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Before You Begin

This manual describes the performance analysis tools that are available with the
Sun™ Open Net Environment (Sun ONE) Studio Compiler Collection product.

= The Collector and Performance Analyzer are a pair of tools that perform
statistical profiling of a wide range of performance data and tracing of various
system calls, and relate the data to program structure at the function, source line
and instruction level.

= prof and gpr of are tools that perform statistical profiling of CPU usage and
provide execution frequencies at the function level.

= tcov is atool that provides execution frequencies at the function and source line
levels.

This manual is intended for application developers with a working knowledge of
Fortran, C, C++, or Java™, the Solaris™ operating environment, and UNIX®
operating system commands. Some knowledge of performance analysis is helpful
but is not required to use the tools.

How This Book Is Organized

Chapter 1 introduces the performance analysis tools, briefly discussing what they do
and when to use them.

Chapter 2 is a tutorial that demonstrates how to use the Collector and Performance
Analyzer to assess the performance of five example programs.

Chapter 3 describes the data collected by the Collector and how the data is
converted into metrics of performance.

Chapter 4 describes how to use the Collector to collect timing data, synchronization
delay data, and hardware event data from your program.

17



Chapter 5 describes the features of the Performance Analyzer graphical user
interface. Note: you must have a license to use the Performance Analyzer.

Chapter 6 describes how to use the er _pri nt command line interface to analyze the
data collected by the Collector.

Chapter 7 describes the process of converting the data collected by the Collector into
performance metrics and how the metrics are related to program structure.

Chapter 8 presents information on the utilities that are provided for manipulating
and converting performance experiments and viewing annotated source code and
disassembly code without running an experiment.

Appendix A describes the UNIX profiling tools pr of , gpr of , and t cov. These tools

provide timing information and execution frequency statistics.

Typographic Conventions

TABLEP-1  Typeface Conventions
Typeface Meaning Examples
AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Use | s - a to list all files.
computer output % You have mail .
AaBbCc123 What you type, when contrasted % su
with on-screen computer output Passwor d:
AaBbCcl123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.
You must be superuser to do this.
AaBbCcl123 Command-line placeholder text; To delete a file, type r mfilename.

replace with a real name or value
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TABLE P-2 Code Conventions

Code

Symbol  Meaning Notation Code Example

[] Brackets contain arguments an] A, O
that are optional.

{} Braces contain a set of choices  d{y| n} dy

for a required option.

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{ dynami c| stati c} Bstatic

The colon, like the comma, is Rdir[ : dir] R/local/libs:/Ua
sometimes used to separate
arguments.
The ellipsis indicates omission  xi nl i ne=f1[ ,...fn] xi nl i ne=al pha, dos
in a series.

Shell Prompt

C shell machine-name%

C shell superuser
Bourne shell and Korn shell

Superuser for Bourne shell and Korn shell

machine-name#
$
#

Before You Begin
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Accessing Compiler Collection Tools and
Man Pages

The compiler collection components and man pages are not installed into the
standard / usr/ bi n/ and/ usr/ shar e/ man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1) man
pages. For more information about the MANPATH variable, see the man(1) man page.
For more information about setting your PATH variable and MANPATH variables to
access this release, see the installation guide or your system administrator.

Note — The information in this section assumes that your Sun ONE Studio Compiler
Collection components are installed in the / opt directory. If your software is not
installed in the / opt directory, ask your system administrator for the equivalent path
on your system.

Accessing the Compilers and Tools

Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

v To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH

2. Review the output to find a string of paths that contain / opt / SUNWSpr o/ bi n/ .

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.
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v To Set Your PATHEnvironment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your PATH environment variable.
/ opt/ SUNWpr o/ bi n

Accessing the Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

v To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

% man dbx

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

v To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your MANPATH environment variable.
/ opt / SUNWpr o/ man
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Accessing Compiler Collection
Documentation

You can access the documentation at the following locations:

= The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/ SUN\Wspro/ docs/index. htm.

