvester equation

SYNOPSIS

 SUBROUTINE STGSYL(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER IWORK(*)
 REAL SCALE, DIF
 REAL A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), E(LDE,*),
 F(LDF,*), WORK(*)

 SUBROUTINE STGSYL_64(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 INTEGER*8 IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER*8 IWORK(*)
 REAL SCALE, DIF
 REAL A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), E(LDE,*),
 F(LDF,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TGSYL(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C, [LDC],
 D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: TRANS
 INTEGER :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL :: SCALE, DIF
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, C, D, E, F

 SUBROUTINE TGSYL_64(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK],

 [IWORK], [INFO])

 CHARACTER(LEN=1) :: TRANS
 INTEGER(8) :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF,
 LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL :: SCALE, DIF
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A, B, C, D, E, F

 C INTERFACE
 #include <sunperf.h>

 void stgsyl(char trans, int ijob, int m, int n, float *a,
 int lda, float *b, int ldb, float *c, int ldc,
 float *d, int ldd, float *e, int lde, float *f,
 int ldf, float *scale, float *dif, int *info);

 void stgsyl_64(char trans, long ijob, long m, long n, float
 *a, long lda, float *b, long ldb, float *c, long
 ldc, float *d, long ldd, float *e, long lde, float
 *f, long ldf, float *scale, float *dif, long
 *info);

PURPOSE

 stgsyl solves the generalized Sylvester equation:

 A * R - L * B = scale * C (1)
 D * R - L * E = scale * F

 where R and L are unknown m-by-n matrices, (A, D), (B, E)
 and (C, F) are given matrix pairs of size m-by-m, n-by-n and
 m-by-n, respectively, with real entries. (A, D) and (B, E)
 must be in generalized (real) Schur canonical form, i.e. A,
 B are upper quasi triangular and D, E are upper triangular.

 The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an
 output scaling factor chosen to avoid overflow.

 In matrix notation (1) is equivalent to solve Zx = scale b,
 where Z is defined as

 Z = [kron(In, A) -kron(B', Im)] (2)
 [kron(In, D) -kron(E', Im)].

 Here Ik is the identity matrix of size k and X' is the tran-
 spose of X. kron(X, Y) is the Kronecker product between the
 matrices X and Y.

 If TRANS = 'T', STGSYL solves the transposed system Z'*y =
 scale*b, which is equivalent to solve for R and L in

 A' * R + D' * L = scale * C (3)
 R * B' + L * E' = scale * (-F)

 This case (TRANS = 'T') is used to compute an one-norm-based
 estimate of Dif[(A,D), (B,E)], the separation between the
 matrix pairs (A,D) and (B,E), using SLACON.

 If IJOB >= 1, STGSYL computes a Frobenius norm-based esti-
 mate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower

 bound on the reciprocal of the smallest singular value of Z.
 See [1-2] for more information.

 This is a level 3 BLAS algorithm.

ARGUMENTS

 TRANS (input)
 = 'N', solve the generalized Sylvester equation
 (1). = 'T', solve the 'transposed' system (3).

 IJOB (input)
 Specifies what kind of functionality to be per-
 formed. =0: solve (1) only.
 =1: The functionality of 0 and 3.
 =2: The functionality of 0 and 4.
 =3: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (look ahead strategy IJOB = 1 is used).
 =4: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (SGECON on sub-systems is used). Not
 referenced if TRANS = 'T'.

 M (input) The order of the matrices A and D, and the row
 dimension of the matrices C, F, R and L.

 N (input) The order of the matrices B and E, and the column
 dimension of the matrices C, F, R and L.

 A (input) The upper quasi triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1, M).

 B (input) The upper quasi triangular matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1, N).
 C (input/output)
 On entry, C contains the right-hand-side of the
 first matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, C has been overwritten by the
 solution R. If IJOB = 3 or 4 and TRANS = 'N', C
 holds R, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1, M).

 D (input) The upper triangular matrix D.

 LDD (input)
 The leading dimension of the array D. LDD >=
 max(1, M).

 E (input) The upper triangular matrix E.

 LDE (input)
 The leading dimension of the array E. LDE >=
 max(1, N).

 F (input/output)
 On entry, F contains the right-hand-side of the
 second matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, F has been overwritten by the
 solution L. If IJOB = 3 or 4 and TRANS = 'N', F
 holds L, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDF (input)
 The leading dimension of the array F. LDF >=
 max(1, M).

 DIF (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] =
 sigma_min(Z), where Z as in (2). If IJOB = 0 or
 TRANS = 'T', SCALE is not touched.
 SCALE (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] =
 sigma_min(Z), where Z as in (2). If IJOB = 0 or
 TRANS = 'T', SCALE is not touched.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK > = 1. If
 IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 dimension(M+N+2)

 INFO (output)
 =0: successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 >0: (A, D) and (B, E) have common or close eigen-
 values.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -

 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

 [2] B. Kagstrom, A Perturbation Analysis of the Generalized
 Sylvester
 Equation (AR - LB, DR - LE) = (C, F), SIAM J. Matrix
 Anal.
 Appl., 15(4):1045-1060, 1994

 [3] B. Kagstrom and L. Westin, Generalized Schur Methods
 with
 Condition Estimators for Solving the Generalized Sylves-
 ter
 Equation, IEEE Transactions on Automatic Control, Vol.
 34, No. 7,
 July 1989, pp 745-751.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stpcon - estimate the reciprocal of the condition number of
 a packed triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE STPCON(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(*), WORK(*)

 SUBROUTINE STPCON_64(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TPCON(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, WORK

 SUBROUTINE TPCON_64(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: A, WORK

 C INTERFACE

 #include <sunperf.h>

 void stpcon(char norm, char uplo, char diag, int n, float
 *a, float *rcond, int *info);
 void stpcon_64(char norm, char uplo, char diag, long n,
 float *a, float *rcond, long *info);

PURPOSE

 stpcon estimates the reciprocal of the condition number of a
 packed triangular matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).
 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stpmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE STPMV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, INCY
 REAL A(*), Y(*)

 SUBROUTINE STPMV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, INCY
 REAL A(*), Y(*)

 F95 INTERFACE
 SUBROUTINE TPMV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, INCY
 REAL, DIMENSION(:) :: A, Y

 SUBROUTINE TPMV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, INCY
 REAL, DIMENSION(:) :: A, Y

 C INTERFACE
 #include <sunperf.h>

 void stpmv(char uplo, char transa, char diag, int n, float
 *a, float *y, int incy);

 void stpmv_64(char uplo, char transa, char diag, long n,
 float *a, float *y, long incy);

PURPOSE

 stpmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'
 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)

 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stprfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix

SYNOPSIS

 SUBROUTINE STPRFS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE STPRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TPRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: A, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 SUBROUTINE TPRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: A, FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: B, X

 C INTERFACE
 #include <sunperf.h>

 void stprfs(char uplo, char transa, char diag, int n, int
 nrhs, float *a, float *b, int ldb, float *x, int
 ldx, float *ferr, float *berr, int *info);
 void stprfs_64(char uplo, char transa, char diag, long n,
 long nrhs, float *a, float *b, long ldb, float *x,
 long ldx, float *ferr, float *berr, long *info);

PURPOSE

 stprfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix.

 The solution matrix X must be computed by STPTRS or some
 other means before entering this routine. STPRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stpsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE STPSV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, INCY
 REAL A(*), Y(*)

 SUBROUTINE STPSV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, INCY
 REAL A(*), Y(*)

 F95 INTERFACE
 SUBROUTINE TPSV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, INCY
 REAL, DIMENSION(:) :: A, Y

 SUBROUTINE TPSV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, INCY
 REAL, DIMENSION(:) :: A, Y

 C INTERFACE
 #include <sunperf.h>

 void stpsv(char uplo, char transa, char diag, int n, float
 *a, float *y, int incy);

 void stpsv_64(char uplo, char transa, char diag, long n,
 float *a, float *y, long incy);

PURPOSE

 stpsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular matrix,
 supplied in packed form.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'

 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stptri - compute the inverse of a real upper or lower tri-
 angular matrix A stored in packed format

SYNOPSIS

 SUBROUTINE STPTRI(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, INFO
 REAL A(*)

 SUBROUTINE STPTRI_64(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, INFO
 REAL A(*)

 F95 INTERFACE
 SUBROUTINE TPTRI(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, INFO
 REAL, DIMENSION(:) :: A

 SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, INFO
 REAL, DIMENSION(:) :: A

 C INTERFACE
 #include <sunperf.h>

 void stptri(char uplo, char diag, int n, float *a, int
 *info);

 void stptri_64(char uplo, char diag, long n, float *a, long
 *info);

PURPOSE

 stptri computes the inverse of a real upper or lower tri-
 angular matrix A stored in packed format.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangular matrix A,
 stored columnwise in a linear array. The j-th
 column of A is stored in the array A as follows:
 if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j) for
 1<=i<=j; if UPLO = 'L', A(i + (j-1)*((2*n-j)/2) =
 A(i,j) for j<=i<=n. See below for further
 details. On exit, the (triangular) inverse of the
 original matrix, in the same packed storage for-
 mat.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

FURTHER DETAILS

 A triangular matrix A can be transferred to packed storage
 using one of the following program segments:

 UPLO = 'U': UPLO = 'L':

 JC = 1 JC = 1
 DO 2 J = 1, N DO 2 J = 1, N
 DO 1 I = 1, J DO 1 I = J, N
 A(JC+I-1) = A(I,J) A(JC+I-J) =
 A(I,J)
 1 CONTINUE 1 CONTINUE
 JC = JC + J JC = JC + N - J +
 1
 2 CONTINUE 2 CONTINUE

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 stptrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE STPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 SUBROUTINE STPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDB, INFO
 REAL A(*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 SUBROUTINE TPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL, DIMENSION(:) :: A
 REAL, DIMENSION(:,:) :: B

 C INTERFACE
 #include <sunperf.h>

 void stptrs(char uplo, char transa, char diag, int n, int
 nrhs, float *a, float *b, int ldb, int *info);

 void stptrs_64(char uplo, char transa, char diag, long n,
 long nrhs, float *a, float *b, long ldb, long
 *info);

PURPOSE

 stptrs solves a triangular system of the form

 where A is a triangular matrix of order N stored in packed
 format, and B is an N-by-NRHS matrix. A check is made to
 verify that A is nonsingular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strans - transpose and scale source matrix

SYNOPSIS

 SUBROUTINE STRANS(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 INTEGER M, N
 REAL SCALE
 REAL SOURCE(*), DEST(*)

 SUBROUTINE STRANS_64(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 INTEGER*8 M, N
 REAL SCALE
 REAL SOURCE(*), DEST(*)

 F95 INTERFACE
 SUBROUTINE TRANS([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 INTEGER :: M, N
 REAL :: SCALE
 REAL, DIMENSION(:) :: SOURCE, DEST

 SUBROUTINE TRANS_64([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 INTEGER(8) :: M, N
 REAL :: SCALE
 REAL, DIMENSION(:) :: SOURCE, DEST

 C INTERFACE
 #include <sunperf.h>

 void strans(char place, float scale, float *source, int m,
 int n, float *dest);

 void strans_64(char place, float scale, float *source, long
 m, long n, float *dest);

PURPOSE

 strans scales and transposes the source matrix. The N2 x N1
 result is written into SOURCE when PLACE = 'I' or 'i', and
 DEST when PLACE = 'O' or 'o'.
 PLACE = 'I' or 'i': SOURCE = SCALE * SOURCE'

 PLACE = 'O' or 'o': DEST = SCALE * SOURCE'

ARGUMENTS

 PLACE (input)
 Type of transpose. 'I' or 'i' for in-place, 'O'
 or 'o' for out-of-place. 'I' is default.

 SCALE (input)
 Scale factor on the SOURCE matrix.

 SOURCE (input/output)
 (M, N) on input. Array of (N, M) on output if
 in-place transpose.

 M (input)
 Number of rows in the SOURCE matrix on input.

 N (input)
 Number of columns in the SOURCE matrix on input.

 DEST (output)
 Scaled and transposed SOURCE matrix if out-of-
 place transpose. Not referenced if in-place tran-
 spose.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strcon - estimate the reciprocal of the condition number of
 a triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE STRCON(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER N, LDA, INFO
 INTEGER WORK2(*)
 REAL RCOND
 REAL A(LDA,*), WORK(*)

 SUBROUTINE STRCON_64(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 INTEGER*8 WORK2(*)
 REAL RCOND
 REAL A(LDA,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRCON(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TRCON_64(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL :: RCOND
 REAL, DIMENSION(:) :: WORK

 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>
 void strcon(char norm, char uplo, char diag, int n, float
 *a, int lda, float *rcond, int *info);

 void strcon_64(char norm, char uplo, char diag, long n,
 float *a, long lda, float *rcond, long *info);

PURPOSE

 strcon estimates the reciprocal of the condition number of a
 triangular matrix A, in either the 1-norm or the infinity-
 norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 strevc - compute some or all of the right and/or left eigen-
 vectors of a real upper quasi-triangular matrix T

SYNOPSIS

 SUBROUTINE STREVC(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 REAL T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 SUBROUTINE STREVC_64(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 REAL T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TREVC(SIDE, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: T, VL, VR

 SUBROUTINE TREVC_64(SIDE, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL],
 VR, [LDVR], MM, M, [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: T, VL, VR

 C INTERFACE

 #include <sunperf.h>

 void strevc(char side, char howmny, int *select, int n,
 float *t, int ldt, float *vl, int ldvl, float *vr,
 int ldvr, int mm, int *m, int *info);
 void strevc_64(char side, char howmny, long *select, long n,
 float *t, long ldt, float *vl, long ldvl, float
 *vr, long ldvr, long mm, long *m, long *info);

PURPOSE

 strevc computes some or all of the right and/or left eigen-
 vectors of a real upper quasi-triangular matrix T.

 The right eigenvector x and the left eigenvector y of T
 corresponding to an eigenvalue w are defined by:

 T*x = w*x, y'*T = w*y'

 where y' denotes the conjugate transpose of the vector y.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of T, or the products Q*X and/or Q*Y, where Q is an input
 orthogonal
 matrix. If T was obtained from the real-Schur factorization
 of an original matrix A = Q*T*Q', then Q*X and Q*Y are the
 matrices of right or left eigenvectors of A.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign. Corresponding to each 2-by-2 diagonal block is a com-
 plex conjugate pair of eigenvalues and eigenvectors; only
 one eigenvector of the pair is computed, namely the one
 corresponding to the eigenvalue with positive imaginary
 part.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvec-
 tors;
 = 'B': compute all right and/or left eigenvec-
 tors, and backtransform them using the input
 matrices supplied in VR and/or VL; = 'S': compute
 selected right and/or left eigenvectors, specified
 by the logical array SELECT.
 SELECT (input/output)
 If HOWMNY = 'S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY = 'A' or 'B', SELECT is
 not referenced. To select the real eigenvector
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select the complex

 eigenvector corresponding to a complex conjugate
 pair w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) must be set to .TRUE.; then on exit
 SELECT(j) is .TRUE. and SELECT(j+1) is .FALSE..

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 The upper quasi-triangular matrix T in Schur
 canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of Schur vectors returned by
 SHSEQR). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of T; VL has the same quasi-lower
 triangular form as T'. If T(i,i) is a real eigen-
 value, then the i-th column VL(i) of VL is its
 corresponding eigenvector. If T(i:i+1,i:i+1) is a
 2-by-2 block whose eigenvalues are complex-
 conjugate eigenvalues of T, then VL(i)+sqrt(-
 1)*VL(i+1) is the complex eigenvector correspond-
 ing to the eigenvalue with positive real part. if
 HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the
 left eigenvectors of T specified by SELECT, stored
 consecutively in the columns of VL, in the same
 order as their eigenvalues. A complex eigenvector
 corresponding to a complex eigenvalue is stored in
 two consecutive columns, the first holding the
 real part, and the second the imaginary part. If
 SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1
 otherwise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 orthogonal matrix Q of Schur vectors returned by
 SHSEQR). On exit, if SIDE = 'R' or 'B', VR con-
 tains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of T; VR has the same quasi-upper
 triangular form as T. If T(i,i) is a real eigen-
 value, then the i-th column VR(i) of VR is its
 corresponding eigenvector. If T(i:i+1,i:i+1) is a
 2-by-2 block whose eigenvalues are complex-
 conjugate eigenvalues of T, then VR(i)+sqrt(-
 1)*VR(i+1) is the complex eigenvector correspond-
 ing to the eigenvalue with positive real part. if
 HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the
 right eigenvectors of T specified by SELECT,
 stored consecutively in the columns of VR, in the
 same order as their eigenvalues. A complex eigen-
 vector corresponding to a complex eigenvalue is
 stored in two consecutive columns, the first hold-
 ing the real part and the second the imaginary

 part. If SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 real eigenvector occupies one column and each
 selected complex eigenvector occupies two columns.

 WORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 The algorithm used in this program is basically backward
 (forward) substitution, with scaling to make the the code
 robust against possible overflow.

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x| + |y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strexc - reorder the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that the diagonal block of T with
 row index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE STREXC(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)

 CHARACTER * 1 COMPQ
 INTEGER N, LDT, LDQ, IFST, ILST, INFO
 REAL T(LDT,*), Q(LDQ,*), WORK(*)

 SUBROUTINE STREXC_64(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK,
 INFO)

 CHARACTER * 1 COMPQ
 INTEGER*8 N, LDT, LDQ, IFST, ILST, INFO
 REAL T(LDT,*), Q(LDQ,*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TREXC(COMPQ, N, T, [LDT], Q, [LDQ], IFST, ILST, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: COMPQ
 INTEGER :: N, LDT, LDQ, IFST, ILST, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: T, Q

 SUBROUTINE TREXC_64(COMPQ, N, T, [LDT], Q, [LDQ], IFST, ILST, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: COMPQ
 INTEGER(8) :: N, LDT, LDQ, IFST, ILST, INFO
 REAL, DIMENSION(:) :: WORK
 REAL, DIMENSION(:,:) :: T, Q

 C INTERFACE
 #include <sunperf.h>

 void strexc(char compq, int n, float *t, int ldt, float *q,
 int ldq, int *ifst, int *ilst, int *info);

 void strexc_64(char compq, long n, float *t, long ldt, float

 *q, long ldq, long *ifst, long *ilst, long *info);

PURPOSE

 strexc reorders the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that the diagonal block of T with
 row index IFST is moved to row ILST.

 The real Schur form T is reordered by an orthogonal similar-
 ity transformation Z**T*T*Z, and optionally the matrix Q of
 Schur vectors is updated by postmultiplying it with Z.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper quasi-triangular matrix T, in
 Schur Schur canonical form. On exit, the reor-
 dered upper quasi-triangular matrix, again in
 Schur canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the orthogonal transformation
 matrix Z which reorders T. If COMPQ = 'N', Q is
 not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 T. The block with row index IFST is moved to row
 ILST, by a sequence of transpositions between
 adjacent blocks. On exit, if IFST pointed on
 entry to the second row of a 2-by-2 block, it is
 changed to point to the first row; ILST always
 points to the first row of the block in its final
 position (which may differ from its input value by
 +1 or -1). 1 <= IFST <= N; 1 <= ILST <= N.

 ILST (input/output)
 See the description of IFST.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: two adjacent blocks were too close to swap
 (the problem is very ill-conditioned); T may have
 been partially reordered, and ILST points to the
 first row of the current position of the block
 being moved.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strmm - perform one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A)

SYNOPSIS

 SUBROUTINE STRMM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER M, N, LDA, LDB
 REAL ALPHA
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE STRMM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER*8 M, N, LDA, LDB
 REAL ALPHA
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRMM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER :: M, N, LDA, LDB
 REAL :: ALPHA
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE TRMM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER(8) :: M, N, LDA, LDB
 REAL :: ALPHA
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void strmm(char side, char uplo, char transa, char diag, int
 m, int n, float alpha, float *a, int lda, float

 *b, int ldb);

 void strmm_64(char side, char uplo, char transa, char diag,
 long m, long n, float alpha, float *a, long lda,
 float *b, long ldb);

PURPOSE

 strmm performs one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) multi-
 plies B from the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit

 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 REAL array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE =
 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be one. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), when
 SIDE = 'R' or 'r' then LDA >= max(1, n).
 Unchanged on exit.

 B (input/output)
 REAL array of DIMENSION (LDB, n). Before entry,
 the leading m by n part of the array B must con-
 tain the matrix B, and on exit is overwritten
 by the transformed matrix.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x

SYNOPSIS

 SUBROUTINE STRMV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, LDA, INCY
 REAL A(LDA,*), Y(*)

 SUBROUTINE STRMV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, LDA, INCY
 REAL A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TRMV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TRMV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void strmv(char uplo, char transa, char diag, int n, float
 *a, int lda, float *y, int incy);

 void strmv_64(char uplo, char transa, char diag, long n,
 float *a, long lda, float *y, long incy);

PURPOSE

 strmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, where x is an n element vector and A is an n
 by n unit, or non-unit, upper or lower triangular matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not
 referenced. Before entry with UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the
 array A must contain the lower triangular matrix
 and the strictly upper triangular part of A is not
 referenced. Note that when DIAG = 'U' or 'u',
 the diagonal elements of A are not referenced

 either, but are assumed to be unity. Unchanged on
 exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix

SYNOPSIS

 SUBROUTINE STRRFS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDA, LDB, LDX, INFO
 INTEGER WORK2(*)
 REAL A(LDA,*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 SUBROUTINE STRRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDA, LDB, LDX, INFO
 INTEGER*8 WORK2(*)
 REAL A(LDA,*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDA, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, B, X

 SUBROUTINE TRRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDA, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: WORK2
 REAL, DIMENSION(:) :: FERR, BERR, WORK
 REAL, DIMENSION(:,:) :: A, B, X

 C INTERFACE
 #include <sunperf.h>

 void strrfs(char uplo, char transa, char diag, int n, int
 nrhs, float *a, int lda, float *b, int ldb, float
 *x, int ldx, float *ferr, float *berr, int *info);
 void strrfs_64(char uplo, char transa, char diag, long n,
 long nrhs, float *a, long lda, float *b, long ldb,
 float *x, long ldx, float *ferr, float *berr, long
 *info);

PURPOSE

 strrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix.

 The solution matrix X must be computed by STRTRS or some
 other means before entering this routine. STRRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(3*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 strsen - reorder the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that a selected cluster of eigen-
 values appears in the leading diagonal blocks of the upper
 quasi-triangular matrix T,

SYNOPSIS

 SUBROUTINE STRSEN(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, M,
 S, SEP, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 INTEGER N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 REAL S, SEP
 REAL T(LDT,*), Q(LDQ,*), WR(*), WI(*), WORK(*)

 SUBROUTINE STRSEN_64(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
 M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 INTEGER*8 N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 REAL S, SEP
 REAL T(LDT,*), Q(LDQ,*), WR(*), WI(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TRSEN(JOB, COMPQ, SELECT, N, T, [LDT], Q, [LDQ], WR, WI,
 M, S, SEP, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 INTEGER :: N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL :: S, SEP
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: T, Q

 SUBROUTINE TRSEN_64(JOB, COMPQ, SELECT, N, T, [LDT], Q, [LDQ], WR,
 WI, M, S, SEP, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 INTEGER(8) :: N, LDT, LDQ, M, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL :: S, SEP
 REAL, DIMENSION(:) :: WR, WI, WORK
 REAL, DIMENSION(:,:) :: T, Q
 C INTERFACE
 #include <sunperf.h>

 void strsen(char job, char compq, int *select, int n, float
 *t, int ldt, float *q, int ldq, float *wr, float
 *wi, int *m, float *s, float *sep, int *info);

 void strsen_64(char job, char compq, long *select, long n,
 float *t, long ldt, float *q, long ldq, float *wr,
 float *wi, long *m, float *s, float *sep, long
 *info);

PURPOSE

 strsen reorders the real Schur factorization of a real
 matrix A = Q*T*Q**T, so that a selected cluster of eigen-
 values appears in the leading diagonal blocks of the upper
 quasi-triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace.

 Optionally the routine computes the reciprocal condition
 numbers of the cluster of eigenvalues and/or the invariant
 subspace.

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elemnts equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (S) or the invari-
 ant subspace (SEP):
 = 'N': none;
 = 'E': for eigenvalues only (S);
 = 'V': for invariant subspace only (SEP);
 = 'B': for both eigenvalues and invariant subspace
 (S and SEP).

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select a real eigenvalue w(j),
 SELECT(j) must be set to w(j) and w(j+1),
 corresponding to a 2-by-2 diagonal block, either

 SELECT(j) or SELECT(j+1) or both must be set to
 either both included in the cluster or both
 excluded.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper quasi-triangular matrix T, in
 Schur canonical form. On exit, T is overwritten
 by the reordered matrix T, again in Schur canoni-
 cal form, with the selected eigenvalues in the
 leading diagonal blocks.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the orthogonal transformation
 matrix which reorders T; the leading M columns of
 Q form an orthonormal basis for the specified
 invariant subspace. If COMPQ = 'N', Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if COMPQ = 'V', LDQ >= N.

 WR (output)
 The real and imaginary parts, respectively, of the
 reordered eigenvalues of T. The eigenvalues are
 stored in the same order as on the diagonal of T,
 with WR(i) = T(i,i) and, if T(i:i+1,i:i+1) is a
 2-by-2 diagonal block, WI(i) > 0 and WI(i+1) =
 -WI(i). Note that if a complex eigenvalue is suf-
 ficiently ill-conditioned, then its value may
 differ significantly from its value before reord-
 ering.

 WI (output)
 See the description of WR.
 M (output)
 The dimension of the specified invariant subspace.
 0 < = M <= N.

 S (output)
 If JOB = 'E' or 'B', S is a lower bound on the
 reciprocal condition number for the selected clus-
 ter of eigenvalues. S cannot underestimate the
 true reciprocal condition number by more than a
 factor of sqrt(N). If M = 0 or N, S = 1. If JOB =
 'N' or 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', SEP is the estimated recipro-
 cal condition number of the specified invariant
 subspace. If M = 0 or N, SEP = norm(T). If JOB =
 'N' or 'E', SEP is not referenced.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOB = 'N',
 LWORK >= max(1,N); if JOB = 'E', LWORK >= M*(N-M);
 if JOB = 'V' or 'B', LWORK >= 2*M*(N-M).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 If JOB = 'N' or 'E', IWORK is not referenced.

 LIWORK (input)
 The dimension of the array IWORK. If JOB = 'N' or
 'E', LIWORK >= 1; if JOB = 'V' or 'B', LIWORK >=
 M*(N-M).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: reordering of T failed because some eigen-
 values are too close to separate (the problem is
 very ill-conditioned); T may have been partially
 reordered, and WR and WI contain the eigenvalues
 in the same order as in T; S and SEP (if
 requested) are set to zero.

FURTHER DETAILS

 STRSEN first collects the selected eigenvalues by computing
 an orthogonal transformation Z to move them to the top left
 corner of T. In other words, the selected eigenvalues are
 the eigenvalues of T11 in:

 Z'*T*Z = (T11 T12) n1
 (0 T22) n2
 n1 n2

 where N = n1+n2 and Z' means the transpose of Z. The first
 n1 columns of Z span the specified invariant subspace of T.

 If T has been obtained from the real Schur factorization of
 a matrix A = Q*T*Q', then the reordered real Schur factori-
 zation of A is given by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the
 first n1 columns of Q*Z span the corresponding invariant
 subspace of A.

 The reciprocal condition number of the average of the eigen-
 values of T11 may be returned in S. S lies between 0 (very
 badly conditioned) and 1 (very well conditioned). It is com-
 puted as follows. First we compute R so that

 P = (I R) n1
 (0 0) n2
 n1 n2

 is the projector on the invariant subspace associated with
 T11. R is the solution of the Sylvester equation:

 T11*R - R*T22 = T12.

 Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M)
 denote the two-norm of M. Then S is computed as the lower
 bound

 (1 + F-norm(R)**2)**(-1/2)

 on the reciprocal of 2-norm(P), the true reciprocal condi-
 tion number. S cannot underestimate 1 / 2-norm(P) by more
 than a factor of sqrt(N).

 An approximate error bound for the computed average of the
 eigenvalues of T11 is

 EPS * norm(T) / S

 where EPS is the machine precision.

 The reciprocal condition number of the right invariant sub-
 space spanned by the first n1 columns of Z (or of Q*Z) is
 returned in SEP. SEP is defined as the separation of T11
 and T22:

 sep(T11, T22) = sigma-min(C)

 where sigma-min(C) is the smallest singular value of the
 n1*n2-by-n1*n2 matrix

 C = kprod(I(n2), T11) - kprod(transpose(T22), I(n1))

 I(m) is an m by m identity matrix, and kprod denotes the
 Kronecker product. We estimate sigma-min(C) by the recipro-
 cal of an estimate of the 1-norm of inverse(C). The true
 reciprocal 1-norm of inverse(C) cannot differ from sigma-
 min(C) by more than a factor of sqrt(n1*n2).

 When SEP is small, small changes in T can cause large
 changes in the invariant subspace. An approximate bound on
 the maximum angular error in the computed right invariant
 subspace is

 EPS * norm(T) / SEP

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strsm - solve one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B

SYNOPSIS

 SUBROUTINE STRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER M, N, LDA, LDB
 REAL ALPHA
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE STRSM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 INTEGER*8 M, N, LDA, LDB
 REAL ALPHA
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRSM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER :: M, N, LDA, LDB
 REAL :: ALPHA
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE TRSM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 INTEGER(8) :: M, N, LDA, LDB
 REAL :: ALPHA
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void strsm(char side, char uplo, char transa, char diag, int
 m, int n, float alpha, float *a, int lda, float

 *b, int ldb);

 void strsm_64(char side, char uplo, char transa, char diag,
 long m, long n, float alpha, float *a, long lda,
 float *b, long ldb);

PURPOSE

 strsm solves one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B where alpha is a scalar, X
 and B are m by n matrices, A is a unit, or non-unit, upper
 or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 The matrix X is overwritten on B.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) appears
 on the left or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.
 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 REAL array of DIMENSION (LDA, k),
 where k is m when SIDE = 'L' or 'l' and is n
 when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.
 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.
 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be one. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), when
 SIDE = 'R' or 'r' then LDA >= max(1, n).
 Unchanged on exit.

 B (input/output)
 REAL array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the
 array B must contain the right-hand side
 matrix B, and on exit is overwritten by the
 solution matrix X.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. LDB
 >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 strsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a real upper
 quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 orthogonal)

SYNOPSIS

 SUBROUTINE STRSNA(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
 S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER WORK1(*)
 LOGICAL SELECT(*)
 REAL T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*), SEP(*),
 WORK(LDWORK,*)

 SUBROUTINE STRSNA_64(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER*8 WORK1(*)
 LOGICAL*8 SELECT(*)
 REAL T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*), SEP(*),
 WORK(LDWORK,*)

 F95 INTERFACE
 SUBROUTINE TRSNA(JOB, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER, DIMENSION(:) :: WORK1
 LOGICAL, DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, SEP
 REAL, DIMENSION(:,:) :: T, VL, VR, WORK

 SUBROUTINE TRSNA_64(JOB, HOWMNY, SELECT, N, T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: WORK1
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL, DIMENSION(:) :: S, SEP
 REAL, DIMENSION(:,:) :: T, VL, VR, WORK
 C INTERFACE
 #include <sunperf.h>

 void strsna(char job, char howmny, int *select, int n, float
 *t, int ldt, float *vl, int ldvl, float *vr, int
 ldvr, float *s, float *sep, int mm, int *m, int
 ldwork, int *info);

 void strsna_64(char job, char howmny, long *select, long n,
 float *t, long ldt, float *vl, long ldvl, float
 *vr, long ldvr, float *s, float *sep, long mm,
 long *m, long ldwork, long *info);

PURPOSE

 strsna estimates reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a real upper
 quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 orthogonal).

 T must be in Schur canonical form (as returned by SHSEQR),
 that is, block upper triangular with 1-by-1 and 2-by-2 diag-
 onal blocks; each 2-by-2 diagonal block has its diagonal
 elements equal and its off-diagonal elements of opposite
 sign.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (SEP):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (SEP);
 = 'B': for both eigenvalues and eigenvectors (S
 and SEP).

 HOWMNY (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNY = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the eigenpair
 corresponding to a real eigenvalue w(j), SELECT(j)
 must be set to .TRUE.. To select condition numbers
 corresponding to a complex conjugate pair of
 eigenvalues w(j) and w(j+1), either SELECT(j) or
 SELECT(j+1) or both, must be set to .TRUE.. If
 HOWMNY = 'A', SELECT is not referenced.

 N (input) The order of the matrix T. N >= 0.

 T (input) The upper quasi-triangular matrix T, in Schur
 canonical form.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of T (or of any Q*T*Q**T with Q orthogo-
 nal), corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VL, as returned by
 SHSEIN or STREVC. If JOB = 'V', VL is not refer-
 enced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and if JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of T (or of any Q*T*Q**T with Q orthogo-
 nal), corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VR, as returned by
 SHSEIN or STREVC. If JOB = 'V', VR is not refer-
 enced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 and if JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. For a complex
 conjugate pair of eigenvalues two consecutive
 elements of S are set to the same value. Thus
 S(j), SEP(j), and the j-th columns of VL and VR
 all correspond to the same eigenpair (but not in
 general the j-th eigenpair, unless all eigenpairs
 are selected). If JOB = 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. For a
 complex eigenvector two consecutive elements of
 SEP are set to the same value. If the eigenvalues
 cannot be reordered to compute SEP(j), SEP(j) is
 set to 0; this can only occur when the true value
 would be very small anyway. If JOB = 'E', SEP is
 not referenced.

 MM (input)
 The number of elements in the arrays S (if JOB =
 'E' or 'B') and/or SEP (if JOB = 'V' or 'B'). MM
 >= M.

 M (output)
 The number of elements of the arrays S and/or SEP
 actually used to store the estimated condition

 numbers. If HOWMNY = 'A', M is set to N.

 WORK (workspace)
 dimension(LDWORK,N+1) If JOB = 'E', WORK is not
 referenced.

 LDWORK (input)
 The leading dimension of the array WORK. LDWORK
 >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

 WORK1 (workspace)
 dimension(N) If JOB = 'E', WORK1 is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of an eigenvalue
 lambda is defined as

 S(lambda) = |v'*u| / (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of T
 corresponding to lambda; v' denotes the conjugate-transpose
 of v, and norm(u) denotes the Euclidean norm. These recipro-
 cal condition numbers always lie between zero (very badly
 conditioned) and one (very well conditioned). If n = 1,
 S(lambda) is defined to be 1.

 An approximate error bound for a computed eigenvalue W(i) is
 given by

 EPS * norm(T) / S(i)

 where EPS is the machine precision.

 The reciprocal of the condition number of the right eigen-
 vector u corresponding to lambda is defined as follows. Sup-
 pose

 T = (lambda c)
 (0 T22)

 Then the reciprocal condition number is

 SEP(lambda, T22) = sigma-min(T22 - lambda*I)

 where sigma-min denotes the smallest singular value. We
 approximate the smallest singular value by the reciprocal of
 an estimate of the one-norm of the inverse of T22 -
 lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).

 An approximate error bound for a computed right eigenvector
 VR(i) is given by

 EPS * norm(T) / SEP(i)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strsv - solve one of the systems of equations A*x = b, or
 A'*x = b

SYNOPSIS

 SUBROUTINE STRSV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, LDA, INCY
 REAL A(LDA,*), Y(*)

 SUBROUTINE STRSV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, LDA, INCY
 REAL A(LDA,*), Y(*)

 F95 INTERFACE
 SUBROUTINE TRSV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TRSV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, LDA, INCY
 REAL, DIMENSION(:) :: Y
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void strsv(char uplo, char transa, char diag, int n, float
 *a, int lda, float *y, int incy);

 void strsv_64(char uplo, char transa, char diag, long n,
 float *a, long lda, float *y, long incy);

PURPOSE

 strsv solves one of the systems of equations A*x = b, or
 A'*x = b, where b and x are n element vectors and A is an n
 by n unit, or non-unit, upper or lower triangular matrix.
 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced. Before entry with UPLO = 'L' or 'l', the
 leading n by n lower triangular part of the array
 A must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-

 enced. Note that when DIAG = 'U' or 'u', the
 diagonal elements of A are not referenced either,
 but are assumed to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strsyl - solve the real Sylvester matrix equation

SYNOPSIS

 SUBROUTINE STRSYL(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
 SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
 REAL SCALE
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 SUBROUTINE STRSYL_64(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 LDC, SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 INTEGER*8 ISGN, M, N, LDA, LDB, LDC, INFO
 REAL SCALE
 REAL A(LDA,*), B(LDB,*), C(LDC,*)

 F95 INTERFACE
 SUBROUTINE TRSYL(TRANA, TRANB, ISGN, M, N, A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 INTEGER :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL :: SCALE
 REAL, DIMENSION(:,:) :: A, B, C

 SUBROUTINE TRSYL_64(TRANA, TRANB, ISGN, M, N, A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 INTEGER(8) :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL :: SCALE
 REAL, DIMENSION(:,:) :: A, B, C

 C INTERFACE
 #include <sunperf.h>

 void strsyl(char trana, char tranb, int isgn, int m, int n,
 float *a, int lda, float *b, int ldb, float *c,
 int ldc, float *scale, int *info);

 void strsyl_64(char trana, char tranb, long isgn, long m,
 long n, float *a, long lda, float *b, long ldb,
 float *c, long ldc, float *scale, long *info);

PURPOSE

 strsyl solves the real Sylvester matrix equation:

 op(A)*X + X*op(B) = scale*C or
 op(A)*X - X*op(B) = scale*C,

 where op(A) = A or A**T, and A and B are both upper quasi-
 triangular. A is M-by-M and B is N-by-N; the right hand side
 C and the solution X are M-by-N; and scale is an output
 scale factor, set <= 1 to avoid overflow in X.

 A and B must be in Schur canonical form (as returned by
 SHSEQR), that is, block upper triangular with 1-by-1 and 2-
 by-2 diagonal blocks; each 2-by-2 diagonal block has its
 diagonal elements equal and its off-diagonal elements of
 opposite sign.

ARGUMENTS

 TRANA (input)
 Specifies the option op(A):
 = 'N': op(A) = A (No transpose)
 = 'T': op(A) = A**T (Transpose)
 = 'C': op(A) = A**H (Conjugate transpose = Tran-
 spose)

 TRANB (input)
 Specifies the option op(B):
 = 'N': op(B) = B (No transpose)
 = 'T': op(B) = B**T (Transpose)
 = 'C': op(B) = B**H (Conjugate transpose = Tran-
 spose)

 ISGN (input)
 Specifies the sign in the equation:
 = +1: solve op(A)*X + X*op(B) = scale*C
 = -1: solve op(A)*X - X*op(B) = scale*C

 M (input) The order of the matrix A, and the number of rows
 in the matrices X and C. M >= 0.

 N (input) The order of the matrix B, and the number of
 columns in the matrices X and C. N >= 0.

 A (input) The upper quasi-triangular matrix A, in Schur
 canonical form.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input) The upper quasi-triangular matrix B, in Schur
 canonical form.

 LDB (input)

 The leading dimension of the array B. LDB >=
 max(1,N).

 C (input/output)
 On entry, the M-by-N right hand side matrix C. On
 exit, C is overwritten by the solution matrix X.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M)

 SCALE (output)
 The scale factor, scale, set <= 1 to avoid over-
 flow in X.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: A and B have common or very close eigen-
 values; perturbed values were used to solve the
 equation (but the matrices A and B are unchanged).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strti2 - compute the inverse of a real upper or lower tri-
 angular matrix

SYNOPSIS

 SUBROUTINE STRTI2(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE STRTI2_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE TRTI2(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TRTI2_64(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void strti2(char uplo, char diag, int n, float *a, int lda,
 int *info);

 void strti2_64(char uplo, char diag, long n, float *a, long
 lda, long *info);

PURPOSE

 strti2 computes the inverse of a real upper or lower tri-
 angular matrix.

 This is the Level 2 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 Specifies whether the matrix A is upper or lower
 triangular. = 'U': Upper triangular
 = 'L': Lower triangular

 DIAG (input)
 Specifies whether or not the matrix A is unit tri-
 angular. = 'N': Non-unit triangular
 = 'U': Unit triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 On exit, the (triangular) inverse of the original
 matrix, in the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strtri - compute the inverse of a real upper or lower tri-
 angular matrix A

SYNOPSIS

 SUBROUTINE STRTRI(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER N, LDA, INFO
 REAL A(LDA,*)

 SUBROUTINE STRTRI_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 INTEGER*8 N, LDA, INFO
 REAL A(LDA,*)

 F95 INTERFACE
 SUBROUTINE TRTRI(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TRTRI_64(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 INTEGER(8) :: N, LDA, INFO
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void strtri(char uplo, char diag, int n, float *a, int lda,
 int *info);

 void strtri_64(char uplo, char diag, long n, float *a, long
 lda, long *info);

PURPOSE

 strtri computes the inverse of a real upper or lower tri-
 angular matrix A.

 This is the Level 3 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1. On exit, the
 (triangular) inverse of the original matrix, in
 the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 strtrs - solve a triangular system of the form A * X = B
 or A**T * X = B,

SYNOPSIS

 SUBROUTINE STRTRS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 SUBROUTINE STRTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 REAL A(LDA,*), B(LDB,*)

 F95 INTERFACE
 SUBROUTINE TRTRS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 SUBROUTINE TRTRS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 REAL, DIMENSION(:,:) :: A, B

 C INTERFACE
 #include <sunperf.h>

 void strtrs(char uplo, char transa, char diag, int n, int
 nrhs, float *a, int lda, float *b, int ldb, int
 *info);

 void strtrs_64(char uplo, char transa, char diag, long n,
 long nrhs, float *a, long lda, float *b, long ldb,
 long *info);

PURPOSE

 strtrs solves a triangular system of the form
 where A is a triangular matrix of order N, and B is an N-
 by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose = Tran-
 spose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A

 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stzrqf - routine is deprecated and has been replaced by rou-
 tine STZRZF

SYNOPSIS

 SUBROUTINE STZRQF(M, N, A, LDA, TAU, INFO)

 INTEGER M, N, LDA, INFO
 REAL A(LDA,*), TAU(*)

 SUBROUTINE STZRQF_64(M, N, A, LDA, TAU, INFO)

 INTEGER*8 M, N, LDA, INFO
 REAL A(LDA,*), TAU(*)

 F95 INTERFACE
 SUBROUTINE TZRQF(M, N, A, [LDA], TAU, [INFO])

 INTEGER :: M, N, LDA, INFO
 REAL, DIMENSION(:) :: TAU
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TZRQF_64(M, N, A, [LDA], TAU, [INFO])

 INTEGER(8) :: M, N, LDA, INFO
 REAL, DIMENSION(:) :: TAU
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void stzrqf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void stzrqf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 stzrqf routine is deprecated and has been replaced by rou-
 tine STZRZF.

 STZRQF reduces the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations.

 The upper trapezoidal matrix A is factored as
 A = (R 0) * Z,

 where Z is an N-by-N orthogonal matrix and R is an M-by-M
 upper triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= M.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the
 orthogonal matrix Z as a product of M elementary
 reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.

 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 stzrzf - reduce the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations

SYNOPSIS

 SUBROUTINE STZRZF(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER M, N, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 SUBROUTINE STZRZF_64(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 INTEGER*8 M, N, LDA, LWORK, INFO
 REAL A(LDA,*), TAU(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE TZRZF([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 SUBROUTINE TZRZF_64([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL, DIMENSION(:) :: TAU, WORK
 REAL, DIMENSION(:,:) :: A

 C INTERFACE
 #include <sunperf.h>

 void stzrzf(int m, int n, float *a, int lda, float *tau, int
 *info);

 void stzrzf_64(long m, long n, float *a, long lda, float
 *tau, long *info);

PURPOSE

 stzrzf reduces the M-by-N (M<=N) real upper trapezoidal
 matrix A to upper triangular form by means of orthogonal
 transformations.

 The upper trapezoidal matrix A is factored as

 A = (R 0) * Z,
 where Z is an N-by-N orthogonal matrix and R is an M-by-M
 upper triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the
 orthogonal matrix Z as a product of M elementary
 reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.
 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 sunperf_version - gets library information

 F95 INTERFACE

 C INTERFACE
 #include <sunperf.h>

 The C version of sunperf_version also return a pointer to
 the version string.

 char *sunperf_version(int *version, int *patch, int
 *update);

 char *sunperf_version_64(long *version, long *patch, long
 *update);

ARGUMENTS

 VERSION (output)
 Version number of library

 PATCH (output)
 Patch number of library

 Update number of library

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 svbrmm - variable block sparse row format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE SVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SVBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are matrices,
 A is a matrix represented in variable block sparse row format
 and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.
 INDX() integer array of length BNNZ+1 where BNNZ is the number of
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block

 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
 rows in matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 CPNTR() integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is
 the number of columns in matrix A.
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. For a general matrix (DESCRA(1)=0), array CPNTR can be
 different from RPNTR. For all other matrix types, RPNTR
 must equal CPNTR and a single array can be passed for both
 arguments.

 2. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

 SUBROUTINE SVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 svbrsm - variable block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE SVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE SVBRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 REAL ALPHA, BETA
 REAL DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 REAL ALPHA, BETA
 REAL, DIMENSION(:) :: VAL, DV
 REAL, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in variable block sparse row
 format and op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array containing the block entries of the block
 diagonal matrix D. The size of the J-th block is
 RPNTR(J+1)-RPNTR(J) and each block contains matrix
 entries stored column-major. The total length of
 array DV is given by the formula:

 sum over J from 1 to MB:
 ((RPNTR(J+1)-RPNTR(J))*(RPNTR(J+1)-RPNTR(J)))

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array

 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal block
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible

 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.

 INDX() integer array of length BNNZ+1 where BNNZ is the number
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block
 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A. Block column
 indices MUST be sorted in increasing order for each block
 row.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number
 of rows in square triangular matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments

 CPNTR() integer array of length MB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(MB+1) is set to M+CPNTR(1).
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments
 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least

 M = RPNTR(MB+1)-RPNTR(1).

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the VBR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3.

 6. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,
 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 SUBROUTINE SVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 swiener - perform Wiener deconvolution of two signals

SYNOPSIS

 SUBROUTINE SWIENER(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER N_POINTS, ISW, IERR
 REAL ACOR(*), XCOR(*), FLTR(*), EROP(*)

 SUBROUTINE SWIENER_64(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER*8 N_POINTS, ISW, IERR
 REAL ACOR(*), XCOR(*), FLTR(*), EROP(*)

 F95 INTERFACE
 SUBROUTINE WIENER(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER :: N_POINTS, ISW, IERR
 REAL, DIMENSION(:) :: ACOR, XCOR, FLTR, EROP

 SUBROUTINE WIENER_64(N_POINTS, ACOR, XCOR, FLTR, EROP, ISW, IERR)

 INTEGER(8) :: N_POINTS, ISW, IERR
 REAL, DIMENSION(:) :: ACOR, XCOR, FLTR, EROP

 C INTERFACE
 #include <sunperf.h>

 void swiener(int n_points, float *acor, float *xcor, float
 *fltr, float *erop, int *isw, int *ierr);

 void swiener_64(long n_points, float *acor, float *xcor,
 float *fltr, float *erop, long *isw, long *ierr);

PURPOSE

 swiener performs Wiener deconvolution of two signals.

ARGUMENTS

 N_POINTS (input)
 On entry, the number of points in the input corre-
 lations. Unchanged on exit.

 ACOR (input)
 On entry, autocorrelation coefficients. Unchanged
 on exit.

 XCOR (input)
 On entry, cross-correlation coefficients.
 Unchanged on exit.

 FLTR (output)
 On exit, filter coefficients.

 EROP (output)
 On exit, the prediction error.

 ISW (input)
 On entry, if ISW .EQ. 0 then perform spiking
 deconvolution, otherwise perform general deconvo-
 lution. Unchanged on exit.

 IERR (output)
 On exit, the deconvolution was successful iff IERR
 .EQ. 0, otherwise there was an error.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 use_threads - set the upper bound on the number of threads
 that the calling thread wants used

SYNOPSIS

 SUBROUTINE USE_THREADS(NTHREADS)

 INTEGER NTHREADS

 SUBROUTINE USE_THREADS_64(NTHREADS)

 INTEGER*8 NTHREADS

 F95 INTERFACE
 SUBROUTINE USE_THREADS(NTHREADS)

 INTEGER :: NTHREADS

 SUBROUTINE USE_THREADS_64(NTHREADS)

 INTEGER(8) :: NTHREADS

 C INTERFACE
 #include <sunperf.h>

 void use_threads(int nthreads);

 void use_threads_64(long nthreads);

PURPOSE

 use_threads THREADS sets an upper bound on the number of
 threads that the calling thread wants used. Subsequent
 calls to this routine result in replacement of the previous
 Use number for the calling thread. This counts all threads
 working on the callers behalf, so if it passes 2 for
 NTHREADS and then calls some subroutine, there will be at
 most 1 additional thread started to do the computation.
 There is no restriction that the sum of all NTHREADS from
 USE_THREADS calls may not exceed the number of CPUs in a
 system.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 using_threads - returns the current Use number set by the
 USE_THREADS subroutine

SYNOPSIS

 INTEGER FUNCTION USING_THREADS()

 INTEGER*8 FUNCTION USING_THREADS_64()

 F95 INTERFACE
 INTEGER FUNCTION USING_THREADS()

 INTEGER(8) FUNCTION USING_THREADS_64()

 C INTERFACE
 #include <sunperf.h>

 int using_threads();

 long using_threads_64();

PURPOSE

 using_threads THREADS will return the current Use number
 from the USE_THREADS subroutine for the calling thread.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcfftb - compute a periodic sequence from its Fourier coef-
 ficients. The VCFFT operations are normalized, so a call of
 VCFFTF followed by a call of VCFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VCFFTB(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER M, N, MDIMX

 SUBROUTINE VCFFTB_64(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER*8 M, N, MDIMX

 F95 INTERFACE
 SUBROUTINE FFTB([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX, DIMENSION(:) :: WSAVE
 COMPLEX, DIMENSION(:,:) :: X, XT
 INTEGER :: M, N, MDIMX

 SUBROUTINE FFTB_64([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX, DIMENSION(:) :: WSAVE
 COMPLEX, DIMENSION(:,:) :: X, XT
 INTEGER(8) :: M, N, MDIMX

 C INTERFACE
 #include <sunperf.h>

 void vcfftb(int m, int n, complex *x, complex *xt, int
 mdimx, char rowcol, complex *wsave);

 void vcfftb_64(long m, long n, complex *x, complex *xt, long
 mdimx, char rowcol, complex *wsave);

ARGUMENTS

 M (input) If ROWCOL = 'R' or 'r', M is the number of
 sequences to be transformed. Otherwise, M is the
 length of the sequences to be transformed. M >=
 0.

 N (input) If ROWCOL = 'R' or 'r', N is the length of the
 sequences to be transformed. Otherwise, N is the
 number of sequences to be transformed. N >= 0.

 X (input) On entry, if ROWCOL = 'R' or 'r' X(MDIMX,N) is an
 array whose first M rows contain the sequences to
 be transformed. Otherwise, X(MDIMX,N) contains
 data sequences of length M stored in N columns of
 X.

 XT (input)
 A work array. The size of this workspace depends
 on the number of threads that are used to execute
 this routine. There are various functions that
 can be used to determine the number of threads
 available (get_env, available_threads, etc). The
 appropriate amount, which is (number of threads *
 length of data sequences), can then be dynamically
 allocated for XT from the driver routine. If XT
 can only be allocated statically, then the size of
 XT should be (length of data sequences * number of
 sequences).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 ROWCOL (input)
 Indicates whether to transform rows ('R' or 'r')
 or columns ('C' or 'c').

 WSAVE (input/output)
 On entry, an array of dimension (L2+15) or
 greater, where L2 = 2*M if ROWCOL = ('R' or 'r').
 Otherwise, L2 = 2*N. WSAVE is initialized by
 VCFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcfftf - compute the Fourier coefficients of a periodic
 sequence. The VCFFT operations are normalized, so a call of
 VCFFTF followed by a call of VCFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VCFFTF(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER M, N, MDIMX

 SUBROUTINE VCFFTF_64(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER*8 M, N, MDIMX

 F95 INTERFACE
 SUBROUTINE FFTF([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX, DIMENSION(:) :: WSAVE
 COMPLEX, DIMENSION(:,:) :: X, XT
 INTEGER :: M, N, MDIMX

 SUBROUTINE FFTF_64([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX, DIMENSION(:) :: WSAVE
 COMPLEX, DIMENSION(:,:) :: X, XT
 INTEGER(8) :: M, N, MDIMX

 C INTERFACE
 #include <sunperf.h>

 void vcfftf(int m, int n, complex *x, complex *xt, int
 mdimx, char rowcol, complex *wsave);

 void vcfftf_64(long m, long n, complex *x, complex *xt, long
 mdimx, char rowcol, complex *wsave);

ARGUMENTS

 M (input) If ROWCOL = 'R' or 'r', M is the number of
 sequences to be transformed. Otherwise, M is the
 length of the sequences to be transformed. M >=
 0.

 N (input) If ROWCOL = 'R' or 'r', N is the length of the
 sequences to be transformed. Otherwise, N is the
 number of sequences to be transformed. N >= 0.

 X (input) On entry, if ROWCOL = 'R' or 'r' X(MDIMX,N) is an
 array whose first M rows contain the sequences to
 be transformed. Otherwise, X(MDIMX,N) contains
 data sequences of length M stored in N columns of
 X.

 XT (input)
 A work array. The size of this workspace depends
 on the number of threads that are used to execute
 this routine. There are various functions that
 can be used to determine the number of threads
 available (get_env, available_threads, etc). The
 appropriate amount, which is (number of threads *
 length of data sequences), can then be dynamically
 allocated for XT from the driver routine. If XT
 can only be allocated statically, then the size of
 XT should be (length of data sequences * number of
 sequences).

 MDIMX (input)
 Leading dimension of the arrays X. MDIMX >= M.

 ROWCOL (input)
 Indicates whether data sequences in X are stored
 row-wise ('R' or 'r') or column-wise ('C' or 'c').

 WSAVE (input/output)
 On entry, an array of dimension (L2+15) or
 greater, where L2 = 2*M if ROWCOL = ('R' or 'r').
 Otherwise, L2 = 2*N. WSAVE is initialized by
 VCFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcffti - initialize the array WSAVE, which is used in both
 VCFFTF and VCFFTB.

SYNOPSIS

 SUBROUTINE VCFFTI(N, WSAVE)

 COMPLEX WSAVE(*)
 INTEGER N

 SUBROUTINE VCFFTI_64(N, WSAVE)

 COMPLEX WSAVE(*)
 INTEGER*8 N

 F95 INTERFACE
 SUBROUTINE VFFTI(N, WSAVE)

 COMPLEX, DIMENSION(:) :: WSAVE
 INTEGER :: N

 SUBROUTINE VFFTI_64(N, WSAVE)

 COMPLEX, DIMENSION(:) :: WSAVE
 INTEGER(8) :: N

 C INTERFACE
 #include <sunperf.h>

 void vcffti(int n, complex *wsave);

 void vcffti_64(long n, complex *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (2*N + 15) or
 greater. VCFFTI needs to be called only once to
 initialize WSAVE before calling VCFFTF and/or
 VCFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcosqb - synthesize a Fourier sequence from its representa-
 tion in terms of a cosine series with odd wave numbers. The
 VCOSQ operations are normalized, so a call of VCOSQF fol-
 lowed by a call of VCOSQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VCOSQB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VCOSQB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE COSQB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vcosqb(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vcosqb_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, the rows contain the sequences to be
 transformed. On exit, the quarter-wave cosine
 synthesis of the input.

 XT (input)
 A work array.

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VCOSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcosqf - compute the Fourier coefficients in a cosine series
 representation with only odd wave numbers. The VCOSQ opera-
 tions are normalized, so a call of VCOSQF followed by a call
 of VCOSQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VCOSQF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VCOSQF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE COSQF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vcosqf(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vcosqf_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VCOSQF, a real
 two-dimensional array with dimensions of (MDIMX x
 N) whose rows contain the sequences to be
 transformed. On exit, the quarter-wave cosine
 transform of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VCOSTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcosqi - initialize the array WSAVE, which is used in both
 VCOSQF and VCOSQB.

SYNOPSIS

 SUBROUTINE VCOSQI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE VCOSQI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VCOSQI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE VCOSQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vcosqi(int n, float *wsave);

 void vcosqi_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. VCOSQI needs to be called only once to

 initialize WSAVE before calling VCOSQF and/or
 VCOSQB if N and WSAVE remain unchanged between
 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcost - compute the discrete Fourier cosine transform of an
 even sequence. The VCOST transform is normalized, so a call
 of VCOST followed by a call of VCOST will return the origi-
 nal sequence.

SYNOPSIS

 SUBROUTINE VCOST(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VCOST_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COST([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE COST_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vcost(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vcost_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N - 1 is a
 product of small primes. N >= 2.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VCOST, a real
 two- dimensional array with dimensions of (MDIMX x
 (N+1)) whose rows contain the sequences to be
 transformed. On exit, the cosine transform of the
 input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x (N-1)).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VCOSTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vcosti - initialize the array WSAVE, which is used in VCOST.

SYNOPSIS

 SUBROUTINE VCOSTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE VCOSTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VCOSTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE VCOSTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vcosti(int n, float *wsave);

 void vcosti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N - 1 is a product
 of small primes. N >= 2.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. VCOSTI is called once to initialize
 WSAVE before calling VCOST and need not be called

 again between calls to VCOST if N and WSAVE remain
 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdcosqb - synthesize a Fourier sequence from its representa-
 tion in terms of a cosine series with odd wave numbers. The
 VCOSQ operations are normalized, so a call of VCOSQF fol-
 lowed by a call of VCOSQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VDCOSQB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDCOSQB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE COSQB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdcosqb(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdcosqb_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, the rows contain the sequences to be
 transformed. On exit, the quarter-wave cosine
 synthesis of the input.

 XT (input)
 A work array.

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VCOSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdcosqf - compute the Fourier coefficients in a cosine
 series representation with only odd wave numbers. The VCOSQ
 operations are normalized, so a call of VCOSQF followed by a
 call of VCOSQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VDCOSQF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDCOSQF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COSQF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE COSQF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdcosqf(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdcosqf_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VCOSQF, a real
 two-dimensional array with dimensions of (MDIMX x
 N) whose rows contain the sequences to be
 transformed. On exit, the quarter-wave cosine
 transform of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VCOSQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdcosqi - initialize the array WSAVE, which is used in both
 VCOSQF and VCOSQB.

SYNOPSIS

 SUBROUTINE VDCOSQI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE VDCOSQI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VCOSQI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE VCOSQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vdcosqi(int n, double *wsave);

 void vdcosqi_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. VDCOSQI needs to be called only once to

 initialize WSAVE before calling VDCOSQF and/or
 VDCOSQB if N and WSAVE remain unchanged between
 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdcost - compute the discrete Fourier cosine transform of an
 even sequence. The VCOST transform is normalized, so a call
 of VCOST followed by a call of VCOST will return the origi-
 nal sequence.

SYNOPSIS

 SUBROUTINE VDCOST(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDCOST_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE COST([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE COST_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdcost(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdcost_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N - 1 is a
 product of small primes. N >= 2.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VCOST, a real
 two- dimensional array with dimensions of (MDIMX x
 (N+1)) whose rows contain the sequences to be
 transformed. On exit, the cosine transform of the
 input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x (N-1)).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater initialized by VDCOSTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdcosti - initialize the array WSAVE, which is used in
 VCOST.

SYNOPSIS

 SUBROUTINE VDCOSTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE VDCOSTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VCOSTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE VCOSTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vdcosti(int n, double *wsave);

 void vdcosti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N - 1 is a product
 of small primes. N >= 2.

 WSAVE (input)
 On entry, an array of dimension (2 * N + 15) or
 greater. VDCOSTI is called once to initialize

 WSAVE before calling VDCOST and need not be called
 again between calls to VDCOST if N and WSAVE
 remain unchanged. Thus, subsequent transforms of
 same size can be obtained faster than the first
 since they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdfftb - compute a periodic sequence from its Fourier coef-
 ficients. The VRFFT operations are normalized, so a call of
 VRFFTF followed by a call of VRFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VDFFTB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDFFTB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE FFTB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdfftb(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdfftb_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed. For VRFFTF, a real
 two-dimensional array X(M,N) whose rows contain
 the sequences to be transformed.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (N+15) or greater
 initialized by VRFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdfftf - compute the Fourier coefficients of a periodic
 sequence. The VRFFT operations are normalized, so a call of
 VRFFTF followed by a call of VRFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VDFFTF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDFFTF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE FFTF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdfftf(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdfftf_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed. For VRFFTF, a real
 two- dimensional array X(M,N) whose rows contain
 the sequences to be transformed.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (N+15) or greater
 initialized by VRFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdffti - initialize the array WSAVE, which is used in both
 VRFFTF and VRFFTB.

SYNOPSIS

 SUBROUTINE VDFFTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE VDFFTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VFFTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE VFFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vdffti(int n, double *wsave);

 void vdffti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (N + 15) or
 greater. VRFFTI needs to be called only once to
 initialize WSAVE before calling VRFFTF and/or
 VRFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdsinqb - synthesize a Fourier sequence from its representa-
 tion in terms of a sine series with odd wave numbers. The
 VSINQ operations are normalized, so a call of VSINQF fol-
 lowed by a call of VSINQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VDSINQB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDSINQB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE SINQB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdsinqb(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdsinqb_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, a real two- dimensional array with
 dimensions of (MDIMX x N) whose rows contain the
 sequences to be transformed. On exit, the
 quarter-wave sine synthesis of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least (2 *
 N + 15) for vector subroutines, initialized by
 VSINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdsinqf - compute the Fourier coefficients in a sine series
 representation with only odd wave numbers. The VSINQ opera-
 tions are normalized, so a call of VSINQF followed by a call
 of VSINQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VDSINQF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDSINQF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE SINQF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdsinqf(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdsinqf_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VSINQF, a real
 two-dimensional array with dimensions of (MDIMX x
 N) whose rows contain the sequences to be
 transformed. On exit, the quarter-wave sine
 transform of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least (2 *
 N + 15), initialized by VSINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdsinqi - initialize the array WSAVE, which is used in both
 VSINQF and VSINQB.

SYNOPSIS

 SUBROUTINE VDSINQI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE VDSINQI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VSINQI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE VSINQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vdsinqi(int n, double *wsave);

 void vdsinqi_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array with a dimension of at least (2
 * N + 15). The same work array can be used for

 both VSINQF and VSINQB as long as N remains
 unchanged. Different WSAVE arrays are required
 for different values of N. This initialization
 does not have to be repeated between calls to
 VSINQF or VSINQB as long as N and WSAVE remain
 unchanged, thus subsequent transforms can be
 obtained faster than the first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdsint - compute the discrete Fourier sine transform of an
 odd sequence. The VSINT transforms are unnormalized
 inverses of themselves, so a call of VSINT followed by
 another call of VSINT will multiply the input sequence by 2
 * (N+1). The VSINT transforms are normalized, so a call of
 VSINT followed by a call of VSINT will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VDSINT(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VDSINT_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 DOUBLE PRECISION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINT([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 SUBROUTINE SINT_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL(8), DIMENSION(:) :: WSAVE
 REAL(8), DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vdsint(int m, int n, double *x, double *xt, int mdimx,
 double *wsave);

 void vdsint_64(long m, long n, double *x, double *xt, long
 mdimx, double *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.
 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N+1 is a pro-
 duct of small primes. N >= 0.

 X (input/output)
 On entry, a real two-dimensional array with dimen-
 sions of (MDIMX x (N+1)) whose rows contain the
 sequences to be transformed. On exit, the sine
 transform of the input.

 XT (input/output)
 A real two-dimensional work array with dimensions
 of (MDIMX x (N+1)).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least
 int(2.5 * N + 15) initialized by VSINTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vdsinti - initialize the array WSAVE, which is used in sub-
 routine VSINT.

SYNOPSIS

 SUBROUTINE VDSINTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE VDSINTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VSINTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE VSINTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vdsinti(int n, double *wsave);

 void vdsinti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (2N + N/2 + 15) or
 greater. VSINTI is called once to initialize WSAVE
 before calling VSINT and need not be called again
 between calls to VSINT if N and WSAVE remain

 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vrfftb - compute a periodic sequence from its Fourier coef-
 ficients. The VRFFT operations are normalized, so a call of
 VRFFTF followed by a call of VRFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VRFFTB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VRFFTB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE FFTB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vrfftb(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vrfftb_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed. For VRFFTF, a real
 two-dimensional array X(M,N) whose rows contain
 the sequences to be transformed.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (N+15) or greater
 initialized by VRFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vrfftf - compute the Fourier coefficients of a periodic
 sequence. The VRFFT operations are normalized, so a call of
 VRFFTF followed by a call of VRFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VRFFTF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VRFFTF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE FFTF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vrfftf(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vrfftf_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed. For VRFFTF, a real
 two- dimensional array X(M,N) whose rows contain
 the sequences to be transformed.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array of dimension (N+15) or greater
 initialized by VRFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vrffti - initialize the array WSAVE, which is used in both
 VRFFTF and VRFFTB.

SYNOPSIS

 SUBROUTINE VRFFTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE VRFFTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VFFTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE VFFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vrffti(int n, float *wsave);

 void vrffti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (N + 15) or
 greater. VRFFTI needs to be called only once to
 initialize WSAVE before calling VRFFTF and/or
 VRFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vsinqb - synthesize a Fourier sequence from its representa-
 tion in terms of a sine series with odd wave numbers. The
 VSINQ operations are normalized, so a call of VSINQF fol-
 lowed by a call of VSINQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VSINQB(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VSINQB_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQB([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE SINQB_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vsinqb(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vsinqb_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, a real two- dimensional array with
 dimensions of (MDIMX x N) whose rows contain the
 sequences to be transformed. On exit, the
 quarter-wave sine synthesis of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least (2 *
 N + 15) for vector subroutines, initialized by
 VSINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vsinqf - compute the Fourier coefficients in a sine series
 representation with only odd wave numbers. The VSINQ opera-
 tions are normalized, so a call of VSINQF followed by a call
 of VSINQB will return the original sequence.

SYNOPSIS

 SUBROUTINE VSINQF(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VSINQF_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINQF([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE SINQF_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vsinqf(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vsinqf_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input/output)
 On entry, an array of length N containing the
 sequence to be transformed. For VSINQF, a real
 two-dimensional array with dimensions of (MDIMX x
 N) whose rows contain the sequences to be
 transformed. On exit, the quarter-wave sine
 transform of the input.

 XT (input)
 A real two-dimensional work array with dimensions
 of (MDIMX x N).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least (2 *
 N + 15), initialized by VSINQI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vsinqi - initialize the array WSAVE, which is used in both
 VSINQF and VSINQB.

SYNOPSIS

 SUBROUTINE VSINQI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE VSINQI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VSINQI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE VSINQI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vsinqi(int n, float *wsave);

 void vsinqi_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. The
 method is most efficient when N is a product of
 small primes.

 WSAVE (input)
 On entry, an array with a dimension of at least (2
 * N + 15). The same work array can be used for

 both VSINQF and VSINQB as long as N remains
 unchanged. Different WSAVE arrays are required
 for different values of N. This initialization
 does not have to be repeated between calls to
 VSINQF or VSINQB as long as N and WSAVE remain
 unchanged, thus subsequent transforms can be
 obtained faster than the first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vsint - compute the discrete Fourier sine transform of an
 odd sequence. The VSINT transforms are unnormalized
 inverses of themselves, so a call of VSINT followed by
 another call of VSINT will multiply the input sequence by 2
 * (N+1). The VSINT transforms are normalized, so a call of
 VSINT followed by a call of VSINT will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VSINT(M, N, X, XT, MDIMX, WSAVE)

 INTEGER M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 SUBROUTINE VSINT_64(M, N, X, XT, MDIMX, WSAVE)

 INTEGER*8 M, N, MDIMX
 REAL X(MDIMX,*), XT(MDIMX,*), WSAVE(*)

 F95 INTERFACE
 SUBROUTINE SINT([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 SUBROUTINE SINT_64([M], [N], X, XT, [MDIMX], WSAVE)

 INTEGER(8) :: M, N, MDIMX
 REAL, DIMENSION(:) :: WSAVE
 REAL, DIMENSION(:,:) :: X, XT

 C INTERFACE
 #include <sunperf.h>

 void vsint(int m, int n, float *x, float *xt, int mdimx,
 float *wsave);

 void vsint_64(long m, long n, float *x, float *xt, long
 mdimx, float *wsave);

ARGUMENTS

 M (input)
 The number of sequences to be transformed. M >=
 0.
 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N+1 is a pro-
 duct of small primes. N >= 0.

 X (input/output)
 On entry, a real two-dimensional array with dimen-
 sions of (MDIMX x (N+1)) whose rows contain the
 sequences to be transformed. On exit, the sine
 transform of the input.

 XT (input/output)
 A real two-dimensional work array with dimensions
 of (MDIMX x (N+1)).

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 WSAVE (input)
 On entry, an array with dimension of at least
 int(2.5 * N + 15) initialized by VSINTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vsinti - initialize the array WSAVE, which is used in sub-
 routine VSINT.

SYNOPSIS

 SUBROUTINE VSINTI(N, WSAVE)

 INTEGER N
 REAL WSAVE(*)

 SUBROUTINE VSINTI_64(N, WSAVE)

 INTEGER*8 N
 REAL WSAVE(*)

 F95 INTERFACE
 SUBROUTINE VSINTI(N, WSAVE)

 INTEGER :: N
 REAL, DIMENSION(:) :: WSAVE

 SUBROUTINE VSINTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL, DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void vsinti(int n, float *wsave);

 void vsinti_64(long n, float *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (2N + N/2 + 15) or
 greater. VSINTI is called once to initialize WSAVE
 before calling VSINT and need not be called again
 between calls to VSINT if N and WSAVE remain

 unchanged. Thus, subsequent transforms of same
 size can be obtained faster than the first since
 they do not require initialization of the
 workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vzfftb - compute a periodic sequence from its Fourier coef-
 ficients. The VZFFT operations are normalized, so a call of
 VZFFTF followed by a call of VZFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VZFFTB(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 DOUBLE COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER M, N, MDIMX

 SUBROUTINE VZFFTB_64(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 DOUBLE COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER*8 M, N, MDIMX

 F95 INTERFACE
 SUBROUTINE FFTB([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX(8), DIMENSION(:) :: WSAVE
 COMPLEX(8), DIMENSION(:,:) :: X, XT
 INTEGER :: M, N, MDIMX

 SUBROUTINE FFTB_64([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX(8), DIMENSION(:) :: WSAVE
 COMPLEX(8), DIMENSION(:,:) :: X, XT
 INTEGER(8) :: M, N, MDIMX

 C INTERFACE
 #include <sunperf.h>

 void vzfftb(int m, int n, doublecomplex *x, doublecomplex
 *xt, int mdimx, char rowcol, doublecomplex
 *wsave);

 void vzfftb_64(long m, long n, doublecomplex *x, doublecom-
 plex *xt, long mdimx, char rowcol, doublecomplex
 *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, the rows contain the sequences to be
 transformed.

 XT (input)
 A work array.

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 ROWCOL (input)
 Indicates whether to transform rows ('R' or 'r')
 or columns ('C' or 'c').

 WSAVE (input/output)
 On entry, an array of dimension (K+15) or greater,
 where K = M if ROWCOL = ('R' or 'r'). Otherwise,
 K = N. WSAVE is initialized by VZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vzfftf - compute the Fourier coefficients of a periodic
 sequence. The VZFFT operations are normalized, so a call of
 VZFFTF followed by a call of VZFFTB will return the original
 sequence.

SYNOPSIS

 SUBROUTINE VZFFTF(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 DOUBLE COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER M, N, MDIMX

 SUBROUTINE VZFFTF_64(M, N, X, XT, MDIMX, ROWCOL, WSAVE)

 CHARACTER * 1 ROWCOL
 DOUBLE COMPLEX X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
 INTEGER*8 M, N, MDIMX

 F95 INTERFACE
 SUBROUTINE FFTF([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX(8), DIMENSION(:) :: WSAVE
 COMPLEX(8), DIMENSION(:,:) :: X, XT
 INTEGER :: M, N, MDIMX

 SUBROUTINE FFTF_64([M], [N], X, XT, [MDIMX], ROWCOL, WSAVE)

 CHARACTER(LEN=1) :: ROWCOL
 COMPLEX(8), DIMENSION(:) :: WSAVE
 COMPLEX(8), DIMENSION(:,:) :: X, XT
 INTEGER(8) :: M, N, MDIMX

 C INTERFACE
 #include <sunperf.h>

 void vzfftf(int m, int n, doublecomplex *x, doublecomplex
 *xt, int mdimx, char rowcol, doublecomplex
 *wsave);

 void vzfftf_64(long m, long n, doublecomplex *x, doublecom-
 plex *xt, long mdimx, char rowcol, doublecomplex
 *wsave);

ARGUMENTS

 M (input) The number of sequences to be transformed. M >=
 0.

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array X(M,N) whose rows contain the
 sequences to be transformed.

 XT (input)
 A work array.

 MDIMX (input)
 Leading dimension of the arrays X and XT as speci-
 fied in a dimension or type statement. MDIMX >=
 M.

 ROWCOL (input)
 Indicates whether to transform rows ('R' or 'r')
 or columns ('C' or 'c').

 WSAVE (input/output)
 On entry, an array of dimension (K+15) or greater,
 where K = M if ROWCOL = ('R' or 'r'). Otherwise,
 K = N. WSAVE is initialized by VZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 vzffti - initialize the array WSAVE, which is used in both
 VZFFTF and VZFFTB.

SYNOPSIS

 SUBROUTINE VZFFTI(N, WSAVE)

 DOUBLE COMPLEX WSAVE(*)
 INTEGER N

 SUBROUTINE VZFFTI_64(N, WSAVE)

 DOUBLE COMPLEX WSAVE(*)
 INTEGER*8 N

 F95 INTERFACE
 SUBROUTINE VFFTI(N, WSAVE)

 COMPLEX(8), DIMENSION(:) :: WSAVE
 INTEGER :: N

 SUBROUTINE VFFTI_64(N, WSAVE)

 COMPLEX(8), DIMENSION(:) :: WSAVE
 INTEGER(8) :: N

 C INTERFACE
 #include <sunperf.h>

 void vzffti(int n, doublecomplex *wsave);

 void vzffti_64(long n, doublecomplex *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input)
 On entry, an array of dimension (N + 15) or
 greater. VZFFTI needs to be called only once to
 initialize WSAVE before calling VZFFTF and/or
 VZFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zaxpy - compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE ZAXPY(N, ALPHA, X, INCX, Y, INCY)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZAXPY_64(N, ALPHA, X, INCX, Y, INCY)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE AXPY([N], ALPHA, X, [INCX], Y, [INCY])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE AXPY_64([N], ALPHA, X, [INCX], Y, [INCY])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zaxpy(int n, doublecomplex *alpha, doublecomplex *x,
 int incx, doublecomplex *y, int incy);

 void zaxpy_64(long n, doublecomplex *alpha, doublecomplex
 *x, long incx, doublecomplex *y, long incy);

PURPOSE

 zaxpy compute y := alpha * x + y where alpha is a scalar and
 x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 array of DIMENSION at least (1 + (n - 1)*abs(
 INCX)). Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 array of DIMENSION at least (1 + (n - 1)*abs(
 INCY)). On entry, the incremented array Y must
 contain the vector y. On exit, Y is overwritten by
 the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zaxpyi - Compute y := alpha * x + y

SYNOPSIS

 SUBROUTINE ZAXPYI(NZ, A, X, INDX, Y)

 DOUBLE COMPLEX A
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE ZAXPYI_64(NZ, A, X, INDX, Y)

 DOUBLE COMPLEX A
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE AXPYI([NZ], [A], X, INDX, Y)

 COMPLEX(8) :: A
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE AXPYI_64([NZ], [A], X, INDX, Y)

 COMPLEX(8) :: A
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZAXPYI Compute y := alpha * x + y where alpha is a scalar, x
 is a sparse vector, and y is a vector in full storage form

 do i = 1, n
 y(indx(i)) = alpha * x(i) + y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 A (input)
 On entry, A(LPHA) specifies the scaling value.
 Unchanged on exit. A is defaulted to (1.0D0,0.0D0)
 for F95 INTERFACE.
 X (input)
 Vector containing the values of the compressed form.
 Unchanged on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector on input which contains the vector Y in full
 storage form. On exit, only the elements
 corresponding to the indices in INDX have been
 modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbcomm - block coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZBCOMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BJNDX(BNNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBCOMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BJNDX, BNNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BNNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BJNDX(BNNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BCOMM(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, KB, BNNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BCOMM_64(TRANSA,MB,N,KB,ALPHA,DESCRA,VAL,BINDX, BJNDX,
 * BNNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, KB, BNNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BJNDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block coordinate format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the non-zero block entries of A, in any order.
 Each block is stored in standard column-major form.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BJNDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BNNZ number of block entries

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbdimm - block diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZBDIMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBDIMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BLDA*NBDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDIMM(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BDIMM_64(TRANSA,MB, [N], KB, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block diagonal format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LB*LB*BLDA-by-NBDIAG scalar array
 consisting of the NBDIAG nonzero block diagonal in
 any order. Each dense block is stored in standard
 column-major form.

 BLDA leading block dimension of VAL().

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 block diagonals of A in VAL. Lower triangular
 block diagonals have negative offsets, the main
 block diagonal has offset 0, and upper triangular

 block diagonals have positive offset.

 NBDIAG the number of non-zero block diagonals in A.
 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbdism - block diagonal format triangular solve

SYNOPSIS

 SUBROUTINE ZBDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER IBDIAG(NBDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE ZBDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BLDA, IBDIAG, NBDIAG, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, NBDIAG, LB,
 * LDB, LDC, LWORK
 INTEGER*8 IBDIAG(NBDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA, NBDIAG), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BDISM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BDISM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BLDA,
 * IBDIAG, NBDIAG, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, BLDA, NBDIAG, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, IBDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block diagonal format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of length MB*LB*LB containing the elements of
 the diagonal blocks of the matrix D. The size of each
 square block is LB-by-LB and each block
 is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() Two-dimensional LB*LB*BLDA-by-NBDIAG scalar array

 consisting of the NBDIAG non-zero block diagonal.
 Each dense block is stored in standard column-major form.

 BLDA Leading block dimension of VAL(). Should be greater
 than or equal to MB.

 IBDIAG() integer array of length NBDIAG consisting of the
 corresponding diagonal offsets of the non-zero block
 diagonals of A in VAL. Lower triangular block diagonals
 have negative offsets, the main block diagonal has offset
 0, and upper triangular block diagonals have positive offset.
 Elements of IBDIAG MUST be sorted in increasing order.

 NBDIAG The number of non-zero block diagonals in A.

 LB Dimension of dense blocks composing A.

 B() Rectangular array with first dimension LDB.

 LDB Leading dimension of B.

 BETA Scalar parameter.

 C() Rectangular array with first dimension LDC.

 LDC Leading dimension of C.

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK array,
 returns this value as the first entry of the WORK array,
 and no error message related to LWORK is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BDI representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zbdsqr - compute the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B.

SYNOPSIS

 SUBROUTINE ZBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
 LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX VT(LDVT,*), U(LDU,*), C(LDC,*)
 INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 SUBROUTINE ZBDSQR_64(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
 C, LDC, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX VT(LDVT,*), U(LDU,*), C(LDC,*)
 INTEGER*8 N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE BDSQR(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: VT, U, C
 INTEGER :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 SUBROUTINE BDSQR_64(UPLO, [N], [NCVT], [NRU], [NCC], D, E, VT, [LDVT],
 U, [LDU], C, [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: VT, U, C
 INTEGER(8) :: N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void zbdsqr(char uplo, int n, int ncvt, int nru, int ncc,
 double *d, double *e, doublecomplex *vt, int ldvt,

 doublecomplex *u, int ldu, doublecomplex *c, int
 ldc, int *info);
 void zbdsqr_64(char uplo, long n, long ncvt, long nru, long
 ncc, double *d, double *e, doublecomplex *vt, long
 ldvt, doublecomplex *u, long ldu, doublecomplex
 *c, long ldc, long *info);

PURPOSE

 zbdsqr computes the singular value decomposition (SVD) of a
 real N-by-N (upper or lower) bidiagonal matrix B: B = Q * S
 * P' (P' denotes the transpose of P), where S is a diagonal
 matrix with non-negative diagonal elements (the singular
 values of B), and Q and P are orthogonal matrices.

 The routine computes S, and optionally computes U * Q, P' *
 VT, or Q' * C, for given complex input matrices U, VT, and
 C.

 See "Computing Small Singular Values of Bidiagonal Matrices
 With Guaranteed High Relative Accuracy," by J. Demmel and W.
 Kahan, LAPACK Working Note #3 (or SIAM J. Sci. Statist. Com-
 put. vol. 11, no. 5, pp. 873-912, Sept 1990) and
 "Accurate singular values and differential qd algorithms,"
 by B. Parlett and V. Fernando, Technical Report CPAM-554,
 Mathematics Department, University of California at Berke-
 ley, July 1992 for a detailed description of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': B is upper bidiagonal;
 = 'L': B is lower bidiagonal.

 N (input) The order of the matrix B. N >= 0.

 NCVT (input)
 The number of columns of the matrix VT. NCVT >= 0.

 NRU (input)
 The number of rows of the matrix U. NRU >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 D (input/output)
 On entry, the n diagonal elements of the bidiago-
 nal matrix B. On exit, if INFO=0, the singular
 values of B in decreasing order.

 E (input/output)
 On entry, the elements of E contain the offdiago-
 nal elements of of the bidiagonal matrix whose SVD
 is desired. On normal exit (INFO = 0), E is des-
 troyed. If the algorithm does not converge (INFO
 > 0), D and E will contain the diagonal and super-
 diagonal elements of a bidiagonal matrix orthogo-
 nally equivalent to the one given as input. E(N)
 is used for workspace.

 VT (input/output)
 On entry, an N-by-NCVT matrix VT. On exit, VT is
 overwritten by P' * VT. VT is not referenced if
 NCVT = 0.

 LDVT (input)
 The leading dimension of the array VT. LDVT >=
 max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.

 U (input/output)
 On entry, an NRU-by-N matrix U. On exit, U is
 overwritten by U * Q. U is not referenced if NRU
 = 0.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,NRU).

 C (input/output)
 On entry, an N-by-NCC matrix C. On exit, C is
 overwritten by Q' * C. C is not referenced if NCC
 = 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,N) if NCC > 0; LDC >=1 if NCC = 0.

 WORK (workspace)
 dimension (4*N)

 INFO (output)
 = 0: successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm did not converge; D and E con-
 tain the elements of a bidiagonal matrix which is
 orthogonally similar to the input matrix B; if
 INFO = i, i elements of E have not converged to
 zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbelmm - block Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZBELMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBELMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BELMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block Ellpack format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense
 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.
 LB row and column dimension of the dense blocks composing
 VAL.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbelsm - block Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE ZBELSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BLDA,MAXBNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 SUBROUTINE ZBELSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BLDA, MAXBNZ, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BLDA,MAXBNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*),
 * WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE BELSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BELSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BLDA, MAXBNZ, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD, BLDA, MAXBNZ, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing
 matrix entries, stored column-major within each dense

 block.

 BINDX() two-dimensional integer BLDA-by-MAXBNZ array such
 BINDX(i,:) consists of the block column indices of the
 nonzero blocks in block row i, padded by the integer
 value i if the number of nonzero blocks is less than
 MAXBNZ. The block column indices MUST be sorted
 in increasing order for each block row.

 BLDA leading dimension of BINDX(:,:).

 MAXBNZ max number of nonzeros blocks per row.

 LB row and column dimension of the dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the minimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BEL representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbscmm - block sparse column matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBSCMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(KB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting of
 the block entries stored column-major within each
 dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.

 BPNTRB() integer array of length KB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column
 of A.
 BPNTRE() integer array of length KB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX

 of the last block entry of the J-th block column
 of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL ZBSCMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbscsm - block sparse column format triangular solve

SYNOPSIS

 SUBROUTINE ZBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)- BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSCSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse column format
 and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block row indices of the block entries of A.
 The block row indices MUST be sorted
 in increasing order for each block column.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block column of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block column of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum
 size of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSC representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block column in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 column format the following calling sequence should be used

 CALL ZBSCSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbsrmm - block sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBSRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in block sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix A is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length LB*LB*BNNZ consisting
 of the block entries stored column-major within
 each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.
 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 block sparse row format (see for example Y.Saad, "Iterative
 Methods for Sparse Linear Systems", WPS, 1996). Its data
 structure consists of three array instead of the four used
 in the current implementation. The main difference is that
 only one array, IA, containing the pointers to the beginning
 of each block row in the arrays VAL and BINDX is used
 instead of two arrays BPNTRB and BPNTRE. To use the routine
 with this kind of block sparse row format the following
 calling sequence should be used

 CALL ZBSRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zbsrsm - block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE ZBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZBSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, BPNTRB, BPNTRE, LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LB,
 * LDB, LDC, LWORK
 INTEGER*8 BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(MB*LB*LB), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where: BNNZ = BPNTRE(MB)-BPNTRB(1)

 F95 INTERFACE

 SUBROUTINE BSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, N, UNITD, LB
 INTEGER, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE BSRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, VAL, BINDX,
 * BPNTRB, BPNTRE, LB, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, N, UNITD, LB
 INTEGER*8, DIMENSION(:) :: DESCRA, BINDX, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in block sparse row format
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array of the length MB*LB*LB consisting of the block
 entries of block diagonal matrix D where each
 block is stored in standard column-major form.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length LB*LB*BNNZ consisting of the block

 entries stored column-major within each dense block.

 BINDX() integer array of length BNNZ consisting of the
 block column indices of the block entries of A.
 The block column indices MUST be sorted
 in increasing order for each block row.

 BPNTRB() integer array of length MB such that
 BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
 of the first block entry of the J-th block row of A.

 BPNTRE() integer array of length MB such that
 BPNTRE(J)-BPNTRB(1) points to location in BINDX
 of the last block entry of the J-th block row of A.

 LB dimension of dense blocks composing A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 MB*LB.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=MB*LB*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the BSC representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3 in
 this case.

 6. It is known that there exists another representation of
 the block sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the arrays
 VAL and BINDX is used instead of two arrays BPNTRB and
 BPNTRE. To use the routine with this kind of block sparse
 row format the following calling sequence should be used

 CALL ZBSRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, BINDX, IA, IA(2), LB,
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zcnvcor - compute the convolution or correlation of complex
 vectors

SYNOPSIS

 SUBROUTINE ZCNVCOR(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 DOUBLE COMPLEX X(*), Y(*), Z(*), WORK(*)
 INTEGER NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK

 SUBROUTINE ZCNVCOR_64(CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK)

 CHARACTER * 1 CNVCOR, FOUR
 DOUBLE COMPLEX X(*), Y(*), Z(*), WORK(*)
 INTEGER*8 NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y, NZ,
 K, IFZ, INC1Z, INC2Z, LWORK

 F95 INTERFACE
 SUBROUTINE CNVCOR(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M, Y,
 IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 COMPLEX(8), DIMENSION(:) :: X, Y, Z, WORK
 INTEGER :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK

 SUBROUTINE CNVCOR_64(CNVCOR, FOUR, [NX], X, IFX, [INCX], NY, NPRE, M,
 Y, IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, FOUR
 COMPLEX(8), DIMENSION(:) :: X, Y, Z, WORK
 INTEGER(8) :: NX, IFX, INCX, NY, NPRE, M, IFY, INC1Y, INC2Y,
 NZ, K, IFZ, INC1Z, INC2Z, LWORK

 C INTERFACE
 #include <sunperf.h>

 void zcnvcor(char cnvcor, char four, int nx, doublecomplex
 *x, int ifx, int incx, int ny, int npre, int m,

 doublecomplex *y, int ify, int inc1y, int inc2y,
 int nz, int k, doublecomplex *z, int ifz, int
 inc1z, int inc2z, doublecomplex *work, int lwork);
 void zcnvcor_64(char cnvcor, char four, long nx, doublecom-
 plex *x, long ifx, long incx, long ny, long npre,
 long m, doublecomplex *y, long ify, long inc1y,
 long inc2y, long nz, long k, doublecomplex *z,
 long ifz, long inc1z, long inc2z, doublecomplex
 *work, long lwork);

PURPOSE

 zcnvcor computes the convolution or correlation of complex
 vectors.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' if convolution is desired, 'R' or 'r'
 if correlation is desired.

 FOUR (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' if the computation should be
 done directly from the definition. The Fourier
 transform method is generally faster, but it may
 introduce noticeable errors into certain results,
 notably when both the real and imaginary parts of
 the filter and data vectors consist entirely of
 integers or vectors where elements of either the
 filter vector or a given data vector differ signi-
 ficantly in magnitude from the 1-norm of the vec-
 tor.

 NX (input)
 Length of the filter vector. NX >= 0. ZCNVCOR
 will return immediately if NX = 0.

 X (input) dimension(*)
 Filter vector.

 IFX (input)
 Index of the first element of X. NX >= IFX >= 1.

 INCX (input)
 Stride between elements of the filter vector in X.
 INCX > 0.

 NY (input)
 Length of the input vectors. NY >= 0. ZCNVCOR
 will return immediately if NY = 0.

 NPRE (input)
 The number of implicit zeros prepended to the Y
 vectors. NPRE >= 0.

 M (input)
 Number of input vectors. M >= 0. ZCNVCOR will
 return immediately if M = 0.

 Y (input) dimension(*)
 Input vectors.

 IFY (input)
 Index of the first element of Y. NY >= IFY >= 1.

 INC1Y (input)
 Stride between elements of the input vectors in Y.
 INC1Y > 0.

 INC2Y (input)
 Stride between the input vectors in Y. INC2Y > 0.

 NZ (input)
 Length of the output vectors. NZ >= 0. ZCNVCOR
 will return immediately if NZ = 0. See the Notes
 section below for information about how this argu-
 ment interacts with NX and NY to control circular
 versus end-off shifting.

 K (input)
 Number of Z vectors. K >= 0. If K = 0 then
 ZCNVCOR will return immediately. If K < M then
 only the first K input vectors will be processed.
 If K > M then M input vectors will be processed.

 Z (output)
 dimension(*)
 Result vectors.

 IFZ (input)
 Index of the first element of Z. NZ >= IFZ >= 1.

 INC1Z (input)
 Stride between elements of the output vectors in
 Z. INC1Z > 0.

 INC2Z (input)
 Stride between the output vectors in Z. INC2Z >
 0.

 WORK (input/output)
 (input/scratch) dimension(LWORK)
 Scratch space. Before the first call to ZCNVCOR
 with particular values of the integer arguments
 the first element of WORK must be set to zero. If
 WORK is written between calls to ZCNVCOR or if
 ZCNVCOR is called with different values of the
 integer arguments then the first element of WORK
 must again be set to zero before each call. If
 WORK has not been written and the same values of
 the integer arguments are used then the first ele-
 ment of WORK to zero. This can avoid certain ini-
 tializations that store their results into WORK,
 and avoiding the initialization can make ZCNVCOR
 run faster.

 LWORK (input)
 Length of WORK. LWORK >= 2*MAX(NX,NY,NZ)+8.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zcnvcor2 - compute the convolution or correlation of complex
 matrices

SYNOPSIS

 SUBROUTINE ZCNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 DOUBLE COMPLEX X(LDX,*), Y(LDY,*), Z(LDZ,*), WORKIN(*)
 INTEGER MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK

 SUBROUTINE ZCNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z,
 LDZ, WORKIN, LWORK)

 CHARACTER * 1 CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY
 DOUBLE COMPLEX X(LDX,*), Y(LDY,*), Z(LDZ,*), WORKIN(*)
 INTEGER*8 MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ, LDZ,
 LWORK

 F95 INTERFACE
 SUBROUTINE CNVCOR2(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY
 COMPLEX(8), DIMENSION(:) :: WORKIN
 COMPLEX(8), DIMENSION(:,:) :: X, Y, Z
 INTEGER :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK

 SUBROUTINE CNVCOR2_64(CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY,
 SCRATCHY, [MX], [NX], X, [LDX], [MY], [NY], MPRE, NPRE, Y, [LDY],
 [MZ], [NZ], Z, [LDZ], WORKIN, [LWORK])

 CHARACTER(LEN=1) :: CNVCOR, METHOD, TRANSX, SCRATCHX,
 TRANSY, SCRATCHY

 COMPLEX(8), DIMENSION(:) :: WORKIN
 COMPLEX(8), DIMENSION(:,:) :: X, Y, Z
 INTEGER(8) :: MX, NX, LDX, MY, NY, MPRE, NPRE, LDY, MZ, NZ,
 LDZ, LWORK
 C INTERFACE
 #include <sunperf.h>

 void zcnvcor2(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, int mx, int
 nx, doublecomplex *x, int ldx, int my, int ny, int
 mpre, int npre, doublecomplex *y, int ldy, int mz,
 int nz, doublecomplex *z, int ldz, doublecomplex
 *workin, int lwork);

 void zcnvcor2_64(char cnvcor, char method, char transx, char
 scratchx, char transy, char scratchy, long mx,
 long nx, doublecomplex *x, long ldx, long my, long
 ny, long mpre, long npre, doublecomplex *y, long
 ldy, long mz, long nz, doublecomplex *z, long ldz,
 doublecomplex *workin, long lwork);

PURPOSE

 zcnvcor2 computes the convolution or correlation of complex
 matrices.

ARGUMENTS

 CNVCOR (input)
 'V' or 'v' to compute convolution, 'R' or 'r' to
 compute correlation.

 METHOD (input)
 'T' or 't' if the Fourier transform method is to
 be used, 'D' or 'd' to compute directly from the
 definition.

 TRANSX (input)
 'N' or 'n' if X is the filter matrix, 'T' or 't'
 if transpose(X) is the filter matrix.

 SCRATCHX (input)
 'N' or 'n' if X must be preserved, 'S' or 's' if X
 can be used as scratch space. The contents of X
 are undefined after returning from a call in which
 X is allowed to be used for scratch.

 TRANSY (input)
 'N' or 'n' if Y is the input matrix, 'T' or 't' if
 transpose(Y) is the input matrix.
 SCRATCHY (input)
 'N' or 'n' if Y must be preserved, 'S' or 's' if Y
 can be used as scratch space. The contents of Y
 are undefined after returning from a call in which
 Y is allowed to be used for scratch.

 MX (input)
 Number of rows in the filter matrix. MX >= 0.

 NX (input)

 Number of columns in the filter matrix. NX >= 0.

 X (input) dimension(LDX,NX)
 On entry, the filter matrix. Unchanged on exit if
 SCRATCHX is 'N' or 'n', undefined on exit if
 SCRATCHX is 'S' or 's'.

 LDX (input)
 Leading dimension of the array that contains the
 filter matrix.

 MY (input)
 Number of rows in the input matrix. MY >= 0.

 NY (input)
 Number of columns in the input matrix. NY >= 0.

 MPRE (input)
 Number of implicit zeros to prepend to each row of
 the input matrix. MPRE >= 0.

 NPRE (input)
 Number of implicit zeros to prepend to each column
 of the input matrix. NPRE >= 0.

 Y (input) dimension(LDY,*)
 Input matrix. Unchanged on exit if SCRATCHY is
 'N' or 'n', undefined on exit if SCRATCHY is 'S'
 or 's'.

 LDY (input)
 Leading dimension of the array that contains the
 input matrix.

 MZ (input)
 Number of rows in the output matrix. MZ >= 0.
 ZCNVCOR2 will return immediately if MZ = 0.

 NZ (input)
 Number of columns in the output matrix. NZ >= 0.
 ZCNVCOR2 will return immediately if NZ = 0.

 Z (output)
 dimension(LDZ,*)
 Result matrix.

 LDZ (input)
 Leading dimension of the array that contains the
 result matrix. LDZ >= MAX(1,MZ).

 WORKIN (input/output)
 (input/scratch) dimension(LWORK)
 On entry for the first call to ZCNVCOR2, WORKIN(1)
 must contain CMPLX(0.0,0.0). After the first
 call, WORKIN(1) must be set to CMPLX(0.0,0.0) iff
 WORKIN has been altered since the last call to
 this subroutine or if the sizes of the arrays have
 changed.

 LWORK (input)
 Length of the work vector. If the FFT is to be
 used then for best performance LWORK should be at
 least 30 words longer than the amount of memory
 needed to hold the trig tables. If the FFT is not

 used, the value of LWORK is unimportant.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zcoomm - coordinate matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZCOOMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), JNDX(NNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZCOOMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), NNZ
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), JNDX(NNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE COOMM(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER TRANSA, M, K, NNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, JNDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE COOMM_64(TRANSA, M, [N], K, ALPHA, DESCRA,
 * VAL, INDX, JNDX, NNZ, B, [LDB], BETA, C, [LDC],
 * [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, JNDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in coordinate format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the
 non-zero entries of A, in any order.

 INDX() integer array of length NNZ consisting of the
 corresponding row indices of the entries of A.

 JNDX() integer array of length NNZ consisting of the
 corresponding column indices of the entries of A.

 NNZ number of non-zero elements in A.
 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zcopy - Copy x to y

SYNOPSIS

 SUBROUTINE ZCOPY(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZCOPY_64(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE COPY([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE COPY_64([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zcopy(int n, doublecomplex *x, int incx, doublecomplex
 *y, int incy);

 void zcopy_64(long n, doublecomplex *x, long incx, doub-
 lecomplex *y, long incy);

PURPOSE

 zcopy Copy x to y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). Before entry, the incremented array X must
 contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (output)
 of DIMENSION at least (1 + (m - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. On exit, Y is overwritten by the
 vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zcscmm - compressed sparse column format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE ZCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(K), PNTRE(K)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZCSCMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(K), PNTRE(K)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(K)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse column format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the row
 indices of nonzero entries of A.

 PNTRB() integer array of length K such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.
 PNTRE() integer array of length K such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zcscsm - compressed sparse column format triangular solve

SYNOPSIS

 SUBROUTINE ZCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZCSCSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSCSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSCSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse column
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic column scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the row indices
 of nonzero entries of A. (Row indices MUST be sorted in
 increasing order for each column).

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in column J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in column J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the columns of A such
 that their 2-norms are one. The scaling may improve the

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 accuracy of the computed solution. Corresponding entries of
 VAL are changed only in the particular case. On return DV
 matrix stored as a vector contains the diagonal matrix by
 which the columns have been scaled. UNITD=3 should be used
 for the next calls to the routine with overwritten VAL and
 DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the column
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSC representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSC representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse column format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each column in the arrays VAL
 and INDX is used instead of two arrays PNTRB and PNTRE. To
 use the routine with this kind of sparse column format the
 following calling sequence should be used

 SUBROUTINE SCSCSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zcsrmm - compressed sparse row format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZCSRMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in compressed sparse row format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of nonzero
 entries of A.

 INDX() integer array of length NNZ consisting of the
 column indices of nonzero entries of A.

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.
 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 It is known that there exists another representation of the
 compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA,
 * C, LDC, WORK, LWORK)

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zcsrsm - compressed sparse row format triangular solve

SYNOPSIS

 SUBROUTINE ZCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZCSRSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTRB, PNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTRB(M), PNTRE(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTRE(M)-PNTRB(1)

 F95 INTERFACE

 SUBROUTINE CSRSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE CSRSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTRB, PNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in compressed sparse row
 format and op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of
 the scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() scalar array of length NNZ consisting of nonzero entries

 of A.

 INDX() integer array of length NNZ consisting of the column
 indices of nonzero entries of A (column indices MUST be
 sorted in increasing order for each row)

 PNTRB() integer array of length M such that PNTRB(J)-PNTRB(1)+1
 points to location in VAL of the first nonzero element
 in row J.

 PNTRE() integer array of length M such that PNTRE(J)-PNTRB(1)
 points to location in VAL of the last nonzero element
 in row J.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the CSR representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the CSR representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

 5. It is known that there exists another representation of
 the compressed sparse row format (see for example Y.Saad,
 "Iterative Methods for Sparse Linear Systems", WPS, 1996).
 Its data structure consists of three array instead of the
 four used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each row in the arrays VAL and
 INDX is used instead of two arrays PNTRB and PNTRE. To use
 the routine with this kind of compressed sparse row format
 the following calling sequence should be used

 SUBROUTINE SCSRSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, IA, IA(2), B, LDB, BETA, C,
 * LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zdiamm - diagonal format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZDIAMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZDIAMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIAMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIAMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, [LDA],
 * IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in diagonal format and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)
 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zdiasm - diagonal format triangular solve

SYNOPSIS

 SUBROUTINE ZDIASM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER IDIAG(NDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZDIASM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, LDA, IDIAG, NDIAG,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG,
 * LDB, LDC, LWORK
 INTEGER*8 IDIAG(NDIAG)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE DIASM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, NDIAG
 INTEGER, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE DIASM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * [LDA], IDIAG, NDIAG, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, NDIAG
 INTEGER*8, DIMENSION(:) :: DESCRA, IDIAG
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in diagonal format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)

 consists of non-zero elements on diagonal IDIAG(I)
 of A. Diagonals in the lower triangular part of A
 are padded from the top, and those in the upper
 triangular part are padded from the bottom.

 LDA leading dimension of VAL, must be .GE. MIN(M,K)

 IDIAG() integer array of length NDIAG consisting of the
 corresponding diagonal offsets of the non-zero
 diagonals of A in VAL. Lower triangular diagonals
 have negative offsets, the main diagonal has offset
 0, and upper triangular diagonals have positive offset.
 Elements of IDIAG of MUST be sorted in increasing order.

 NDIAG number of non-zero diagonals in A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norm are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the DIA representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the DIA representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zdotc - compute the dot product of two vectors conjg(x) and
 y.

SYNOPSIS

 DOUBLE COMPLEX FUNCTION ZDOTC(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 DOUBLE COMPLEX FUNCTION ZDOTC_64(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 COMPLEX(8) FUNCTION DOTC([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 COMPLEX(8) FUNCTION DOTC_64([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 doublecomplex zdotc(int n, doublecomplex *x, int incx, doub-
 lecomplex *y, int incy);

 doublecomplex zdotc_64(long n, doublecomplex *x, long incx,
 doublecomplex *y, long incy);

PURPOSE

 zdotc compute the dot product of conjg(x) and y where x and
 y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the incremented array X must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zdotci - Compute the complex conjugated indexed dot product.

SYNOPSIS

 DOUBLE COMPLEX FUNCTION ZDOTCI(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 DOUBLE COMPLEX FUNCTION ZDOTCI_64(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 DOUBLE COMPLEX FUNCTION DOTCI([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 DOUBLE COMPLEX FUNCTION DOTCI_64([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZDOTCI Compute the complex conjugated indexed dot product of
 a complex sparse vector x stored in compressed form with a
 complex vector y in full storage form.

 dot = 0
 do i = 1, n
 dot = dot + conjg(x(i)) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zdotu - compute the dot product of two vectors x and y.

SYNOPSIS

 DOUBLE COMPLEX FUNCTION ZDOTU(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 DOUBLE COMPLEX FUNCTION ZDOTU_64(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 COMPLEX(8) FUNCTION DOT([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 COMPLEX(8) FUNCTION DOT_64([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 doublecomplex zdotu(int n, doublecomplex *x, int incx, doub-
 lecomplex *y, int incy);

 doublecomplex zdotu_64(long n, doublecomplex *x, long incx,
 doublecomplex *y, long incy);

PURPOSE

 zdotu compute the dot product of x and y where x and y are
 n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. If N is not positive then the func-
 tion returns the value 0.0. Unchanged on exit.
 X (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCX)
). On entry, the incremented array X must contain
 the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 of DIMENSION at least (1 + (n - 1)*abs(INCY)
). On entry, the incremented array Y must contain
 the vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zdotui - Compute the complex unconjugated indexed dot
 product.

SYNOPSIS

 DOUBLE COMPLEX FUNCTION CDOTCI(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 DOUBLE COMPLEX FUNCTION CDOTCI_64(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 DOUBLE COMPLEX FUNCTION DOTCI([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 DOUBLE COMPLEX FUNCTION DOTCI_64([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZDOTUI Compute the complex unconjugated indexed dot product
 of a complex sparse vector x stored in compressed form with
 a complex vector y in full storage form.

 dot = 0
 do i = 1, n
 dot = dot + x(i) * y(indx(i))
 enddo

ARGUMENTS

 NZ (input)
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector in compressed form. Unchanged on exit.

 INDX (input)
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (input)
 Vector in full storage form. Only the elements
 corresponding to the indices in INDX will be
 accessed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zdrot - Apply a plane rotation.

SYNOPSIS

 SUBROUTINE ZDROT(N, CX, INCX, CY, INCY, C, S)

 DOUBLE PRECISION C, S
 DOUBLE COMPLEX CX(*), CY(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZDROT_64(N, CX, INCX, CY, INCY, C, S)

 DOUBLE PRECISION C, S
 DOUBLE COMPLEX CX(*), CY(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE ROT([N], CX, [INCX], CY, [INCY], C, S)

 REAL(8) :: C, S
 COMPLEX(8), DIMENSION(:) :: CX, CY
 INTEGER :: N, INCX, INCY

 SUBROUTINE ROT_64([N], CX, [INCX], CY, [INCY], C, S)

 REAL(8) :: C, S
 COMPLEX(8), DIMENSION(:) :: CX, CY
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zdrot(int n, doublecomplex *cx, int incx, doublecomplex
 *cy, int incy, double c, double s);

 void zdrot_64(long n, doublecomplex *cx, long incx, doub-
 lecomplex *cy, long incy, double c, double s);

PURPOSE

 zdrot Apply a plane rotation, where the cos and sin (c and
 s) are real and the vectors x and y are complex.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 CX (input)
 Before entry, the incremented array CX must
 contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of CX. INCX must not be zero.
 Unchanged on exit.

 CY (output)
 On entry, the incremented array CY must contain
 the vector y. On exit, CY is overwritten by the
 updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of CY. INCY must not be zero.
 Unchanged on exit.

 C (input)
 On entry, the cosine. Unchanged on exit.

 S (input)
 On entry, the sin. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zdscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE ZDSCAL(N, ALPHA, Y, INCY)

 DOUBLE COMPLEX Y(*)
 INTEGER N, INCY
 DOUBLE PRECISION ALPHA

 SUBROUTINE ZDSCAL_64(N, ALPHA, Y, INCY)

 DOUBLE COMPLEX Y(*)
 INTEGER*8 N, INCY
 DOUBLE PRECISION ALPHA

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: Y
 INTEGER :: N, INCY
 REAL(8) :: ALPHA

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: Y
 INTEGER(8) :: N, INCY
 REAL(8) :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void zdscal(int n, double alpha, doublecomplex *y, int
 incy);

 void zdscal_64(long n, double alpha, doublecomplex *y, long
 incy);

PURPOSE

 zdscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zellmm - Ellpack format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZELLMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZELLMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in Ellpack format format and
 op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)
 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zellsm - Ellpack format triangular solve

SYNOPSIS

 SUBROUTINE ZELLSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(LDA,MAXNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZELLSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, LDA, MAXNZ,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(LDA,MAXNZ)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE ELLSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA
 INTEGER, DIMENSION(:, :) :: INDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

 SUBROUTINE ELLSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * INDX, [LDA], MAXNZ, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA
 INTEGER*8, DIMENSION(:, :) :: INDX
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: VAL, B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in Ellpack format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, only DESCRA(1)=3 is supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() two-dimensional LDA-by-MAXNZ array such that VAL(I,:)

 consists of non-zero elements in row I of A, padded by
 zero values if the row contains less than MAXNZ.

 INDX() two-dimensional integer LDA-by-MAXNZ array such
 INDX(I,:) consists of the column indices of the
 nonzero elements in row I, padded by the integer
 value I if the number of nonzeros is less than MAXNZ.
 The column indices MUST be sorted in increasing order
 for each row.

 LDA leading dimension of VAL and INDX.

 MAXNZ max number of nonzeros elements per row.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.

 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the ELL representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the ELL representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft2b - compute a periodic sequence from its Fourier coef-
 ficients. The FFT operations are unnormalized, so a call of
 ZFFT2F followed by a call of ZFFT2B will multiply the input
 sequence by M*N.

SYNOPSIS

 SUBROUTINE ZFFT2B(M, N, A, LDA, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, LDA, LWORK
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT2B_64(M, N, A, LDA, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, LWORK
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2B([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT2B_64([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft2b(int m, int n, doublecomplex *a, int lda, double
 *work, int lwork);

 void zfft2b_64(long m, long n, doublecomplex *a, long lda,
 double *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 A (input/output)
 On entry, a two-dimensional array A(M,N) that con-
 tains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 WORK (input)
 On entry, an array with dimension of at least
 LWORK. WORK must have been initialized by ZFFT2I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4 * (M
 + N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft2f - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 ZFFT2F followed by a call of ZFFT2B will multiply the input
 sequence by M*N.

SYNOPSIS

 SUBROUTINE ZFFT2F(M, N, A, LDA, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, LDA, LWORK
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT2F_64(M, N, A, LDA, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, LWORK
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2F([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT2F_64([M], [N], A, [LDA], WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft2f(int m, int n, doublecomplex *a, int lda, double
 *work, int lwork);

 void zfft2f_64(long m, long n, doublecomplex *a, long lda,
 double *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 A (input/output)
 On entry, a two-dimensional array A(M,N) that con-
 tains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by ZFFT2I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4 * (M
 + N) + 30)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft2i - initialize the array WSAVE, which is used in both
 the forward and backward transforms.

SYNOPSIS

 SUBROUTINE ZFFT2I(M, N, WORK)

 INTEGER M, N
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT2I_64(M, N, WORK)

 INTEGER*8 M, N
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE ZFFT2I(M, N, WORK)

 INTEGER :: M, N
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE ZFFT2I_64(M, N, WORK)

 INTEGER(8) :: M, N
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft2i(int m, int n, double *work);

 void zfft2i_64(long m, long n, double *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 WORK (input/output)
 On entry, an array of dimension (4 * (M + N) + 30)
 or greater. ZFFT2I needs to be called only once

 to initialize array WORK before calling ZFFT2F
 and/or ZFFT2B if M, N and WORK remain unchanged
 between these calls. Thus, subsequent transforms
 or inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft3b - compute a periodic sequence from its Fourier coef-
 ficients. The FFT operations are unnormalized, so a call of
 ZFFT3F followed by a call of ZFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE ZFFT3B(M, N, K, A, LDA, LD2A, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,LD2A,*)
 INTEGER M, N, K, LDA, LD2A, LWORK
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT3B_64(M, N, K, A, LDA, LD2A, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,LD2A,*)
 INTEGER*8 M, N, K, LDA, LD2A, LWORK
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3B([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:,:) :: A
 INTEGER :: M, N, K, LDA, LD2A, LWORK
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT3B_64([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LD2A, LWORK
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft3b(int m, int n, int k, doublecomplex *a, int lda,
 int ld2a, double *work, int lwork);

 void zfft3b_64(long m, long n, long k, doublecomplex *a,
 long lda, long ld2a, double *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 K (input) Number of planes to be transformed. These subrou-
 tines are most efficient when K is a product of
 small primes. K >= 0.

 A (input/output)
 On entry, a three-dimensional array A(LDA,LD2A,K)
 that contains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 LD2A (input)
 Second dimension of the array containing the data
 to be transformed. LD2A >= N.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by ZFFT3I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4*(M +
 N + K) + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft3f - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 ZFFT3F followed by a call of ZFFT3B will multiply the input
 sequence by M*N*K.

SYNOPSIS

 SUBROUTINE ZFFT3F(M, N, K, A, LDA, LD2A, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,LD2A,*)
 INTEGER M, N, K, LDA, LD2A, LWORK
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT3F_64(M, N, K, A, LDA, LD2A, WORK, LWORK)

 DOUBLE COMPLEX A(LDA,LD2A,*)
 INTEGER*8 M, N, K, LDA, LD2A, LWORK
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3F([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:,:) :: A
 INTEGER :: M, N, K, LDA, LD2A, LWORK
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE FFT3F_64([M], [N], [K], A, [LDA], LD2A, WORK, LWORK)

 COMPLEX(8), DIMENSION(:,:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LD2A, LWORK
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft3f(int m, int n, int k, doublecomplex *a, int lda,
 int ld2a, double *work, int lwork);

 void zfft3f_64(long m, long n, long k, doublecomplex *a,
 long lda, long ld2a, double *work, long lwork);

ARGUMENTS

 M (input) Number of rows to be transformed. These subrou-
 tines are most efficient when M is a product of
 small primes. M >= 0.
 N (input) Number of columns to be transformed. These sub-
 routines are most efficient when N is a product of
 small primes. N >= 0.

 K (input) Number of planes to be transformed. These subrou-
 tines are most efficient when K is a product of
 small primes. K >= 0.

 A (input/output)
 On entry, a three-dimensional array A(M,N,K) that
 contains the sequences to be transformed.

 LDA (input)
 Leading dimension of the array containing the data
 to be transformed. LDA >= M.

 LD2A (input)
 Second dimension of the array containing the data
 to be transformed. LD2A >= N.

 WORK (input)
 On input, workspace WORK must have been initial-
 ized by ZFFT3I.

 LWORK (input)
 The dimension of the array WORK. LWORK >= (4*(M +
 N + K) + 45).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfft3i - initialize the array WSAVE, which is used in both
 ZFFT3F and ZFFT3B.

SYNOPSIS

 SUBROUTINE ZFFT3I(M, N, K, WORK)

 INTEGER M, N, K
 DOUBLE PRECISION WORK(*)

 SUBROUTINE ZFFT3I_64(M, N, K, WORK)

 INTEGER*8 M, N, K
 DOUBLE PRECISION WORK(*)

 F95 INTERFACE
 SUBROUTINE ZFFT3I(M, N, K, WORK)

 INTEGER :: M, N, K
 REAL(8), DIMENSION(:) :: WORK

 SUBROUTINE ZFFT3I_64(M, N, K, WORK)

 INTEGER(8) :: M, N, K
 REAL(8), DIMENSION(:) :: WORK

 C INTERFACE
 #include <sunperf.h>

 void zfft3i(int m, int n, int k, double *work);

 void zfft3i_64(long m, long n, long k, double *work);

ARGUMENTS

 M (input) Number of rows to be transformed. M >= 0.

 N (input) Number of columns to be transformed. N >= 0.

 K (input) Number of planes to be transformed. K >= 0.

 WORK (input/output)

 On entry, an array of dimension (4*(M + N + K) +
 45) or greater. ZFFT3I needs to be called only
 once to initialize array WORK before calling
 ZFFT3F and/or ZFFT3B if M, N, K and WORK remain
 unchanged between these calls. Thus, subsequent
 transforms or inverse transforms of same size can
 be obtained faster than the first since they do
 not require initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfftb - compute a periodic sequence from its Fourier coeffi-
 cients. The FFT operations are unnormalized, so a call of
 ZFFTF followed by a call of ZFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE ZFFTB(N, X, WSAVE)

 DOUBLE COMPLEX X(*)
 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE ZFFTB_64(N, X, WSAVE)

 DOUBLE COMPLEX X(*)
 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTB([N], X, WSAVE)

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE FFTB_64([N], X, WSAVE)

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void zfftb(int n, doublecomplex *x, double *wsave);

 void zfftb_64(long n, doublecomplex *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed.

 WSAVE (input/output)
 On entry, WSAVE must be an array of dimension (4 *
 N + 15) or greater and must have been initialized
 by ZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 zfftd - initialize the trigonometric weight and factor
 tables or compute the inverse Fast Fourier Transform of a
 double complex sequence.

SYNOPSIS

 SUBROUTINE ZFFTD(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(*)
 DOUBLE PRECISION SCALE, Y(*), TRIGS(*), WORK(*)

 SUBROUTINE ZFFTD_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE PRECISION SCALE, Y(*), TRIGS(*), WORK(*)
 DOUBLE COMPLEX X(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, N, [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, N
 INTEGER, INTENT(IN), OPTIONAL :: LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, N, [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N
 INTEGER(8), INTENT(IN), OPTIONAL :: LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void zfftd_ (int *iopt, int *n, double *scale, doublecomplex
 *x, double *y, double *trigs, int *ifac, double
 *work, int *lwork, int *ierr);

 void zfftd_64_ (long *iopt, long *n, double *scale, doub-
 lecomplex *x, double *y, double *trigs, long
 *ifac, double *work, long *lwork, long *ierr);

PURPOSE

 zfftd initializes the trigonometric weight and factor tables
 or computes the inverse Fast Fourier Transform of a double
 complex sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)
 In complex-to-real transform of length N, the (N/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored. Furthermore, due to symmetries the
 imaginary of the component of X(0) and X(N/2) (if N is even
 in the latter) is assumed to be zero and is not referenced.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) On entry, X is a double complex array whose first
 (N/2+1) elements are the input sequence to be
 transformed.
 Y (output)
 Double precision array of dimension at least N
 that contains the transform results. X and Y may
 be the same array starting at the same memory

 location. Otherwise, it is assumed that there is
 no overlap between X and Y in memory.

 TRIGS (input/output)
 Double precision array of length 2*N that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = 1.
 Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = 1.
 Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least N.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 zfftd2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional inverse Fast Fourier
 Transform of a two-dimensional double complex array.

SYNOPSIS

 SUBROUTINE ZFFTD2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *)
 DOUBLE PRECISION SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 SUBROUTINE ZFFTD2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *)
 DOUBLE PRECISION SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, N1
 INTEGER, INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void zfftd2_ (int *iopt, int *n1, int *n2, double *scale,
 doublecomplex *x, int *ldx, double *y, int *ldy,
 double *trigs, int *ifac, double *work, int
 *lwork, int *ierr);

 void zfftd2_64_ (long *iopt, long *n1, long *n2, double
 *scale, doublecomplex *x, long *ldx, double *y,
 long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 zfftd2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional inverse Fast Fourier
 Transform of a two-dimensional double complex array. In
 computing the two-dimensional FFT, one-dimensional FFTs are
 computed along the rows of the input array. One-dimensional
 FFTs are then computed along the columns of the intermediate
 results.

 N1-1 N2-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j1=0 j2=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 In complex-to-real transform of length N1, the (N1/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX,
 N2) that contains input data to be transformed.

 LDX (input)
 Leading dimension of X. LDX >= (N1/2 + 1)
 Unchanged on exit.

 Y (output)
 Y is a double precision array of dimensions (LDY,
 N2) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = 2*LDX Else LDY >= 2*LDX and LDY must
 be even. Unchanged on exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2) that
 contains the trigonometric weights. The weights
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 MAX(N1,2*N2) where NCPUS is the number of threads
 used to execute the routine. The user can also
 choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1/2+1)
 -5 = LDY not equal 2*LDX when X and Y are same
 array
 -6 = (LDY < 2*LDX or LDY odd) when X and Y are
 same array
 -7 = (LWORK not equal 0) and (LWORK <
 MAX(N1,2*N2))
 -8 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, output subarray Y(1:LDY, 1:N2) is overwritten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 zfftd3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional inverse Fast Fourier
 Transform of a three-dimensional double complex array.

SYNOPSIS

 SUBROUTINE ZFFTD3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX X(LDX1, LDX2, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

 SUBROUTINE ZFFTD3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX X(LDX1, LDX2, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*), Y(LDY1, LDY2, *)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, N1, LDX2, LDY2
 INTEGER, INTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, N1, [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, N3, LDX1, LDY1,
 LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void zfftd3_ (int *iopt, int *n1, int *n2, int *n3, double
 *scale, doublecomplex *x, int *ldx1, int *ldx2,
 double *y, int *ldy1, int *ldy2, double *trigs,
 int *ifac, double *work, int *lwork, int *ierr);

 void zfftd3_64_ (long *iopt, long *n1, long *n2, long *n3,
 double *scale, doublecomplex *x, long *ldx1, long
 *ldx2, double *y, long *ldy1, long *ldy2, double
 *trigs, long *ifac, double *work, long *lwork,
 long *ierr);

PURPOSE

 zfftd3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional inverse Fast
 Fourier Transform of a three-dimensional double complex
 array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX1,
 LDX2, N3) that contains input data to be
 transformed.

 LDX1 (input)
 first dimension of X. LDX1 >= N1/2+1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY1,
 LDY2, N3) that contains the transform results. X
 and Y can be the same array starting at the same
 memory location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. If X and Y are the same
 array, LDY1 = 2*LDX1 Else LDY1 >= 2*LDX1 and LDY1
 is even Unchanged on exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same
 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2+N3) that
 contains the trigonometric weights. The weights
 are computed when the routine is called with IOPT

 = 0 and they are used in subsequent calls when
 IOPT = 1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The fac-
 tors are computed when the routine is called with
 IOPT = 0 and they are used in subsequent calls
 when IOPT = 1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 (MAX(N,2*N2,2*N3) + 16*N3) * NCPUS where NCPUS is
 the number of threads used to execute the routine.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1/2+1)
 -6 = (LDX2 < N2)
 -7 = LDY1 not equal 2*LDX1 when X and Y are same
 array
 -8 = (LDY1 < 2*LDX1) or (LDY1 is odd) when X and Y
 are not same array
 -9 = (LDY2 < N2) or (LDY2 not equal LDX2) when X
 and Y are same array
 -10 = (LWORK not equal 0) and ((LWORK <
 MAX(N,2*N2,2*N3) + 16*N3)*NCPUS)
 -11 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, output subarray Y(1:LDY1, 1:N2, 1:N3) is overwrit-
 ten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 zfftdm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional inverse Fast Fourier
 Transform of a set of double complex data sequences stored
 in a two-dimensional array.

SYNOPSIS

 SUBROUTINE ZFFTDM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *)
 DOUBLE PRECISION SCALE, Y(LDY, *), TRIGS(*), WORK(*)

 SUBROUTINE ZFFTDM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *)
 DOUBLE PRECISION SCALE, Y(LDY,*), TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, N1
 INTEGER, INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, N1, [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, N1
 INTEGER(8), INTENT(IN), OPTIONAL :: N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 REAL(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void zfftdm_ (int *iopt, int *m, int *n, double *scale,
 doublecomplex *x, int *ldx, double *y, int *ldy,
 double *trigs, int *ifac, double *work, int
 *lwork, int *ierr);

 void zfftdm_64_ (long *iopt, long *m, long *n, double

 *scale, doublecomplex *x, long *ldx, double *y,
 long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 zfftdm initializes the trigonometric weight and factor
 tables or computes the one-dimensional inverse Fast Fourier
 Transform of a set of double complex data sequences stored
 in a two-dimensional array:

 N1-1
 Y(k,l) = scale * SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform
 W = exp(isign*i*j*k*2*pi/N1)
 In complex-to-real transform of length N1, the (N1/2+1) com-
 plex input data points stored are the positive-frequency
 half of the spectrum of the Discrete Fourier Transform. The
 other half can be obtained through complex conjugation and
 therefore is not stored. Furthermore, due to symmetries the
 imaginary of the component of X(0,0:N2-1) and X(N1/2,0:N2-1)
 (if N1 is even in the latter) is assumed to be zero and is
 not referenced.

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = 1 computes inverse FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.
 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX,
 N2) that contains the sequences to be transformed
 stored in its columns in X(0:N1/2, 0:N2-1).

 LDX (input)
 Leading dimension of X. LDX >= (N1/2+1) Unchanged
 on exit.

 Y (output)
 Y is a double precision array of dimensions (LDY,
 N2) that contains the transform results of the
 input sequences in Y(0:N1-1,0:N2-1). X and Y can
 be the same array starting at the same memory
 location, in which case the input sequences are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = 2*LDX Else LDY >= N1 Unchanged on

 exit.

 TRIGS (input/output)
 double precision array of length 2*N1 that con-
 tains the trigonometric weights. The weights are
 computed when the routine is called with IOPT = 0
 and they are used in subsequent calls when IOPT =
 1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1.
 Unchanged on exit.

 WORK (workspace)
 double precision array of dimension at least N1.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0 or 1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1/2+1)
 -5 = (LDY < N1) or (LDY not equal 2*LDX when X and
 Y are same array)
 -6 = (LWORK not equal 0) and (LWORK < N1)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zfftf - compute the Fourier coefficients of a periodic
 sequence. The FFT operations are unnormalized, so a call of
 ZFFTF followed by a call of ZFFTB will multiply the input
 sequence by N.

SYNOPSIS

 SUBROUTINE ZFFTF(N, X, WSAVE)

 DOUBLE COMPLEX X(*)
 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE ZFFTF_64(N, X, WSAVE)

 DOUBLE COMPLEX X(*)
 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE FFTF([N], X, WSAVE)

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE FFTF_64([N], X, WSAVE)

 COMPLEX(8), DIMENSION(:) :: X
 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void zfftf(int n, doublecomplex *x, double *wsave);

 void zfftf_64(long n, doublecomplex *x, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. These
 subroutines are most efficient when N is a product
 of small primes. N >= 0.

 X (input) On entry, an array of length N containing the
 sequence to be transformed.

 WSAVE (input)
 On entry, WSAVE must be an array of dimension (4 *
 N + 15) or greater and must have been initialized
 by ZFFTI.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

ARGUMENTS●

NAME

 zffti - initialize the array WSAVE, which is used in both
 ZFFTF and ZFFTB.

SYNOPSIS

 SUBROUTINE ZFFTI(N, WSAVE)

 INTEGER N
 DOUBLE PRECISION WSAVE(*)

 SUBROUTINE ZFFTI_64(N, WSAVE)

 INTEGER*8 N
 DOUBLE PRECISION WSAVE(*)

 F95 INTERFACE
 SUBROUTINE ZFFTI(N, WSAVE)

 INTEGER :: N
 REAL(8), DIMENSION(:) :: WSAVE

 SUBROUTINE ZFFTI_64(N, WSAVE)

 INTEGER(8) :: N
 REAL(8), DIMENSION(:) :: WSAVE

 C INTERFACE
 #include <sunperf.h>

 void zffti(int n, double *wsave);

 void zffti_64(long n, double *wsave);

ARGUMENTS

 N (input) Length of the sequence to be transformed. N >= 0.

 WSAVE (input/output)
 On entry, an array of dimension (4 * N + 15) or
 greater. ZFFTI needs to be called only once to
 initialize array WORK before calling ZFFTF and/or
 ZFFTB if N and WSAVE remain unchanged between

 these calls. Thus, subsequent transforms or
 inverse transforms of same size can be obtained
 faster than the first since they do not require
 initialization of the workspace.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

NAME

 zfftopt - compute the length of the closest fast FFT

SYNOPSIS

 INTEGER FUNCTION ZFFTOPT(LEN)

 INTEGER LEN

 INTEGER*8 FUNCTION ZFFTOPT_64(LEN)

 INTEGER*8 LEN

 F95 INTERFACE
 INTEGER FUNCTION ZFFTOPT(LEN)

 INTEGER :: LEN

 INTEGER(8) FUNCTION ZFFTOPT_64(LEN)

 INTEGER(8) :: LEN

 C INTERFACE
 #include <sunperf.h>

 int zfftopt(int len);

 long zfftopt_64(long len);

PURPOSE

 zfftopt computes the length of the closest fast FFT. Fast
 Fourier transform algorithms, including those used in Per-
 formance Library, work best with vector lengths that are
 products of small primes. For example, an FFT of length
 32=2**5 will run faster than an FFT of prime length 31
 because 32 is a product of small primes and 31 is not. If
 your application is such that you can taper or zero pad your
 vector to a larger length then this function may help you
 select a better length and run your FFT faster.

 ZFFTOPT will return an integer no smaller than the input
 argument N that is the closest number that is the product of

 small primes. ZFFTOPT will return 16 for an input of N=16
 and return 18=2*3*3 for an input of N=17.

 Note that the length computed here is not guaranteed to be
 optimal, only to be a
 product of small primes. Also, the value returned may
 change as the underlying
 FFTs become capable of handling larger primes. For exam-
 ple, passing in N=51 to day will return 52=2*2*13 rather
 than 51=3*17 because the FFTs in Performance Li brary do not
 have fast radix 17 code. In the future, radix 17 code may
 be added
 and then N=51 will return 51.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 zfftz - initialize the trigonometric weight and factor
 tables or compute the Fast Fourier transform (forward or
 inverse) of a double complex sequence.

SYNOPSIS

 SUBROUTINE ZFFTZ(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(*), Y(*)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)

 SUBROUTINE ZFFTZ_64(IOPT, N, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N, IFAC(*), LWORK, IERR
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)
 DOUBLE COMPLEX X(*), Y(*)

 F95 INTERFACE
 SUBROUTINE FFT(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT_64(IOPT, [N], [SCALE], X, Y, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>

 void zfftz_ (int *iopt, int *n, double *scale, doublecomplex
 *x, doublecomplex *y, double *trigs, int *ifac,
 double *work, int *lwork, int *ierr);

 void zfftz_64_ (long *iopt, long *n, double *scale, doub-
 lecomplex *x, doublecomplex *y, double *trigs,
 long *ifac, double *work, long *lwork, long
 *ierr);

PURPOSE

 zfftz initializes the trigonometric weight and factor tables
 or computes the Fast Fourier transform (forward or inverse)
 of a double complex sequence as follows:

 N-1
 Y(k) = scale * SUM W*X(j)
 j=0

 where
 k ranges from 0 to N-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N (input)
 Integer specifying length of the input sequence X.
 N is most efficient when it is a product of small
 primes. N >= 0. Unchanged on exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) On entry, X is a double complex array of dimension
 at least N that contains the sequence to be
 transformed.

 Y (output)
 Double complex array of dimension at least N that
 contains the transform results. X and Y may be
 the same array starting at the same memory loca-
 tion. Otherwise, it is assumed that there is no
 overlap between X and Y in memory.

 TRIGS (input/output)

 Double precision array of length 2*N that contains
 the trigonometric weights. The weights are com-
 puted when the routine is called with IOPT = 0 and
 they are used in subsequent calls when IOPT = 1 or
 IOPT = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 128 that con-
 tains the factors of N. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls where IOPT = 1 or
 IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least 2*N.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N < 0
 -3 = (LWORK is not 0) and (LWORK is less than 2*N)
 -4 = memory allocation for workspace failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 zfftz2 - initialize the trigonometric weight and factor
 tables or compute the two-dimensional Fast Fourier Transform
 (forward or inverse) of a two-dimensional double complex
 array.

SYNOPSIS

 SUBROUTINE ZFFTZ2(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *), Y(LDY, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)

 SUBROUTINE ZFFTZ2_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)
 DOUBLE COMPLEX X(LDX, *), Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFT2(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT2_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void zfftz2_ (int *iopt, int *n1, int *n2, double *scale,
 doublecomplex *x, int *ldx, doublecomplex *y, int
 *ldy, double *trigs, int *ifac, double *work, int
 *lwork, int *ierr);

 void zfftz2_64_ (long *iopt, long *n1, long *n2, double

 *scale, doublecomplex *x, long *ldx, doublecomplex
 *y, long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 zfftz2 initializes the trigonometric weight and factor
 tables or computes the two-dimensional Fast Fourier
 Transform (forward or inverse) of a two-dimensional double
 complex array. In computing the two-dimensional FFT,
 one-dimensional FFTs are computed along the columns of the
 input array. One-dimensional FFTs are then computed along
 the rows of the intermediate results.

 N2-1 N1-1
 Y(k1,k2) = scale * SUM SUM W2*W1*X(j1,j2)
 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1 and k2 ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.
 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX,
 N2) that contains input data to be transformed.

 LDX (input)
 Leading dimension of X. LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY,
 N2) that contains the transform results. X and Y
 can be the same array starting at the same memory
 location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = LDX Else LDY >= N1 Unchanged on exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2) that

 contains the trigonometric weights. The weights
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1 or IOPT = -1. Unchanged on exit.

 IFAC (input/output)
 Integer array of dimension at least 2*128 that
 contains the factors of N1 and N2. The factors
 are computed when the routine is called with IOPT
 = 0 and they are used in subsequent calls when
 IOPT = 1 or IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 2*MAX(N1,N2)*NCPUS where NCPUS is the number of
 threads used to execute the routine. The user can
 also choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1)
 -5 = (LDY < N1) or (LDY not equal LDX when X and Y
 are same array)
 -6 = (LWORK not equal 0) and (LWORK <
 2*MAX(N1,N2)*NCPUS)
 -7 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, entire output array Y(1:LDY, 1:N2) is overwritten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

CAUTIONS●

NAME

 zfftz3 - initialize the trigonometric weight and factor
 tables or compute the three-dimensional Fast Fourier
 Transform (forward or inverse) of a three-dimensional double
 complex array.

SYNOPSIS

 SUBROUTINE ZFFTZ3(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)

 SUBROUTINE ZFFTZ3_64(IOPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, N3, LDX1, LDX2, LDY1, LDY2, IFAC(*),
 LWORK, IERR
 DOUBLE COMPLEX X(LDX1, LDX2, *), Y(LDY1, LDY2, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE FFT3(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFT3_64(IOPT, [N1], [N2], [N3], [SCALE], X, [LDX1], LDX2, Y, [LDY1], LDY2, TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT, LDX2, LDY2
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, N3, LDX1, LDY1,
 LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR
 C INTERFACE
 #include <sunperf.h>

 void zfftz3_ (int *iopt, int *n1, int *n2, int *n3, double
 *scale, doublecomplex *x, int *ldx1, int *ldx2,
 doublecomplex *y, int *ldy1, int *ldy2, double
 *trigs, int *ifac, double *work, int *lwork, int
 *ierr);

 void zfftz3_64_ (long *iopt, long *n1, long *n2, long *n3,
 double *scale, doublecomplex *x, long *ldx1, long
 *ldx2, doublecomplex *y, long *ldy1, long *ldy2,
 double *trigs, long *ifac, double *work, long
 *lwork, long *ierr);

PURPOSE

 zfftz3 initializes the trigonometric weight and factor
 tables or computes the three-dimensional Fast Fourier
 Transform (forward or inverse) of a three-dimensional double
 complex array.

 N3-1 N2-1 N1-1
 Y(k1,k2,k3) = scale * SUM SUM SUM W3*W2*W1*X(j1,j2,j3)
 j3=0 j2=0 j1=0

 where
 k1 ranges from 0 to N1-1; k2 ranges from 0 to N2-1 and k3
 ranges from 0 to N3-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W1 = exp(isign*i*j1*k1*2*pi/N1)
 W2 = exp(isign*i*j2*k2*2*pi/N2)
 W3 = exp(isign*i*j3*k3*2*pi/N3)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the transform in the
 first dimension. N1 is most efficient when it is
 a product of small primes. N1 >= 0. Unchanged on
 exit.

 N2 (input)
 Integer specifying length of the transform in the
 second dimension. N2 is most efficient when it is
 a product of small primes. N2 >= 0. Unchanged on
 exit.

 N3 (input)
 Integer specifying length of the transform in the
 third dimension. N3 is most efficient when it is
 a product of small primes. N3 >= 0. Unchanged on
 exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX1,
 LDX2, N3) that contains input data to be
 transformed.

 LDX1 (input)
 first dimension of X. LDX1 >= N1 Unchanged on
 exit.

 LDX2 (input)
 second dimension of X. LDX2 >= N2 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY1,
 LDY2, N3) that contains the transform results. X
 and Y can be the same array starting at the same
 memory location, in which case the input data are
 overwritten by their transform results. Other-
 wise, it is assumed that there is no overlap
 between X and Y in memory.

 LDY1 (input)
 first dimension of Y. If X and Y are the same
 array, LDY1 = LDX1 Else LDY1 >= N1 Unchanged on
 exit.

 LDY2 (input)
 second dimension of Y. If X and Y are the same
 array, LDY2 = LDX2 Else LDY2 >= N2 Unchanged on
 exit.

 TRIGS (input/output)
 Double precision array of length 2*(N1+N2+N3) that
 contains the trigonometric weights. The weights
 are computed when the routine is called with IOPT

 = 0 and they are used in subsequent calls when
 IOPT = 1 or IOPT = -1. Unchanged on exit.
 IFAC (input/output)
 Integer array of dimension at least 3*128 that
 contains the factors of N1, N2 and N3. The fac-
 tors are computed when the routine is called with
 IOPT = 0 and they are used in subsequent calls
 when IOPT = 1 or IOPT = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 (2*MAX(N,N2,N3) + 32*N3) * NCPUS where NCPUS is
 the number of threads used to execute the routine.
 The user can also choose to have the routine allo-
 cate its own workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = N3 < 0
 -5 = (LDX1 < N1)
 -6 = (LDX2 < N2)
 -7 = (LDY1 < N1) or (LDY1 not equal LDX1 when X
 and Y are same array)
 -8 = (LDY2 < N2) or (LDY2 not equal LDX2 when X
 and Y are same array)
 -9 = (LWORK not equal 0) and (LWORK <
 (2*MAX(N,N2,N3) + 16*N3) * NCPUS)
 -10 = memory allocation failed

SEE ALSO

 fft

CAUTIONS

 On exit, output subarray Y(1:LDY1, 1:N2, 1:N3) is overwrit-
 ten.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

SEE ALSO●

NAME

 zfftzm - initialize the trigonometric weight and factor
 tables or compute the one-dimensional Fast Fourier Transform
 (forward or inverse) of a set of data sequences stored in a
 two-dimensional double complex array.

SYNOPSIS

 SUBROUTINE ZFFTZM(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE COMPLEX X(LDX, *), Y(LDY, *)
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)

 SUBROUTINE ZFFTZM_64(IOPT, N1, N2, SCALE, X, LDX, Y, LDY, TRIGS, IFAC, WORK, LWORK, IERR)

 INTEGER*8 IOPT, N1, N2, LDX, LDY, IFAC(*), LWORK, IERR
 DOUBLE PRECISION SCALE, TRIGS(*), WORK(*)
 DOUBLE COMPLEX X(LDX, *), Y(LDY, *)

 F95 INTERFACE
 SUBROUTINE FFTM(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS,
 IFAC, WORK, [LWORK], IERR)

 INTEGER, INTENT(IN) :: IOPT
 INTEGER, INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER, INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER, INTENT(OUT) :: IERR

 SUBROUTINE FFTM_64(IOPT, [N1], [N2], [SCALE], X, [LDX], Y, [LDY], TRIGS, IFAC, WORK, [LWORK], IERR)

 INTEGER(8), INTENT(IN) :: IOPT
 INTEGER(8), INTENT(IN), OPTIONAL :: N1, N2, LDX, LDY, LWORK
 REAL(8), INTENT(IN), OPTIONAL :: SCALE
 COMPLEX(8), INTENT(IN), DIMENSION(:,:) :: X
 COMPLEX(8), INTENT(OUT), DIMENSION(:,:) :: Y
 REAL(8), INTENT(INOUT), DIMENSION(:) :: TRIGS
 INTEGER(8), INTENT(INOUT), DIMENSION(:) :: IFAC
 REAL(8), INTENT(OUT), DIMENSION(:) :: WORK
 INTEGER(8), INTENT(OUT) :: IERR

 C INTERFACE
 #include <sunperf.h>
 void zfftzm_ (int *iopt, int *m, int *n, double *scale,
 doublecomplex *x, int *ldx, doublecomplex *y, int
 *ldy, double *trigs, int *ifac, double *work, int
 *lwork, int *ierr);

 void zfftzm_64_ (long *iopt, long *m, long *n, double
 *scale, doublecomplex *x, long *ldx, doublecomplex

 *y, long *ldy, double *trigs, long *ifac, double
 *work, long *lwork, long *ierr);

PURPOSE

 zfftzm initializes the trigonometric weight and factor
 tables or computes the one-dimensional Fast Fourier
 Transform (forward or inverse) of a set of data sequences
 stored in a two-dimensional double complex array:

 N1-1
 Y(k,l) = SUM W*X(j,l)
 j=0

 where
 k ranges from 0 to N1-1 and l ranges from 0 to N2-1
 i = sqrt(-1)
 isign = 1 for inverse transform or -1 for forward transform
 W = exp(isign*i*j*k*2*pi/N1)

ARGUMENTS

 IOPT (input)
 Integer specifying the operation to be performed:
 IOPT = 0 computes the trigonometric weight table
 and factor table
 IOPT = -1 computes forward FFT
 IOPT = +1 computes inverse FFT

 N1 (input)
 Integer specifying length of the input sequences.
 N1 is most efficient when it is a product of small
 primes. N1 >= 0. Unchanged on exit.

 N2 (input)
 Integer specifying number of input sequences. N2
 >= 0. Unchanged on exit.

 SCALE (input)
 Double precision scalar by which transform results
 are scaled. Unchanged on exit. SCALE is
 defaulted to 1.0D0 for F95 INTERFACE.

 X (input) X is a double complex array of dimensions (LDX,
 N2) that contains the sequences to be transformed
 stored in its columns.

 LDX (input)
 Leading dimension of X. LDX >= N1 Unchanged on
 exit.

 Y (output)
 Y is a double complex array of dimensions (LDY,
 N2) that contains the transform results of the
 input sequences. X and Y can be the same array
 starting at the same memory location, in which
 case the input sequences are overwritten by their
 transform results. Otherwise, it is assumed that
 there is no overlap between X and Y in memory.

 LDY (input)
 Leading dimension of Y. If X and Y are the same
 array, LDY = LDX Else LDY >= N1 Unchanged on exit.

 TRIGS (input/output)
 Double precision array of length 2*N1 that con-
 tains the trigonometric weights. The weights are
 computed when the routine is called with IOPT = 0
 and they are used in subsequent calls when IOPT =
 1 or IOPT = -1. Unchanged on exit.

 IFAC (input/output)

 Integer array of dimension at least 128 that con-
 tains the factors of N1. The factors are computed
 when the routine is called with IOPT = 0 and they
 are used in subsequent calls when IOPT = 1 or IOPT
 = -1. Unchanged on exit.

 WORK (workspace)
 Double precision array of dimension at least
 2*N1*NCPUS where NCPUS is the number of threads
 used to execute the routine. The user can also
 choose to have the routine allocate its own
 workspace (see LWORK).

 LWORK (input)
 Integer specifying workspace size. If LWORK = 0,
 the routine will allocate its own workspace.

 IERR (output)
 On exit, integer IERR has one of the following
 values:
 0 = normal return
 -1 = IOPT is not 0, 1 or -1
 -2 = N1 < 0
 -3 = N2 < 0
 -4 = (LDX < N1)
 -5 = (LDY < N1) or (LDY not equal LDX when X and Y
 are same array)
 -6 = (LWORK not equal 0) and (LWORK < 2*N1*NCPUS)
 -7 = memory allocation failed

SEE ALSO

 fft

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbbrd - reduce a complex general m-by-n band matrix A to
 real upper bidiagonal form B by a unitary transformation

SYNOPSIS

 SUBROUTINE ZGBBRD(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, RWORK, INFO)

 CHARACTER * 1 VECT
 DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*),
 WORK(*)
 INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 DOUBLE PRECISION D(*), E(*), RWORK(*)

 SUBROUTINE ZGBBRD_64(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,
 PT, LDPT, C, LDC, WORK, RWORK, INFO)

 CHARACTER * 1 VECT
 DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*),
 WORK(*)
 INTEGER*8 M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 DOUBLE PRECISION D(*), E(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GBBRD(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E, [Q],
 [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Q, PT, C
 INTEGER :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, RWORK

 SUBROUTINE GBBRD_64(VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E,
 [Q], [LDQ], [PT], [LDPT], [C], [LDC], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Q, PT, C
 INTEGER(8) :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
 REAL(8), DIMENSION(:) :: D, E, RWORK

 C INTERFACE

 #include <sunperf.h>

 void zgbbrd(char vect, int m, int n, int ncc, int kl, int
 ku, doublecomplex *ab, int ldab, double *d, double
 *e, doublecomplex *q, int ldq, doublecomplex *pt,
 int ldpt, doublecomplex *c, int ldc, int *info);

 void zgbbrd_64(char vect, long m, long n, long ncc, long kl,
 long ku, doublecomplex *ab, long ldab, double *d,
 double *e, doublecomplex *q, long ldq, doublecom-
 plex *pt, long ldpt, doublecomplex *c, long ldc,
 long *info);

PURPOSE

 zgbbrd reduces a complex general m-by-n band matrix A to
 real upper bidiagonal form B by a unitary transformation: Q'
 * A * P = B.

 The routine computes B, and optionally forms Q or P', or
 computes Q'*C for a given matrix C.

ARGUMENTS

 VECT (input)
 Specifies whether or not the matrices Q and P' are
 to be formed. = 'N': do not form Q or P';
 = 'Q': form Q only;
 = 'P': form P' only;
 = 'B': form both.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NCC (input)
 The number of columns of the matrix C. NCC >= 0.

 KL (input)
 The number of subdiagonals of the matrix A. KL >=
 0.

 KU (input)
 The number of superdiagonals of the matrix A. KU
 >= 0.

 AB (input/output)
 On entry, the m-by-n band matrix A, stored in rows
 1 to KL+KU+1. The j-th column of A is stored in
 the j-th column of the array AB as follows:
 AB(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl). On exit, A is overwritten by
 values generated during the reduction.

 LDAB (input)
 The leading dimension of the array A. LDAB >=
 KL+KU+1.

 D (output)
 The diagonal elements of the bidiagonal matrix B.

 E (output)
 The superdiagonal elements of the bidiagonal
 matrix B.

 Q (output)
 If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
 If VECT = 'N' or 'P', the array Q is not refer-
 enced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.

 PT (output)
 If VECT = 'P' or 'B', the n-by-n unitary matrix
 P'. If VECT = 'N' or 'Q', the array PT is not
 referenced.

 LDPT (input)
 The leading dimension of the array PT. LDPT >=
 max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 other-
 wise.

 C (input/output)
 On entry, an m-by-ncc matrix C. On exit, C is
 overwritten by Q'*C. C is not referenced if NCC =
 0.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
 WORK (workspace)
 dimension(MAX(M,N))

 RWORK (workspace)
 dimension(MAX(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbcon - estimate the reciprocal of the condition number of
 a complex general band matrix A, in either the 1-norm or the
 infinity-norm,

SYNOPSIS

 SUBROUTINE ZGBCON(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGBCON_64(NORM, N, NSUB, NSUPER, A, LDA, IPIVOT, ANORM,
 RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBCON(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GBCON_64(NORM, [N], NSUB, NSUPER, A, [LDA], IPIVOT, ANORM,
 RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: WORK

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void zgbcon(char norm, int n, int nsub, int nsuper, doub-
 lecomplex *a, int lda, int *ipivot, double anorm,
 double *rcond, int *info);

 void zgbcon_64(char norm, long n, long nsub, long nsuper,
 doublecomplex *a, long lda, long *ipivot, double
 anorm, double *rcond, long *info);

PURPOSE

 zgbcon estimates the reciprocal of the condition number of a
 complex general band matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 CGBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 ANORM (input)

 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension (N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbequ - compute row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number

SYNOPSIS

 SUBROUTINE ZGBEQU(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION ROWSC(*), COLSC(*)

 SUBROUTINE ZGBEQU_64(M, N, NSUB, NSUPER, A, LDA, ROWSC, COLSC, ROWCN,
 COLCN, AMAX, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GBEQU([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC

 SUBROUTINE GBEQU_64([M], [N], NSUB, NSUPER, A, [LDA], ROWSC, COLSC,
 ROWCN, COLCN, AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC

 C INTERFACE
 #include <sunperf.h>

 void zgbequ(int m, int n, int nsub, int nsuper, doublecom-

 plex *a, int lda, double *rowsc, double *colsc,
 double *rowcn, double *colcn, double *amax, int
 *info);
 void zgbequ_64(long m, long n, long nsub, long nsuper, doub-
 lecomplex *a, long lda, double *rowsc, double
 *colsc, double *rowcn, double *colcn, double
 *amax, long *info);

PURPOSE

 zgbequ computes row and column scalings intended to equili-
 brate an M-by-N band matrix A and reduce its condition
 number. R returns the row scale factors and C the column
 scale factors, chosen to try to make the largest element in
 each row and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input) The band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 ROWSC (output)
 If INFO = 0, or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN
 >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbmv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y

SYNOPSIS

 SUBROUTINE ZGBMV(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X, INCX,
 BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER M, N, NSUB, NSUPER, LDA, INCX, INCY

 SUBROUTINE ZGBMV_64(TRANSA, M, N, NSUB, NSUPER, ALPHA, A, LDA, X,
 INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE GBMV([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA], X,
 [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INCX, INCY

 SUBROUTINE GBMV_64([TRANSA], [M], [N], NSUB, NSUPER, ALPHA, A, [LDA],
 X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zgbmv(char transa, int m, int n, int nsub, int nsuper,
 doublecomplex *alpha, doublecomplex *a, int lda,
 doublecomplex *x, int incx, doublecomplex *beta,
 doublecomplex *y, int incy);

 void zgbmv_64(char transa, long m, long n, long nsub, long
 nsuper, doublecomplex *alpha, doublecomplex *a,
 long lda, doublecomplex *x, long incx, doublecom-
 plex *beta, doublecomplex *y, long incy);

PURPOSE

 zgbmv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y where alpha and beta are
 scalars, x and y are vectors and A is an m by n band matrix,
 with nsub sub-diagonals and nsuper super-diagonals.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:
 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.
 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.
 TRANSA = 'C' or 'c' y := alpha*conjg(A')*x +
 beta*y.
 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M must be at least zero. Unchanged on
 exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N must be at least zero. Unchanged on
 exit.

 NSUB (input)
 On entry, NSUB specifies the number of sub-
 diagonals of the matrix A. NSUB must satisfy 0
 .le. NSUB. Unchanged on exit.

 NSUPER (input)
 On entry, NSUPER specifies the number of super-
 diagonals of the matrix A. NSUPER must satisfy 0
 .le. NSUPER. Unchanged on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading (nsub + nsuper + 1) by
 n part of the array A must contain the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (nsuper + 1

) of the array, the first super-diagonal starting
 at position 2 in row nsuper, the first sub-
 diagonal starting at position 1 in row (nsuper +
 2), and so on. Elements in the array A that do
 not correspond to elements in the band matrix
 (such as the top left nsuper by nsuper triangle)
 are not referenced. The following program segment
 will transfer a band matrix from conventional full
 matrix storage to band storage:

 DO 20, J = 1, N
 K = NSUPER + 1 - J
 DO 10, I = MAX(1, J - NSUPER), MIN(M, J +
 NSUB)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA must
 be at least (nsub + nsuper + 1). Unchanged on
 exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry, the incremented array Y
 must contain the vector y. On exit, Y is overwrit-
 ten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE ZGBRFS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZGBRFS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF, LDAF,
 IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBRFS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA], AF,
 [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GBRFS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgbrfs(char transa, int n, int nsub, int nsuper, int
 nrhs, doublecomplex *a, int lda, doublecomplex
 *af, int ldaf, int *ipivot, doublecomplex *b, int
 ldb, doublecomplex *x, int ldx, double *ferr, dou-
 ble *berr, int *info);

 void zgbrfs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, doublecomplex *a, long lda, doublecom-
 plex *af, long ldaf, long *ipivot, doublecomplex
 *b, long ldb, doublecomplex *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 zgbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is banded, and pro-
 vides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original band matrix A, stored in rows 1 to
 NSUB+NSUPER+1. The j-th column of A is stored in
 the j-th column of the array A as follows:
 A(ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(n,j+kl).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input)
 Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB*NSUPER+1.

 IPIVOT (input)
 The pivot indices from CGBTRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CGBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).
 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgbsv - compute the solution to a complex system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE ZGBSV(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGBSV_64(N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B, LDB,
 INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBSV([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBSV_64([N], NSUB, NSUPER, [NRHS], A, [LDA], IPIVOT, B,
 [LDB], [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgbsv(int n, int nsub, int nsuper, int nrhs, doublecom-
 plex *a, int lda, int *ipivot, doublecomplex *b,
 int ldb, int *info);

 void zgbsv_64(long n, long nsub, long nsuper, long nrhs,
 doublecomplex *a, long lda, long *ipivot, doub-
 lecomplex *b, long ldb, long *info);

PURPOSE

 zgbsv computes the solution to a complex system of linear
 equations A * X = B, where A is a band matrix of order N
 with KL subdiagonals and KU superdiagonals, and X and B are
 N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row inter-
 changes is used to factor A as A = L * U, where L is a pro-
 duct of permutation and unit lower triangular matrices with
 KL subdiagonals, and U is upper triangular with KL+KU super-
 diagonals. The factored form of A is then used to solve the
 system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(NSUB+NSUPER+1+i-j,j) = A(i,j) for
 max(1,j-NSUPER)<=i<=min(N,j+NSUB) On exit, details
 of the factorization: U is stored as an upper tri-
 angular band matrix with NSUB+NSUPER superdiago-
 nals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1. See below
 for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)

 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and the solution has not been
 computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbsvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZGBSVX(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION ROWSC(*), COLSC(*), FERR(*), BERR(*),
 WORK2(*)

 SUBROUTINE ZGBSVX_64(FACT, TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, AF,
 LDAF, IPIVOT, EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION ROWSC(*), COLSC(*), FERR(*), BERR(*),
 WORK2(*)

 F95 INTERFACE
 SUBROUTINE GBSVX(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND

 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 SUBROUTINE GBSVX_64(FACT, [TRANSA], [N], NSUB, NSUPER, [NRHS], A,
 [LDA], AF, [LDAF], IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX],
 RCOND, FERR, BERR, [WORK], [WORK2], [INFO])
 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDAF, LDB, LDX,
 INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgbsvx(char fact, char transa, int n, int nsub, int
 nsuper, int nrhs, doublecomplex *a, int lda, doub-
 lecomplex *af, int ldaf, int *ipivot, char equed,
 double *rowsc, double *colsc, doublecomplex *b,
 int ldb, doublecomplex *x, int ldx, double *rcond,
 double *ferr, double *berr, int *info);

 void zgbsvx_64(char fact, char transa, long n, long nsub,
 long nsuper, long nrhs, doublecomplex *a, long
 lda, doublecomplex *af, long ldaf, long *ipivot,
 char equed, double *rowsc, double *colsc, doub-
 lecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *rcond, double *ferr, double *berr,
 long *info);

PURPOSE

 zgbsvx uses the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B, where A is a band matrix of order N with
 KL subdiagonals and KU superdiagonals, and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as
 A = L * U,
 where L is a product of permutation and unit lower tri-
 angular
 matrices with KL subdiagonals, and U is upper triangular
 with
 KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The number of linear equations, i.e., the order of

 the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows 1
 to NSUB+NSUPER+1. The j-th column of A is stored
 in the j-th column of the array A as follows:
 A(NSUPER+1+i-j,j) = A(i,j) for max(1,j-
 NSUPER)<=i<=min(N,j+kl)

 If FACT = 'F' and EQUED is not 'N', then A must
 have been equilibrated by the scaling factors in
 ROWSC and/or COLSC. A is not modified if FACT =
 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on
 exit.

 On exit, if EQUED .ne. 'N', A is scaled as
 follows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NSUB+NSUPER+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains details of the LU factorization of
 the band matrix A, as computed by CGBTRF. U is
 stored as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. If EQUED .ne. 'N', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns details of the LU factorization of
 A.

 If FACT = 'E', then AF is an output argument and
 on exit returns details of the LU factorization of
 the equilibrated matrix A (see the description of
 A for the form of the equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 2*NSUB+NSUPER+1.

 IPIVOT (input)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = L*U as computed by CGBTRF; row i

 of the matrix was interchanged with row IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = L*U of the equilibrated matrix
 A.
 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if EQUED = 'N', B is not modified; if TRANSA = 'N'
 and EQUED = 'ROWSC' or 'B', B is overwritten by
 diag(ROWSC)*B; if TRANSA = 'T' or 'COLSC' and
 EQUED = 'COLSC' or 'B', B is overwritten by
 diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=

 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N) On exit, WORK2(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK2(1) is much less than 1, then the stability
 of the LU factorization of the (equilibrated)
 matrix A could be poor. This also means that the
 solution X, condition estimator RCOND, and forward
 error bound FERR could be unreliable. If factori-
 zation fails with 0<INFO<=N, then WORK2(1)
 contains the reciprocal pivot growth factor for
 the leading INFO columns of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgbtf2 - compute an LU factorization of a complex m-by-n
 band matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE ZGBTF2(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER M, N, KL, KU, LDAB, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZGBTF2_64(M, N, KL, KU, AB, LDAB, IPIV, INFO)

 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER*8 M, N, KL, KU, LDAB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE GBTF2([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER :: M, N, KL, KU, LDAB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE GBTF2_64([M], [N], KL, KU, AB, [LDAB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER(8) :: M, N, KL, KU, LDAB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zgbtf2(int m, int n, int kl, int ku, doublecomplex *ab,
 int ldab, int *ipiv, int *info);

 void zgbtf2_64(long m, long n, long kl, long ku, doublecom-
 plex *ab, long ldab, long *ipiv, long *info);

PURPOSE

 zgbtf2 computes an LU factorization of a complex m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 KL (input)
 The number of subdiagonals within the band of A.
 KL >= 0.

 KU (input)
 The number of superdiagonals within the band of A.
 KU >= 0.

 AB (input/output)
 On entry, the matrix A in band storage, in rows
 KL+1 to 2*KL+KU+1; rows 1 to KL of the array need
 not be set. The j-th column of A is stored in the
 j-th column of the array AB as follows:
 AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with KL+KU
 superdiagonals in rows 1 to KL+KU+1, and the mul-
 tipliers used during the factorization are stored
 in rows KL+KU+2 to 2*KL+KU+1. See below for
 further details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 2*KL+KU+1.

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, KL = 2, KU = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U, because of fill-in
 resulting from the row
 interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgbtrf - compute an LU factorization of a complex m-by-n
 band matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE ZGBTRF(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, NSUB, NSUPER, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGBTRF_64(M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBTRF([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBTRF_64([M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgbtrf(int m, int n, int nsub, int nsuper, doublecom-
 plex *a, int lda, int *ipivot, int *info);

 void zgbtrf_64(long m, long n, long nsub, long nsuper, doub-
 lecomplex *a, long lda, long *ipivot, long *info);

PURPOSE

 zgbtrf computes an LU factorization of a complex m-by-n band
 matrix A using partial pivoting with row interchanges.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 A (input/output)
 On entry, the matrix A in band storage, in rows
 NSUB+1 to 2*NSUB+NSUPER+1; rows 1 to NSUB of the
 array need not be set. The j-th column of A is
 stored in the j-th column of the array A as fol-
 lows: A(kl+ku+1+i-j,j) = A(i,j) for max(1,j-
 ku)<=i<=min(m,j+kl)

 On exit, details of the factorization: U is stored
 as an upper triangular band matrix with
 NSUB+NSUPER superdiagonals in rows 1 to
 NSUB+NSUPER+1, and the multipliers used during the
 factorization are stored in rows NSUB+NSUPER+2 to
 2*NSUB+NSUPER+1. See below for further details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = +i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when M = N = 6, NSUB = 2, NSUPER = 1:

 On entry: On exit:

 * * * + + + * * * u14 u25
 u36
 * * + + + + * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66
 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65
 *
 a31 a42 a53 a64 * * m31 m42 m53 m64 *
 *

 Array elements marked * are not used by the routine; ele-
 ments marked + need not be set on entry, but are required by
 the routine to store elements of U because of fill-in
 resulting from the row interchanges.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgbtrs - solve a system of linear equations A * X = B, A**T
 * X = B, or A**H * X = B with a general band matrix A using
 the LU factorization computed by CGBTRF

SYNOPSIS

 SUBROUTINE ZGBTRS(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGBTRS_64(TRANSA, N, NSUB, NSUPER, NRHS, A, LDA, IPIVOT,
 B, LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GBTRS([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GBTRS_64([TRANSA], [N], NSUB, NSUPER, [NRHS], A, [LDA],
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NSUB, NSUPER, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgbtrs(char transa, int n, int nsub, int nsuper, int

 nrhs, doublecomplex *a, int lda, int *ipivot,
 doublecomplex *b, int ldb, int *info);
 void zgbtrs_64(char transa, long n, long nsub, long nsuper,
 long nrhs, doublecomplex *a, long lda, long
 *ipivot, doublecomplex *b, long ldb, long *info);

PURPOSE

 zgbtrs solves a system of linear equations
 A * X = B, A**T * X = B, or A**H * X = B with a gen-
 eral band matrix A using the LU factorization computed by
 CGBTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NSUB (input)
 The number of subdiagonals within the band of A.
 NSUB >= 0.

 NSUPER (input)
 The number of superdiagonals within the band of A.
 NSUPER >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) Details of the LU factorization of the band matrix
 A, as computed by CGBTRF. U is stored as an upper
 triangular band matrix with NSUB+NSUPER superdiag-
 onals in rows 1 to NSUB+NSUPER+1, and the multi-
 pliers used during the factorization are stored in
 rows NSUB+NSUPER+2 to 2*NSUB+NSUPER+1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 2*NSUB+NSUPER+1.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= N, row i of the
 matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgebak - form the right or left eigenvectors of a complex
 general matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by CGEBAL

SYNOPSIS

 SUBROUTINE ZGEBAK(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 DOUBLE COMPLEX V(LDV,*)
 INTEGER N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION SCALE(*)

 SUBROUTINE ZGEBAK_64(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 DOUBLE COMPLEX V(LDV,*)
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAK(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX(8), DIMENSION(:,:) :: V
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: SCALE

 SUBROUTINE GEBAK_64(JOB, SIDE, [N], ILO, IHI, SCALE, [M], V, [LDV],
 [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX(8), DIMENSION(:,:) :: V
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void zgebak(char job, char side, int n, int ilo, int ihi,
 double *scale, int m, doublecomplex *v, int ldv,
 int *info);

 void zgebak_64(char job, char side, long n, long ilo, long
 ihi, double *scale, long m, doublecomplex *v, long
 ldv, long *info);

PURPOSE

 zgebak forms the right or left eigenvectors of a complex
 general matrix by backward transformation on the computed
 eigenvectors of the balanced matrix output by CGEBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required: = 'N', do nothing, return immediately;
 = 'P', do backward transformation for permutation
 only; = 'S', do backward transformation for scal-
 ing only; = 'B', do backward transformations for
 both permutation and scaling. JOB must be the
 same as the argument JOB supplied to CGEBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integer ILO determined by CGEBAL. 1 <= ILO <=
 IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 The integer IHI determined by CGEBAL. 1 <= ILO <=
 IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 SCALE (input)
 Details of the permutation and scaling factors, as
 returned by CGEBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by CHSEIN or
 CTREVC. On exit, V is overwritten by the
 transformed eigenvectors.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgebal - balance a general complex matrix A

SYNOPSIS

 SUBROUTINE ZGEBAL(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, ILO, IHI, INFO
 DOUBLE PRECISION SCALE(*)

 SUBROUTINE ZGEBAL_64(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

 CHARACTER * 1 JOB
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, ILO, IHI, INFO
 DOUBLE PRECISION SCALE(*)

 F95 INTERFACE
 SUBROUTINE GEBAL(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: SCALE

 SUBROUTINE GEBAL_64(JOB, [N], A, [LDA], ILO, IHI, SCALE, [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void zgebal(char job, int n, doublecomplex *a, int lda, int
 *ilo, int *ihi, double *scale, int *info);

 void zgebal_64(char job, long n, doublecomplex *a, long lda,
 long *ilo, long *ihi, double *scale, long *info);

PURPOSE

 zgebal balances a general complex matrix A. This involves,
 first, permuting A by a similarity transformation to isolate
 eigenvalues in the first 1 to ILO-1 and last IHI+1 to N
 elements on the diagonal; and second, applying a diagonal
 similarity transformation to rows and columns ILO to IHI to
 make the rows and columns as close in norm as possible.
 Both steps are optional.

 Balancing may reduce the 1-norm of the matrix, and improve
 the accuracy of the computed eigenvalues and/or eigenvec-
 tors.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A:
 = 'N': none: simply set ILO = 1, IHI = N,
 SCALE(I) = 1.0 for i = 1,...,N; = 'P': permute
 only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 IHI (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I =
 IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI
 = N.

 SCALE (output)
 Details of the permutations and scaling factors
 applied to A. If P(j) is the index of the row and
 column interchanged with row and column j and D(j)
 is the scaling factor applied to row and column j,
 then SCALE(j) = P(j) for j = 1,...,ILO-1 = D(j)
 for j = ILO,...,IHI = P(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 INFO (output)
 = 0: successful exit.

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The permutations consist of row and column interchanges
 which put the matrix in the form

 (T1 X Y)
 P A P = (0 B Z)
 (0 0 T2)

 where T1 and T2 are upper triangular matrices whose eigen-
 values lie along the diagonal. The column indices ILO and
 IHI mark the starting and ending columns of the submatrix B.
 Balancing consists of applying a diagonal similarity
 transformation inv(D) * B * D to make the 1-norms of each
 row of B and its corresponding column nearly equal. The
 output matrix is

 (T1 X*D Y)
 (0 inv(D)*B*D inv(D)*Z).
 (0 0 T2)

 Information about the permutations P and the diagonal matrix
 D is returned in the vector SCALE.

 This subroutine is based on the EISPACK routine CBAL.

 Modified by Tzu-Yi Chen, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgebrd - reduce a general complex M-by-N matrix A to upper
 or lower bidiagonal form B by a unitary transformation

SYNOPSIS

 SUBROUTINE ZGEBRD(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAUQ(*), TAUP(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO
 DOUBLE PRECISION D(*), E(*)

 SUBROUTINE ZGEBRD_64(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), TAUQ(*), TAUP(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO
 DOUBLE PRECISION D(*), E(*)

 F95 INTERFACE
 SUBROUTINE GEBRD([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK], [LWORK],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUQ, TAUP, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E

 SUBROUTINE GEBRD_64([M], [N], A, [LDA], D, E, TAUQ, TAUP, [WORK],
 [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUQ, TAUP, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void zgebrd(int m, int n, doublecomplex *a, int lda, double
 *d, double *e, doublecomplex *tauq, doublecomplex
 *taup, int *info);

 void zgebrd_64(long m, long n, doublecomplex *a, long lda,
 double *d, double *e, doublecomplex *tauq, doub-
 lecomplex *taup, long *info);

PURPOSE

 zgebrd reduces a general complex M-by-N matrix A to upper or
 lower bidiagonal form B by a unitary transformation: Q**H *
 A * P = B.

 If m >= n, B is upper bidiagonal; if m < n, B is lower bidi-
 agonal.

ARGUMENTS

 M (input) The number of rows in the matrix A. M >= 0.

 N (input) The number of columns in the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N general matrix to be reduced.
 On exit, if m >= n, the diagonal and the first
 superdiagonal are overwritten with the upper bidi-
 agonal matrix B; the elements below the diagonal,
 with the array TAUQ, represent the unitary matrix
 Q as a product of elementary reflectors, and the
 elements above the first superdiagonal, with the
 array TAUP, represent the unitary matrix P as a
 product of elementary reflectors; if m < n, the
 diagonal and the first subdiagonal are overwritten
 with the lower bidiagonal matrix B; the elements
 below the first subdiagonal, with the array TAUQ,
 represent the unitary matrix Q as a product of
 elementary reflectors, and the elements above the
 diagonal, with the array TAUP, represent the uni-
 tary matrix P as a product of elementary reflec-
 tors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 D (output)
 The diagonal elements of the bidiagonal matrix B:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the bidiagonal matrix
 B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-
 1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
 TAUQ (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q. See Further
 Details.

 TAUP (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix P. See Further
 Details.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,M,N). For optimum performance LWORK >=
 (M+N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrices Q and P are represented as products of elemen-
 tary reflectors:

 If m >= n,

 Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are complex scalars, and v and u are
 complex vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is
 stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and
 u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in
 TAUQ(i) and taup in TAUP(i).
 If m < n,

 Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)

 Each H(i) and G(i) has the form:

 H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'

 where tauq and taup are complex scalars, and v and u are
 complex vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is
 stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and
 u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in
 TAUQ(i) and taup in TAUP(i).

 The contents of A on exit are illustrated by the following
 examples:

 m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

 (d e u1 u1 u1) (d u1 u1 u1 u1
 u1)
 (v1 d e u2 u2) (e d u2 u2 u2
 u2)
 (v1 v2 d e u3) (v1 e d u3 u3

 u3)
 (v1 v2 v3 d e) (v1 v2 e d u4
 u4)
 (v1 v2 v3 v4 d) (v1 v2 v3 e d
 u5)
 (v1 v2 v3 v4 v5)

 where d and e denote diagonal and off-diagonal elements of
 B, vi denotes an element of the vector defining H(i), and ui
 an element of the vector defining G(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgecon - estimate the reciprocal of the condition number of
 a general complex matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by CGETRF

SYNOPSIS

 SUBROUTINE ZGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGECON_64(NORM, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GECON(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GECON_64(NORM, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void zgecon(char norm, int n, doublecomplex *a, int lda,
 double anorm, double *rcond, int *info);

 void zgecon_64(char norm, long n, doublecomplex *a, long
 lda, double anorm, double *rcond, long *info);

PURPOSE

 zgecon estimates the reciprocal of the condition number of a
 general complex matrix A, in either the 1-norm or the
 infinity-norm, using the LU factorization computed by
 CGETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgeequ - compute row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number

SYNOPSIS

 SUBROUTINE ZGEEQU(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION ROWSC(*), COLSC(*)

 SUBROUTINE ZGEEQU_64(M, N, A, LDA, ROWSC, COLSC, ROWCN, COLCN, AMAX,
 INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 DOUBLE PRECISION ROWCN, COLCN, AMAX
 DOUBLE PRECISION ROWSC(*), COLSC(*)

 F95 INTERFACE
 SUBROUTINE GEEQU([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC

 SUBROUTINE GEEQU_64([M], [N], A, [LDA], ROWSC, COLSC, ROWCN, COLCN,
 AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 REAL(8) :: ROWCN, COLCN, AMAX
 REAL(8), DIMENSION(:) :: ROWSC, COLSC

 C INTERFACE
 #include <sunperf.h>

 void zgeequ(int m, int n, doublecomplex *a, int lda, double
 *rowsc, double *colsc, double *rowcn, double

 *colcn, double *amax, int *info);

 void zgeequ_64(long m, long n, doublecomplex *a, long lda,
 double *rowsc, double *colsc, double *rowcn,
 double *colcn, double *amax, long *info);

PURPOSE

 zgeequ computes row and column scalings intended to equili-
 brate an M-by-N matrix A and reduce its condition number. R
 returns the row scale factors and C the column scale fac-
 tors, chosen to try to make the largest element in each row
 and column of the matrix B with elements
 B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest
 safe number and BIGNUM = largest safe number. Use of these
 scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input) The M-by-N matrix whose equilibration factors are
 to be computed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 ROWSC (output)
 If INFO = 0 or INFO > M, ROWSC contains the row
 scale factors for A.

 COLSC (output)
 If INFO = 0, COLSC contains the column scale fac-
 tors for A.

 ROWCN (output)
 If INFO = 0 or INFO > M, ROWCN contains the ratio
 of the smallest ROWSC(i) to the largest ROWSC(i).
 If ROWCN >= 0.1 and AMAX is neither too large nor
 too small, it is not worth scaling by ROWSC.

 COLCN (output)
 If INFO = 0, COLCN contains the ratio of the smal-
 lest COLSC(i) to the largest COLSC(i). If COLCN
 >= 0.1, it is not worth scaling by COLSC.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: if INFO = i, and i is
 <= M: the i-th row of A is exactly zero
 > M: the (i-M)-th column of A is exactly zero

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgees - compute for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE ZGEES(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, W, Z, LDZ,
 WORK, LDWORK, WORK2, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL WORK3(*)
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEES_64(JOBZ, SORTEV, SELECT, N, A, LDA, NOUT, W, Z, LDZ,
 WORK, LDWORK, WORK2, WORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV
 DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 WORK3(*)
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEES(JOBZ, SORTEV, [SELECT], [N], A, [LDA], [NOUT], W, [Z], [LDZ],
 [WORK], [LDWORK], [WORK2], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: WORK3
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEES_64(JOBZ, SORTEV, [SELECT], [N], A, [LDA], [NOUT], W, [Z],
 [LDZ], [WORK], [LDWORK], [WORK2], [WORK3], [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV
 COMPLEX(8), DIMENSION(:) :: W, WORK

 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: WORK3
 REAL(8), DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void zgees(char jobz, char sortev,
 int(*select)(doublecomplex), int n, doublecomplex
 *a, int lda, int *nout, doublecomplex *w, doub-
 lecomplex *z, int ldz, int *info);

 void zgees_64(char jobz, char sortev,
 long(*select)(doublecomplex), long n, doublecom-
 plex *a, long lda, long *nout, doublecomplex *w,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zgees computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**H).

 Optionally, it also orders the eigenvalues on the diagonal
 of the Schur form so that selected eigenvalues are at the
 top left. The leading columns of Z then form an orthonormal
 basis for the invariant subspace corresponding to the
 selected eigenvalues.

 A complex matrix is in Schur form if it is upper triangular.

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.

 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered:
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to order to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. The eigenvalue W(j) is selected if
 SELECT(W(j)) is true.
 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten by its Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=

 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues for which SELECT is true.

 W (output)
 W contains the computed eigenvalues, in the same
 order that they appear on the diagonal of the out-
 put Schur form T.

 Z (output)
 If JOBZ = 'V', Z contains the unitary matrix Z of
 Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1;
 if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.
 WORK2 (workspace)
 dimension(N)

 WORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of W con-
 tain those eigenvalues which have converged; if
 JOBZ = 'V', Z contains the matrix which reduces A
 to its partially converged Schur form. = N+1: the
 eigenvalues could not be reordered because some
 eigenvalues were too close to separate (the prob-
 lem is very ill-conditioned); = N+2: after reord-
 ering, roundoff changed values of some complex
 eigenvalues so that leading eigenvalues in the
 Schur form no longer satisfy SELECT = .TRUE..
 This could also be caused by underflow due to
 scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgeesx - compute for an N-by-N complex nonsymmetric matrix
 A, the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z

SYNOPSIS

 SUBROUTINE ZGEESX(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, W, Z,
 LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL SELECT
 LOGICAL BWORK3(*)
 DOUBLE PRECISION RCONE, RCONV
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEESX_64(JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, W,
 Z, LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)

 CHARACTER * 1 JOBZ, SORTEV, SENSE
 DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL*8 SELECT
 LOGICAL*8 BWORK3(*)
 DOUBLE PRECISION RCONE, RCONV
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEESX(JOBZ, SORTEV, [SELECT], SENSE, [N], A, [LDA], NOUT, W,
 [Z], [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL :: SELECT
 LOGICAL, DIMENSION(:) :: BWORK3
 REAL(8) :: RCONE, RCONV
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEESX_64(JOBZ, SORTEV, [SELECT], SENSE, [N], A, [LDA], NOUT,

 W, [Z], [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
 LOGICAL(8) :: SELECT
 LOGICAL(8), DIMENSION(:) :: BWORK3
 REAL(8) :: RCONE, RCONV
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgeesx(char jobz, char sortev,
 int(*select)(doublecomplex), char sense, int n,
 doublecomplex *a, int lda, int *nout, doublecom-
 plex *w, doublecomplex *z, int ldz, double *rcone,
 double *rconv, int *info);

 void zgeesx_64(char jobz, char sortev,
 long(*select)(doublecomplex), char sense, long n,
 doublecomplex *a, long lda, long *nout, doublecom-
 plex *w, doublecomplex *z, long ldz, double
 *rcone, double *rconv, long *info);

PURPOSE

 zgeesx computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues, the Schur form T, and, optionally, the
 matrix of Schur vectors Z. This gives the Schur factoriza-
 tion A = Z*T*(Z**H).

 Optionally, it also orders the eigenvalues on the diagonal
 of the Schur form so that selected eigenvalues are at the
 top left; computes a reciprocal condition number for the
 average of the selected eigenvalues (RCONDE); and computes a
 reciprocal condition number for the right invariant subspace
 corresponding to the selected eigenvalues (RCONDV). The
 leading columns of Z form an orthonormal basis for this
 invariant subspace.

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see Section 4.10 of the LAPACK Users'
 Guide (where these quantities are called s and sep respec-
 tively).

 A complex matrix is in Schur form if it is upper triangular.

ARGUMENTS

 JOBZ (input)
 = 'N': Schur vectors are not computed;
 = 'V': Schur vectors are computed.
 SORTEV (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the Schur form. = 'N': Eigen-
 values are not ordered;
 = 'S': Eigenvalues are ordered (see SELECT).

 SELECT (input)
 SELECT must be declared EXTERNAL in the calling
 subroutine. If SORTEV = 'S', SELECT is used to
 select eigenvalues to order to the top left of the
 Schur form. If SORTEV = 'N', SELECT is not refer-
 enced. An eigenvalue W(j) is selected if
 SELECT(W(j)) is true.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for average of selected eigen-
 values only;
 = 'V': Computed for selected right invariant sub-
 space only;
 = 'B': Computed for both. If SENSE = 'E', 'V' or
 'B', SORTEV must equal 'S'.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A is
 overwritten by its Schur form T.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 NOUT (output)
 If SORTEV = 'N', NOUT = 0. If SORTEV = 'S', NOUT
 = number of eigenvalues for which SELECT is true.

 W (output)
 W contains the computed eigenvalues, in the same
 order that they appear on the diagonal of the out-
 put Schur form T.

 Z (output)
 If JOBZ = 'V', Z contains the unitary matrix Z of
 Schur vectors. If JOBZ = 'N', Z is not refer-
 enced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 RCONE (output)
 If SENSE = 'E' or 'B', RCONE contains the recipro-
 cal condition number for the average of the
 selected eigenvalues. Not referenced if SENSE =
 'N' or 'V'.

 RCONV (output)
 If SENSE = 'V' or 'B', RCONV contains the recipro-
 cal condition number for the selected right
 invariant subspace. Not referenced if SENSE = 'N'
 or 'E'.

 WORK (workspace)
 dimension(LDWORK) On exit, if INFO = 0, WORK(1)
 returns the optimal LDWORK.

 LDWORK (input)

 The dimension of the array WORK. LDWORK >=
 max(1,2*N). Also, if SENSE = 'E' or 'V' or 'B',
 LDWORK >= 2*NOUT*(N-NOUT), where NOUT is the
 number of selected eigenvalues computed by this
 routine. Note that 2*NOUT*(N-NOUT) <= N*N/2. For
 good performance, LDWORK must generally be larger.

 WORK2 (workspace)
 dimension(N)

 BWORK3 (workspace)
 dimension(N) Not referenced if SORTEV = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is
 <= N: the QR algorithm failed to compute all the
 eigenvalues; elements 1:ILO-1 and i+1:N of W con-
 tain those eigenvalues which have converged; if
 JOBZ = 'V', Z contains the transformation which
 reduces A to its partially converged Schur form.
 = N+1: the eigenvalues could not be reordered
 because some eigenvalues were too close to
 separate (the problem is very ill-conditioned); =
 N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Schur form no longer satisfy
 SELECT=.TRUE. This could also be caused by under-
 flow due to scaling.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgeev - compute for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE ZGEEV(JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER N, LDA, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEEV_64(JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER*8 N, LDA, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEEV(JOBVL, JOBVR, [N], A, [LDA], W, VL, [LDVL], VR, [LDVR],
 [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, VL, VR
 INTEGER :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEEV_64(JOBVL, JOBVR, [N], A, [LDA], W, VL, [LDVL], VR,
 [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, VL, VR
 INTEGER(8) :: N, LDA, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void zgeev(char jobvl, char jobvr, int n, doublecomplex *a,
 int lda, doublecomplex *w, doublecomplex *vl, int
 ldvl, doublecomplex *vr, int ldvr, int *info);

 void zgeev_64(char jobvl, char jobvr, long n, doublecomplex
 *a, long lda, doublecomplex *w, doublecomplex *vl,
 long ldvl, doublecomplex *vr, long ldvr, long
 *info);

PURPOSE

 zgeev computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

ARGUMENTS

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of are computed.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 W contains the computed eigenvalues.

 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. u(j) = VL(:,j), the
 j-th column of VL.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. v(j) = VR(:,j), the
 j-th column of VR.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors have
 been computed; elements and i+1:N of W contain
 eigenvalues which have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgeevx - compute for an N-by-N complex nonsymmetric matrix
 A, the eigenvalues and, optionally, the left and/or right
 eigenvectors

SYNOPSIS

 SUBROUTINE ZGEEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 DOUBLE COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 DOUBLE PRECISION ABNRM
 DOUBLE PRECISION SCALE(*), RCONE(*), RCONV(*), WORK2(*)

 SUBROUTINE ZGEEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
 LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 DOUBLE COMPLEX A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER*8 N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 DOUBLE PRECISION ABNRM
 DOUBLE PRECISION SCALE(*), RCONE(*), RCONV(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], W, VL,
 [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV, [WORK],
 LDWORK, [WORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, VL, VR
 INTEGER :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL(8) :: ABNRM
 REAL(8), DIMENSION(:) :: SCALE, RCONE, RCONV, WORK2

 SUBROUTINE GEEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], W,
 VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV,
 [WORK], LDWORK, [WORK2], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, VL, VR
 INTEGER(8) :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
 REAL(8) :: ABNRM
 REAL(8), DIMENSION(:) :: SCALE, RCONE, RCONV, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgeevx (char, char, char, char, int, doublecomplex*,
 int, doublecomplex*, doublecomplex*, int, doub-
 lecomplex*, int, int*, int*, double*, double*,
 double*, double*, int*);

 void zgeevx_64 (char, char, char, char, long, doublecom-
 plex*, long, doublecomplex*, doublecomplex*, long,
 doublecomplex*, long, long*, long*, double*, dou-
 ble*, double*, double*, long*);

PURPOSE

 zgeevx computes for an N-by-N complex nonsymmetric matrix A,
 the eigenvalues and, optionally, the left and/or right
 eigenvectors.

 Optionally also, it computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers
 for the eigenvalues (RCONDE), and reciprocal condition
 numbers for the right
 eigenvectors (RCONDV).

 The right eigenvector v(j) of A satisfies
 A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
 u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean
 norm equal to 1 and largest component real.

 Balancing a matrix means permuting the rows and columns to
 make it more nearly upper triangular, and applying a diago-
 nal similarity transformation D * A * D**(-1), where D is a
 diagonal matrix, to make its rows and columns closer in norm
 and the condition numbers of its eigenvalues and eigenvec-
 tors smaller. The computed reciprocal condition numbers
 correspond to the balanced matrix. Permuting rows and
 columns will not change the condition numbers (in exact
 arithmetic) but diagonal scaling will. For further explana-
 tion of balancing, see section 4.10.2 of the LAPACK Users'
 Guide.

ARGUMENTS

 BALANC (input)
 Indicates how the input matrix should be diago-
 nally scaled and/or permuted to improve the condi-
 tioning of its eigenvalues. = 'N': Do not diago-
 nally scale or permute;
 = 'P': Perform permutations to make the matrix
 more nearly upper triangular. Do not diagonally
 scale; = 'S': Diagonally scale the matrix, ie.
 replace A by D*A*D**(-1), where D is a diagonal
 matrix chosen to make the rows and columns of A
 more equal in norm. Do not permute; = 'B': Both
 diagonally scale and permute A.

 Computed reciprocal condition numbers will be for
 the matrix after balancing and/or permuting. Per-
 muting does not change condition numbers (in exact
 arithmetic), but balancing does.

 JOBVL (input)
 = 'N': left eigenvectors of A are not computed;
 = 'V': left eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVL must = 'V'.

 JOBVR (input)
 = 'N': right eigenvectors of A are not computed;
 = 'V': right eigenvectors of A are computed. If
 SENSE = 'E' or 'B', JOBVR must = 'V'.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': None are computed;
 = 'E': Computed for eigenvalues only;
 = 'V': Computed for right eigenvectors only;
 = 'B': Computed for eigenvalues and right eigen-
 vectors.

 If SENSE = 'E' or 'B', both left and right eigen-
 vectors must also be computed (JOBVL = 'V' and
 JOBVR = 'V').

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the N-by-N matrix A. On exit, A has
 been overwritten. If JOBVL = 'V' or JOBVR = 'V',
 A contains the Schur form of the balanced version
 of the matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 W contains the computed eigenvalues.

 VL (output)
 If JOBVL = 'V', the left eigenvectors u(j) are
 stored one after another in the columns of VL, in
 the same order as their eigenvalues. If JOBVL =
 'N', VL is not referenced. u(j) = VL(:,j), the
 j-th column of VL.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 if JOBVL = 'V', LDVL >= N.

 VR (input)
 If JOBVR = 'V', the right eigenvectors v(j) are
 stored one after another in the columns of VR, in
 the same order as their eigenvalues. If JOBVR =
 'N', VR is not referenced. v(j) = VR(:,j), the
 j-th column of VR.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 IHI (output)
 ILO and IHI are integer values determined when A
 was balanced. The balanced A(i,j) = 0 if I > J
 and J = 1,...,ILO-1 or I = IHI+1,...,N.

 SCALE (output)
 Details of the permutations and scaling factors
 applied when balancing A. If P(j) is the index of
 the row and column interchanged with row and
 column j, and D(j) is the scaling factor applied
 to row and column j, then SCALE(J) = P(J), for
 J = 1,...,ILO-1 = D(J), for J = ILO,...,IHI =
 P(J) for J = IHI+1,...,N. The order in which
 the interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 ABNRM (output)
 The one-norm of the balanced matrix (the maximum
 of the sum of absolute values of elements of any
 column).

 RCONE (output)
 RCONE(j) is the reciprocal condition number of the
 j-th eigenvalue.

 RCONV (output)
 RCONV(j) is the reciprocal condition number of the
 j-th right eigenvector.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. If SENSE = 'N'
 or 'E', LDWORK >= max(1,2*N), and if SENSE = 'V'
 or 'B', LDWORK >= N*N+2*N. For good performance,
 LDWORK must generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the QR algorithm failed to com-
 pute all the eigenvalues, and no eigenvectors or
 condition numbers have been computed; elements
 1:ILO-1 and i+1:N of W contain eigenvalues which
 have converged.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgegs - routine is deprecated and has been replaced by rou-
 tine CGGES

SYNOPSIS

 SUBROUTINE ZGEGS(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
 LDVSL, VSR, LDVSR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEGS_64(JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
 VSL, LDVSL, VSR, LDVSR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEGS(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEGS_64(JOBVSL, JOBVSR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LDWORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, LDVSL, LDVSR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void zgegs(char jobvsl, char jobvsr, int n, doublecomplex
 *a, int lda, doublecomplex *b, int ldb, doublecom-
 plex *alpha, doublecomplex *beta, doublecomplex
 *vsl, int ldvsl, doublecomplex *vsr, int ldvsr,
 int *info);

 void zgegs_64(char jobvsl, char jobvsr, long n, doublecom-
 plex *a, long lda, doublecomplex *b, long ldb,
 doublecomplex *alpha, doublecomplex *beta, doub-
 lecomplex *vsl, long ldvsl, doublecomplex *vsr,
 long ldvsr, long *info);

PURPOSE

 zgegs routine is deprecated and has been replaced by routine
 CGGES.

 CGEGS computes for a pair of N-by-N complex nonsymmetric
 matrices A, B: the generalized eigenvalues (alpha, beta),
 the complex Schur form (A, B), and optionally left and/or
 right Schur vectors (VSL and VSR).

 (If only the generalized eigenvalues are needed, use the
 driver CGEGV instead.)

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 The (generalized) Schur form of a pair of matrices is the
 result of multiplying both matrices on the left by one uni-
 tary matrix and both on the right by another unitary matrix,
 these two unitary matrices being chosen so as to bring the
 pair of matrices into upper triangular form with the diago-
 nal elements of B being non-negative real numbers (this is
 also called complex Schur form.)

 The left and right Schur vectors are the columns of VSL and
 VSR, respectively, where VSL and VSR are the unitary
 matrices
 which reduce A and B to Schur form:

 Schur form of (A,B) = ((VSL)**H A (VSR), (VSL)**H B (VSR))

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of A.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) Schur
 vectors are to be computed. On exit, the general-
 ized Schur form of B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j), j=1,...,N and
 BETA(j), j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) output by CGEGS. The
 BETA(j) will be non-negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See the description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL >=
 1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. (See "Purpose", above.) Not referenced
 if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must

 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB as
 the MAX of the blocksizes for CGEQRF, CUNMQR, and
 CUNGQR; the optimal LDWORK is N*(NB+1).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. (A,B) are not
 in Schur form, but ALPHA(j) and BETA(j) should be
 correct for j=INFO+1,...,N. > N: errors that
 usually indicate LAPACK problems:
 =N+1: error return from CGGBAL
 =N+2: error return from CGEQRF
 =N+3: error return from CUNMQR
 =N+4: error return from CUNGQR
 =N+5: error return from CGGHRD
 =N+6: error return from CHGEQZ (other than failed
 iteration) =N+7: error return from CGGBAK (comput-
 ing VSL)
 =N+8: error return from CGGBAK (computing VSR)
 =N+9: error return from CLASCL (various places)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgegv - routine is deprecated and has been replaced by rou-
 tine CGGEV

SYNOPSIS

 SUBROUTINE ZGEGV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEGV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEGV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEGV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VL, [LDVL], VR, [LDVR], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LDWORK, INFO
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgegv(char jobvl, char jobvr, int n, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, doublecomplex
 *alpha, doublecomplex *beta, doublecomplex *vl,
 int ldvl, doublecomplex *vr, int ldvr, int *info);

 void zgegv_64(char jobvl, char jobvr, long n, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, doub-
 lecomplex *alpha, doublecomplex *beta, doublecom-
 plex *vl, long ldvl, doublecomplex *vr, long ldvr,
 long *info);

PURPOSE

 zgegv routine is deprecated and has been replaced by routine
 CGGEV.

 CGEGV computes for a pair of N-by-N complex nonsymmetric
 matrices A and B, the generalized eigenvalues (alpha, beta),
 and optionally, the left and/or right generalized eigenvec-
 tors (VL and VR).

 A generalized eigenvalue for a pair of matrices (A,B) is,
 roughly speaking, a scalar w or a ratio alpha/beta = w,
 such that A - w*B is singular. It is usually represented
 as the pair (alpha,beta), as there is a reasonable interpre-
 tation for beta=0, and even for both being zero. A good
 beginning reference is the book, "Matrix Computations", by
 G. Golub & C. van Loan (Johns Hopkins U. Press)

 A right generalized eigenvector corresponding to a general-
 ized eigenvalue w for a pair of matrices (A,B) is a vector
 r such that (A - w B) r = 0 . A left generalized eigen-
 vector is a vector l such that l**H * (A - w B) = 0, where
 l**H is the
 conjugate-transpose of l.

 Note: this routine performs "full balancing" on A and B.
 See "Further Details", below.

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.
 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the first of the pair of matrices whose

 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of A on exit, see
 "Further Details", below.)

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices whose
 generalized eigenvalues and (optionally) general-
 ized eigenvectors are to be computed. On exit,
 the contents will have been destroyed. (For a
 description of the contents of B on exit, see
 "Further Details", below.)

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/VL(j), j=1,...,N, will be the
 generalized eigenvalues.

 Note: the quotients ALPHA(j)/VL(j) may easily
 over- or underflow, and VL(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and VL always less than and usually
 comparable with norm(B).

 BETA (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Each eigenvector will be
 scaled so the largest component will have abs(real
 part) + abs(imag. part) = 1, *except* that for
 eigenvalues with alpha=beta=0, a zero vector will
 be returned as the corresponding eigenvector. Not
 referenced if JOBVL = 'N'.
 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors.
 (See "Purpose", above.) Each eigenvector will be
 scaled so the largest component will have abs(real
 part) + abs(imag. part) = 1, *except* that for
 eigenvalues with alpha=beta=0, a zero vector will
 be returned as the corresponding eigenvector. Not
 referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right generalized eigenvec-
 tors. (See "Purpose", above.) Each eigenvector
 will be scaled so the largest component will have
 abs(real part) + abs(imag. part) = 1, *except*
 that for eigenvalues with alpha=beta=0, a zero
 vector will be returned as the corresponding
 eigenvector. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,

 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,2*N). For good performance, LDWORK must
 generally be larger. To compute the optimal value
 of LDWORK, call ILAENV to get blocksizes (for
 CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB as
 the MAX of the blocksizes for CGEQRF, CUNMQR, and
 CUNGQR; The optimal LDWORK is MAX(2*N, N*(NB+1)
).

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.
 WORK2 (workspace)
 dimension(8*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and VL(j)
 should be correct for j=INFO+1,...,N. > N:
 errors that usually indicate LAPACK problems:
 =N+1: error return from CGGBAL
 =N+2: error return from CGEQRF
 =N+3: error return from CUNMQR
 =N+4: error return from CUNGQR
 =N+5: error return from CGGHRD
 =N+6: error return from CHGEQZ (other than failed
 iteration) =N+7: error return from CTGEVC
 =N+8: error return from CGGBAK (computing VL)
 =N+9: error return from CGGBAK (computing VR)
 =N+10: error return from CLASCL (various calls)

FURTHER DETAILS

 Balancing

 This driver calls CGGBAL to both permute and scale rows and
 columns of A and B. The permutations PL and PR are chosen
 so that PL*A*PR and PL*B*R will be upper triangular except
 for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i
 and j as close together as possible. The diagonal scaling
 matrices DL and DR are chosen so that the pair
 DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one
 (except for the elements that start out zero.)

 After the eigenvalues and eigenvectors of the balanced
 matrices have been computed, CGGBAK transforms the eigenvec-
 tors back to what they would have been (in perfect arith-
 metic) if they had not been balanced.

 Contents of A and B on Exit

 -------- -- - --- - -- ----

 If any eigenvectors are computed (either JOBVL='V' or
 JOBVR='V' or both), then on exit the arrays A and B will
 contain the complex Schur form[*] of the "balanced" versions
 of A and B. If no eigenvectors are computed, then only the
 diagonal blocks will be correct.

 [*] In other words, upper triangular form.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgehrd - reduce a complex general matrix A to upper Hessen-
 berg form H by a unitary similarity transformation

SYNOPSIS

 SUBROUTINE ZGEHRD(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER N, ILO, IHI, LDA, LWORKIN, INFO

 SUBROUTINE ZGEHRD_64(N, ILO, IHI, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER*8 N, ILO, IHI, LDA, LWORKIN, INFO

 F95 INTERFACE
 SUBROUTINE GEHRD([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORKIN
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, ILO, IHI, LDA, LWORKIN, INFO

 SUBROUTINE GEHRD_64([N], ILO, IHI, A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORKIN
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, ILO, IHI, LDA, LWORKIN, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgehrd(int n, int ilo, int ihi, doublecomplex *a, int
 lda, doublecomplex *tau, int *info);

 void zgehrd_64(long n, long ilo, long ihi, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zgehrd reduces a complex general matrix A to upper Hessen-
 berg form H by a unitary similarity transformation: Q' * A
 * Q = H .

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGEBAL;
 otherwise they should be set to 1 and N respec-
 tively. See Further Details.

 IHI (input)
 See the description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first subdiag-
 onal of A are overwritten with the upper Hessen-
 berg matrix H, and the elements below the first
 subdiagonal, with the array TAU, represent the
 unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details). Elements 1:ILO-1 and
 IHI:N-1 of TAU are set to zero.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The length of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of (ihi-ilo) ele-
 mentary reflectors

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi)
 is stored on exit in A(i+2:ihi,i), and tau in TAU(i).

 The contents of A are illustrated by the following example,
 with n = 7, ilo = 2 and ihi = 6:

 on entry, on exit,

 (a a a a a a a) (a a h h h h
 a) (a a a a a a) (a h h h
 h a) (a a a a a a) (h h h
 h h h) (a a a a a a) (v2 h
 h h h h) (a a a a a a) (v2
 v3 h h h h) (a a a a a a) (
 v2 v3 v4 h h h) (a) (
 a)

 where a denotes an element of the original matrix A, h
 denotes a modified element of the upper Hessenberg matrix H,
 and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgelqf - compute an LQ factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE ZGELQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE ZGELQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GELQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GELQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgelqf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void zgelqf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 zgelqf computes an LQ factorization of a complex M-by-N
 matrix A: A = L * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and below the diagonal of the array con-
 tain the m-by-min(m,n) lower trapezoidal matrix L
 (L is lower triangular if m <= n); the elements
 above the diagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on
 exit in A(i,i+1:n), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgels - solve overdetermined or underdetermined complex
 linear systems involving an M-by-N matrix A, or its
 conjugate-transpose, using a QR or LQ factorization of A

SYNOPSIS

 SUBROUTINE ZGELS(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, LDWORK, INFO

 SUBROUTINE ZGELS_64(TRANSA, M, N, NRHS, A, LDA, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GELS([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB], [WORK],
 LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, LDWORK, INFO

 SUBROUTINE GELS_64([TRANSA], [M], [N], [NRHS], A, [LDA], B, [LDB],
 [WORK], LDWORK, [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgels (char, int, int, int, doublecomplex*, int, doub-
 lecomplex*, int, int*);

 void zgels_64 (char, long, long, long, doublecomplex*, long,
 doublecomplex*, long, long*);

PURPOSE

 zgels solves overdetermined or underdetermined complex
 linear systems involving an M-by-N matrix A, or its
 conjugate-transpose, using a QR or LQ factorization of A.
 It is assumed that A has full rank.

 The following options are provided:

 1. If TRANS = 'N' and m >= n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A*X ||.

 2. If TRANS = 'N' and m < n: find the minimum norm solution
 of
 an underdetermined system A * X = B.

 3. If TRANS = 'C' and m >= n: find the minimum norm solu-
 tion of
 an undetermined system A**H * X = B.

 4. If TRANS = 'C' and m < n: find the least squares solu-
 tion of
 an overdetermined system, i.e., solve the least squares
 problem
 minimize || B - A**H * X ||.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

ARGUMENTS

 TRANSA (input)
 = 'N': the linear system involves A;
 = 'C': the linear system involves A**H.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the M-by-N matrix A. if M >= N, A is
 overwritten by details of its QR factorization as
 returned by CGEQRF; if M < N, A is overwritten by
 details of its LQ factorization as returned by
 CGELQF.

 LDA (input)

 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the matrix B of right hand side vectors,
 stored columnwise; B is M-by-NRHS if TRANSA = 'N',
 or N-by-NRHS if TRANSA = 'C'. On exit, B is
 overwritten by the solution vectors, stored
 columnwise: if TRANSA = 'N' and m >= n, rows 1 to
 n of B contain the least squares solution vectors;
 the residual sum of squares for the solution in
 each column is given by the sum of squares of ele-
 ments N+1 to M in that column; if TRANSA = 'N' and
 m < n, rows 1 to N of B contain the minimum norm
 solution vectors; if TRANSA = 'C' and m >= n, rows
 1 to M of B contain the minimum norm solution vec-
 tors; if TRANSA = 'C' and m < n, rows 1 to M of B
 contain the least squares solution vectors; the
 residual sum of squares for the solution in each
 column is given by the sum of squares of elements
 M+1 to N in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 MAX(1,M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (output)
 The dimension of the array WORK. LDWORK >= max(
 1, MN + max(MN, NRHS)). For optimal perfor-
 mance, LDWORK >= max(1, MN + max(MN, NRHS)*NB
). where MN = min(M,N) and NB is the optimum
 block size.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgelsd - compute the minimum-norm solution to a real linear
 least squares problem

SYNOPSIS

 SUBROUTINE ZGELSD(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
 LWORK, RWORK, IWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION S(*), RWORK(*)

 SUBROUTINE ZGELSD_64(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
 WORK, LWORK, RWORK, IWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION S(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GELSD([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: S, RWORK

 SUBROUTINE GELSD_64([M], [N], [NRHS], A, [LDA], B, [LDB], S, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK

 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: S, RWORK

 C INTERFACE
 #include <sunperf.h>
 void zgelsd(int m, int n, int nrhs, doublecomplex *a, int
 lda, doublecomplex *b, int ldb, double *s, double
 rcond, int *rank, int *info);

 void zgelsd_64(long m, long n, long nrhs, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, double *s,
 double rcond, long *rank, long *info);

PURPOSE

 zgelsd computes the minimum-norm solution to a real linear
 least squares problem:
 minimize 2-norm(| b - A*x |)
 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The problem is solved in three steps:
 (1) Reduce the coefficient matrix A to bidiagonal form with
 Householder tranformations, reducing the original prob-
 lem
 into a "bidiagonal least squares problem" (BLS)
 (2) Solve the BLS using a divide and conquer approach.
 (3) Apply back all the Householder tranformations to solve
 the original least squares problem.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and RANK = n, the resi-
 dual sum-of-squares for the solution in the i-th
 column is given by the sum of squares of elements
 n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 S (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =
 S(1)/S(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values S(i) <= RCOND*S(1) are treated
 as zero. If RCOND < 0, machine precision is used
 instead.

 RANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than RCOND*S(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. The
 exact minimum amount of workspace needed depends
 on M, N and NRHS. If M >= N, LWORK >= 2*N +
 N*NRHS. If M < N, LWORK >= 2*M + M*NRHS. For
 good performance, LWORK should generally be
 larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 If M >= N, LRWORK >= 8*N + 2*N*SMLSIZ + 8*N*NLVL +
 N*NRHS. If M < N, LRWORK >= 8*M + 2*M*SMLSIZ +
 8*M*NLVL + M*NRHS. SMLSIZ is returned by ILAENV
 and is equal to the maximum size of the subprob-
 lems at the bottom of the computation tree (usu-
 ally about 25), and NLVL = INT(LOG_2(MIN(M,N
)/(SMLSIZ+1))) + 1

 IWORK (workspace)
 LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where
 MINMN = MIN(M,N).

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Ren-Cang Li, Computer Science Division,
 University of California at Berkeley, USA
 Osni Marques, LBNL/NERSC, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgelss - compute the minimum norm solution to a complex
 linear least squares problem

SYNOPSIS

 SUBROUTINE ZGELSS(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SING(*), WORK2(*)

 SUBROUTINE ZGELSS_64(M, N, NRHS, A, LDA, B, LDB, SING, RCOND, IRANK,
 WORK, LDWORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SING(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GELSS([M], [N], [NRHS], A, [LDA], B, [LDB], SING, RCOND,
 IRANK, [WORK], [LDWORK], [WORK2], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SING, WORK2

 SUBROUTINE GELSS_64([M], [N], [NRHS], A, [LDA], B, [LDB], SING,
 RCOND, IRANK, [WORK], [LDWORK], [WORK2], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, LDWORK, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SING, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgelss(int m, int n, int nrhs, doublecomplex *a, int
 lda, doublecomplex *b, int ldb, double *sing, dou-
 ble rcond, int *irank, int *info);
 void zgelss_64(long m, long n, long nrhs, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, double
 *sing, double rcond, long *irank, long *info);

PURPOSE

 zgelss computes the minimum norm solution to a complex
 linear least squares problem:

 Minimize 2-norm(| b - A*x |).

 using the singular value decomposition (SVD) of A. A is an
 M-by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The effective rank of A is determined by treating as zero
 those singular values which are less than RCOND times the
 largest singular value.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the first
 min(m,n) rows of A are overwritten with its right
 singular vectors, stored rowwise.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, B is overwritten by the N-by-NRHS solu-
 tion matrix X. If m >= n and IRANK = n, the
 residual sum-of-squares for the solution in the
 i-th column is given by the sum of squares of ele-
 ments n+1:m in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 SING (output)
 The singular values of A in decreasing order. The
 condition number of A in the 2-norm =

 SING(1)/SING(min(m,n)).

 RCOND (input)
 RCOND is used to determine the effective rank of
 A. Singular values SING(i) <= RCOND*SING(1) are
 treated as zero. If RCOND < 0, machine precision
 is used instead.

 IRANK (output)
 The effective rank of A, i.e., the number of
 singular values which are greater than
 RCOND*SING(1).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1, and
 also: LDWORK >= 2*min(M,N) + max(M,N,NRHS) For
 good performance, LDWORK should generally be
 larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(5*min(M,N))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: the algorithm for computing the SVD failed
 to converge; if INFO = i, i off-diagonal elements
 of an intermediate bidiagonal form did not con-
 verge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgelsx - routine is deprecated and has been replaced by rou-
 tine CGELSY

SYNOPSIS

 SUBROUTINE ZGELSX(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND, IRANK,
 WORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER JPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGELSX_64(M, N, NRHS, A, LDA, B, LDB, JPIVOT, RCOND,
 IRANK, WORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER*8 JPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GELSX([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT, RCOND,
 IRANK, [WORK], [WORK2], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GELSX_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPIVOT,
 RCOND, IRANK, [WORK], [WORK2], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, IRANK, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void zgelsx(int m, int n, int nrhs, doublecomplex *a, int
 lda, doublecomplex *b, int ldb, int *jpivot, dou-
 ble rcond, int *irank, int *info);

 void zgelsx_64(long m, long n, long nrhs, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, long
 *jpivot, double rcond, long *irank, long *info);

PURPOSE

 zgelsx routine is deprecated and has been replaced by rou-
 tine CGELSY.

 CGELSX computes the minimum-norm solution to a complex
 linear least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by unitary transformations from the right, arriving at
 the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X. If m >=
 n and IRANK = n, the residual sum-of-squares for
 the solution in the i-th column is given by the
 sum of squares of elements N+1:M in that column.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is an initial column, otherwise it is a free
 column. Before the QR factorization of A, all
 initial columns are permuted to the leading posi-
 tions; only the remaining free columns are moved
 as a result of column pivoting during the factori-
 zation. On exit, if JPIVOT(i) = k, then the i-th
 column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 IRANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal fac-
 torization of A.
 WORK (workspace)
 (min(M,N) + max(N, 2*min(M,N)+NRHS)),

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgelsy - compute the minimum-norm solution to a complex
 linear least squares problem

SYNOPSIS

 SUBROUTINE ZGELSY(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, RWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER JPVT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZGELSY_64(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 WORK, LWORK, RWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER*8 JPVT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE GELSY([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT, RCOND,
 RANK, [WORK], [LWORK], [RWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE GELSY_64([M], [N], [NRHS], A, [LDA], B, [LDB], JPVT,
 RCOND, RANK, [WORK], [LWORK], [RWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT

 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void zgelsy(int m, int n, int nrhs, doublecomplex *a, int
 lda, doublecomplex *b, int ldb, int *jpvt, double
 rcond, int *rank, int *info);

 void zgelsy_64(long m, long n, long nrhs, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, long *jpvt,
 double rcond, long *rank, long *info);

PURPOSE

 zgelsy computes the minimum-norm solution to a complex
 linear least squares problem:
 minimize || A * X - B ||
 using a complete orthogonal factorization of A. A is an M-
 by-N matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can
 be handled in a single call; they are stored as the columns
 of the M-by-NRHS right hand side matrix B and the N-by-NRHS
 solution matrix X.

 The routine first computes a QR factorization with column
 pivoting:
 A * P = Q * [R11 R12]
 [0 R22]
 with R11 defined as the largest leading submatrix whose
 estimated condition number is less than 1/RCOND. The order
 of R11, RANK, is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihi-
 lated by unitary transformations from the right, arriving at
 the complete orthogonal factorization:
 A * P = Q * [T11 0] * Z
 [0 0]
 The minimum-norm solution is then
 X = P * Z' [inv(T11)*Q1'*B]
 [0]
 where Q1 consists of the first RANK columns of Q.

 This routine is basically identical to the original xGELSX
 except three differences:
 o The permutation of matrix B (the right hand side) is
 faster and
 more simple.
 o The call to the subroutine xGEQPF has been substituted
 by the
 the call to the subroutine xGEQP3. This subroutine is a
 Blas-3
 version of the QR factorization with column pivoting.
 o Matrix B (the right hand side) is updated with Blas-3.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A has
 been overwritten by details of its complete
 orthogonal factorization.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the M-by-NRHS right hand side matrix B.
 On exit, the N-by-NRHS solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,M,N).

 JPVT (input/output)
 On entry, if JPVT(i) .ne. 0, the i-th column of A
 is permuted to the front of AP, otherwise column i
 is a free column. On exit, if JPVT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 RCOND (input)
 RCOND is used to determine the effective rank of
 A, which is defined as the order of the largest
 leading triangular submatrix R11 in the QR factor-
 ization with pivoting of A, whose estimated condi-
 tion number < 1/RCOND.

 RANK (output)
 The effective rank of A, i.e., the order of the
 submatrix R11. This is the same as the order of
 the submatrix T11 in the complete orthogonal
 factorization of A.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. The unblocked
 strategy requires that: LWORK >= MN + MAX(2*MN,
 N+1, MN+NRHS) where MN = min(M,N). The block
 algorithm requires that: LWORK >= MN + MAX(2*MN,
 NB*(N+1), MN+MN*NB, MN+NB*NRHS) where NB is an
 upper bound on the blocksize returned by ILAENV
 for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR,
 and CUNMRZ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message

 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA
 E. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgemm - perform one of the matrix-matrix operations C :=
 alpha*op(A)*op(B) + beta*C

SYNOPSIS

 SUBROUTINE ZGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, K, LDA, LDB, LDC

 SUBROUTINE ZGEMM_64(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 BETA, C, LDC)

 CHARACTER * 1 TRANSA, TRANSB
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, K, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE GEMM([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, K, LDA, LDB, LDC

 SUBROUTINE GEMM_64([TRANSA], [TRANSB], [M], [N], [K], ALPHA, A, [LDA],
 B, [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: TRANSA, TRANSB
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, K, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void zgemm(char transa, char transb, int m, int n, int k,
 doublecomplex *alpha, doublecomplex *a, int lda,

 doublecomplex *b, int ldb, doublecomplex *beta,
 doublecomplex *c, int ldc);
 void zgemm_64(char transa, char transb, long m, long n, long
 k, doublecomplex *alpha, doublecomplex *a, long
 lda, doublecomplex *b, long ldb, doublecomplex
 *beta, doublecomplex *c, long ldc);

PURPOSE

 zgemm performs one of the matrix-matrix operations

 C := alpha*op(A)*op(B) + beta*C

 where op(X) is one of

 op(X) = X or op(X) = X' or op(X) = conjg(X'), alpha
 and beta are scalars, and A, B and C are matrices, with
 op(A) an m by k matrix, op(B) a k by n matrix and C an m
 by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = conjg(A').

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 TRANSB (input)
 On entry, TRANSB specifies the form of op(B) to
 be used in the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = conjg(B').

 Unchanged on exit.

 TRANSB is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of
 the matrix op(A) and of the matrix C. M >=
 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of
 the matrix op(B) and the number of columns of
 the matrix C. N >= 0. Unchanged on exit.

 K (input)
 On entry, K specifies the number of columns of
 the matrix op(A) and the number of rows of the
 matrix op(B). K >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka), where
 ka is K when TRANSA = 'N' or 'n', and is M other-
 wise. Before entry with TRANSA = 'N' or 'n', the
 leading M by K part of the array A must contain
 the matrix A, otherwise the leading K by M part of
 the array A must contain the matrix A. Unchanged
 on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 TRANSA = 'N' or 'n' then LDA >= max(1, M), other-
 wise LDA >= max(1, K). Unchanged on exit.

 B (input)
 COMPLEX*16 array of DIMENSION (LDB, kb), where
 kb is n when TRANSB = 'N' or 'n', and is k
 otherwise. Before entry with TRANSB = 'N' or
 'n', the leading k by n part of the array B
 must contain the matrix B, otherwise the leading
 n by k part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program. When
 TRANSB = 'N' or 'n' then LDB >= max(1, k), oth-
 erwise LDB >= max(1, n). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n). Before
 entry, the leading m by n part of the array C
 must contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n matrix (alpha*op(A)*op(B) + beta*C).

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgemv - perform one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y

SYNOPSIS

 SUBROUTINE ZGEMV(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER M, N, LDA, INCX, INCY

 SUBROUTINE ZGEMV_64(TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 M, N, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE GEMV([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INCX, INCY

 SUBROUTINE GEMV_64([TRANSA], [M], [N], ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zgemv(char transa, int m, int n, doublecomplex *alpha,
 doublecomplex *a, int lda, doublecomplex *x, int
 incx, doublecomplex *beta, doublecomplex *y, int
 incy);
 void zgemv_64(char transa, long m, long n, doublecomplex
 *alpha, doublecomplex *a, long lda, doublecomplex
 *x, long incx, doublecomplex *beta, doublecomplex
 *y, long incy);

PURPOSE

 zgemv performs one of the matrix-vector operations y :=
 alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y :=
 alpha*conjg(A')*x + beta*y where alpha and beta are
 scalars, x and y are vectors and A is an m by n matrix.

ARGUMENTS

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANSA = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANSA = 'C' or 'c' y := alpha*conjg(A')*x +
 beta*y.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients.
 Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)) when TRANSA = 'N' or
 'n' and at least (1 + (m - 1)*abs(INCX))
 otherwise. Before entry, the incremented array X
 must contain the vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (m - 1)*abs(INCY)) when TRANSA = 'N' or
 'n' and at least (1 + (n - 1)*abs(INCY))
 otherwise. Before entry with BETA non-zero, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgeqlf - compute a QL factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE ZGEQLF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE ZGEQLF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GEQLF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GEQLF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgeqlf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void zgeqlf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 zgeqlf computes a QL factorization of a complex M-by-N
 matrix A: A = Q * L.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m >=
 n, the lower triangle of the subarray A(m-
 n+1:m,1:n) contains the N-by-N lower triangular
 matrix L; if m <= n, the elements on and below the
 (n-m)-th superdiagonal contain the M-by-N lower
 trapezoidal matrix L; the remaining elements, with
 the array TAU, represent the unitary matrix Q as a
 product of elementary reflectors (see Further
 Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(k) . . . H(2) H(1), where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector

 with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is
 stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgeqp3 - compute a QR factorization with column pivoting of
 a matrix A

SYNOPSIS

 SUBROUTINE ZGEQP3(M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO
 INTEGER JPVT(*)
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZGEQP3_64(M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO
 INTEGER*8 JPVT(*)
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE GEQP3([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [RWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO
 INTEGER, DIMENSION(:) :: JPVT
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE GEQP3_64([M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK],
 [RWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: JPVT
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void zgeqp3(int m, int n, doublecomplex *a, int lda, int
 *jpvt, doublecomplex *tau, int *info);

 void zgeqp3_64(long m, long n, doublecomplex *a, long lda,
 long *jpvt, doublecomplex *tau, long *info);

PURPOSE

 zgeqp3 computes a QR factorization with column pivoting of a
 matrix A: A*P = Q*R using Level 3 BLAS.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper trapezoidal matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the unitary matrix Q as a product of min(M,N) ele-
 mentary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPVT (input/output)
 On entry, if JPVT(J).ne.0, the J-th column of A is
 permuted to the front of A*P (a leading column);
 if JPVT(J)=0, the J-th column of A is a free
 column. On exit, if JPVT(J)=K, then the J-th
 column of A*P was the the K-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N+1.
 For optimal performance LWORK >= (N+1)*NB, where
 NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit.

 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a real/complex scalar, and v is a real/complex
 vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on
 exit in A(i+1:m,i), and tau in TAU(i).

 Based on contributions by
 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime
 I, Spain
 X. Sun, Computer Science Dept., Duke University, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgeqpf - routine is deprecated and has been replaced by rou-
 tine CGEQP3

SYNOPSIS

 SUBROUTINE ZGEQPF(M, N, A, LDA, JPIVOT, TAU, WORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, INFO
 INTEGER JPIVOT(*)
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZGEQPF_64(M, N, A, LDA, JPIVOT, TAU, WORK, WORK2, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 JPIVOT(*)
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE GEQPF([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [WORK2],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: JPIVOT
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE GEQPF_64([M], [N], A, [LDA], JPIVOT, TAU, [WORK], [WORK2],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: JPIVOT
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgeqpf(int m, int n, doublecomplex *a, int lda, int
 *jpivot, doublecomplex *tau, int *info);

 void zgeqpf_64(long m, long n, doublecomplex *a, long lda,
 long *jpivot, doublecomplex *tau, long *info);

PURPOSE

 zgeqpf routine is deprecated and has been replaced by rou-
 tine CGEQP3.

 CGEQPF computes a QR factorization with column pivoting of a
 complex M-by-N matrix A: A*P = Q*R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the upper
 triangle of the array contains the min(M,N)-by-N
 upper triangular matrix R; the elements below the
 diagonal, together with the array TAU, represent
 the unitary matrix Q as a product of min(m,n) ele-
 mentary reflectors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 JPIVOT (input/output)
 On entry, if JPIVOT(i) .ne. 0, the i-th column of
 A is permuted to the front of A*P (a leading
 column); if JPIVOT(i) = 0, the i-th column of A is
 a free column. On exit, if JPIVOT(i) = k, then
 the i-th column of A*P was the k-th column of A.

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(n)

 Each H(i) has the form

 H = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit
 in A(i+1:m,i).

 The matrix P is represented in jpvt as follows: If
 jpvt(j) = i
 then the jth column of P is the ith canonical unit vector.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgeqrf - compute a QR factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE ZGEQRF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE ZGEQRF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GEQRF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GEQRF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgeqrf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void zgeqrf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 zgeqrf computes a QR factorization of a complex M-by-N
 matrix A: A = Q * R.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(M,N)-by-N upper trapezoidal matrix R
 (R is upper triangular if m >= n); the elements
 below the diagonal, with the array TAU, represent
 the unitary matrix Q as a product of min(m,n) ele-
 mentary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimum performance LDWORK >= N*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form
 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit
 in A(i+1:m,i), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgerc - perform the rank 1 operation A := alpha*x*conjg(
 y') + A

SYNOPSIS

 SUBROUTINE ZGERC(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER M, N, INCX, INCY, LDA

 SUBROUTINE ZGERC_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 M, N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE GERC([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, INCX, INCY, LDA

 SUBROUTINE GERC_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void zgerc(int m, int n, doublecomplex *alpha, doublecomplex
 *x, int incx, doublecomplex *y, int incy, doub-
 lecomplex *a, int lda);

 void zgerc_64(long m, long n, doublecomplex *alpha, doub-
 lecomplex *x, long incx, doublecomplex *y, long
 incy, doublecomplex *a, long lda);

PURPOSE

 zgerc performs the rank 1 operation A := alpha*x*conjg(y')
 + A where alpha is a scalar, x is an m element vector, y is
 an n element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgerfs - improve the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution

SYNOPSIS

 SUBROUTINE ZGERFS(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZGERFS_64(TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GERFS([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GERFS_64([TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X

 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zgerfs(char transa, int n, int nrhs, doublecomplex *a,
 int lda, doublecomplex *af, int ldaf, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *ferr, double *berr, int *info);

 void zgerfs_64(char transa, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *af, long ldaf, long
 *ipivot, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 zgerfs improves the computed solution to a system of linear
 equations and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The original N-by-N matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=

 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CGETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgerqf - compute an RQ factorization of a complex M-by-N
 matrix A

SYNOPSIS

 SUBROUTINE ZGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LDWORK, INFO

 SUBROUTINE ZGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GERQF([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LDWORK, INFO

 SUBROUTINE GERQF_64([M], [N], A, [LDA], TAU, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgerqf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void zgerqf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 zgerqf computes an RQ factorization of a complex M-by-N
 matrix A: A = R * Q.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.
 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if m <=
 n, the upper triangle of the subarray A(1:m,n-
 m+1:n) contains the M-by-M upper triangular matrix
 R; if m >= n, the elements on and above the (m-
 n)-th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAU, represent the unitary matrix Q as a
 product of min(m,n) elementary reflectors (see
 Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M). For optimum performance LDWORK >= M*NB,
 where NB is the optimal blocksize.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector

 with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1))
 is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgeru - perform the rank 1 operation A := alpha*x*y' + A

SYNOPSIS

 SUBROUTINE ZGERU(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER M, N, INCX, INCY, LDA

 SUBROUTINE ZGERU_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 M, N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE GER([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, INCX, INCY, LDA

 SUBROUTINE GER_64([M], [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void zgeru(int m, int n, doublecomplex *alpha, doublecomplex
 *x, int incx, doublecomplex *y, int incy, doub-
 lecomplex *a, int lda);

 void zgeru_64(long m, long n, doublecomplex *alpha, doub-
 lecomplex *x, long incx, doublecomplex *y, long
 incy, doublecomplex *a, long lda);

PURPOSE

 zgeru performs the rank 1 operation A := alpha*x*y' + A
 where alpha is a scalar, x is an m element vector, y is an n
 element vector and A is an m by n matrix.

ARGUMENTS

 M (input)
 On entry, M specifies the number of rows of the
 matrix A. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix A. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (m - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the m element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

 A (input/output)
 Before entry, the leading m by n part of the array
 A must contain the matrix of coefficients. On
 exit, A is overwritten by the updated matrix.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgesdd - compute the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors, by using divide-and-conquer
 method

SYNOPSIS

 SUBROUTINE ZGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, RWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 DOUBLE COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION S(*), RWORK(*)

 SUBROUTINE ZGESDD_64(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
 LWORK, RWORK, IWORK, INFO)

 CHARACTER * 1 JOBZ
 DOUBLE COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER*8 M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION S(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GESDD(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, U, VT
 INTEGER :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: S, RWORK

 SUBROUTINE GESDD_64(JOBZ, [M], [N], A, [LDA], S, U, [LDU], VT, [LDVT],
 [WORK], [LWORK], [RWORK], [IWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ
 COMPLEX(8), DIMENSION(:) :: WORK

 COMPLEX(8), DIMENSION(:,:) :: A, U, VT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: S, RWORK
 C INTERFACE
 #include <sunperf.h>

 void zgesdd(char jobz, int m, int n, doublecomplex *a, int
 lda, double *s, doublecomplex *u, int ldu, doub-
 lecomplex *vt, int ldvt, int *info);

 void zgesdd_64(char jobz, long m, long n, doublecomplex *a,
 long lda, double *s, doublecomplex *u, long ldu,
 doublecomplex *vt, long ldvt, long *info);

PURPOSE

 zgesdd computes the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors, by using divide-and-conquer
 method. The SVD is written
 = U * SIGMA * conjugate-transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M unitary matrix,
 and V is an N-by-N unitary matrix. The diagonal elements of
 SIGMA are the singular values of A; they are real and non-
 negative, and are returned in descending order. The first
 min(m,n) columns of U and V are the left and right singular
 vectors of A.

 Note that the routine returns VT = V**H, not V.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U and all N rows of V**H
 are returned in the arrays U and VT; = 'S': the
 first min(M,N) columns of U and the first min(M,N)
 rows of V**H are returned in the arrays U and VT;
 = 'O': If M >= N, the first N columns of U are
 overwritten on the array A and all rows of V**H
 are returned in the array VT; otherwise, all
 columns of U are returned in the array U and the
 first M rows of V**H are overwritten in the array
 VT; = 'N': no columns of U or rows of V**H are
 computed.

 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBZ =
 'O', A is overwritten with the first N columns of
 U (the left singular vectors, stored columnwise)
 if M >= N; A is overwritten with the first M rows
 of V**H (the right singular vectors, stored row-
 wise) otherwise. if JOBZ .ne. 'O', the contents
 of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 S (output)
 The singular values of A, sorted so that S(i) >=
 S(i+1).

 U (output)
 UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
 UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or
 JOBZ = 'O' and M < N, U contains the M-by-M uni-
 tary matrix U; if JOBZ = 'S', U contains the first
 min(M,N) columns of U (the left singular vectors,
 stored columnwise); if JOBZ = 'O' and M >= N, or
 JOBZ = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU
 >= M.

 VT (output)
 If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT con-
 tains the N-by-N unitary matrix V**H; if JOBZ =
 'S', VT contains the first min(M,N) rows of V**H
 (the right singular vectors, stored rowwise); if
 JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
 if JOBZ = 'S', LDVT >= min(M,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. if
 JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N). if JOBZ
 = 'O', LWORK >=
 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). if JOBZ
 = 'S' or 'A', LWORK >=
 min(M,N)*min(M,N)+2*min(M,N)+max(M,N). For good
 performance, LWORK should generally be larger. If
 LWORK < 0 but other input arguments are legal,
 WORK(1) returns optimal LWORK.

 RWORK (workspace)
 If JOBZ = 'N', LRWORK >= 7*min(M,N). Otherwise,

 LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N)

 IWORK (workspace)
 dimension(8*MIN(M,N))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The updating process of SBDSDC did not con-
 verge.

FURTHER DETAILS

 Based on contributions by
 Ming Gu and Huan Ren, Computer Science Division, Univer-
 sity of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgesv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GESV([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GESV_64([N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgesv(int n, int nrhs, doublecomplex *a, int lda, int
 *ipivot, doublecomplex *b, int ldb, int *info);

 void zgesv_64(long n, long nrhs, doublecomplex *a, long lda,
 long *ipivot, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zgesv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.
 The LU decomposition with partial pivoting and row inter-
 changes is used to factor A as
 A = P * L * U,
 where P is a permutation matrix, L is unit lower triangular,
 and U is upper triangular. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the N-by-N coefficient matrix A. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 The pivot indices that define the permutation
 matrix P; row i of the matrix was interchanged
 with row IPIVOT(i).

 B (input/output)
 On entry, the N-by-NRHS matrix of right hand side
 matrix B. On exit, if INFO = 0, the N-by-NRHS
 solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, so the solution could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgesvd - compute the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors

SYNOPSIS

 SUBROUTINE ZGESVD(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT, LDVT,
 WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBU, JOBVT
 DOUBLE COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER M, N, LDA, LDU, LDVT, LDWORK, INFO
 DOUBLE PRECISION SING(*), WORK2(*)

 SUBROUTINE ZGESVD_64(JOBU, JOBVT, M, N, A, LDA, SING, U, LDU, VT,
 LDVT, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBU, JOBVT
 DOUBLE COMPLEX A(LDA,*), U(LDU,*), VT(LDVT,*), WORK(*)
 INTEGER*8 M, N, LDA, LDU, LDVT, LDWORK, INFO
 DOUBLE PRECISION SING(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GESVD(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU], VT,
 [LDVT], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, U, VT
 INTEGER :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL(8), DIMENSION(:) :: SING, WORK2

 SUBROUTINE GESVD_64(JOBU, JOBVT, [M], [N], A, [LDA], SING, U, [LDU],
 VT, [LDVT], [WORK], [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBVT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, U, VT
 INTEGER(8) :: M, N, LDA, LDU, LDVT, LDWORK, INFO
 REAL(8), DIMENSION(:) :: SING, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgesvd(char jobu, char jobvt, int m, int n, doublecom-
 plex *a, int lda, double *sing, doublecomplex *u,
 int ldu, doublecomplex *vt, int ldvt, int *info);
 void zgesvd_64(char jobu, char jobvt, long m, long n, doub-
 lecomplex *a, long lda, double *sing, doublecom-
 plex *u, long ldu, doublecomplex *vt, long ldvt,
 long *info);

PURPOSE

 zgesvd computes the singular value decomposition (SVD) of a
 complex M-by-N matrix A, optionally computing the left
 and/or right singular vectors. The SVD is written
 = U * SIGMA * conjugate-transpose(V)

 where SIGMA is an M-by-N matrix which is zero except for its
 min(m,n) diagonal elements, U is an M-by-M unitary matrix,
 and V is an N-by-N unitary matrix. The diagonal elements of
 SIGMA are the singular values of A; they are real and non-
 negative, and are returned in descending order. The first
 min(m,n) columns of U and V are the left and right singular
 vectors of A.

 Note that the routine returns V**H, not V.

ARGUMENTS

 JOBU (input)
 Specifies options for computing all or part of the
 matrix U:
 = 'A': all M columns of U are returned in array
 U:
 = 'S': the first min(m,n) columns of U (the left
 singular vectors) are returned in the array U; =
 'O': the first min(m,n) columns of U (the left
 singular vectors) are overwritten on the array A;
 = 'N': no columns of U (no left singular vectors)
 are computed.

 JOBVT (input)
 Specifies options for computing all or part of the
 matrix V**H:
 = 'A': all N rows of V**H are returned in the
 array VT;
 = 'S': the first min(m,n) rows of V**H (the right
 singular vectors) are returned in the array VT; =
 'O': the first min(m,n) rows of V**H (the right
 singular vectors) are overwritten on the array A;
 = 'N': no rows of V**H (no right singular vec-
 tors) are computed.

 JOBVT and JOBU cannot both be 'O'.
 M (input) The number of rows of the input matrix A. M >= 0.

 N (input) The number of columns of the input matrix A. N >=
 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if JOBU =

 'O', A is overwritten with the first min(m,n)
 columns of U (the left singular vectors, stored
 columnwise); if JOBVT = 'O', A is overwritten with
 the first min(m,n) rows of V**H (the right singu-
 lar vectors, stored rowwise); if JOBU .ne. 'O' and
 JOBVT .ne. 'O', the contents of A are destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 SING (output)
 The singular values of A, sorted so that SING(i)
 >= SING(i+1).

 U (input) (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU =
 'S'. If JOBU = 'A', U contains the M-by-M unitary
 matrix U; if JOBU = 'S', U contains the first
 min(m,n) columns of U (the left singular vectors,
 stored columnwise); if JOBU = 'N' or 'O', U is not
 referenced.

 LDU (input)
 The leading dimension of the array U. LDU >= 1;
 if JOBU = 'S' or 'A', LDU >= M.

 VT (input)
 If JOBVT = 'A', VT contains the N-by-N unitary
 matrix V**H; if JOBVT = 'S', VT contains the first
 min(m,n) rows of V**H (the right singular vectors,
 stored rowwise); if JOBVT = 'N' or 'O', VT is not
 referenced.

 LDVT (input)
 The leading dimension of the array VT. LDVT >= 1;
 if JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >=
 min(M,N).
 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >= 1.
 LDWORK >= 2*MIN(M,N)+MAX(M,N) For good perfor-
 mance, LDWORK should generally be larger.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 DIMENSION(5*MIN(M,N)). On exit, if INFO > 0,
 WORK2(1:MIN(M,N)-1) contains the unconverged
 superdiagonal elements of an upper bidiagonal
 matrix B whose diagonal is in SING (not neces-
 sarily sorted). B satisfies A = U * B * VT, so it
 has the same singular values as A, and singular
 vectors related by U and VT.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value.
 > 0: if CBDSQR did not converge, INFO specifies
 how many superdiagonals of an intermediate bidiag-
 onal form B did not converge to zero. See the
 description of WORK2 above for details.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgesvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B,

SYNOPSIS

 SUBROUTINE ZGESVX(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION ROWSC(*), COLSC(*), FERR(*), BERR(*),
 WORK2(*)

 SUBROUTINE ZGESVX_64(FACT, TRANSA, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 EQUED, ROWSC, COLSC, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION ROWSC(*), COLSC(*), FERR(*), BERR(*),
 WORK2(*)

 F95 INTERFACE
 SUBROUTINE GESVX(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 SUBROUTINE GESVX_64(FACT, [TRANSA], [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, EQUED, ROWSC, COLSC, B, [LDB], X, [LDX], RCOND, FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: ROWSC, COLSC, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgesvx(char fact, char transa, int n, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *af, int
 ldaf, int *ipivot, char equed, double *rowsc, dou-
 ble *colsc, doublecomplex *b, int ldb, doublecom-
 plex *x, int ldx, double *rcond, double *ferr,
 double *berr, int *info);

 void zgesvx_64(char fact, char transa, long n, long nrhs,
 doublecomplex *a, long lda, doublecomplex *af,
 long ldaf, long *ipivot, char equed, double
 *rowsc, double *colsc, doublecomplex *b, long ldb,
 doublecomplex *x, long ldx, double *rcond, double
 *ferr, double *berr, long *info);

PURPOSE

 zgesvx uses the LU factorization to compute the solution to
 a complex system of linear equations
 A * X = B, where A is an N-by-N matrix and X and B are
 N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X =
 diag(R)*B
 TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X =
 diag(C)*B
 TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X =
 diag(C)*B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if
 TRANS='N')
 or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to
 factor the
 matrix A (after equilibration if FACT = 'E') as

 A = P * L * U,
 where P is a permutation matrix, L is a unit lower tri-
 angular
 matrix, and U is upper triangular.

 3. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or
 'C') so
 that it solves the original system before equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF and IPIVOT contain
 the factored form of A. If EQUED is not 'N', the
 matrix A has been equilibrated with scaling fac-
 tors given by ROWSC and COLSC. A, AF, and IPIVOT
 are not modified. = 'N': The matrix A will be
 copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'COLSC': A**H * X = B (Conjugate transpose)

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)

 On entry, the N-by-N matrix A. If FACT = 'F' and
 EQUED is not 'N', then A must have been equili-
 brated by the scaling factors in ROWSC and/or
 COLSC. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if EQUED .ne. 'N', A is scaled as fol-
 lows: EQUED = 'ROWSC': A := diag(ROWSC) * A
 EQUED = 'COLSC': A := A * diag(COLSC)
 EQUED = 'B': A := diag(ROWSC) * A * diag(COLSC).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the factors L and U from the fac-
 torization A = P*L*U as computed by CGETRF. If
 EQUED .ne. 'N', then AF is the factored form of
 the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the factors L and U from the fac-
 torization A = P*L*U of the equilibrated matrix A
 (see the description of A for the form of the
 equilibrated matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 factorization A = P*L*U as computed by CGETRF; row
 i of the matrix was interchanged with row
 IPIVOT(i).

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the original matrix A.

 If FACT = 'E', then IPIVOT is an output argument
 and on exit contains the pivot indices from the
 factorization A = P*L*U of the equilibrated matrix
 A.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'ROWSC': Row equilibration, i.e., A has been
 premultiplied by diag(ROWSC). = 'COLSC': Column
 equilibration, i.e., A has been postmultiplied by
 diag(COLSC). = 'B': Both row and column equili-
 bration, i.e., A has been replaced by diag(ROWSC)
 * A * diag(COLSC). EQUED is an input argument if
 FACT = 'F'; otherwise, it is an output argument.

 ROWSC (input/output)
 The row scale factors for A. If EQUED = 'ROWSC'
 or 'B', A is multiplied on the left by
 diag(ROWSC); if EQUED = 'N' or 'COLSC', ROWSC is
 not accessed. ROWSC is an input argument if FACT
 = 'F'; otherwise, ROWSC is an output argument. If
 FACT = 'F' and EQUED = 'ROWSC' or 'B', each ele-
 ment of ROWSC must be positive.

 COLSC (input/output)
 The column scale factors for A. If EQUED =
 'COLSC' or 'B', A is multiplied on the right by
 diag(COLSC); if EQUED = 'N' or 'ROWSC', COLSC is
 not accessed. COLSC is an input argument if FACT
 = 'F'; otherwise, COLSC is an output argument. If
 FACT = 'F' and EQUED = 'COLSC' or 'B', each ele-
 ment of COLSC must be positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 TRANSA = 'N' and EQUED = 'ROWSC' or 'B', B is
 overwritten by diag(ROWSC)*B; if TRANSA = 'T' or
 'COLSC' and EQUED = 'COLSC' or 'B', B is overwrit-
 ten by diag(COLSC)*B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that A and B are modified on exit if EQUED
 .ne. 'N', and the solution to the equilibrated
 system is inv(diag(COLSC))*X if TRANSA = 'N' and
 EQUED = 'COLSC' or 'B', or inv(diag(ROWSC))*X if
 TRANSA = 'T' or 'COLSC' and EQUED = 'ROWSC' or
 'B'.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest
 element in (X(j) - XTRUE) divided by the magnitude
 of the largest element in X(j). The estimate is
 as reliable as the estimate for RCOND, and is
 almost always a slight overestimate of the true
 error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(2*N) On exit, WORK2(1) contains the
 reciprocal pivot growth factor norm(A)/norm(U).
 The "max absolute element" norm is used. If
 WORK2(1) is much less than 1, then the stability
 of the LU factorization of the (equilibrated)
 matrix A could be poor. This also means that the
 solution X, condition estimator RCOND, and forward
 error bound FERR could be unreliable. If factori-
 zation fails with 0<INFO<=N, then WORK2(1) con-
 tains the reciprocal pivot growth factor for the
 leading INFO columns of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has been completed, but the factor U is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: U
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgetf2 - compute an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE ZGETF2(M, N, A, LDA, IPIV, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZGETF2_64(M, N, A, LDA, IPIV, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE GETF2([M], [N], A, [LDA], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE GETF2_64([M], [N], A, [LDA], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zgetf2(int m, int n, doublecomplex *a, int lda, int
 *ipiv, int *info);

 void zgetf2_64(long m, long n, doublecomplex *a, long lda,
 long *ipiv, long *info);

PURPOSE

 zgetf2 computes an LU factorization of a general m-by-n
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 2 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the m by n matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIV (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIV(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The fac-
 torization has been completed, but the factor U is
 exactly singular, and division by zero will occur
 if it is used to solve a system of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgetrf - compute an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges

SYNOPSIS

 SUBROUTINE ZGETRF(M, N, A, LDA, IPIVOT, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER M, N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGETRF_64(M, N, A, LDA, IPIVOT, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 M, N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRF([M], [N], A, [LDA], IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRF_64([M], [N], A, [LDA], IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgetrf(int m, int n, doublecomplex *a, int lda, int
 *ipivot, int *info);

 void zgetrf_64(long m, long n, doublecomplex *a, long lda,
 long *ipivot, long *info);

PURPOSE

 zgetrf computes an LU factorization of a general M-by-N
 matrix A using partial pivoting with row interchanges.

 The factorization has the form
 A = P * L * U
 where P is a permutation matrix, L is lower triangular with
 unit diagonal elements (lower trapezoidal if m > n), and U
 is upper triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algo-
 rithm.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the M-by-N matrix to be factored. On
 exit, the factors L and U from the factorization A
 = P*L*U; the unit diagonal elements of L are not
 stored.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 IPIVOT (output)
 The pivot indices; for 1 <= i <= min(M,N), row i
 of the matrix was interchanged with row IPIVOT(i).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgetri - compute the inverse of a matrix using the LU fac-
 torization computed by CGETRF

SYNOPSIS

 SUBROUTINE ZGETRI(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGETRI_64(N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRI([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRI_64([N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgetri(int n, doublecomplex *a, int lda, int *ipivot,
 int *info);

 void zgetri_64(long n, doublecomplex *a, long lda, long
 *ipivot, long *info);

PURPOSE

 zgetri computes the inverse of a matrix using the LU factor-
 ization computed by CGETRF.

 This method inverts U and then computes inv(A) by solving
 the system inv(A)*L = inv(U) for inv(A).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the factors L and U from the factoriza-
 tion A = P*L*U as computed by CGETRF. On exit, if
 INFO = 0, the inverse of the original matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 WORK (workspace)
 On exit, if INFO=0, then WORK(1) returns the
 optimal LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N). For optimal performance LDWORK >= N*NB,
 where NB is the optimal blocksize returned by
 ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero; the
 matrix is singular and its inverse could not be
 computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgetrs - solve a system of linear equations A * X = B, A**T
 * X = B, or A**H * X = B with a general N-by-N matrix A
 using the LU factorization computed by CGETRF

SYNOPSIS

 SUBROUTINE ZGETRS(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGETRS_64(TRANSA, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GETRS([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GETRS_64([TRANSA], [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgetrs(char transa, int n, int nrhs, doublecomplex *a,
 int lda, int *ipivot, doublecomplex *b, int ldb,
 int *info);

 void zgetrs_64(char transa, long n, long nrhs, doublecomplex
 *a, long lda, long *ipivot, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zgetrs solves a system of linear equations
 A * X = B, A**T * X = B, or A**H * X = B with a gen-
 eral N-by-N matrix A using the LU factorization computed by
 CGETRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The factors L and U from the factorization A =
 P*L*U as computed by CGETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 The pivot indices from CGETRF; for 1<=i<=N, row i
 of the matrix was interchanged with row IPIVOT(i).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggbak - form the right or left eigenvectors of a complex
 generalized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by CGGBAL

SYNOPSIS

 SUBROUTINE ZGGBAK(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
 INFO)

 CHARACTER * 1 JOB, SIDE
 DOUBLE COMPLEX V(LDV,*)
 INTEGER N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*)

 SUBROUTINE ZGGBAK_64(JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
 LDV, INFO)

 CHARACTER * 1 JOB, SIDE
 DOUBLE COMPLEX V(LDV,*)
 INTEGER*8 N, ILO, IHI, M, LDV, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*)

 F95 INTERFACE
 SUBROUTINE GGBAK(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX(8), DIMENSION(:,:) :: V
 INTEGER :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE

 SUBROUTINE GGBAK_64(JOB, SIDE, [N], ILO, IHI, LSCALE, RSCALE, [M], V,
 [LDV], [INFO])

 CHARACTER(LEN=1) :: JOB, SIDE
 COMPLEX(8), DIMENSION(:,:) :: V
 INTEGER(8) :: N, ILO, IHI, M, LDV, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE

 C INTERFACE

 #include <sunperf.h>

 void zggbak(char job, char side, int n, int ilo, int ihi,
 double *lscale, double *rscale, int m, doublecom-
 plex *v, int ldv, int *info);
 void zggbak_64(char job, char side, long n, long ilo, long
 ihi, double *lscale, double *rscale, long m, doub-
 lecomplex *v, long ldv, long *info);

PURPOSE

 zggbak forms the right or left eigenvectors of a complex
 generalized eigenvalue problem A*x = lambda*B*x, by backward
 transformation on the computed eigenvectors of the balanced
 pair of matrices output by CGGBAL.

ARGUMENTS

 JOB (input)
 Specifies the type of backward transformation
 required:
 = 'N': do nothing, return immediately;
 = 'P': do backward transformation for permutation
 only;
 = 'S': do backward transformation for scaling
 only;
 = 'B': do backward transformations for both per-
 mutation and scaling. JOB must be the same as the
 argument JOB supplied to CGGBAL.

 SIDE (input)
 = 'R': V contains right eigenvectors;
 = 'L': V contains left eigenvectors.

 N (input) The number of rows of the matrix V. N >= 0.

 ILO (input)
 The integers ILO and IHI determined by CGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 IHI (input)
 The integers ILO and IHI determined by CGGBAL. 1
 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
 N=0.

 LSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the left side of A and B, as returned
 by CGGBAL.
 RSCALE (input)
 Details of the permutations and/or scaling factors
 applied to the right side of A and B, as returned
 by CGGBAL.

 M (input) The number of columns of the matrix V. M >= 0.

 V (input/output)
 On entry, the matrix of right or left eigenvectors
 to be transformed, as returned by CTGEVC. On

 exit, V is overwritten by the transformed eigen-
 vectors.

 LDV (input)
 The leading dimension of the matrix V. LDV >=
 max(1,N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. Ward, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggbal - balance a pair of general complex matrices (A,B)

SYNOPSIS

 SUBROUTINE ZGGBAL(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
 WORK, INFO)

 CHARACTER * 1 JOB
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, LDA, LDB, ILO, IHI, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*), WORK(*)

 SUBROUTINE ZGGBAL_64(JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
 RSCALE, WORK, INFO)

 CHARACTER * 1 JOB
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, LDA, LDB, ILO, IHI, INFO
 DOUBLE PRECISION LSCALE(*), RSCALE(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE GGBAL(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, LDA, LDB, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, WORK

 SUBROUTINE GGBAL_64(JOB, [N], A, [LDA], B, [LDB], ILO, IHI, LSCALE,
 RSCALE, [WORK], [INFO])

 CHARACTER(LEN=1) :: JOB
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, LDA, LDB, ILO, IHI, INFO
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, WORK

 C INTERFACE
 #include <sunperf.h>

 void zggbal(char job, int n, doublecomplex *a, int lda,

 doublecomplex *b, int ldb, int *ilo, int *ihi,
 double *lscale, double *rscale, int *info);

 void zggbal_64(char job, long n, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, long *ilo, long *ihi,
 double *lscale, double *rscale, long *info);

PURPOSE

 zggbal balances a pair of general complex matrices (A,B).
 This involves, first, permuting A and B by similarity
 transformations to isolate eigenvalues in the first 1 to
 ILO$-$1 and last IHI+1 to N elements on the diagonal; and
 second, applying a diagonal similarity transformation to
 rows and columns ILO to IHI to make the rows and columns as
 close in norm as possible. Both steps are optional.

 Balancing may reduce the 1-norm of the matrices, and improve
 the accuracy of the computed eigenvalues and/or eigenvectors
 in the generalized eigenvalue problem A*x = lambda*B*x.

ARGUMENTS

 JOB (input)
 Specifies the operations to be performed on A and
 B:
 = 'N': none: simply set ILO = 1, IHI = N,
 LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i=1,...,N;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the input matrix A. On exit, A is
 overwritten by the balanced matrix. If JOB = 'N',
 A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) On entry, the input matrix B. On exit, B is
 overwritten by the balanced matrix. If JOB = 'N',
 B is not referenced.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ILO (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =
 1,...,ILO-1 or i = IHI+1,...,N. If JOB = 'N' or
 'S', ILO = 1 and IHI = N.

 IHI (output)
 ILO and IHI are set to integers such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j =

 1,...,ILO-1 or i = IHI+1,...,N.

 LSCALE (input)
 Details of the permutations and scaling factors
 applied to the left side of A and B. If P(j) is
 the index of the row interchanged with row j, and
 D(j) is the scaling factor applied to row j, then
 LSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j)
 for J = ILO,...,IHI = P(j) for J = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (input)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If P(j) is
 the index of the column interchanged with column
 j, and D(j) is the scaling factor applied to
 column j, then RSCALE(j) = P(j) for J =
 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j)
 for J = IHI+1,...,N. The order in which the
 interchanges are made is N to IHI+1, then 1 to
 ILO-1.

 WORK (workspace)
 dimension(6*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 See R.C. WARD, Balancing the generalized eigenvalue problem,
 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgges - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 complex Schur form (S, T), and optionally left and/or right
 Schur vectors (VSL and VSR)

SYNOPSIS

 SUBROUTINE ZGGES(JOBVSL, JOBVSR, SORT, DELZTG, N, A, LDA, B, LDB,
 SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL DELZTG
 LOGICAL BWORK(*)
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZGGES_64(JOBVSL, JOBVSR, SORT, DELZTG, N, A, LDA, B, LDB,
 SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL*8 DELZTG
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, [DELZTG], [N], A, [LDA], B, [LDB],
 SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK], [LWORK],
 [RWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL :: DELZTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, [DELZTG], [N], A, [LDA], B,
 [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], [WORK],
 [LWORK], [RWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
 LOGICAL(8) :: DELZTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void zgges(char jobvsl, char jobvsr, char sort,
 int(*delztg)(doublecomplex,doublecomplex), int n,
 doublecomplex *a, int lda, doublecomplex *b, int
 ldb, int *sdim, doublecomplex *alpha, doublecom-
 plex *beta, doublecomplex *vsl, int ldvsl, doub-
 lecomplex *vsr, int ldvsr, int *info);

 void zgges_64(char jobvsl, char jobvsr, char sort,
 long(*delztg)(doublecomplex,doublecomplex), long
 n, doublecomplex *a, long lda, doublecomplex *b,
 long ldb, long *sdim, doublecomplex *alpha, doub-
 lecomplex *beta, doublecomplex *vsl, long ldvsl,
 doublecomplex *vsr, long ldvsr, long *info);

PURPOSE

 zgges computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the generalized
 complex Schur form (S, T), and optionally left and/or right
 Schur vectors (VSL and VSR). This gives the generalized
 Schur factorization

 (A,B) = ((VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H)

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper triangular matrix S and the upper
 triangular matrix T. The leading columns of VSL and VSR then
 form an unitary basis for the corresponding left and right
 eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the
 driver CGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur
 form if S and T are upper triangular and, in addition, the
 diagonal elements of T are non-negative real numbers.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see DELZTG).

 DELZTG (input)
 DELZTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', DELZTG is not refer-
 enced. If SORT = 'S', DELZTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. An eigenvalue ALPHA(j)/BETA(j) is selected
 if DELZTG(ALPHA(j),BETA(j)) is true.

 Note that a selected complex eigenvalue may no
 longer satisfy DELZTG(ALPHA(j),BETA(j)) = .TRUE.
 after ordering, since ordering may change the
 value of complex eigenvalues (especially if the
 eigenvalue is ill-conditioned), in this case INFO
 is set to N+2 (See INFO below).

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.
 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 DELZTG is true.

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j), j=1,...,N and
 BETA(j), j=1,...,N are the diagonals of the com-
 plex Schur form (A,B) output by CGGES. The
 BETA(j) will be non-negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.

 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL >=
 1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(8*N)

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. (A,B) are not
 in Schur form, but ALPHA(j) and BETA(j) should be
 correct for j=INFO+1,...,N. > N: =N+1: other
 than QZ iteration failed in CHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy DELZTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering falied in
 CTGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zggesx - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the complex
 Schur form (S,T),

SYNOPSIS

 SUBROUTINE ZGGESX(JOBVSL, JOBVSR, SORT, DELCTG, SENSE, N, A, LDA, B,
 LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE, RCONDV,
 WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL DELCTG
 LOGICAL BWORK(*)
 DOUBLE PRECISION RCONDE(*), RCONDV(*), RWORK(*)

 SUBROUTINE ZGGESX_64(JOBVSL, JOBVSR, SORT, DELCTG, SENSE, N, A, LDA,
 B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE,
 RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)

 CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 DELCTG
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION RCONDE(*), RCONDV(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGESX(JOBVSL, JOBVSR, SORT, [DELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], RCONDE,
 RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK,

 INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: DELCTG
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: RCONDE, RCONDV, RWORK
 SUBROUTINE GGESX_64(JOBVSL, JOBVSR, SORT, [DELCTG], SENSE, [N], A, [LDA],
 B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], RCONDE,
 RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], [BWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VSL, VSR
 INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: DELCTG
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8), DIMENSION(:) :: RCONDE, RCONDV, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zggesx(char jobvsl, char jobvsr, char sort,
 int(*delctg)(doublecomplex,doublecomplex), char
 sense, int n, doublecomplex *a, int lda, doub-
 lecomplex *b, int ldb, int *sdim, doublecomplex
 *alpha, doublecomplex *beta, doublecomplex *vsl,
 int ldvsl, doublecomplex *vsr, int ldvsr, double
 *rconde, double *rcondv, int *info);

 void zggesx_64(char jobvsl, char jobvsr, char sort,
 long(*delctg)(doublecomplex,doublecomplex), char
 sense, long n, doublecomplex *a, long lda, doub-
 lecomplex *b, long ldb, long *sdim, doublecomplex
 *alpha, doublecomplex *beta, doublecomplex *vsl,
 long ldvsl, doublecomplex *vsr, long ldvsr, double
 *rconde, double *rcondv, long *info);

PURPOSE

 zggesx computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, the complex
 Schur form (S,T), and, optionally, the left and/or right
 matrices of Schur vectors (VSL and VSR). This gives the
 generalized Schur factorization A,B) = ((VSL) S (VSR)**H,
 (VSL) T (VSR)**H)

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the upper triangular matrix S and the upper
 triangular matrix T; computes a reciprocal condition number
 for the average of the selected eigenvalues (RCONDE); and
 computes a reciprocal condition number for the right and
 left deflating subspaces corresponding to the selected
 eigenvalues (RCONDV). The leading columns of VSL and VSR
 then form an orthonormal basis for the corresponding left
 and right eigenspaces (deflating subspaces).

 A generalized eigenvalue for a pair of matrices (A,B) is a

 scalar w or a ratio alpha/beta = w, such that A - w*B is
 singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0 or for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur
 form if T is upper triangular with non-negative diagonal and
 S is upper triangular.

ARGUMENTS

 JOBVSL (input)
 = 'N': do not compute the left Schur vectors;
 = 'V': compute the left Schur vectors.

 JOBVSR (input)
 = 'N': do not compute the right Schur vectors;
 = 'V': compute the right Schur vectors.

 SORT (input)
 Specifies whether or not to order the eigenvalues
 on the diagonal of the generalized Schur form. =
 'N': Eigenvalues are not ordered;
 = 'S': Eigenvalues are ordered (see DELCTG).

 DELCTG (input)
 DELCTG must be declared EXTERNAL in the calling
 subroutine. If SORT = 'N', DELCTG is not refer-
 enced. If SORT = 'S', DELCTG is used to select
 eigenvalues to sort to the top left of the Schur
 form. Note that a selected complex eigenvalue may
 no longer satisfy DELCTG(ALPHA(j),BETA(j)) =
 .TRUE. after ordering, since ordering may change
 the value of complex eigenvalues (especially if
 the eigenvalue is ill-conditioned), in this case
 INFO is set to N+3 see INFO below).

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N' : None are computed;
 = 'E' : Computed for average of selected eigen-
 values only;
 = 'V' : Computed for selected deflating subspaces
 only;
 = 'B' : Computed for both. If SENSE = 'E', 'V',
 or 'B', SORT must equal 'S'.

 N (input) The order of the matrices A, B, VSL, and VSR. N
 >= 0.

 A (input/output)
 On entry, the first of the pair of matrices. On
 exit, A has been overwritten by its generalized
 Schur form S.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the second of the pair of matrices. On
 exit, B has been overwritten by its generalized
 Schur form T.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 SDIM (output)
 If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM =
 number of eigenvalues (after sorting) for which
 DELCTG is true.

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues. ALPHA(j) and
 BETA(j),j=1,...,N are the diagonals of the com-
 plex Schur form (S,T). BETA(j) will be non-
 negative real.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).
 BETA (output)
 See description of ALPHA.

 VSL (input)
 If JOBVSL = 'V', VSL will contain the left Schur
 vectors. Not referenced if JOBVSL = 'N'.

 LDVSL (input)
 The leading dimension of the matrix VSL. LDVSL
 >=1, and if JOBVSL = 'V', LDVSL >= N.

 VSR (input)
 If JOBVSR = 'V', VSR will contain the right Schur
 vectors. Not referenced if JOBVSR = 'N'.

 LDVSR (input)
 The leading dimension of the matrix VSR. LDVSR >=
 1, and if JOBVSR = 'V', LDVSR >= N.

 RCONDE (output)
 If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2)
 contain the reciprocal condition numbers for the
 average of the selected eigenvalues. Not refer-
 enced if SENSE = 'N' or 'V'.

 RCONDV (output)
 If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2)
 contain the reciprocal condition number for the
 selected deflating subspaces. Not referenced if
 SENSE = 'N' or 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 2*N.
 If SENSE = 'E', 'V', or 'B', LWORK >= MAX(2*N,
 2*SDIM*(N-SDIM)).

 RWORK (workspace)

 dimension(8*N) Real workspace.
 IWORK (workspace/output)
 Not referenced if SENSE = 'N'. On exit, if INFO =
 0, IWORK(1) returns the optimal LIWORK.

 LIWORK (input)
 The dimension of the array WORK. LIWORK >= N+2.

 BWORK (workspace)
 dimension(N) Not referenced if SORT = 'N'.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. (A,B) are
 not in Schur form, but ALPHA(j) and BETA(j) should
 be correct for j=INFO+1,...,N. > N: =N+1: other
 than QZ iteration failed in CHGEQZ
 =N+2: after reordering, roundoff changed values of
 some complex eigenvalues so that leading eigen-
 values in the Generalized Schur form no longer
 satisfy DELCTG=.TRUE. This could also be caused
 due to scaling. =N+3: reordering failed in
 CTGSEN.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zggev - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors

SYNOPSIS

 SUBROUTINE ZGGEV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZGGEV_64(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
 LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOBVL, JOBVR
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGEV(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA, BETA,
 VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE GGEV_64(JOBVL, JOBVR, [N], A, [LDA], B, [LDB], ALPHA,
 BETA, VL, [LDVL], VR, [LDVR], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBVL, JOBVR
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, LWORK, INFO
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void zggev(char jobvl, char jobvr, int n, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, doublecomplex
 *alpha, doublecomplex *beta, doublecomplex *vl,
 int ldvl, doublecomplex *vr, int ldvr, int *info);

 void zggev_64(char jobvl, char jobvr, long n, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, doub-
 lecomplex *alpha, doublecomplex *beta, doublecom-
 plex *vl, long ldvl, doublecomplex *vr, long ldvr,
 long *info);

PURPOSE

 zggev computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B), the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 The right generalized eigenvector v(j) corresponding to the
 generalized eigenvalue lambda(j) of (A,B) satisfies

 A * v(j) = lambda(j) * B * v(j).

 The left generalized eigenvector u(j) corresponding to the
 generalized eigenvalues lambda(j) of (A,B) satisfies

 u(j)**H * A = lambda(j) * u(j)**H * B

 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.

 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 generalized eigenvalues.

 Note: the quotients ALPHA(j)/BETA(j) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio alpha/beta. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors
 u(j) are stored one after another in the columns
 of VL, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.
 VR (output)
 If JOBVR = 'V', the right generalized eigenvectors
 v(j) are stored one after another in the columns
 of VR, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). For good performance, LWORK must gen-
 erally be larger.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(8*N)

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other then QZ iteration failed in
 SHGEQZ,
 =N+2: error return from STGEVC.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggevx - compute for a pair of N-by-N complex nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors

SYNOPSIS

 SUBROUTINE ZGGEVX(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE, RSCALE, ABNRM,
 BBNRM, RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, BWORK, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL BWORK(*)
 DOUBLE PRECISION ABNRM, BBNRM
 DOUBLE PRECISION LSCALE(*), RSCALE(*), RCONDE(*), RCONDV(*),
 RWORK(*)

 SUBROUTINE ZGGEVX_64(BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
 ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE, RSCALE, ABNRM,
 BBNRM, RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, BWORK, INFO)

 CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 BWORK(*)
 DOUBLE PRECISION ABNRM, BBNRM
 DOUBLE PRECISION LSCALE(*), RSCALE(*), RCONDE(*), RCONDV(*),
 RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGEVX(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B, [LDB],
 ALPHA, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE, RSCALE,
 ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [RWORK], [IWORK],
 [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE

 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: BWORK
 REAL(8) :: ABNRM, BBNRM
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, RCONDE, RCONDV,
 RWORK
 SUBROUTINE GGEVX_64(BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], B,
 [LDB], ALPHA, BETA, VL, [LDVL], VR, [LDVR], ILO, IHI, LSCALE,
 RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, [WORK], [LWORK], [RWORK],
 [IWORK], [BWORK], [INFO])

 CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: BWORK
 REAL(8) :: ABNRM, BBNRM
 REAL(8), DIMENSION(:) :: LSCALE, RSCALE, RCONDE, RCONDV,
 RWORK

 C INTERFACE
 #include <sunperf.h>

 void zggevx(char balanc, char jobvl, char jobvr, char sense,
 int n, doublecomplex *a, int lda, doublecomplex
 *b, int ldb, doublecomplex *alpha, doublecomplex
 *beta, doublecomplex *vl, int ldvl, doublecomplex
 *vr, int ldvr, int *ilo, int *ihi, double *lscale,
 double *rscale, double *abnrm, double *bbnrm, dou-
 ble *rconde, double *rcondv, int *info);

 void zggevx_64(char balanc, char jobvl, char jobvr, char
 sense, long n, doublecomplex *a, long lda, doub-
 lecomplex *b, long ldb, doublecomplex *alpha,
 doublecomplex *beta, doublecomplex *vl, long ldvl,
 doublecomplex *vr, long ldvr, long *ilo, long
 *ihi, double *lscale, double *rscale, double
 *abnrm, double *bbnrm, double *rconde, double
 *rcondv, long *info);

PURPOSE

 zggevx computes for a pair of N-by-N complex nonsymmetric
 matrices (A,B) the generalized eigenvalues, and optionally,
 the left and/or right generalized eigenvectors.

 Optionally, it also computes a balancing transformation to
 improve the conditioning of the eigenvalues and eigenvectors
 (ILO, IHI, LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal
 condition numbers for the eigenvalues (RCONDE), and recipro-
 cal condition numbers for the right eigenvectors (RCONDV).

 A generalized eigenvalue for a pair of matrices (A,B) is a
 scalar lambda or a ratio alpha/beta = lambda, such that A -
 lambda*B is singular. It is usually represented as the pair
 (alpha,beta), as there is a reasonable interpretation for
 beta=0, and even for both being zero.

 The right eigenvector v(j) corresponding to the eigenvalue

 lambda(j) of (A,B) satisfies
 A * v(j) = lambda(j) * B * v(j) .
 The left eigenvector u(j) corresponding to the eigenvalue
 lambda(j) of (A,B) satisfies
 u(j)**H * A = lambda(j) * u(j)**H * B.
 where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTS

 BALANC (input)
 Specifies the balance option to be performed:
 = 'N': do not diagonally scale or permute;
 = 'P': permute only;
 = 'S': scale only;
 = 'B': both permute and scale. Computed recipro-
 cal condition numbers will be for the matrices
 after permuting and/or balancing. Permuting does
 not change condition numbers (in exact arith-
 metic), but balancing does.

 JOBVL (input)
 = 'N': do not compute the left generalized eigen-
 vectors;
 = 'V': compute the left generalized eigenvectors.

 JOBVR (input)
 = 'N': do not compute the right generalized
 eigenvectors;
 = 'V': compute the right generalized eigenvec-
 tors.

 SENSE (input)
 Determines which reciprocal condition numbers are
 computed. = 'N': none are computed;
 = 'E': computed for eigenvalues only;
 = 'V': computed for eigenvectors only;
 = 'B': computed for eigenvalues and eigenvectors.

 N (input) The order of the matrices A, B, VL, and VR. N >=
 0.
 A (input/output)
 On entry, the matrix A in the pair (A,B). On
 exit, A has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then A contains the first part
 of the complex Schur form of the "balanced" ver-
 sions of the input A and B.

 LDA (input)
 The leading dimension of A. LDA >= max(1,N).

 B (input/output)
 On entry, the matrix B in the pair (A,B). On
 exit, B has been overwritten. If JOBVL='V' or
 JOBVR='V' or both, then B contains the second part
 of the complex Schur form of the "balanced" ver-
 sions of the input A and B.

 LDB (input)
 The leading dimension of B. LDB >= max(1,N).

 ALPHA (output)
 On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the

 generalized eigenvalues.

 Note: the quotient ALPHA(j)/BETA(j)) may easily
 over- or underflow, and BETA(j) may even be zero.
 Thus, the user should avoid naively computing the
 ratio ALPHA/BETA. However, ALPHA will be always
 less than and usually comparable with norm(A) in
 magnitude, and BETA always less than and usually
 comparable with norm(B).

 BETA (output)
 See description of ALPHA.

 VL (output)
 If JOBVL = 'V', the left generalized eigenvectors
 u(j) are stored one after another in the columns
 of VL, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVL = 'N'.

 LDVL (input)
 The leading dimension of the matrix VL. LDVL >= 1,
 and if JOBVL = 'V', LDVL >= N.

 VR (output)
 If JOBVR = 'V', the right generalized eigenvectors
 v(j) are stored one after another in the columns
 of VR, in the same order as their eigenvalues.
 Each eigenvector will be scaled so the largest
 component will have abs(real part) + abs(imag.
 part) = 1. Not referenced if JOBVR = 'N'.

 LDVR (input)
 The leading dimension of the matrix VR. LDVR >= 1,
 and if JOBVR = 'V', LDVR >= N.

 ILO (output)
 ILO is an integer value such that on exit A(i,j) =
 0 and B(i,j) = 0 if i > j and j = 1,...,ILO-1 or i
 = IHI+1,...,N. If BALANC = 'N' or 'S', ILO = 1
 and IHI = N.

 IHI (output)
 IHI is an integer value such that on exit A(i,j) =
 0 and B(i,j) = 0 if i > j and j = 1,...,ILO-1 or i
 = IHI+1,...,N. If BALANC = 'N' or 'S', ILO = 1
 and IHI = N.

 LSCALE (output)
 Details of the permutations and scaling factors
 applied to the left side of A and B. If PL(j) is
 the index of the row interchanged with row j, and
 DL(j) is the scaling factor applied to row j, then
 LSCALE(j) = PL(j) for j = 1,...,ILO-1 = DL(j)
 for j = ILO,...,IHI = PL(j) for j = IHI+1,...,N.
 The order in which the interchanges are made is N
 to IHI+1, then 1 to ILO-1.

 RSCALE (output)
 Details of the permutations and scaling factors
 applied to the right side of A and B. If PR(j) is
 the index of the column interchanged with column
 j, and DR(j) is the scaling factor applied to

 column j, then RSCALE(j) = PR(j) for j =
 1,...,ILO-1 = DR(j) for j = ILO,...,IHI = PR(j)
 for j = IHI+1,...,N The order in which the inter-
 changes are made is N to IHI+1, then 1 to ILO-1.
 ABNRM (output)
 The one-norm of the balanced matrix A.

 BBNRM (output)
 The one-norm of the balanced matrix B.

 RCONDE (output)
 If SENSE = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. If SENSE =
 'V', RCONDE is not referenced.

 RCONDV (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 the eigenvalues cannot be reordered to compute
 RCONDV(j), RCONDV(j) is set to 0; this can only
 occur when the true value would be very small any-
 way. If SENSE = 'E', RCONDV is not referenced.
 Not referenced if JOB = 'E'.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,2*N). If SENSE = 'N' or 'E', LWORK >= 2*N.
 If SENSE = 'V' or 'B', LWORK >= 2*N*N+2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(6*N) Real workspace.

 IWORK (workspace)
 dimension(N+2) If SENSE = 'E', IWORK is not refer-
 enced.
 BWORK (workspace)
 dimension(N) If SENSE = 'N', BWORK is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1,...,N: The QZ iteration failed. No eigenvec-
 tors have been calculated, but ALPHA(j) and
 BETA(j) should be correct for j=INFO+1,...,N. >
 N: =N+1: other than QZ iteration failed in
 CHGEQZ.
 =N+2: error return from CTGEVC.

FURTHER DETAILS

 Balancing a matrix pair (A,B) includes, first, permuting
 rows and columns to isolate eigenvalues, second, applying
 diagonal similarity transformation to the rows and columns
 to make the rows and columns as close in norm as possible.
 The computed reciprocal condition numbers correspond to the
 balanced matrix. Permuting rows and columns will not change
 the condition numbers (in exact arithmetic) but diagonal
 scaling will. For further explanation of balancing, see
 section 4.11.1.2 of LAPACK Users' Guide.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is
 hord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)

 An approximate error bound for the angle between the i-th
 computed eigenvector VL(i) or VR(i) is given by
 PS * norm(ABNRM, BBNRM) / DIF(i).

 For further explanation of the reciprocal condition numbers
 RCONDE and RCONDV, see section 4.11 of LAPACK User's Guide.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zggglm - solve a general Gauss-Markov linear model (GLM)
 problem

SYNOPSIS

 SUBROUTINE ZGGGLM(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)
 INTEGER N, M, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE ZGGGLM_64(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LDWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)
 INTEGER*8 N, M, P, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGGLM([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: D, X, Y, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, M, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE GGGLM_64([N], [M], [P], A, [LDA], B, [LDB], D, X, Y, [WORK],
 [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: D, X, Y, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, M, P, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zggglm(int n, int m, int p, doublecomplex *a, int lda,
 doublecomplex *b, int ldb, doublecomplex *d, doub-
 lecomplex *x, doublecomplex *y, int *info);

 void zggglm_64(long n, long m, long p, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, doublecom-
 plex *d, doublecomplex *x, doublecomplex *y, long
 *info);

PURPOSE

 zggglm solves a general Gauss-Markov linear model (GLM)
 problem:

 minimize || y ||_2 subject to d = A*x + B*y
 x

 where A is an N-by-M matrix, B is an N-by-P matrix, and d is
 a given N-vector. It is assumed that M <= N <= M+P, and

 rank(A) = M and rank(A B) = N.

 Under these assumptions, the constrained equation is always
 consistent, and there is a unique solution x and a minimal
 2-norm solution y, which is obtained using a generalized QR
 factorization of A and B.

 In particular, if matrix B is square nonsingular, then the
 problem GLM is equivalent to the following weighted linear
 least squares problem

 minimize || inv(B)*(d-A*x) ||_2
 x

 where inv(B) denotes the inverse of B.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. 0 <= M <=
 N.

 P (input) The number of columns of the matrix B. P >= N-M.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, B is des-
 troyed.
 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 D (input/output)
 On entry, D is the left hand side of the GLM equa-
 tion. On exit, D is destroyed.

 X (output)
 On exit, X and Y are the solutions of the GLM
 problem.

 Y (output)
 On exit, X and Y are the solutions of the GLM
 problem.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,N+M+P). For optimum performance, LDWORK >=
 M+min(N,P)+max(N,P)*NB, where NB is an upper bound
 for the optimal blocksizes for CGEQRF, CGERQF,
 CUNMQR and CUNMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zgghrd - reduce a pair of complex matrices (A,B) to general-
 ized upper Hessenberg form using unitary transformations,
 where A is a general matrix and B is upper triangular

SYNOPSIS

 SUBROUTINE ZGGHRD(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ,
 Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 SUBROUTINE ZGGHRD_64(COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 LDQ, Z, LDZ, INFO)

 CHARACTER * 1 COMPQ, COMPZ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 F95 INTERFACE
 SUBROUTINE GGHRD(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB], Q,
 [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 SUBROUTINE GGHRD_64(COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 Q, [LDQ], Z, [LDZ], [INFO])

 CHARACTER(LEN=1) :: COMPQ, COMPZ
 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgghrd(char compq, char compz, int n, int ilo, int ihi,
 doublecomplex *a, int lda, doublecomplex *b, int
 ldb, doublecomplex *q, int ldq, doublecomplex *z,

 int ldz, int *info);

 void zgghrd_64(char compq, char compz, long n, long ilo,
 long ihi, doublecomplex *a, long lda, doublecom-
 plex *b, long ldb, doublecomplex *q, long ldq,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zgghrd reduces a pair of complex matrices (A,B) to general-
 ized upper Hessenberg form using unitary transformations,
 where A is a general matrix and B is upper triangular: Q' *
 A * Z = H and Q' * B * Z = T, where H is upper Hessenberg, T
 is upper triangular, and Q and Z are unitary, and ' means
 conjugate transpose.

 The unitary matrices Q and Z are determined as products of
 Givens rotations. They may either be formed explicitly, or
 they may be postmultiplied into input matrices Q1 and Z1, so
 that
 1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'

ARGUMENTS

 COMPQ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the unitary matrix Q is returned; = 'V': Q must
 contain a unitary matrix Q1 on entry, and the pro-
 duct Q1*Q is returned.

 COMPZ (input)
 = 'N': do not compute Q;
 = 'I': Q is initialized to the unit matrix, and
 the unitary matrix Q is returned; = 'V': Q must
 contain a unitary matrix Q1 on entry, and the pro-
 duct Q1*Q is returned.

 N (input) The order of the matrices A and B. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGGBAL;
 otherwise they should be set to 1 and N respec-
 tively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and
 IHI=0, if N=0.

 IHI (input)
 See description of ILO.

 A (input/output)
 On entry, the N-by-N general matrix to be reduced.
 On exit, the upper triangle and the first
 subdiagonal of A are overwritten with the upper
 Hessenberg matrix H, and the rest is set to zero.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-N upper triangular matrix B.
 On exit, the upper triangular matrix T = Q' B Z.
 The elements below the diagonal are set to zero.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 If COMPQ='N': Q is not referenced.
 If COMPQ='I': on entry, Q need not be set, and on
 exit it contains the unitary matrix Q, where Q' is
 the product of the Givens transformations which
 are applied to A and B on the left. If COMPQ='V':
 on entry, Q must contain a unitary matrix Q1, and
 on exit this is overwritten by Q1*Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= N if
 COMPQ='V' or 'I'; LDQ >= 1 otherwise.

 Z (input/output)
 If COMPZ='N': Z is not referenced.
 If COMPZ='I': on entry, Z need not be set, and on
 exit it contains the unitary matrix Z, which is
 the product of the Givens transformations which
 are applied to A and B on the right. If
 COMPZ='V': on entry, Z must contain a unitary
 matrix Z1, and on exit this is overwritten by
 Z1*Z.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= N if
 COMPZ='V' or 'I'; LDZ >= 1 otherwise.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 This routine reduces A to Hessenberg and B to triangular
 form by an unblocked reduction, as described in
 _Matrix_Computations_, by Golub and van Loan (Johns Hopkins
 Press).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgglse - solve the linear equality-constrained least squares
 (LSE) problem

SYNOPSIS

 SUBROUTINE ZGGLSE(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)
 INTEGER M, N, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE ZGGLSE_64(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LDWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(*), D(*), X(*), WORK(*)
 INTEGER*8 M, N, P, LDA, LDB, LDWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGLSE([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: C, D, X, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, P, LDA, LDB, LDWORK, INFO

 SUBROUTINE GGLSE_64([M], [N], [P], A, [LDA], B, [LDB], C, D, X, [WORK],
 [LDWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: C, D, X, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, P, LDA, LDB, LDWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgglse(int m, int n, int p, doublecomplex *a, int lda,
 doublecomplex *b, int ldb, doublecomplex *c, doub-
 lecomplex *d, doublecomplex *x, int *info);

 void zgglse_64(long m, long n, long p, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, doublecom-
 plex *c, doublecomplex *d, doublecomplex *x, long
 *info);

PURPOSE

 zgglse solves the linear equality-constrained least squares
 (LSE) problem:

 minimize || c - A*x ||_2 subject to B*x = d

 where A is an M-by-N matrix, B is a P-by-N matrix, c is a
 given M-vector, and d is a given P-vector. It is assumed
 that
 P <= N <= M+P, and

 rank(B) = P and rank((A)) = N.
 ((B))

 These conditions ensure that the LSE problem has a unique
 solution, which is obtained using a GRQ factorization of the
 matrices B and A.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 P (input) The number of rows of the matrix B. 0 <= P <= N <=
 M+P.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A is des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B is des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 C (input/output)
 On entry, C contains the right hand side vector
 for the least squares part of the LSE problem. On
 exit, the residual sum of squares for the solution
 is given by the sum of squares of elements N-P+1
 to M of vector C.

 D (input/output)
 On entry, D contains the right hand side vector
 for the constrained equation. On exit, D is des-
 troyed.

 X (output)
 On exit, X is the solution of the LSE problem.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The dimension of the array WORK. LDWORK >=
 max(1,M+N+P). For optimum performance LDWORK >=
 P+min(M,N)+max(M,N)*NB, where NB is an upper bound
 for the optimal blocksizes for CGEQRF, CGERQF,
 CUNMQR and CUNMRQ.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggqrf - compute a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B.

SYNOPSIS

 SUBROUTINE ZGGQRF(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER N, M, P, LDA, LDB, LWORK, INFO

 SUBROUTINE ZGGQRF_64(N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER*8 N, M, P, LDA, LDB, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGQRF([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, M, P, LDA, LDB, LWORK, INFO

 SUBROUTINE GGQRF_64([N], [M], [P], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, M, P, LDA, LDB, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zggqrf(int n, int m, int p, doublecomplex *a, int lda,
 doublecomplex *taua, doublecomplex *b, int ldb,
 doublecomplex *taub, int *info);

 void zggqrf_64(long n, long m, long p, doublecomplex *a,
 long lda, doublecomplex *taua, doublecomplex *b,

 long ldb, doublecomplex *taub, long *info);

PURPOSE

 zggqrf computes a generalized QR factorization of an N-by-M
 matrix A and an N-by-P matrix B:
 A = Q*R, B = Q*T*Z,

 where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
 matrix, and R and T assume one of the forms:

 if N >= M, R = (R11) M , or if N < M, R = (R11 R12
) N,
 (0) N-M N M-N
 M

 where R11 is upper triangular, and

 if N <= P, T = (0 T12) N, or if N > P, T = (T11)
 N-P,
 P-N N (T21) P
 P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR fac-
 torization of A and B implicitly gives the QR factorization
 of inv(B)*A:

 inv(B)*A = Z'*(inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the conjugate transpose of matrix Z.

ARGUMENTS

 N (input) The number of rows of the matrices A and B. N >=
 0.

 M (input) The number of columns of the matrix A. M >= 0.

 P (input) The number of columns of the matrix B. P >= 0.

 A (input/output)
 On entry, the N-by-M matrix A. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(N,M)-by-M upper trapezoidal matrix R
 (R is upper triangular if N >= M); the elements
 below the diagonal, with the array TAUA, represent
 the unitary matrix Q as a product of min(N,M) ele-
 mentary reflectors (see Further Details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q (see Further
 Details).

 B (input/output)
 On entry, the N-by-P matrix B. On exit, if N <=
 P, the upper triangle of the subarray B(1:N,P-
 N+1:P) contains the N-by-N upper triangular matrix
 T; if N > P, the elements on and above the (N-P)-
 th subdiagonal contain the N-by-P upper tra-
 pezoidal matrix T; the remaining elements, with
 the array TAUB, represent the unitary matrix Z as
 a product of elementary reflectors (see Further
 Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Z (see Further
 Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the QR factorization of an
 N-by-M matrix, NB2 is the optimal blocksize for
 the RQ factorization of an N-by-P matrix, and NB3
 is the optimal blocksize for a call of CUNMQR.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(n,m).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit
 in A(i+1:n,i), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine CUNGQR.
 To use Q to update another matrix, use LAPACK subroutine
 CUNMQR.

 The matrix Z is represented as a product of elementary

 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(n,p).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a complex scalar, and v is a complex vector
 with v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is
 stored on exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine CUNGRQ.
 To use Z to update another matrix, use LAPACK subroutine
 CUNMRQ.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggrqf - compute a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B

SYNOPSIS

 SUBROUTINE ZGGRQF(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
 INFO)

 DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER M, P, N, LDA, LDB, LWORK, INFO

 SUBROUTINE ZGGRQF_64(M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
 LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*)
 INTEGER*8 M, P, N, LDA, LDB, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE GGRQF([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, [WORK],
 [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, P, N, LDA, LDB, LWORK, INFO

 SUBROUTINE GGRQF_64([M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB,
 [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, P, N, LDA, LDB, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zggrqf(int m, int p, int n, doublecomplex *a, int lda,
 doublecomplex *taua, doublecomplex *b, int ldb,
 doublecomplex *taub, int *info);

 void zggrqf_64(long m, long p, long n, doublecomplex *a,
 long lda, doublecomplex *taua, doublecomplex *b,

 long ldb, doublecomplex *taub, long *info);

PURPOSE

 zggrqf computes a generalized RQ factorization of an M-by-N
 matrix A and a P-by-N matrix B:
 A = R*Q, B = Z*T*Q,

 where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
 matrix, and R and T assume one of the forms:

 if M <= N, R = (0 R12) M, or if M > N, R = (R11)
 M-N,
 N-M M (R21) N
 N

 where R12 or R21 is upper triangular, and

 if P >= N, T = (T11) N , or if P < N, T = (T11 T12
) P,
 (0) P-N P N-P
 N

 where T11 is upper triangular.

 In particular, if B is square and nonsingular, the GRQ fac-
 torization of A and B implicitly gives the RQ factorization
 of A*inv(B):

 A*inv(B) = (R*inv(T))*Z'

 where inv(B) denotes the inverse of the matrix B, and Z'
 denotes the conjugate transpose of the matrix Z.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, if M <=
 N, the upper triangle of the subarray A(1:M,N-
 M+1:N) contains the M-by-M upper triangular matrix
 R; if M > N, the elements on and above the (M-N)-
 th subdiagonal contain the M-by-N upper tra-
 pezoidal matrix R; the remaining elements, with
 the array TAUA, represent the unitary matrix Q as
 a product of elementary reflectors (see Further
 Details).
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAUA (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Q (see Further

 Details).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, the ele-
 ments on and above the diagonal of the array con-
 tain the min(P,N)-by-N upper trapezoidal matrix T
 (T is upper triangular if P >= N); the elements
 below the diagonal, with the array TAUB, represent
 the unitary matrix Z as a product of elementary
 reflectors (see Further Details).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TAUB (output)
 The scalar factors of the elementary reflectors
 which represent the unitary matrix Z (see Further
 Details).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N,M,P). For optimum performance LWORK >=
 max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the
 optimal blocksize for the RQ factorization of an
 M-by-N matrix, NB2 is the optimal blocksize for
 the QR factorization of a P-by-N matrix, and NB3
 is the optimal blocksize for a call of CUNMRQ.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO=-i, the i-th argument had an illegal
 value.

FURTHER DETAILS

 The matrix Q is represented as a product of elementary
 reflectors

 Q = H(1) H(2) . . . H(k), where k = min(m,n).

 Each H(i) has the form

 H(i) = I - taua * v * v'

 where taua is a complex scalar, and v is a complex vector
 with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is
 stored on exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
 To form Q explicitly, use LAPACK subroutine CUNGRQ.
 To use Q to update another matrix, use LAPACK subroutine
 CUNMRQ.

 The matrix Z is represented as a product of elementary
 reflectors

 Z = H(1) H(2) . . . H(k), where k = min(p,n).

 Each H(i) has the form

 H(i) = I - taub * v * v'

 where taub is a complex scalar, and v is a complex vector
 with v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit
 in B(i+1:p,i), and taub in TAUB(i).
 To form Z explicitly, use LAPACK subroutine CUNGQR.
 To use Z to update another matrix, use LAPACK subroutine
 CUNMQR.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zggsvd - compute the generalized singular value decomposi-
 tion (GSVD) of an M-by-N complex matrix A and P-by-N complex
 matrix B

SYNOPSIS

 SUBROUTINE ZGGSVD(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, WORK2, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), WORK(*)
 INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER IWORK3(*)
 DOUBLE PRECISION ALPHA(*), BETA(*), WORK2(*)

 SUBROUTINE ZGGSVD_64(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
 ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, WORK2, IWORK3, INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), WORK(*)
 INTEGER*8 M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK3(*)
 DOUBLE PRECISION ALPHA(*), BETA(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GGSVD(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA], B,
 [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK], [WORK2],
 IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK3
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK2

 SUBROUTINE GGSVD_64(JOBU, JOBV, JOBQ, [M], [N], [P], K, L, A, [LDA],
 B, [LDB], ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], [WORK],
 [WORK2], IWORK3, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3
 REAL(8), DIMENSION(:) :: ALPHA, BETA, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zggsvd(char jobu, char jobv, char jobq, int m, int n,
 int p, int *k, int *l, doublecomplex *a, int lda,
 doublecomplex *b, int ldb, double *alpha, double
 *beta, doublecomplex *u, int ldu, doublecomplex
 *v, int ldv, doublecomplex *q, int ldq, int
 *iwork3, int *info);

 void zggsvd_64(char jobu, char jobv, char jobq, long m, long
 n, long p, long *k, long *l, doublecomplex *a,
 long lda, doublecomplex *b, long ldb, double
 *alpha, double *beta, doublecomplex *u, long ldu,
 doublecomplex *v, long ldv, doublecomplex *q, long
 ldq, long *iwork3, long *info);

PURPOSE

 zggsvd computes the generalized singular value decomposition
 (GSVD) of an M-by-N complex matrix A and P-by-N complex
 matrix B:

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R)

 where U, V and Q are unitary matrices, and Z' means the con-
 jugate transpose of Z. Let K+L = the effective numerical
 rank of the matrix (A',B')', then R is a (K+L)-by-(K+L) non-
 singular upper triangular matrix, D1 and D2 are M-by-(K+L)
 and P-by-(K+L) "diagonal" matrices and of the following
 structures, respectively:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12)
 L (0 0 R22)
 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.
 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)

 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M
 (0 R) = K (0 R11 R12 R13)
 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where

 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.

 (R11 R12 R13) is stored in A(1:M, N-K-L+1:N), and R33 is
 stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then
 the GSVD of A and B implicitly gives the SVD of A*inv(B):
 A*inv(B) = U*(D1*inv(D2))*V'.
 If (A',B')' has orthnormal columns, then the GSVD of A and
 B is also equal to the CS decomposition of A and B. Further-
 more, the GSVD can be used to derive the solution of the
 eigenvalue problem:
 A'*A x = lambda* B'*B x.
 In some literature, the GSVD of A and B is presented in the
 form
 U'*A*X = (0 D1), V'*B*X = (0 D2)
 where U and V are orthogonal and X is nonsingular, and D1
 and D2 are ``diagonal''. The former GSVD form can be con-
 verted to the latter form by taking the nonsingular matrix X
 as

 X = Q*(I 0)
 (0 inv(R))

ARGUMENTS

 JOBU (input)
 = 'U': Unitary matrix U is computed;
 = 'N': U is not computed.

 JOBV (input)
 = 'V': Unitary matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Unitary matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrices A and B. N

 >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 L (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose. K + L = effective
 numerical rank of (A',B')'.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular matrix R, or part of R. See
 Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains part of the triangular matrix R if M-K-L <
 0. See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = C,
 BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=
 C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1 and
 ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0

 BETA (output)
 See description of ALPHA.

 U (output)
 If JOBU = 'U', U contains the M-by-M unitary
 matrix U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (output)
 If JOBV = 'V', V contains the P-by-P unitary
 matrix V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (output)

 If JOBQ = 'Q', Q contains the N-by-N unitary
 matrix Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(MAX(3*N,M,P)+N)

 WORK2 (workspace)
 dimension(2*N)

 IWORK3 (output)
 dimension(N) On exit, IWORK3 stores the sorting
 information. More precisely, the following loop
 will sort ALPHA for I = K+1, min(M,K+L) swap
 ALPHA(I) and ALPHA(IWORK3(I)) endfor such that
 ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = 1, the Jacobi-type procedure
 failed to converge. For further details, see sub-
 routine CTGSJA.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zggsvp - compute unitary matrices U, V and Q such that N-
 K-L K L U'*A*Q = K (0 A12 A13) if M-K-L >= 0

SYNOPSIS

 SUBROUTINE ZGGSVP(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), TAU(*), WORK(*)
 INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZGGSVP_64(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), TAU(*), WORK(*)
 INTEGER*8 M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE GGSVP(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, [LDB],
 TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], [RWORK],
 [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE GGSVP_64(JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B,
 [LDB], TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK],
 [RWORK], [TAU], [WORK], [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void zggsvp(char jobu, char jobv, char jobq, int m, int p,
 int n, doublecomplex *a, int lda, doublecomplex
 *b, int ldb, double tola, double tolb, int *k, int
 *l, doublecomplex *u, int ldu, doublecomplex *v,
 int ldv, doublecomplex *q, int ldq, int *info);

 void zggsvp_64(char jobu, char jobv, char jobq, long m, long
 p, long n, doublecomplex *a, long lda, doublecom-
 plex *b, long ldb, double tola, double tolb, long
 *k, long *l, doublecomplex *u, long ldu, doub-
 lecomplex *v, long ldv, doublecomplex *q, long
 ldq, long *info);

PURPOSE

 zggsvp computes unitary matrices U, V and Q such that
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 V'*B*Q = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
 K+L = the effective numerical rank of the (M+P)-by-N matrix
 (A',B')'. Z' denotes the conjugate transpose of Z.

 This decomposition is the preprocessing step for computing
 the Generalized Singular Value Decomposition (GSVD), see
 subroutine CGGSVD.

ARGUMENTS

 JOBU (input)
 = 'U': Unitary matrix U is computed;
 = 'N': U is not computed.

 JOBV (input)

 = 'V': Unitary matrix V is computed;
 = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Unitary matrix Q is computed;
 = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A con-
 tains the triangular (or trapezoidal) matrix
 described in the Purpose section.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, B con-
 tains the triangular matrix described in the Pur-
 pose section.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the thresholds to determine the
 effective numerical rank of matrix B and a sub-
 block of A. Generally, they are set to TOLA =
 MAX(M,N)*norm(A)*MACHEPS, TOLB =
 MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and
 TOLB may affect the size of backward errors of the
 decomposition.

 TOLB (input)
 See description of TOLA.

 K (output)
 On exit, K and L specify the dimension of the sub-
 blocks described in Purpose section. K + L =
 effective numerical rank of (A',B')'.

 L (output)
 See the description of K.

 U (input) If JOBU = 'U', U contains the unitary matrix U.
 If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) If JOBV = 'V', V contains the unitary matrix V.
 If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=

 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) If JOBQ = 'Q', Q contains the unitary matrix Q.
 If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 IWORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(2*N)

 TAU (workspace)
 dimension(N)
 WORK (workspace)
 dimension(MAX(3*N,M,P))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

FURTHER DETAILS

 The subroutine uses LAPACK subroutine CGEQPF for the QR fac-
 torization with column pivoting to detect the effective
 numerical rank of the a matrix. It may be replaced by a
 better rank determination strategy.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssco - General sparse solver condition number estimate.

SYNOPSIS

 SUBROUTINE ZGSSCO (COND, HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION COND
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSCO - Condition number estimate.

PARAMETERS

 COND - DOUBLE PRECISION
 On exit, an estimate of the condition number of the
 factored matrix. Must be called after the numerical
 factorization subroutine, ZGSSFA().

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -700 : Invalid calling sequence - need to call ZGSSFA first.
 -710 : Condition number estimate not available (not implemented
 for this HANDLE's matix type).

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssda - Deallocate working storage for the general sparse
 solver.

SYNOPSIS

 SUBROUTINE ZGSSDA (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSDA - Deallocate dynamically allocated working storage.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 none

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssfa - General sparse solver numeric factorization.

SYNOPSIS

 SUBROUTINE ZGSSFA (NEQNS, COLSTR, ROWIND, VALUES, HANDLE, IER)

 INTEGER NEQNS, COLSTR(*), ROWIND(*), IER
 DOUBLE COMPLEX VALUES(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSFA - Numeric factorization of a sparse matrix.

PARAMETERS

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 coefficient matrix. Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - DOUBLE COMPLEX array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the numeric values of
 the sparse matrix to be factored. Unchanged on
 exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on

 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -300 : Invalid calling sequence - need to call ZGSSOR first.
 -301 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssfs - General sparse solver one call interface.

SYNOPSIS

 SUBROUTINE ZGSSFS (MTXTYP, PIVOT , NEQNS, COLSTR, ROWIND,
 VALUES, NRHS , RHS , LDRHS , ORDMTHD,
 OUTUNT, MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), NRHS, LDRHS,
 OUTUNT, MSGLVL, IER
 CHARACTER*3 ORDMTHD
 DOUBLE COMPLEX VALUES(*), RHS(*)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSFS - General sparse solver one call interface.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, Hermitian positive definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, pivot specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER

 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.
 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 VALUES(*) - DOUBLE COMPLEX array
 On entry, VALUES(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the non-zero numeric
 values of the sparse matrix to be factored.
 Unchanged on exit.

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(*) - DOUBLE COMPLEX array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see ZGSSUO)

 Unchanged on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array of containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.
 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros is less than NEQNS.
 -105 : NEQNS < 1
 -201 : Failure to dynamically allocate memory.
 -301 : Failure to dynamically allocate memory.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssin - Initialize the general sparse solver.

SYNOPSIS

 SUBROUTINE ZGSSIN (MTXTYP, PIVOT, NEQNS, COLSTR, ROWIND, OUTUNT,
 MSGLVL, HANDLE, IER)

 CHARACTER*2 MTXTYP
 CHARACTER*1 PIVOT
 INTEGER NEQNS, COLSTR(*), ROWIND(*), OUTUNT, MSGLVL, IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSIN - Initialize the sparse solver and input the matrix
 structure.

PARAMETERS

 MTXTYP - CHARACTER*2
 On entry, MTXTYP specifies the coefficient matrix
 type. Specifically, the valid options are:

 'sp' or 'SP' - symmetric structure, Hermitian positive definite values
 'ss' or 'SS' - symmetric structure, symmetric values
 'su' or 'SU' - symmetric structure, unsymmetric values
 'uu' or 'UU' - unsymmetric structure, unsymmetric values

 Unchanged on exit.

 PIVOT - CHARACTER*1
 On entry, PIVOT specifies whether or not pivoting is
 used in the course of the numeric factorization.
 The valid options are:

 'n' or 'N' - no pivoting is used
 (Pivoting is not supported for this release).

 Unchanged on exit.

 NEQNS - INTEGER
 On entry, NEQNS specifies the number of equations in
 the coefficient matrix. NEQNS must be at least one.
 Unchanged on exit.

 COLSTR(*) - INTEGER array
 On entry, COLSTR(*) is an array of size (NEQNS+1),
 containing the pointers of the matrix structure.
 Unchanged on exit.

 ROWIND(*) - INTEGER array
 On entry, ROWIND(*) is an array of size
 COLSTR(NEQNS+1)-1, containing the indices of the
 matrix structure. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 OUTUNT - INTEGER
 Output unit. Unchanged on exit.

 MSGLVL - INTEGER
 Message level.

 0 - no output from solver.
 (No messages supported for this release.)

 Unchanged on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -101 : Failure to dynamically allocate memory.
 -102 : Invalid matrix type.
 -103 : Invalid pivot option.
 -104 : Number of nonzeros less than NEQNS.
 -105 : NEQNS < 1

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssor - General sparse solver ordering and symbolic
 factorization.

SYNOPSIS

 SUBROUTINE ZGSSOR (ORDMTHD, HANDLE, IER)

 CHARACTER*3 ORDMTHD
 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSOR - Orders and symbolically factors a sparse matrix.

PARAMETERS

 ORDMTHD - CHARACTER*3
 On entry, ORDMTHD specifies the fill-reducing
 ordering to be used by the sparse solver.
 Specifically, the valid options are:

 'nat' or 'NAT' - natural ordering (no ordering)
 'mmd' or 'MMD' - multiple minimum degree
 'gnd' or 'GND' - general nested dissection
 'uso' or 'USO' - user specified ordering (see ZGSSUO)

 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -200 : Invalid calling sequence - need to call ZGSSIN first.
 -201 : Failure to dynamically allocate memory.
 -666 : Internal error.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssps - Print general sparse solver statics.

SYNOPSIS

 SUBROUTINE ZGSSPS (HANDLE, IER)

 INTEGER IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSPS - Print solver statistics.

PARAMETERS

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -800 : Invalid calling sequence - need to call ZGSSSL first.
 -899 : Printed solver statistics not supported this release.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssrp - Return permutation used by the general sparse
 solver.

SYNOPSIS

 SUBROUTINE ZGSSRP (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSRP - Returns the permutation used by the solver for the
 fill-reducing ordering.

PARAMETERS

 PERM(NEQNS) - INTEGER array
 Undefined on entry. PERM(NEQNS) is the permutation
 array used by the sparse solver for the fill-
 reducing ordering. Modified on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -600 : Invalid calling sequence - need to call ZGSSOR first.

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgsssl - Solve routine for the general sparse solver.

SYNOPSIS

 SUBROUTINE ZGSSSL (NRHS, RHS, LDRHS, HANDLE, IER)

 INTEGER NRHS, LDRHS, IER
 DOUBLE COMPLEX RHS(LDRHS,NRHS)
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSSL - Triangular solve of a factored sparse matrix.

PARAMETERS

 NRHS - INTEGER
 On entry, NRHS specifies the number of right hand
 sides to solve for. Unchanged on exit.

 RHS(LDRHS,*) - DOUBLE COMPLEX array
 On entry, RHS(LDRHS,NRHS) contains the NRHS right
 hand sides. On exit, it contains the solutions.

 LDRHS - INTEGER
 On entry, LDRHS specifies the leading dimension of
 the RHS array. Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -400 : Invalid calling sequence - need to call ZGSSFA first.
 -401 : Failure to dynamically allocate memory.
 -402 : NRHS < 1
 -403 : NEQNS > LDRHS

Contents

NAME●

SYNOPSIS●

PURPOSE●

PARAMETERS●

NAME

 zgssuo - User supplied permutation for ordering used in the
 general sparse solver.

SYNOPSIS

 SUBROUTINE ZGSSUO (PERM, HANDLE, IER)

 INTEGER PERM(*), IER
 DOUBLE PRECISION HANDLE(150)

PURPOSE

 ZGSSUO - User supplied permutation for ordering. Must be
 called after ZGSSIN() (sparse solver initialization) and
 before ZGSSOR() (sparse solver ordering).

PARAMETERS

 PERM(NEQNS) - INTEGER array
 On entry, PERM(NEQNS) is a permutation array
 supplied by the user for the fill-reducing ordering.
 Unchanged on exit.

 HANDLE(150) - DOUBLE PRECISION array
 On entry, HANDLE(*) is an array containing
 information needed by the solver, and must be passed
 unchanged to each sparse solver subroutine.
 Modified on exit.

 IER - INTEGER
 Error number. If no error encountered, unchanged on
 exit. If error encountered, it is set to a non-zero
 integer. Error numbers set by this subroutine:

 -500 : Invalid calling sequence - need to call ZGSSIN first.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgtcon - estimate the reciprocal of the condition number of
 a complex tridiagonal matrix A using the LU factorization as
 computed by CGTTRF

SYNOPSIS

 SUBROUTINE ZGTCON(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM, RCOND,
 WORK, INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 SUBROUTINE ZGTCON_64(NORM, N, LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, WORK, INFO)

 CHARACTER * 1 NORM
 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE GTCON(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 SUBROUTINE GTCON_64(NORM, [N], LOW, DIAG, UP1, UP2, IPIVOT, ANORM,
 RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: NORM
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void zgtcon(char norm, int n, doublecomplex *low, doublecom-
 plex *diag, doublecomplex *up1, doublecomplex
 *up2, int *ipivot, double anorm, double *rcond,
 int *info);

 void zgtcon_64(char norm, long n, doublecomplex *low, doub-
 lecomplex *diag, doublecomplex *up1, doublecomplex
 *up2, long *ipivot, double anorm, double *rcond,
 long *info);

PURPOSE

 zgtcon estimates the reciprocal of the condition number of a
 complex tridiagonal matrix A using the LU factorization as
 computed by CGTTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 N (input) The order of the matrix A. N >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 CGTTRF.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second superdiagonal of
 U.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 ANORM (input)
 If NORM = '1' or 'O', the 1-norm of the original
 matrix A. If NORM = 'I', the infinity-norm of the
 original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zgthr - Gathers specified elements from y into x.

SYNOPSIS

 SUBROUTINE ZGTHR(NZ, Y, X, INDX)

 DOUBLE COMPLEX Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE ZGTHR_64(NZ, Y, X, INDX)

 DOUBLE COMPLEX Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHR([NZ], Y, X, INDX)

 COMPLEX(8), DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHR_64([NZ], Y, X, INDX)

 COMPLEX(8), DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZGTHR - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. Only
 the elements of y whose indices are listed in indx are
 referenced.

 do i = 1, n
 x(i) = y(indx(i))
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input)
 Vector in full storage form. Unchanged on exit.

 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.
 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zgthrz - Gather and zero.

SYNOPSIS

 SUBROUTINE ZGTHRZ(NZ, Y, X, INDX)

 DOUBLE COMPLEX Y(*), X(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE ZGTHRZ_64(NZ, Y, X, INDX)

 DOUBLE COMPLEX Y(*), X(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE GTHRZ([NZ], Y, X, INDX)

 COMPLEX(8), DIMENSION(:) :: Y, X
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE GTHRZ_64([NZ], Y, X, INDX)

 COMPLEX(8), DIMENSION(:) :: Y, X
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZGTHRZ - Gathers the specified elements from a vector y in
 full storage form into a vector x in compressed form. The
 gathered elements of y are set to zero. Only the elements
 of y whose indices are listed in indx are referenced.

 do i = 1, n
 x(i) = y(indx(i))
 y(indx(i)) = 0
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 Y (input/output)
 Vector in full storage form. Gathered elements are
 set to zero.
 X (output)
 Vector in compressed form. Contains elements of y
 whose indices are listed in indx on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgtrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution

SYNOPSIS

 SUBROUTINE ZGTRFS(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF, UPF1,
 UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZGTRFS_64(TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GTRFS([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GTRFS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], FERR, BERR, [WORK],

 [WORK2], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgtrfs(char transa, int n, int nrhs, doublecomplex
 *low, doublecomplex *diag, doublecomplex *up,
 doublecomplex *lowf, doublecomplex *diagf, doub-
 lecomplex *upf1, doublecomplex *upf2, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *ferr, double *berr, int *info);

 void zgtrfs_64(char transa, long n, long nrhs, doublecomplex
 *low, doublecomplex *diag, doublecomplex *up,
 doublecomplex *lowf, doublecomplex *diagf, doub-
 lecomplex *upf1, doublecomplex *upf2, long
 *ipivot, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 zgtrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is tridiagonal, and
 provides error bounds and backward error estimates for the
 solution.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.

 DIAG (input)
 The diagonal elements of A.

 UP (input)
 The (n-1) superdiagonal elements of A.

 LOWF (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A as computed by
 CGTTRF.

 DIAGF (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UPF1 (input)
 The (n-1) elements of the first superdiagonal of
 U.

 UPF2 (input)
 The (n-2) elements of the second superdiagonal of
 U.

 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CGTTRS. On exit, the improved solution matrix X.
 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgtsv - solve the equation A*X = B,

SYNOPSIS

 SUBROUTINE ZGTSV(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE ZGTSV_64(N, NRHS, LOW, DIAG, UP, B, LDB, INFO)

 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE GTSV([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE GTSV_64([N], [NRHS], LOW, DIAG, UP, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zgtsv(int n, int nrhs, doublecomplex *low, doublecom-
 plex *diag, doublecomplex *up, doublecomplex *b,
 int ldb, int *info);

 void zgtsv_64(long n, long nrhs, doublecomplex *low, doub-
 lecomplex *diag, doublecomplex *up, doublecomplex
 *b, long ldb, long *info);

PURPOSE

 zgtsv solves the equation

 where A is an N-by-N tridiagonal matrix, by Gaussian elimi-
 nation with partial pivoting.

 Note that the equation A'*X = B may be solved by inter-
 changing the order of the arguments DU and DL.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input/output)
 On entry, LOW must contain the (n-1) subdiagonal
 elements of A. On exit, LOW is overwritten by the
 (n-2) elements of the second superdiagonal of the
 upper triangular matrix U from the LU factoriza-
 tion of A, in LOW(1), ..., LOW(n-2).

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A. On exit, DIAG is overwritten by the n diag-
 onal elements of U.

 UP (input/output)
 On entry, UP must contain the (n-1) superdiagonal
 elements of A. On exit, UP is overwritten by the
 (n-1) elements of the first superdiagonal of U.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, U(i,i) is exactly zero, and the
 solution has not been computed. The factorization
 has not been completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgtsvx - use the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZGTSVX(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
 WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZGTSVX_64(FACT, TRANSA, N, NRHS, LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, LDB, X, LDX, RCOND, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 FACT, TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP(*), LOWF(*), DIAGF(*),
 UPF1(*), UPF2(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE GTSVX(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE GTSVX_64(FACT, [TRANSA], [N], [NRHS], LOW, DIAG, UP, LOWF,
 DIAGF, UPF1, UPF2, IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP, LOWF, DIAGF,
 UPF1, UPF2, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zgtsvx(char fact, char transa, int n, int nrhs, doub-
 lecomplex *low, doublecomplex *diag, doublecomplex
 *up, doublecomplex *lowf, doublecomplex *diagf,
 doublecomplex *upf1, doublecomplex *upf2, int
 *ipivot, doublecomplex *b, int ldb, doublecomplex
 *x, int ldx, double *rcond, double *ferr, double
 *berr, int *info);

 void zgtsvx_64(char fact, char transa, long n, long nrhs,
 doublecomplex *low, doublecomplex *diag, doub-
 lecomplex *up, doublecomplex *lowf, doublecomplex
 *diagf, doublecomplex *upf1, doublecomplex *upf2,
 long *ipivot, doublecomplex *b, long ldb, doub-
 lecomplex *x, long ldx, double *rcond, double
 *ferr, double *berr, long *info);

PURPOSE

 zgtsvx uses the LU factorization to compute the solution to
 a complex system of linear equations A * X = B, A**T * X =
 B, or A**H * X = B, where A is a tridiagonal matrix of order
 N and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the LU decomposition is used to factor the
 matrix A
 as A = L * U, where L is a product of permutation and
 unit lower
 bidiagonal matrices and U is upper triangular with
 nonzeros in
 only the main diagonal and first two superdiagonals.

 2. If some U(i,i)=0, so that U is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on

 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': LOWF, DIAGF,
 UPF1, UPF2, and IPIVOT contain the factored form
 of A; LOW, DIAG, UP, LOWF, DIAGF, UPF1, UPF2 and
 IPIVOT will not be modified. = 'N': The matrix
 will be copied to LOWF, DIAGF, and UPF1 and fac-
 tored.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) subdiagonal elements of A.
 DIAG (input)
 The n diagonal elements of A.

 UP (input/output)
 The (n-1) superdiagonal elements of A.

 LOWF (input/output)
 If FACT = 'F', then LOWF is an input argument and
 on entry contains the (n-1) multipliers that
 define the matrix L from the LU factorization of A
 as computed by CGTTRF.

 If FACT = 'N', then LOWF is an output argument and
 on exit contains the (n-1) multipliers that define
 the matrix L from the LU factorization of A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 upper triangular matrix U from the LU factoriza-
 tion of A.

 If FACT = 'N', then DIAGF is an output argument
 and on exit contains the n diagonal elements of
 the upper triangular matrix U from the LU factori-
 zation of A.

 UPF1 (input/output)
 If FACT = 'F', then UPF1 is an input argument and
 on entry contains the (n-1) elements of the first
 superdiagonal of U.

 If FACT = 'N', then UPF1 is an output argument and
 on exit contains the (n-1) elements of the first
 superdiagonal of U.

 UPF2 (input/output)
 If FACT = 'F', then UPF2 is an input argument and
 on entry contains the (n-2) elements of the second
 superdiagonal of U.

 If FACT = 'N', then UPF2 is an output argument and
 on exit contains the (n-2) elements of the second
 superdiagonal of U.

 IPIVOT (input/output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains the pivot indices from the
 LU factorization of A as computed by CGTTRF.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains the pivot indices from the LU
 factorization of A; row i of the matrix was inter-
 changed with row IPIVOT(i). IPIVOT(i) will always
 be either i or i+1; IPIVOT(i) = i indicates a row
 interchange was not required.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of

 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: U(i,i) is exactly zero. The factorization
 has not been completed unless i = N, but the fac-
 tor U is exactly singular, so the solution and
 error bounds could not be computed. RCOND = 0 is
 returned. = N+1: U is nonsingular, but RCOND is
 less than machine precision, meaning that the
 matrix is singular to working precision.
 Nevertheless, the solution and error bounds are
 computed because there are a number of situations
 where the computed solution can be more accurate
 than the value of RCOND would suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgttrf - compute an LU factorization of a complex tridiago-
 nal matrix A using elimination with partial pivoting and row
 interchanges

SYNOPSIS

 SUBROUTINE ZGTTRF(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGTTRF_64(N, LOW, DIAG, UP1, UP2, IPIVOT, INFO)

 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GTTRF([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GTTRF_64([N], LOW, DIAG, UP1, UP2, IPIVOT, [INFO])

 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgttrf(int n, doublecomplex *low, doublecomplex *diag,
 doublecomplex *up1, doublecomplex *up2, int
 *ipivot, int *info);

 void zgttrf_64(long n, doublecomplex *low, doublecomplex
 *diag, doublecomplex *up1, doublecomplex *up2,
 long *ipivot, long *info);

PURPOSE

 zgttrf computes an LU factorization of a complex tridiagonal
 matrix A using elimination with partial pivoting and row
 interchanges.
 The factorization has the form
 A = L * U
 where L is a product of permutation and unit lower bidiago-
 nal matrices and U is upper triangular with nonzeros in only
 the main diagonal and first two superdiagonals.

ARGUMENTS

 N (input) The order of the matrix A.

 LOW (input/output)
 On entry, LOW must contain the (n-1) sub-diagonal
 elements of A.

 On exit, LOW is overwritten by the (n-1) multi-
 pliers that define the matrix L from the LU fac-
 torization of A.

 DIAG (input/output)
 On entry, DIAG must contain the diagonal elements
 of A.

 On exit, DIAG is overwritten by the n diagonal
 elements of the upper triangular matrix U from the
 LU factorization of A.

 UP1 (input/output)
 On entry, UP1 must contain the (n-1) super-
 diagonal elements of A.

 On exit, UP1 is overwritten by the (n-1) elements
 of the first super-diagonal of U.

 UP2 (output)
 On exit, UP2 is overwritten by the (n-2) elements
 of the second super-diagonal of U.

 IPIVOT (output)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, U(k,k) is exactly zero. The
 factorization has been completed, but the factor U
 is exactly singular, and division by zero will
 occur if it is used to solve a system of equa-
 tions.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zgttrs - solve one of the systems of equations A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZGTTRS(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZGTTRS_64(TRANSA, N, NRHS, LOW, DIAG, UP1, UP2, IPIVOT, B,
 LDB, INFO)

 CHARACTER * 1 TRANSA
 DOUBLE COMPLEX LOW(*), DIAG(*), UP1(*), UP2(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE GTTRS([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2, IPIVOT,
 B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE GTTRS_64([TRANSA], [N], [NRHS], LOW, DIAG, UP1, UP2,
 IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: TRANSA
 COMPLEX(8), DIMENSION(:) :: LOW, DIAG, UP1, UP2
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zgttrs(char transa, int n, int nrhs, doublecomplex
 *low, doublecomplex *diag, doublecomplex *up1,
 doublecomplex *up2, int *ipivot, doublecomplex *b,
 int ldb, int *info);
 void zgttrs_64(char transa, long n, long nrhs, doublecomplex
 *low, doublecomplex *diag, doublecomplex *up1,
 doublecomplex *up2, long *ipivot, doublecomplex
 *b, long ldb, long *info);

PURPOSE

 zgttrs solves one of the systems of equations
 A * X = B, A**T * X = B, or A**H * X = B, with a tri-
 diagonal matrix A using the LU factorization computed by
 CGTTRF.

ARGUMENTS

 TRANSA (input)
 Specifies the form of the system of equations. =
 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input) The order of the matrix A.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 LOW (input)
 The (n-1) multipliers that define the matrix L
 from the LU factorization of A.

 DIAG (input)
 The n diagonal elements of the upper triangular
 matrix U from the LU factorization of A.

 UP1 (input)
 The (n-1) elements of the first super-diagonal of
 U.

 UP2 (input)
 The (n-2) elements of the second super-diagonal of
 U.
 IPIVOT (input)
 The pivot indices; for 1 <= i <= n, row i of the
 matrix was interchanged with row IPIVOT(i).
 IPIVOT(i) will always be either i or i+1;
 IPIVOT(i) = i indicates a row interchange was not
 required.

 B (input/output)
 On entry, the matrix of right hand side vectors B.
 On exit, B is overwritten by the solution vectors
 X.

 LDB (input)

 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbev - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE ZHBEV(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, NDIAG, LDA, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHBEV_64(JOBZ, UPLO, N, NDIAG, A, LDA, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HBEV(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER :: N, NDIAG, LDA, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HBEV_64(JOBZ, UPLO, [N], NDIAG, A, [LDA], W, Z, [LDZ],
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, NDIAG, LDA, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zhbev(char jobz, char uplo, int n, int ndiag, doub-
 lecomplex *a, int lda, double *w, doublecomplex
 *z, int ldz, int *info);
 void zhbev_64(char jobz, char uplo, long n, long ndiag,
 doublecomplex *a, long lda, double *w, doublecom-
 plex *z, long ldz, long *info);

PURPOSE

 zhbev computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows
 NDIAG and NDIAG+1 of A, and if UPLO = 'L', the
 diagonal and first subdiagonal of T are returned
 in the first two rows of A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.
 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,

 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE ZHBEVD(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHBEVD_64(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBEVD(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ], [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Z
 INTEGER :: N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HBEVD_64(JOBZ, UPLO, [N], KD, AB, [LDAB], W, Z, [LDZ],
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Z
 INTEGER(8) :: N, KD, LDAB, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void zhbevd(char jobz, char uplo, int n, int kd, doublecom-
 plex *ab, int ldab, double *w, doublecomplex *z,
 int ldz, int *info);

 void zhbevd_64(char jobz, char uplo, long n, long kd, doub-
 lecomplex *ab, long ldab, double *w, doublecomplex
 *z, long ldz, long *info);

PURPOSE

 zhbevd computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A. If eigenvec-
 tors are desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).
 On exit, AB is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the first superdiagonal and the diagonal of
 the tridiagonal matrix T are returned in rows KD
 and KD+1 of AB, and if UPLO = 'L', the diagonal
 and first subdiagonal of T are returned in the
 first two rows of AB.

 LDAB (input)
 The leading dimension of the array AB. LDAB >= KD

 + 1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N. If JOBZ = 'V' and N
 > 1, LWORK must be at least 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.
 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and N
 > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK must be at least 1. If JOBZ = 'V'
 and N > 1, LIWORK must be at least 3 + 5*N .

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian band matrix A

SYNOPSIS

 SUBROUTINE ZHBEVX(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHBEVX_64(JOBZ, RANGE, UPLO, N, NDIAG, A, LDA, Q, LDQ, VL,
 VU, IL, IU, ABTOL, NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HBEVX(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [WORK2],
 [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Q, Z
 INTEGER :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HBEVX_64(JOBZ, RANGE, UPLO, [N], NDIAG, A, [LDA], Q, [LDQ],
 VL, VU, IL, IU, ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [WORK2],
 [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Q, Z
 INTEGER(8) :: N, NDIAG, LDA, LDQ, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zhbevx(char jobz, char range, char uplo, int n, int
 ndiag, doublecomplex *a, int lda, doublecomplex
 *q, int ldq, double vl, double vu, int il, int iu,
 double abtol, int *nfound, double *w, doublecom-
 plex *z, int ldz, int *ifail, int *info);

 void zhbevx_64(char jobz, char range, char uplo, long n,
 long ndiag, doublecomplex *a, long lda, doublecom-
 plex *q, long ldq, double vl, double vu, long il,
 long iu, double abtol, long *nfound, double *w,
 doublecomplex *z, long ldz, long *ifail, long
 *info);

PURPOSE

 zhbevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian band matrix A. Eigenvalues
 and eigenvectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.
 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if

 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG + 1.

 Q (output)
 If JOBZ = 'V', the N-by-N unitary matrix used in
 the reduction to tridiagonal form. If JOBZ = 'N',
 the array Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'V', then LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 The first NFOUND elements contain the selected
 eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an
 eigenvector fails to converge, then that column of
 Z contains the latest approximation to the eigen-
 vector, and the index of the eigenvector is
 returned in IFAIL. If JOBZ = 'N', then Z is not
 referenced. Note: the user must ensure that at
 least max(1,NFOUND) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of NFOUND
 is not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbgst - reduce a complex Hermitian-definite banded general-
 ized eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y,

SYNOPSIS

 SUBROUTINE ZHBGST(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
 WORK, RWORK, INFO)

 CHARACTER * 1 VECT, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZHBGST_64(VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
 LDX, WORK, RWORK, INFO)

 CHARACTER * 1 VECT, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDX, INFO
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGST(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], X,
 [LDX], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, X
 INTEGER :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE HBGST_64(VECT, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 X, [LDX], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, X
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDX, INFO
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhbgst(char vect, char uplo, int n, int ka, int kb,
 doublecomplex *ab, int ldab, doublecomplex *bb,
 int ldbb, doublecomplex *x, int ldx, int *info);
 void zhbgst_64(char vect, char uplo, long n, long ka, long
 kb, doublecomplex *ab, long ldab, doublecomplex
 *bb, long ldbb, doublecomplex *x, long ldx, long
 *info);

PURPOSE

 zhbgst reduces a complex Hermitian-definite banded general-
 ized eigenproblem A*x = lambda*B*x to standard form C*y =
 lambda*y, such that C has the same bandwidth as A.

 B must have been previously factorized as S**H*S by CPBSTF,
 using a split Cholesky factorization. A is overwritten by C
 = X**H*A*X, where X = S**(-1)*Q and Q is a unitary matrix
 chosen to preserve the bandwidth of A.

ARGUMENTS

 VECT (input)
 = 'N': do not form the transformation matrix X;
 = 'V': form X.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).
 On exit, the transformed matrix X**H*A*X, stored
 in the same format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input)
 The banded factor S from the split Cholesky fac-
 torization of B, as returned by CPBSTF, stored in

 the first kb+1 rows of the array.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 X (output)
 If VECT = 'V', the n-by-n matrix X. If VECT =
 'N', the array X is not referenced.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N) if VECT = 'V'; LDX >= 1 otherwise.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbgv - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE ZHBGV(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, RWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHBGV_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, RWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, INFO
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGV(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGV_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhbgv(char jobz, char uplo, int n, int ka, int kb,
 doublecomplex *ab, int ldab, doublecomplex *bb,
 int ldbb, double *w, doublecomplex *z, int ldz,
 int *info);

 void zhbgv_64(char jobz, char uplo, long n, long ka, long
 kb, doublecomplex *ab, long ldab, doublecomplex
 *bb, long ldbb, double *w, doublecomplex *z, long
 ldz, long *info);

PURPOSE

 zhbgv computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).
 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if

 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(3*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhbgvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE ZHBGVD(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHBGVD_64(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGVD(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB], W,
 Z, [LDZ], [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK,
 LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGVD_64(JOBZ, UPLO, [N], KA, KB, AB, [LDAB], BB, [LDBB],
 W, Z, [LDZ], [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK],

 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK,
 LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhbgvd(char jobz, char uplo, int n, int ka, int kb,
 doublecomplex *ab, int ldab, doublecomplex *bb,
 int ldbb, double *w, doublecomplex *z, int ldz,
 int *info);

 void zhbgvd_64(char jobz, char uplo, long n, long ka, long
 kb, doublecomplex *ab, long ldab, doublecomplex
 *bb, long ldbb, double *w, doublecomplex *z, long
 ldz, long *info);

PURPOSE

 zhbgvd computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite. If eigenvectors are desired, it uses a
 divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO

 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 On exit, if INFO=0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N.
 If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO=0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=
 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO=0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,
 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is:
 <= N: the algorithm failed to converge: i off-
 diagonal elements of an intermediate tridiagonal
 form did not converge to zero; > N: if INFO = N
 + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhbgvx - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSIS

 SUBROUTINE ZHBGVX(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB,
 Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), Z(LDZ,*),
 WORK(*)
 INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHBGVX_64(JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
 LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
 IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), Z(LDZ,*),
 WORK(*)
 INTEGER*8 N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HBGVX(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [RWORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Q, Z
 INTEGER :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL

 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HBGVX_64(JOBZ, RANGE, UPLO, [N], KA, KB, AB, [LDAB], BB,
 [LDBB], Q, [LDQ], VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK],
 [RWORK], [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, BB, Q, Z
 INTEGER(8) :: N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhbgvx(char jobz, char range, char uplo, int n, int ka,
 int kb, doublecomplex *ab, int ldab, doublecomplex
 *bb, int ldbb, doublecomplex *q, int ldq, double
 vl, double vu, int il, int iu, double abstol, int
 *m, double *w, doublecomplex *z, int ldz, int
 *ifail, int *info);

 void zhbgvx_64(char jobz, char range, char uplo, long n,
 long ka, long kb, doublecomplex *ab, long ldab,
 doublecomplex *bb, long ldbb, doublecomplex *q,
 long ldq, double vl, double vu, long il, long iu,
 double abstol, long *m, double *w, doublecomplex
 *z, long ldz, long *ifail, long *info);

PURPOSE

 zhbgvx computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 banded eigenproblem, of the form A*x=(lambda)*B*x. Here A
 and B are assumed to be Hermitian and banded, and B is also
 positive definite. Eigenvalues and eigenvectors can be
 selected by specifying either all eigenvalues, a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 KA (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KA >= 0.

 KB (input)
 The number of superdiagonals of the matrix B if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KB >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first ka+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
 ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+ka).

 On exit, the contents of AB are destroyed.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KA+1.

 BB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix B, stored in the first kb+1
 rows of the array. The j-th column of B is stored
 in the j-th column of the array BB as follows: if
 UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-
 kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j)
 for j<=i<=min(n,j+kb).

 On exit, the factor S from the split Cholesky fac-
 torization B = S**H*S, as returned by CPBSTF.

 LDBB (input)
 The leading dimension of the array BB. LDBB >=
 KB+1.
 Q (output)
 If JOBZ = 'V', the n-by-n matrix used in the
 reduction of A*x = (lambda)*B*x to standard form,
 i.e. C*x = (lambda)*x, and consequently C to tri-
 diagonal form. If JOBZ = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. If JOBZ =
 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be

 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing AP to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors, with the i-th column of
 Z holding the eigenvector associated with W(i).
 The eigenvectors are normalized so that Z**H*B*Z =
 I. If JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= N.

 WORK (workspace)
 dimension(N)

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value
 > 0: if INFO = i, and i is:
 <= N: then i eigenvectors failed to converge.
 Their indices are stored in array IFAIL. > N:
 if INFO = N + i, for 1 <= i <= N, then CPBSTF
 returned INFO = i: B is not positive definite.
 The factorization of B could not be completed and
 no eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhbmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE ZHBMV(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER N, NDIAG, LDA, INCX, INCY

 SUBROUTINE ZHBMV_64(UPLO, N, NDIAG, ALPHA, A, LDA, X, INCX, BETA, Y,
 INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HBMV(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX], BETA,
 Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCX, INCY

 SUBROUTINE HBMV_64(UPLO, [N], NDIAG, ALPHA, A, [LDA], X, [INCX],
 BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zhbmv(char uplo, int n, int ndiag, doublecomplex
 *alpha, doublecomplex *a, int lda, doublecomplex
 *x, int incx, doublecomplex *beta, doublecomplex
 *y, int incy);
 void zhbmv_64(char uplo, long n, long ndiag, doublecomplex
 *alpha, doublecomplex *a, long lda, doublecomplex
 *x, long incx, doublecomplex *beta, doublecomplex
 *y, long incy);

PURPOSE

 zhbmv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian band matrix, with
 ndiag super-diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the band matrix A is
 being supplied as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A
 is being supplied.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry, NDIAG specifies the number of super-
 diagonals of the matrix A. NDIAG must satisfy 0
 .le. NDIAG. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the hermitian
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row (ndiag + 1) of
 the array, the first super-diagonal starting at
 position 2 in row ndiag, and so on. The top left
 ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer the upper triangular part of a hermitian
 band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J

 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the hermitian
 matrix, supplied column by column, with the lead-
 ing diagonal of the matrix in row 1 of the array,
 the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right ndiag by ndiag
 triangle of the array A is not referenced. The
 following program segment will transfer the lower
 triangular part of a hermitian band matrix from
 conventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that the imaginary parts of the diagonal ele-
 ments need not be set and are assumed to be zero.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the vector x.
 Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhbtrd - reduce a complex Hermitian band matrix A to real
 symmetric tridiagonal form T by a unitary similarity
 transformation

SYNOPSIS

 SUBROUTINE ZHBTRD(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), WORK(*)
 INTEGER N, KD, LDAB, LDQ, INFO
 DOUBLE PRECISION D(*), E(*)

 SUBROUTINE ZHBTRD_64(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
 INFO)

 CHARACTER * 1 VECT, UPLO
 DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), WORK(*)
 INTEGER*8 N, KD, LDAB, LDQ, INFO
 DOUBLE PRECISION D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HBTRD(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Q
 INTEGER :: N, KD, LDAB, LDQ, INFO
 REAL(8), DIMENSION(:) :: D, E

 SUBROUTINE HBTRD_64(VECT, UPLO, [N], KD, AB, [LDAB], D, E, Q, [LDQ],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: VECT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: AB, Q
 INTEGER(8) :: N, KD, LDAB, LDQ, INFO
 REAL(8), DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void zhbtrd(char vect, char uplo, int n, int kd, doublecom-
 plex *ab, int ldab, double *d, double *e, doub-
 lecomplex *q, int ldq, int *info);
 void zhbtrd_64(char vect, char uplo, long n, long kd, doub-
 lecomplex *ab, long ldab, double *d, double *e,
 doublecomplex *q, long ldq, long *info);

PURPOSE

 zhbtrd reduces a complex Hermitian band matrix A to real
 symmetric tridiagonal form T by a unitary similarity
 transformation: Q**H * A * Q = T.

ARGUMENTS

 VECT (input)
 = 'N': do not form Q;
 = 'V': form Q;
 = 'U': update a matrix X, by forming X*Q.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd). On exit, the diagonal ele-
 ments of AB are overwritten by the diagonal ele-
 ments of the tridiagonal matrix T; if KD > 0, the
 elements on the first superdiagonal (if UPLO =
 'U') or the first subdiagonal (if UPLO = 'L') are
 overwritten by the off-diagonal elements of T; the
 rest of AB is overwritten by values generated dur-
 ing the reduction.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 D (output)
 The diagonal elements of the tridiagonal matrix T.

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) =

 T(i+1,i) if UPLO = 'L'.

 Q (input/output)
 On entry, if VECT = 'U', then Q must contain an
 N-by-N matrix X; if VECT = 'N' or 'V', then Q need
 not be set.

 On exit: if VECT = 'V', Q contains the N-by-N
 unitary matrix Q; if VECT = 'U', Q contains the
 product X*Q; if VECT = 'N', the array Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1,
 and LDQ >= N if VECT = 'V' or 'U'.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Modified by Linda Kaufman, Bell Labs.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhecon - estimate the reciprocal of the condition number of
 a complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE ZHECON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 SUBROUTINE ZHECON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE HECON(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 SUBROUTINE HECON_64(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void zhecon(char uplo, int n, doublecomplex *a, int lda, int
 *ipivot, double anorm, double *rcond, int *info);

 void zhecon_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, double anorm, double *rcond,
 long *info);

PURPOSE

 zhecon estimates the reciprocal of the condition number of a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zheev - compute all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE ZHEEV(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHEEV_64(JOBZ, UPLO, N, A, LDA, W, WORK, LDWORK, WORK2,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEEV(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HEEV_64(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zheev(char jobz, char uplo, int n, doublecomplex *a,

 int lda, double *w, int *info);

 void zheev_64(char jobz, char uplo, long n, doublecomplex
 *a, long lda, double *w, long *info);

PURPOSE

 zheev computes all eigenvalues and, optionally, eigenvectors
 of a complex Hermitian matrix A.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N-1). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zheevd - compute all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE ZHEEVD(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHEEVD_64(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEEVD(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HEEVD_64(JOBZ, UPLO, [N], A, [LDA], W, [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, LRWORK, LIWORK, INFO

 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void zheevd(char jobz, char uplo, int n, doublecomplex *a,
 int lda, double *w, int *info);

 void zheevd_64(char jobz, char uplo, long n, doublecomplex
 *a, long lda, double *w, long *info);

PURPOSE

 zheevd computes all eigenvalues and, optionally, eigenvec-
 tors of a complex Hermitian matrix A. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, if JOBZ = 'V', then if
 INFO = 0, A contains the orthonormal eigenvectors
 of the matrix A. If JOBZ = 'N', then on exit the
 lower triangle (if UPLO='L') or the upper triangle
 (if UPLO='U') of A, including the diagonal, is
 destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N + 1. If JOBZ = 'V'
 and N > 1, LWORK must be at least 2*N + N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and
 N > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK must be at least 1. If JOBZ = 'N' and N >
 1, LIWORK must be at least 1. If JOBZ = 'V' and
 N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zheevr - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian tridiagonal matrix T

SYNOPSIS

 SUBROUTINE ZHEEVR(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHEEVR_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK,
 LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEEVR(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [RWORK], [LRWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HEEVR_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABSTOL, M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [RWORK], [LRWORK],
 [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, IL, IU, M, LDZ, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zheevr(char jobz, char range, char uplo, int n, doub-
 lecomplex *a, int lda, double vl, double vu, int
 il, int iu, double abstol, int *m, double *w,
 doublecomplex *z, int ldz, int *isuppz, int
 *info);

 void zheevr_64(char jobz, char range, char uplo, long n,
 doublecomplex *a, long lda, double vl, double vu,
 long il, long iu, double abstol, long *m, double
 *w, doublecomplex *z, long ldz, long *isuppz, long
 *info);

PURPOSE

 zheevr computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian tridiagonal matrix T. Eigen-
 values and eigenvectors can be selected by specifying either
 a range of values or a range of indices for the desired
 eigenvalues.

 Whenever possible, CHEEVR calls CSTEGR to compute the
 eigenspectrum using Relatively Robust Representations.
 CSTEGR computes eigenvalues by the dqds algorithm, while
 orthogonal eigenvectors are computed from various "good" L D
 L^T representations (also known as Relatively Robust
 Representations). Gram-Schmidt orthogonalization is avoided
 as far as possible. More specifically, the various steps of
 the algorithm are as follows. For the i-th unreduced block
 of T,
 (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T
 is a relatively robust representation,
 (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T
 to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB//CSD-97-971, UC Berkeley, May 1997.

 Note 1 : CHEEVR calls CSTEGR when the full spectrum is
 requested on machines which conform to the ieee-754 floating
 point standard. CHEEVR calls SSTEBZ and CSTEIN on non-ieee
 machines and
 when partial spectrum requests are made.

 Normal execution of CSTEGR may create NaNs and infinities
 and hence may abort due to a floating point exception in
 environments which do not handle NaNs and infinities in the
 ieee standard default manner.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A. On exit, the lower triangle (if
 UPLO='L') or the upper triangle (if UPLO='U') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1

 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 If high relative accuracy is important, set ABSTOL
 to SLAMCH('Safe minimum'). Doing so will
 guarantee that eigenvalues are computed to high
 relative accuracy when possible in future
 releases. The current code does not make any
 guarantees about high relative accuracy, but furu-
 tre releases will. See J. Barlow and J. Demmel,
 "Computing Accurate Eigensystems of Scaled Diago-
 nally Dominant Matrices", LAPACK Working Note #7,
 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,2*N). For optimal efficiency, LWORK >=
 (NB+1)*N, where NB is the max of the blocksize for
 CHETRD and for CUNMTR as returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 (and minimal) LRWORK.

 LRWORK (input)
 The length of the array RWORK. LRWORK >=
 max(1,24*N).

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 (and minimal) LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N).

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: Internal error

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zheevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian matrix A

SYNOPSIS

 SUBROUTINE ZHEEVX(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHEEVX_64(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 ABTOL, NFOUND, W, Z, LDZ, WORK, LDWORK, WORK2, IWORK3, IFAIL,
 INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEEVX(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [LDWORK], [WORK2], [IWORK3],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HEEVX_64(JOBZ, RANGE, UPLO, [N], A, [LDA], VL, VU, IL, IU,
 ABTOL, [NFOUND], W, Z, [LDZ], [WORK], [LDWORK], [WORK2], [IWORK3],
 IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, Z
 INTEGER(8) :: N, LDA, IL, IU, NFOUND, LDZ, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zheevx(char jobz, char range, char uplo, int n, doub-
 lecomplex *a, int lda, double vl, double vu, int
 il, int iu, double abtol, int *nfound, double *w,
 doublecomplex *z, int ldz, int *ifail, int *info);

 void zheevx_64(char jobz, char range, char uplo, long n,
 doublecomplex *a, long lda, double vl, double vu,
 long il, long iu, double abtol, long *nfound, dou-
 ble *w, doublecomplex *z, long ldz, long *ifail,
 long *info);

PURPOSE

 zheevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A. Eigenvalues and
 eigenvectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A
 contains the upper triangular part of the matrix
 A. If UPLO = 'L', the leading N-by-N lower tri-
 angular part of A contains the lower triangular
 part of the matrix A. On exit, the lower triangle
 (if UPLO='L') or the upper triangle (if UPLO='U')
 of A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=

 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 On normal exit, the first NFOUND elements contain
 the selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-

 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,
 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the max of the blocksize for
 CHETRD and for CUNMTR as returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhegs2 - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form

SYNOPSIS

 SUBROUTINE ZHEGS2(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER ITYPE, N, LDA, LDB, INFO

 SUBROUTINE ZHEGS2_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 ITYPE, N, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE HEGS2(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, INFO

 SUBROUTINE HEGS2_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zhegs2(int itype, char uplo, int n, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, int *info);

 void zhegs2_64(long itype, char uplo, long n, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zhegs2 reduces a complex Hermitian-definite generalized
 eigenproblem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.

 B must have been previously factorized as U'*U or L*L' by
 CPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
 = 2 or 3: compute U*A*U' or L'*A*L.

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored, and how
 B has been factorized. = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by CPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhegst - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form

SYNOPSIS

 SUBROUTINE ZHEGST(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER ITYPE, N, LDA, LDB, INFO

 SUBROUTINE ZHEGST_64(ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 ITYPE, N, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE HEGST(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, INFO

 SUBROUTINE HEGST_64(ITYPE, UPLO, N, A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zhegst(int itype, char uplo, int n, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, int *info);

 void zhegst_64(long itype, char uplo, long n, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zhegst reduces a complex Hermitian-definite generalized
 eigenproblem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H)

 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**H or
 L**H*A*L.

 B must have been previously factorized as U**H*U or L*L**H
 by CPOTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H);
 = 2 or 3: compute U*A*U**H or L**H*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**H*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**H.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The triangular factor from the Cholesky factoriza-
 tion of B, as returned by CPOTRF.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhegv - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHEGV(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHEGV_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LDWORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, LDWORK, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HEGV(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HEGV_64(ITYPE, JOBZ, UPLO, N, A, [LDA], B, [LDB], W, [WORK],
 [LDWORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, LDWORK, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE

 #include <sunperf.h>

 void zhegv(int itype, char jobz, char uplo, int n, doub-
 lecomplex *a, int lda, doublecomplex *b, int ldb,
 double *w, int *info);

 void zhegv_64(long itype, char jobz, char uplo, long n,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, double *w, long *info);

PURPOSE

 zhegv computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian and B is also
 positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-
 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian positive definite matrix
 B. If UPLO = 'U', the leading N-by-N upper tri-

 angular part of B contains the upper triangular
 part of the matrix B. If UPLO = 'L', the leading
 N-by-N lower triangular part of B contains the
 lower triangular part of the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of the array WORK. LDWORK >=
 max(1,2*N-1). For optimal efficiency, LDWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(max(1,3*N-2))
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEV returned an error code:
 <= N: if INFO = i, CHEEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhegvd - compute all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHEGVD(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHEGVD_64(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEGVD(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W, [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HEGVD_64(ITYPE, JOBZ, UPLO, [N], A, [LDA], B, [LDB], W,
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK

 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: ITYPE, N, LDA, LDB, LWORK, LRWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK
 C INTERFACE
 #include <sunperf.h>

 void zhegvd(int itype, char jobz, char uplo, int n, doub-
 lecomplex *a, int lda, doublecomplex *b, int ldb,
 double *w, int *info);

 void zhegvd_64(long itype, char jobz, char uplo, long n,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, double *w, long *info);

PURPOSE

 zhegvd computes all the eigenvalues, and optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian and B is also positive definite. If
 eigenvectors are desired, it uses a divide and conquer algo-
 rithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, if JOBZ = 'V', then if INFO = 0, A con-

 tains the matrix Z of eigenvectors. The eigenvec-
 tors are normalized as follows: if ITYPE = 1 or
 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I.
 If JOBZ = 'N', then on exit the upper triangle (if
 UPLO='U') or the lower triangle (if UPLO='L') of
 A, including the diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N
 + 1. If JOBZ = 'V' and N > 1, LWORK >= 2*N +
 N**2.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=
 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)

 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If N <= 1,
 LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >=
 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEVD returned an error code:
 <= N: if INFO = i, CHEEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not converge to zero; > N: if INFO
 = N + i, for 1 <= i <= N, then the leading minor
 of order i of B is not positive definite. The
 factorization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhegvx - compute selected eigenvalues, and optionally,
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHEGVX(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHEGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL,
 VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK,
 IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HEGVX(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, Z
 INTEGER :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HEGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], A, [LDA], B, [LDB],
 VL, VU, IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [IWORK], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, Z
 INTEGER(8) :: ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhegvx(int itype, char jobz, char range, char uplo, int
 n, doublecomplex *a, int lda, doublecomplex *b,
 int ldb, double vl, double vu, int il, int iu,
 double abstol, int *m, double *w, doublecomplex
 *z, int ldz, int *ifail, int *info);

 void zhegvx_64(long itype, char jobz, char range, char uplo,
 long n, doublecomplex *a, long lda, doublecomplex
 *b, long ldb, double vl, double vu, long il, long
 iu, double abstol, long *m, double *w, doublecom-
 plex *z, long ldz, long *ifail, long *info);

PURPOSE

 zhegvx computes selected eigenvalues, and optionally, eigen-
 vectors of a complex generalized Hermitian-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian
 and B is also positive definite. Eigenvalues and eigenvec-
 tors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of A contains the lower triangular part of
 the matrix A.

 On exit, the lower triangle (if UPLO='L') or the
 upper triangle (if UPLO='U') of A, including the
 diagonal, is destroyed.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the Hermitian matrix B. If UPLO = 'U',
 the leading N-by-N upper triangular part of B con-
 tains the upper triangular part of the matrix B.
 If UPLO = 'L', the leading N-by-N lower triangular
 part of B contains the lower triangular part of
 the matrix B.

 On exit, if INFO <= N, the part of B containing
 the matrix is overwritten by the triangular factor
 U or L from the Cholesky factorization B = U**H*U
 or B = L*L**H.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.
 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.
 Z (output)
 If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if
 ITYPE = 3, Z**T*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace/output)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The length of the array WORK. LWORK >=
 max(1,2*N-1). For optimal efficiency, LWORK >=
 (NB+1)*N, where NB is the blocksize for CHETRD
 returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPOTRF or CHEEVX returned an error code:
 <= N: if INFO = i, CHEEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= N, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhemm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE ZHEMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, LDA, LDB, LDC

 SUBROUTINE ZHEMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE HEMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, LDA, LDB, LDC

 SUBROUTINE HEMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void zhemm(char side, char uplo, int m, int n, doublecomplex
 *alpha, doublecomplex *a, int lda, doublecomplex

 *b, int ldb, doublecomplex *beta, doublecomplex
 *c, int ldc);
 void zhemm_64(char side, char uplo, long m, long n, doub-
 lecomplex *alpha, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, doublecomplex *beta,
 doublecomplex *c, long ldc);

PURPOSE

 zhemm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is an hermitian matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the hermitian
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the hermitian
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the hermitian matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the hermitian matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka), where
 ka is m when SIDE = 'L' or 'l' and is n other-
 wise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the hermi-
 tian matrix, such that when UPLO = 'U' or 'u',

 the leading m by m upper triangular part of the
 array A must contain the upper triangular part
 of the hermitian matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the hermi-
 tian matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the hermi-
 tian matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the hermitian matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the hermi-
 tian matrix and the strictly upper triangular
 part of A is not referenced.

 Note that the imaginary parts of the diagonal
 elements need not be set, they are assumed to be
 zero. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 COMPLEX*16 array of DIMENSION (LDB, n). Before
 entry, the leading m by n part of the array B
 must contain the matrix B. Unchanged on exit.
 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB must be at least max(1, m). Unchanged
 on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n).

 Before entry, the leading m by n part of the
 array C must contain the matrix C, except when
 beta is zero, in which case C need not be set on
 entry.

 On exit, the array C is overwritten by the m by
 n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, m). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhemv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE ZHEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER N, LDA, INCX, INCY

 SUBROUTINE ZHEMV_64(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), X(*), Y(*)
 INTEGER*8 N, LDA, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HEMV(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCX, INCY

 SUBROUTINE HEMV_64(UPLO, [N], ALPHA, A, [LDA], X, [INCX], BETA, Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zhemv(char uplo, int n, doublecomplex *alpha, doub-
 lecomplex *a, int lda, doublecomplex *x, int incx,
 doublecomplex *beta, doublecomplex *y, int incy);

 void zhemv_64(char uplo, long n, doublecomplex *alpha, doub-
 lecomplex *a, long lda, doublecomplex *x, long
 incx, doublecomplex *beta, doublecomplex *y, long
 incy);

PURPOSE

 zhemv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. Before entry with UPLO = 'L'
 or 'l', the leading n by n lower triangular part
 of the array A must contain the lower triangular
 part of the hermitian matrix and the strictly
 upper triangular part of A is not referenced.
 Note that the imaginary parts of the diagonal ele-
 ments need not be set and are assumed to be zero.
 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)

 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on
 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zher - perform the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A

SYNOPSIS

 SUBROUTINE ZHER(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX X(*), A(LDA,*)
 INTEGER N, INCX, LDA
 DOUBLE PRECISION ALPHA

 SUBROUTINE ZHER_64(UPLO, N, ALPHA, X, INCX, A, LDA)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX X(*), A(LDA,*)
 INTEGER*8 N, INCX, LDA
 DOUBLE PRECISION ALPHA

 F95 INTERFACE
 SUBROUTINE HER(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: X
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, INCX, LDA
 REAL(8) :: ALPHA

 SUBROUTINE HER_64(UPLO, [N], ALPHA, X, [INCX], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: X
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, INCX, LDA
 REAL(8) :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void zher(char uplo, int n, double alpha, doublecomplex *x,
 int incx, doublecomplex *a, int lda);

 void zher_64(char uplo, long n, double alpha, doublecomplex

 *x, long incx, doublecomplex *a, long lda);

PURPOSE

 zher performs the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A where alpha is a real scalar, x is
 an n element vector and A is an n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before
 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the hermitian matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix. Note that the ima-
 ginary parts of the diagonal elements need not be
 set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA (input)

 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zher2 - perform the hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

SYNOPSIS

 SUBROUTINE ZHER2(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER N, INCX, INCY, LDA

 SUBROUTINE ZHER2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
 INTEGER*8 N, INCX, INCY, LDA

 F95 INTERFACE
 SUBROUTINE HER2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, INCX, INCY, LDA

 SUBROUTINE HER2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A, [LDA])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, INCX, INCY, LDA

 C INTERFACE
 #include <sunperf.h>

 void zher2(char uplo, int n, doublecomplex *alpha, doub-
 lecomplex *x, int incx, doublecomplex *y, int
 incy, doublecomplex *a, int lda);

 void zher2_64(char uplo, long n, doublecomplex *alpha, doub-
 lecomplex *x, long incx, doublecomplex *y, long
 incy, doublecomplex *a, long lda);

PURPOSE

 zher2 performs the hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A where
 alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the array A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of A is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of A is to be referenced.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

 A (input/output)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular part of the hermitian
 matrix and the strictly lower triangular part of A
 is not referenced. On exit, the upper triangular
 part of the array A is overwritten by the upper
 triangular part of the updated matrix. Before

 entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain
 the lower triangular part of the hermitian matrix
 and the strictly upper triangular part of A is not
 referenced. On exit, the lower triangular part of
 the array A is overwritten by the lower triangular
 part of the updated matrix. Note that the ima-
 ginary parts of the diagonal elements need not be
 set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zher2k - perform one of the Hermitian rank 2k operations C
 := alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') +
 beta*C or C := alpha*conjg(A')*B + conjg(alpha)*conjg(
 B')*A + beta*C

SYNOPSIS

 SUBROUTINE ZHER2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER N, K, LDA, LDB, LDC
 DOUBLE PRECISION BETA

 SUBROUTINE ZHER2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDB, LDC
 DOUBLE PRECISION BETA

 F95 INTERFACE
 SUBROUTINE HER2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: N, K, LDA, LDB, LDC
 REAL(8) :: BETA

 SUBROUTINE HER2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: N, K, LDA, LDB, LDC
 REAL(8) :: BETA

 C INTERFACE
 #include <sunperf.h>
 void zher2k(char uplo, char transa, int n, int k, doublecom-
 plex *alpha, doublecomplex *a, int lda, doublecom-
 plex *b, int ldb, double beta, doublecomplex *c,
 int ldc);

 void zher2k_64(char uplo, char transa, long n, long k, doub-
 lecomplex *alpha, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, double beta, doub-
 lecomplex *c, long ldc);

PURPOSE

 zher2k performs one of the Hermitian rank 2k operations C :=
 alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') + beta*C
 or C := alpha*conjg(A')*B + conjg(alpha)*conjg(B')*A +
 beta*C where alpha and beta are scalars with beta real,
 C is an n by n Hermitian matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*conjg(B')
 + conjg(alpha)*B*conjg(A') + beta*C.

 TRANSA = 'C' or 'c' C := alpha*conjg(A')*B
 + conjg(alpha)*conjg(B')*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'C' or 'c', K
 specifies the number of rows of the matrices A

 and B. K must be at least zero. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 COMPLEX*16 array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 Hermitian matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 Hermitian matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 Note that the imaginary parts of the diagonal ele-
 ments need not be set, they are assumed to be
 zero, and on exit they are set to zero.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zherfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE ZHERFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZHERFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HERFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HERFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK

 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zherfs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, doublecomplex *af, int ldaf, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *ferr, double *berr, int *info);

 void zherfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *af, long ldaf, long
 *ipivot, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 zherfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**H or A = L*D*L**H as computed by
 CHETRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CHETRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zherk - perform one of the Hermitian rank k operations C
 := alpha*A*conjg(A') + beta*C or C := alpha*conjg(A')*A
 + beta*C

SYNOPSIS

 SUBROUTINE ZHERK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX A(LDA,*), C(LDC,*)
 INTEGER N, K, LDA, LDC
 DOUBLE PRECISION ALPHA, BETA

 SUBROUTINE ZHERK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX A(LDA,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDC
 DOUBLE PRECISION ALPHA, BETA

 F95 INTERFACE
 SUBROUTINE HERK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: N, K, LDA, LDC
 REAL(8) :: ALPHA, BETA

 SUBROUTINE HERK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: N, K, LDA, LDC
 REAL(8) :: ALPHA, BETA

 C INTERFACE
 #include <sunperf.h>

 void zherk(char uplo, char transa, int n, int k, double
 alpha, doublecomplex *a, int lda, double beta,
 doublecomplex *c, int ldc);

 void zherk_64(char uplo, char transa, long n, long k, double
 alpha, doublecomplex *a, long lda, double beta,
 doublecomplex *c, long ldc);

PURPOSE

 zherk performs one of the Hermitian rank k operations C :=
 alpha*A*conjg(A') + beta*C or C := alpha*conjg(A')*A +
 beta*C where alpha and beta are real scalars, C is an n
 by n Hermitian matrix and A is an n by k matrix in the
 first case and a k by n matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*conjg(A') +
 beta*C.

 TRANSA = 'C' or 'c' C := alpha*conjg(A')*A +
 beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'C' or 'c', K
 specifies the number of rows of the matrix A. K
 must be at least zero. Unchanged on exit.
 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or

 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 Hermitian matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 Hermitian matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 Note that the imaginary parts of the diagonal ele-
 ments need not be set, they are assumed to be
 zero, and on exit they are set to zero.
 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhesv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZHESV(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHESV_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK,
 LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HESV(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HESV_64(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhesv(char uplo, int n, int nrhs, doublecomplex *a, int
 lda, int *ipivot, doublecomplex *b, int ldb, int
 *info);
 void zhesv_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, long *ipivot, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zhesv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**H or A =
 L*D*L**H as computed by CHETRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CHETRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)

 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 1, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CHETRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhesvx - use the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B,

SYNOPSIS

 SUBROUTINE ZHESVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZHESVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HESVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HESVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],

 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zhesvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *af, int
 ldaf, int *ipivot, doublecomplex *b, int ldb,
 doublecomplex *x, int ldx, double *rcond, double
 *ferr, double *berr, int *info);

 void zhesvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, long lda, doublecomplex *af,
 long ldaf, long *ipivot, doublecomplex *b, long
 ldb, doublecomplex *x, long ldx, double *rcond,
 double *ferr, double *berr, long *info);

PURPOSE

 zhesvx uses the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B, where A is an N-by-N Hermitian matrix and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is Hermitian and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form

 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**H or A = L*D*L**H as
 computed by CHETRF.

 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**H or A =
 L*D*L**H.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CHETRF. If IPIVOT(k) > 0, then rows and columns k

 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CHETRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.
 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 2*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CHETRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first

 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhetf2 - compute the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE ZHETF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZHETF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE HETF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE HETF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zhetf2(char uplo, int n, doublecomplex *a, int lda, int
 *ipiv, int *info);

 void zhetf2_64(char uplo, long n, doublecomplex *a, long

 lda, long *ipiv, long *info);

PURPOSE

 zhetf2 computes the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the conjugate transpose
 of U, and D is Hermitian and block diagonal with 1-by-1 and
 2-by-2 diagonal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by
 J. Lewis, Boeing Computer Services Company
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhetrd - reduce a complex Hermitian matrix A to real sym-
 metric tridiagonal form T by a unitary similarity transfor-
 mation

SYNOPSIS

 SUBROUTINE ZHETRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, LDA, LWORK, INFO
 DOUBLE PRECISION D(*), E(*)

 SUBROUTINE ZHETRD_64(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, LDA, LWORK, INFO
 DOUBLE PRECISION D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HETRD(UPLO, [N], A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E

 SUBROUTINE HETRD_64(UPLO, [N], A, [LDA], D, E, TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, INFO
 REAL(8), DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void zhetrd(char uplo, int n, doublecomplex *a, int lda,
 double *d, double *e, doublecomplex *tau, int
 *info);
 void zhetrd_64(char uplo, long n, doublecomplex *a, long
 lda, double *d, double *e, doublecomplex *tau,
 long *info);

PURPOSE

 zhetrd reduces a complex Hermitian matrix A to real sym-
 metric tridiagonal form T by a unitary similarity transfor-
 mation: Q**H * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced. On
 exit, if UPLO = 'U', the diagonal and first super-
 diagonal of A are overwritten by the corresponding
 elements of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the unitary matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).
 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. For
 optimum performance LWORK >= N*NB, where NB is the
 optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit
 in
 A(1:i-1,i+1), and tau in TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).
 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit
 in A(i+2:n,i), and tau in TAU(i).

 The contents of A on exit are illustrated by the following
 examples with n = 5:

 if UPLO = 'U': if UPLO = 'L':

 (d e v2 v3 v4) (d
)
 (d e v3 v4) (e d
)
 (d e v4) (v1 e d
)
 (d e) (v1 v2 e d
)
 (d) (v1 v2 v3 e d
)

 where d and e denote diagonal and off-diagonal elements of
 T, and vi denotes an element of the vector defining H(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhetrf - compute the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE ZHETRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHETRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRF(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRF_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhetrf(char uplo, int n, doublecomplex *a, int lda, int

 *ipivot, int *info);

 void zhetrf_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, long *info);

PURPOSE

 zhetrf computes the factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method.
 The form of the factorization is

 A = U*D*U**H or A = L*D*L**H

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhetri - compute the inverse of a complex Hermitian indefin-
 ite matrix A using the factorization A = U*D*U**H or A =
 L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE ZHETRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHETRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRI(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRI_64(UPLO, [N], A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhetri(char uplo, int n, doublecomplex *a, int lda, int
 *ipivot, int *info);

 void zhetri_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, long *info);

PURPOSE

 zhetri computes the inverse of a complex Hermitian indefin-
 ite matrix A using the factorization A = U*D*U**H or A =
 L*D*L**H computed by CHETRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CHETRF.

 On exit, if INFO = 0, the (Hermitian) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhetrs - solve a system of linear equations A*X = B with a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF

SYNOPSIS

 SUBROUTINE ZHETRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHETRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HETRS(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HETRS_64(UPLO, [N], [NRHS], A, [LDA], IPIVOT, B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhetrs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, int *ipivot, doublecomplex *b, int ldb,
 int *info);

 void zhetrs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, long *ipivot, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zhetrs solves a system of linear equations A*X = B with a
 complex Hermitian matrix A using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHETRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHETRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHETRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhgeqz - implement a single-shift version of the QZ method
 for finding the generalized eigenvalues
 w(i)=ALPHA(i)/BETA(i) of the equation det(A-w(i) B) = 0
 If JOB='S', then the pair (A,B) is simultaneously reduced to
 Schur form (i.e., A and B are both upper triangular) by
 applying one unitary tranformation (usually called Q) on the
 left and another (usually called Z) on the right

SYNOPSIS

 SUBROUTINE ZHGEQZ(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZHGEQZ_64(JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)

 CHARACTER * 1 JOB, COMPQ, COMPZ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE HGEQZ(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B, [LDB],
 ALPHA, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE HGEQZ_64(JOB, COMPQ, COMPZ, [N], ILO, IHI, A, [LDA], B,
 [LDB], ALPHA, BETA, Q, [LDQ], Z, [LDZ], [WORK], [LWORK], [RWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ, COMPZ
 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
 REAL(8), DIMENSION(:) :: RWORK
 C INTERFACE
 #include <sunperf.h>

 void zhgeqz(char job, char compq, char compz, int n, int
 ilo, int ihi, doublecomplex *a, int lda, doub-
 lecomplex *b, int ldb, doublecomplex *alpha, doub-
 lecomplex *beta, doublecomplex *q, int ldq, doub-
 lecomplex *z, int ldz, int *info);

 void zhgeqz_64(char job, char compq, char compz, long n,
 long ilo, long ihi, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, doublecomplex *alpha,
 doublecomplex *beta, doublecomplex *q, long ldq,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zhgeqz implements a single-shift version of the QZ method
 for finding the generalized eigenvalues
 w(i)=ALPHA(i)/BETA(i) of the equation A are then
 ALPHA(1),...,ALPHA(N), and of B are BETA(1),...,BETA(N).

 If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the uni-
 tary transformations used to reduce (A,B) are accumulated
 into the arrays Q and Z s.t.:
 (in) A(in) Z(in)* = Q(out) A(out) Z(out)*

 Ref: C.B. Moler & G.W. Stewart, "An Algorithm for General-
 ized Matrixigenvalue Problems", SIAM J. Numer. Anal.,
 10(1973),p. 241--256.

ARGUMENTS

 JOB (input)
 = 'E': compute only ALPHA and BETA. A and B will
 not necessarily be put into generalized Schur
 form. = 'S': put A and B into generalized Schur
 form, as well as computing ALPHA and BETA.

 COMPQ (input)
 = 'N': do not modify Q.
 = 'V': multiply the array Q on the right by the
 conjugate transpose of the unitary tranformation
 that is applied to the left side of A and B to
 reduce them to Schur form. = 'I': like COMPQ='V',
 except that Q will be initialized to the identity
 first.

 COMPZ (input)
 = 'N': do not modify Z.
 = 'V': multiply the array Z on the right by the
 unitary tranformation that is applied to the right
 side of A and B to reduce them to Schur form. =
 'I': like COMPZ='V', except that Z will be ini-

 tialized to the identity first.

 N (input) The order of the matrices A, B, Q, and Z. N >= 0.

 ILO (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 It is assumed that A is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. 1 <= ILO
 <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

 A (input) On entry, the N-by-N upper Hessenberg matrix A.
 Elements below the subdiagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to upper triangular form.
 If JOB='E', then on exit A will have been des-
 troyed.

 LDA (input)
 The leading dimension of the array A. LDA >= max(
 1, N).

 B (input) On entry, the N-by-N upper triangular matrix B.
 Elements below the diagonal must be zero. If
 JOB='S', then on exit A and B will have been
 simultaneously reduced to upper triangular form.
 If JOB='E', then on exit B will have been des-
 troyed.

 LDB (input)
 The leading dimension of the array B. LDB >= max(
 1, N).

 ALPHA (output)
 The diagonal elements of A when the pair (A,B) has
 been reduced to Schur form. ALPHA(i)/BETA(i)
 i=1,...,N are the generalized eigenvalues.

 BETA (output)
 The diagonal elements of B when the pair (A,B) has
 been reduced to Schur form. ALPHA(i)/BETA(i)
 i=1,...,N are the generalized eigenvalues. A and
 B are normalized so that BETA(1),...,BETA(N) are
 non-negative real numbers.

 Q (input/output)
 If COMPQ='N', then Q will not be referenced. If
 COMPQ='V' or 'I', then the conjugate transpose of
 the unitary transformations which are applied to A
 and B on the left will be applied to the array Q
 on the right.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If COMPQ='V' or 'I', then LDQ >= N.

 Z (input/output)
 If COMPZ='N', then Z will not be referenced. If
 COMPZ='V' or 'I', then the unitary transformations
 which are applied to A and B on the right will be
 applied to the array Z on the right.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If COMPZ='V' or 'I', then LDZ >= N.

 WORK (workspace)
 On exit, if INFO >= 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 RWORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1,...,N: the QZ iteration did not converge.
 (A,B) is not in Schur form, but ALPHA(i) and
 BETA(i), i=INFO+1,...,N should be correct. =
 N+1,...,2*N: the shift calculation failed. (A,B)
 is not in Schur form, but ALPHA(i) and BETA(i),
 i=INFO-N+1,...,N should be correct. > 2*N:
 various "impossible" errors.

FURTHER DETAILS

 We assume that complex ABS works as long as its value is
 less than overflow.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpcon - estimate the reciprocal of the condition number of
 a complex Hermitian packed matrix A using the factorization
 A = U*D*U**H or A = L*D*L**H computed by CHPTRF

SYNOPSIS

 SUBROUTINE ZHPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 SUBROUTINE ZHPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE HPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 SUBROUTINE HPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>

 void zhpcon(char uplo, int n, doublecomplex *a, int *ipivot,

 double anorm, double *rcond, int *info);

 void zhpcon_64(char uplo, long n, doublecomplex *a, long
 *ipivot, double anorm, double *rcond, long *info);

PURPOSE

 zhpcon estimates the reciprocal of the condition number of a
 complex Hermitian packed matrix A using the factorization A
 = U*D*U**H or A = L*D*L**H computed by CHPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpev - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix in packed storage

SYNOPSIS

 SUBROUTINE ZHPEV(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHPEV_64(JOBZ, UPLO, N, A, W, Z, LDZ, WORK, WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPEV(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HPEV_64(JOBZ, UPLO, [N], A, W, Z, [LDZ], [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zhpev(char jobz, char uplo, int n, doublecomplex *a,
 double *w, doublecomplex *z, int ldz, int *info);

 void zhpev_64(char jobz, char uplo, long n, doublecomplex
 *a, double *w, doublecomplex *z, long ldz, long
 *info);

PURPOSE

 zhpev computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix in packed storage.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).
 WORK (workspace)
 dimension(MAX(1,2*N-1))

 WORK2 (workspace)
 dimension(max(1,3*N-2))

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpevd - compute all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage

SYNOPSIS

 SUBROUTINE ZHPEVD(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AP(*), Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHPEVD_64(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPEVD(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HPEVD_64(JOBZ, UPLO, [N], AP, W, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>
 void zhpevd(char jobz, char uplo, int n, doublecomplex *ap,
 double *w, doublecomplex *z, int ldz, int *info);

 void zhpevd_64(char jobz, char uplo, long n, doublecomplex
 *ap, double *w, doublecomplex *z, long ldz, long
 *info);

PURPOSE

 zhpevd computes all the eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, AP is overwritten by values generated
 during the reduction to tridiagonal form. If UPLO
 = 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 orthonormal eigenvectors of the matrix A, with the
 i-th column of Z holding the eigenvector associ-
 ated with W(i). If JOBZ = 'N', then Z is not

 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of array WORK. If N <= 1,
 LWORK must be at least 1. If JOBZ = 'N' and N >
 1, LWORK must be at least N. If JOBZ = 'V' and N
 > 1, LWORK must be at least 2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK must be at least 1. If JOBZ = 'N' and N >
 1, LRWORK must be at least N. If JOBZ = 'V' and N
 > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK must be at least 1. If JOBZ = 'V'
 and N > 1, LIWORK must be at least 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the algorithm failed to con-
 verge; i off-diagonal elements of an intermediate
 tridiagonal form did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpevx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex Hermitian matrix A in packed
 storage

SYNOPSIS

 SUBROUTINE ZHPEVX(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER N, IL, IU, NFOUND, LDZ, INFO
 INTEGER IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHPEVX_64(JOBZ, RANGE, UPLO, N, A, VL, VU, IL, IU, ABTOL,
 NFOUND, W, Z, LDZ, WORK, WORK2, IWORK3, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX A(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, IL, IU, NFOUND, LDZ, INFO
 INTEGER*8 IWORK3(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABTOL
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPEVX(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [WORK2], [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HPEVX_64(JOBZ, RANGE, UPLO, [N], A, VL, VU, IL, IU, ABTOL,
 [NFOUND], W, Z, [LDZ], [WORK], [WORK2], [IWORK3], IFAIL, [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK

 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, IL, IU, NFOUND, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK3, IFAIL
 REAL(8) :: VL, VU, ABTOL
 REAL(8), DIMENSION(:) :: W, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zhpevx(char jobz, char range, char uplo, int n, doub-
 lecomplex *a, double vl, double vu, int il, int
 iu, double abtol, int *nfound, double *w, doub-
 lecomplex *z, int ldz, int *ifail, int *info);

 void zhpevx_64(char jobz, char range, char uplo, long n,
 doublecomplex *a, double vl, double vu, long il,
 long iu, double abtol, long *nfound, double *w,
 doublecomplex *z, long ldz, long *ifail, long
 *info);

PURPOSE

 zhpevx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex Hermitian matrix A in packed storage.
 Eigenvalues/vectors can be selected by specifying either a
 range of values or a range of indices for the desired eigen-
 values.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 On exit, A is overwritten by values generated dur-
 ing the reduction to tridiagonal form. If UPLO =
 'U', the diagonal and first superdiagonal of the
 tridiagonal matrix T overwrite the corresponding
 elements of A, and if UPLO = 'L', the diagonal and
 first subdiagonal of T overwrite the corresponding
 elements of A.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing A to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABTOL to 2*SLAMCH('S').

 See "Computing Small Singular Values of Bidiagonal
 Matrices with Guaranteed High Relative Accuracy,"
 by Demmel and Kahan, LAPACK Working Note #3.

 NFOUND (output)
 The total number of eigenvalues found. 0 <=
 NFOUND <= N. If RANGE = 'A', NFOUND = N, and if
 RANGE = 'I', NFOUND = IU-IL+1.

 W (output)
 If INFO = 0, the selected eigenvalues in ascending
 order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first NFOUND
 columns of Z contain the orthonormal eigenvectors
 of the matrix A corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If an eigenvec-
 tor fails to converge, then that column of Z con-
 tains the latest approximation to the eigenvector,

 and the index of the eigenvector is returned in
 IFAIL. If JOBZ = 'N', then Z is not referenced.
 Note: the user must ensure that at least
 max(1,NFOUND) columns are supplied in the array Z;
 if RANGE = 'V', the exact value of NFOUND is not
 known in advance and an upper bound must be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(7*N)

 IWORK3 (workspace)
 dimension(5*N)
 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first NFOUND
 elements of IFAIL are zero. If INFO > 0, then
 IFAIL contains the indices of the eigenvectors
 that failed to converge. If JOBZ = 'N', then
 IFAIL is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge. Their indices are stored in array
 IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpgst - reduce a complex Hermitian-definite generalized
 eigenproblem to standard form, using packed storage

SYNOPSIS

 SUBROUTINE ZHPGST(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), BP(*)
 INTEGER ITYPE, N, INFO

 SUBROUTINE ZHPGST_64(ITYPE, UPLO, N, AP, BP, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), BP(*)
 INTEGER*8 ITYPE, N, INFO

 F95 INTERFACE
 SUBROUTINE HPGST(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP
 INTEGER :: ITYPE, N, INFO

 SUBROUTINE HPGST_64(ITYPE, UPLO, N, AP, BP, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP
 INTEGER(8) :: ITYPE, N, INFO

 C INTERFACE
 #include <sunperf.h>

 void zhpgst(int itype, char uplo, int n, doublecomplex *ap,
 doublecomplex *bp, int *info);

 void zhpgst_64(long itype, char uplo, long n, doublecomplex
 *ap, doublecomplex *bp, long *info);

PURPOSE

 zhpgst reduces a complex Hermitian-definite generalized
 eigenproblem to standard form, using packed storage.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H)
 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**H or
 L**H*A*L.

 B must have been previously factorized as U**H*U or L*L**H
 by CPPTRF.

ARGUMENTS

 ITYPE (input)
 = 1: compute inv(U**H)*A*inv(U) or
 inv(L)*A*inv(L**H);
 = 2 or 3: compute U*A*U**H or L**H*A*L.

 UPLO (input)
 = 'U': Upper triangle of A is stored and B is
 factored as U**H*U; = 'L': Lower triangle of A is
 stored and B is factored as L*L**H.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, if INFO = 0, the transformed matrix,
 stored in the same format as A.

 BP (input)
 The triangular factor from the Cholesky factoriza-
 tion of B, stored in the same format as A, as
 returned by CPPTRF.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpgv - compute all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHPGV(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK, WORK2,
 INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(*), B(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 SUBROUTINE ZHPGV_64(ITYPE, JOBZ, UPLO, N, A, B, W, Z, LDZ, WORK,
 WORK2, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX A(*), B(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDZ, INFO
 DOUBLE PRECISION W(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPGV(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: A, B, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 SUBROUTINE HPGV_64(ITYPE, JOBZ, UPLO, [N], A, B, W, Z, [LDZ], [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: A, B, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, LDZ, INFO
 REAL(8), DIMENSION(:) :: W, WORK2

 C INTERFACE

 #include <sunperf.h>

 void zhpgv(int itype, char jobz, char uplo, int n, doub-
 lecomplex *a, doublecomplex *b, double *w,
 doublecomplex *z, int ldz, int *info);

 void zhpgv_64(long itype, char jobz, char uplo, long n,
 doublecomplex *a, doublecomplex *b, double *w,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zhpgv computes all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian, stored in packed format, and B is
 also positive definite.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of A are destroyed.

 B (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array B as follows: if UPLO = 'U', B(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', B(i +
 (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 W (output)

 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(MAX(1,2*N-1))

 WORK2 (workspace)
 dimension(MAX(1,3*N-2))

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEV returned an error code:
 <= N: if INFO = i, CHPEV failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not convergeto zero; > N: if INFO =
 N + i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhpgvd - compute all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHPGVD(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHPGVD_64(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, UPLO
 DOUBLE COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPGVD(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], [WORK],
 [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HPGVD_64(ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ],
 [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP, WORK

 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: W, RWORK
 C INTERFACE
 #include <sunperf.h>

 void zhpgvd(int itype, char jobz, char uplo, int n, doub-
 lecomplex *ap, doublecomplex *bp, double *w, doub-
 lecomplex *z, int ldz, int *info);

 void zhpgvd_64(long itype, char jobz, char uplo, long n,
 doublecomplex *ap, doublecomplex *bp, double *w,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zhpgvd computes all the eigenvalues and, optionally, the
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x,
 A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are
 assumed to be Hermitian, stored in packed format, and B is
 also positive definite.
 If eigenvectors are desired, it uses a divide and conquer
 algorithm.

 The divide and conquer algorithm makes very mild assumptions
 about floating point arithmetic. It will work on machines
 with a guard digit in add/subtract, or on those binary
 machines without guard digits which subtract like the Cray
 X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
 fail on hexadecimal or decimal machines without guard
 digits, but we know of none.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.
 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 W (output)
 If INFO = 0, the eigenvalues in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, Z contains the
 matrix Z of eigenvectors. The eigenvectors are
 normalized as follows: if ITYPE = 1 or 2,
 Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If
 JOBZ = 'N', then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of array WORK. If N <= 1,
 LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N.
 If JOBZ = 'V' and N > 1, LWORK >= 2*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 On exit, if INFO = 0, RWORK(1) returns the optimal
 LRWORK.

 LRWORK (input)
 The dimension of array RWORK. If N <= 1,
 LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >=
 N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N +
 2*N**2.

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of array IWORK. If JOBZ = 'N' or N
 <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1,

 LIWORK >= 3 + 5*N.

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEVD returned an error code:
 <= N: if INFO = i, CHPEVD failed to converge; i
 off-diagonal elements of an intermediate tridiago-
 nal form did not convergeto zero; > N: if INFO =
 N + i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhpgvx - compute selected eigenvalues and, optionally,
 eigenvectors of a complex generalized Hermitian-definite
 eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x,
 or B*A*x=(lambda)*x

SYNOPSIS

 SUBROUTINE ZHPGVX(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 SUBROUTINE ZHPGVX_64(ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)

 CHARACTER * 1 JOBZ, RANGE, UPLO
 DOUBLE COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
 INTEGER*8 ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER*8 IWORK(*), IFAIL(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION W(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE HPGVX(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU, IL,
 IU, ABSTOL, M, W, Z, [LDZ], [WORK], [RWORK], [IWORK], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 SUBROUTINE HPGVX_64(ITYPE, JOBZ, RANGE, UPLO, [N], AP, BP, VL, VU,

 IL, IU, ABSTOL, M, W, Z, [LDZ], [WORK], [RWORK], [IWORK], IFAIL,
 [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE, UPLO
 COMPLEX(8), DIMENSION(:) :: AP, BP, WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: ITYPE, N, IL, IU, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IWORK, IFAIL
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: W, RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhpgvx(int itype, char jobz, char range, char uplo, int
 n, doublecomplex *ap, doublecomplex *bp, double
 vl, double vu, int il, int iu, double abstol, int
 *m, double *w, doublecomplex *z, int ldz, int
 *ifail, int *info);

 void zhpgvx_64(long itype, char jobz, char range, char uplo,
 long n, doublecomplex *ap, doublecomplex *bp, dou-
 ble vl, double vu, long il, long iu, double
 abstol, long *m, double *w, doublecomplex *z, long
 ldz, long *ifail, long *info);

PURPOSE

 zhpgvx computes selected eigenvalues and, optionally, eigen-
 vectors of a complex generalized Hermitian-definite eigen-
 problem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
 B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian,
 stored in packed format, and B is also positive definite.
 Eigenvalues and eigenvectors can be selected by specifying
 either a range of values or a range of indices for the
 desired eigenvalues.

ARGUMENTS

 ITYPE (input)
 Specifies the problem type to be solved:
 = 1: A*x = (lambda)*B*x
 = 2: A*B*x = (lambda)*x
 = 3: B*A*x = (lambda)*x

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.

 RANGE (input)
 = 'A': all eigenvalues will be found;
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found; = 'I': the IL-th through
 IU-th eigenvalues will be found.
 UPLO (input)
 = 'U': Upper triangles of A and B are stored;
 = 'L': Lower triangles of A and B are stored.

 N (input) The order of the matrices A and B. N >= 0.

 AP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the contents of AP are destroyed.

 BP (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix B, packed columnwise in a linear
 array. The j-th column of B is stored in the
 array BP as follows: if UPLO = 'U', BP(i + (j-
 1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i
 + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

 On exit, the triangular factor U or L from the
 Cholesky factorization B = U**H*U or B = L*L**H,
 in the same storage format as B.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.
 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the eigenvalues.
 An approximate eigenvalue is accepted as converged
 when it is determined to lie in an interval [a,b]
 of width less than or equal to

 ABSTOL + EPS * max(|a|,|b|) ,

 where EPS is the machine precision. If ABSTOL is
 less than or equal to zero, then EPS*|T| will be
 used in its place, where |T| is the 1-norm of the
 tridiagonal matrix obtained by reducing AP to tri-
 diagonal form.

 Eigenvalues will be computed most accurately when
 ABSTOL is set to twice the underflow threshold
 2*SLAMCH('S'), not zero. If this routine returns
 with INFO>0, indicating that some eigenvectors did
 not converge, try setting ABSTOL to 2*SLAMCH('S').

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 On normal exit, the first M elements contain the
 selected eigenvalues in ascending order.

 Z (input) If JOBZ = 'N', then Z is not referenced. If JOBZ
 = 'V', then if INFO = 0, the first M columns of Z
 contain the orthonormal eigenvectors of the matrix
 A corresponding to the selected eigenvalues, with
 the i-th column of Z holding the eigenvector asso-
 ciated with W(i). The eigenvectors are normalized
 as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if
 ITYPE = 3, Z**H*inv(B)*Z = I.

 If an eigenvector fails to converge, then that
 column of Z contains the latest approximation to
 the eigenvector, and the index of the eigenvector
 is returned in IFAIL. Note: the user must ensure
 that at least max(1,M) columns are supplied in the
 array Z; if RANGE = 'V', the exact value of M is
 not known in advance and an upper bound must be
 used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 WORK (workspace)
 dimension(2*N)

 RWORK (workspace)
 dimension(7*N)

 IWORK (workspace)
 dimension(5*N)

 IFAIL (output)
 If JOBZ = 'V', then if INFO = 0, the first M ele-
 ments of IFAIL are zero. If INFO > 0, then IFAIL
 contains the indices of the eigenvectors that
 failed to converge. If JOBZ = 'N', then IFAIL is
 not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: CPPTRF or CHPEVX returned an error code:
 <= N: if INFO = i, CHPEVX failed to converge; i
 eigenvectors failed to converge. Their indices
 are stored in array IFAIL. > N: if INFO = N +
 i, for 1 <= i <= n, then the leading minor of
 order i of B is not positive definite. The fac-
 torization of B could not be completed and no
 eigenvalues or eigenvectors were computed.

FURTHER DETAILS

 Based on contributions by
 Mark Fahey, Department of Mathematics, Univ. of Kentucky,
 USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpmv - perform the matrix-vector operation y := alpha*A*x
 + beta*y

SYNOPSIS

 SUBROUTINE ZHPMV(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(*), X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZHPMV_64(UPLO, N, ALPHA, A, X, INCX, BETA, Y, INCY)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(*), X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HPMV(UPLO, [N], ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: A, X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE HPMV_64(UPLO, [N], ALPHA, A, X, [INCX], BETA, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: A, X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zhpmv(char uplo, int n, doublecomplex *alpha, doub-
 lecomplex *a, doublecomplex *x, int incx, doub-
 lecomplex *beta, doublecomplex *y, int incy);

 void zhpmv_64(char uplo, long n, doublecomplex *alpha, doub-
 lecomplex *a, doublecomplex *x, long incx, doub-

 lecomplex *beta, doublecomplex *y, long incy);

PURPOSE

 zhpmv performs the matrix-vector operation y := alpha*A*x +
 beta*y where alpha and beta are scalars, x and y are n ele-
 ment vectors and A is an n by n hermitian matrix, supplied
 in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array A
 must contain the lower triangular part of the her-
 mitian matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that the imaginary parts
 of the diagonal elements need not be set and are
 assumed to be zero. Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then Y need not be set on

 input. Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpr - perform the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A

SYNOPSIS

 SUBROUTINE ZHPR(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX X(*), A(*)
 INTEGER N, INCX
 DOUBLE PRECISION ALPHA

 SUBROUTINE ZHPR_64(UPLO, N, ALPHA, X, INCX, A)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX X(*), A(*)
 INTEGER*8 N, INCX
 DOUBLE PRECISION ALPHA

 F95 INTERFACE
 SUBROUTINE HPR(UPLO, [N], ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: X, A
 INTEGER :: N, INCX
 REAL(8) :: ALPHA

 SUBROUTINE HPR_64(UPLO, [N], ALPHA, X, [INCX], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: X, A
 INTEGER(8) :: N, INCX
 REAL(8) :: ALPHA

 C INTERFACE
 #include <sunperf.h>

 void zhpr(char uplo, int n, double alpha, doublecomplex *x,
 int incx, doublecomplex *a);

 void zhpr_64(char uplo, long n, double alpha, doublecomplex
 *x, long incx, doublecomplex *a);

PURPOSE

 zhpr performs the hermitian rank 1 operation A :=
 alpha*x*conjg(x') + A where alpha is a real scalar, x is
 an n element vector and A is an n by n hermitian matrix,
 supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain
 the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain
 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix. Note that
 the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on
 exit they are set to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhpr2 - perform the Hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A

SYNOPSIS

 SUBROUTINE ZHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZHPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, A)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX X(*), Y(*), A(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE HPR2(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y, A
 INTEGER :: N, INCX, INCY

 SUBROUTINE HPR2_64(UPLO, [N], ALPHA, X, [INCX], Y, [INCY], A)

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: X, Y, A
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zhpr2(char uplo, int n, doublecomplex *alpha, doub-
 lecomplex *x, int incx, doublecomplex *y, int
 incy, doublecomplex *a);

 void zhpr2_64(char uplo, long n, doublecomplex *alpha, doub-
 lecomplex *x, long incx, doublecomplex *y, long

 incy, doublecomplex *a);

PURPOSE

 zhpr2 performs the Hermitian rank 2 operation A :=
 alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A where
 alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper or
 lower triangular part of the matrix A is supplied
 in the packed array A as follows:

 UPLO = 'U' or 'u' The upper triangular part of A
 is supplied in A.

 UPLO = 'L' or 'l' The lower triangular part of A
 is supplied in A.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X (input)
 (1 + (n - 1)*abs(INCX)). Before entry, the
 incremented array X must contain the n element
 vector x. Unchanged on exit.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX <> 0. Unchanged on exit.

 Y (input)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector y. Unchanged on exit.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

 A (input/output)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular part of the hermitian matrix packed
 sequentially, column by column, so that A(1)
 contains a(1, 1), A(2) and A(3) contain a(
 1, 2) and a(2, 2) respectively, and so on. On
 exit, the array A is overwritten by the upper tri-
 angular part of the updated matrix. Before entry
 with UPLO = 'L' or 'l', the array A must contain

 the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that A(
 1) contains a(1, 1), A(2) and A(3) contain
 a(2, 1) and a(3, 1) respectively, and so on.
 On exit, the array A is overwritten by the lower
 triangular part of the updated matrix. Note that
 the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on
 exit they are set to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE ZHPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZHPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPRFS(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HPRFS_64(UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zhprfs(char uplo, int n, int nrhs, doublecomplex *a,
 doublecomplex *af, int *ipivot, doublecomplex *b,
 int ldb, doublecomplex *x, int ldx, double *ferr,
 double *berr, int *info);

 void zhprfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, doublecomplex *af, long *ipivot, doublecomplex
 *b, long ldb, doublecomplex *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 zhprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**H or A = L*D*L**H as computed by
 CHPTRF, stored as a packed triangular matrix.
 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CHPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhpsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZHPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPSV(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPSV_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhpsv(char uplo, int n, int nrhs, doublecomplex *a, int
 *ipivot, doublecomplex *b, int ldb, int *info);

 void zhpsv_64(char uplo, long n, long nrhs, doublecomplex
 *a, long *ipivot, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zhpsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is Hermitian and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**H or A = L*D*L**H as com-
 puted by CHPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CHPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is

 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhpsvx - use the diagonal pivoting factorization A =
 U*D*U**H or A = L*D*L**H to compute the solution to a com-
 plex system of linear equations A * X = B, where A is an N-
 by-N Hermitian matrix stored in packed format and X and B
 are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE ZHPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZHPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE HPSVX(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE HPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, IPIVOT, B, [LDB],

 X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zhpsvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, doublecomplex *af, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *rcond, double *ferr, double *berr,
 int *info);

 void zhpsvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, doublecomplex *af, long *ipivot,
 doublecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *rcond, double *ferr, double *berr,
 long *info);

PURPOSE

 zhpsvx uses the diagonal pivoting factorization A = U*D*U**H
 or A = L*D*L**H to compute the solution to a complex system
 of linear equations A * X = B, where A is an N-by-N Hermi-
 tian matrix stored in packed format and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**H, if UPLO = 'U', or
 A = L * D * L**H, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is Hermitian and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form

 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. AF and
 IPIVOT will not be modified. = 'N': The matrix A
 will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**H or A = L*D*L**H as
 computed by CHPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**H or A =
 L*D*L**H as computed by CHPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CHPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and

 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CHPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to

 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':
 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhptrd - reduce a complex Hermitian matrix A stored in
 packed form to real symmetric tridiagonal form T by a uni-
 tary similarity transformation

SYNOPSIS

 SUBROUTINE ZHPTRD(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), TAU(*)
 INTEGER N, INFO
 DOUBLE PRECISION D(*), E(*)

 SUBROUTINE ZHPTRD_64(UPLO, N, AP, D, E, TAU, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), TAU(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION D(*), E(*)

 F95 INTERFACE
 SUBROUTINE HPTRD(UPLO, [N], AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, TAU
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: D, E

 SUBROUTINE HPTRD_64(UPLO, [N], AP, D, E, TAU, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, TAU
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: D, E

 C INTERFACE
 #include <sunperf.h>

 void zhptrd(char uplo, int n, doublecomplex *ap, double *d,
 double *e, doublecomplex *tau, int *info);

 void zhptrd_64(char uplo, long n, doublecomplex *ap, double
 *d, double *e, doublecomplex *tau, long *info);

PURPOSE

 zhptrd reduces a complex Hermitian matrix A stored in packed
 form to real symmetric tridiagonal form T by a unitary simi-
 larity transformation: Q**H * A * Q = T.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 AP (input)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array AP as follows: if UPLO = 'U', AP(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
 + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit,
 if UPLO = 'U', the diagonal and first superdiago-
 nal of A are overwritten by the corresponding ele-
 ments of the tridiagonal matrix T, and the ele-
 ments above the first superdiagonal, with the
 array TAU, represent the unitary matrix Q as a
 product of elementary reflectors; if UPLO = 'L',
 the diagonal and first subdiagonal of A are over-
 written by the corresponding elements of the tri-
 diagonal matrix T, and the elements below the
 first subdiagonal, with the array TAU, represent
 the unitary matrix Q as a product of elementary
 reflectors. See Further Details.

 D (output)
 The diagonal elements of the tridiagonal matrix T:
 D(i) = A(i,i).

 E (output)
 The off-diagonal elements of the tridiagonal
 matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) =
 A(i+1,i) if UPLO = 'L'.

 TAU (output)
 The scalar factors of the elementary reflectors
 (see Further Details).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 If UPLO = 'U', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(n-1) . . . H(2) H(1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit
 in AP, overwriting A(1:i-1,i+1), and tau is stored in
 TAU(i).

 If UPLO = 'L', the matrix Q is represented as a product of
 elementary reflectors

 Q = H(1) H(2) . . . H(n-1).

 Each H(i) has the form

 H(i) = I - tau * v * v'

 where tau is a complex scalar, and v is a complex vector
 with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit
 in AP, overwriting A(i+2:n,i), and tau is stored in TAU(i).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhptrf - compute the factorization of a complex Hermitian
 packed matrix A using the Bunch-Kaufman diagonal pivoting
 method

SYNOPSIS

 SUBROUTINE ZHPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhptrf(char uplo, int n, doublecomplex *a, int *ipivot,
 int *info);

 void zhptrf_64(char uplo, long n, doublecomplex *a, long
 *ipivot, long *info);

PURPOSE

 zhptrf computes the factorization of a complex Hermitian
 packed matrix A using the Bunch-Kaufman diagonal pivoting
 method:

 A = U*D*U**H or A = L*D*L**H

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhptri - compute the inverse of a complex Hermitian indefin-
 ite matrix A in packed storage using the factorization A =
 U*D*U**H or A = L*D*L**H computed by CHPTRF

SYNOPSIS

 SUBROUTINE ZHPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRI(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRI_64(UPLO, [N], A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhptri(char uplo, int n, doublecomplex *a, int *ipivot,
 int *info);

 void zhptri_64(char uplo, long n, doublecomplex *a, long
 *ipivot, long *info);

PURPOSE

 zhptri computes the inverse of a complex Hermitian
 indefinite matrix A in packed storage using the factoriza-
 tion A = U*D*U**H or A = L*D*L**H computed by CHPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CHPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (Hermitian) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhptrs - solve a system of linear equations A*X = B with a
 complex Hermitian matrix A stored in packed format using the
 factorization A = U*D*U**H or A = L*D*L**H computed by
 CHPTRF

SYNOPSIS

 SUBROUTINE ZHPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZHPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE HPTRS(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE HPTRS_64(UPLO, [N], [NRHS], A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zhptrs(char uplo, int n, int nrhs, doublecomplex *a,
 int *ipivot, doublecomplex *b, int ldb, int

 *info);

 void zhptrs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long *ipivot, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zhptrs solves a system of linear equations A*X = B with a
 complex Hermitian matrix A stored in packed format using the
 factorization A = U*D*U**H or A = L*D*L**H computed by
 CHPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**H;
 = 'L': Lower triangular, form is A = L*D*L**H.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CHPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CHPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zhsein - use inverse iteration to find specified right
 and/or left eigenvectors of a complex upper Hessenberg
 matrix H

SYNOPSIS

 SUBROUTINE ZHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER IFAILL(*), IFAILR(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)

 CHARACTER * 1 SIDE, EIGSRC, INITV
 DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER*8 IFAILL(*), IFAILR(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], W, VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], IFAILL, IFAILR, [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: H, VL, VR
 INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER, DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, [N], H, [LDH], W,

 VL, [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], IFAILL, IFAILR,
 [INFO])

 CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: H, VL, VR
 INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO
 INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>

 void zhsein(char side, char eigsrc, char initv, int *select,
 int n, doublecomplex *h, int ldh, doublecomplex
 *w, doublecomplex *vl, int ldvl, doublecomplex
 *vr, int ldvr, int mm, int *m, int *ifaill, int
 *ifailr, int *info);

 void zhsein_64(char side, char eigsrc, char initv, long
 *select, long n, doublecomplex *h, long ldh, doub-
 lecomplex *w, doublecomplex *vl, long ldvl, doub-
 lecomplex *vr, long ldvr, long mm, long *m, long
 *ifaill, long *ifailr, long *info);

PURPOSE

 zhsein uses inverse iteration to find specified right and/or
 left eigenvectors of a complex upper Hessenberg matrix H.

 The right eigenvector x and the left eigenvector y of the
 matrix H corresponding to an eigenvalue w are defined by:

 H * x = w * x, y**h * H = w * y**h

 where y**h denotes the conjugate transpose of the vector y.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 EIGSRC (input)
 Specifies the source of eigenvalues supplied in W:
 = 'Q': the eigenvalues were found using CHSEQR;
 thus, if H has zero subdiagonal elements, and so
 is block-triangular, then the j-th eigenvalue can
 be assumed to be an eigenvalue of the block con-
 taining the j-th row/column. This property allows
 CHSEIN to perform inverse iteration on just one
 diagonal block. = 'N': no assumptions are made on
 the correspondence between eigenvalues and diago-
 nal blocks. In this case, CHSEIN must always
 perform inverse iteration using the whole matrix
 H.

 INITV (input)

 = 'N': no initial vectors are supplied;
 = 'U': user-supplied initial vectors are stored in
 the arrays VL and/or VR.

 SELECT (input)
 Specifies the eigenvectors to be computed. To
 select the eigenvector corresponding to the eigen-
 value W(j), SELECT(j) must be set to .TRUE..

 N (input) The order of the matrix H. N >= 0.

 H (input) The upper Hessenberg matrix H.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 W (input/output)
 On entry, the eigenvalues of H. On exit, the real
 parts of W may have been altered since close
 eigenvalues are perturbed slightly in searching
 for independent eigenvectors.

 VL (input/output)
 On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL
 must contain starting vectors for the inverse
 iteration for the left eigenvectors; the starting
 vector for each eigenvector must be in the same
 column in which the eigenvector will be stored.
 On exit, if SIDE = 'L' or 'B', the left eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VL, in the same order as
 their eigenvalues. If SIDE = 'R', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.
 VR (input/output)
 On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR
 must contain starting vectors for the inverse
 iteration for the right eigenvectors; the starting
 vector for each eigenvector must be in the same
 column in which the eigenvector will be stored.
 On exit, if SIDE = 'R' or 'B', the right eigenvec-
 tors specified by SELECT will be stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. If SIDE = 'L', VR is not
 referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 required to store the eigenvectors (= the number
 of .TRUE. elements in SELECT).

 WORK (workspace)
 dimension(N*N)

 RWORK (workspace)
 dimension(N)

 IFAILL (output)
 If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the
 left eigenvector in the i-th column of VL
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILL(i) = 0 if the eigenvector con-
 verged satisfactorily. If SIDE = 'R', IFAILL is
 not referenced.

 IFAILR (output)
 If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the
 right eigenvector in the i-th column of VR
 (corresponding to the eigenvalue w(j)) failed to
 converge; IFAILR(i) = 0 if the eigenvector con-
 verged satisfactorily. If SIDE = 'L', IFAILR is
 not referenced.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, i is the number of eigenvectors
 which failed to converge; see IFAILL and IFAILR
 for further details.

FURTHER DETAILS

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x|+|y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zhseqr - compute the eigenvalues of a complex upper Hessen-
 berg matrix H, and, optionally, the matrices T and Z from
 the Schur decomposition H = Z T Z**H, where T is an upper
 triangular matrix (the Schur form), and Z is the unitary
 matrix of Schur vectors

SYNOPSIS

 SUBROUTINE ZHSEQR(JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK,
 LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 DOUBLE COMPLEX H(LDH,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO

 SUBROUTINE ZHSEQR_64(JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
 WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPZ
 DOUBLE COMPLEX H(LDH,*), W(*), Z(LDZ,*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDH, LDZ, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE HSEQR(JOB, COMPZ, N, ILO, IHI, H, [LDH], W, Z, [LDZ],
 [WORK], LWORK, [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: H, Z
 INTEGER :: N, ILO, IHI, LDH, LDZ, LWORK, INFO

 SUBROUTINE HSEQR_64(JOB, COMPZ, N, ILO, IHI, H, [LDH], W, Z, [LDZ],
 [WORK], LWORK, [INFO])

 CHARACTER(LEN=1) :: JOB, COMPZ
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: H, Z
 INTEGER(8) :: N, ILO, IHI, LDH, LDZ, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zhseqr (char, char, int, int, int, doublecomplex*, int,

 doublecomplex*, doublecomplex*, int, int*);

 void zhseqr_64 (char, char, long, long, long, doublecom-
 plex*, long, doublecomplex*, doublecomplex*, long,
 long*);

PURPOSE

 zhseqr computes the eigenvalues of a complex upper Hessen-
 berg matrix H, and, optionally, the matrices T and Z from
 the Schur decomposition H = Z T Z**H, where T is an upper
 triangular matrix (the Schur form), and Z is the unitary
 matrix of Schur vectors.

 Optionally Z may be postmultiplied into an input unitary
 matrix Q, so that this routine can give the Schur factoriza-
 tion of a matrix A which has been reduced to the Hessenberg
 form H by the unitary matrix Q: A = Q*H*Q**H =
 (QZ)*T*(QZ)**H.

ARGUMENTS

 JOB (input)
 = 'E': compute eigenvalues only;
 = 'S': compute eigenvalues and the Schur form T.

 COMPZ (input)
 = 'N': no Schur vectors are computed;
 = 'I': Z is initialized to the unit matrix and the
 matrix Z of Schur vectors of H is returned; = 'V':
 Z must contain an unitary matrix Q on entry, and
 the product Q*Z is returned.

 N (input) The order of the matrix H. N >= 0.

 ILO (input)
 It is assumed that H is already upper triangular
 in rows and columns 1:ILO-1 and IHI+1:N. ILO and
 IHI are normally set by a previous call to CGEBAL,
 and then passed to CGEHRD when the matrix output
 by CGEBAL is reduced to Hessenberg form. Otherwise
 ILO and IHI should be set to 1 and N respectively.
 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0,
 if N=0.

 IHI (input)
 See the description of ILO.

 H (input/output)
 On entry, the upper Hessenberg matrix H. On exit,
 if JOB = 'S', H contains the upper triangular
 matrix T from the Schur decomposition (the Schur
 form). If JOB = 'E', the contents of H are
 unspecified on exit.

 LDH (input)
 The leading dimension of the array H. LDH >=
 max(1,N).

 W (output)

 The computed eigenvalues. If JOB = 'S', the eigen-
 values are stored in the same order as on the
 diagonal of the Schur form returned in H, with
 W(i) = H(i,i).

 Z (input) If COMPZ = 'N': Z is not referenced.
 If COMPZ = 'I': on entry, Z need not be set, and
 on exit, Z contains the unitary matrix Z of the
 Schur vectors of H. If COMPZ = 'V': on entry Z
 must contain an N-by-N matrix Q, which is assumed
 to be equal to the unit matrix except for the sub-
 matrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
 Normally Q is the unitary matrix generated by
 CUNGHR after the call to CGEHRD which formed the
 Hessenberg matrix H.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 other-
 wise.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (output)
 The dimension of the array WORK. LWORK >=
 max(1,N).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, CHSEQR failed to compute all
 the eigenvalues in a total of 30*(IHI-ILO+1)
 iterations; elements 1:ilo-1 and i+1:n of W con-
 tain those eigenvalues which have been success-
 fully computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zjadmm - Jagged diagonal matrix-matrix multiply (modified
 Ellpack)

SYNOPSIS

 SUBROUTINE ZJADMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZJADMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE JADMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a
 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.
 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1) = 0, it is assumed by convention that
 IPERM(I) = I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zjadrp - right permutation of a jagged diagonal matrix

SYNOPSIS

 SUBROUTINE ZJADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM,WORK,LWORK)
 INTEGER TRANSP, M, K, MAXNZ, LWORK
 INTEGER INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 DOUBLE COMPLEX VAL(*)

 SUBROUTINE ZJADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM,WORK,LWORK)
 INTEGER*8 TRANSP, M, K, MAXNZ, LWORK
 INTEGER*8 INDX(*), PNTR(MAXNZ+1), IPERM(K), WORK(LWORK)
 DOUBLE COMPLEX VAL(*)

 F95 INTERFACE

 SUBROUTINE JADRP(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER TRANSP, M, K, MAXNZ
 INTEGER, DIMENSION(:) :: INDX, PNTR, IPERM
 DOUBLE COMPLEX, DIMENSION(:) :: VAL

 SUBROUTINE JADRP_64(TRANSP, M, K, VAL, INDX, PNTR, MAXNZ,
 * IPERM, [WORK], [LWORK])
 INTEGER*8 TRANSP, M, K, MAXNZ
 INTEGER*8, DIMENSION(:) :: INDX, PNTR, IPERM
 DOUBLE COMPLEX, DIMENSION(:) :: VAL

DESCRIPTION

 A <- A P
 A <- A P'
 (' indicates matrix transpose)

 where permutation P is represented by an integer vector IPERM,
 such that IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.

 NOTE: In order to get a symetrically permuted jagged diagonal
 matrix P A P', one can explicitly permute the columns P A by

 calling

 SJADRP(0, M, M, VAL, INDX, PNTR, MAXNZ, IPERM, WORK, LWORK)

 where parameters VAL, INDX, PNTR, MAXNZ, IPERM are the representation
 of A in the jagged diagonal format. The operation makes sense if
 the original matrix A is square.

ARGUMENTS

 TRANSP Indicates how to operate with the permutation matrix
 0 : operate with matrix
 1 : operate with transpose matrix

 M Number of rows in matrix A

 K Number of columns in matrix A

 VAL() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 entries of A. VAL can be viewed as a column major
 ordering of a row permutation of the Ellpack
 representation of A, where the Ellpack representation
 is permuted so that the rows are non-increasing in
 the number of nonzero entries. Values added for
 padding in Ellpack are not included in the
 Jagged-Diagonal format.

 INDX() array of length PNTR(MAXNZ+1)-PNTR(1) consisting of
 the column indices of the corresponding entries in
 VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length K such that I = IPERM(I').
 Array IPERM represents a permutation P, such that
 IPERM(I) is equal to the position of the only nonzero
 element in row I of permutation matrix P.
 For example, if
 | 0 0 1 |
 P =| 1 0 0 |
 | 0 1 0 |
 then IPERM = (3, 1, 2).

 WORK() scratch array of length LWORK. LWORK should be at
 least K.

 LWORK length of WORK array

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of the
 WORK array, returns this value as the first entry of
 the WORK array, and no error message related to LWORK
 is issued by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zjadsm - Jagged-diagonal format triangular solve

SYNOPSIS

 SUBROUTINE ZJADSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZJADSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, PNTR, MAXNZ, IPERM,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5), MAXNZ,
 * LDB, LDC, LWORK
 INTEGER*8 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ=PNTR(MAXNZ+1)-PNTR(1)+1 is the number of non-zero elements

 F95 INTERFACE

 SUBROUTINE JADSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, MAXNZ
 INTEGER, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE JADSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL, INDX,
 * PNTR, MAXNZ, IPERM, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, MAXNZ
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, PNTR, IPERM
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C

 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in jagged-diagonal format and
 op(A) is one of
 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row scaling (see section NOTES for
 further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.

 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices
 VAL() array of length NNZ consisting of entries of A.
 VAL can be viewed as a column major ordering of a

 row permutation of the Ellpack representation of A,
 where the Ellpack representation is permuted so that
 the rows are non-increasing in the number of nonzero
 entries. Values added for padding in Ellpack are
 not included in the Jagged-Diagonal format.

 INDX() array of length NNZ consisting of the column indices
 of the corresponding entries in VAL.

 PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element
 in the row-permuted Ellpack represenation of A.

 MAXNZ max number of nonzeros elements per row.

 IPERM() integer array of length M such that I = IPERM(I'),
 where row I in the original Ellpack representation
 corresponds to row I' in the permuted representation.
 If IPERM(1)=0, it's assumed by convention that
 IPERM(I)=I. IPERM is used to determine the order
 in which rows of C are updated.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least 2*M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=2*M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If UNITD =4, the routine scales the rows of A such that
 their 2-norms are one. The scaling may improve the accuracy
 of the computed solution. Corresponding entries of VAL are
 changed only in the particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows have been scaled. UNITD=2 should be used for the next
 calls to the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 number which 2-norm is exactly zero.

 3. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the JAD representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the JAD representation.

 4. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zlarz - applie a complex elementary reflector H to a complex
 M-by-N matrix C, from either the left or the right

SYNOPSIS

 SUBROUTINE ZLARZ(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 DOUBLE COMPLEX TAU
 DOUBLE COMPLEX V(*), C(LDC,*), WORK(*)
 INTEGER M, N, L, INCV, LDC

 SUBROUTINE ZLARZ_64(SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)

 CHARACTER * 1 SIDE
 DOUBLE COMPLEX TAU
 DOUBLE COMPLEX V(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, L, INCV, LDC

 F95 INTERFACE
 SUBROUTINE LARZ(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX(8) :: TAU
 COMPLEX(8), DIMENSION(:) :: V, WORK
 COMPLEX(8), DIMENSION(:,:) :: C
 INTEGER :: M, N, L, INCV, LDC

 SUBROUTINE LARZ_64(SIDE, [M], [N], L, V, [INCV], TAU, C, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX(8) :: TAU
 COMPLEX(8), DIMENSION(:) :: V, WORK
 COMPLEX(8), DIMENSION(:,:) :: C
 INTEGER(8) :: M, N, L, INCV, LDC

 C INTERFACE
 #include <sunperf.h>

 void zlarz(char side, int m, int n, int l, doublecomplex *v,
 int incv, doublecomplex *tau, doublecomplex *c,

 int ldc);

 void zlarz_64(char side, long m, long n, long l, doublecom-
 plex *v, long incv, doublecomplex *tau, doublecom-
 plex *c, long ldc);

PURPOSE

 zlarz applies a complex elementary reflector H to a complex
 M-by-N matrix C, from either the left or the right. H is
 represented in the form

 H = I - tau * v * v'

 where tau is a complex scalar and v is a complex vector.

 If tau = 0, then H is taken to be the unit matrix.

 To apply H' (the conjugate transpose of H), supply
 conjg(tau) instead tau.

 H is a product of k elementary reflectors as returned by
 CTZRZF.

ARGUMENTS

 SIDE (input)
 = 'L': form H * C
 = 'R': form C * H

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 L (input) The number of entries of the vector V containing
 the meaningful part of the Householder vectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 V (input) The vector v in the representation of H as
 returned by CTZRZF. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0.

 TAU (input)
 The value tau in the representation of H.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by the matrix H * C if SIDE = 'L', or
 C * H if SIDE = 'R'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' or (M) if SIDE = 'R'

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zlarzb - applie a complex block reflector H or its transpose
 H**H to a complex distributed M-by-N C from the left or the
 right

SYNOPSIS

 SUBROUTINE ZLARZB(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T,
 LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 DOUBLE COMPLEX V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)
 INTEGER M, N, K, L, LDV, LDT, LDC, LDWORK

 SUBROUTINE ZLARZB_64(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV,
 T, LDT, C, LDC, WORK, LDWORK)

 CHARACTER * 1 SIDE, TRANS, DIRECT, STOREV
 DOUBLE COMPLEX V(LDV,*), T(LDT,*), C(LDC,*), WORK(LDWORK,*)
 INTEGER*8 M, N, K, L, LDV, LDT, LDC, LDWORK

 F95 INTERFACE
 SUBROUTINE LARZB(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V, [LDV],
 T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 COMPLEX(8), DIMENSION(:,:) :: V, T, C, WORK
 INTEGER :: M, N, K, L, LDV, LDT, LDC, LDWORK

 SUBROUTINE LARZB_64(SIDE, TRANS, DIRECT, STOREV, [M], [N], K, L, V,
 [LDV], T, [LDT], C, [LDC], [WORK], [LDWORK])

 CHARACTER(LEN=1) :: SIDE, TRANS, DIRECT, STOREV
 COMPLEX(8), DIMENSION(:,:) :: V, T, C, WORK
 INTEGER(8) :: M, N, K, L, LDV, LDT, LDC, LDWORK

 C INTERFACE
 #include <sunperf.h>

 void zlarzb(char side, char trans, char direct, char storev,
 int m, int n, int k, int l, doublecomplex *v, int
 ldv, doublecomplex *t, int ldt, doublecomplex *c,

 int ldc, int ldwork);

 void zlarzb_64(char side, char trans, char direct, char
 storev, long m, long n, long k, long l, doublecom-
 plex *v, long ldv, doublecomplex *t, long ldt,
 doublecomplex *c, long ldc, long ldwork);

PURPOSE

 zlarzb applies a complex block reflector H or its transpose
 H**H to a complex distributed M-by-N C from the left or the
 right.

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 SIDE (input)
 = 'L': apply H or H' from the Left
 = 'R': apply H or H' from the Right

 TRANS (input)
 = 'N': apply H (No transpose)
 = 'C': apply H' (Conjugate transpose)

 DIRECT (input)
 Indicates how H is formed from a product of ele-
 mentary reflectors = 'F': H = H(1) H(2) . . . H(k)
 (Forward, not supported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Indicates how the vectors which define the elemen-
 tary reflectors are stored:
 = 'C': Columnwise (not sup-
 ported yet)
 = 'R': Rowwise

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 K (input) The order of the matrix T (= the number of elemen-
 tary reflectors whose product defines the block
 reflector).

 L (input) The number of columns of the matrix V containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.
 V (input) If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.

 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= L; if STOREV = 'R', LDV >= K.

 T (input) The triangular K-by-K matrix T in the representa-
 tion of the block reflector.

 LDT (input)

 The leading dimension of the array T. LDT >= K.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by H*C or H'*C or C*H or C*H'.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 dimension(MAX(M,N),K)

 LDWORK (input)
 The leading dimension of the array WORK. If SIDE
 = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK
 >= max(1,M).

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zlarzt - form the triangular factor T of a complex block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors

SYNOPSIS

 SUBROUTINE ZLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
 INTEGER N, K, LDV, LDT

 SUBROUTINE ZLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

 CHARACTER * 1 DIRECT, STOREV
 DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
 INTEGER*8 N, K, LDV, LDT

 F95 INTERFACE
 SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 COMPLEX(8), DIMENSION(:) :: TAU
 COMPLEX(8), DIMENSION(:,:) :: V, T
 INTEGER :: N, K, LDV, LDT

 SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, [LDV], TAU, T, [LDT])

 CHARACTER(LEN=1) :: DIRECT, STOREV
 COMPLEX(8), DIMENSION(:) :: TAU
 COMPLEX(8), DIMENSION(:,:) :: V, T
 INTEGER(8) :: N, K, LDV, LDT

 C INTERFACE
 #include <sunperf.h>

 void zlarzt(char direct, char storev, int n, int k, doub-
 lecomplex *v, int ldv, doublecomplex *tau, doub-
 lecomplex *t, int ldt);

 void zlarzt_64(char direct, char storev, long n, long k,

 doublecomplex *v, long ldv, doublecomplex *tau,
 doublecomplex *t, long ldt);

PURPOSE

 zlarzt forms the triangular factor T of a complex block
 reflector H of order > n, which is defined as a product of k
 elementary reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper
 triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower
 triangular.

 If STOREV = 'C', the vector which defines the elementary
 reflector H(i) is stored in the i-th column of the array V,
 and

 H = I - V * T * V'

 If STOREV = 'R', the vector which defines the elementary
 reflector H(i) is stored in the i-th row of the array V, and

 H = I - V' * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

ARGUMENTS

 DIRECT (input)
 Specifies the order in which the elementary
 reflectors are multiplied to form the block
 reflector:
 = 'F': H = H(1) H(2) . . . H(k) (Forward, not sup-
 ported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)

 STOREV (input)
 Specifies how the vectors which define the elemen-
 tary reflectors are stored (see also Further
 Details):
 = 'R': rowwise

 N (input) The order of the block reflector H. N >= 0.

 K (input) The order of the triangular factor T (= the number
 of elementary reflectors). K >= 1.

 V (input) (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R'
 The matrix V. See further details.
 LDV (input)
 The leading dimension of the array V. If STOREV =
 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i).

 T (input) The k by k triangular factor T of the block

 reflector. If DIRECT = 'F', T is upper triangu-
 lar; if DIRECT = 'B', T is lower triangular. The
 rest of the array is not used.

 LDT (input)
 The leading dimension of the array T. LDT >= K.

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The shape of the matrix V and the storage of the vectors
 which define the H(i) is best illustrated by the following
 example with n = 5 and k = 3. The elements equal to 1 are
 not stored; the corresponding array elements are modified
 but restored on exit. The rest of the array is not used.

 DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and
 STOREV = 'R':

 ______V_____
 (v1 v2 v3) /
 (v1 v2 v3) (v1 v1 v1 v1 v1 1
)
 V = (v1 v2 v3) (v2 v2 v2 v2 v2 .
 . . 1)
 (v1 v2 v3) (v3 v3 v3 v3 v3 .
 . 1)
 (v1 v2 v3)
 . . .
 1 . .
 1 .
 1

 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and
 STOREV = 'R':

 ______V_____
 1 /
 . 1 (1 v1 v1 v1 v1 v1)
 . . 1 (. 1 . . . v2 v2
 v2 v2 v2)
 . . . (. . 1 . . v3 v3
 v3 v3 v3)
 . . .
 (v1 v2 v3)
 V = (v1 v2 v3)
 (v1 v2 v3)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zlatzm - routine is deprecated and has been replaced by rou-
 tine CUNMRZ

SYNOPSIS

 SUBROUTINE ZLATZM(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 DOUBLE COMPLEX TAU
 DOUBLE COMPLEX V(*), C1(LDC,*), C2(LDC,*), WORK(*)
 INTEGER M, N, INCV, LDC

 SUBROUTINE ZLATZM_64(SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK)

 CHARACTER * 1 SIDE
 DOUBLE COMPLEX TAU
 DOUBLE COMPLEX V(*), C1(LDC,*), C2(LDC,*), WORK(*)
 INTEGER*8 M, N, INCV, LDC

 F95 INTERFACE
 SUBROUTINE LATZM(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC], [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX(8) :: TAU
 COMPLEX(8), DIMENSION(:) :: V, WORK
 COMPLEX(8), DIMENSION(:,:) :: C1, C2
 INTEGER :: M, N, INCV, LDC

 SUBROUTINE LATZM_64(SIDE, [M], [N], V, [INCV], TAU, C1, C2, [LDC],
 [WORK])

 CHARACTER(LEN=1) :: SIDE
 COMPLEX(8) :: TAU
 COMPLEX(8), DIMENSION(:) :: V, WORK
 COMPLEX(8), DIMENSION(:,:) :: C1, C2
 INTEGER(8) :: M, N, INCV, LDC

 C INTERFACE
 #include <sunperf.h>

 void zlatzm(char side, int m, int n, doublecomplex *v, int
 incv, doublecomplex *tau, doublecomplex *c1, doub-
 lecomplex *c2, int ldc);

 void zlatzm_64(char side, long m, long n, doublecomplex *v,
 long incv, doublecomplex *tau, doublecomplex *c1,
 doublecomplex *c2, long ldc);

PURPOSE

 zlatzm routine is deprecated and has been replaced by rou-
 tine CUNMRZ.

 CLATZM applies a Householder matrix generated by CTZRQF to a
 matrix.

 Let P = I - tau*u*u', u = (1),
 (v)
 where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector
 if SIDE = 'R'.

 If SIDE equals 'L', let
 C = [C1] 1
 [C2] m-1
 n
 Then C is overwritten by P*C.

 If SIDE equals 'R', let
 C = [C1, C2] m
 1 n-1
 Then C is overwritten by C*P.

ARGUMENTS

 SIDE (input)
 = 'L': form P * C
 = 'R': form C * P

 M (input) The number of rows of the matrix C.

 N (input) The number of columns of the matrix C.

 V (input) (1 + (M-1)*abs(INCV)) if SIDE = 'L' (1 + (N-
 1)*abs(INCV)) if SIDE = 'R' The vector v in the
 representation of P. V is not used if TAU = 0.

 INCV (input)
 The increment between elements of v. INCV <> 0

 TAU (input)
 The value tau in the representation of P.

 C1 (input/output)
 (LDC,N) if SIDE = 'L' (M,1) if SIDE = 'R' On
 entry, the n-vector C1 if SIDE = 'L', or the m-
 vector C1 if SIDE = 'R'.

 On exit, the first row of P*C if SIDE = 'L', or
 the first column of C*P if SIDE = 'R'.

 C2 (input/output)
 (LDC, N) if SIDE = 'L' (LDC, N-1) if SIDE = 'R'
 On entry, the (m - 1) x n matrix C2 if SIDE = 'L',

 or the m x (n - 1) matrix C2 if SIDE = 'R'.

 On exit, rows 2:m of P*C if SIDE = 'L', or columns
 2:m of C*P if SIDE = 'R'.

 LDC (input)
 The leading dimension of the arrays C1 and C2.
 LDC >= max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpbcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite band
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPBTRF

SYNOPSIS

 SUBROUTINE ZPBCON(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NDIAG, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZPBCON_64(UPLO, N, NDIAG, A, LDA, ANORM, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBCON(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE PBCON_64(UPLO, [N], NDIAG, A, [LDA], ANORM, RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO

 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2
 C INTERFACE
 #include <sunperf.h>

 void zpbcon(char uplo, int n, int ndiag, doublecomplex *a,
 int lda, double anorm, double *rcond, int *info);

 void zpbcon_64(char uplo, long n, long ndiag, doublecomplex
 *a, long lda, double anorm, double *rcond, long
 *info);

PURPOSE

 zpbcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite band
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPBTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 band matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpbequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite band matrix A and reduce
 its condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE ZPBEQU(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, NDIAG, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 SUBROUTINE ZPBEQU_64(UPLO, N, NDIAG, A, LDA, SCALE, SCOND, AMAX,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, NDIAG, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 F95 INTERFACE
 SUBROUTINE PBEQU(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 SUBROUTINE PBEQU_64(UPLO, [N], NDIAG, A, [LDA], SCALE, SCOND, AMAX,
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 C INTERFACE

 #include <sunperf.h>

 void zpbequ(char uplo, int n, int ndiag, doublecomplex *a,
 int lda, double *scale, double *scond, double
 *amax, int *info);

 void zpbequ_64(char uplo, long n, long ndiag, doublecomplex
 *a, long lda, double *scale, double *scond, double
 *amax, long *info);

PURPOSE

 zpbequ computes row and column scalings intended to equili-
 brate a Hermitian positive definite band matrix A and reduce
 its condition number (with respect to the two-norm). S con-
 tains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so
 that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular of A is stored;
 = 'L': Lower triangular of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input) The upper or lower triangle of the Hermitian band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.
 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpbrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE ZPBRFS(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPBRFS_64(UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBRFS(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PBRFS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>
 void zpbrfs(char uplo, int n, int ndiag, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *af, int
 ldaf, doublecomplex *b, int ldb, doublecomplex *x,
 int ldx, double *ferr, double *berr, int *info);

 void zpbrfs_64(char uplo, long n, long ndiag, long nrhs,
 doublecomplex *a, long lda, doublecomplex *af,
 long ldaf, doublecomplex *b, long ldb, doublecom-
 plex *x, long ldx, double *ferr, double *berr,
 long *info);

PURPOSE

 zpbrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and banded, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of A is stored in the j-th
 column of the array A as follows: if UPLO = 'U',
 A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
 UPLO = 'L', A(1+i-j,j) = A(i,j) for
 j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A as computed by CPBTRF, in the same
 storage format as A (see A).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CPBTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpbstf - compute a split Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE ZPBSTF(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER N, KD, LDAB, INFO

 SUBROUTINE ZPBSTF_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER*8 N, KD, LDAB, INFO

 F95 INTERFACE
 SUBROUTINE PBSTF(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER :: N, KD, LDAB, INFO

 SUBROUTINE PBSTF_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER(8) :: N, KD, LDAB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpbstf(char uplo, int n, int kd, doublecomplex *ab, int
 ldab, int *info);

 void zpbstf_64(char uplo, long n, long kd, doublecomplex
 *ab, long ldab, long *info);

PURPOSE

 zpbstf computes a split Cholesky factorization of a complex
 Hermitian positive definite band matrix A.

 This routine is designed to be used in conjunction with
 CHBGST.
 The factorization has the form A = S**H*S where S is a
 band matrix of the same bandwidth as A and the following
 structure:

 S = (U)
 (M L)

 where U is upper triangular of order m = (n+kd)/2, and L is
 lower triangular of order n-m.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first kd+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the factor S from the split
 Cholesky factorization A = S**H*S. See Further
 Details.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the factorization could not be
 completed, because the updated element a(i,i) was
 negative; the matrix A is not positive definite.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 7, KD = 2:

 S = (s11 s12 s13)
 (s22 s23 s24)
 (s33 s34)
 (s44)
 (s53 s54 s55)
 (s64 s65 s66)
 (s75 s76 s77)

 If UPLO = 'U', the array AB holds:

 on entry: on exit:

 * * a13 a24 a35 a46 a57 * * s13 s24 s53'
 s64' s75'
 * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54'
 s65' s76' a11 a22 a33 a44 a55 a66 a77 s11 s22 s33
 s44 s55 s66 s77

 If UPLO = 'L', the array AB holds:

 on entry: on exit:

 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55
 s66 s77 a21 a32 a43 a54 a65 a76 * s12' s23' s34'
 s54 s65 s76 * a31 a42 a53 a64 a64 * * s13'
 s24' s53 s64 s75 * *

 Array elements marked * are not used by the routine; s12'
 denotes conjg(s12); the diagonal elements of S are real.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpbsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPBSV(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE ZPBSV_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PBSV(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE PBSV_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpbsv(char uplo, int n, int ndiag, int nrhs, doublecom-
 plex *a, int lda, doublecomplex *b, int ldb, int
 *info);

 void zpbsv_64(char uplo, long n, long ndiag, long nrhs,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zpbsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive
 definite band matrix and X and B are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a lower
 triangular band matrix, with the same number of superdiago-
 nals or subdiagonals as A. The factored form of A is then
 used to solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j) for
 max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-j,j)
 = A(i,j) for j<=i<=min(N,j+NDIAG). See below for
 further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.
 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpbsvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPBSVX(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPBSVX_64(FACT, UPLO, N, NDIAG, NRHS, A, LDA, AF, LDAF,
 EQUED, SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2,
 INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PBSVX(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE PBSVX_64(FACT, UPLO, [N], NDIAG, [NRHS], A, [LDA], AF,

 [LDAF], EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zpbsvx(char fact, char uplo, int n, int ndiag, int
 nrhs, doublecomplex *a, int lda, doublecomplex
 *af, int ldaf, char equed, double *scale, doub-
 lecomplex *b, int ldb, doublecomplex *x, int ldx,
 double *rcond, double *ferr, double *berr, int
 *info);

 void zpbsvx_64(char fact, char uplo, long n, long ndiag,
 long nrhs, doublecomplex *a, long lda, doublecom-
 plex *af, long ldaf, char equed, double *scale,
 doublecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *rcond, double *ferr, double *berr,
 long *info);

PURPOSE

 zpbsvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite band matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a
 lower
 triangular band matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,

 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right-hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array, except if FACT = 'F' and EQUED
 = 'Y', then A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A

 is stored in the j-th column of the array A as
 follows: if UPLO = 'U', A(NDIAG+1+i-j,j) = A(i,j)
 for max(1,j-NDIAG)<=i<=j; if UPLO = 'L', A(1+i-
 j,j) = A(i,j) for j<=i<=min(N,j+NDIAG). See
 below for further details.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A (see A). If EQUED = 'Y', then AF is
 the factored form of the equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 NDIAG+1.

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution

 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13
 a22 a23 a24
 a33 a34 a35
 a44 a45 a46
 a55 a56
 (aij=conjg(aji)) a66

 Band storage of the upper triangle of A:

 * * a13 a24 a35 a46
 * a12 a23 a34 a45 a56
 a11 a22 a33 a44 a55 a66

 Similarly, if UPLO = 'L' the format of A is as follows:

 a11 a22 a33 a44 a55 a66
 a21 a32 a43 a54 a65 *
 a31 a42 a53 a64 * *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpbtf2 - compute the Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE ZPBTF2(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER N, KD, LDAB, INFO

 SUBROUTINE ZPBTF2_64(UPLO, N, KD, AB, LDAB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AB(LDAB,*)
 INTEGER*8 N, KD, LDAB, INFO

 F95 INTERFACE
 SUBROUTINE PBTF2(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER :: N, KD, LDAB, INFO

 SUBROUTINE PBTF2_64(UPLO, [N], KD, AB, [LDAB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: AB
 INTEGER(8) :: N, KD, LDAB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpbtf2(char uplo, int n, int kd, doublecomplex *ab, int
 ldab, int *info);

 void zpbtf2_64(char uplo, long n, long kd, doublecomplex
 *ab, long ldab, long *info);

PURPOSE

 zpbtf2 computes the Cholesky factorization of a complex Her-
 mitian positive definite band matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, U' is the conjugate
 transpose of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 KD (input)
 The number of super-diagonals of the matrix A if
 UPLO = 'U', or the number of sub-diagonals if UPLO
 = 'L'. KD >= 0.

 AB (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first KD+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array AB as follows: if
 UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U'*U or A =
 L*L' of the band matrix A, in the same storage
 format as A.

 LDAB (input)
 The leading dimension of the array AB. LDAB >=
 KD+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, KD = 2, and UPLO = 'U':

 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56
 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpbtrf - compute the Cholesky factorization of a complex
 Hermitian positive definite band matrix A

SYNOPSIS

 SUBROUTINE ZPBTRF(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, NDIAG, LDA, INFO

 SUBROUTINE ZPBTRF_64(UPLO, N, NDIAG, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, NDIAG, LDA, INFO

 F95 INTERFACE
 SUBROUTINE PBTRF(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO

 SUBROUTINE PBTRF_64(UPLO, [N], NDIAG, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpbtrf(char uplo, int n, int ndiag, doublecomplex *a,
 int lda, int *info);

 void zpbtrf_64(char uplo, long n, long ndiag, doublecomplex
 *a, long lda, long *info);

PURPOSE

 zpbtrf computes the Cholesky factorization of a complex Her-
 mitian positive definite band matrix A.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian band matrix A, stored in the first NDIAG+1
 rows of the array. The j-th column of A is stored
 in the j-th column of the array A as follows: if
 UPLO = 'U', A(kd+1+i-j,j) = A(i,j) for max(1,j-
 kd)<=i<=j; if UPLO = 'L', A(1+i-j,j) = A(i,j)
 for j<=i<=min(n,j+kd).

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H of the band matrix A, in the same storage
 format as A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The band storage scheme is illustrated by the following
 example, when N = 6, NDIAG = 2, and UPLO = 'U':
 On entry: On exit:

 * * a13 a24 a35 a46 * * u13 u24 u35
 u46
 * a12 a23 a34 a45 a56 * u12 u23 u34 u45
 u56

 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55
 u66

 Similarly, if UPLO = 'L' the format of A is as follows:

 On entry: On exit:

 a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55
 l66
 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65
 *
 a31 a42 a53 a64 * * l31 l42 l53 l64 *
 *

 Array elements marked * are not used by the routine.

 Contributed by
 Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March
 23, 1989

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpbtrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite band matrix A using the Cholesky
 factorization A = U**H*U or A = L*L**H computed by CPBTRF

SYNOPSIS

 SUBROUTINE ZPBTRS(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE ZPBTRS_64(UPLO, N, NDIAG, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PBTRS(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE PBTRS_64(UPLO, [N], NDIAG, [NRHS], A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpbtrs(char uplo, int n, int ndiag, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *b, int ldb,
 int *info);

 void zpbtrs_64(char uplo, long n, long ndiag, long nrhs,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zpbtrs solves a system of linear equations A*X = B with a
 Hermitian positive definite band matrix A using the Cholesky
 factorization A = U**H*U or A = L*L**H computed by CPBTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor stored in A;
 = 'L': Lower triangular factor stored in A.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals of the matrix A if
 UPLO = 'U', or the number of subdiagonals if UPLO
 = 'L'. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H of the band
 matrix A, stored in the first NDIAG+1 rows of the
 array. The j-th column of U or L is stored in the
 j-th column of the array A as follows: if UPLO
 ='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-
 kd)<=i<=j; if UPLO ='L', A(1+i-j,j) = L(i,j)
 for j<=i<=min(n,j+kd).

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpocon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite matrix
 using the Cholesky factorization A = U**H*U or A = L*L**H
 computed by CPOTRF

SYNOPSIS

 SUBROUTINE ZPOCON(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZPOCON_64(UPLO, N, A, LDA, ANORM, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE POCON(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE POCON_64(UPLO, [N], A, [LDA], ANORM, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL(8) :: ANORM, RCOND

 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void zpocon(char uplo, int n, doublecomplex *a, int lda,
 double anorm, double *rcond, int *info);

 void zpocon_64(char uplo, long n, doublecomplex *a, long
 lda, double anorm, double *rcond, long *info);

PURPOSE

 zpocon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite matrix
 using the Cholesky factorization A = U**H*U or A = L*L**H
 computed by CPOTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpoequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A and reduce its
 condition number (with respect to the two-norm)

SYNOPSIS

 SUBROUTINE ZPOEQU(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 SUBROUTINE ZPOEQU_64(N, A, LDA, SCALE, SCOND, AMAX, INFO)

 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 F95 INTERFACE
 SUBROUTINE POEQU([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 SUBROUTINE POEQU_64([N], A, [LDA], SCALE, SCOND, AMAX, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void zpoequ(int n, doublecomplex *a, int lda, double *scale,
 double *scond, double *amax, int *info);

 void zpoequ_64(long n, doublecomplex *a, long lda, double
 *scale, double *scond, double *amax, long *info);

PURPOSE

 zpoequ computes row and column scalings intended to
 equilibrate a Hermitian positive definite matrix A and
 reduce its condition number (with respect to the two-norm).
 S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen
 so that the scaled matrix B with elements B(i,j) =
 S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S
 puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diago-
 nal scalings.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 A (input) The N-by-N Hermitian positive definite matrix
 whose scaling factors are to be computed. Only
 the diagonal elements of A are referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zporfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite,

SYNOPSIS

 SUBROUTINE ZPORFS(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPORFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PORFS(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PORFS_64(UPLO, [N], [NRHS], A, [LDA], AF, [LDAF], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>
 void zporfs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, doublecomplex *af, int ldaf, doublecom-
 plex *b, int ldb, doublecomplex *x, int ldx, dou-
 ble *ferr, double *berr, int *info);

 void zporfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *af, long ldaf, doub-
 lecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *ferr, double *berr, long *info);

PURPOSE

 zporfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite, and provides error bounds and backward error esti-
 mates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The Hermitian matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.
 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by

 CPOTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zposv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE ZPOSV_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE POSV(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE POSV_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zposv(char uplo, int n, int nrhs, doublecomplex *a, int
 lda, doublecomplex *b, int ldb, int *info);

 void zposv_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zposv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix and X and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zposvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPOSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPOSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
 SCALE, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE POSVX(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE POSVX_64(FACT, UPLO, [N], [NRHS], A, [LDA], AF, [LDAF],
 EQUED, SCALE, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED

 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zposvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *af, int
 ldaf, char equed, double *scale, doublecomplex *b,
 int ldb, doublecomplex *x, int ldx, double *rcond,
 double *ferr, double *berr, int *info);

 void zposvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, long lda, doublecomplex *af,
 long ldaf, char equed, double *scale, doublecom-
 plex *b, long ldb, doublecomplex *x, long ldx,
 double *rcond, double *ferr, double *berr, long
 *info);

PURPOSE

 zposvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower
 triangular
 matrix.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine

 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input/output)
 On entry, the Hermitian matrix A, except if FACT =
 'F' and EQUED = 'Y', then A must contain the
 equilibrated matrix diag(SCALE)*A*diag(SCALE). If
 UPLO = 'U', the leading N-by-N upper triangular
 part of A contains the upper triangular part of
 the matrix A, and the strictly lower triangular
 part of A is not referenced. If UPLO = 'L', the
 leading N-by-N lower triangular part of A contains
 the lower triangular part of the matrix A, and the
 strictly upper triangular part of A is not refer-
 enced. A is not modified if FACT = 'F' or 'N', or
 if FACT = 'E' and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 AF (output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H, in the same storage format as A. If EQUED
 .ne. 'N', then AF is the factored form of the
 equilibrated matrix diag(SCALE)*A*diag(SCALE).

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).
 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS righthand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)

 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpotf2 - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A

SYNOPSIS

 SUBROUTINE ZPOTF2(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE ZPOTF2_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTF2(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTF2_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpotf2(char uplo, int n, doublecomplex *a, int lda, int
 *info);

 void zpotf2_64(char uplo, long n, doublecomplex *a, long
 lda, long *info);

PURPOSE

 zpotf2 computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A.

 The factorization has the form
 A = U' * U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the Hermitian matrix A is stored. = 'U':
 Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U'*U or A = L*L'.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpotrf - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A

SYNOPSIS

 SUBROUTINE ZPOTRF(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE ZPOTRF_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTRF(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTRF_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpotrf(char uplo, int n, doublecomplex *a, int lda, int
 *info);

 void zpotrf_64(char uplo, long n, doublecomplex *a, long
 lda, long *info);

PURPOSE

 zpotrf computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower tri-
 angular.

 This is the block version of the algorithm, calling Level 3
 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the Hermitian matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpotri - compute the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPOTRF

SYNOPSIS

 SUBROUTINE ZPOTRI(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE ZPOTRI_64(UPLO, N, A, LDA, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE POTRI(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE POTRI_64(UPLO, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpotri(char uplo, int n, doublecomplex *a, int lda, int
 *info);

 void zpotri_64(char uplo, long n, doublecomplex *a, long
 lda, long *info);

PURPOSE

 zpotri computes the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 as computed by CPOTRF. On exit, the upper or
 lower triangle of the (Hermitian) inverse of A,
 overwriting the input factor U or L.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpotrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite matrix A using the Cholesky fac-
 torization A = U**H*U or A = L*L**H computed by CPOTRF

SYNOPSIS

 SUBROUTINE ZPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE ZPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE POTRS(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE POTRS_64(UPLO, [N], [NRHS], A, [LDA], B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpotrs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, int *info);

 void zpotrs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zpotrs solves a system of linear equations A*X = B with a
 Hermitian positive definite matrix A using the Cholesky fac-
 torization A = U**H*U or A = L*L**H computed by CPOTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by CPOTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zppcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite packed
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPPTRF

SYNOPSIS

 SUBROUTINE ZPPCON(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZPPCON_64(UPLO, N, A, ANORM, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPCON(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE PPCON_64(UPLO, N, A, ANORM, RCOND, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>

 void zppcon(char uplo, int n, doublecomplex *a, double
 anorm, double *rcond, int *info);
 void zppcon_64(char uplo, long n, doublecomplex *a, double
 anorm, double *rcond, long *info);

PURPOSE

 zppcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite packed
 matrix using the Cholesky factorization A = U**H*U or A =
 L*L**H computed by CPPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 ANORM (input)
 The 1-norm (or infinity-norm) of the Hermitian
 matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zppequ - compute row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm)

SYNOPSIS

 SUBROUTINE ZPPEQU(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 SUBROUTINE ZPPEQU_64(UPLO, N, A, SCALE, SCOND, AMAX, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION SCOND, AMAX
 DOUBLE PRECISION SCALE(*)

 F95 INTERFACE
 SUBROUTINE PPEQU(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 SUBROUTINE PPEQU_64(UPLO, [N], A, SCALE, SCOND, AMAX, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 REAL(8) :: SCOND, AMAX
 REAL(8), DIMENSION(:) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void zppequ(char uplo, int n, doublecomplex *a, double
 *scale, double *scond, double *amax, int *info);
 void zppequ_64(char uplo, long n, doublecomplex *a, double
 *scale, double *scond, double *amax, long *info);

PURPOSE

 zppequ computes row and column scalings intended to equili-
 brate a Hermitian positive definite matrix A in packed
 storage and reduce its condition number (with respect to the
 two-norm). S contains the scale factors,
 S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 This choice of S puts the condition number of B within a
 factor N of the smallest possible condition number over all
 possible diagonal scalings.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 SCALE (output)
 If INFO = 0, SCALE contains the scale factors for
 A.

 SCOND (output)
 If INFO = 0, SCALE contains the ratio of the smal-
 lest SCALE(i) to the largest SCALE(i). If SCOND
 >= 0.1 and AMAX is neither too large nor too
 small, it is not worth scaling by SCALE.

 AMAX (output)
 Absolute value of largest matrix element. If AMAX
 is very close to overflow or very close to under-
 flow, the matrix should be scaled.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element is
 nonpositive.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution

SYNOPSIS

 SUBROUTINE ZPPRFS(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR, BERR,
 WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPPRFS_64(UPLO, N, NRHS, A, AF, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPRFS(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE PPRFS_64(UPLO, N, [NRHS], A, AF, B, [LDB], X, [LDX], FERR,
 BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE

 #include <sunperf.h>

 void zpprfs(char uplo, int n, int nrhs, doublecomplex *a,
 doublecomplex *af, doublecomplex *b, int ldb,
 doublecomplex *x, int ldx, double *ferr, double
 *berr, int *info);

 void zpprfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, doublecomplex *af, doublecomplex *b, long ldb,
 doublecomplex *x, long ldx, double *ferr, double
 *berr, long *info);

PURPOSE

 zpprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and packed, and provides error bounds and backward
 error estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the Hermitian
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, as com-
 puted by SPPTRF/CPPTRF, packed columnwise in a
 linear array in the same format as A (see A).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 X (input/output)
 On entry, the solution matrix X, as computed by
 CPPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution

 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zppsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPPSV(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE ZPPSV_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PPSV(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE PPSV_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zppsv(char uplo, int n, int nrhs, doublecomplex *a,
 doublecomplex *b, int ldb, int *info);

 void zppsv_64(char uplo, long n, long nrhs, doublecomplex
 *a, doublecomplex *b, long ldb, long *info);

PURPOSE

 zppsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 The Cholesky decomposition is used to factor A as
 A = U**H* U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower tri-
 angular matrix. The factored form of A is then used to
 solve the system of equations A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 in the same storage format as A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i of
 A is not positive definite, so the factorization
 could not be completed, and the solution has not
 been computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zppsvx - use the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZPPSVX(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZPPSVX_64(FACT, UPLO, N, NRHS, A, AF, EQUED, SCALE, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO, EQUED
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION SCALE(*), FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE PPSVX(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 SUBROUTINE PPSVX_64(FACT, UPLO, [N], [NRHS], A, AF, EQUED, SCALE, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO, EQUED
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: SCALE, FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>
 void zppsvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, doublecomplex *af, char equed, dou-
 ble *scale, doublecomplex *b, int ldb, doublecom-
 plex *x, int ldx, double *rcond, double *ferr,
 double *berr, int *info);

 void zppsvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, doublecomplex *af, char equed,
 double *scale, doublecomplex *b, long ldb, doub-
 lecomplex *x, long ldx, double *rcond, double
 *ferr, double *berr, long *info);

PURPOSE

 zppsvx uses the Cholesky factorization A = U**H*U or A =
 L*L**H to compute the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N Hermitian positive defin-
 ite matrix stored in packed format and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'E', real scaling factors are computed to
 equilibrate
 the system:
 diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
 Whether or not the system will be equilibrated depends on
 the
 scaling of the matrix A, but if equilibration is used, A
 is
 overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

 2. If FACT = 'N' or 'E', the Cholesky decomposition is used
 to
 factor the matrix A (after equilibration if FACT = 'E')
 as
 A = U'* U , if UPLO = 'U', or
 A = L * L', if UPLO = 'L',
 where U is an upper triangular matrix, L is a lower tri-
 angular
 matrix, and ' indicates conjugate transpose.

 3. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine

 still goes on to solve for X and compute error bounds as
 described below.

 4. The system of equations is solved for X using the fac-
 tored form
 of A.

 5. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

 6. If equilibration was used, the matrix X is premultiplied
 by
 diag(S) so that it solves the original system before
 equilibration.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry, and if not, whether
 the matrix A should be equilibrated before it is
 factored. = 'F': On entry, AF contains the fac-
 tored form of A. If EQUED = 'Y', the matrix A has
 been equilibrated with scaling factors given by
 SCALE. A and AF will not be modified. = 'N':
 The matrix A will be copied to AF and factored.
 = 'E': The matrix A will be equilibrated if
 necessary, then copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array, except if FACT = 'F' and EQUED = 'Y', then
 A must contain the equilibrated matrix
 diag(SCALE)*A*diag(SCALE). The j-th column of A
 is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. See below for further details. A is not
 modified if FACT = 'F' or 'N', or if FACT = 'E'
 and EQUED = 'N' on exit.

 On exit, if FACT = 'E' and EQUED = 'Y', A is
 overwritten by diag(SCALE)*A*diag(SCALE).

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =

 L*L**H, in the same storage format as A. If EQUED
 .ne. 'N', then AF is the factored form of the
 equilibrated matrix A.

 If FACT = 'N', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the original matrix A.

 If FACT = 'E', then AF is an output argument and
 on exit returns the triangular factor U or L from
 the Cholesky factorization A = U**H*U or A =
 L*L**H of the equilibrated matrix A (see the
 description of A for the form of the equilibrated
 matrix).

 EQUED (input)
 Specifies the form of equilibration that was done.
 = 'N': No equilibration (always true if FACT =
 'N').
 = 'Y': Equilibration was done, i.e., A has been
 replaced by diag(SCALE) * A * diag(SCALE). EQUED
 is an input argument if FACT = 'F'; otherwise, it
 is an output argument.

 SCALE (input/output)
 The scale factors for A; not accessed if EQUED =
 'N'. SCALE is an input argument if FACT = 'F';
 otherwise, SCALE is an output argument. If FACT =
 'F' and EQUED = 'Y', each element of SCALE must be
 positive.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if EQUED = 'N', B is not modified; if
 EQUED = 'Y', B is overwritten by diag(SCALE) * B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X to the original system of equations.
 Note that if EQUED = 'Y', A and B are modified on
 exit, and the solution to the equilibrated system
 is inv(diag(SCALE))*X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A after equilibration (if done). If
 RCOND is less than the machine precision (in par-
 ticular, if RCOND = 0), the matrix is singular to
 working precision. This condition is indicated by
 a return code of INFO > 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution

 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zpptrf - compute the Cholesky factorization of a complex
 Hermitian positive definite matrix A stored in packed format

SYNOPSIS

 SUBROUTINE ZPPTRF(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE ZPPTRF_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE PPTRF(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE PPTRF_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpptrf(char uplo, int n, doublecomplex *a, int *info);

 void zpptrf_64(char uplo, long n, doublecomplex *a, long
 *info);

PURPOSE

 zpptrf computes the Cholesky factorization of a complex Her-
 mitian positive definite matrix A stored in packed format.

 The factorization has the form
 A = U**H * U, if UPLO = 'U', or
 A = L * L**H, if UPLO = 'L',
 where U is an upper triangular matrix and L is lower
 triangular.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the Her-
 mitian matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, if INFO = 0, the triangular factor U or L
 from the Cholesky factorization A = U**H*U or A =
 L*L**H, in the same storage format as A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the factorization could
 not be completed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the Hermitian matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = conjg(aji))
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpptri - compute the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPPTRF

SYNOPSIS

 SUBROUTINE ZPPTRI(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE ZPPTRI_64(UPLO, N, A, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE PPTRI(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE PPTRI_64(UPLO, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpptri(char uplo, int n, doublecomplex *a, int *info);

 void zpptri_64(char uplo, long n, doublecomplex *a, long
 *info);

PURPOSE

 zpptri computes the inverse of a complex Hermitian positive
 definite matrix A using the Cholesky factorization A =
 U**H*U or A = L*L**H computed by CPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular factor is stored in A;
 = 'L': Lower triangular factor is stored in A.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular factor U or L from the
 Cholesky factorization A = U**H*U or A = L*L**H,
 packed columnwise as a linear array. The j-th
 column of U or L is stored in the array A as fol-
 lows: if UPLO = 'U', A(i + (j-1)*j/2) = U(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2n-j)/2)
 = L(i,j) for j<=i<=n.

 On exit, the upper or lower triangle of the (Her-
 mitian) inverse of A, overwriting the input factor
 U or L.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the (i,i) element of the factor
 U or L is zero, and the inverse could not be com-
 puted.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpptrs - solve a system of linear equations A*X = B with a
 Hermitian positive definite matrix A in packed storage using
 the Cholesky factorization A = U**H*U or A = L*L**H computed
 by CPPTRF

SYNOPSIS

 SUBROUTINE ZPPTRS(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE ZPPTRS_64(UPLO, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE PPTRS(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE PPTRS_64(UPLO, N, [NRHS], A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void zpptrs(char uplo, int n, int nrhs, doublecomplex *a,
 doublecomplex *b, int ldb, int *info);

 void zpptrs_64(char uplo, long n, long nrhs, doublecomplex
 *a, doublecomplex *b, long ldb, long *info);

PURPOSE

 zpptrs solves a system of linear equations A*X = B with a
 Hermitian positive definite matrix A in packed storage using
 the Cholesky factorization A = U**H*U or A = L*L**H computed
 by CPPTRF.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular factor U or L from the Cholesky
 factorization A = U**H*U or A = L*L**H, packed
 columnwise in a linear array. The j-th column of
 U or L is stored in the array A as follows: if
 UPLO = 'U', A(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 if UPLO = 'L', A(i + (j-1)*(2n-j)/2) = L(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zptcon - compute the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite tridi-
 agonal matrix using the factorization A = L*D*L**H or A =
 U**H*D*U computed by CPTTRF

SYNOPSIS

 SUBROUTINE ZPTCON(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 DOUBLE COMPLEX OFFD(*)
 INTEGER N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION DIAG(*), WORK(*)

 SUBROUTINE ZPTCON_64(N, DIAG, OFFD, ANORM, RCOND, WORK, INFO)

 DOUBLE COMPLEX OFFD(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION ANORM, RCOND
 DOUBLE PRECISION DIAG(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTCON([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: OFFD
 INTEGER :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: DIAG, WORK

 SUBROUTINE PTCON_64([N], DIAG, OFFD, ANORM, RCOND, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: OFFD
 INTEGER(8) :: N, INFO
 REAL(8) :: ANORM, RCOND
 REAL(8), DIMENSION(:) :: DIAG, WORK

 C INTERFACE
 #include <sunperf.h>

 void zptcon(int n, double *diag, doublecomplex *offd, double
 anorm, double *rcond, int *info);

 void zptcon_64(long n, double *diag, doublecomplex *offd,
 double anorm, double *rcond, long *info);

PURPOSE

 zptcon computes the reciprocal of the condition number (in
 the 1-norm) of a complex Hermitian positive definite tridi-
 agonal matrix using the factorization A = L*D*L**H or A =
 U**H*D*U computed by CPTTRF.

 Norm(inv(A)) is computed by a direct method, and the
 reciprocal of the condition number is computed as
 RCOND = 1 / (ANORM * norm(inv(A))).

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization of A, as computed by
 CPTTRF.

 OFFD (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization of A,
 as computed by CPTTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is the 1-norm of inv(A) computed in
 this routine.

 WORK (workspace)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The method used is described in Nicholas J. Higham, "Effi-
 cient Algorithms for Computing the Condition Number of a
 Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No.
 1, January 1986.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF and then calling
 CBDSQR to compute the singular values of the bidiagonal fac-
 tor

SYNOPSIS

 SUBROUTINE ZPTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 SUBROUTINE ZPTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE PTEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 SUBROUTINE PTEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void zpteqr(char compz, int n, double *d, double *e, doub-
 lecomplex *z, int ldz, int *info);

 void zpteqr_64(char compz, long n, double *d, double *e,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zpteqr computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric positive definite tridiagonal matrix by
 first factoring the matrix using SPTTRF and then calling
 CBDSQR to compute the singular values of the bidiagonal fac-
 tor.

 This routine computes the eigenvalues of the positive defin-
 ite tridiagonal matrix to high relative accuracy. This
 means that if the eigenvalues range over many orders of mag-
 nitude in size, then the small eigenvalues and corresponding
 eigenvectors will be computed more accurately than, for
 example, with the standard QR method.

 The eigenvectors of a full or band positive definite Hermi-
 tian matrix can also be found if CHETRD, CHPTRD, or CHBTRD
 has been used to reduce this matrix to tridiagonal form.
 (The reduction to tridiagonal form, however, may preclude
 the possibility of obtaining high relative accuracy in the
 small eigenvalues of the original matrix, if these eigen-
 values range over many orders of magnitude.)

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvectors of original Hermitian
 matrix also. Array Z contains the unitary matrix
 used to reduce the original matrix to tridiagonal
 form. = 'I': Compute eigenvectors of tridiagonal
 matrix also.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix. On normal exit, D contains the eigen-
 values, in descending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', the unitary matrix used
 in the reduction to tridiagonal form. On exit, if
 COMPZ = 'V', the orthonormal eigenvectors of the
 original Hermitian matrix; if COMPZ = 'I', the
 orthonormal eigenvectors of the tridiagonal
 matrix. If INFO > 0 on exit, Z contains the
 eigenvectors associated with only the stored
 eigenvalues. If COMPZ = 'N', then Z is not
 referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,

 and if COMPZ = 'V' or 'I', LDZ >= max(1,N).

 WORK (workspace)
 dimension(4*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: if INFO = i, and i is: <= N the Cholesky
 factorization of the matrix could not be performed
 because the i-th principal minor was not positive
 definite. > N the SVD algorithm failed to con-
 verge; if INFO = N+i, i off-diagonal elements of
 the bidiagonal factor did not converge to zero.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zptrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution

SYNOPSIS

 SUBROUTINE ZPTRFS(UPLO, N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX OFFD(*), OFFDF(*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION DIAG(*), DIAGF(*), FERR(*), BERR(*),
 WORK2(*)

 SUBROUTINE ZPTRFS_64(UPLO, N, NRHS, DIAG, OFFD, DIAGF, OFFDF, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX OFFD(*), OFFDF(*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION DIAG(*), DIAGF(*), FERR(*), BERR(*),
 WORK2(*)

 F95 INTERFACE
 SUBROUTINE PTRFS(UPLO, [N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: OFFD, OFFDF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2

 SUBROUTINE PTRFS_64(UPLO, [N], [NRHS], DIAG, OFFD, DIAGF, OFFDF, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: OFFD, OFFDF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X

 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zptrfs(char uplo, int n, int nrhs, double *diag, doub-
 lecomplex *offd, double *diagf, doublecomplex
 *offdf, doublecomplex *b, int ldb, doublecomplex
 *x, int ldx, double *ferr, double *berr, int
 *info);

 void zptrfs_64(char uplo, long n, long nrhs, double *diag,
 doublecomplex *offd, double *diagf, doublecomplex
 *offdf, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 zptrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive
 definite and tridiagonal, and provides error bounds and
 backward error estimates for the solution.

ARGUMENTS

 UPLO (input)
 Specifies whether the superdiagonal or the subdi-
 agonal of the tridiagonal matrix A is stored and
 the form of the factorization:
 = 'U': OFFD is the superdiagonal of A, and A =
 U**H*DIAG*U;
 = 'L': OFFD is the subdiagonal of A, and A =
 L*DIAG*L**H. (The two forms are equivalent if A
 is real.)

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n real diagonal elements of the tridiagonal
 matrix A.

 OFFD (input)
 The (n-1) off-diagonal elements of the tridiagonal
 matrix A (see UPLO).
 DIAGF (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization computed by CPTTRF.

 OFFDF (input)
 The (n-1) off-diagonal elements of the unit bidi-
 agonal factor U or L from the factorization com-
 puted by CPTTRF (see UPLO).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CPTTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zptsv - compute the solution to a complex system of linear
 equations A*X = B, where A is an N-by-N Hermitian positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

SYNOPSIS

 SUBROUTINE ZPTSV(N, NRHS, DIAG, SUB, B, LDB, INFO)

 DOUBLE COMPLEX SUB(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*)

 SUBROUTINE ZPTSV_64(N, NRHS, DIAG, SUB, B, LDB, INFO)

 DOUBLE COMPLEX SUB(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTSV([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:) :: SUB
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG

 SUBROUTINE PTSV_64([N], [NRHS], DIAG, SUB, B, [LDB], [INFO])

 COMPLEX(8), DIMENSION(:) :: SUB
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void zptsv(int n, int nrhs, double *diag, doublecomplex
 *sub, doublecomplex *b, int ldb, int *info);

 void zptsv_64(long n, long nrhs, double *diag, doublecomplex
 *sub, doublecomplex *b, long ldb, long *info);

PURPOSE

 zptsv computes the solution to a complex system of linear
 equations A*X = B, where A is an N-by-N Hermitian positive
 definite tridiagonal matrix, and X and B are N-by-NRHS
 matrices.

 A is factored as A = L*D*L**H, and the factored form of A is
 then used to solve the system of equations.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the factorization A
 = L*DIAG*L**H.

 SUB (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L**H factorization of A. SUB can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U**H*DIAG*U factorization
 of A.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the leading minor of order i is
 not positive definite, and the solution has not
 been computed. The factorization has not been
 completed unless i = N.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zptsvx - use the factorization A = L*D*L**H to compute the
 solution to a complex system of linear equations A*X = B,
 where A is an N-by-N Hermitian positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE ZPTSVX(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT
 DOUBLE COMPLEX SUB(*), SUBF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION DIAG(*), DIAGF(*), FERR(*), BERR(*),
 WORK2(*)

 SUBROUTINE ZPTSVX_64(FACT, N, NRHS, DIAG, SUB, DIAGF, SUBF, B, LDB,
 X, LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT
 DOUBLE COMPLEX SUB(*), SUBF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION DIAG(*), DIAGF(*), FERR(*), BERR(*),
 WORK2(*)

 F95 INTERFACE
 SUBROUTINE PTSVX(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B, [LDB],
 X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT
 COMPLEX(8), DIMENSION(:) :: SUB, SUBF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2

 SUBROUTINE PTSVX_64(FACT, [N], [NRHS], DIAG, SUB, DIAGF, SUBF, B,
 [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT
 COMPLEX(8), DIMENSION(:) :: SUB, SUBF, WORK

 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: DIAG, DIAGF, FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zptsvx(char fact, int n, int nrhs, double *diag, doub-
 lecomplex *sub, double *diagf, doublecomplex
 *subf, doublecomplex *b, int ldb, doublecomplex
 *x, int ldx, double *rcond, double *ferr, double
 *berr, int *info);

 void zptsvx_64(char fact, long n, long nrhs, double *diag,
 doublecomplex *sub, double *diagf, doublecomplex
 *subf, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *rcond, double *ferr, double
 *berr, long *info);

PURPOSE

 zptsvx uses the factorization A = L*D*L**H to compute the
 solution to a complex system of linear equations A*X = B,
 where A is an N-by-N Hermitian positive definite tridiagonal
 matrix and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the matrix A is factored as A = L*D*L**H,
 where L
 is a unit lower bidiagonal matrix and D is diagonal. The
 factorization can also be regarded as having the form
 A = U**H*D*U.

 2. If the leading i-by-i principal minor is not positive
 definite,
 then the routine returns with INFO = i. Otherwise, the
 factored
 form of A is used to estimate the condition number of the
 matrix
 A. If the reciprocal of the condition number is less
 than machine
 precision, INFO = N+1 is returned as a warning, but the
 routine
 still goes on to solve for X and compute error bounds as
 described below.

 3. The system of equations is solved for X using the fac-
 tored form
 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of the
 matrix A is supplied on entry. = 'F': On entry,
 DIAGF and SUBF contain the factored form of A.
 DIAG, SUB, DIAGF, and SUBF will not be modified.
 = 'N': The matrix A will be copied to DIAGF and
 SUBF and factored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the tridiagonal matrix
 A.

 SUB (input)
 The (n-1) subdiagonal elements of the tridiagonal
 matrix A.

 DIAGF (input/output)
 If FACT = 'F', then DIAGF is an input argument and
 on entry contains the n diagonal elements of the
 diagonal matrix DIAG from the L*DIAG*L**H factori-
 zation of A. If FACT = 'N', then DIAGF is an out-
 put argument and on exit contains the n diagonal
 elements of the diagonal matrix DIAG from the
 L*DIAG*L**H factorization of A.

 SUBF (input/output)
 If FACT = 'F', then SUBF is an input argument and
 on entry contains the (n-1) subdiagonal elements
 of the unit bidiagonal factor L from the
 L*DIAG*L**H factorization of A. If FACT = 'N',
 then SUBF is an output argument and on exit con-
 tains the (n-1) subdiagonal elements of the unit
 bidiagonal factor L from the L*DIAG*L**H
 factorization of A.

 B (input) On entry, the N-by-NRHS right hand side matrix B.
 Unchanged on exit.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The reciprocal condition number of the matrix A.
 If RCOND is less than the machine precision (in
 particular, if RCOND = 0), the matrix is singular
 to working precision. This condition is indicated
 by a return code of INFO > 0.

 FERR (output)
 The forward error bound for each solution vector
 X(j) (the j-th column of the solution matrix X).
 If XTRUE is the true solution corresponding to
 X(j), FERR(j) is an estimated upper bound for the
 magnitude of the largest element in (X(j) - XTRUE)
 divided by the magnitude of the largest element in
 X(j).

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(N)

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: the leading minor of order i of A is not
 positive definite, so the factorization could not
 be completed, and the solution has not been com-
 puted. RCOND = 0 is returned. = N+1: U is non-
 singular, but RCOND is less than machine preci-
 sion, meaning that the matrix is singular to work-
 ing precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpttrf - compute the L*D*L' factorization of a complex Her-
 mitian positive definite tridiagonal matrix A

SYNOPSIS

 SUBROUTINE ZPTTRF(N, DIAG, OFFD, INFO)

 DOUBLE COMPLEX OFFD(*)
 INTEGER N, INFO
 DOUBLE PRECISION DIAG(*)

 SUBROUTINE ZPTTRF_64(N, DIAG, OFFD, INFO)

 DOUBLE COMPLEX OFFD(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTTRF([N], DIAG, OFFD, [INFO])

 COMPLEX(8), DIMENSION(:) :: OFFD
 INTEGER :: N, INFO
 REAL(8), DIMENSION(:) :: DIAG

 SUBROUTINE PTTRF_64([N], DIAG, OFFD, [INFO])

 COMPLEX(8), DIMENSION(:) :: OFFD
 INTEGER(8) :: N, INFO
 REAL(8), DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void zpttrf(int n, double *diag, doublecomplex *offd, int
 *info);

 void zpttrf_64(long n, double *diag, doublecomplex *offd,
 long *info);

PURPOSE

 zpttrf computes the L*D*L' factorization of a complex Hermi-
 tian positive definite tridiagonal matrix A. The factoriza-
 tion may also be regarded as having the form A = U'*D*U.

ARGUMENTS

 N (input) The order of the matrix A. N >= 0.

 DIAG (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix DIAG from the L*DIAG*L' fac-
 torization of A.

 OFFD (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix A. On exit, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the L*DIAG*L' factorization of A. OFFD can also
 be regarded as the superdiagonal of the unit bidi-
 agonal factor U from the U'*DIAG*U factorization
 of A.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value
 > 0: if INFO = k, the leading minor of order k is
 not positive definite; if k < N, the factorization
 could not be completed, while if k = N, the fac-
 torization was completed, but DIAG(N) = 0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zpttrs - solve a tridiagonal system of the form A * X = B
 using the factorization A = U'*D*U or A = L*D*L' computed by
 CPTTRF

SYNOPSIS

 SUBROUTINE ZPTTRS(UPLO, N, NRHS, DIAG, OFFD, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX OFFD(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*)

 SUBROUTINE ZPTTRS_64(UPLO, N, NRHS, DIAG, OFFD, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX OFFD(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 DOUBLE PRECISION DIAG(*)

 F95 INTERFACE
 SUBROUTINE PTTRS(UPLO, [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: OFFD
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG

 SUBROUTINE PTTRS_64(UPLO, [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: OFFD
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 REAL(8), DIMENSION(:) :: DIAG

 C INTERFACE
 #include <sunperf.h>

 void zpttrs(char uplo, int n, int nrhs, double *diag, doub-
 lecomplex *offd, doublecomplex *b, int ldb, int
 *info);

 void zpttrs_64(char uplo, long n, long nrhs, double *diag,
 doublecomplex *offd, doublecomplex *b, long ldb,
 long *info);

PURPOSE

 zpttrs solves a tridiagonal system of the form
 A * X = B using the factorization A = U'*D*U or A =
 L*D*L' computed by CPTTRF. D is a diagonal matrix specified
 in the vector D, U (or L) is a unit bidiagonal matrix whose
 superdiagonal (subdiagonal) is specified in the vector E,
 and X and B are N by NRHS matrices.

ARGUMENTS

 UPLO (input)
 Specifies the form of the factorization and
 whether the vector OFFD is the superdiagonal of
 the upper bidiagonal factor U or the subdiagonal
 of the lower bidiagonal factor L. = 'U': A =
 U'*DIAG*U, OFFD is the superdiagonal of U
 = 'L': A = L*DIAG*L', OFFD is the subdiagonal of
 L

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 DIAG (input)
 The n diagonal elements of the diagonal matrix
 DIAG from the factorization A = U'*DIAG*U or A =
 L*DIAG*L'.

 OFFD (input/output)
 If UPLO = 'U', the (n-1) superdiagonal elements of
 the unit bidiagonal factor U from the factoriza-
 tion A = U'*DIAG*U. If UPLO = 'L', the (n-1) sub-
 diagonal elements of the unit bidiagonal factor L
 from the factorization A = L*DIAG*L'.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zptts2 - solve a tridiagonal system of the form A * X = B
 using the factorization A = U'*D*U or A = L*D*L' computed by
 CPTTRF

SYNOPSIS

 SUBROUTINE ZPTTS2(IUPLO, N, NRHS, D, E, B, LDB)

 DOUBLE COMPLEX E(*), B(LDB,*)
 INTEGER IUPLO, N, NRHS, LDB
 DOUBLE PRECISION D(*)

 SUBROUTINE ZPTTS2_64(IUPLO, N, NRHS, D, E, B, LDB)

 DOUBLE COMPLEX E(*), B(LDB,*)
 INTEGER*8 IUPLO, N, NRHS, LDB
 DOUBLE PRECISION D(*)

 F95 INTERFACE
 SUBROUTINE ZPTTS2(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX(8), DIMENSION(:) :: E
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: IUPLO, N, NRHS, LDB
 REAL(8), DIMENSION(:) :: D

 SUBROUTINE ZPTTS2_64(IUPLO, N, NRHS, D, E, B, LDB)

 COMPLEX(8), DIMENSION(:) :: E
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: IUPLO, N, NRHS, LDB
 REAL(8), DIMENSION(:) :: D

 C INTERFACE
 #include <sunperf.h>

 void zptts2(int iuplo, int n, int nrhs, double *d, doub-
 lecomplex *e, doublecomplex *b, int ldb);

 void zptts2_64(long iuplo, long n, long nrhs, double *d,
 doublecomplex *e, doublecomplex *b, long ldb);

PURPOSE

 zptts2 solves a tridiagonal system of the form
 A * X = B using the factorization A = U'*D*U or A =
 L*D*L' computed by CPTTRF. D is a diagonal matrix specified
 in the vector D, U (or L) is a unit bidiagonal matrix whose
 superdiagonal (subdiagonal) is specified in the vector E,
 and X and B are N by NRHS matrices.

ARGUMENTS

 IUPLO (input)
 Specifies the form of the factorization and
 whether the vector E is the superdiagonal of the
 upper bidiagonal factor U or the subdiagonal of
 the lower bidiagonal factor L. = 1: A = U'*D*U,
 E is the superdiagonal of U
 = 0: A = L*D*L', E is the subdiagonal of L

 N (input) The order of the tridiagonal matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 D (input) The n diagonal elements of the diagonal matrix D
 from the factorization A = U'*D*U or A = L*D*L'.

 E (input) If IUPLO = 1, the (n-1) superdiagonal elements of
 the unit bidiagonal factor U from the factoriza-
 tion A = U'*D*U. If IUPLO = 0, the (n-1) subdiag-
 onal elements of the unit bidiagonal factor L from
 the factorization A = L*D*L'.

 B (input/output)
 On entry, the right hand side vectors B for the
 system of linear equations. On exit, the solution
 vectors, X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zrot - apply a plane rotation, where the cos (C) is real and
 the sin (S) is complex, and the vectors X and Y are complex

SYNOPSIS

 SUBROUTINE ZROT(N, X, INCX, Y, INCY, C, S)

 DOUBLE COMPLEX S
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY
 DOUBLE PRECISION C

 SUBROUTINE ZROT_64(N, X, INCX, Y, INCY, C, S)

 DOUBLE COMPLEX S
 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY
 DOUBLE PRECISION C

 F95 INTERFACE
 SUBROUTINE ROT([N], X, [INCX], Y, [INCY], C, S)

 COMPLEX(8) :: S
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY
 REAL(8) :: C

 SUBROUTINE ROT_64([N], X, [INCX], Y, [INCY], C, S)

 COMPLEX(8) :: S
 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY
 REAL(8) :: C

 C INTERFACE
 #include <sunperf.h>

 void zrot(int n, doublecomplex *x, int incx, doublecomplex
 *y, int incy, double c, doublecomplex *s);

 void zrot_64(long n, doublecomplex *x, long incx, doublecom-
 plex *y, long incy, double c, doublecomplex *s);

PURPOSE

 zrot applies a plane rotation, where the cos (C) is real
 and the sin (S) is complex, and the vectors X and Y are
 complex.

ARGUMENTS

 N (input)
 The number of elements in the vectors X and Y.

 X (input/output)
 On input, the vector X. On output, X is overwrit-
 ten with C*X + S*Y.

 INCX (input)
 The increment between successive values of Y.
 INCX <> 0.

 Y (input/output)
 On input, the vector Y. On output, Y is overwrit-
 ten with -CONJG(S)*X + C*Y.

 INCY (input)
 The increment between successive values of Y.
 INCY <> 0.

 C (input)

 S (input)
 C and S define a rotation
 [C S]
 [-conjg(S) C]

 where C*C + S*CONJG(S) = 1.0.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zrotg - Construct a Given's plane rotation

SYNOPSIS

 SUBROUTINE ZROTG(A, B, C, S)

 DOUBLE COMPLEX A, B, S
 DOUBLE PRECISION C

 SUBROUTINE ZROTG_64(A, B, C, S)

 DOUBLE COMPLEX A, B, S
 DOUBLE PRECISION C

 F95 INTERFACE
 SUBROUTINE ROTG(A, B, C, S)

 COMPLEX(8) :: A, B, S
 REAL(8) :: C

 SUBROUTINE ROTG_64(A, B, C, S)

 COMPLEX(8) :: A, B, S
 REAL(8) :: C

 C INTERFACE
 #include <sunperf.h>

 void zrotg(doublecomplex *a, doublecomplex *b, double *c,
 doublecomplex *s);

 void zrotg_64(doublecomplex *a, doublecomplex *b, double *c,
 doublecomplex *s);

PURPOSE

 zrotg Construct a Given's plane rotation that will annihi-
 late an element of a vector.

ARGUMENTS

 A (input/output)
 On entry, A contains the entry in the first vector
 that corresponds to the element to be annihilated
 in the second vector. On exit, contains the
 nonzero element of the rotated vector.
 B (input)
 On entry, B contains the entry to be annihilated
 in the second vector. Unchanged on exit.

 C (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

 S (output)
 On exit, C and S are the elements of the rotation
 matrix that will be applied to annihilate B.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zscal - Compute y := alpha * y

SYNOPSIS

 SUBROUTINE ZSCAL(N, ALPHA, Y, INCY)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX Y(*)
 INTEGER N, INCY

 SUBROUTINE ZSCAL_64(N, ALPHA, Y, INCY)

 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE SCAL([N], ALPHA, Y, [INCY])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: Y
 INTEGER :: N, INCY

 SUBROUTINE SCAL_64([N], ALPHA, Y, [INCY])

 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:) :: Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void zscal(int n, doublecomplex *alpha, doublecomplex *y,
 int incy);

 void zscal_64(long n, doublecomplex *alpha, doublecomplex
 *y, long incy);

PURPOSE

 zscal Compute y := alpha * y where alpha is a scalar and y
 is an n-vector.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, Y is overwritten by the updated vector y.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS●

PURPOSE●

ARGUMENTS●

NAME

 zsctr - Scatters elements from x into y.

SYNOPSIS

 SUBROUTINE ZSCTR(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER NZ
 INTEGER INDX(*)

 SUBROUTINE ZSCTR_64(NZ, X, INDX, Y)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 NZ
 INTEGER*8 INDX(*)

 F95 INTERFACE
 SUBROUTINE SCTR([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: NZ
 INTEGER, DIMENSION(:) :: INDX

 SUBROUTINE SCTR_64([NZ], X, INDX, Y)

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: NZ
 INTEGER(8), DIMENSION(:) :: INDX

PURPOSE

 ZSCTR - Scatters the components of a sparse vector x stored
 in compressed form into specified components of a vector y
 in full storage form.

 do i = 1, n
 y(indx(i)) = x(i)
 enddo

ARGUMENTS

 NZ (input) - INTEGER
 Number of elements in the compressed form.
 Unchanged on exit.

 X (input)
 Vector containing the values to be scattered from
 compressed form into full storage form. Unchanged
 on exit.

 INDX (input) - INTEGER
 Vector containing the indices of the compressed
 form. It is assumed that the elements in INDX are
 distinct and greater than zero. Unchanged on exit.

 Y (output)
 Vector whose elements specified by indx have been
 set to the corresponding entries of x. Only the
 elements corresponding to the indices in indx have
 been modified.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zskymm - Skyline format matrix-matrix multiply

SYNOPSIS

 SUBROUTINE ZSKYMM(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR, B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZSKYMM_64(TRANSA, M, N, K, ALPHA, DESCRA,
 * VAL, PNTR, B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, K, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(K+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(M+1)-PNTR(1) (lower triangular)
 PNTR() size = (K+1) (upper triangular)
 PNTR() size = (M+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYMM(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, K
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYMM_64(TRANSA, M, [N], K, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, K
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in skyline format and
 op(A) is one of
 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 K Number of columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general (NOT SUPPORTED)
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.
 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 The SKY data structure is not supported for a general matrix
 structure (DESCRA(1)=0).

 Also not supported:
 1. lower triangular matrix A of size m by n where m > n
 2. upper triangular matrix A of size m by n where m < n

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zskysm - Skyline format triangular solve

SYNOPSIS

 SUBROUTINE ZSKYSM(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER PNTR(*),
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZSKYSM_64(TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, M, N, UNITD, DESCRA(5),
 * LDB, LDC, LWORK
 INTEGER*8 PNTR(*),
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(M), VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

 where NNZ = PNTR(M+1)-PNTR(1) (upper triangular)
 NNZ = PNTR(K+1)-PNTR(1) (lower triangular)
 PNTR() size = (M+1) (upper triangular)
 PNTR() size = (K+1) (lower triangular)

 F95 INTERFACE

 SUBROUTINE SKYSM(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA, VAL,
 * PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER TRANSA, M, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE SKYSM_64(TRANSA, M, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, PNTR, B, [LDB], BETA, C, [LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, M, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, PNTR
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in skyline format and
 op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A')).
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 M Number of rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row scaling)
 3 : Scale on right (column scaling)
 4 : Automatic row or column scaling (see section
 NOTES for further details)

 DV() Array of length M containing the diagonal entries of the
 scaling diagonal matrix D.

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))

 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() array contain the nonzeros of A in skyline profile form.
 Row-oriented if DESCRA(2) = 1 (lower triangular),
 column oriented if DESCRA(2) = 2 (upper triangular).

 PNTR() integer array of length M+1 (lower triangular) or
 K+1 (upper triangular) such that PNTR(I)-PNTR(1)+1
 points to the location in VAL of the first element of
 the skyline profile in row (column) I.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK = -1, WORK(1) returns the optimum LWORK.

 LWORK length of WORK array. LWORK should be at least M.

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. Also not supported:
 a. lower triangular matrix A of size m by n where m > n
 b. upper triangular matrix A of size m by n where m < n

 2. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 3. If UNITD =4, the routine scales the rows of A if
 DESCRA(2)=1 and the columns of A if DESCRA(2)=2 such that
 their 2-norms are one. The scaling may improve the accuracy

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 of the computed solution. Corresponding entries of VAL are
 changed only in this particular case. On return DV matrix
 stored as a vector contains the diagonal matrix by which the
 rows (columns) have been scaled. UNITD=2 if DESCRA(2)=1 and
 UNITD=3 if DESCRA(2)=2 should be used for the next calls to
 the routine with overwritten VAL and DV.

 WORK(1)=0 on return if the scaling has been completed
 successfully, otherwise WORK(1) = -i where i is the row
 (column) number which 2-norm is exactly zero.

 4. If DESCRA(3)=1 and UNITD < 4, the unit diagonal elements
 might or might not be referenced in the SKY representation
 of a sparse matrix. They are not used anyway in these cases.
 But if UNITD=4, the unit diagonal elements MUST be
 referenced in the SKY representation.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. However DESCRA(1) must be equal to 3 in
 this case.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zspcon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF

SYNOPSIS

 SUBROUTINE ZSPCON(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 SUBROUTINE ZSPCON_64(UPLO, N, A, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE SPCON(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 SUBROUTINE SPCON_64(UPLO, [N], A, IPIVOT, ANORM, RCOND, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>

 void zspcon(char uplo, int n, doublecomplex *a, int *ipivot,
 double anorm, double *rcond, int *info);
 void zspcon_64(char uplo, long n, doublecomplex *a, long
 *ipivot, double anorm, double *rcond, long *info);

PURPOSE

 zspcon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric packed matrix A using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsprfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution

SYNOPSIS

 SUBROUTINE ZSPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX, FERR,
 BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZSPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SPRFS(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SPRFS_64(UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO

 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zsprfs(char uplo, int n, int nrhs, doublecomplex *a,
 doublecomplex *af, int *ipivot, doublecomplex *b,
 int ldb, doublecomplex *x, int ldx, double *ferr,
 double *berr, int *info);

 void zsprfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, doublecomplex *af, long *ipivot, doublecomplex
 *b, long ldb, doublecomplex *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 zsprfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite and packed, and provides error bounds and backward error
 estimates for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n.

 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 CSPTRF, stored as a packed triangular matrix.
 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CSPTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zspsv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZSPSV(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSPSV_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPSV(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPSV_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zspsv(char uplo, int n, int nrhs, doublecomplex *a, int
 *ipivot, doublecomplex *b, int ldb, int *info);

 void zspsv_64(char uplo, long n, long nrhs, doublecomplex
 *a, long *ipivot, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zspsv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N symmetric matrix stored
 in packed format and X and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, D is symmetric and block diago-
 nal with 1-by-1 and 2-by-2 diagonal blocks. The factored
 form of A is then used to solve the system of equations A *
 X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below
 for further details.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L from the
 factorization A = U*D*U**T or A = L*D*L**T as com-
 puted by CSPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CSPTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)
 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is

 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':

 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zspsvx - use the diagonal pivoting factorization A =
 U*D*U**T or A = L*D*L**T to compute the solution to a com-
 plex system of linear equations A * X = B, where A is an N-
 by-N symmetric matrix stored in packed format and X and B
 are N-by-NRHS matrices

SYNOPSIS

 SUBROUTINE ZSPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X, LDX,
 RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZSPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, LDB, X,
 LDX, RCOND, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(*), AF(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SPSVX(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,
 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SPSVX_64(FACT, UPLO, N, NRHS, A, AF, IPIVOT, B, [LDB], X,

 [LDX], RCOND, FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: A, AF, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zspsvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, doublecomplex *af, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *rcond, double *ferr, double *berr,
 int *info);

 void zspsvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, doublecomplex *af, long *ipivot,
 doublecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *rcond, double *ferr, double *berr,
 long *info);

PURPOSE

 zspsvx uses the diagonal pivoting factorization A = U*D*U**T
 or A = L*D*L**T to compute the solution to a complex system
 of linear equations A * X = B, where A is an N-by-N sym-
 metric matrix stored in packed format and X and B are N-by-
 NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices and D is symmetric and block diagonal
 with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form

 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangle of the symmetric
 matrix A, packed columnwise in a linear array.
 The j-th column of A is stored in the array A as
 follows: if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j)
 for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*(2*n-j)/2)
 = A(i,j) for j<=i<=n. See below for further
 details.

 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by CSPTRF, stored as a packed triangular
 matrix in the same storage format as A.

 If FACT = 'N', then AF is an output argument and
 on exit contains the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by CSPTRF, stored as a packed
 triangular matrix in the same storage format as A.

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CSPTRF. If IPIVOT(k) > 0, then rows and columns k
 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and

 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CSPTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to

 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

FURTHER DETAILS

 The packed storage scheme is illustrated by the following
 example when N = 4, UPLO = 'U':
 Two-dimensional storage of the symmetric matrix A:

 a11 a12 a13 a14
 a22 a23 a24
 a33 a34 (aij = aji)
 a44

 Packed storage of the upper triangle of A:

 A = [a11, a12, a22, a13, a23, a33, a14, a24, a34, a44]

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zsptrf - compute the factorization of a complex symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method

SYNOPSIS

 SUBROUTINE ZSPTRF(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSPTRF_64(UPLO, N, A, IPIVOT, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRF(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRF_64(UPLO, [N], A, IPIVOT, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsptrf(char uplo, int n, doublecomplex *a, int *ipivot,
 int *info);

 void zsptrf_64(char uplo, long n, doublecomplex *a, long
 *ipivot, long *info);

PURPOSE

 zsptrf computes the factorization of a complex symmetric
 matrix A stored in packed format using the Bunch-Kaufman
 diagonal pivoting method:

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangle of the sym-
 metric matrix A, packed columnwise in a linear
 array. The j-th column of A is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', A(i +
 (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L, stored
 as a packed triangular matrix overwriting A (see
 below for further details).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 5-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsptri - compute the inverse of a complex symmetric indefin-
 ite matrix A in packed storage using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSPTRF

SYNOPSIS

 SUBROUTINE ZSPTRI(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSPTRI_64(UPLO, N, A, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRI(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRI_64(UPLO, N, A, IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsptri(char uplo, int n, doublecomplex *a, int *ipivot,
 int *info);

 void zsptri_64(char uplo, long n, doublecomplex *a, long
 *ipivot, long *info);

PURPOSE

 zsptri computes the inverse of a complex symmetric
 indefinite matrix A in packed storage using the factoriza-
 tion A = U*D*U**T or A = L*D*L**T computed by CSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CSPTRF, stored as a packed triangular
 matrix.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix, stored as a packed triangular
 matrix. The j-th column of inv(A) is stored in the
 array A as follows: if UPLO = 'U', A(i + (j-
 1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L',
 A(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsptrs - solve a system of linear equations A*X = B with a
 complex symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF

SYNOPSIS

 SUBROUTINE ZSPTRS(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SPTRS(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SPTRS_64(UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsptrs(char uplo, int n, int nrhs, doublecomplex *a,
 int *ipivot, doublecomplex *b, int ldb, int

 *info);

 void zsptrs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long *ipivot, doublecomplex *b, long ldb, long
 *info);

PURPOSE

 zsptrs solves a system of linear equations A*X = B with a
 complex symmetric matrix A stored in packed format using the
 factorization A = U*D*U**T or A = L*D*L**T computed by
 CSPTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSPTRF, stored as a packed triangular matrix.

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSPTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zstedc - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method

SYNOPSIS

 SUBROUTINE ZSTEDC(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK,
 IWORK, LIWORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*), WORK(*)
 INTEGER N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION D(*), E(*), RWORK(*)

 SUBROUTINE ZSTEDC_64(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
 LRWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*), WORK(*)
 INTEGER*8 N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION D(*), E(*), RWORK(*)

 F95 INTERFACE
 SUBROUTINE STEDC(COMPZ, [N], D, E, Z, [LDZ], [WORK], [LWORK], [RWORK],
 [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, RWORK

 SUBROUTINE STEDC_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [LWORK],
 [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: Z

 INTEGER(8) :: N, LDZ, LWORK, LRWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8), DIMENSION(:) :: D, E, RWORK

 C INTERFACE
 #include <sunperf.h>
 void zstedc(char compz, int n, double *d, double *e, doub-
 lecomplex *z, int ldz, int *info);

 void zstedc_64(char compz, long n, double *d, double *e,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zstedc computes all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the divide and
 conquer method. The eigenvectors of a full or band complex
 Hermitian matrix can also be found if CHETRD or CHPTRD or
 CHBTRD has been used to reduce this matrix to tridiagonal
 form.

 This code makes very mild assumptions about floating point
 arithmetic. It will work on machines with a guard digit in
 add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray
 C-90, or Cray-2. It could conceivably fail on hexadecimal
 or decimal machines without guard digits, but we know of
 none. See SLAED3 for details.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'I': Compute eigenvectors of tridiagonal matrix
 also.
 = 'V': Compute eigenvectors of original Hermitian
 matrix also. On entry, Z contains the unitary
 matrix used to reduce the original matrix to tri-
 diagonal form.

 N (input) The dimension of the symmetric tridiagonal matrix.
 N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the subdiagonal elements of the tridiag-
 onal matrix. On exit, E has been destroyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 unitary matrix used in the reduction to tridiago-
 nal form. On exit, if INFO = 0, then if COMPZ =
 'V', Z contains the orthonormal eigenvectors of
 the original Hermitian matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If eigenvectors are desired, then LDZ >= max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If COMPZ = 'N'
 or 'I', or N <= 1, LWORK must be at least 1. If
 COMPZ = 'V' and N > 1, LWORK must be at least N*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 RWORK (workspace)
 dimension (LRWORK) On exit, if INFO = 0, RWORK(1)
 returns the optimal LRWORK.

 LRWORK (input)
 The dimension of the array RWORK. If COMPZ = 'N'
 or N <= 1, LRWORK must be at least 1. If COMPZ =
 'V' and N > 1, LRWORK must be at least 1 + 3*N +
 2*N*lg N + 3*N**2 , where lg(N) = smallest
 integer k such that 2**k >= N. If COMPZ = 'I' and
 N > 1, LRWORK must be at least 1 + 4*N + 2*N**2 .

 If LRWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the RWORK array, returns this value as the first
 entry of the RWORK array, and no error message
 related to LRWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. If COMPZ = 'N'
 or N <= 1, LIWORK must be at least 1. If COMPZ =
 'V' or N > 1, LIWORK must be at least 6 + 6*N +
 5*N*lg N. If COMPZ = 'I' or N > 1, LIWORK must
 be at least 3 + 5*N .

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 > 0: The algorithm failed to compute an eigen-
 value while working on the submatrix lying in rows
 and columns INFO/(N+1) through mod(INFO,N+1).

FURTHER DETAILS

 Based on contributions by
 Jeff Rutter, Computer Science Division, University of
 California
 at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zstegr - Compute T-sigma_i = L_i D_i L_i^T, such that L_i
 D_i L_i^T is a relatively robust representation

SYNOPSIS

 SUBROUTINE ZSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
 Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 SUBROUTINE ZSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

 CHARACTER * 1 JOBZ, RANGE
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER*8 ISUPPZ(*), IWORK(*)
 DOUBLE PRECISION VL, VU, ABSTOL
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEGR(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M,
 W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEGR_64(JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL,
 M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])

 CHARACTER(LEN=1) :: JOBZ, RANGE
 COMPLEX(8), DIMENSION(:,:) :: Z

 INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
 INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
 REAL(8) :: VL, VU, ABSTOL
 REAL(8), DIMENSION(:) :: D, E, W, WORK
 C INTERFACE
 #include <sunperf.h>

 void zstegr(char jobz, char range, int n, double *d, double
 *e, double vl, double vu, int il, int iu, double
 abstol, int *m, double *w, doublecomplex *z, int
 ldz, int *isuppz, int *info);

 void zstegr_64(char jobz, char range, long n, double *d,
 double *e, double vl, double vu, long il, long iu,
 double abstol, long *m, double *w, doublecomplex
 *z, long ldz, long *isuppz, long *info);

PURPOSE

 zstegr b) Compute the eigenvalues, lambda_j, of L_i D_i
 L_i^T to high
 relative accuracy by the dqds algorithm,
 (c) If there is a cluster of close eigenvalues, "choose"
 sigma_i
 close to the cluster, and go to step (a),
 (d) Given the approximate eigenvalue lambda_j of L_i D_i
 L_i^T,
 compute the corresponding eigenvector by forming a
 rank-revealing twisted factorization.
 The desired accuracy of the output can be specified by the
 input parameter ABSTOL.

 For more details, see "A new O(n^2) algorithm for the sym-
 metric tridiagonal eigenvalue/eigenvector problem", by
 Inderjit Dhillon, Computer Science Division Technical Report
 No. UCB/CSD-97-971, UC Berkeley, May 1997.

 Note 1 : Currently CSTEGR is only set up to find ALL the n
 eigenvalues and eigenvectors of T in O(n^2) time
 Note 2 : Currently the routine CSTEIN is called when an
 appropriate sigma_i cannot be chosen in step (c) above.
 CSTEIN invokes modified Gram-Schmidt when eigenvalues are
 close.
 Note 3 : CSTEGR works only on machines which follow ieee-754
 floating-point standard in their handling of infinities and
 NaNs. Normal execution of CSTEGR may create NaNs and infin-
 ities and hence may abort due to a floating point exception
 in environments which do not conform to the ieee standard.

ARGUMENTS

 JOBZ (input)
 = 'N': Compute eigenvalues only;
 = 'V': Compute eigenvalues and eigenvectors.
 RANGE (input)
 = 'A': all eigenvalues will be found.
 = 'V': all eigenvalues in the half-open interval
 (VL,VU] will be found. = 'I': the IL-th through
 IU-th eigenvalues will be found.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the n diagonal elements of the tridiago-
 nal matrix T. On exit, D is overwritten.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix T in elements 1 to N-1 of E;
 E(N) need not be set. On exit, E is overwritten.

 VL (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 VU (input)
 If RANGE='V', the lower and upper bounds of the
 interval to be searched for eigenvalues. VL < VU.
 Not referenced if RANGE = 'A' or 'I'.

 IL (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 IU (input)
 If RANGE='I', the indices (in ascending order) of
 the smallest and largest eigenvalues to be
 returned. 1 <= IL <= IU <= N, if N > 0; IL = 1
 and IU = 0 if N = 0. Not referenced if RANGE =
 'A' or 'V'.

 ABSTOL (input)
 The absolute error tolerance for the
 eigenvalues/eigenvectors. IF JOBZ = 'V', the
 eigenvalues and eigenvectors output have residual
 norms bounded by ABSTOL, and the dot products
 between different eigenvectors are bounded by
 ABSTOL. If ABSTOL is less than N*EPS*|T|, then
 N*EPS*|T| will be used in its place, where EPS is
 the machine precision and |T| is the 1-norm of the
 tridiagonal matrix. The eigenvalues are computed
 to an accuracy of EPS*|T| irrespective of ABSTOL.
 If high relative accuracy is important, set ABSTOL
 to DLAMCH('Safe minimum'). See Barlow and Dem-
 mel "Computing Accurate Eigensystems of Scaled
 Diagonally Dominant Matrices", LAPACK Working Note
 #7 for a discussion of which matrices define their
 eigenvalues to high relative accuracy.

 M (output)
 The total number of eigenvalues found. 0 <= M <=
 N. If RANGE = 'A', M = N, and if RANGE = 'I', M =
 IU-IL+1.

 W (output)
 The first M elements contain the selected eigen-
 values in ascending order.

 Z (input) If JOBZ = 'V', then if INFO = 0, the first M
 columns of Z contain the orthonormal eigenvectors

 of the matrix T corresponding to the selected
 eigenvalues, with the i-th column of Z holding the
 eigenvector associated with W(i). If JOBZ = 'N',
 then Z is not referenced. Note: the user must
 ensure that at least max(1,M) columns are supplied
 in the array Z; if RANGE = 'V', the exact value of
 M is not known in advance and an upper bound must
 be used.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if JOBZ = 'V', LDZ >= max(1,N).

 ISUPPZ (output)
 The support of the eigenvectors in Z, i.e., the
 indices indicating the nonzero elements in Z. The
 i-th eigenvector is nonzero only in elements
 ISUPPZ(2*i-1) through ISUPPZ(2*i).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 (and minimal) LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,18*N)

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace/output)
 On exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >=
 max(1,10*N)

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = 1, internal error in SLARRE, if
 INFO = 2, internal error in CLARRV.

FURTHER DETAILS

 Based on contributions by
 Inderjit Dhillon, IBM Almaden, USA
 Osni Marques, LBNL/NERSC, USA
 Ken Stanley, Computer Science Division, University of
 California at Berkeley, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zstein - compute the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration

SYNOPSIS

 SUBROUTINE ZSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
 IFAIL, INFO)

 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER N, M, LDZ, INFO
 INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 SUBROUTINE ZSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
 IWORK, IFAIL, INFO)

 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER*8 N, M, LDZ, INFO
 INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
 DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEIN([N], D, E, [M], W, IBLOCK, ISPLIT, Z, [LDZ], [WORK],
 [IWORK], IFAIL, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, M, LDZ, INFO
 INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL(8), DIMENSION(:) :: D, E, W, WORK

 SUBROUTINE STEIN_64([N], D, E, [M], W, IBLOCK, ISPLIT, Z, [LDZ],
 [WORK], [IWORK], IFAIL, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, M, LDZ, INFO
 INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
 REAL(8), DIMENSION(:) :: D, E, W, WORK

 C INTERFACE
 #include <sunperf.h>

 void zstein(int n, double *d, double *e, int m, double *w,

 int *iblock, int *isplit, doublecomplex *z, int
 ldz, int *ifail, int *info);
 void zstein_64(long n, double *d, double *e, long m, double
 *w, long *iblock, long *isplit, doublecomplex *z,
 long ldz, long *ifail, long *info);

PURPOSE

 zstein computes the eigenvectors of a real symmetric tridi-
 agonal matrix T corresponding to specified eigenvalues,
 using inverse iteration.

 The maximum number of iterations allowed for each eigenvec-
 tor is specified by an internal parameter MAXITS (currently
 set to 5).

 Although the eigenvectors are real, they are stored in a
 complex array, which may be passed to CUNMTR or CUPMTR for
 back
 transformation to the eigenvectors of a complex Hermitian
 matrix which was reduced to tridiagonal form.

ARGUMENTS

 N (input) The order of the matrix. N >= 0.

 D (input) The n diagonal elements of the tridiagonal matrix
 T.

 E (input) The (n-1) subdiagonal elements of the tridiagonal
 matrix T, stored in elements 1 to N-1; E(N) need
 not be set.

 M (input) The number of eigenvectors to be found. 0 <= M <=
 N.

 W (input) The first M elements of W contain the eigenvalues
 for which eigenvectors are to be computed. The
 eigenvalues should be grouped by split-off block
 and ordered from smallest to largest within the
 block. (The output array W from SSTEBZ with
 ORDER = 'B' is expected here.)

 IBLOCK (input)
 The submatrix indices associated with the
 corresponding eigenvalues in W; IBLOCK(i)=1 if
 eigenvalue W(i) belongs to the first submatrix
 from the top, =2 if W(i) belongs to the second
 submatrix, etc. (The output array IBLOCK from
 SSTEBZ is expected here.)

 ISPLIT (input)
 The splitting points, at which T breaks up into
 submatrices. The first submatrix consists of
 rows/columns 1 to ISPLIT(1), the second of
 rows/columns ISPLIT(1)+1 through ISPLIT(2),
 etc. (The output array ISPLIT from SSTEBZ is
 expected here.)

 Z (output)

 The computed eigenvectors. The eigenvector asso-
 ciated with the eigenvalue W(i) is stored in the
 i-th column of Z. Any vector which fails to con-
 verge is set to its current iterate after MAXITS
 iterations. The imaginary parts of the eigenvec-
 tors are set to zero.

 LDZ (input)
 The leading dimension of the array Z. LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(5*N)

 IWORK (workspace)
 dimension(N)

 IFAIL (output)
 On normal exit, all elements of IFAIL are zero.
 If one or more eigenvectors fail to converge after
 MAXITS iterations, then their indices are stored
 in array IFAIL.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, then i eigenvectors failed to
 converge in MAXITS iterations. Their indices are
 stored in array IFAIL.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsteqr - compute all eigenvalues and, optionally, eigenvec-
 tors of a symmetric tridiagonal matrix using the implicit QL
 or QR method

SYNOPSIS

 SUBROUTINE ZSTEQR(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 SUBROUTINE ZSTEQR_64(COMPZ, N, D, E, Z, LDZ, WORK, INFO)

 CHARACTER * 1 COMPZ
 DOUBLE COMPLEX Z(LDZ,*)
 INTEGER*8 N, LDZ, INFO
 DOUBLE PRECISION D(*), E(*), WORK(*)

 F95 INTERFACE
 SUBROUTINE STEQR(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 SUBROUTINE STEQR_64(COMPZ, [N], D, E, Z, [LDZ], [WORK], [INFO])

 CHARACTER(LEN=1) :: COMPZ
 COMPLEX(8), DIMENSION(:,:) :: Z
 INTEGER(8) :: N, LDZ, INFO
 REAL(8), DIMENSION(:) :: D, E, WORK

 C INTERFACE
 #include <sunperf.h>

 void zsteqr(char compz, int n, double *d, double *e, doub-
 lecomplex *z, int ldz, int *info);

 void zsteqr_64(char compz, long n, double *d, double *e,
 doublecomplex *z, long ldz, long *info);

PURPOSE

 zsteqr computes all eigenvalues and, optionally,
 eigenvectors of a symmetric tridiagonal matrix using the
 implicit QL or QR method. The eigenvectors of a full or
 band complex Hermitian matrix can also be found if CHETRD or
 CHPTRD or CHBTRD has been used to reduce this matrix to tri-
 diagonal form.

ARGUMENTS

 COMPZ (input)
 = 'N': Compute eigenvalues only.
 = 'V': Compute eigenvalues and eigenvectors of
 the original Hermitian matrix. On entry, Z must
 contain the unitary matrix used to reduce the ori-
 ginal matrix to tridiagonal form. = 'I': Compute
 eigenvalues and eigenvectors of the tridiagonal
 matrix. Z is initialized to the identity matrix.

 N (input) The order of the matrix. N >= 0.

 D (input/output)
 On entry, the diagonal elements of the tridiagonal
 matrix. On exit, if INFO = 0, the eigenvalues in
 ascending order.

 E (input/output)
 On entry, the (n-1) subdiagonal elements of the
 tridiagonal matrix. On exit, E has been des-
 troyed.

 Z (input) On entry, if COMPZ = 'V', then Z contains the
 unitary matrix used in the reduction to tridiago-
 nal form. On exit, if INFO = 0, then if COMPZ =
 'V', Z contains the orthonormal eigenvectors of
 the original Hermitian matrix, and if COMPZ = 'I',
 Z contains the orthonormal eigenvectors of the
 symmetric tridiagonal matrix. If COMPZ = 'N',
 then Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1,
 and if eigenvectors are desired, then LDZ >=
 max(1,N).

 WORK (workspace)
 dimension(max(1,2*N-2)) If COMPZ = 'N', then WORK
 is not referenced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: the algorithm has failed to find all the
 eigenvalues in a total of 30*N iterations; if INFO
 = i, then i elements of E have not converged to
 zero; on exit, D and E contain the elements of a
 symmetric tridiagonal matrix which is unitarily

 similar to the original matrix.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zstsv - compute the solution to a complex system of linear
 equations A * X = B where A is a Hermitian tridiagonal
 matrix

SYNOPSIS

 SUBROUTINE ZSTSV(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZSTSV_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STSV(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STSV_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zstsv(int n, int nrhs, doublecomplex *l, doublecomplex
 *d, doublecomplex *subl, doublecomplex *b, int
 ldb, int *ipiv, int *info);

 void zstsv_64(long n, long nrhs, doublecomplex *l, doub-
 lecomplex *d, doublecomplex *subl, doublecomplex
 *b, long ldb, long *ipiv, long *info);

PURPOSE

 zstsv computes the solution to a complex system of linear
 equations A * X = B where A is a Hermitian tridiagonal
 matrix.

ARGUMENTS

 N (input)
 The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides in B.

 L (input/output)
 COMPLEX array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 COMPLEX array, dimension (N)
 On exit, part of the factorization of A.

 B (input/output)
 The columns of B contain the right hand sides.

 LDB (input)
 The leading dimension of B as specified in a type
 or DIMENSION statement.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsttrf - compute the factorization of a complex Hermitian
 tridiagonal matrix A

SYNOPSIS

 SUBROUTINE ZSTTRF(N, L, D, SUBL, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*)
 INTEGER N, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZSTTRF_64(N, L, D, SUBL, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*)
 INTEGER*8 N, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STTRF([N], L, D, SUBL, IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 INTEGER :: N, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STTRF_64([N], L, D, SUBL, IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 INTEGER(8) :: N, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zsttrf(int n, doublecomplex *l, doublecomplex *d, doub-
 lecomplex *subl, int *ipiv, int *info);

 void zsttrf_64(long n, doublecomplex *l, doublecomplex *d,
 doublecomplex *subl, long *ipiv, long *info);

PURPOSE

 zsttrf computes the L*D*L**H factorization of a complex Her-
 mitian tridiagonal matrix A.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 L (input/output)
 COMPLEX array, dimension (N)
 On entry, the n-1 subdiagonal elements of the tri-
 diagonal matrix A. On exit, part of the factori-
 zation of A.

 D (input/output)
 REAL array, dimension (N)
 On entry, the n diagonal elements of the tridiago-
 nal matrix A. On exit, the n diagonal elements of
 the diagonal matrix D from the factorization of A.

 SUBL (output)
 COMPLEX array, dimension (N)
 On exit, part of the factorization of A.

 IPIV (output)
 INTEGER array, dimension (N)
 On exit, the pivot indices of the factorization.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular and division
 by zero will occur if it is used to solve a system
 of equations.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsttrs - computes the solution to a complex system of linear
 equations A * X = B

SYNOPSIS

 SUBROUTINE ZSTTRS(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZSTTRS_64(N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)

 DOUBLE COMPLEX L(*), D(*), SUBL(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE STTRS(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE STTRS_64(N, NRHS, L, D, SUBL, B, [LDB], IPIV, [INFO])

 COMPLEX(8), DIMENSION(:) :: L, D, SUBL
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zsttrs(int n, int nrhs, doublecomplex *l, doublecomplex
 *d, doublecomplex *subl, doublecomplex *b, int
 ldb, int *ipiv, int *info);

 void zsttrs_64(long n, long nrhs, doublecomplex *l, doub-
 lecomplex *d, doublecomplex *subl, doublecomplex
 *b, long ldb, long *ipiv, long *info);

PURPOSE

 zsttrs computes the solution to a complex system of linear
 equations A * X = B, where A is an N-by-N symmetric
 tridiagonal matrix and X and B are N-by-NRHS matrices.

ARGUMENTS

 N (input) INTEGER
 The order of the matrix A. N >= 0.

 NRHS (input)
 INTEGER
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 L (input) COMPLEX array, dimension (N-1)
 On entry, the subdiagonal elements of LL and DD.

 D (input) COMPLEX array, dimension (N)
 On entry, the diagonal elements of DD.

 SUBL (input)
 COMPLEX array, dimension (N-2)
 On entry, the second subdiagonal elements of LL.

 B (input/output)
 COMPLEX array, dimension (LDB, NRHS)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 INTEGER
 The leading dimension of the array B. LDB >=
 max(1, N)

 IPIV (output)
 INTEGER array, dimension (N)
 Details of the interchanges and block pivot. If
 IPIV(K) > 0, 1 by 1 pivot, and if IPIV(K) = K + 1
 an interchange done; If IPIV(K) < 0, 2 by 2
 pivot, no interchange required.

 INFO (output)
 INTEGER
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zswap - Exchange vectors x and y.

SYNOPSIS

 SUBROUTINE ZSWAP(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER N, INCX, INCY

 SUBROUTINE ZSWAP_64(N, X, INCX, Y, INCY)

 DOUBLE COMPLEX X(*), Y(*)
 INTEGER*8 N, INCX, INCY

 F95 INTERFACE
 SUBROUTINE SWAP([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER :: N, INCX, INCY

 SUBROUTINE SWAP_64([N], X, [INCX], Y, [INCY])

 COMPLEX(8), DIMENSION(:) :: X, Y
 INTEGER(8) :: N, INCX, INCY

 C INTERFACE
 #include <sunperf.h>

 void zswap(int n, doublecomplex *x, int incx, doublecomplex
 *y, int incy);

 void zswap_64(long n, doublecomplex *x, long incx, doub-
 lecomplex *y, long incy);

PURPOSE

 zswap Exchange x and y where x and y are n-vectors.

ARGUMENTS

 N (input)
 On entry, N specifies the number of elements in
 the vector. N must be at least one for the sub-
 routine to have any visible effect. Unchanged on
 exit.
 X (input/output)
 (1 + (n - 1)*abs(INCX)). On entry, the
 incremented array X must contain the vector x. On
 exit, the y vector.

 INCX (input)
 On entry, INCX specifies the increment for the
 elements of X. INCX must not be zero. Unchanged
 on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). On entry, the
 incremented array Y must contain the vector y. On
 exit, the x vector.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY must not be zero. Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsycon - estimate the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric matrix A using the fac-
 torization A = U*D*U**T or A = L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE ZSYCON(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 SUBROUTINE ZSYCON_64(UPLO, N, A, LDA, IPIVOT, ANORM, RCOND, WORK,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION ANORM, RCOND

 F95 INTERFACE
 SUBROUTINE SYCON(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 SUBROUTINE SYCON_64(UPLO, [N], A, [LDA], IPIVOT, ANORM, RCOND, [WORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: ANORM, RCOND

 C INTERFACE
 #include <sunperf.h>
 void zsycon(char uplo, int n, doublecomplex *a, int lda, int
 *ipivot, double anorm, double *rcond, int *info);

 void zsycon_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, double anorm, double *rcond,
 long *info);

PURPOSE

 zsycon estimates the reciprocal of the condition number (in
 the 1-norm) of a complex symmetric matrix A using the fac-
 torization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal
 of the condition number is computed as RCOND = 1 / (ANORM *
 norm(inv(A))).

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 ANORM (input)
 The 1-norm of the original matrix A.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(ANORM * AINVNM),
 where AINVNM is an estimate of the 1-norm of
 inv(A) computed in this routine.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsymm - perform one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C

SYNOPSIS

 SUBROUTINE ZSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER M, N, LDA, LDB, LDC

 SUBROUTINE ZSYMM_64(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 SIDE, UPLO
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 M, N, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE SYMM(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: M, N, LDA, LDB, LDC

 SUBROUTINE SYMM_64(SIDE, UPLO, [M], [N], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: SIDE, UPLO
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: M, N, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void zsymm(char side, char uplo, int m, int n, doublecomplex
 *alpha, doublecomplex *a, int lda, doublecomplex

 *b, int ldb, doublecomplex *beta, doublecomplex
 *c, int ldc);
 void zsymm_64(char side, char uplo, long m, long n, doub-
 lecomplex *alpha, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, doublecomplex *beta,
 doublecomplex *c, long ldc);

PURPOSE

 zsymm performs one of the matrix-matrix operations C :=
 alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha
 and beta are scalars, A is a symmetric matrix and B and C
 are m by n matrices.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether the symmetric
 matrix A appears on the left or right in the
 operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the symmetric
 matrix A is to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part
 of the symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part
 of the symmetric matrix is to be referenced.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of the
 matrix C. M >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of the
 matrix C. N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka), where
 ka is m when SIDE = 'L' or 'l' and is n other-
 wise.

 Before entry with SIDE = 'L' or 'l', the m by
 m part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',

 the leading m by m upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading m by m
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Before entry with SIDE = 'R' or 'r', the n by
 n part of the array A must contain the sym-
 metric matrix, such that when UPLO = 'U' or 'u',
 the leading n by n upper triangular part of the
 array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower
 triangular part of A is not referenced, and
 when UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must con-
 tain the lower triangular part of the sym-
 metric matrix and the strictly upper triangular
 part of A is not referenced.

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1, m), other-
 wise LDA >= max(1, n). Unchanged on exit.

 B (input)
 COMPLEX*16 array of DIMENSION (LDB, n). Before
 entry, the leading m by n part of the array B
 must contain the matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 LDB >= max(1, m). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta. When
 BETA is supplied as zero then C need not be set
 on input. Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n). Before
 entry, the leading m by n part of the array C
 must contain the matrix C, except when beta is
 zero, in which case C need not be set on entry.
 On exit, the array C is overwritten by the m by
 n updated matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC >= max(1, m). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsyr2k - perform one of the symmetric rank 2k operations C
 := alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C

SYNOPSIS

 SUBROUTINE ZSYR2K(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
 LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER N, K, LDA, LDB, LDC

 SUBROUTINE ZSYR2K_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA,
 C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDB, LDC

 F95 INTERFACE
 SUBROUTINE SYR2K(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B, [LDB],
 BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: N, K, LDA, LDB, LDC

 SUBROUTINE SYR2K_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], B,
 [LDB], BETA, C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: N, K, LDA, LDB, LDC

 C INTERFACE
 #include <sunperf.h>

 void zsyr2k(char uplo, char transa, int n, int k, doublecom-

 plex *alpha, doublecomplex *a, int lda, doublecom-
 plex *b, int ldb, doublecomplex *beta, doublecom-
 plex *c, int ldc);
 void zsyr2k_64(char uplo, char transa, long n, long k, doub-
 lecomplex *alpha, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, doublecomplex *beta,
 doublecomplex *c, long ldc);

PURPOSE

 zsyr2k performs one of the symmetric rank 2k operations C :=
 alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B +
 alpha*B'*A + beta*C where alpha and beta are scalars, C
 is an n by n symmetric matrix and A and B are n by k
 matrices in the first case and k by n matrices in the
 second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*B' +
 alpha*B*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*B +
 alpha*B'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrices A and B,
 and on entry with TRANSA = 'T' or 't', K
 specifies the number of rows of the matrices A
 and B. K must be at least zero. Unchanged on
 exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.

 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading
 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 B (input)
 COMPLEX*16 array of DIMENSION (LDB, kb),
 where kb is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array B
 must contain the matrix B, otherwise the leading
 k by n part of the array B must contain the
 matrix B. Unchanged on exit.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDB must be at
 least max(1, n), otherwise LDB must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.
 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsyrfs - improve the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution

SYNOPSIS

 SUBROUTINE ZSYRFS(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZSYRFS_64(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SYRFS(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SYRFS_64(UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT, B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK

 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2
 C INTERFACE
 #include <sunperf.h>

 void zsyrfs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, doublecomplex *af, int ldaf, int *ipivot,
 doublecomplex *b, int ldb, doublecomplex *x, int
 ldx, double *ferr, double *berr, int *info);

 void zsyrfs_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, doublecomplex *af, long ldaf, long
 *ipivot, doublecomplex *b, long ldb, doublecomplex
 *x, long ldx, double *ferr, double *berr, long
 *info);

PURPOSE

 zsyrfs improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefin-
 ite, and provides error bounds and backward error estimates
 for the solution.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 AF (input)
 The factored form of the matrix A. AF contains
 the block diagonal matrix D and the multipliers
 used to obtain the factor U or L from the factori-
 zation A = U*D*U**T or A = L*D*L**T as computed by
 CSYTRF.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input/output)
 On entry, the solution matrix X, as computed by
 CSYTRS. On exit, the improved solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsyrk - perform one of the symmetric rank k operations C
 := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C

SYNOPSIS

 SUBROUTINE ZSYRK(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), C(LDC,*)
 INTEGER N, K, LDA, LDC

 SUBROUTINE ZSYRK_64(UPLO, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)

 CHARACTER * 1 UPLO, TRANSA
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX A(LDA,*), C(LDC,*)
 INTEGER*8 N, K, LDA, LDC

 F95 INTERFACE
 SUBROUTINE SYRK(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA, C,
 [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: N, K, LDA, LDC

 SUBROUTINE SYRK_64(UPLO, [TRANSA], [N], [K], ALPHA, A, [LDA], BETA,
 C, [LDC])

 CHARACTER(LEN=1) :: UPLO, TRANSA
 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: N, K, LDA, LDC

 C INTERFACE
 #include <sunperf.h>

 void zsyrk(char uplo, char transa, int n, int k, doublecom-
 plex *alpha, doublecomplex *a, int lda, doublecom-
 plex *beta, doublecomplex *c, int ldc);

 void zsyrk_64(char uplo, char transa, long n, long k, doub-
 lecomplex *alpha, doublecomplex *a, long lda,
 doublecomplex *beta, doublecomplex *c, long ldc);

PURPOSE

 zsyrk performs one of the symmetric rank k operations C :=
 alpha*A*A' + beta*C or C := alpha*A'*A + beta*C where alpha
 and beta are scalars, C is an n by n symmetric matrix and
 A is an n by k matrix in the first case and a k by n
 matrix in the second case.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the upper
 or lower triangular part of the array C is
 to be referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular
 part of C is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular
 part of C is to be referenced.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANSA = 'T' or 't' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 N (input)
 On entry, N specifies the order of the matrix C.
 N must be at least zero. Unchanged on exit.

 K (input)
 On entry with TRANSA = 'N' or 'n', K specifies
 the number of columns of the matrix A,
 and on entry with TRANSA = 'T' or 't', K
 specifies the number of rows of the matrix A. K
 must be at least zero. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, ka),
 where ka is k when TRANSA = 'N' or 'n', and is
 n otherwise. Before entry with TRANSA = 'N' or
 'n', the leading n by k part of the array A
 must contain the matrix A, otherwise the leading

 k by n part of the array A must contain the
 matrix A. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program.
 When TRANSA = 'N' or 'n' then LDA must be at
 least max(1, n), otherwise LDA must be at
 least max(1, k). Unchanged on exit.

 BETA (input)
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C (input/output)
 COMPLEX*16 array of DIMENSION (LDC, n).

 Before entry with UPLO = 'U' or 'u', the lead-
 ing n by n upper triangular part of the array C
 must contain the upper triangular part of the
 symmetric matrix and the strictly lower triangu-
 lar part of C is not referenced. On exit, the
 upper triangular part of the array C is overwrit-
 ten by the upper triangular part of the updated
 matrix.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing n by n lower triangular part of the array C
 must contain the lower triangular part of the
 symmetric matrix and the strictly upper triangu-
 lar part of C is not referenced. On exit, the
 lower triangular part of the array C is overwrit-
 ten by the lower triangular part of the updated
 matrix.

 LDC (input)
 On entry, LDC specifies the first dimension of C
 as declared in the calling (sub) program.
 LDC must be at least max(1, n). Unchanged
 on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsysv - compute the solution to a complex system of linear
 equations A * X = B,

SYNOPSIS

 SUBROUTINE ZSYSV(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK, LDWORK,
 INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSYSV_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, WORK,
 LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYSV(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYSV_64(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [WORK],
 [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsysv(char uplo, int n, int nrhs, doublecomplex *a, int
 lda, int *ipivot, doublecomplex *b, int ldb, int
 *info);
 void zsysv_64(char uplo, long n, long nrhs, doublecomplex
 *a, long lda, long *ipivot, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zsysv computes the solution to a complex system of linear
 equations
 A * X = B, where A is an N-by-N symmetric matrix and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks. The fac-
 tored form of A is then used to solve the system of equa-
 tions A * X = B.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, if INFO = 0, the block diagonal matrix D
 and the multipliers used to obtain the factor U or
 L from the factorization A = U*D*U**T or A =
 L*D*L**T as computed by CSYTRF.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D, as determined by CSYTRF. If IPIVOT(k)
 > 0, then rows and columns k and IPIVOT(k) were
 interchanged, and D(k,k) is a 1-by-1 diagonal
 block. If UPLO = 'U' and IPIVOT(k) = IPIVOT(k-1)

 < 0, then rows and columns k-1 and -IPIVOT(k) were
 interchanged and D(k-1:k,k-1:k) is a 2-by-2 diago-
 nal block. If UPLO = 'L' and IPIVOT(k) =
 IPIVOT(k+1) < 0, then rows and columns k+1 and
 -IPIVOT(k) were interchanged and D(k:k+1,k:k+1) is
 a 2-by-2 diagonal block.

 B (input/output)
 On entry, the N-by-NRHS right hand side matrix B.
 On exit, if INFO = 0, the N-by-NRHS solution
 matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 1, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, so the
 solution could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsysvx - use the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B,

SYNOPSIS

 SUBROUTINE ZSYSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT, B,
 LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZSYSVX_64(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIVOT,
 B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LDWORK, WORK2, INFO)

 CHARACTER * 1 FACT, UPLO
 DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
 WORK(*)
 INTEGER*8 N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER*8 IPIVOT(*)
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE SYSVX(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF], IPIVOT,
 B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE SYSVX_64(FACT, UPLO, N, NRHS, A, [LDA], AF, [LDAF],
 IPIVOT, B, [LDB], X, [LDX], RCOND, FERR, BERR, [WORK], [LDWORK],

 [WORK2], [INFO])

 CHARACTER(LEN=1) :: FACT, UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, AF, B, X
 INTEGER(8) :: N, NRHS, LDA, LDAF, LDB, LDX, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void zsysvx(char fact, char uplo, int n, int nrhs, doub-
 lecomplex *a, int lda, doublecomplex *af, int
 ldaf, int *ipivot, doublecomplex *b, int ldb,
 doublecomplex *x, int ldx, double *rcond, double
 *ferr, double *berr, int *info);

 void zsysvx_64(char fact, char uplo, long n, long nrhs,
 doublecomplex *a, long lda, doublecomplex *af,
 long ldaf, long *ipivot, doublecomplex *b, long
 ldb, doublecomplex *x, long ldx, double *rcond,
 double *ferr, double *berr, long *info);

PURPOSE

 zsysvx uses the diagonal pivoting factorization to compute
 the solution to a complex system of linear equations A * X =
 B, where A is an N-by-N symmetric matrix and X and B are N-
 by-NRHS matrices.

 Error bounds on the solution and a condition estimate are
 also provided.

 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to
 factor A.
 The form of the factorization is
 A = U * D * U**T, if UPLO = 'U', or
 A = L * D * L**T, if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper
 (lower)
 triangular matrices, and D is symmetric and block diago-
 nal with
 1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the
 routine
 returns with INFO = i. Otherwise, the factored form of A
 is used
 to estimate the condition number of the matrix A. If the
 reciprocal of the condition number is less than machine
 precision,
 INFO = N+1 is returned as a warning, but the routine
 still goes on
 to solve for X and compute error bounds as described
 below.

 3. The system of equations is solved for X using the fac-
 tored form

 of A.

 4. Iterative refinement is applied to improve the computed
 solution
 matrix and calculate error bounds and backward error
 estimates
 for it.

ARGUMENTS

 FACT (input)
 Specifies whether or not the factored form of A
 has been supplied on entry. = 'F': On entry, AF
 and IPIVOT contain the factored form of A. A, AF
 and IPIVOT will not be modified. = 'N': The
 matrix A will be copied to AF and factored.

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The number of linear equations, i.e., the order of
 the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The symmetric matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of A contains the
 upper triangular part of the matrix A, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of A contains the lower triangular
 part of the matrix A, and the strictly upper tri-
 angular part of A is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).
 AF (input/output)
 If FACT = 'F', then AF is an input argument and on
 entry contains the block diagonal matrix D and the
 multipliers used to obtain the factor U or L from
 the factorization A = U*D*U**T or A = L*D*L**T as
 computed by CSYTRF.

 If FACT = 'N', then AF is an output argument and
 on exit returns the block diagonal matrix D and
 the multipliers used to obtain the factor U or L
 from the factorization A = U*D*U**T or A =
 L*D*L**T.

 LDAF (input)
 The leading dimension of the array AF. LDAF >=
 max(1,N).

 IPIVOT (input or output)
 If FACT = 'F', then IPIVOT is an input argument
 and on entry contains details of the interchanges
 and the block structure of D, as determined by
 CSYTRF. If IPIVOT(k) > 0, then rows and columns k

 and IPIVOT(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and
 IPIVOT(k) = IPIVOT(k-1) < 0, then rows and columns
 k-1 and -IPIVOT(k) were interchanged and D(k-
 1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO =
 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then rows and
 columns k+1 and -IPIVOT(k) were interchanged and
 D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

 If FACT = 'N', then IPIVOT is an output argument
 and on exit contains details of the interchanges
 and the block structure of D, as determined by
 CSYTRF.

 B (input) The N-by-NRHS right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (output)
 If INFO = 0 or INFO = N+1, the N-by-NRHS solution
 matrix X.
 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 RCOND (output)
 The estimate of the reciprocal condition number of
 the matrix A. If RCOND is less than the machine
 precision (in particular, if RCOND = 0), the
 matrix is singular to working precision. This
 condition is indicated by a return code of INFO >
 0.

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >= 2*N, and for best
 performance LDWORK >= N*NB, where NB is the
 optimal blocksize for CSYTRF.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first

 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 WORK2 (workspace)
 dimension(N)
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, and i is
 <= N: D(i,i) is exactly zero. The factorization
 has been completed but the factor D is exactly
 singular, so the solution and error bounds could
 not be computed. RCOND = 0 is returned. = N+1: D
 is nonsingular, but RCOND is less than machine
 precision, meaning that the matrix is singular to
 working precision. Nevertheless, the solution and
 error bounds are computed because there are a
 number of situations where the computed solution
 can be more accurate than the value of RCOND would
 suggest.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zsytf2 - compute the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE ZSYTF2(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO
 INTEGER IPIV(*)

 SUBROUTINE ZSYTF2_64(UPLO, N, A, LDA, IPIV, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIV(*)

 F95 INTERFACE
 SUBROUTINE SYTF2(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIV

 SUBROUTINE SYTF2_64(UPLO, [N], A, [LDA], IPIV, [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIV

 C INTERFACE
 #include <sunperf.h>

 void zsytf2(char uplo, int n, doublecomplex *a, int lda, int
 *ipiv, int *info);

 void zsytf2_64(char uplo, long n, doublecomplex *a, long

 lda, long *ipiv, long *info);

PURPOSE

 zsytf2 computes the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method:
 A = U*D*U' or A = L*D*L'

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, U' is the transpose of U, and D
 is symmetric and block diagonal with 1-by-1 and 2-by-2 diag-
 onal blocks.

 This is the unblocked version of the algorithm, calling
 Level 2 BLAS.

ARGUMENTS

 UPLO (input)
 Specifies whether the upper or lower triangular
 part of the symmetric matrix A is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading n-by-n upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n-by-n
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIV (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIV(k) > 0, then rows and columns
 k and IPIV(k) were interchanged and D(k,k) is a
 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k)
 = IPIV(k-1) < 0, then rows and columns k-1 and
 -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a
 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k)
 = IPIV(k+1) < 0, then rows and columns k+1 and
 -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a
 2-by-2 diagonal block.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

 > 0: if INFO = k, D(k,k) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 1-96 - Based on modifications by J. Lewis, Boeing Computer
 Services
 Company

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIV(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1
 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zsytrf - compute the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method

SYNOPSIS

 SUBROUTINE ZSYTRF(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, LDWORK, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSYTRF_64(UPLO, N, A, LDA, IPIVOT, WORK, LDWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, LDWORK, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRF(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LDWORK, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRF_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [LDWORK],
 [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LDWORK, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsytrf(char uplo, int n, doublecomplex *a, int lda, int

 *ipivot, int *info);

 void zsytrf_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, long *info);

PURPOSE

 zsytrf computes the factorization of a complex symmetric
 matrix A using the Bunch-Kaufman diagonal pivoting method.
 The form of the factorization is

 A = U*D*U**T or A = L*D*L**T

 where U (or L) is a product of permutation and unit upper
 (lower) triangular matrices, and D is symmetric and block
 diagonal with with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level
 3 BLAS.

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A is stored;
 = 'L': Lower triangle of A is stored.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the symmetric matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of A con-
 tains the upper triangular part of the matrix A,
 and the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of A contains the lower tri-
 angular part of the matrix A, and the strictly
 upper triangular part of A is not referenced.

 On exit, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L (see
 below for further details).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (output)
 Details of the interchanges and the block struc-
 ture of D. If IPIVOT(k) > 0, then rows and
 columns k and IPIVOT(k) were interchanged and
 D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U'
 and IPIVOT(k) = IPIVOT(k-1) < 0, then rows and
 columns k-1 and -IPIVOT(k) were interchanged and
 D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If
 UPLO = 'L' and IPIVOT(k) = IPIVOT(k+1) < 0, then
 rows and columns k+1 and -IPIVOT(k) were inter-
 changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal
 block.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LDWORK.

 LDWORK (input)
 The length of WORK. LDWORK >=1. For best perfor-
 mance LDWORK >= N*NB, where NB is the block size
 returned by ILAENV.

 If LDWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LDWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) is exactly zero. The
 factorization has been completed, but the block
 diagonal matrix D is exactly singular, and divi-
 sion by zero will occur if it is used to solve a
 system of equations.

FURTHER DETAILS

 If UPLO = 'U', then A = U*D*U', where
 U = P(n)*U(n)* ... *P(k)U(k)* ...,
 i.e., U is a product of terms P(k)*U(k), where k decreases
 from n to 1 in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and U(k) is a
 unit upper triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I v 0) k-s
 U(k) = (0 I 0) s
 (0 0 I) n-k
 k-s s n-k

 If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-
 1,k). If s = 2, the upper triangle of D(k) overwrites A(k-
 1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-
 1:k).

 If UPLO = 'L', then A = L*D*L', where
 L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 i.e., L is a product of terms P(k)*L(k), where k increases
 from 1 to n in steps of 1 or 2, and D is a block diagonal
 matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is
 a permutation matrix as defined by IPIVOT(k), and L(k) is a
 unit lower triangular matrix, such that if the diagonal
 block D(k) is of order s (s = 1 or 2), then

 (I 0 0) k-1
 L(k) = (0 I 0) s
 (0 v I) n-k-s+1
 k-1 s n-k-s+1

 If s = 1, D(k) overwrites A(k,k), and v overwrites
 A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites
 A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites
 A(k+2:n,k:k+1).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsytri - compute the inverse of a complex symmetric indefin-
 ite matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE ZSYTRI(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSYTRI_64(UPLO, N, A, LDA, IPIVOT, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRI(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRI_64(UPLO, N, A, [LDA], IPIVOT, [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsytri(char uplo, int n, doublecomplex *a, int lda, int
 *ipivot, int *info);

 void zsytri_64(char uplo, long n, doublecomplex *a, long
 lda, long *ipivot, long *info);

PURPOSE

 zsytri computes the inverse of a complex symmetric indefin-
 ite matrix A using the factorization A = U*D*U**T or A =
 L*D*L**T computed by CSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the block diagonal matrix D and the mul-
 tipliers used to obtain the factor U or L as com-
 puted by CSYTRF.

 On exit, if INFO = 0, the (symmetric) inverse of
 the original matrix. If UPLO = 'U', the upper
 triangular part of the inverse is formed and the
 part of A below the diagonal is not referenced; if
 UPLO = 'L' the lower triangular part of the
 inverse is formed and the part of A above the
 diagonal is not referenced.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 WORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, D(i,i) = 0; the matrix is singu-
 lar and its inverse could not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zsytrs - solve a system of linear equations A*X = B with a
 complex symmetric matrix A using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSYTRF

SYNOPSIS

 SUBROUTINE ZSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO
 INTEGER IPIVOT(*)

 SUBROUTINE ZSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO
 INTEGER*8 IPIVOT(*)

 F95 INTERFACE
 SUBROUTINE SYTRS(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO
 INTEGER, DIMENSION(:) :: IPIVOT

 SUBROUTINE SYTRS_64(UPLO, N, NRHS, A, [LDA], IPIVOT, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO
 INTEGER(8), DIMENSION(:) :: IPIVOT

 C INTERFACE
 #include <sunperf.h>

 void zsytrs(char uplo, int n, int nrhs, doublecomplex *a,
 int lda, int *ipivot, doublecomplex *b, int ldb,
 int *info);

 void zsytrs_64(char uplo, long n, long nrhs, doublecomplex

 *a, long lda, long *ipivot, doublecomplex *b, long
 ldb, long *info);

PURPOSE

 zsytrs solves a system of linear equations A*X = B with a
 complex symmetric matrix A using the factorization A =
 U*D*U**T or A = L*D*L**T computed by CSYTRF.

ARGUMENTS

 UPLO (input)
 Specifies whether the details of the factorization
 are stored as an upper or lower triangular matrix.
 = 'U': Upper triangular, form is A = U*D*U**T;
 = 'L': Lower triangular, form is A = L*D*L**T.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The block diagonal matrix D and the multipliers
 used to obtain the factor U or L as computed by
 CSYTRF.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 IPIVOT (input)
 Details of the interchanges and the block struc-
 ture of D as determined by CSYTRF.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztbcon - estimate the reciprocal of the condition number of
 a triangular band matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE ZTBCON(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, NDIAG, LDA, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZTBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, LDA, RCOND, WORK,
 WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, NDIAG, LDA, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE TBCON(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE TBCON_64(NORM, UPLO, DIAG, N, NDIAG, A, [LDA], RCOND,
 [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INFO
 REAL(8) :: RCOND

 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void ztbcon(char norm, char uplo, char diag, int n, int
 ndiag, doublecomplex *a, int lda, double *rcond,
 int *info);

 void ztbcon_64(char norm, char uplo, char diag, long n, long
 ndiag, doublecomplex *a, long lda, double *rcond,
 long *info);

PURPOSE

 ztbcon estimates the reciprocal of the condition number of a
 triangular band matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 RCOND (output)
 The reciprocal of the condition number of the

 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztbmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE ZTBMV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER N, NDIAG, LDA, INCY

 SUBROUTINE ZTBMV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TBMV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCY

 SUBROUTINE TBMV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztbmv(char uplo, char transa, char diag, int n, int
 ndiag, doublecomplex *a, int lda, doublecomplex
 *y, int incy);

 void ztbmv_64(char uplo, char transa, char diag, long n,
 long ndiag, doublecomplex *a, long lda, doublecom-
 plex *y, long incy);

PURPOSE

 ztbmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular band matrix, with (ndiag + 1) diagonals.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=
 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (

 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztbrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix

SYNOPSIS

 SUBROUTINE ZTBRFS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZTBRFS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, X, LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TBRFS(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, X
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TBRFS_64(UPLO, [TRANSA], DIAG, N, NDIAG, NRHS, A, [LDA],
 B, [LDB], X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, X
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ztbrfs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, doublecomplex *a, int lda, doub-
 lecomplex *b, int ldb, doublecomplex *x, int ldx,
 double *ferr, double *berr, int *info);

 void ztbrfs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, doublecomplex *a, long lda,
 doublecomplex *b, long ldb, doublecomplex *x, long
 ldx, double *ferr, double *berr, long *info);

PURPOSE

 ztbrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular band coefficient matrix.

 The solution matrix X must be computed by CTBTRS or some
 other means before entering this routine. CTBRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.
 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of the array. The
 j-th column of A is stored in the j-th column of
 the array A as follows: if UPLO = 'U', A(kd+1+i-
 j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO =
 'L', A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
 If DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=

 NDIAG+1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)
 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztbsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE ZTBSV(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER N, NDIAG, LDA, INCY

 SUBROUTINE ZTBSV_64(UPLO, TRANSA, DIAG, N, NDIAG, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, NDIAG, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TBSV(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, NDIAG, LDA, INCY

 SUBROUTINE TBSV_64(UPLO, [TRANSA], DIAG, [N], NDIAG, A, [LDA], Y,
 [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, NDIAG, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztbsv(char uplo, char transa, char diag, int n, int
 ndiag, doublecomplex *a, int lda, doublecomplex
 *y, int incy);

 void ztbsv_64(char uplo, char transa, char diag, long n,
 long ndiag, doublecomplex *a, long lda, doublecom-
 plex *y, long incy);

PURPOSE

 ztbsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular band matrix, with (ndiag + 1) diagonals.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.
 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 NDIAG (input)
 On entry with UPLO = 'U' or 'u', NDIAG specifies
 the number of super-diagonals of the matrix A. On
 entry with UPLO = 'L' or 'l', NDIAG specifies the
 number of sub-diagonals of the matrix A. NDIAG >=

 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading (
 ndiag + 1) by n part of the array A must contain
 the upper triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row (ndiag + 1
) of the array, the first super-diagonal starting
 at position 2 in row ndiag, and so on. The top
 left ndiag by ndiag triangle of the array A is not
 referenced. The following program segment will
 transfer an upper triangular band matrix from con-
 ventional full matrix storage to band storage:

 DO 20, J = 1, N
 M = NDIAG + 1 - J
 DO 10, I = MAX(1, J - NDIAG), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (
 ndiag + 1) by n part of the array A must contain
 the lower triangular band part of the matrix of
 coefficients, supplied column by column, with the
 leading diagonal of the matrix in row 1 of the
 array, the first sub-diagonal starting at position
 1 in row 2, and so on. The bottom right ndiag by
 ndiag triangle of the array A is not referenced.
 The following program segment will transfer a
 lower triangular band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + NDIAG)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE
 Note that when DIAG = 'U' or 'u' the elements of
 the array A corresponding to the diagonal elements
 of the matrix are not referenced, but are assumed
 to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >= (
 ndiag + 1). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztbtrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZTBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE ZTBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, LDA, B,
 LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NDIAG, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NDIAG, NRHS, LDA, LDB, INFO

 SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, NDIAG, NRHS, A, [LDA], B,
 [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NDIAG, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztbtrs(char uplo, char transa, char diag, int n, int
 ndiag, int nrhs, doublecomplex *a, int lda, doub-
 lecomplex *b, int ldb, int *info);

 void ztbtrs_64(char uplo, char transa, char diag, long n,
 long ndiag, long nrhs, doublecomplex *a, long lda,

 doublecomplex *b, long ldb, long *info);

PURPOSE

 ztbtrs solves a triangular system of the form

 where A is a triangular band matrix of order N, and B is an
 N-by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NDIAG (input)
 The number of superdiagonals or subdiagonals of
 the triangular band matrix A. NDIAG >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular band matrix A,
 stored in the first kd+1 rows of A. The j-th
 column of A is stored in the j-th column of the
 array A as follows: if UPLO = 'U', A(kd+1+i-j,j)
 = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
 A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If
 DIAG = 'U', the diagonal elements of A are not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 NDIAG+1.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-

 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztgevc - compute some or all of the right and/or left gen-
 eralized eigenvectors of a pair of complex upper triangular
 matrices (A,B)

SYNOPSIS

 SUBROUTINE ZTGEVC(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZTGEVC_64(SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE TGEVC(SIDE, HOWMNY, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE TGEVC_64(SIDE, HOWMNY, SELECT, [N], A, [LDA], B, [LDB],
 VL, [LDVL], VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR

 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK
 C INTERFACE
 #include <sunperf.h>

 void ztgevc(char side, char howmny, int *select, int n,
 doublecomplex *a, int lda, doublecomplex *b, int
 ldb, doublecomplex *vl, int ldvl, doublecomplex
 *vr, int ldvr, int mm, int *m, int *info);

 void ztgevc_64(char side, char howmny, long *select, long n,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, doublecomplex *vl, long ldvl, doublecomplex
 *vr, long ldvr, long mm, long *m, long *info);

PURPOSE

 ztgevc computes some or all of the right and/or left gen-
 eralized eigenvectors of a pair of complex upper triangular
 matrices (A,B).

 The right generalized eigenvector x and the left generalized
 eigenvector y of (A,B) corresponding to a generalized eigen-
 value w are defined by:

 (A - wB) * x = 0 and y**H * (A - wB) = 0

 where y**H denotes the conjugate tranpose of y.

 If an eigenvalue w is determined by zero diagonal elements
 of both A and B, a unit vector is returned as the
 corresponding eigenvector.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of (A,B), or the products Z*X and/or Q*Y, where Z and Q are
 input unitary matrices. If (A,B) was obtained from the gen-
 eralized Schur factorization of an original pair of matrices
 (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
 then Z*X and Q*Y are the matrices of right or left eigenvec-
 tors of A.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvectors;
 = 'B': compute all right and/or left eigenvectors,
 and backtransform them using the input matrices
 supplied in VR and/or VL; = 'S': compute selected
 right and/or left eigenvectors, specified by the
 logical array SELECT.

 SELECT (input)
 If HOWMNY='S', SELECT specifies the eigenvectors

 to be computed. If HOWMNY='A' or 'B', SELECT is
 not referenced. To select the eigenvector
 corresponding to the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrices A and B. N >= 0.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B. B must have real
 diagonal elements.

 LDB (input)
 The leading dimension of array B. LDB >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 unitary matrix Q of left Schur vectors returned by
 CHGEQZ). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Q*Y; if HOWMNY = 'S', the left eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.
 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 unitary matrix Z of right Schur vectors returned
 by CHGEQZ). On exit, if SIDE = 'R' or 'B', VR
 contains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of (A,B); if HOWMNY = 'B', the matrix
 Z*X; if HOWMNY = 'S', the right eigenvectors of
 (A,B) specified by SELECT, stored consecutively in
 the columns of VR, in the same order as their
 eigenvalues. If SIDE = 'L', VR is not referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 eigenvector occupies one column.

 WORK (workspace)

 dimension(2*N)

 RWORK (workspace)
 dimension(2*N)

 INFO (output)
 = 0: successful exit.
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztgexc - reorder the generalized Schur decomposition of a
 complex matrix pair (A,B), using an unitary equivalence
 transformation (A, B) := Q * (A, B) * Z', so that the diago-
 nal block of (A, B) with row index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE ZTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL WANTQ, WANTZ

 SUBROUTINE ZTGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 IFST, ILST, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
 INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL*8 WANTQ, WANTZ

 F95 INTERFACE
 SUBROUTINE TGEXC(WANTQ, WANTZ, [N], A, [LDA], B, [LDB], Q, [LDQ], Z,
 [LDZ], IFST, ILST, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL :: WANTQ, WANTZ

 SUBROUTINE TGEXC_64(WANTQ, WANTZ, [N], A, [LDA], B, [LDB], Q, [LDQ],
 Z, [LDZ], IFST, ILST, [INFO])

 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
 LOGICAL(8) :: WANTQ, WANTZ

 C INTERFACE
 #include <sunperf.h>

 void ztgexc(int wantq, int wantz, int n, doublecomplex *a,
 int lda, doublecomplex *b, int ldb, doublecomplex

 *q, int ldq, doublecomplex *z, int ldz, int *ifst,
 int *ilst, int *info);

 void ztgexc_64(long wantq, long wantz, long n, doublecomplex
 *a, long lda, doublecomplex *b, long ldb, doub-
 lecomplex *q, long ldq, doublecomplex *z, long
 ldz, long *ifst, long *ilst, long *info);

PURPOSE

 ztgexc reorders the generalized Schur decomposition of a
 complex matrix pair (A,B), using an unitary equivalence
 transformation (A, B) := Q * (A, B) * Z', so that the diago-
 nal block of (A, B) with row index IFST is moved to row
 ILST.

 (A, B) must be in generalized Schur canonical form, that is,
 A and B are both upper triangular.

 Optionally, the matrices Q and Z of generalized Schur vec-
 tors are updated.

 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

ARGUMENTS

 WANTQ (input)

 WANTZ (input)

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper triangular matrix A in the
 pair (A, B). On exit, the updated matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the upper triangular matrix B in the
 pair (A, B). On exit, the updated matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 Q (input/output)
 On entry, if WANTQ = .TRUE., the unitary matrix Q.
 On exit, the updated matrix Q. If WANTQ =
 .FALSE., Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1; If
 WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., the unitary matrix Z.

 On exit, the updated matrix Z. If WANTZ =
 .FALSE., Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1; If
 WANTZ = .TRUE., LDZ >= N.

 IFST (input/output)
 Specify the reordering of the diagonal blocks of
 (A, B). The block with row index IFST is moved to
 row ILST, by a sequence of swapping between adja-
 cent blocks.

 ILST (input/output)
 See the description of IFST.

 INFO (output)
 =0: Successful exit.
 <0: if INFO = -i, the i-th argument had an ille-
 gal value.
 =1: The transformed matrix pair (A, B) would be
 too far from generalized Schur form; the problem
 is ill- conditioned. (A, B) may have been par-
 tially reordered, and ILST points to the first row
 of the current position of the block being moved.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK working

 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztgsen - reorder the generalized Schur decomposition of a
 complex matrix pair (A, B) (in terms of an unitary
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the pair (A,B)

SYNOPSIS

 SUBROUTINE ZTGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK,
 LIWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK, INFO
 INTEGER IWORK(*)
 LOGICAL WANTQ, WANTZ
 LOGICAL SELECT(*)
 DOUBLE PRECISION PL, PR
 DOUBLE PRECISION DIF(*)

 SUBROUTINE ZTGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK,
 LIWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*),
 Q(LDQ,*), Z(LDZ,*), WORK(*)
 INTEGER*8 IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 WANTQ, WANTZ
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION PL, PR
 DOUBLE PRECISION DIF(*)

 F95 INTERFACE
 SUBROUTINE TGSEN(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHA, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK

 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL :: WANTQ, WANTZ
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8) :: PL, PR
 REAL(8), DIMENSION(:) :: DIF
 SUBROUTINE TGSEN_64(IJOB, WANTQ, WANTZ, SELECT, N, A, [LDA], B, [LDB],
 ALPHA, BETA, Q, [LDQ], Z, [LDZ], M, PL, PR, DIF, [WORK], [LWORK],
 [IWORK], [LIWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: ALPHA, BETA, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, Q, Z
 INTEGER(8) :: IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, LIWORK,
 INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8) :: WANTQ, WANTZ
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8) :: PL, PR
 REAL(8), DIMENSION(:) :: DIF

 C INTERFACE
 #include <sunperf.h>

 void ztgsen(int ijob, int wantq, int wantz, int *select, int
 n, doublecomplex *a, int lda, doublecomplex *b,
 int ldb, doublecomplex *alpha, doublecomplex
 *beta, doublecomplex *q, int ldq, doublecomplex
 *z, int ldz, int *m, double *pl, double *pr, dou-
 ble *dif, int *info);

 void ztgsen_64(long ijob, long wantq, long wantz, long
 *select, long n, doublecomplex *a, long lda, doub-
 lecomplex *b, long ldb, doublecomplex *alpha,
 doublecomplex *beta, doublecomplex *q, long ldq,
 doublecomplex *z, long ldz, long *m, double *pl,
 double *pr, double *dif, long *info);

PURPOSE

 ztgsen reorders the generalized Schur decomposition of a
 complex matrix pair (A, B) (in terms of an unitary
 equivalence trans- formation Q' * (A, B) * Z), so that a
 selected cluster of eigenvalues appears in the leading diag-
 onal blocks of the pair (A,B). The leading columns of Q and
 Z form unitary bases of the corresponding left and right
 eigenspaces (deflating subspaces). (A, B) must be in gen-
 eralized Schur canonical form, that is, A and B are both
 upper triangular.

 ZTGSEN also computes the generalized eigenvalues

 w(j)= ALPHA(j) / BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, the routine computes estimates of reciprocal
 condition numbers for eigenvalues and eigenspaces. These are
 Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)],
 i.e. the separation(s) between the matrix pairs (A11, B11)
 and (A22,B22) that correspond to the selected cluster and

 the eigenvalues outside the cluster, resp., and norms of
 "projections" onto left and right eigenspaces w.r.t. the
 selected cluster in the (1,1)-block.

ARGUMENTS

 IJOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (PL and PR) or the
 deflating subspaces (Difu and Difl):
 =0: Only reorder w.r.t. SELECT. No extras.
 =1: Reciprocal of norms of "projections" onto left
 and right eigenspaces w.r.t. the selected cluster
 (PL and PR). =2: Upper bounds on Difu and Difl.
 F-norm-based estimate
 (DIF(1:2)).
 =3: Estimate of Difu and Difl. 1-norm-based esti-
 mate
 (DIF(1:2)). About 5 times as expensive as IJOB =
 2. =4: Compute PL, PR and DIF (i.e. 0, 1 and 2
 above): Economic version to get it all. =5: Com-
 pute PL, PR and DIF (i.e. 0, 1 and 3 above)

 WANTQ (input)

 WANTZ (input)

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select an eigenvalue w(j), SELECT(j)
 must be set to

 N (input) The order of the matrices A and B. N >= 0.

 A (input/output)
 On entry, the upper triangular matrix A, in gen-
 eralized Schur canonical form. On exit, A is
 overwritten by the reordered matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the upper triangular matrix B, in gen-
 eralized Schur canonical form. On exit, B is
 overwritten by the reordered matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 ALPHA (output)
 The diagonal elements of A and B, respectively,
 when the pair (A,B) has been reduced to general-
 ized Schur form. ALPHA(i)/BETA(i) i=1,...,N are
 the generalized eigenvalues.

 BETA (output)
 See the description of ALPHA.

 Q (input/output)

 On entry, if WANTQ = .TRUE., Q is an N-by-N
 matrix. On exit, Q has been postmultiplied by the
 left unitary transformation matrix which reorder
 (A, B); The leading M columns of Q form orthonor-
 mal bases for the specified pair of left eigen-
 spaces (deflating subspaces). If WANTQ = .FALSE.,
 Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1.
 If WANTQ = .TRUE., LDQ >= N.

 Z (input/output)
 On entry, if WANTZ = .TRUE., Z is an N-by-N
 matrix. On exit, Z has been postmultiplied by the
 left unitary transformation matrix which reorder
 (A, B); The leading M columns of Z form orthonor-
 mal bases for the specified pair of left eigen-
 spaces (deflating subspaces). If WANTZ = .FALSE.,
 Z is not referenced.

 LDZ (input)
 The leading dimension of the array Z. LDZ >= 1.
 If WANTZ = .TRUE., LDZ >= N.

 M (output)
 The dimension of the specified pair of left and
 right eigenspaces, (deflating subspaces) 0 <= M <=
 N.

 PL (output)
 IF IJOB = 1, 4, or 5, PL, PR are lower bounds on
 the reciprocal of the norm of "projections" onto
 left and right eigenspace with respect to the
 selected cluster.
 0 < PL, PR <= 1. If M = 0 or M = N, PL = PR = 1.
 If IJOB = 0, 2, or 3 PL, PR are not referenced.

 PR (output)
 See the description of PL.

 DIF (output)
 If IJOB >= 2, DIF(1:2) store the estimates of Difu
 and Difl.
 If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper
 bounds on
 Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-
 norm-based estimates of Difu and Difl, computed
 using reversed communication with CLACON. If M =
 0 or N, DIF(1:2) = F-norm([A, B]). If IJOB = 0 or
 1, DIF is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1 If
 IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M) If IJOB = 3
 or 5, LWORK >= 4*M*(N-M)

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of

 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.
 IWORK (workspace/output)
 If IJOB = 0, IWORK is not referenced. Otherwise,
 on exit, if INFO = 0, IWORK(1) returns the optimal
 LIWORK.

 LIWORK (input)
 The dimension of the array IWORK. LIWORK >= 1. If
 IJOB = 1, 2 or 4, LIWORK >= N+2; If IJOB = 3 or
 5, LIWORK >= MAX(N+2, 2*M*(N-M));

 If LIWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the IWORK array, returns this value as the first
 entry of the IWORK array, and no error message
 related to LIWORK is issued by XERBLA.

 INFO (output)
 =0: Successful exit.
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 =1: Reordering of (A, B) failed because the
 transformed matrix pair (A, B) would be too far
 from generalized Schur form; the problem is very
 ill-conditioned. (A, B) may have been partially
 reordered. If requested, 0 is returned in DIF(*),
 PL and PR.

FURTHER DETAILS

 ZTGSEN first collects the selected eigenvalues by computing
 unitary U and W that move them to the top left corner of (A,
 B). In other words, the selected eigenvalues are the eigen-
 values of (A11, B11) in

 U'*(A, B)*W = (A11 A12) (B11 B12) n1
 (0 A22),(0 B22) n2
 n1 n2 n1 n2

 where N = n1+n2 and U' means the conjugate transpose of U.
 The first n1 columns of U and W span the specified pair of
 left and right eigenspaces (deflating subspaces) of (A, B).

 If (A, B) has been obtained from the generalized real Schur
 decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then
 the reordered generalized Schur form of (C, D) is given by

 (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',

 and the first n1 columns of Q*U and Z*W span the correspond-
 ing deflating subspaces of (C, D) (Q and Z store Q*U and
 Z*W, resp.).
 Note that if the selected eigenvalue is sufficiently ill-
 conditioned, then its value may differ significantly from
 its value before reordering.

 The reciprocal condition numbers of the left and right
 eigenspaces spanned by the first n1 columns of U and W (or
 Q*U and Z*W) may be returned in DIF(1:2), corresponding to
 Difu and Difl, resp.

 The Difu and Difl are defined as:
 ifu[(A11, B11), (A22, B22)] = sigma-min(Zu)
 and

 where sigma-min(Zu) is the smallest singular value of the
 (2*n1*n2)-by-(2*n1*n2) matrix
 u = [kron(In2, A11) -kron(A22', In1)]
 [kron(In2, B11) -kron(B22', In1)].

 Here, Inx is the identity matrix of size nx and A22' is the
 transpose of A22. kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 When DIF(2) is small, small changes in (A, B) can cause
 large changes in the deflating subspace. An approximate
 (asymptotic) bound on the maximum angular error in the com-
 puted deflating subspaces is PS * norm((A, B)) / DIF(2),

 where EPS is the machine precision.

 The reciprocal norm of the projectors on the left and right
 eigenspaces associated with (A11, B11) may be returned in PL
 and PR. They are computed as follows. First we compute L
 and R so that P*(A, B)*Q is block diagonal, where
 = (I -L) n1 Q = (I R) n1
 (0 I) n2 and (0 I) n2
 n1 n2 n1 n2

 and (L, R) is the solution to the generalized Sylvester
 equation 11*R - L*A22 = -A12

 Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-
 norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on
 the average absolute error of the selected eigenvalues is
 EPS * norm((A, B)) / PL.

 There are also global error bounds which valid for perturba-
 tions up to a certain restriction: A lower bound (x) on the
 smallest F-norm(E,F) for which an eigenvalue of (A11, B11)
 may move and coalesce with an eigenvalue of (A22, B22) under
 perturbation (E,F), (i.e. (A + E, B + F), is

 x =
 min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

 An approximate bound on x can be computed from DIF(1:2), PL
 and PR.

 If y = (F-norm(E,F) / x) <= 1, the angles between the per-
 turbed (L', R') and unperturbed (L, R) left and right
 deflating subspaces associated with the selected cluster in
 the (1,1)-blocks can be bounded as

 max-angle(L, L') <= arctan(y * PL / (1 - y * (1 - PL *
 PL)**(1/2))
 max-angle(R, R') <= arctan(y * PR / (1 - y * (1 - PR *
 PR)**(1/2))

 See LAPACK User's Guide section 4.11 or the following refer-
 ences for more information.

 Note that if the default method for computing the
 Frobenius-norm- based estimate DIF is not wanted (see
 CLATDF), then the parameter IDIFJB (see below) should be

 changed from 3 to 4 (routine CLATDF (IJOB = 2 will be
 used)). See CTGSYL for more details.

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.
 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztgsja - compute the generalized singular value decomposi-
 tion (GSVD) of two complex upper triangular (or trapezoidal)
 matrices A and B

SYNOPSIS

 SUBROUTINE ZTGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), WORK(*)
 INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION ALPHA(*), BETA(*)

 SUBROUTINE ZTGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
 INFO)

 CHARACTER * 1 JOBU, JOBV, JOBQ
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),
 Q(LDQ,*), WORK(*)
 INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 DOUBLE PRECISION TOLA, TOLB
 DOUBLE PRECISION ALPHA(*), BETA(*)

 F95 INTERFACE
 SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA], B,
 [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
 INFO
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: ALPHA, BETA

 SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA],

 B, [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ],
 [WORK], NCYCLE, [INFO])

 CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, U, V, Q
 INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCY-
 CLE, INFO
 REAL(8) :: TOLA, TOLB
 REAL(8), DIMENSION(:) :: ALPHA, BETA

 C INTERFACE
 #include <sunperf.h>

 void ztgsja(char jobu, char jobv, char jobq, int m, int p,
 int n, int k, int l, doublecomplex *a, int lda,
 doublecomplex *b, int ldb, double tola, double
 tolb, double *alpha, double *beta, doublecomplex
 *u, int ldu, doublecomplex *v, int ldv, doublecom-
 plex *q, int ldq, int *ncycle, int *info);

 void ztgsja_64(char jobu, char jobv, char jobq, long m, long
 p, long n, long k, long l, doublecomplex *a, long
 lda, doublecomplex *b, long ldb, double tola, dou-
 ble tolb, double *alpha, double *beta, doublecom-
 plex *u, long ldu, doublecomplex *v, long ldv,
 doublecomplex *q, long ldq, long *ncycle, long
 *info);

PURPOSE

 ztgsja computes the generalized singular value decomposition
 (GSVD) of two complex upper triangular (or trapezoidal)
 matrices A and B.

 On entry, it is assumed that matrices A and B have the fol-
 lowing forms, which may be obtained by the preprocessing
 subroutine CGGSVP from a general M-by-N matrix A and P-by-N
 matrix B:

 N-K-L K L
 A = K (0 A12 A13) if M-K-L >= 0;
 L (0 0 A23)
 M-K-L (0 0 0)

 N-K-L K L
 A = K (0 A12 A13) if M-K-L < 0;
 M-K (0 0 A23)

 N-K-L K L
 B = L (0 0 B13)
 P-L (0 0 0)

 where the K-by-K matrix A12 and L-by-L matrix B13 are non-
 singular upper triangular; A23 is L-by-L upper triangular if
 M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
 On exit,

 U'*A*Q = D1*(0 R), V'*B*Q = D2*(0 R),

 where U, V and Q are unitary matrices, Z' denotes the conju-
 gate transpose of Z, R is a nonsingular upper triangular

 matrix, and D1 and D2 are ``diagonal'' matrices, which are
 of the following structures:

 If M-K-L >= 0,

 K L
 D1 = K (I 0)
 L (0 C)
 M-K-L (0 0)

 K L
 D2 = L (0 S)
 P-L (0 0)

 N-K-L K L
 (0 R) = K (0 R11 R12) K
 L (0 0 R22) L

 where

 C = diag(ALPHA(K+1), ... , ALPHA(K+L)),
 S = diag(BETA(K+1), ... , BETA(K+L)),
 C**2 + S**2 = I.

 R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

 K M-K K+L-M
 D1 = K (I 0 0)
 M-K (0 C 0)

 K M-K K+L-M
 D2 = M-K (0 S 0)
 K+L-M (0 0 I)
 P-L (0 0 0)

 N-K-L K M-K K+L-M

 M-K (0 0 R22 R23)
 K+L-M (0 0 0 R33)

 where
 C = diag(ALPHA(K+1), ... , ALPHA(M)),
 S = diag(BETA(K+1), ... , BETA(M)),
 C**2 + S**2 = I.
 R = (R11 R12 R13) is stored in A(1:M, N-K-L+1:N) and R33
 is stored
 (0 R22 R23)
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The computation of the unitary transformation matrices U, V
 or Q is optional. These matrices may either be formed
 explicitly, or they may be postmultiplied into input
 matrices U1, V1, or Q1.

 CTGSJA essentially uses a variant of Kogbetliantz algorithm
 to reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix
 A23 and L-by-L matrix B13 to the form:
 U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
 where U1, V1 and Q1 are unitary matrix, and Z' is the conju-
 gate transpose of Z. C1 and S1 are diagonal matrices satis-
 fying
 C1**2 + S1**2 = I,

 and R1 is an L-by-L nonsingular upper triangular matrix.

ARGUMENTS

 JOBU (input)
 = 'U': U must contain a unitary matrix U1 on
 entry, and the product U1*U is returned; = 'I': U
 is initialized to the unit matrix, and the unitary
 matrix U is returned; = 'N': U is not computed.

 JOBV (input)
 = 'V': V must contain a unitary matrix V1 on
 entry, and the product V1*V is returned; = 'I': V
 is initialized to the unit matrix, and the unitary
 matrix V is returned; = 'N': V is not computed.

 JOBQ (input)
 = 'Q': Q must contain a unitary matrix Q1 on
 entry, and the product Q1*Q is returned; = 'I': Q
 is initialized to the unit matrix, and the unitary
 matrix Q is returned; = 'N': Q is not computed.

 M (input) The number of rows of the matrix A. M >= 0.

 P (input) The number of rows of the matrix B. P >= 0.

 N (input) The number of columns of the matrices A and B. N
 >= 0.
 K (input) K and L specify the subblocks in the input
 matrices A and B:
 A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 =
 B(1:L,,N-L+1:N) of A and B, whose GSVD is going to
 be computed by CTGSJA. See the Further Details
 section below.

 L (input) See the description of K.

 A (input/output)
 On entry, the M-by-N matrix A. On exit, A(N-
 K+1:N,1:MIN(K+L,M)) contains the triangular
 matrix R or part of R. See Purpose for details.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 B (input/output)
 On entry, the P-by-N matrix B. On exit, if neces-
 sary, B(M-K+1:L,N+M-K-L+1:N) contains a part of R.
 See Purpose for details.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,P).

 TOLA (input)
 TOLA and TOLB are the convergence criteria for the
 Jacobi- Kogbetliantz iteration procedure. Gen-
 erally, they are the same as used in the prepro-
 cessing step, say TOLA = MAX(M,N)*norm(A)*MACHEPS,
 TOLB = MAX(P,N)*norm(B)*MACHEPS.

 TOLB (input)
 See the description of TOLA.

 ALPHA (output)
 On exit, ALPHA and BETA contain the generalized
 singular value pairs of A and B; ALPHA(1:K) = 1,
 BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
 = diag(C),
 BETA(K+1:K+L) = diag(S), or if M-K-L < 0,
 ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
 BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore,
 if K+L < N, ALPHA(K+L+1:N) = 0
 BETA(K+L+1:N) = 0.

 BETA (output)
 See the description of ALPHA.

 U (input) On entry, if JOBU = 'U', U must contain a matrix
 U1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBU = 'I', U contains the
 unitary matrix U; if JOBU = 'U', U contains the
 product U1*U. If JOBU = 'N', U is not referenced.

 LDU (input)
 The leading dimension of the array U. LDU >=
 max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.

 V (input) On entry, if JOBV = 'V', V must contain a matrix
 V1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBV = 'I', V contains the
 unitary matrix V; if JOBV = 'V', V contains the
 product V1*V. If JOBV = 'N', V is not referenced.

 LDV (input)
 The leading dimension of the array V. LDV >=
 max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.

 Q (input) On entry, if JOBQ = 'Q', Q must contain a matrix
 Q1 (usually the unitary matrix returned by
 CGGSVP). On exit, if JOBQ = 'I', Q contains the
 unitary matrix Q; if JOBQ = 'Q', Q contains the
 product Q1*Q. If JOBQ = 'N', Q is not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.

 WORK (workspace)
 dimension(2*N)

 NCYCLE (output)
 The number of cycles required for convergence.
 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value.
 = 1: the procedure does not converge after MAXIT
 cycles.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztgsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B)

SYNOPSIS

 SUBROUTINE ZTGSNA(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL, LDVL,
 VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER IWORK(*)
 LOGICAL SELECT(*)
 DOUBLE PRECISION S(*), DIF(*)

 SUBROUTINE ZTGSNA_64(JOB, HOWMNT, SELECT, N, A, LDA, B, LDB, VL,
 LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 JOB, HOWMNT
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),
 WORK(*)
 INTEGER*8 N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER*8 IWORK(*)
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION S(*), DIF(*)

 F95 INTERFACE
 SUBROUTINE TGSNA(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,
 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER, DIMENSION(:) :: IWORK
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, DIF

 SUBROUTINE TGSNA_64(JOB, HOWMNT, SELECT, [N], A, [LDA], B, [LDB], VL,

 [LDVL], VR, [LDVR], S, DIF, MM, M, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNT
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, VL, VR
 INTEGER(8) :: N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, DIF

 C INTERFACE
 #include <sunperf.h>

 void ztgsna(char job, char howmnt, int *select, int n, doub-
 lecomplex *a, int lda, doublecomplex *b, int ldb,
 doublecomplex *vl, int ldvl, doublecomplex *vr,
 int ldvr, double *s, double *dif, int mm, int *m,
 int *info);

 void ztgsna_64(char job, char howmnt, long *select, long n,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb, doublecomplex *vl, long ldvl, doublecomplex
 *vr, long ldvr, double *s, double *dif, long mm,
 long *m, long *info);

PURPOSE

 ztgsna estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B).

 (A, B) must be in generalized Schur canonical form, that is,
 A and B are both upper triangular.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (DIF):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (DIF);
 = 'B': for both eigenvalues and eigenvectors (S
 and DIF).

 HOWMNT (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNT = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the corresponding j-
 th eigenvalue and/or eigenvector, SELECT(j) must
 be set to .TRUE.. If HOWMNT = 'A', SELECT is not
 referenced.

 N (input) The order of the square matrix pair (A, B). N >=
 0.

 A (input) The upper triangular matrix A in the pair (A,B).

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The upper triangular matrix B in the pair (A, B).

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VL, as
 returned by CTGEVC. If JOB = 'V', VL is not
 referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and If JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of (A, B), corresponding to the eigenpairs
 specified by HOWMNT and SELECT. The eigenvectors
 must be stored in consecutive columns of VR, as
 returned by CTGEVC. If JOB = 'V', VR is not
 referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 If JOB = 'E' or 'B', LDVR >= N.
 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. If JOB = 'V',
 S is not referenced.

 DIF (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 the eigenvalues cannot be reordered to compute
 DIF(j), DIF(j) is set to 0; this can only occur
 when the true value would be very small anyway.
 For each eigenvalue/vector specified by SELECT,
 DIF stores a Frobenius norm-based estimate of
 Difl. If JOB = 'E', DIF is not referenced.

 MM (input)
 The number of elements in the arrays S and DIF. MM
 >= M.

 M (output)
 The number of elements of the arrays S and DIF
 used to store the specified condition numbers; for
 each selected eigenvalue one element is used. If
 HOWMNT = 'A', M is set to N.

 WORK (workspace)

 If JOB = 'E', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= 1. If
 JOB = 'V' or 'B', LWORK >= 2*N*N.

 IWORK (workspace)
 dimension(N+2) If JOB = 'E', IWORK is not refer-
 enced.

 INFO (output)
 = 0: Successful exit
 < 0: If INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of the i-th general-
 ized eigenvalue w = (a, b) is defined as

 S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) /
 (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of (A, B)
 corresponding to w; |z| denotes the absolute value of the
 complex number, and norm(u) denotes the 2-norm of the vector
 u. The pair (a, b) corresponds to an eigenvalue w = a/b (=
 v'Au/v'Bu) of the matrix pair (A, B). If both a and b equal
 zero, then (A,B) is singular and S(I) = -1 is returned.

 An approximate error bound on the chordal distance between
 the i-th computed generalized eigenvalue w and the
 corresponding exact eigenvalue lambda is

 chord(w, lambda) <= EPS * norm(A, B) / S(I),

 where EPS is the machine precision.

 The reciprocal of the condition number of the right eigen-
 vector u and left eigenvector v corresponding to the gen-
 eralized eigenvalue w is defined as follows. Suppose

 (A, B) = (a *) (b *) 1
 (0 A22),(0 B22) n-1
 1 n-1 1 n-1

 Then the reciprocal condition number DIF(I) is

 Difl[(a, b), (A22, B22)] = sigma-min(Zl)

 where sigma-min(Zl) denotes the smallest singular value of

 Zl = [kron(a, In-1) -kron(1, A22)]
 [kron(b, In-1) -kron(1, B22)].

 Here In-1 is the identity matrix of size n-1 and X' is the
 conjugate transpose of X. kron(X, Y) is the Kronecker pro-
 duct between the matrices X and Y.

 We approximate the smallest singular value of Zl with an

 upper bound. This is done by CLATDF.

 An approximate error bound for a computed eigenvector VL(i)
 or VR(i) is given by

 EPS * norm(A, B) / DIF(i).

 See ref. [2-3] for more details and further references.
 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 References
 ==========

 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues
 in the
 Generalized Real Schur Form of a Regular Matrix Pair (A,
 B), in
 M.S. Moonen et al (eds), Linear Algebra for Large Scale
 and
 Real-Time Applications, Kluwer Academic Publ. 1993, pp
 195-218.

 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with
 Specified
 Eigenvalues of a Regular Matrix Pair (A, B) and Condi-
 tion
 Estimation: Theory, Algorithms and Software, Report
 UMINF - 94.04, Department of Computing Science, Umea
 University,
 S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note
 87.
 To appear in Numerical Algorithms, 1996.

 [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75.
 To appear in ACM Trans. on Math. Software, Vol 22, No 1,
 1996.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztgsyl - solve the generalized Sylvester equation

SYNOPSIS

 SUBROUTINE ZTGSYL(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
 E(LDE,*), F(LDF,*), WORK(*)
 INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER IWORK(*)
 DOUBLE PRECISION SCALE, DIF

 SUBROUTINE ZTGSYL_64(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

 CHARACTER * 1 TRANS
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
 E(LDE,*), F(LDF,*), WORK(*)
 INTEGER*8 IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER*8 IWORK(*)
 DOUBLE PRECISION SCALE, DIF

 F95 INTERFACE
 SUBROUTINE TGSYL(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C, [LDC],
 D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK], [IWORK],
 [INFO])

 CHARACTER(LEN=1) :: TRANS
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, C, D, E, F
 INTEGER :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
 INFO
 INTEGER, DIMENSION(:) :: IWORK
 REAL(8) :: SCALE, DIF

 SUBROUTINE TGSYL_64(TRANS, IJOB, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], D, [LDD], E, [LDE], F, [LDF], SCALE, DIF, [WORK], [LWORK],

 [IWORK], [INFO])

 CHARACTER(LEN=1) :: TRANS
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, C, D, E, F
 INTEGER(8) :: IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF,
 LWORK, INFO
 INTEGER(8), DIMENSION(:) :: IWORK
 REAL(8) :: SCALE, DIF

 C INTERFACE
 #include <sunperf.h>

 void ztgsyl(char trans, int ijob, int m, int n, doublecom-
 plex *a, int lda, doublecomplex *b, int ldb, doub-
 lecomplex *c, int ldc, doublecomplex *d, int ldd,
 doublecomplex *e, int lde, doublecomplex *f, int
 ldf, double *scale, double *dif, int *info);

 void ztgsyl_64(char trans, long ijob, long m, long n, doub-
 lecomplex *a, long lda, doublecomplex *b, long
 ldb, doublecomplex *c, long ldc, doublecomplex *d,
 long ldd, doublecomplex *e, long lde, doublecom-
 plex *f, long ldf, double *scale, double *dif,
 long *info);

PURPOSE

 ztgsyl solves the generalized Sylvester equation:

 A * R - L * B = scale * C (1)
 D * R - L * E = scale * F

 where R and L are unknown m-by-n matrices, (A, D), (B, E)
 and (C, F) are given matrix pairs of size m-by-m, n-by-n and
 m-by-n, respectively, with complex entries. A, B, D and E
 are upper triangular (i.e., (A,D) and (B,E) in generalized
 Schur form).

 The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
 is an output scaling factor chosen to avoid overflow.

 In matrix notation (1) is equivalent to solve Zx = scale*b,
 where Z is defined as

 Z = [kron(In, A) -kron(B', Im)] (2)
 [kron(In, D) -kron(E', Im)],

 Here Ix is the identity matrix of size x and X' is the con-
 jugate transpose of X. Kron(X, Y) is the Kronecker product
 between the matrices X and Y.

 If TRANS = 'C', y in the conjugate transposed system Z'*y =
 scale*b is solved for, which is equivalent to solve for R
 and L in

 A' * R + D' * L = scale * C (3)
 R * B' + L * E' = scale * -F
 This case (TRANS = 'C') is used to compute an one-norm-based
 estimate of Dif[(A,D), (B,E)], the separation between the
 matrix pairs (A,D) and (B,E), using CLACON.

 If IJOB >= 1, CTGSYL computes a Frobenius norm-based esti-
 mate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower
 bound on the reciprocal of the smallest singular value of Z.

 This is a level-3 BLAS algorithm.

ARGUMENTS

 TRANS (input)
 = 'N': solve the generalized sylvester equation
 (1).
 = 'C': solve the "conjugate transposed" system
 (3).

 IJOB (input)
 Specifies what kind of functionality to be per-
 formed. =0: solve (1) only.
 =1: The functionality of 0 and 3.
 =2: The functionality of 0 and 4.
 =3: Only an estimate of Dif[(A,D), (B,E)] is com-
 puted. (look ahead strategy is used). =4: Only
 an estimate of Dif[(A,D), (B,E)] is computed.
 (CGECON on sub-systems is used). Not referenced
 if TRANS = 'C'.

 M (input) The order of the matrices A and D, and the row
 dimension of the matrices C, F, R and L.

 N (input) The order of the matrices B and E, and the column
 dimension of the matrices C, F, R and L.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1, M).

 B (input) The upper triangular matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1, N).

 C (input/output)
 On entry, C contains the right-hand-side of the
 first matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, C has been overwritten by the
 solution R. If IJOB = 3 or 4 and TRANS = 'N', C
 holds R, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1, M).

 D (input) The upper triangular matrix D.

 LDD (input)
 The leading dimension of the array D. LDD >=
 max(1, M).

 E (input) The upper triangular matrix E.

 LDE (input)
 The leading dimension of the array E. LDE >=
 max(1, N).

 F (input/output)
 On entry, F contains the right-hand-side of the
 second matrix equation in (1) or (3). On exit, if
 IJOB = 0, 1 or 2, F has been overwritten by the
 solution L. If IJOB = 3 or 4 and TRANS = 'N', F
 holds L, the solution achieved during the computa-
 tion of the Dif-estimate.

 LDF (input)
 The leading dimension of the array F. LDF >=
 max(1, M).

 SCALE (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] = sigma-
 min(Z), where Z as in (2). If IJOB = 0 or TRANS =
 'C', SCALE is not referenced.

 DIF (output)
 On exit SCALE is the reciprocal of a lower bound
 of the reciprocal of the Dif-function, i.e. SCALE
 is an upper bound of Dif[(A,D), (B,E)] = sigma-
 min(Z), where Z as in (2). If IJOB = 0 or TRANS =
 'C', SCALE is not referenced.

 WORK (workspace)
 If IJOB = 0, WORK is not referenced. Otherwise,
 on exit, if INFO=0 then WORK(1) returns the
 optimal LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK > = 1. If
 IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 IWORK (workspace)
 If IJOB = 0, IWORK is not referenced.

 INFO (output)
 =0: successful exit
 <0: If INFO = -i, the i-th argument had an illegal
 value.
 >0: (A, D) and (B, E) have common or very close
 eigenvalues.

FURTHER DETAILS

 Based on contributions by
 Bo Kagstrom and Peter Poromaa, Department of Computing
 Science,
 Umea University, S-901 87 Umea, Sweden.

 [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and
 Software
 for Solving the Generalized Sylvester Equation and
 Estimating the
 Separation between Regular Matrix Pairs, Report UMINF -
 93.23,
 Department of Computing Science, Umea University, S-901
 87 Umea,
 Sweden, December 1993, Revised April 1994, Also as
 LAPACK Working
 Note 75. To appear in ACM Trans. on Math. Software, Vol
 22,
 No 1, 1996.

 [2] B. Kagstrom, A Perturbation Analysis of the Generalized
 Sylvester
 Equation (AR - LB, DR - LE) = (C, F), SIAM J. Matrix
 Anal.
 Appl., 15(4):1045-1060, 1994.

 [3] B. Kagstrom and L. Westin, Generalized Schur Methods
 with
 Condition Estimators for Solving the Generalized Sylves-
 ter
 Equation, IEEE Transactions on Automatic Control, Vol.
 34, No. 7,
 July 1989, pp 745-751.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztpcon - estimate the reciprocal of the condition number of
 a packed triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE ZTPCON(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2, INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER N, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZTPCON_64(NORM, UPLO, DIAG, N, A, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(*), WORK(*)
 INTEGER*8 N, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE TPCON(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER :: N, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE TPCON_64(NORM, UPLO, DIAG, N, A, RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: A, WORK
 INTEGER(8) :: N, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE

 #include <sunperf.h>

 void ztpcon(char norm, char uplo, char diag, int n, doub-
 lecomplex *a, double *rcond, int *info);
 void ztpcon_64(char norm, char uplo, char diag, long n,
 doublecomplex *a, double *rcond, long *info);

PURPOSE

 ztpcon estimates the reciprocal of the condition number of a
 packed triangular matrix A, in either the 1-norm or the
 infinity-norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).
 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztpmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE ZTPMV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), Y(*)
 INTEGER N, INCY

 SUBROUTINE ZTPMV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE TPMV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, Y
 INTEGER :: N, INCY

 SUBROUTINE TPMV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztpmv(char uplo, char transa, char diag, int n, doub-
 lecomplex *a, doublecomplex *y, int incy);

 void ztpmv_64(char uplo, char transa, char diag, long n,
 doublecomplex *a, doublecomplex *y, long incy);

PURPOSE

 ztpmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular matrix, supplied in packed form.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'
 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)

 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztprfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix

SYNOPSIS

 SUBROUTINE ZTPRFS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZTPRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, X, LDX,
 FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TPRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X, [LDX],
 FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TPRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, B, [LDB], X,
 [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, WORK
 COMPLEX(8), DIMENSION(:,:) :: B, X
 INTEGER(8) :: N, NRHS, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ztprfs(char uplo, char transa, char diag, int n, int
 nrhs, doublecomplex *a, doublecomplex *b, int ldb,
 doublecomplex *x, int ldx, double *ferr, double
 *berr, int *info);

 void ztprfs_64(char uplo, char transa, char diag, long n,
 long nrhs, doublecomplex *a, doublecomplex *b,
 long ldb, doublecomplex *x, long ldx, double
 *ferr, double *berr, long *info);

PURPOSE

 ztprfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular packed coefficient matrix.

 The solution matrix X must be computed by CTPTRS or some
 other means before entering this routine. CTPRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2n-j)/2) = A(i,j) for
 j<=i<=n. If DIAG = 'U', the diagonal elements of
 A are not referenced and are assumed to be 1.

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztpsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE ZTPSV(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), Y(*)
 INTEGER N, INCY

 SUBROUTINE ZTPSV_64(UPLO, TRANSA, DIAG, N, A, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), Y(*)
 INTEGER*8 N, INCY

 F95 INTERFACE
 SUBROUTINE TPSV(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, Y
 INTEGER :: N, INCY

 SUBROUTINE TPSV_64(UPLO, [TRANSA], DIAG, [N], A, Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A, Y
 INTEGER(8) :: N, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztpsv(char uplo, char transa, char diag, int n, doub-
 lecomplex *a, doublecomplex *y, int incy);

 void ztpsv_64(char uplo, char transa, char diag, long n,
 doublecomplex *a, doublecomplex *y, long incy);

PURPOSE

 ztpsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 ((n*(n + 1))/2). Before entry with UPLO =
 'U' or 'u', the array A must contain the upper
 triangular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(1, 2) and a(2, 2) respec-
 tively, and so on. Before entry with UPLO = 'L'

 or 'l', the array A must contain the lower tri-
 angular matrix packed sequentially, column by
 column, so that A(1) contains a(1, 1), A(2)
 and A(3) contain a(2, 1) and a(3, 1) respec-
 tively, and so on. Note that when DIAG = 'U' or
 'u', the diagonal elements of A are not refer-
 enced, but are assumed to be unity. Unchanged on
 exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztptri - compute the inverse of a complex upper or lower
 triangular matrix A stored in packed format

SYNOPSIS

 SUBROUTINE ZTPTRI(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(*)
 INTEGER N, INFO

 SUBROUTINE ZTPTRI_64(UPLO, DIAG, N, A, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(*)
 INTEGER*8 N, INFO

 F95 INTERFACE
 SUBROUTINE TPTRI(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER :: N, INFO

 SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: A
 INTEGER(8) :: N, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztptri(char uplo, char diag, int n, doublecomplex *a,
 int *info);

 void ztptri_64(char uplo, char diag, long n, doublecomplex
 *a, long *info);

PURPOSE

 ztptri computes the inverse of a complex upper or lower tri-
 angular matrix A stored in packed format.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the upper or lower triangular matrix A,
 stored columnwise in a linear array. The j-th
 column of A is stored in the array A as follows:
 if UPLO = 'U', A(i + (j-1)*j/2) = A(i,j) for
 1<=i<=j; if UPLO = 'L', A(i + (j-1)*((2*n-j)/2) =
 A(i,j) for j<=i<=n. See below for further
 details. On exit, the (triangular) inverse of the
 original matrix, in the same packed storage for-
 mat.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

FURTHER DETAILS

 A triangular matrix A can be transferred to packed storage
 using one of the following program segments:

 UPLO = 'U': UPLO = 'L':

 JC = 1 JC = 1
 DO 2 J = 1, N DO 2 J = 1, N
 DO 1 I = 1, J DO 1 I = J, N
 A(JC+I-1) = A(I,J) A(JC+I-J) =
 A(I,J)
 1 CONTINUE 1 CONTINUE
 JC = JC + J JC = JC + N - J +
 1
 2 CONTINUE 2 CONTINUE

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztptrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZTPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER N, NRHS, LDB, INFO

 SUBROUTINE ZTPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(*), B(LDB,*)
 INTEGER*8 N, NRHS, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TPTRS(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER :: N, NRHS, LDB, INFO

 SUBROUTINE TPTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, B, [LDB], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: A
 COMPLEX(8), DIMENSION(:,:) :: B
 INTEGER(8) :: N, NRHS, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztptrs(char uplo, char transa, char diag, int n, int
 nrhs, doublecomplex *a, doublecomplex *b, int ldb,
 int *info);

 void ztptrs_64(char uplo, char transa, char diag, long n,
 long nrhs, doublecomplex *a, doublecomplex *b,
 long ldb, long *info);

PURPOSE

 ztptrs solves a triangular system of the form
 where A is a triangular matrix of order N stored in packed
 format, and B is an N-by-NRHS matrix. A check is made to
 verify that A is nonsingular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The upper or lower triangular matrix A, packed
 columnwise in a linear array. The j-th column of
 A is stored in the array A as follows: if UPLO =
 'U', A(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
 UPLO = 'L', A(i + (j-1)*(2*n-j)/2) = A(i,j) for
 j<=i<=n.

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A
 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrans - transpose and scale source matrix

SYNOPSIS

 SUBROUTINE ZTRANS(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 DOUBLE COMPLEX SCALE
 DOUBLE COMPLEX SOURCE(*), DEST(*)
 INTEGER M, N

 SUBROUTINE ZTRANS_64(PLACE, SCALE, SOURCE, M, N, DEST)

 CHARACTER * 1 PLACE
 DOUBLE COMPLEX SCALE
 DOUBLE COMPLEX SOURCE(*), DEST(*)
 INTEGER*8 M, N

 F95 INTERFACE
 SUBROUTINE TRANS([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 COMPLEX(8) :: SCALE
 COMPLEX(8), DIMENSION(:) :: SOURCE, DEST
 INTEGER :: M, N

 SUBROUTINE TRANS_64([PLACE], SCALE, SOURCE, M, N, [DEST])

 CHARACTER(LEN=1) :: PLACE
 COMPLEX(8) :: SCALE
 COMPLEX(8), DIMENSION(:) :: SOURCE, DEST
 INTEGER(8) :: M, N

 C INTERFACE
 #include <sunperf.h>

 void ztrans(char place, doublecomplex *scale, doublecomplex
 *source, int m, int n, doublecomplex *dest);

 void ztrans_64(char place, doublecomplex *scale, doublecom-
 plex *source, long m, long n, doublecomplex
 *dest);

PURPOSE

 ztrans scales and transposes the source matrix. The N2 x N1
 result is written into SOURCE when PLACE = 'I' or 'i', and
 DEST when PLACE = 'O' or 'o'.

 PLACE = 'I' or 'i': SOURCE = SCALE * SOURCE'

 PLACE = 'O' or 'o': DEST = SCALE * SOURCE'

ARGUMENTS

 PLACE (input)
 Type of transpose. 'I' or 'i' for in-place, 'O'
 or 'o' for out-of-place. 'I' is default.

 SCALE (input)
 Scale factor on the SOURCE matrix.

 SOURCE (input/output)
 on input. Array of (N, M) on output if in-place
 transpose.

 M (input)
 Number of rows in the SOURCE matrix on input.

 N (input)
 Number of columns in the SOURCE matrix on input.

 DEST (output)
 Scaled and transposed SOURCE matrix if out-of-
 place transpose. Not referenced if in-place tran-
 spose.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrcon - estimate the reciprocal of the condition number of
 a triangular matrix A, in either the 1-norm or the
 infinity-norm

SYNOPSIS

 SUBROUTINE ZTRCON(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER N, LDA, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 SUBROUTINE ZTRCON_64(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, WORK2,
 INFO)

 CHARACTER * 1 NORM, UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*), WORK(*)
 INTEGER*8 N, LDA, INFO
 DOUBLE PRECISION RCOND
 DOUBLE PRECISION WORK2(*)

 F95 INTERFACE
 SUBROUTINE TRCON(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK], [WORK2],
 [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO
 REAL(8) :: RCOND
 REAL(8), DIMENSION(:) :: WORK2

 SUBROUTINE TRCON_64(NORM, UPLO, DIAG, N, A, [LDA], RCOND, [WORK],
 [WORK2], [INFO])

 CHARACTER(LEN=1) :: NORM, UPLO, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO
 REAL(8) :: RCOND

 REAL(8), DIMENSION(:) :: WORK2

 C INTERFACE
 #include <sunperf.h>
 void ztrcon(char norm, char uplo, char diag, int n, doub-
 lecomplex *a, int lda, double *rcond, int *info);

 void ztrcon_64(char norm, char uplo, char diag, long n,
 doublecomplex *a, long lda, double *rcond, long
 *info);

PURPOSE

 ztrcon estimates the reciprocal of the condition number of a
 triangular matrix A, in either the 1-norm or the infinity-
 norm.

 The norm of A is computed and an estimate is obtained for
 norm(inv(A)), then the reciprocal of the condition number is
 computed as
 RCOND = 1 / (norm(A) * norm(inv(A))).

ARGUMENTS

 NORM (input)
 Specifies whether the 1-norm condition number or
 the infinity-norm condition number is required:
 = '1' or 'O': 1-norm;
 = 'I': Infinity-norm.

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.
 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 RCOND (output)
 The reciprocal of the condition number of the
 matrix A, computed as RCOND = 1/(norm(A) *
 norm(inv(A))).

 WORK (workspace)

 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztrevc - compute some or all of the right and/or left eigen-
 vectors of a complex upper triangular matrix T

SYNOPSIS

 SUBROUTINE ZTREVC(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 DOUBLE COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION RWORK(*)

 SUBROUTINE ZTREVC_64(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, MM, M, WORK, RWORK, INFO)

 CHARACTER * 1 SIDE, HOWMNY
 DOUBLE COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(*)
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION RWORK(*)

 F95 INTERFACE
 SUBROUTINE TREVC(SIDE, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL], VR,
 [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: T, VL, VR
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK

 SUBROUTINE TREVC_64(SIDE, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL],
 VR, [LDVR], MM, M, [WORK], [RWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, HOWMNY
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: T, VL, VR
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, INFO

 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: RWORK

 C INTERFACE
 #include <sunperf.h>
 void ztrevc(char side, char howmny, int *select, int n,
 doublecomplex *t, int ldt, doublecomplex *vl, int
 ldvl, doublecomplex *vr, int ldvr, int mm, int *m,
 int *info);

 void ztrevc_64(char side, char howmny, long *select, long n,
 doublecomplex *t, long ldt, doublecomplex *vl,
 long ldvl, doublecomplex *vr, long ldvr, long mm,
 long *m, long *info);

PURPOSE

 ztrevc computes some or all of the right and/or left eigen-
 vectors of a complex upper triangular matrix T.

 The right eigenvector x and the left eigenvector y of T
 corresponding to an eigenvalue w are defined by:

 T*x = w*x, y'*T = w*y'

 where y' denotes the conjugate transpose of the vector y.

 If all eigenvectors are requested, the routine may either
 return the matrices X and/or Y of right or left eigenvectors
 of T, or the products Q*X and/or Q*Y, where Q is an input
 unitary
 matrix. If T was obtained from the Schur factorization of an
 original matrix A = Q*T*Q', then Q*X and Q*Y are the
 matrices of right or left eigenvectors of A.

ARGUMENTS

 SIDE (input)
 = 'R': compute right eigenvectors only;
 = 'L': compute left eigenvectors only;
 = 'B': compute both right and left eigenvectors.

 HOWMNY (input)
 = 'A': compute all right and/or left eigenvec-
 tors;
 = 'B': compute all right and/or left eigenvec-
 tors, and backtransform them using the input
 matrices supplied in VR and/or VL; = 'S': compute
 selected right and/or left eigenvectors, specified
 by the logical array SELECT.

 SELECT (input/output)
 If HOWMNY = 'S', SELECT specifies the eigenvectors
 to be computed. If HOWMNY = 'A' or 'B', SELECT is
 not referenced. To select the eigenvector
 corresponding to the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 The upper triangular matrix T. T is modified, but
 restored on exit.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input/output)
 On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B',
 VL must contain an N-by-N matrix Q (usually the
 unitary matrix Q of Schur vectors returned by
 CHSEQR). On exit, if SIDE = 'L' or 'B', VL con-
 tains: if HOWMNY = 'A', the matrix Y of left
 eigenvectors of T; VL is lower triangular. The i-
 th column VL(i) of VL is the eigenvector
 corresponding to T(i,i). if HOWMNY = 'B', the
 matrix Q*Y; if HOWMNY = 'S', the left eigenvectors
 of T specified by SELECT, stored consecutively in
 the columns of VL, in the same order as their
 eigenvalues. If SIDE = 'R', VL is not referenced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >=
 max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other-
 wise.

 VR (input/output)
 On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B',
 VR must contain an N-by-N matrix Q (usually the
 unitary matrix Q of Schur vectors returned by
 CHSEQR). On exit, if SIDE = 'R' or 'B', VR con-
 tains: if HOWMNY = 'A', the matrix X of right
 eigenvectors of T; VR is upper triangular. The i-
 th column VR(i) of VR is the eigenvector
 corresponding to T(i,i). if HOWMNY = 'B', the
 matrix Q*X; if HOWMNY = 'S', the right eigenvec-
 tors of T specified by SELECT, stored consecu-
 tively in the columns of VR, in the same order as
 their eigenvalues. If SIDE = 'L', VR is not
 referenced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >=
 max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other-
 wise.

 MM (input)
 The number of columns in the arrays VL and/or VR.
 MM >= M.

 M (output)
 The number of columns in the arrays VL and/or VR
 actually used to store the eigenvectors. If
 HOWMNY = 'A' or 'B', M is set to N. Each selected
 eigenvector occupies one column.

 WORK (workspace)
 dimension(2*N)

 RWORK (workspace)
 dimension(N)

 INFO (output)

 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The algorithm used in this program is basically backward
 (forward) substitution, with scaling to make the the code
 robust against possible overflow.

 Each eigenvector is normalized so that the element of larg-
 est magnitude has magnitude 1; here the magnitude of a com-
 plex number (x,y) is taken to be |x| + |y|.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrexc - reorder the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that the diagonal element of T with row
 index IFST is moved to row ILST

SYNOPSIS

 SUBROUTINE ZTREXC(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO)

 CHARACTER * 1 COMPQ
 DOUBLE COMPLEX T(LDT,*), Q(LDQ,*)
 INTEGER N, LDT, LDQ, IFST, ILST, INFO

 SUBROUTINE ZTREXC_64(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO)

 CHARACTER * 1 COMPQ
 DOUBLE COMPLEX T(LDT,*), Q(LDQ,*)
 INTEGER*8 N, LDT, LDQ, IFST, ILST, INFO

 F95 INTERFACE
 SUBROUTINE TREXC(COMPQ, [N], T, [LDT], Q, [LDQ], IFST, ILST, [INFO])

 CHARACTER(LEN=1) :: COMPQ
 COMPLEX(8), DIMENSION(:,:) :: T, Q
 INTEGER :: N, LDT, LDQ, IFST, ILST, INFO

 SUBROUTINE TREXC_64(COMPQ, [N], T, [LDT], Q, [LDQ], IFST, ILST, [INFO])

 CHARACTER(LEN=1) :: COMPQ
 COMPLEX(8), DIMENSION(:,:) :: T, Q
 INTEGER(8) :: N, LDT, LDQ, IFST, ILST, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztrexc(char compq, int n, doublecomplex *t, int ldt,
 doublecomplex *q, int ldq, int ifst, int ilst, int
 *info);

 void ztrexc_64(char compq, long n, doublecomplex *t, long
 ldt, doublecomplex *q, long ldq, long ifst, long
 ilst, long *info);

PURPOSE

 ztrexc reorders the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that the diagonal element of T with row
 index IFST is moved to row ILST.
 The Schur form T is reordered by a unitary similarity
 transformation Z**H*T*Z, and optionally the matrix Q of
 Schur vectors is updated by postmultplying it with Z.

ARGUMENTS

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 N (input) The order of the matrix T. N >= 0.

 T (input/output)
 On entry, the upper triangular matrix T. On exit,
 the reordered upper triangular matrix.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the unitary transformation
 matrix Z which reorders T. If COMPQ = 'N', Q is
 not referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 IFST (input)
 Specify the reordering of the diagonal elements of
 T: The element with row index IFST is moved to
 row ILST by a sequence of transpositions between
 adjacent elements. 1 <= IFST <= N; 1 <= ILST <=
 N.

 ILST (input)
 See the description of IFST.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrmm - perform one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of op(
 A) = A or op(A) = A' or op(A) = conjg(A')

SYNOPSIS

 SUBROUTINE ZTRMM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER M, N, LDA, LDB

 SUBROUTINE ZTRMM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 M, N, LDA, LDB

 F95 INTERFACE
 SUBROUTINE TRMM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, LDA, LDB

 SUBROUTINE TRMM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, LDA, LDB

 C INTERFACE
 #include <sunperf.h>

 void ztrmm(char side, char uplo, char transa, char diag, int
 m, int n, doublecomplex *alpha, doublecomplex *a,
 int lda, doublecomplex *b, int ldb);
 void ztrmm_64(char side, char uplo, char transa, char diag,
 long m, long n, doublecomplex *alpha, doublecom-
 plex *a, long lda, doublecomplex *b, long ldb);

PURPOSE

 ztrmm performs one of the matrix-matrix operations B :=
 alpha*op(A)*B, or B := alpha*B*op(A) where alpha is a
 scalar, B is an m by n matrix, A is a unit, or non-unit,
 upper or lower triangular matrix and op(A) is one of op(
 A) = A or op(A) = A' or op(A) = conjg(A')

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) multi-
 plies B from the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = conjg(A').

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.
 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, k), where k
 is m when SIDE = 'L' or 'l' and is n when
 SIDE = 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be unity.

 Unchanged on exit.
 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1,M), when SIDE
 = 'R' or 'r' then LDA >= max(1,N). Unchanged on
 exit.

 B (input/output)
 COMPLEX*16 array of DIMENSION (LDB, n). Before
 entry, the leading M by N part of the array B must
 contain the matrix B, and on exit is overwritten
 by the transformed matrix.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling subprogram. LDB must
 be at least max(1,M). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrmv - perform one of the matrix-vector operations x :=
 A*x, or x := A'*x, or x := conjg(A')*x

SYNOPSIS

 SUBROUTINE ZTRMV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER N, LDA, INCY

 SUBROUTINE ZTRMV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TRMV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCY

 SUBROUTINE TRMV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztrmv(char uplo, char transa, char diag, int n, doub-
 lecomplex *a, int lda, doublecomplex *y, int
 incy);

 void ztrmv_64(char uplo, char transa, char diag, long n,
 doublecomplex *a, long lda, doublecomplex *y, long
 incy);

PURPOSE

 ztrmv performs one of the matrix-vector operations x := A*x,
 or x := A'*x, or x := conjg(A')*x where x is an n element
 vector and A is an n by n unit, or non-unit, upper or lower
 triangular matrix.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the operation to be
 performed as follows:

 TRANSA = 'N' or 'n' x := A*x.

 TRANSA = 'T' or 't' x := A'*x.

 TRANSA = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.
 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced. Before entry with UPLO = 'L' or 'l', the
 leading n by n lower triangular part of the array
 A must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced. Note that when DIAG = 'U' or 'u', the

 diagonal elements of A are not referenced either,
 but are assumed to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 vector x. On exit, Y is overwritten with the tran-
 formed vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrrfs - provide error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix

SYNOPSIS

 SUBROUTINE ZTRRFS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER N, NRHS, LDA, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 SUBROUTINE ZTRRFS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, X,
 LDX, FERR, BERR, WORK, WORK2, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), X(LDX,*), WORK(*)
 INTEGER*8 N, NRHS, LDA, LDB, LDX, INFO
 DOUBLE PRECISION FERR(*), BERR(*), WORK2(*)

 F95 INTERFACE
 SUBROUTINE TRRFS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, X
 INTEGER :: N, NRHS, LDA, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 SUBROUTINE TRRFS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 X, [LDX], FERR, BERR, [WORK], [WORK2], [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: WORK
 COMPLEX(8), DIMENSION(:,:) :: A, B, X
 INTEGER(8) :: N, NRHS, LDA, LDB, LDX, INFO
 REAL(8), DIMENSION(:) :: FERR, BERR, WORK2

 C INTERFACE
 #include <sunperf.h>

 void ztrrfs(char uplo, char transa, char diag, int n, int
 nrhs, doublecomplex *a, int lda, doublecomplex *b,
 int ldb, doublecomplex *x, int ldx, double *ferr,
 double *berr, int *info);

 void ztrrfs_64(char uplo, char transa, char diag, long n,
 long nrhs, doublecomplex *a, long lda, doublecom-
 plex *b, long ldb, doublecomplex *x, long ldx,
 double *ferr, double *berr, long *info);

PURPOSE

 ztrrfs provides error bounds and backward error estimates
 for the solution to a system of linear equations with a tri-
 angular coefficient matrix.

 The solution matrix X must be computed by CTRTRS or some
 other means before entering this routine. CTRRFS does not
 do iterative refinement because doing so cannot improve the
 backward error.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrices B and X. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input) The right hand side matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 X (input) The solution matrix X.

 LDX (input)
 The leading dimension of the array X. LDX >=
 max(1,N).

 FERR (output)
 The estimated forward error bound for each solu-
 tion vector X(j) (the j-th column of the solution
 matrix X). If XTRUE is the true solution
 corresponding to X(j), FERR(j) is an estimated
 upper bound for the magnitude of the largest ele-
 ment in (X(j) - XTRUE) divided by the magnitude of
 the largest element in X(j). The estimate is as
 reliable as the estimate for RCOND, and is almost
 always a slight overestimate of the true error.

 BERR (output)
 The componentwise relative backward error of each
 solution vector X(j) (i.e., the smallest relative
 change in any element of A or B that makes X(j) an
 exact solution).

 WORK (workspace)
 dimension(2*N)

 WORK2 (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztrsen - reorder the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that a selected cluster of eigenvalues
 appears in the leading positions on the diagonal of the
 upper triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace

SYNOPSIS

 SUBROUTINE ZTRSEN(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
 SEP, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 DOUBLE COMPLEX T(LDT,*), Q(LDQ,*), W(*), WORK(*)
 INTEGER N, LDT, LDQ, M, LWORK, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION S, SEP

 SUBROUTINE ZTRSEN_64(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
 SEP, WORK, LWORK, INFO)

 CHARACTER * 1 JOB, COMPQ
 DOUBLE COMPLEX T(LDT,*), Q(LDQ,*), W(*), WORK(*)
 INTEGER*8 N, LDT, LDQ, M, LWORK, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION S, SEP

 F95 INTERFACE
 SUBROUTINE TRSEN(JOB, COMPQ, SELECT, [N], T, [LDT], Q, [LDQ], W, M,
 S, SEP, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: T, Q
 INTEGER :: N, LDT, LDQ, M, LWORK, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8) :: S, SEP

 SUBROUTINE TRSEN_64(JOB, COMPQ, SELECT, [N], T, [LDT], Q, [LDQ], W,
 M, S, SEP, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: JOB, COMPQ
 COMPLEX(8), DIMENSION(:) :: W, WORK
 COMPLEX(8), DIMENSION(:,:) :: T, Q
 INTEGER(8) :: N, LDT, LDQ, M, LWORK, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8) :: S, SEP
 C INTERFACE
 #include <sunperf.h>

 void ztrsen(char job, char compq, int *select, int n, doub-
 lecomplex *t, int ldt, doublecomplex *q, int ldq,
 doublecomplex *w, int *m, double *s, double *sep,
 int *info);

 void ztrsen_64(char job, char compq, long *select, long n,
 doublecomplex *t, long ldt, doublecomplex *q, long
 ldq, doublecomplex *w, long *m, double *s, double
 *sep, long *info);

PURPOSE

 ztrsen reorders the Schur factorization of a complex matrix
 A = Q*T*Q**H, so that a selected cluster of eigenvalues
 appears in the leading positions on the diagonal of the
 upper triangular matrix T, and the leading columns of Q form
 an orthonormal basis of the corresponding right invariant
 subspace.

 Optionally the routine computes the reciprocal condition
 numbers of the cluster of eigenvalues and/or the invariant
 subspace.

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for the cluster of eigenvalues (S) or the invari-
 ant subspace (SEP):
 = 'N': none;
 = 'E': for eigenvalues only (S);
 = 'V': for invariant subspace only (SEP);
 = 'B': for both eigenvalues and invariant subspace
 (S and SEP).

 COMPQ (input)
 = 'V': update the matrix Q of Schur vectors;
 = 'N': do not update Q.

 SELECT (input)
 SELECT specifies the eigenvalues in the selected
 cluster. To select the j-th eigenvalue, SELECT(j)
 must be set to .TRUE..

 N (input) The order of the matrix T. N >= 0.
 T (input/output)
 On entry, the upper triangular matrix T. On exit,
 T is overwritten by the reordered matrix T, with
 the selected eigenvalues as the leading diagonal
 elements.

 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 Q (input) On entry, if COMPQ = 'V', the matrix Q of Schur
 vectors. On exit, if COMPQ = 'V', Q has been
 postmultiplied by the unitary transformation
 matrix which reorders T; the leading M columns of
 Q form an orthonormal basis for the specified
 invariant subspace. If COMPQ = 'N', Q is not
 referenced.

 LDQ (input)
 The leading dimension of the array Q. LDQ >= 1;
 and if COMPQ = 'V', LDQ >= N.

 W (output)
 The reordered eigenvalues of T, in the same order
 as they appear on the diagonal of T.

 M (output)
 The dimension of the specified invariant subspace.
 0 <= M <= N.

 S (output)
 If JOB = 'E' or 'B', S is a lower bound on the
 reciprocal condition number for the selected clus-
 ter of eigenvalues. S cannot underestimate the
 true reciprocal condition number by more than a
 factor of sqrt(N). If M = 0 or N, S = 1. If JOB =
 'N' or 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', SEP is the estimated recipro-
 cal condition number of the specified invariant
 subspace. If M = 0 or N, SEP = norm(T). If JOB =
 'N' or 'E', SEP is not referenced.
 WORK (workspace)
 If JOB = 'N', WORK is not referenced. Otherwise,
 on exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If JOB = 'N',
 LWORK >= 1; if JOB = 'E', LWORK = M*(N-M); if JOB
 = 'V' or 'B', LWORK >= 2*M*(N-M).

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 CTRSEN first collects the selected eigenvalues by computing
 a unitary transformation Z to move them to the top left
 corner of T. In other words, the selected eigenvalues are
 the eigenvalues of T11 in:

 Z'*T*Z = (T11 T12) n1
 (0 T22) n2
 n1 n2

 where N = n1+n2 and Z' means the conjugate transpose of Z.
 The first n1 columns of Z span the specified invariant sub-
 space of T.

 If T has been obtained from the Schur factorization of a
 matrix A = Q*T*Q', then the reordered Schur factorization of
 A is given by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1
 columns of Q*Z span the corresponding invariant subspace of
 A.

 The reciprocal condition number of the average of the eigen-
 values of T11 may be returned in S. S lies between 0 (very
 badly conditioned) and 1 (very well conditioned). It is com-
 puted as follows. First we compute R so that

 P = (I R) n1
 (0 0) n2
 n1 n2
 is the projector on the invariant subspace associated with
 T11. R is the solution of the Sylvester equation:

 T11*R - R*T22 = T12.

 Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M)
 denote the two-norm of M. Then S is computed as the lower
 bound

 (1 + F-norm(R)**2)**(-1/2)

 on the reciprocal of 2-norm(P), the true reciprocal condi-
 tion number. S cannot underestimate 1 / 2-norm(P) by more
 than a factor of sqrt(N).

 An approximate error bound for the computed average of the
 eigenvalues of T11 is

 EPS * norm(T) / S

 where EPS is the machine precision.

 The reciprocal condition number of the right invariant sub-
 space spanned by the first n1 columns of Z (or of Q*Z) is
 returned in SEP. SEP is defined as the separation of T11
 and T22:

 sep(T11, T22) = sigma-min(C)

 where sigma-min(C) is the smallest singular value of the
 n1*n2-by-n1*n2 matrix

 C = kprod(I(n2), T11) - kprod(transpose(T22), I(n1))

 I(m) is an m by m identity matrix, and kprod denotes the

 Kronecker product. We estimate sigma-min(C) by the recipro-
 cal of an estimate of the 1-norm of inverse(C). The true
 reciprocal 1-norm of inverse(C) cannot differ from sigma-
 min(C) by more than a factor of sqrt(n1*n2).

 When SEP is small, small changes in T can cause large
 changes in the invariant subspace. An approximate bound on
 the maximum angular error in the computed right invariant
 subspace is

 EPS * norm(T) / SEP

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrsm - solve one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B

SYNOPSIS

 SUBROUTINE ZTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER M, N, LDA, LDB

 SUBROUTINE ZTRSM_64(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
 LDB)

 CHARACTER * 1 SIDE, UPLO, TRANSA, DIAG
 DOUBLE COMPLEX ALPHA
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 M, N, LDA, LDB

 F95 INTERFACE
 SUBROUTINE TRSM(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A, [LDA],
 B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: M, N, LDA, LDB

 SUBROUTINE TRSM_64(SIDE, UPLO, [TRANSA], DIAG, [M], [N], ALPHA, A,
 [LDA], B, [LDB])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANSA, DIAG
 COMPLEX(8) :: ALPHA
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: M, N, LDA, LDB

 C INTERFACE
 #include <sunperf.h>

 void ztrsm(char side, char uplo, char transa, char diag, int
 m, int n, doublecomplex *alpha, doublecomplex *a,

 int lda, doublecomplex *b, int ldb);

 void ztrsm_64(char side, char uplo, char transa, char diag,
 long m, long n, doublecomplex *alpha,
 doublecomplex *a, long lda, doublecomplex *b, long
 ldb);

PURPOSE

 ztrsm solves one of the matrix equations op(A)*X =
 alpha*B, or X*op(A) = alpha*B where alpha is a scalar, X
 and B are m by n matrices, A is a unit, or non-unit, upper
 or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(
 A').

 The matrix X is overwritten on B.

ARGUMENTS

 SIDE (input)
 On entry, SIDE specifies whether op(A) appears
 on the left or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO (input)
 On entry, UPLO specifies whether the matrix A is
 an upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the form of op(A) to
 be used in the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = conjg(A').
 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M (input)
 On entry, M specifies the number of rows of B. M
 >= 0. Unchanged on exit.

 N (input)
 On entry, N specifies the number of columns of B.
 N >= 0. Unchanged on exit.

 ALPHA (input)
 On entry, ALPHA specifies the scalar alpha. When
 alpha is zero then A is not referenced and B
 need not be set before entry. Unchanged on exit.

 A (input)
 COMPLEX*16 array of DIMENSION (LDA, k),
 where k is m when SIDE = 'L' or 'l' and is n
 when SIDE = 'R' or 'r'.

 Before entry with UPLO = 'U' or 'u', the lead-
 ing k by k upper triangular part of the array A
 must contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-
 enced.

 Before entry with UPLO = 'L' or 'l', the lead-
 ing k by k lower triangular part of the array A
 must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced.

 Note that when DIAG = 'U' or 'u', the diagonal
 elements of A are not referenced either, but are
 assumed to be unity.

 Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. When
 SIDE = 'L' or 'l' then LDA >= max(1,M), when SIDE
 = 'R' or 'r' then LDA >= max(1,N). Unchanged on
 exit.

 B (input/output)
 COMPLEX*16 array of DIMENSION (LDB, n).
 Before entry, the leading M by N part of the array
 B must contain the right-hand side matrix B, and
 on exit is overwritten by the solution matrix X.

 LDB (input)
 On entry, LDB specifies the first dimension of B
 as declared in the calling subprogram. LDB >=
 max(1,M). Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztrsna - estimate reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a complex upper
 triangular matrix T (or of any matrix Q*T*Q**H with Q uni-
 tary)

SYNOPSIS

 SUBROUTINE ZTRSNA(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
 S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 DOUBLE COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*),
 WORK(LDWORK,*)
 INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL SELECT(*)
 DOUBLE PRECISION S(*), SEP(*), WORK1(*)

 SUBROUTINE ZTRSNA_64(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 LDVR, S, SEP, MM, M, WORK, LDWORK, WORK1, INFO)

 CHARACTER * 1 JOB, HOWMNY
 DOUBLE COMPLEX T(LDT,*), VL(LDVL,*), VR(LDVR,*),
 WORK(LDWORK,*)
 INTEGER*8 N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL*8 SELECT(*)
 DOUBLE PRECISION S(*), SEP(*), WORK1(*)

 F95 INTERFACE
 SUBROUTINE TRSNA(JOB, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL], VR,
 [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY
 COMPLEX(8), DIMENSION(:,:) :: T, VL, VR, WORK
 INTEGER :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL, DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, SEP, WORK1

 SUBROUTINE TRSNA_64(JOB, HOWMNY, SELECT, [N], T, [LDT], VL, [LDVL],
 VR, [LDVR], S, SEP, MM, M, [WORK], [LDWORK], [WORK1], [INFO])

 CHARACTER(LEN=1) :: JOB, HOWMNY

 COMPLEX(8), DIMENSION(:,:) :: T, VL, VR, WORK
 INTEGER(8) :: N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
 LOGICAL(8), DIMENSION(:) :: SELECT
 REAL(8), DIMENSION(:) :: S, SEP, WORK1
 C INTERFACE
 #include <sunperf.h>

 void ztrsna(char job, char howmny, int *select, int n, doub-
 lecomplex *t, int ldt, doublecomplex *vl, int
 ldvl, doublecomplex *vr, int ldvr, double *s, dou-
 ble *sep, int mm, int *m, int ldwork, int *info);

 void ztrsna_64(char job, char howmny, long *select, long n,
 doublecomplex *t, long ldt, doublecomplex *vl,
 long ldvl, doublecomplex *vr, long ldvr, double
 *s, double *sep, long mm, long *m, long ldwork,
 long *info);

PURPOSE

 ztrsna estimates reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a complex upper
 triangular matrix T (or of any matrix Q*T*Q**H with Q uni-
 tary).

ARGUMENTS

 JOB (input)
 Specifies whether condition numbers are required
 for eigenvalues (S) or eigenvectors (SEP):
 = 'E': for eigenvalues only (S);
 = 'V': for eigenvectors only (SEP);
 = 'B': for both eigenvalues and eigenvectors (S
 and SEP).

 HOWMNY (input)
 = 'A': compute condition numbers for all eigen-
 pairs;
 = 'S': compute condition numbers for selected
 eigenpairs specified by the array SELECT.

 SELECT (input)
 If HOWMNY = 'S', SELECT specifies the eigenpairs
 for which condition numbers are required. To
 select condition numbers for the j-th eigenpair,
 SELECT(j) must be set to .TRUE.. If HOWMNY = 'A',
 SELECT is not referenced.

 N (input) The order of the matrix T. N >= 0.

 T (input) The upper triangular matrix T.
 LDT (input)
 The leading dimension of the array T. LDT >=
 max(1,N).

 VL (input)
 If JOB = 'E' or 'B', VL must contain left eigen-
 vectors of T (or of any Q*T*Q**H with Q unitary),
 corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored

 in consecutive columns of VL, as returned by
 CHSEIN or CTREVC. If JOB = 'V', VL is not refer-
 enced.

 LDVL (input)
 The leading dimension of the array VL. LDVL >= 1;
 and if JOB = 'E' or 'B', LDVL >= N.

 VR (input)
 If JOB = 'E' or 'B', VR must contain right eigen-
 vectors of T (or of any Q*T*Q**H with Q unitary),
 corresponding to the eigenpairs specified by
 HOWMNY and SELECT. The eigenvectors must be stored
 in consecutive columns of VR, as returned by
 CHSEIN or CTREVC. If JOB = 'V', VR is not refer-
 enced.

 LDVR (input)
 The leading dimension of the array VR. LDVR >= 1;
 and if JOB = 'E' or 'B', LDVR >= N.

 S (output)
 If JOB = 'E' or 'B', the reciprocal condition
 numbers of the selected eigenvalues, stored in
 consecutive elements of the array. Thus S(j),
 SEP(j), and the j-th columns of VL and VR all
 correspond to the same eigenpair (but not in gen-
 eral the j-th eigenpair, unless all eigenpairs are
 selected). If JOB = 'V', S is not referenced.

 SEP (output)
 If JOB = 'V' or 'B', the estimated reciprocal con-
 dition numbers of the selected eigenvectors,
 stored in consecutive elements of the array. If
 JOB = 'E', SEP is not referenced.
 MM (input)
 The number of elements in the arrays S (if JOB =
 'E' or 'B') and/or SEP (if JOB = 'V' or 'B'). MM
 >= M.

 M (output)
 The number of elements of the arrays S and/or SEP
 actually used to store the estimated condition
 numbers. If HOWMNY = 'A', M is set to N.

 WORK (workspace)
 dimension(LDWORK,N+1) If JOB = 'E', WORK is not
 referenced.

 LDWORK (input)
 The leading dimension of the array WORK. LDWORK
 >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

 WORK1 (workspace)
 dimension(N) If JOB = 'E', WORK1 is not refer-
 enced.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The reciprocal of the condition number of an eigenvalue
 lambda is defined as

 S(lambda) = |v'*u| / (norm(u)*norm(v))

 where u and v are the right and left eigenvectors of T
 corresponding to lambda; v' denotes the conjugate transpose
 of v, and norm(u) denotes the Euclidean norm. These recipro-
 cal condition numbers always lie between zero (very badly
 conditioned) and one (very well conditioned). If n = 1,
 S(lambda) is defined to be 1.

 An approximate error bound for a computed eigenvalue W(i) is
 given by

 EPS * norm(T) / S(i)

 where EPS is the machine precision.
 The reciprocal of the condition number of the right eigen-
 vector u corresponding to lambda is defined as follows. Sup-
 pose

 T = (lambda c)
 (0 T22)

 Then the reciprocal condition number is

 SEP(lambda, T22) = sigma-min(T22 - lambda*I)

 where sigma-min denotes the smallest singular value. We
 approximate the smallest singular value by the reciprocal of
 an estimate of the one-norm of the inverse of T22 -
 lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).

 An approximate error bound for a computed right eigenvector
 VR(i) is given by

 EPS * norm(T) / SEP(i)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrsv - solve one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b

SYNOPSIS

 SUBROUTINE ZTRSV(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER N, LDA, INCY

 SUBROUTINE ZTRSV_64(UPLO, TRANSA, DIAG, N, A, LDA, Y, INCY)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), Y(*)
 INTEGER*8 N, LDA, INCY

 F95 INTERFACE
 SUBROUTINE TRSV(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INCY

 SUBROUTINE TRSV_64(UPLO, [TRANSA], DIAG, [N], A, [LDA], Y, [INCY])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:) :: Y
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INCY

 C INTERFACE
 #include <sunperf.h>

 void ztrsv(char uplo, char transa, char diag, int n, doub-
 lecomplex *a, int lda, doublecomplex *y, int
 incy);

 void ztrsv_64(char uplo, char transa, char diag, long n,
 doublecomplex *a, long lda, doublecomplex *y, long
 incy);

PURPOSE

 ztrsv solves one of the systems of equations A*x = b, or
 A'*x = b, or conjg(A')*x = b where b and x are n element
 vectors and A is an n by n unit, or non-unit, upper or lower
 triangular matrix.

 No test for singularity or near-singularity is included in
 this routine. Such tests must be performed before calling
 this routine.

ARGUMENTS

 UPLO (input)
 On entry, UPLO specifies whether the matrix is an
 upper or lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular
 matrix.

 UPLO = 'L' or 'l' A is a lower triangular
 matrix.

 Unchanged on exit.

 TRANSA (input)
 On entry, TRANSA specifies the equations to be
 solved as follows:

 TRANSA = 'N' or 'n' A*x = b.

 TRANSA = 'T' or 't' A'*x = b.

 TRANSA = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit tri-
 angular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 N (input)
 On entry, N specifies the order of the matrix A.
 N >= 0. Unchanged on exit.

 A (input)
 Before entry with UPLO = 'U' or 'u', the leading
 n by n upper triangular part of the array A must
 contain the upper triangular matrix and the
 strictly lower triangular part of A is not refer-

 enced. Before entry with UPLO = 'L' or 'l', the
 leading n by n lower triangular part of the array
 A must contain the lower triangular matrix and the
 strictly upper triangular part of A is not refer-
 enced. Note that when DIAG = 'U' or 'u', the
 diagonal elements of A are not referenced either,
 but are assumed to be unity. Unchanged on exit.

 LDA (input)
 On entry, LDA specifies the first dimension of A
 as declared in the calling (sub) program. LDA >=
 max(1, n). Unchanged on exit.

 Y (input/output)
 (1 + (n - 1)*abs(INCY)). Before entry, the
 incremented array Y must contain the n element
 right-hand side vector b. On exit, Y is overwrit-
 ten with the solution vector x.

 INCY (input)
 On entry, INCY specifies the increment for the
 elements of Y. INCY <> 0. Unchanged on exit.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrsyl - solve the complex Sylvester matrix equation

SYNOPSIS

 SUBROUTINE ZTRSYL(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
 SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
 DOUBLE PRECISION SCALE

 SUBROUTINE ZTRSYL_64(TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 LDC, SCALE, INFO)

 CHARACTER * 1 TRANA, TRANB
 DOUBLE COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)
 INTEGER*8 ISGN, M, N, LDA, LDB, LDC, INFO
 DOUBLE PRECISION SCALE

 F95 INTERFACE
 SUBROUTINE TRSYL(TRANA, TRANB, ISGN, [M], [N], A, [LDA], B, [LDB], C,
 [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL(8) :: SCALE

 SUBROUTINE TRSYL_64(TRANA, TRANB, ISGN, [M], [N], A, [LDA], B, [LDB],
 C, [LDC], SCALE, [INFO])

 CHARACTER(LEN=1) :: TRANA, TRANB
 COMPLEX(8), DIMENSION(:,:) :: A, B, C
 INTEGER(8) :: ISGN, M, N, LDA, LDB, LDC, INFO
 REAL(8) :: SCALE

 C INTERFACE
 #include <sunperf.h>

 void ztrsyl(char trana, char tranb, int isgn, int m, int n,
 doublecomplex *a, int lda, doublecomplex *b, int
 ldb, doublecomplex *c, int ldc, double *scale, int

 *info);

 void ztrsyl_64(char trana, char tranb, long isgn, long m,
 long n, doublecomplex *a, long lda, doublecomplex
 *b, long ldb, doublecomplex *c, long ldc, double
 *scale, long *info);

PURPOSE

 ztrsyl solves the complex Sylvester matrix equation:

 op(A)*X + X*op(B) = scale*C or
 op(A)*X - X*op(B) = scale*C,

 where op(A) = A or A**H, and A and B are both upper triangu-
 lar. A is M-by-M and B is N-by-N; the right hand side C and
 the solution X are M-by-N; and scale is an output scale fac-
 tor, set <= 1 to avoid overflow in X.

ARGUMENTS

 TRANA (input)
 Specifies the option op(A):
 = 'N': op(A) = A (No transpose)
 = 'C': op(A) = A**H (Conjugate transpose)

 TRANB (input)
 Specifies the option op(B):
 = 'N': op(B) = B (No transpose)
 = 'C': op(B) = B**H (Conjugate transpose)

 ISGN (input)
 Specifies the sign in the equation:
 = +1: solve op(A)*X + X*op(B) = scale*C
 = -1: solve op(A)*X - X*op(B) = scale*C

 M (input) The order of the matrix A, and the number of rows
 in the matrices X and C. M >= 0.

 N (input) The order of the matrix B, and the number of
 columns in the matrices X and C. N >= 0.

 A (input) The upper triangular matrix A.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).
 B (input) The upper triangular matrix B.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 C (input/output)
 On entry, the M-by-N right hand side matrix C. On
 exit, C is overwritten by the solution matrix X.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M)

 SCALE (output)
 The scale factor, scale, set <= 1 to avoid over-
 flow in X.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 = 1: A and B have common or very close eigen-
 values; perturbed values were used to solve the
 equation (but the matrices A and B are unchanged).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrti2 - compute the inverse of a complex upper or lower
 triangular matrix

SYNOPSIS

 SUBROUTINE ZTRTI2(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE ZTRTI2_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TRTI2(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE TRTI2_64(UPLO, DIAG, [N], A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztrti2(char uplo, char diag, int n, doublecomplex *a,
 int lda, int *info);

 void ztrti2_64(char uplo, char diag, long n, doublecomplex
 *a, long lda, long *info);

PURPOSE

 ztrti2 computes the inverse of a complex upper or lower tri-
 angular matrix.

 This is the Level 2 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 Specifies whether the matrix A is upper or lower
 triangular. = 'U': Upper triangular
 = 'L': Lower triangular

 DIAG (input)
 Specifies whether or not the matrix A is unit tri-
 angular. = 'N': Non-unit triangular
 = 'U': Unit triangular

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading n by n upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading n by n
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1.

 On exit, the (triangular) inverse of the original
 matrix, in the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -k, the k-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrtri - compute the inverse of a complex upper or lower
 triangular matrix A

SYNOPSIS

 SUBROUTINE ZTRTRI(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*)
 INTEGER N, LDA, INFO

 SUBROUTINE ZTRTRI_64(UPLO, DIAG, N, A, LDA, INFO)

 CHARACTER * 1 UPLO, DIAG
 DOUBLE COMPLEX A(LDA,*)
 INTEGER*8 N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TRTRI(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, INFO

 SUBROUTINE TRTRI_64(UPLO, DIAG, N, A, [LDA], [INFO])

 CHARACTER(LEN=1) :: UPLO, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztrtri(char uplo, char diag, int n, doublecomplex *a,
 int lda, int *info);

 void ztrtri_64(char uplo, char diag, long n, doublecomplex
 *a, long lda, long *info);

PURPOSE

 ztrtri computes the inverse of a complex upper or lower tri-
 angular matrix A.

 This is the Level 3 BLAS version of the algorithm.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 A (input/output)
 On entry, the triangular matrix A. If UPLO = 'U',
 the leading N-by-N upper triangular part of the
 array A contains the upper triangular matrix, and
 the strictly lower triangular part of A is not
 referenced. If UPLO = 'L', the leading N-by-N
 lower triangular part of the array A contains the
 lower triangular matrix, and the strictly upper
 triangular part of A is not referenced. If DIAG =
 'U', the diagonal elements of A are also not
 referenced and are assumed to be 1. On exit, the
 (triangular) inverse of the original matrix, in
 the same storage format.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, A(i,i) is exactly zero. The
 triangular matrix is singular and its inverse can
 not be computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 ztrtrs - solve a triangular system of the form A * X = B,
 A**T * X = B, or A**H * X = B,

SYNOPSIS

 SUBROUTINE ZTRTRS(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER N, NRHS, LDA, LDB, INFO

 SUBROUTINE ZTRTRS_64(UPLO, TRANSA, DIAG, N, NRHS, A, LDA, B, LDB,
 INFO)

 CHARACTER * 1 UPLO, TRANSA, DIAG
 DOUBLE COMPLEX A(LDA,*), B(LDB,*)
 INTEGER*8 N, NRHS, LDA, LDB, INFO

 F95 INTERFACE
 SUBROUTINE TRTRS(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER :: N, NRHS, LDA, LDB, INFO

 SUBROUTINE TRTRS_64(UPLO, [TRANSA], DIAG, N, NRHS, A, [LDA], B, [LDB],
 [INFO])

 CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
 COMPLEX(8), DIMENSION(:,:) :: A, B
 INTEGER(8) :: N, NRHS, LDA, LDB, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztrtrs(char uplo, char transa, char diag, int n, int
 nrhs, doublecomplex *a, int lda, doublecomplex *b,
 int ldb, int *info);

 void ztrtrs_64(char uplo, char transa, char diag, long n,
 long nrhs, doublecomplex *a, long lda, doublecom-
 plex *b, long ldb, long *info);

PURPOSE

 ztrtrs solves a triangular system of the form
 where A is a triangular matrix of order N, and B is an N-
 by-NRHS matrix. A check is made to verify that A is non-
 singular.

ARGUMENTS

 UPLO (input)
 = 'U': A is upper triangular;
 = 'L': A is lower triangular.

 TRANSA (input)
 Specifies the form of the system of equations:
 = 'N': A * X = B (No transpose)
 = 'T': A**T * X = B (Transpose)
 = 'C': A**H * X = B (Conjugate transpose)

 TRANSA is defaulted to 'N' for F95 INTERFACE.

 DIAG (input)
 = 'N': A is non-unit triangular;
 = 'U': A is unit triangular.

 N (input) The order of the matrix A. N >= 0.

 NRHS (input)
 The number of right hand sides, i.e., the number
 of columns of the matrix B. NRHS >= 0.

 A (input) The triangular matrix A. If UPLO = 'U', the lead-
 ing N-by-N upper triangular part of the array A
 contains the upper triangular matrix, and the
 strictly lower triangular part of A is not refer-
 enced. If UPLO = 'L', the leading N-by-N lower
 triangular part of the array A contains the lower
 triangular matrix, and the strictly upper triangu-
 lar part of A is not referenced. If DIAG = 'U',
 the diagonal elements of A are also not referenced
 and are assumed to be 1.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 B (input/output)
 On entry, the right hand side matrix B. On exit,
 if INFO = 0, the solution matrix X.

 LDB (input)
 The leading dimension of the array B. LDB >=
 max(1,N).

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value
 > 0: if INFO = i, the i-th diagonal element of A

 is zero, indicating that the matrix is singular
 and the solutions X have not been computed.

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztzrqf - routine is deprecated and has been replaced by rou-
 tine CTZRZF

SYNOPSIS

 SUBROUTINE ZTZRQF(M, N, A, LDA, TAU, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*)
 INTEGER M, N, LDA, INFO

 SUBROUTINE ZTZRQF_64(M, N, A, LDA, TAU, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*)
 INTEGER*8 M, N, LDA, INFO

 F95 INTERFACE
 SUBROUTINE TZRQF([M], [N], A, [LDA], TAU, [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, INFO

 SUBROUTINE TZRQF_64([M], [N], A, [LDA], TAU, [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztzrqf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void ztzrqf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 ztzrqf routine is deprecated and has been replaced by rou-
 tine CTZRZF.

 CTZRQF reduces the M-by-N (M<=N) complex upper trapezoidal
 matrix A to upper triangular form by means of unitary
 transformations.

 The upper trapezoidal matrix A is factored as
 A = (R 0) * Z,

 where Z is an N-by-N unitary matrix and R is an M-by-M upper
 triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= M.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the uni-
 tary matrix Z as a product of M elementary reflec-
 tors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), whose conjugate transpose
 is used to introduce zeros into the (m - k + 1)th row of A,
 is given in the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.

 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 ztzrzf - reduce the M-by-N (M<=N) complex upper tra-
 pezoidal matrix A to upper triangular form by means of uni-
 tary transformations

SYNOPSIS

 SUBROUTINE ZTZRZF(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, LDA, LWORK, INFO

 SUBROUTINE ZTZRZF_64(M, N, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE TZRZF([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, LDA, LWORK, INFO

 SUBROUTINE TZRZF_64([M], [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void ztzrzf(int m, int n, doublecomplex *a, int lda, doub-
 lecomplex *tau, int *info);

 void ztzrzf_64(long m, long n, doublecomplex *a, long lda,
 doublecomplex *tau, long *info);

PURPOSE

 ztzrzf reduces the M-by-N (M<=N) complex upper trapezoidal
 matrix A to upper triangular form by means of unitary
 transformations.

 The upper trapezoidal matrix A is factored as

 A = (R 0) * Z,
 where Z is an N-by-N unitary matrix and R is an M-by-M upper
 triangular matrix.

ARGUMENTS

 M (input) The number of rows of the matrix A. M >= 0.

 N (input) The number of columns of the matrix A. N >= 0.

 A (input/output)
 On entry, the leading M-by-N upper trapezoidal
 part of the array A must contain the matrix to be
 factorized. On exit, the leading M-by-M upper
 triangular part of A contains the upper triangular
 matrix R, and elements M+1 to N of the first M
 rows of A, with the array TAU, represent the uni-
 tary matrix Z as a product of M elementary reflec-
 tors.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M).

 TAU (output)
 The scalar factors of the elementary reflectors.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

 The factorization is obtained by Householder's method. The
 kth transformation matrix, Z(k), which is used to intro-
 duce zeros into the (m - k + 1)th row of A, is given in
 the form

 Z(k) = (I 0),
 (0 T(k))

 where

 T(k) = I - tau*u(k)*u(k)', u(k) = (1),
 (0)
 (z(k))

 tau is a scalar and z(k) is an (n - m) element vector.
 tau and z(k) are chosen to annihilate the elements of the
 kth row of X.

 The scalar tau is returned in the kth element of TAU and the
 vector u(k) in the kth row of A, such that the elements of
 z(k) are in a(k, m + 1), ..., a(k, n). The elements
 of R are returned in the upper triangular part of A.

 Z is given by

 Z = Z(1) * Z(2) * ... * Z(m).

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zung2l - generate an m by n complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE ZUNG2L(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE ZUNG2L_64(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNG2L(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNG2L_64(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zung2l(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zung2l_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zung2l L generates an m by n complex matrix Q with orthonor-
 mal columns, which is defined as the last n columns of a
 product of k elementary reflectors of order m

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by CGEQLF in
 the last k columns of its array argument A. On
 exit, the m-by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zung2r - generate an m by n complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE ZUNG2R(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE ZUNG2R_64(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNG2R(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNG2R_64(M, [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zung2r(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zung2r_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zung2r R generates an m by n complex matrix Q with orthonor-
 mal columns, which is defined as the first n columns of a
 product of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

 as returned by CGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. On exit, the m
 by n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 WORK (workspace)
 dimension(N)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungbr - generate one of the complex unitary matrices Q or
 P**H determined by CGEBRD when reducing a complex matrix A
 to bidiagonal form

SYNOPSIS

 SUBROUTINE ZUNGBR(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE ZUNGBR_64(VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 VECT
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGBR(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGBR_64(VECT, M, [N], K, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 CHARACTER(LEN=1) :: VECT
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungbr(char vect, int m, int n, int k, doublecomplex
 *a, int lda, doublecomplex *tau, int *info);

 void zungbr_64(char vect, long m, long n, long k, doublecom-
 plex *a, long lda, doublecomplex *tau, long

 *info);

PURPOSE

 zungbr generates one of the complex unitary matrices Q or
 P**H determined by CGEBRD when reducing a complex matrix A
 to bidiagonal form: A = Q * B * P**H. Q and P**H are
 defined as products of elementary reflectors H(i) or G(i)
 respectively.

 If VECT = 'Q', A is assumed to have been an M-by-K matrix,
 and Q is of order M:
 if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the
 first n columns of Q, where m >= n >= k;
 if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as
 an M-by-M matrix.

 If VECT = 'P', A is assumed to have been a K-by-N matrix,
 and P**H is of order N:
 if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the
 first m rows of P**H, where n >= m >= k;
 if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns
 P**H as an N-by-N matrix.

ARGUMENTS

 VECT (input)
 Specifies whether the matrix Q or the matrix P**H
 is required, as defined in the transformation
 applied by CGEBRD:
 = 'Q': generate Q;
 = 'P': generate P**H.

 M (input) The number of rows of the matrix Q or P**H to be
 returned. M >= 0.

 N (input) The number of columns of the matrix Q or P**H to
 be returned. N >= 0. If VECT = 'Q', M >= N >=
 min(M,K); if VECT = 'P', N >= M >= min(N,K).

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal M-by-K matrix reduced by CGEBRD. If VECT =
 'P', the number of rows in the original K-by-N
 matrix reduced by CGEBRD. K >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CGEBRD. On exit, the
 M-by-N matrix Q or P**H.
 LDA (input)
 The leading dimension of the array A. LDA >= M.

 TAU (input)
 (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P'
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i), which determines Q
 or P**H, as returned by CGEBRD in its array argu-
 ment TAUQ or TAUP.

 WORK (workspace)

 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,min(M,N)). For optimum performance LWORK >=
 min(M,N)*NB, where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunghr - generate a complex unitary matrix Q which is
 defined as the product of IHI-ILO elementary reflectors of
 order N, as returned by CGEHRD

SYNOPSIS

 SUBROUTINE ZUNGHR(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, ILO, IHI, LDA, LWORK, INFO

 SUBROUTINE ZUNGHR_64(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, ILO, IHI, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGHR([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, ILO, IHI, LDA, LWORK, INFO

 SUBROUTINE UNGHR_64([N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, ILO, IHI, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunghr(int n, int ilo, int ihi, doublecomplex *a, int
 lda, doublecomplex *tau, int *info);

 void zunghr_64(long n, long ilo, long ihi, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zunghr generates a complex unitary matrix Q which is defined
 as the product of IHI-ILO elementary reflectors of order N,
 as returned by CGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 N (input) The order of the matrix Q. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of CGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if
 N > 0; ILO=1 and IHI=0, if N=0.

 IHI (input)
 See the description of IHI.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CGEHRD. On exit, the
 N-by-N unitary matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEHRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= IHI-ILO.
 For optimum performance LWORK >= (IHI-ILO)*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an
 illegal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungl2 - generate an m-by-n complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE ZUNGL2(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE ZUNGL2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNGL2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNGL2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungl2(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungl2_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zungl2 generates an m-by-n complex matrix Q with orthonormal
 rows, which is defined as the first m rows of a product of k
 elementary reflectors of order n

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGELQF in the first k
 rows of its array argument A. On exit, the m by n
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunglq - generate an M-by-N complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE ZUNGLQ(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE ZUNGLQ_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGLQ(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGLQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunglq(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zunglq_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zunglq generates an M-by-N complex matrix Q with orthonormal
 rows, which is defined as the first M rows of a product of K
 elementary reflectors of order N

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the i-th row must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGELQF in the first k
 rows of its array argument A. On exit, the M-by-N
 matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit;
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungql - generate an M-by-N complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE ZUNGQL(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE ZUNGQL_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGQL(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGQL_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungql(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungql_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zungql generates an M-by-N complex matrix Q with orthonormal
 columns, which is defined as the last N columns of a product
 of K elementary reflectors of order M

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the (n-k+i)-th column must contain the
 vector which defines the elementary reflector
 H(i), for i = 1,2,...,k, as returned by CGEQLF in
 the last k columns of its array argument A. On
 exit, the M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,N). For optimum performance LWORK >= N*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungqr - generate an M-by-N complex matrix Q with orthonor-
 mal columns,

SYNOPSIS

 SUBROUTINE ZUNGQR(M, N, K, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER M, N, K, LDA, LWORKIN, INFO

 SUBROUTINE ZUNGQR_64(M, N, K, A, LDA, TAU, WORKIN, LWORKIN, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORKIN(*)
 INTEGER*8 M, N, K, LDA, LWORKIN, INFO

 F95 INTERFACE
 SUBROUTINE UNGQR(M, [N], [K], A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORKIN
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORKIN, INFO

 SUBROUTINE UNGQR_64(M, [N], [K], A, [LDA], TAU, [WORKIN], [LWORKIN],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORKIN
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORKIN, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungqr(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungqr_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zungqr generates an M-by-N complex matrix Q with orthonormal
 columns, which is defined as the first N columns of a pro-
 duct of K elementary reflectors of order M

 Q = H(1) H(2) . . . H(k)
 as returned by CGEQRF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. M >= N >=
 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. N >= K >= 0.

 A (input/output)
 On entry, the i-th column must contain the vector
 which defines the elementary reflector H(i), for i
 = 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. On exit, the M-
 by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 WORKIN (workspace)
 On exit, if INFO = 0, WORKIN(1) returns the
 optimal LWORKIN.

 LWORKIN (input)
 The dimension of the array WORKIN. LWORKIN >=
 max(1,N). For optimum performance LWORKIN >=
 N*NB, where NB is the optimal blocksize.

 If LWORKIN = -1, then a workspace query is
 assumed; the routine only calculates the optimal
 size of the WORKIN array, returns this value as
 the first entry of the WORKIN array, and no error
 message related to LWORKIN is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungr2 - generate an m by n complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE ZUNGR2(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, INFO

 SUBROUTINE ZUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, INFO

 F95 INTERFACE
 SUBROUTINE UNGR2([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, INFO

 SUBROUTINE UNGR2_64([M], [N], [K], A, [LDA], TAU, [WORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungr2(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungr2_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zungr2 generates an m by n complex matrix Q with orthonormal
 rows, which is defined as the last m rows of a product of k
 elementary reflectors of order n

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by CGERQF in the
 last k rows of its array argument A. On exit, the
 m-by-n matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 WORK (workspace)
 dimension(M)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungrq - generate an M-by-N complex matrix Q with orthonor-
 mal rows,

SYNOPSIS

 SUBROUTINE ZUNGRQ(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER M, N, K, LDA, LWORK, INFO

 SUBROUTINE ZUNGRQ_64(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 M, N, K, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGRQ(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: M, N, K, LDA, LWORK, INFO

 SUBROUTINE UNGRQ_64(M, [N], [K], A, [LDA], TAU, [WORK], [LWORK],
 [INFO])

 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: M, N, K, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungrq(int m, int n, int k, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungrq_64(long m, long n, long k, doublecomplex *a,
 long lda, doublecomplex *tau, long *info);

PURPOSE

 zungrq generates an M-by-N complex matrix Q with orthonormal
 rows, which is defined as the last M rows of a product of K
 elementary reflectors of order N

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF.

ARGUMENTS

 M (input) The number of rows of the matrix Q. M >= 0.

 N (input) The number of columns of the matrix Q. N >= M.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. M >= K >= 0.

 A (input/output)
 On entry, the (m-k+i)-th row must contain the vec-
 tor which defines the elementary reflector H(i),
 for i = 1,2,...,k, as returned by CGERQF in the
 last k rows of its array argument A. On exit, the
 M-by-N matrix Q.

 LDA (input)
 The first dimension of the array A. LDA >=
 max(1,M).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >=
 max(1,M). For optimum performance LWORK >= M*NB,
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument has an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zungtr - generate a complex unitary matrix Q which is
 defined as the product of n-1 elementary reflectors of order
 N, as returned by CHETRD

SYNOPSIS

 SUBROUTINE ZUNGTR(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER N, LDA, LWORK, INFO

 SUBROUTINE ZUNGTR_64(UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
 INTEGER*8 N, LDA, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNGTR(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER :: N, LDA, LWORK, INFO

 SUBROUTINE UNGTR_64(UPLO, [N], A, [LDA], TAU, [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A
 INTEGER(8) :: N, LDA, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zungtr(char uplo, int n, doublecomplex *a, int lda,
 doublecomplex *tau, int *info);

 void zungtr_64(char uplo, long n, doublecomplex *a, long
 lda, doublecomplex *tau, long *info);

PURPOSE

 zungtr generates a complex unitary matrix Q which is defined
 as the product of n-1 elementary reflectors of order N, as
 returned by CHETRD:
 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from CHETRD; = 'L': Lower triangle of A
 contains elementary reflectors from CHETRD.

 N (input) The order of the matrix Q. N >= 0.

 A (input/output)
 On entry, the vectors which define the elementary
 reflectors, as returned by CHETRD. On exit, the
 N-by-N unitary matrix Q.

 LDA (input)
 The leading dimension of the array A. LDA >= N.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CHETRD.

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. LWORK >= N-1.
 For optimum performance LWORK >= (N-1)*NB, where
 NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmbr - VECT = 'Q', CUNMBR overwrites the general complex
 M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 VECT, SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMBR(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMBR_64(VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: VECT, SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmbr(char vect, char side, char trans, int m, int n,
 int k, doublecomplex *a, int lda, doublecomplex
 *tau, doublecomplex *c, int ldc, int *info);

 void zunmbr_64(char vect, char side, char trans, long m,
 long n, long k, doublecomplex *a, long lda, doub-
 lecomplex *tau, doublecomplex *c, long ldc, long
 *info);

PURPOSE

 zunmbr VECT = 'Q', CUNMBR overwrites the general complex M-
 by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N':
 Q * C C * Q TRANS = 'C': Q**H * C C *
 Q**H

 If VECT = 'P', CUNMBR overwrites the general complex M-by-N
 matrix C with
 SIDE = 'L' SIDE = 'R'
 TRANS = 'N': P * C C * P
 TRANS = 'C': P**H * C C * P**H

 Here Q and P**H are the unitary matrices determined by
 CGEBRD when reducing a complex matrix A to bidiagonal form:
 A = Q * B * P**H. Q and P**H are defined as products of ele-
 mentary reflectors H(i) and G(i) respectively.

 Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq
 is the order of the unitary matrix Q or P**H that is
 applied.

 If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 if nq >= k, Q = H(1) H(2) . . . H(k);
 if nq < k, Q = H(1) H(2) . . . H(nq-1).

 If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 if k < nq, P = G(1) G(2) . . . G(k);
 if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

 VECT (input)
 = 'Q': apply Q or Q**H;
 = 'P': apply P or P**H.

 SIDE (input)
 = 'L': apply Q, Q**H, P or P**H from the Left;
 = 'R': apply Q, Q**H, P or P**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q or P;
 = 'C': Conjugate transpose, apply Q**H or P**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.
 N (input) The number of columns of the matrix C. N >= 0.

 K (input) If VECT = 'Q', the number of columns in the origi-
 nal matrix reduced by CGEBRD. If VECT = 'P', the
 number of rows in the original matrix reduced by
 CGEBRD. K >= 0.

 A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if
 VECT = 'P' The vectors which define the elementary
 reflectors H(i) and G(i), whose products determine
 the matrices Q and P, as returned by CGEBRD.

 LDA (input)
 The leading dimension of the array A. If VECT =
 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >=
 max(1,min(nq,K)).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i) or G(i) which determines Q
 or P, as returned by CGEBRD in the array argument
 TAUQ or TAUP.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q or
 P*C or P**H*C or C*P or C*P**H.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmhr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMHR(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMHR_64(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 LDC, WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMHR(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMHR_64(SIDE, [TRANS], [M], [N], ILO, IHI, A, [LDA], TAU,
 C, [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, ILO, IHI, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmhr(char side, char trans, int m, int n, int ilo,
 int ihi, doublecomplex *a, int lda, doublecomplex
 *tau, doublecomplex *c, int ldc, int *info);

 void zunmhr_64(char side, char trans, long m, long n, long
 ilo, long ihi, doublecomplex *a, long lda, doub-
 lecomplex *tau, doublecomplex *c, long ldc, long
 *info);

PURPOSE

 zunmhr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of IHI-ILO elementary reflectors, as returned by
 CGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q**H (Conjugate transpose)

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 ILO (input)
 ILO and IHI must have the same values as in the
 previous call of CGEHRD. Q is equal to the unit
 matrix except in the submatrix
 Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <=
 ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI =
 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI
 <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.

 IHI (input)
 See the description of ILO.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by CGEHRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by CGEHRD.

 C (input/output)

 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunml2 - overwrite the general complex m-by-n matrix C with
 Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE =
 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS =
 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

SYNOPSIS

 SUBROUTINE ZUNML2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, INFO

 SUBROUTINE ZUNML2_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UNML2(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, INFO

 SUBROUTINE UNML2_64(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunml2(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,

 doublecomplex *c, int ldc, int *info);

 void zunml2_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunml2 overwrites the general complex m-by-n matrix C with

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF. Q is of order m if SIDE = 'L' and of
 order n if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q' from the Left
 = 'R': apply Q or Q' from the Right

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q' (Conjugate transpose)

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 C (input/output)
 On entry, the m-by-n matrix C. On exit, C is
 overwritten by Q*C or Q'*C or C*Q' or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)

 (N) if SIDE = 'L', (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmlq - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMLQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMLQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmlq(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,
 doublecomplex *c, int ldc, int *info);

 void zunmlq_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmlq overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k)' . . . H(2)' H(1)'

 as returned by CGELQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGELQF in the first k rows of its
 array argument A. A is modified by the routine
 but restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGELQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmql - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMQL(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMQL_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmql(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,
 doublecomplex *c, int ldc, int *info);

 void zunmql_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmql overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(k) . . . H(2) H(1)

 as returned by CGEQLF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by CGEQLF in the last k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQLF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmqr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMQR(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMQR_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmqr(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,
 doublecomplex *c, int ldc, int *info);

 void zunmqr_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmqr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by CGEQRF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) The i-th column must contain the vector which
 defines the elementary reflector H(i), for i =
 1,2,...,k, as returned by CGEQRF in the first k
 columns of its array argument A. A is modified by
 the routine but restored on exit.

 LDA (input)
 The leading dimension of the array A. If SIDE =
 'L', LDA >= max(1,M); if SIDE = 'R', LDA >=
 max(1,N).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGEQRF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmr2 - overwrite the general complex m-by-n matrix C with
 Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE =
 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS =
 'N', or C * Q' if SIDE = 'R' and TRANS = 'C',

SYNOPSIS

 SUBROUTINE ZUNMR2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, INFO

 SUBROUTINE ZUNMR2_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UNMR2(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, INFO

 SUBROUTINE UNMR2_64(SIDE, TRANS, [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmr2(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,

 doublecomplex *c, int ldc, int *info);

 void zunmr2_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmr2 overwrites the general complex m-by-n matrix C with

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF. Q is of order m if SIDE = 'L' and of
 order n if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q' from the Left
 = 'R': apply Q or Q' from the Right

 TRANS (input)
 = 'N': apply Q (No transpose)
 = 'C': apply Q' (Conjugate transpose)

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 C (input/output)
 On entry, the m-by-n matrix C. On exit, C is
 overwritten by Q*C or Q'*C or C*Q' or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)

 (N) if SIDE = 'L', (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmrq - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMRQ(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, [LDC],
 [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMRQ_64(SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmrq(char side, char trans, int m, int n, int k,
 doublecomplex *a, int lda, doublecomplex *tau,
 doublecomplex *c, int ldc, int *info);

 void zunmrq_64(char side, char trans, long m, long n, long
 k, doublecomplex *a, long lda, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmrq overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1)' H(2)' . . . H(k)'

 as returned by CGERQF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CGERQF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CGERQF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

FURTHER DETAILS●

NAME

 zunmrz - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, K, L, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, K, L, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE ZUNMRZ(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, K, L, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMRZ_64(SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER(LEN=1) :: SIDE, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, K, L, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmrz(char side, char trans, int m, int n, int k, int
 l, doublecomplex *a, int lda, doublecomplex *tau,

 doublecomplex *c, int ldc, int *info);

 void zunmrz_64(char side, char trans, long m, long n, long
 k, long l, doublecomplex *a, long lda, doublecom-
 plex *tau, doublecomplex *c, long ldc, long
 *info);

PURPOSE

 zunmrz overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix defined as the product
 of k elementary reflectors

 Q = H(1) H(2) . . . H(k)

 as returned by CTZRZF. Q is of order M if SIDE = 'L' and of
 order N if SIDE = 'R'.

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 K (input) The number of elementary reflectors whose product
 defines the matrix Q. If SIDE = 'L', M >= K >= 0;
 if SIDE = 'R', N >= K >= 0.

 L (input) The number of columns of the matrix A containing
 the meaningful part of the Householder reflectors.
 If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L
 >= 0.

 A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The
 i-th row must contain the vector which defines the
 elementary reflector H(i), for i = 1,2,...,k, as
 returned by CTZRZF in the last k rows of its array
 argument A. A is modified by the routine but
 restored on exit.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,K).

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CTZRZF.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is

 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

FURTHER DETAILS

 Based on contributions by
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knox-
 ville, USA

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zunmtr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUNMTR(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
 LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, LDA, LDC, LWORK, INFO

 SUBROUTINE ZUNMTR_64(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
 WORK, LWORK, INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, LDA, LDC, LWORK, INFO

 F95 INTERFACE
 SUBROUTINE UNMTR(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER :: M, N, LDA, LDC, LWORK, INFO

 SUBROUTINE UNMTR_64(SIDE, UPLO, [TRANS], [M], [N], A, [LDA], TAU, C,
 [LDC], [WORK], [LWORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX(8), DIMENSION(:) :: TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: A, C
 INTEGER(8) :: M, N, LDA, LDC, LWORK, INFO

 C INTERFACE
 #include <sunperf.h>

 void zunmtr(char side, char uplo, char trans, int m, int n,
 doublecomplex *a, int lda, doublecomplex *tau,
 doublecomplex *c, int ldc, int *info);

 void zunmtr_64(char side, char uplo, char trans, long m,
 long n, doublecomplex *a, long lda, doublecomplex
 *tau, doublecomplex *c, long ldc, long *info);

PURPOSE

 zunmtr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by
 CHETRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 UPLO (input)
 = 'U': Upper triangle of A contains elementary
 reflectors from CHETRD; = 'L': Lower triangle of A
 contains elementary reflectors from CHETRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 A (input) (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
 vectors which define the elementary reflectors, as
 returned by CHETRD.

 LDA (input)
 The leading dimension of the array A. LDA >=
 max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
 'R'.

 TAU (input)
 (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i)
 must contain the scalar factor of the elementary
 reflector H(i), as returned by CHETRD.

 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 On exit, if INFO = 0, WORK(1) returns the optimal
 LWORK.

 LWORK (input)
 The dimension of the array WORK. If SIDE = 'L',
 LWORK >= max(1,N); if SIDE = 'R', LWORK >=
 max(1,M). For optimum performance LWORK >= N*NB
 if SIDE = 'L', and LWORK >=M*NB if SIDE = 'R',
 where NB is the optimal blocksize.

 If LWORK = -1, then a workspace query is assumed;
 the routine only calculates the optimal size of
 the WORK array, returns this value as the first
 entry of the WORK array, and no error message
 related to LWORK is issued by XERBLA.

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zupgtr - generate a complex unitary matrix Q which is
 defined as the product of n-1 elementary reflectors H(i) of
 order n, as returned by CHPTRD using packed storage

SYNOPSIS

 SUBROUTINE ZUPGTR(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), TAU(*), Q(LDQ,*), WORK(*)
 INTEGER N, LDQ, INFO

 SUBROUTINE ZUPGTR_64(UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

 CHARACTER * 1 UPLO
 DOUBLE COMPLEX AP(*), TAU(*), Q(LDQ,*), WORK(*)
 INTEGER*8 N, LDQ, INFO

 F95 INTERFACE
 SUBROUTINE UPGTR(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: Q
 INTEGER :: N, LDQ, INFO

 SUBROUTINE UPGTR_64(UPLO, [N], AP, TAU, Q, [LDQ], [WORK], [INFO])

 CHARACTER(LEN=1) :: UPLO
 COMPLEX(8), DIMENSION(:) :: AP, TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: Q
 INTEGER(8) :: N, LDQ, INFO

 C INTERFACE
 #include <sunperf.h>

 void zupgtr(char uplo, int n, doublecomplex *ap, doublecom-
 plex *tau, doublecomplex *q, int ldq, int *info);

 void zupgtr_64(char uplo, long n, doublecomplex *ap, doub-
 lecomplex *tau, doublecomplex *q, long ldq, long
 *info);

PURPOSE

 zupgtr generates a complex unitary matrix Q which is defined
 as the product of n-1 elementary reflectors H(i) of order n,
 as returned by CHPTRD using packed storage:

 if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),

 if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).

ARGUMENTS

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to CHPTRD; = 'L': Lower triangular
 packed storage used in previous call to CHPTRD.

 N (input) The order of the matrix Q. N >= 0.

 AP (input)
 The vectors which define the elementary reflec-
 tors, as returned by CHPTRD.

 TAU (input)
 TAU(i) must contain the scalar factor of the ele-
 mentary reflector H(i), as returned by CHPTRD.

 Q (output)
 The N-by-N unitary matrix Q.

 LDQ (input)
 The leading dimension of the array Q. LDQ >=
 max(1,N).

 WORK (workspace)
 dimension(N-1)

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zupmtr - overwrite the general complex M-by-N matrix C with
 SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

 SUBROUTINE ZUPMTR(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 DOUBLE COMPLEX AP(*), TAU(*), C(LDC,*), WORK(*)
 INTEGER M, N, LDC, INFO

 SUBROUTINE ZUPMTR_64(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
 INFO)

 CHARACTER * 1 SIDE, UPLO, TRANS
 DOUBLE COMPLEX AP(*), TAU(*), C(LDC,*), WORK(*)
 INTEGER*8 M, N, LDC, INFO

 F95 INTERFACE
 SUBROUTINE UPMTR(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX(8), DIMENSION(:) :: AP, TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: C
 INTEGER :: M, N, LDC, INFO

 SUBROUTINE UPMTR_64(SIDE, UPLO, [TRANS], [M], [N], AP, TAU, C, [LDC],
 [WORK], [INFO])

 CHARACTER(LEN=1) :: SIDE, UPLO, TRANS
 COMPLEX(8), DIMENSION(:) :: AP, TAU, WORK
 COMPLEX(8), DIMENSION(:,:) :: C
 INTEGER(8) :: M, N, LDC, INFO

 C INTERFACE
 #include <sunperf.h>

 void zupmtr(char side, char uplo, char trans, int m, int n,
 doublecomplex *ap, doublecomplex *tau, doublecom-
 plex *c, int ldc, int *info);

 void zupmtr_64(char side, char uplo, char trans, long m,
 long n, doublecomplex *ap, doublecomplex *tau,
 doublecomplex *c, long ldc, long *info);

PURPOSE

 zupmtr overwrites the general complex M-by-N matrix C with
 TRANS = 'C': Q**H * C C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m
 if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
 product of nq-1 elementary reflectors, as returned by CHPTRD
 using packed storage:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

ARGUMENTS

 SIDE (input)
 = 'L': apply Q or Q**H from the Left;
 = 'R': apply Q or Q**H from the Right.

 UPLO (input)
 = 'U': Upper triangular packed storage used in
 previous call to CHPTRD; = 'L': Lower triangular
 packed storage used in previous call to CHPTRD.

 TRANS (input)
 = 'N': No transpose, apply Q;
 = 'C': Conjugate transpose, apply Q**H.

 TRANS is defaulted to 'N' for F95 INTERFACE.

 M (input) The number of rows of the matrix C. M >= 0.

 N (input) The number of columns of the matrix C. N >= 0.

 AP (input)
 (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE =
 'R' The vectors which define the elementary
 reflectors, as returned by CHPTRD. AP is modified
 by the routine but restored on exit.

 TAU (input)
 or (N-1) if SIDE = 'R' TAU(i) must contain the
 scalar factor of the elementary reflector H(i), as
 returned by CHPTRD.
 C (input/output)
 On entry, the M-by-N matrix C. On exit, C is
 overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

 LDC (input)
 The leading dimension of the array C. LDC >=
 max(1,M).

 WORK (workspace)
 (N) if SIDE = 'L' (M) if SIDE = 'R'

 INFO (output)
 = 0: successful exit
 < 0: if INFO = -i, the i-th argument had an ille-
 gal value

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zvbrmm - variable block sparse row format matrix-matrix
 multiply

SYNOPSIS

 SUBROUTINE ZVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZVBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, KB
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, KB
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- alpha op(A) B + beta C
 where ALPHA and BETA are scalar, C and B are matrices,
 A is a matrix represented in variable block sparse row format
 and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').
 (' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if the matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 KB Number of block columns in matrix A

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-unit
 1 : unit
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible
 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.
 INDX() integer array of length BNNZ+1 where BNNZ is the number of
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block

 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
 rows in matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 CPNTR() integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is
 the number of columns in matrix A.
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK. WORK is not
 referenced in the current version.

 LWORK length of WORK array. LWORK is not referenced
 in the current version.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:
 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. For a general matrix (DESCRA(1)=0), array CPNTR can be
 different from RPNTR. For all other matrix types, RPNTR
 must equal CPNTR and a single array can be passed for both
 arguments.

 2.It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

 SUBROUTINE ZVBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

●

DESCRIPTION●

ARGUMENTS●

SEE ALSO●

NAME

 zvbrsm - variable block sparse row format triangular solve

SYNOPSIS

 SUBROUTINE ZVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 SUBROUTINE ZVBRSM_64(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, LDB, BETA, C, LDC, WORK, LWORK)
 INTEGER*8 TRANSA, MB, N, UNITD, DESCRA(5), LDB, LDC, LWORK
 INTEGER*8 INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(MB+1),
 * BPNTRB(MB), BPNTRE(MB)
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX DV(*), VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

 F95 INTERFACE

 SUBROUTINE VBRSM(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER TRANSA, MB, UNITD
 INTEGER, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

 SUBROUTINE VBRSM_64(TRANSA, MB, [N], UNITD, DV, ALPHA, DESCRA,
 * VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 * B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
 INTEGER*8 TRANSA, MB, UNITD
 INTEGER*8, DIMENSION(:) :: DESCRA, INDX, BINDX
 INTEGER*8, DIMENSION(:) :: RPNTR, CPNTR, BPNTRB, BPNTRE
 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX, DIMENSION(:) :: VAL, DV
 DOUBLE COMPLEX, DIMENSION(:, :) :: B, C

DESCRIPTION

 C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C
 C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a block diagonal matrix, A is a unit, or non-unit, upper or
 lower triangular matrix represented in variable block sparse row
 format and op(A) is one of

 op(A) = inv(A) or op(A) = inv(A') or op(A) =inv(conjg(A'))
 (inv denotes matrix inverse, ' indicates matrix transpose)

ARGUMENTS

 TRANSA Indicates how to operate with the sparse matrix
 0 : operate with matrix
 1 : operate with transpose matrix
 2 : operate with the conjugate transpose of matrix.
 2 is equivalent to 1 if matrix is real.

 MB Number of block rows in matrix A

 N Number of columns in matrix C

 UNITD Type of scaling:
 1 : Identity matrix (argument DV[] is ignored)
 2 : Scale on left (row block scaling)
 3 : Scale on right (column block scaling)

 DV() Array containing the block entries of the block
 diagonal matrix D. The size of the J-th block is
 RPNTR(J+1)-RPNTR(J) and each block contains matrix
 entries stored column-major. The total length of
 array DV is given by the formula:

 sum over J from 1 to MB:
 ((RPNTR(J+1)-RPNTR(J))*(RPNTR(J+1)-RPNTR(J)))

 ALPHA Scalar parameter

 DESCRA() Descriptor argument. Five element integer array
 DESCRA(1) matrix structure
 0 : general
 1 : symmetric (A=A')
 2 : Hermitian (A= CONJG(A'))
 3 : Triangular
 4 : Skew(Anti)-Symmetric (A=-A')
 5 : Diagonal
 6 : Skew-Hermitian (A= -CONJG(A'))
 Note: For the routine, DESCRA(1)=3 is only supported.
 DESCRA(2) upper/lower triangular indicator
 1 : lower
 2 : upper
 DESCRA(3) main diagonal type
 0 : non-identity blocks on the main diagonal
 1 : identity diagonal blocks
 2 : diagonal blocks are dense matrices
 DESCRA(4) Array base (NOT IMPLEMENTED)
 0 : C/C++ compatible
 1 : Fortran compatible

 DESCRA(5) repeated indices? (NOT IMPLEMENTED)
 0 : unknown
 1 : no repeated indices

 VAL() scalar array of length NNZ consisting of the block entries
 of A where each block entry is a dense rectangular matrix
 stored column by column.
 NNZ is the total number of point entries in all nonzero
 block entries of a matrix A.

 INDX() integer array of length BNNZ+1 where BNNZ is the number
 block entries of a matrix A such that the I-th element of
 INDX[] points to the location in VAL of the (1,1) element
 of the I-th block entry.

 BINDX() integer array of length BNNZ consisting of the block
 column indices of the block entries of A where BNNZ is
 the number block entries of a matrix A. Block column
 indices MUST be sorted in increasing order for each block
 row.

 RPNTR() integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
 is the row index of the first point row in the I-th block
 row.
 RPNTR(MB+1) is set to M+RPNTR(1) where M is the number
 of rows in square triangular matrix A.
 Thus, the number of point rows in the I-th block row is
 RPNTR(I+1)-RPNTR(I).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments

 CPNTR() integer array of length MB+1 such that CPNTR(J)-CPNTR(1)+1
 is the column index of the first point column in the J-th
 block column. CPNTR(MB+1) is set to M+CPNTR(1).
 Thus, the number of point columns in the J-th block column
 is CPNTR(J+1)-CPNTR(J).

 NOTE: For the current version CPNTR must equal RPNTR
 and a single array can be passed for both arguments
 BPNTRB() integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
 points to location in BINDX of the first block entry of
 the I-th block row of A.

 BPNTRE() integer array of length MB such that BPNTRE(I)-BPNTRB(1)
 points to location in BINDX of the last block entry of
 the I-th block row of A.

 B() rectangular array with first dimension LDB.

 LDB leading dimension of B

 BETA Scalar parameter

 C() rectangular array with first dimension LDC.

 LDC leading dimension of C

 WORK() scratch array of length LWORK.
 On exit, if LWORK= -1, WORK(1) returns the optimum size
 of LWORK.

 LWORK length of WORK array. LWORK should be at least
 M = RPNTR(MB+1)-RPNTR(1).

 For good performance, LWORK should generally be larger.
 For optimum performance on multiple processors, LWORK
 >=M*N_CPUS where N_CPUS is the maximum number of
 processors available to the program.

 If LWORK=0, the routine is to allocate workspace needed.

 If LWORK = -1, then a workspace query is assumed; the
 routine only calculates the optimum size of the WORK
 array, returns this value as the first entry of the WORK
 array, and no error message related to LWORK is issued
 by XERBLA.

SEE ALSO

 NIST FORTRAN Sparse Blas User's Guide available at:

 http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

 "Document for the Basic Linear Algebra Subprograms (BLAS)
 Standard", University of Tennessee, Knoxville, Tennessee,
 1996:

 http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
 1. No test for singularity or near-singularity is included
 in this routine. Such tests must be performed before calling
 this routine.

 2. If DESCRA(3)=0,the lower or upper triangular part of each
 diagonal block is used by the routine depending on
 DESCRA(2).

 3. If DESCRA(3)=1, the unit diagonal blocks might or might
 not be referenced in the VBR representation of a sparse
 matrix. They are not used anyway.

 4. If DESCRA(3)=2, diagonal blocks are considered as dense
 matrices and the LU factorization with partial pivoting is
 used by the routine. WORK(1)=0 on return if the
 factorization for all diagonal blocks has been completed
 successfully, otherwise WORK(1) = -i where i is the block
 number for which the LU factorization could not be computed.

 5. The routine can be applied for solving triangular systems
 when the upper or lower triangle of the general sparse
 matrix A is used. Howerver DESCRA(1) must be equal to 3.

 6. It is known that there exists another representation of
 the variable block sparse row format (see for example
 Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,
 1996). Its data structure consists of six array instead of
 the seven used in the current implementation. The main
 difference is that only one array, IA, containing the
 pointers to the beginning of each block row in the array
 BINDX is used instead of two arrays BPNTRB and BPNTRE. To
 use the routine with this kind of variable block sparse row
 format the following calling sequence should be used

 SUBROUTINE ZVBRSM(TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA,

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
http://www.netlib.org/utk/papers/sparse.ps

 * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
 * B, LDB, BETA, C, LDC, WORK, LWORK)

Contents

NAME●

SYNOPSIS

F95 INTERFACE❍

C INTERFACE❍

●

PURPOSE●

ARGUMENTS●

NAME

 zvmul - compute the scaled product of complex vectors

SYNOPSIS

 SUBROUTINE ZVMUL(N, ALPHA, X, INCX, Y, INCY, BETA, Z, INCZ)

 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX X(*), Y(*), Z(*)
 INTEGER N, INCX, INCY, INCZ

 SUBROUTINE ZVMUL_64(N, ALPHA, X, INCX, Y, INCY, BETA, Z, INCZ)

 DOUBLE COMPLEX ALPHA, BETA
 DOUBLE COMPLEX X(*), Y(*), Z(*)
 INTEGER*8 N, INCX, INCY, INCZ

 F95 INTERFACE
 SUBROUTINE VMUL([N], ALPHA, X, [INCX], Y, [INCY], BETA, Z, [INCZ])

 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y, Z
 INTEGER :: N, INCX, INCY, INCZ

 SUBROUTINE VMUL_64([N], ALPHA, X, [INCX], Y, [INCY], BETA, Z, [INCZ])

 COMPLEX(8) :: ALPHA, BETA
 COMPLEX(8), DIMENSION(:) :: X, Y, Z
 INTEGER(8) :: N, INCX, INCY, INCZ

 C INTERFACE
 #include <sunperf.h>

 void zvmul(int n, doublecomplex *alpha, doublecomplex *x,
 int incx, doublecomplex *y, int incy, doublecom-
 plex *beta, doublecomplex *z, int incz);

 void zvmul_64(long n, doublecomplex *alpha, doublecomplex
 *x, long incx, doublecomplex *y, long incy, doub-
 lecomplex *beta, doublecomplex *z, long incz);

PURPOSE

 zvmul computes the scaled product of complex vectors:
 z(i) = ALPHA * x(i) * y(i) + BETA * z(i)
 for 1 <= i <= N.

ARGUMENTS

 N (input)
 Length of the vectors. N >= 0. ZVMUL will return
 immediately if N = 0.

 ALPHA (input)
 Scale factor on the multiplicand vectors.

 X (input) dimension(*)
 Multiplicand vector.

 INCX (input)
 Stride between elements of the multiplicand vector
 X. INCX > 0.

 Y (input) dimension(*)
 Multiplicand vector.

 INCY (input)
 Stride between elements of the multiplicand vector
 Y. INCY > 0.

 BETA (input)
 Scale factor on the product vector.

 Z (input/output)
 dimension(*)
 Product vector. On exit, z(i) = ALPHA * x(i) *
 y(i) + BETA * z(i).

 INCZ (input)
 Stride between elements of Z. INCZ > 0.

	Sun Performance Library Reference Manual
	TOC
	file:/// /available_threads.html
	file:/// /blas_dpermute.html
	file:/// /blas_dsort.html
	file:/// /blas_dsortv.html
	file:/// /blas_ipermute.html
	file:/// /blas_isort.html
	file:/// /blas_isortv.html
	file:/// /blas_spermute.html
	file:/// /blas_ssort.html
	file:/// /blas_ssortv.html
	file:/// /caxpy.html
	file:/// /caxpyi.html
	file:/// /cbcomm.html
	file:/// /cbdimm.html
	file:/// /cbdism.html
	file:/// /cbdsqr.html
	file:/// /cbelmm.html
	file:/// /cbelsm.html
	file:/// /cbscmm.html
	file:/// /cbscsm.html
	file:/// /cbsrmm.html
	file:/// /cbsrsm.html
	file:/// /ccnvcor.html
	file:/// /ccnvcor2.html
	file:/// /ccoomm.html
	file:/// /ccopy.html
	file:/// /ccscmm.html
	file:/// /ccscsm.html
	file:/// /ccsrmm.html
	file:/// /ccsrsm.html
	file:/// /cdiamm.html
	file:/// /cdiasm.html
	file:/// /cdotc.html
	file:/// /cdotci.html
	file:/// /cdotu.html
	file:/// /cdotui.html
	file:/// /cellmm.html
	file:/// /cellsm.html
	file:/// /cfft2b.html
	file:/// /cfft2f.html
	file:/// /cfft2i.html
	file:/// /cfft3b.html
	file:/// /cfft3f.html
	file:/// /cfft3i.html
	file:/// /cfftb.html
	file:/// /cfftc.html
	file:/// /cfftc2.html
	file:/// /cfftc3.html
	file:/// /cfftcm.html
	file:/// /cfftf.html
	file:/// /cffti.html
	file:/// /cfftopt.html
	file:/// /cffts.html
	file:/// /cffts2.html
	file:/// /cffts3.html
	file:/// /cfftsm.html
	file:/// /cgbbrd.html
	file:/// /cgbcon.html
	file:/// /cgbequ.html
	file:/// /cgbmv.html
	file:/// /cgbrfs.html
	file:/// /cgbsv.html
	file:/// /cgbsvx.html
	file:/// /cgbtf2.html
	file:/// /cgbtrf.html
	file:/// /cgbtrs.html
	file:/// /cgebak.html
	file:/// /cgebal.html
	file:/// /cgebrd.html
	file:/// /cgecon.html
	file:/// /cgeequ.html
	file:/// /cgees.html
	file:/// /cgeesx.html
	file:/// /cgeev.html
	file:/// /cgeevx.html
	file:/// /cgegs.html
	file:/// /cgegv.html
	file:/// /cgehrd.html
	file:/// /cgelqf.html
	file:/// /cgels.html
	file:/// /cgelsd.html
	file:/// /cgelss.html
	file:/// /cgelsx.html
	file:/// /cgelsy.html
	file:/// /cgemm.html
	file:/// /cgemv.html
	file:/// /cgeqlf.html
	file:/// /cgeqp3.html
	file:/// /cgeqpf.html
	file:/// /cgeqrf.html
	file:/// /cgerc.html
	file:/// /cgerfs.html
	file:/// /cgerqf.html
	file:/// /cgeru.html
	file:/// /cgesdd.html
	file:/// /cgesv.html
	file:/// /cgesvd.html
	file:/// /cgesvx.html
	file:/// /cgetf2.html
	file:/// /cgetrf.html
	file:/// /cgetri.html
	file:/// /cgetrs.html
	file:/// /cggbak.html
	file:/// /cggbal.html
	file:/// /cgges.html
	file:/// /cggesx.html
	file:/// /cggev.html
	file:/// /cggevx.html
	file:/// /cggglm.html
	file:/// /cgghrd.html
	file:/// /cgglse.html
	file:/// /cggqrf.html
	file:/// /cggrqf.html
	file:/// /cggsvd.html
	file:/// /cggsvp.html
	file:/// /cgssco.html
	file:/// /cgssda.html
	file:/// /cgssfa.html
	file:/// /cgssfs.html
	file:/// /cgssin.html
	file:/// /cgssor.html
	file:/// /cgssps.html
	file:/// /cgssrp.html
	file:/// /cgsssl.html
	file:/// /cgssuo.html
	file:/// /cgtcon.html
	file:/// /cgthr.html
	file:/// /cgthrz.html
	file:/// /cgtrfs.html
	file:/// /cgtsv.html
	file:/// /cgtsvx.html
	file:/// /cgttrf.html
	file:/// /cgttrs.html
	file:/// /chbev.html
	file:/// /chbevd.html
	file:/// /chbevx.html
	file:/// /chbgst.html
	file:/// /chbgv.html
	file:/// /chbgvd.html
	file:/// /chbgvx.html
	file:/// /chbmv.html
	file:/// /chbtrd.html
	file:/// /checon.html
	file:/// /cheev.html
	file:/// /cheevd.html
	file:/// /cheevr.html
	file:/// /cheevx.html
	file:/// /chegs2.html
	file:/// /chegst.html
	file:/// /chegv.html
	file:/// /chegvd.html
	file:/// /chegvx.html
	file:/// /chemm.html
	file:/// /chemv.html
	file:/// /cher.html
	file:/// /cher2.html
	file:/// /cher2k.html
	file:/// /cherfs.html
	file:/// /cherk.html
	file:/// /chesv.html
	file:/// /chesvx.html
	file:/// /chetf2.html
	file:/// /chetrd.html
	file:/// /chetrf.html
	file:/// /chetri.html
	file:/// /chetrs.html
	file:/// /chgeqz.html
	file:/// /chpcon.html
	file:/// /chpev.html
	file:/// /chpevd.html
	file:/// /chpevx.html
	file:/// /chpgst.html
	file:/// /chpgv.html
	file:/// /chpgvd.html
	file:/// /chpgvx.html
	file:/// /chpmv.html
	file:/// /chpr.html
	file:/// /chpr2.html
	file:/// /chprfs.html
	file:/// /chpsv.html
	file:/// /chpsvx.html
	file:/// /chptrd.html
	file:/// /chptrf.html
	file:/// /chptri.html
	file:/// /chptrs.html
	file:/// /chsein.html
	file:/// /chseqr.html
	file:/// /cjadmm.html
	file:/// /cjadrp.html
	file:/// /cjadsm.html
	file:/// /clarz.html
	file:/// /clarzb.html
	file:/// /clarzt.html
	file:/// /clatzm.html
	file:/// /cosqb.html
	file:/// /cosqf.html
	file:/// /cosqi.html
	file:/// /cost.html
	file:/// /costi.html
	file:/// /cpbcon.html
	file:/// /cpbequ.html
	file:/// /cpbrfs.html
	file:/// /cpbstf.html
	file:/// /cpbsv.html
	file:/// /cpbsvx.html
	file:/// /cpbtf2.html
	file:/// /cpbtrf.html
	file:/// /cpbtrs.html
	file:/// /cpocon.html
	file:/// /cpoequ.html
	file:/// /cporfs.html
	file:/// /cposv.html
	file:/// /cposvx.html
	file:/// /cpotf2.html
	file:/// /cpotrf.html
	file:/// /cpotri.html
	file:/// /cpotrs.html
	file:/// /cppcon.html
	file:/// /cppequ.html
	file:/// /cpprfs.html
	file:/// /cppsv.html
	file:/// /cppsvx.html
	file:/// /cpptrf.html
	file:/// /cpptri.html
	file:/// /cpptrs.html
	file:/// /cptcon.html
	file:/// /cpteqr.html
	file:/// /cptrfs.html
	file:/// /cptsv.html
	file:/// /cptsvx.html
	file:/// /cpttrf.html
	file:/// /cpttrs.html
	file:/// /cptts2.html
	file:/// /crot.html
	file:/// /crotg.html
	file:/// /cscal.html
	file:/// /csctr.html
	file:/// /cskymm.html
	file:/// /cskysm.html
	file:/// /cspcon.html
	file:/// /csprfs.html
	file:/// /cspsv.html
	file:/// /cspsvx.html
	file:/// /csptrf.html
	file:/// /csptri.html
	file:/// /csptrs.html
	file:/// /csrot.html
	file:/// /csscal.html
	file:/// /cstedc.html
	file:/// /cstegr.html
	file:/// /cstein.html
	file:/// /csteqr.html
	file:/// /cstsv.html
	file:/// /csttrf.html
	file:/// /csttrs.html
	file:/// /cswap.html
	file:/// /csycon.html
	file:/// /csymm.html
	file:/// /csyr2k.html
	file:/// /csyrfs.html
	file:/// /csyrk.html
	file:/// /csysv.html
	file:/// /csysvx.html
	file:/// /csytf2.html
	file:/// /csytrf.html
	file:/// /csytri.html
	file:/// /csytrs.html
	file:/// /ctbcon.html
	file:/// /ctbmv.html
	file:/// /ctbrfs.html
	file:/// /ctbsv.html
	file:/// /ctbtrs.html
	file:/// /ctgevc.html
	file:/// /ctgexc.html
	file:/// /ctgsen.html
	file:/// /ctgsja.html
	file:/// /ctgsna.html
	file:/// /ctgsyl.html
	file:/// /ctpcon.html
	file:/// /ctpmv.html
	file:/// /ctprfs.html
	file:/// /ctpsv.html
	file:/// /ctptri.html
	file:/// /ctptrs.html
	file:/// /ctrans.html
	file:/// /ctrcon.html
	file:/// /ctrevc.html
	file:/// /ctrexc.html
	file:/// /ctrmm.html
	file:/// /ctrmv.html
	file:/// /ctrrfs.html
	file:/// /ctrsen.html
	file:/// /ctrsm.html
	file:/// /ctrsna.html
	file:/// /ctrsv.html
	file:/// /ctrsyl.html
	file:/// /ctrti2.html
	file:/// /ctrtri.html
	file:/// /ctrtrs.html
	file:/// /ctzrqf.html
	file:/// /ctzrzf.html
	file:/// /cung2l.html
	file:/// /cung2r.html
	file:/// /cungbr.html
	file:/// /cunghr.html
	file:/// /cungl2.html
	file:/// /cunglq.html
	file:/// /cungql.html
	file:/// /cungqr.html
	file:/// /cungr2.html
	file:/// /cungrq.html
	file:/// /cungtr.html
	file:/// /cunmbr.html
	file:/// /cunmhr.html
	file:/// /cunml2.html
	file:/// /cunmlq.html
	file:/// /cunmql.html
	file:/// /cunmqr.html
	file:/// /cunmr2.html
	file:/// /cunmrq.html
	file:/// /cunmrz.html
	file:/// /cunmtr.html
	file:/// /cupgtr.html
	file:/// /cupmtr.html
	file:/// /cvbrmm.html
	file:/// /cvbrsm.html
	file:/// /cvmul.html
	file:/// /dasum.html
	file:/// /daxpy.html
	file:/// /daxpyi.html
	file:/// /dbcomm.html
	file:/// /dbdimm.html
	file:/// /dbdism.html
	file:/// /dbdsdc.html
	file:/// /dbdsqr.html
	file:/// /dbelmm.html
	file:/// /dbelsm.html
	file:/// /dbscmm.html
	file:/// /dbscsm.html
	file:/// /dbsrmm.html
	file:/// /dbsrsm.html
	file:/// /dcnvcor.html
	file:/// /dcnvcor2.html
	file:/// /dcoomm.html
	file:/// /dcopy.html
	file:/// /dcosqb.html
	file:/// /dcosqf.html
	file:/// /dcosqi.html
	file:/// /dcost.html
	file:/// /dcosti.html
	file:/// /dcscmm.html
	file:/// /dcscsm.html
	file:/// /dcsrmm.html
	file:/// /dcsrsm.html
	file:/// /ddiamm.html
	file:/// /ddiasm.html
	file:/// /ddisna.html
	file:/// /ddot.html
	file:/// /ddoti.html
	file:/// /dellmm.html
	file:/// /dellsm.html
	file:/// /dezftb.html
	file:/// /dezftf.html
	file:/// /dezfti.html
	file:/// /dfft2b.html
	file:/// /dfft2f.html
	file:/// /dfft2i.html
	file:/// /dfft3b.html
	file:/// /dfft3f.html
	file:/// /dfft3i.html
	file:/// /dfftb.html
	file:/// /dfftf.html
	file:/// /dffti.html
	file:/// /dfftopt.html
	file:/// /dfftz.html
	file:/// /dfftz2.html
	file:/// /dfftz3.html
	file:/// /dfftzm.html
	file:/// /dgbbrd.html
	file:/// /dgbcon.html
	file:/// /dgbequ.html
	file:/// /dgbmv.html
	file:/// /dgbrfs.html
	file:/// /dgbsv.html
	file:/// /dgbsvx.html
	file:/// /dgbtf2.html
	file:/// /dgbtrf.html
	file:/// /dgbtrs.html
	file:/// /dgebak.html
	file:/// /dgebal.html
	file:/// /dgebrd.html
	file:/// /dgecon.html
	file:/// /dgeequ.html
	file:/// /dgees.html
	file:/// /dgeesx.html
	file:/// /dgeev.html
	file:/// /dgeevx.html
	file:/// /dgegs.html
	file:/// /dgegv.html
	file:/// /dgehrd.html
	file:/// /dgelqf.html
	file:/// /dgels.html
	file:/// /dgelsd.html
	file:/// /dgelss.html
	file:/// /dgelsx.html
	file:/// /dgelsy.html
	file:/// /dgemm.html
	file:/// /dgemv.html
	file:/// /dgeqlf.html
	file:/// /dgeqp3.html
	file:/// /dgeqpf.html
	file:/// /dgeqrf.html
	file:/// /dger.html
	file:/// /dgerfs.html
	file:/// /dgerqf.html
	file:/// /dgesdd.html
	file:/// /dgesv.html
	file:/// /dgesvd.html
	file:/// /dgesvx.html
	file:/// /dgetf2.html
	file:/// /dgetrf.html
	file:/// /dgetri.html
	file:/// /dgetrs.html
	file:/// /dggbak.html
	file:/// /dggbal.html
	file:/// /dgges.html
	file:/// /dggesx.html
	file:/// /dggev.html
	file:/// /dggevx.html
	file:/// /dggglm.html
	file:/// /dgghrd.html
	file:/// /dgglse.html
	file:/// /dggqrf.html
	file:/// /dggrqf.html
	file:/// /dggsvd.html
	file:/// /dggsvp.html
	file:/// /dgssco.html
	file:/// /dgssda.html
	file:/// /dgssfa.html
	file:/// /dgssfs.html
	file:/// /dgssin.html
	file:/// /dgssor.html
	file:/// /dgssps.html
	file:/// /dgssrp.html
	file:/// /dgsssl.html
	file:/// /dgssuo.html
	file:/// /dgtcon.html
	file:/// /dgthr.html
	file:/// /dgthrz.html
	file:/// /dgtrfs.html
	file:/// /dgtsv.html
	file:/// /dgtsvx.html
	file:/// /dgttrf.html
	file:/// /dgttrs.html
	file:/// /dhgeqz.html
	file:/// /dhsein.html
	file:/// /dhseqr.html
	file:/// /djadmm.html
	file:/// /djadrp.html
	file:/// /djadsm.html
	file:/// /dlagtf.html
	file:/// /dlamrg.html
	file:/// /dlarz.html
	file:/// /dlarzb.html
	file:/// /dlarzt.html
	file:/// /dlasrt.html
	file:/// /dlatzm.html
	file:/// /dnrm2.html
	file:/// /dopgtr.html
	file:/// /dopmtr.html
	file:/// /dorg2l.html
	file:/// /dorg2r.html
	file:/// /dorgbr.html
	file:/// /dorghr.html
	file:/// /dorgl2.html
	file:/// /dorglq.html
	file:/// /dorgql.html
	file:/// /dorgqr.html
	file:/// /dorgr2.html
	file:/// /dorgrq.html
	file:/// /dorgtr.html
	file:/// /dormbr.html
	file:/// /dormhr.html
	file:/// /dormlq.html
	file:/// /dormql.html
	file:/// /dormqr.html
	file:/// /dormrq.html
	file:/// /dormrz.html
	file:/// /dormtr.html
	file:/// /dpbcon.html
	file:/// /dpbequ.html
	file:/// /dpbrfs.html
	file:/// /dpbstf.html
	file:/// /dpbsv.html
	file:/// /dpbsvx.html
	file:/// /dpbtf2.html
	file:/// /dpbtrf.html
	file:/// /dpbtrs.html
	file:/// /dpocon.html
	file:/// /dpoequ.html
	file:/// /dporfs.html
	file:/// /dposv.html
	file:/// /dposvx.html
	file:/// /dpotf2.html
	file:/// /dpotrf.html
	file:/// /dpotri.html
	file:/// /dpotrs.html
	file:/// /dppcon.html
	file:/// /dppequ.html
	file:/// /dpprfs.html
	file:/// /dppsv.html
	file:/// /dppsvx.html
	file:/// /dpptrf.html
	file:/// /dpptri.html
	file:/// /dpptrs.html
	file:/// /dptcon.html
	file:/// /dpteqr.html
	file:/// /dptrfs.html
	file:/// /dptsv.html
	file:/// /dptsvx.html
	file:/// /dpttrf.html
	file:/// /dpttrs.html
	file:/// /dptts2.html
	file:/// /dqdota.html
	file:/// /dqdoti.html
	file:/// /drot.html
	file:/// /drotg.html
	file:/// /droti.html
	file:/// /drotm.html
	file:/// /drotmg.html
	file:/// /dsbev.html
	file:/// /dsbevd.html
	file:/// /dsbevx.html
	file:/// /dsbgst.html
	file:/// /dsbgv.html
	file:/// /dsbgvd.html
	file:/// /dsbgvx.html
	file:/// /dsbmv.html
	file:/// /dsbtrd.html
	file:/// /dscal.html
	file:/// /dsctr.html
	file:/// /dsdot.html
	file:/// /dsecnd.html
	file:/// /dsinqb.html
	file:/// /dsinqf.html
	file:/// /dsinqi.html
	file:/// /dsint.html
	file:/// /dsinti.html
	file:/// /dskymm.html
	file:/// /dskysm.html
	file:/// /dspcon.html
	file:/// /dspev.html
	file:/// /dspevd.html
	file:/// /dspevx.html
	file:/// /dspgst.html
	file:/// /dspgv.html
	file:/// /dspgvd.html
	file:/// /dspgvx.html
	file:/// /dspmv.html
	file:/// /dspr.html
	file:/// /dspr2.html
	file:/// /dsprfs.html
	file:/// /dspsv.html
	file:/// /dspsvx.html
	file:/// /dsptrd.html
	file:/// /dsptrf.html
	file:/// /dsptri.html
	file:/// /dsptrs.html
	file:/// /dstebz.html
	file:/// /dstedc.html
	file:/// /dstegr.html
	file:/// /dstein.html
	file:/// /dsteqr.html
	file:/// /dsterf.html
	file:/// /dstev.html
	file:/// /dstevd.html
	file:/// /dstevr.html
	file:/// /dstevx.html
	file:/// /dstsv.html
	file:/// /dsttrf.html
	file:/// /dsttrs.html
	file:/// /dswap.html
	file:/// /dsycon.html
	file:/// /dsyev.html
	file:/// /dsyevd.html
	file:/// /dsyevr.html
	file:/// /dsyevx.html
	file:/// /dsygs2.html
	file:/// /dsygst.html
	file:/// /dsygv.html
	file:/// /dsygvd.html
	file:/// /dsygvx.html
	file:/// /dsymm.html
	file:/// /dsymv.html
	file:/// /dsyr.html
	file:/// /dsyr2.html
	file:/// /dsyr2k.html
	file:/// /dsyrfs.html
	file:/// /dsyrk.html
	file:/// /dsysv.html
	file:/// /dsysvx.html
	file:/// /dsytd2.html
	file:/// /dsytf2.html
	file:/// /dsytrd.html
	file:/// /dsytrf.html
	file:/// /dsytri.html
	file:/// /dsytrs.html
	file:/// /dtbcon.html
	file:/// /dtbmv.html
	file:/// /dtbrfs.html
	file:/// /dtbsv.html
	file:/// /dtbtrs.html
	file:/// /dtgevc.html
	file:/// /dtgexc.html
	file:/// /dtgsen.html
	file:/// /dtgsja.html
	file:/// /dtgsna.html
	file:/// /dtgsyl.html
	file:/// /dtpcon.html
	file:/// /dtpmv.html
	file:/// /dtprfs.html
	file:/// /dtpsv.html
	file:/// /dtptri.html
	file:/// /dtptrs.html
	file:/// /dtrans.html
	file:/// /dtrcon.html
	file:/// /dtrevc.html
	file:/// /dtrexc.html
	file:/// /dtrmm.html
	file:/// /dtrmv.html
	file:/// /dtrrfs.html
	file:/// /dtrsen.html
	file:/// /dtrsm.html
	file:/// /dtrsna.html
	file:/// /dtrsv.html
	file:/// /dtrsyl.html
	file:/// /dtrti2.html
	file:/// /dtrtri.html
	file:/// /dtrtrs.html
	file:/// /dtzrqf.html
	file:/// /dtzrzf.html
	file:/// /dvbrmm.html
	file:/// /dvbrsm.html
	file:/// /dwiener.html
	file:/// /dzasum.html
	file:/// /dznrm2.html
	file:/// /ezfftb.html
	file:/// /ezfftf.html
	file:/// /ezffti.html
	file:/// /fft.html
	file:/// /icamax.html
	file:/// /idamax.html
	file:/// /ilaenv.html
	file:/// /isamax.html
	file:/// /izamax.html
	file:/// /lsame.html
	file:/// /rfft2b.html
	file:/// /rfft2f.html
	file:/// /rfft2i.html
	file:/// /rfft3b.html
	file:/// /rfft3f.html
	file:/// /rfft3i.html
	file:/// /rfftb.html
	file:/// /rfftf.html
	file:/// /rffti.html
	file:/// /rfftopt.html
	file:/// /sasum.html
	file:/// /saxpy.html
	file:/// /saxpyi.html
	file:/// /sbcomm.html
	file:/// /sbdimm.html
	file:/// /sbdism.html
	file:/// /sbdsdc.html
	file:/// /sbdsqr.html
	file:/// /sbelmm.html
	file:/// /sbelsm.html
	file:/// /sbscmm.html
	file:/// /sbscsm.html
	file:/// /sbsrmm.html
	file:/// /sbsrsm.html
	file:/// /scasum.html
	file:/// /scnrm2.html
	file:/// /scnvcor.html
	file:/// /scnvcor2.html
	file:/// /scoomm.html
	file:/// /scopy.html
	file:/// /scscmm.html
	file:/// /scscsm.html
	file:/// /scsrmm.html
	file:/// /scsrsm.html
	file:/// /sdiamm.html
	file:/// /sdiasm.html
	file:/// /sdisna.html
	file:/// /sdot.html
	file:/// /sdoti.html
	file:/// /sdsdot.html
	file:/// /second.html
	file:/// /sellmm.html
	file:/// /sellsm.html
	file:/// /sfftc.html
	file:/// /sfftc2.html
	file:/// /sfftc3.html
	file:/// /sfftcm.html
	file:/// /sgbbrd.html
	file:/// /sgbcon.html
	file:/// /sgbequ.html
	file:/// /sgbmv.html
	file:/// /sgbrfs.html
	file:/// /sgbsv.html
	file:/// /sgbsvx.html
	file:/// /sgbtf2.html
	file:/// /sgbtrf.html
	file:/// /sgbtrs.html
	file:/// /sgebak.html
	file:/// /sgebal.html
	file:/// /sgebrd.html
	file:/// /sgecon.html
	file:/// /sgeequ.html
	file:/// /sgees.html
	file:/// /sgeesx.html
	file:/// /sgeev.html
	file:/// /sgeevx.html
	file:/// /sgegs.html
	file:/// /sgegv.html
	file:/// /sgehrd.html
	file:/// /sgelqf.html
	file:/// /sgels.html
	file:/// /sgelsd.html
	file:/// /sgelss.html
	file:/// /sgelsx.html
	file:/// /sgelsy.html
	file:/// /sgemm.html
	file:/// /sgemv.html
	file:/// /sgeqlf.html
	file:/// /sgeqp3.html
	file:/// /sgeqpf.html
	file:/// /sgeqrf.html
	file:/// /sger.html
	file:/// /sgerfs.html
	file:/// /sgerqf.html
	file:/// /sgesdd.html
	file:/// /sgesv.html
	file:/// /sgesvd.html
	file:/// /sgesvx.html
	file:/// /sgetf2.html
	file:/// /sgetrf.html
	file:/// /sgetri.html
	file:/// /sgetrs.html
	file:/// /sggbak.html
	file:/// /sggbal.html
	file:/// /sgges.html
	file:/// /sggesx.html
	file:/// /sggev.html
	file:/// /sggevx.html
	file:/// /sggglm.html
	file:/// /sgghrd.html
	file:/// /sgglse.html
	file:/// /sggqrf.html
	file:/// /sggrqf.html
	file:/// /sggsvd.html
	file:/// /sggsvp.html
	file:/// /sgssco.html
	file:/// /sgssda.html
	file:/// /sgssfa.html
	file:/// /sgssfs.html
	file:/// /sgssin.html
	file:/// /sgssor.html
	file:/// /sgssps.html
	file:/// /sgssrp.html
	file:/// /sgsssl.html
	file:/// /sgssuo.html
	file:/// /sgtcon.html
	file:/// /sgthr.html
	file:/// /sgthrz.html
	file:/// /sgtrfs.html
	file:/// /sgtsv.html
	file:/// /sgtsvx.html
	file:/// /sgttrf.html
	file:/// /sgttrs.html
	file:/// /shgeqz.html
	file:/// /shsein.html
	file:/// /shseqr.html
	file:/// /sinqb.html
	file:/// /sinqf.html
	file:/// /sinqi.html
	file:/// /sint.html
	file:/// /sinti.html
	file:/// /sjadmm.html
	file:/// /sjadrp.html
	file:/// /sjadsm.html
	file:/// /slagtf.html
	file:/// /slamrg.html
	file:/// /slarz.html
	file:/// /slarzb.html
	file:/// /slarzt.html
	file:/// /slasrt.html
	file:/// /slatzm.html
	file:/// /snrm2.html
	file:/// /sopgtr.html
	file:/// /sopmtr.html
	file:/// /sorg2l.html
	file:/// /sorg2r.html
	file:/// /sorgbr.html
	file:/// /sorghr.html
	file:/// /sorgl2.html
	file:/// /sorglq.html
	file:/// /sorgql.html
	file:/// /sorgqr.html
	file:/// /sorgr2.html
	file:/// /sorgrq.html
	file:/// /sorgtr.html
	file:/// /sormbr.html
	file:/// /sormhr.html
	file:/// /sormlq.html
	file:/// /sormql.html
	file:/// /sormqr.html
	file:/// /sormrq.html
	file:/// /sormrz.html
	file:/// /sormtr.html
	file:/// /spbcon.html
	file:/// /spbequ.html
	file:/// /spbrfs.html
	file:/// /spbstf.html
	file:/// /spbsv.html
	file:/// /spbsvx.html
	file:/// /spbtf2.html
	file:/// /spbtrf.html
	file:/// /spbtrs.html
	file:/// /spocon.html
	file:/// /spoequ.html
	file:/// /sporfs.html
	file:/// /sposv.html
	file:/// /sposvx.html
	file:/// /spotf2.html
	file:/// /spotrf.html
	file:/// /spotri.html
	file:/// /spotrs.html
	file:/// /sppcon.html
	file:/// /sppequ.html
	file:/// /spprfs.html
	file:/// /sppsv.html
	file:/// /sppsvx.html
	file:/// /spptrf.html
	file:/// /spptri.html
	file:/// /spptrs.html
	file:/// /sptcon.html
	file:/// /spteqr.html
	file:/// /sptrfs.html
	file:/// /sptsv.html
	file:/// /sptsvx.html
	file:/// /spttrf.html
	file:/// /spttrs.html
	file:/// /sptts2.html
	file:/// /srot.html
	file:/// /srotg.html
	file:/// /sroti.html
	file:/// /srotm.html
	file:/// /srotmg.html
	file:/// /ssbev.html
	file:/// /ssbevd.html
	file:/// /ssbevx.html
	file:/// /ssbgst.html
	file:/// /ssbgv.html
	file:/// /ssbgvd.html
	file:/// /ssbgvx.html
	file:/// /ssbmv.html
	file:/// /ssbtrd.html
	file:/// /sscal.html
	file:/// /ssctr.html
	file:/// /sskymm.html
	file:/// /sskysm.html
	file:/// /sspcon.html
	file:/// /sspev.html
	file:/// /sspevd.html
	file:/// /sspevx.html
	file:/// /sspgst.html
	file:/// /sspgv.html
	file:/// /sspgvd.html
	file:/// /sspgvx.html
	file:/// /sspmv.html
	file:/// /sspr.html
	file:/// /sspr2.html
	file:/// /ssprfs.html
	file:/// /sspsv.html
	file:/// /sspsvx.html
	file:/// /ssptrd.html
	file:/// /ssptrf.html
	file:/// /ssptri.html
	file:/// /ssptrs.html
	file:/// /sstebz.html
	file:/// /sstedc.html
	file:/// /sstegr.html
	file:/// /sstein.html
	file:/// /ssteqr.html
	file:/// /ssterf.html
	file:/// /sstev.html
	file:/// /sstevd.html
	file:/// /sstevr.html
	file:/// /sstevx.html
	file:/// /sstsv.html
	file:/// /ssttrf.html
	file:/// /ssttrs.html
	file:/// /sswap.html
	file:/// /ssycon.html
	file:/// /ssyev.html
	file:/// /ssyevd.html
	file:/// /ssyevr.html
	file:/// /ssyevx.html
	file:/// /ssygs2.html
	file:/// /ssygst.html
	file:/// /ssygv.html
	file:/// /ssygvd.html
	file:/// /ssygvx.html
	file:/// /ssymm.html
	file:/// /ssymv.html
	file:/// /ssyr.html
	file:/// /ssyr2.html
	file:/// /ssyr2k.html
	file:/// /ssyrfs.html
	file:/// /ssyrk.html
	file:/// /ssysv.html
	file:/// /ssysvx.html
	file:/// /ssytd2.html
	file:/// /ssytf2.html
	file:/// /ssytrd.html
	file:/// /ssytrf.html
	file:/// /ssytri.html
	file:/// /ssytrs.html
	file:/// /stbcon.html
	file:/// /stbmv.html
	file:/// /stbrfs.html
	file:/// /stbsv.html
	file:/// /stbtrs.html
	file:/// /stgevc.html
	file:/// /stgexc.html
	file:/// /stgsen.html
	file:/// /stgsja.html
	file:/// /stgsna.html
	file:/// /stgsyl.html
	file:/// /stpcon.html
	file:/// /stpmv.html
	file:/// /stprfs.html
	file:/// /stpsv.html
	file:/// /stptri.html
	file:/// /stptrs.html
	file:/// /strans.html
	file:/// /strcon.html
	file:/// /strevc.html
	file:/// /strexc.html
	file:/// /strmm.html
	file:/// /strmv.html
	file:/// /strrfs.html
	file:/// /strsen.html
	file:/// /strsm.html
	file:/// /strsna.html
	file:/// /strsv.html
	file:/// /strsyl.html
	file:/// /strti2.html
	file:/// /strtri.html
	file:/// /strtrs.html
	file:/// /stzrqf.html
	file:/// /stzrzf.html
	file:/// /sunperf_version.html
	file:/// /svbrmm.html
	file:/// /svbrsm.html
	file:/// /swiener.html
	file:/// /use_threads.html
	file:/// /using_threads.html
	file:/// /vcfftb.html
	file:/// /vcfftf.html
	file:/// /vcffti.html
	file:/// /vcosqb.html
	file:/// /vcosqf.html
	file:/// /vcosqi.html
	file:/// /vcost.html
	file:/// /vcosti.html
	file:/// /vdcosqb.html
	file:/// /vdcosqf.html
	file:/// /vdcosqi.html
	file:/// /vdcost.html
	file:/// /vdcosti.html
	file:/// /vdfftb.html
	file:/// /vdfftf.html
	file:/// /vdffti.html
	file:/// /vdsinqb.html
	file:/// /vdsinqf.html
	file:/// /vdsinqi.html
	file:/// /vdsint.html
	file:/// /vdsinti.html
	file:/// /vrfftb.html
	file:/// /vrfftf.html
	file:/// /vrffti.html
	file:/// /vsinqb.html
	file:/// /vsinqf.html
	file:/// /vsinqi.html
	file:/// /vsint.html
	file:/// /vsinti.html
	file:/// /vzfftb.html
	file:/// /vzfftf.html
	file:/// /vzffti.html
	file:/// /zaxpy.html
	file:/// /zaxpyi.html
	file:/// /zbcomm.html
	file:/// /zbdimm.html
	file:/// /zbdism.html
	file:/// /zbdsqr.html
	file:/// /zbelmm.html
	file:/// /zbelsm.html
	file:/// /zbscmm.html
	file:/// /zbscsm.html
	file:/// /zbsrmm.html
	file:/// /zbsrsm.html
	file:/// /zcnvcor.html
	file:/// /zcnvcor2.html
	file:/// /zcoomm.html
	file:/// /zcopy.html
	file:/// /zcscmm.html
	file:/// /zcscsm.html
	file:/// /zcsrmm.html
	file:/// /zcsrsm.html
	file:/// /zdiamm.html
	file:/// /zdiasm.html
	file:/// /zdotc.html
	file:/// /zdotci.html
	file:/// /zdotu.html
	file:/// /zdotui.html
	file:/// /zdrot.html
	file:/// /zdscal.html
	file:/// /zellmm.html
	file:/// /zellsm.html
	file:/// /zfft2b.html
	file:/// /zfft2f.html
	file:/// /zfft2i.html
	file:/// /zfft3b.html
	file:/// /zfft3f.html
	file:/// /zfft3i.html
	file:/// /zfftb.html
	file:/// /zfftd.html
	file:/// /zfftd2.html
	file:/// /zfftd3.html
	file:/// /zfftdm.html
	file:/// /zfftf.html
	file:/// /zffti.html
	file:/// /zfftopt.html
	file:/// /zfftz.html
	file:/// /zfftz2.html
	file:/// /zfftz3.html
	file:/// /zfftzm.html
	file:/// /zgbbrd.html
	file:/// /zgbcon.html
	file:/// /zgbequ.html
	file:/// /zgbmv.html
	file:/// /zgbrfs.html
	file:/// /zgbsv.html
	file:/// /zgbsvx.html
	file:/// /zgbtf2.html
	file:/// /zgbtrf.html
	file:/// /zgbtrs.html
	file:/// /zgebak.html
	file:/// /zgebal.html
	file:/// /zgebrd.html
	file:/// /zgecon.html
	file:/// /zgeequ.html
	file:/// /zgees.html
	file:/// /zgeesx.html
	file:/// /zgeev.html
	file:/// /zgeevx.html
	file:/// /zgegs.html
	file:/// /zgegv.html
	file:/// /zgehrd.html
	file:/// /zgelqf.html
	file:/// /zgels.html
	file:/// /zgelsd.html
	file:/// /zgelss.html
	file:/// /zgelsx.html
	file:/// /zgelsy.html
	file:/// /zgemm.html
	file:/// /zgemv.html
	file:/// /zgeqlf.html
	file:/// /zgeqp3.html
	file:/// /zgeqpf.html
	file:/// /zgeqrf.html
	file:/// /zgerc.html
	file:/// /zgerfs.html
	file:/// /zgerqf.html
	file:/// /zgeru.html
	file:/// /zgesdd.html
	file:/// /zgesv.html
	file:/// /zgesvd.html
	file:/// /zgesvx.html
	file:/// /zgetf2.html
	file:/// /zgetrf.html
	file:/// /zgetri.html
	file:/// /zgetrs.html
	file:/// /zggbak.html
	file:/// /zggbal.html
	file:/// /zgges.html
	file:/// /zggesx.html
	file:/// /zggev.html
	file:/// /zggevx.html
	file:/// /zggglm.html
	file:/// /zgghrd.html
	file:/// /zgglse.html
	file:/// /zggqrf.html
	file:/// /zggrqf.html
	file:/// /zggsvd.html
	file:/// /zggsvp.html
	file:/// /zgssco.html
	file:/// /zgssda.html
	file:/// /zgssfa.html
	file:/// /zgssfs.html
	file:/// /zgssin.html
	file:/// /zgssor.html
	file:/// /zgssps.html
	file:/// /zgssrp.html
	file:/// /zgsssl.html
	file:/// /zgssuo.html
	file:/// /zgtcon.html
	file:/// /zgthr.html
	file:/// /zgthrz.html
	file:/// /zgtrfs.html
	file:/// /zgtsv.html
	file:/// /zgtsvx.html
	file:/// /zgttrf.html
	file:/// /zgttrs.html
	file:/// /zhbev.html
	file:/// /zhbevd.html
	file:/// /zhbevx.html
	file:/// /zhbgst.html
	file:/// /zhbgv.html
	file:/// /zhbgvd.html
	file:/// /zhbgvx.html
	file:/// /zhbmv.html
	file:/// /zhbtrd.html
	file:/// /zhecon.html
	file:/// /zheev.html
	file:/// /zheevd.html
	file:/// /zheevr.html
	file:/// /zheevx.html
	file:/// /zhegs2.html
	file:/// /zhegst.html
	file:/// /zhegv.html
	file:/// /zhegvd.html
	file:/// /zhegvx.html
	file:/// /zhemm.html
	file:/// /zhemv.html
	file:/// /zher.html
	file:/// /zher2.html
	file:/// /zher2k.html
	file:/// /zherfs.html
	file:/// /zherk.html
	file:/// /zhesv.html
	file:/// /zhesvx.html
	file:/// /zhetf2.html
	file:/// /zhetrd.html
	file:/// /zhetrf.html
	file:/// /zhetri.html
	file:/// /zhetrs.html
	file:/// /zhgeqz.html
	file:/// /zhpcon.html
	file:/// /zhpev.html
	file:/// /zhpevd.html
	file:/// /zhpevx.html
	file:/// /zhpgst.html
	file:/// /zhpgv.html
	file:/// /zhpgvd.html
	file:/// /zhpgvx.html
	file:/// /zhpmv.html
	file:/// /zhpr.html
	file:/// /zhpr2.html
	file:/// /zhprfs.html
	file:/// /zhpsv.html
	file:/// /zhpsvx.html
	file:/// /zhptrd.html
	file:/// /zhptrf.html
	file:/// /zhptri.html
	file:/// /zhptrs.html
	file:/// /zhsein.html
	file:/// /zhseqr.html
	file:/// /zjadmm.html
	file:/// /zjadrp.html
	file:/// /zjadsm.html
	file:/// /zlarz.html
	file:/// /zlarzb.html
	file:/// /zlarzt.html
	file:/// /zlatzm.html
	file:/// /zpbcon.html
	file:/// /zpbequ.html
	file:/// /zpbrfs.html
	file:/// /zpbstf.html
	file:/// /zpbsv.html
	file:/// /zpbsvx.html
	file:/// /zpbtf2.html
	file:/// /zpbtrf.html
	file:/// /zpbtrs.html
	file:/// /zpocon.html
	file:/// /zpoequ.html
	file:/// /zporfs.html
	file:/// /zposv.html
	file:/// /zposvx.html
	file:/// /zpotf2.html
	file:/// /zpotrf.html
	file:/// /zpotri.html
	file:/// /zpotrs.html
	file:/// /zppcon.html
	file:/// /zppequ.html
	file:/// /zpprfs.html
	file:/// /zppsv.html
	file:/// /zppsvx.html
	file:/// /zpptrf.html
	file:/// /zpptri.html
	file:/// /zpptrs.html
	file:/// /zptcon.html
	file:/// /zpteqr.html
	file:/// /zptrfs.html
	file:/// /zptsv.html
	file:/// /zptsvx.html
	file:/// /zpttrf.html
	file:/// /zpttrs.html
	file:/// /zptts2.html
	file:/// /zrot.html
	file:/// /zrotg.html
	file:/// /zscal.html
	file:/// /zsctr.html
	file:/// /zskymm.html
	file:/// /zskysm.html
	file:/// /zspcon.html
	file:/// /zsprfs.html
	file:/// /zspsv.html
	file:/// /zspsvx.html
	file:/// /zsptrf.html
	file:/// /zsptri.html
	file:/// /zsptrs.html
	file:/// /zstedc.html
	file:/// /zstegr.html
	file:/// /zstein.html
	file:/// /zsteqr.html
	file:/// /zstsv.html
	file:/// /zsttrf.html
	file:/// /zsttrs.html
	file:/// /zswap.html
	file:/// /zsycon.html
	file:/// /zsymm.html
	file:/// /zsyr2k.html
	file:/// /zsyrfs.html
	file:/// /zsyrk.html
	file:/// /zsysv.html
	file:/// /zsysvx.html
	file:/// /zsytf2.html
	file:/// /zsytrf.html
	file:/// /zsytri.html
	file:/// /zsytrs.html
	file:/// /ztbcon.html
	file:/// /ztbmv.html
	file:/// /ztbrfs.html
	file:/// /ztbsv.html
	file:/// /ztbtrs.html
	file:/// /ztgevc.html
	file:/// /ztgexc.html
	file:/// /ztgsen.html
	file:/// /ztgsja.html
	file:/// /ztgsna.html
	file:/// /ztgsyl.html
	file:/// /ztpcon.html
	file:/// /ztpmv.html
	file:/// /ztprfs.html
	file:/// /ztpsv.html
	file:/// /ztptri.html
	file:/// /ztptrs.html
	file:/// /ztrans.html
	file:/// /ztrcon.html
	file:/// /ztrevc.html
	file:/// /ztrexc.html
	file:/// /ztrmm.html
	file:/// /ztrmv.html
	file:/// /ztrrfs.html
	file:/// /ztrsen.html
	file:/// /ztrsm.html
	file:/// /ztrsna.html
	file:/// /ztrsv.html
	file:/// /ztrsyl.html
	file:/// /ztrti2.html
	file:/// /ztrtri.html
	file:/// /ztrtrs.html
	file:/// /ztzrqf.html
	file:/// /ztzrzf.html
	file:/// /zung2l.html
	file:/// /zung2r.html
	file:/// /zungbr.html
	file:/// /zunghr.html
	file:/// /zungl2.html
	file:/// /zunglq.html
	file:/// /zungql.html
	file:/// /zungqr.html
	file:/// /zungr2.html
	file:/// /zungrq.html
	file:/// /zungtr.html
	file:/// /zunmbr.html
	file:/// /zunmhr.html
	file:/// /zunml2.html
	file:/// /zunmlq.html
	file:/// /zunmql.html
	file:/// /zunmqr.html
	file:/// /zunmr2.html
	file:/// /zunmrq.html
	file:/// /zunmrz.html
	file:/// /zunmtr.html
	file:/// /zupgtr.html
	file:/// /zupmtr.html
	file:/// /zvbrmm.html
	file:/// /zvbrsm.html
	file:/// /zvmul.html