If your software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

= Most manuals are available from the docs. sun. com™ web site. The following
titles are available through your installed software only:

« Standard C++ Library Class Reference
« Standard C++ Library User’s Guide

« Tools.h++ Class Library Reference

« Tools.h++ User’s Guide

= The release notes are available from the docs. sun. comweb site.

Thedocs. sun. comwebsite (ht t p: / / docs. sun. com enablesyoutoread, print,and
buy Sun Microsystems manuals through the Internet. If you cannot find a manual,
see the documentation index that is installed with the software on your local system
or network.

Note — Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.
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Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the / opt directory, ask your system administrator for the equivalent path on your

system.

Type of Documentation

Format and Location of Accessible Version

Manuals (except third-party
manuals)

Third-party manuals:

= Standard C++ Library Class
Reference

= Standard C++ Library
User’s Guide

« Tools.h++ Class Library
Reference

* Tools.h++ User’s Guide

Readmes and man pages

Release notes

HTML at htt p: //docs. sun. com

HTML in the installed software through the documentation
index atfil e:/ opt/ SUN\Wpro/ docs/ i ndex. ht m

HTML in the installed software through the documentation
index atfil e:/opt/ SUN\pro/ docs/i ndex. htm

HTML at htt p: //docs. sun. com

Related Compiler Collection Documentation

The following table describes related documentation that is available at
file:/opt/ SUN\Wpro/docs/index. html and http://docs. sun. com If your
software is not installed in the / opt directory, ask your system administrator for the
equivalent path on your system.

Document Title

Description

OpenMP API User’s Guide

Fortran Programming Guide

Debugging a Program With
dbx

Language user’s guides

Information on compiler directives used to parallelize
programs.

Discusses programming techniques, including parallelization,
optimization, creation of shared libraries.

Reference manual for use of the debugger. Provides
information on attaching and detaching to Solaris processes,
and executing programs in a controlled environment.

Describe compilation and compiler options.
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Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs. sun. comweb site.

Document Collection

Document Title

Description

Solaris Reference Manual
Collection

Solaris Software Developer
Collection

Solaris Software Developer
Collection

Solaris Software Developer
Collection

Solaris 9 Update Collection

See the titles of man page
sections.

Linker and Libraries Guide

Multithreaded Programming
Guide

SPARC Assembly Language
Reference Manual

Solaris Tunable Parameters
Reference Manual

Provides information about the
Solaris operating environment.

Describes the operations of the
Solaris link-editor and runtime
linker.

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Describes the assembly
language for SPARC®
processors.

Provides reference information
on Solaris tunable parameters.

Resources for Developers

Visitht t p: / / www. sun. cont devel oper s/ st udi oandclickthe Compiler Collection

link to find these frequently updated resources:

= Articles on programming techniques and best practices

= A knowledge base of short programming tips

= Documentation of compiler collection components, as well as corrections to the

documentation that is installed with your software

= Information on support levels

= User forums
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= Downloadable code samples
= New technology previews

You can find additional resources for developers at
http://ww. sun. contf devel opers/.

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://ww. sun. com servi ce/ contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docf eedback@un. com

Please include the part number (817-0922-10) of your document in the subject line of
your email.
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CHAPTER 1

Overview of Program Performance
Analysis Tools

Developing high performance applications requires a combination of compiler
features, libraries of optimized functions, and tools for performance analysis.
Program Performance Analysis Tools describes the tools that are available to help you
assess the performance of your code, identify potential performance problems, and
locate the part of the code where the problems occur.

This manual deals primarily with the Collector and Performance Analyzer, a pair of
tools that you use to collect and analyze performance data for your application. Both
tools can be used from the command line or from a graphical user interface.

The Collector collects performance data using a statistical method called profiling
and by tracing function calls. The data can include call stacks, microstate accounting
information, thread-synchronization delay data, hardware-counter overflow data,
MPI function call data, memory allocation data and summary information for the
operating system and the process. The Collector can collect all kinds of data for C,
C++ and Fortran programs, and it can collect profiling data for applications written
in the Java™ programming language. It can collect data for dynamically-generated
functions and for descendant processes. See Chapter 3 for information about the
data collected and Chapter 4 for detailed information about the Collector. The
Collector can be run from the IDE, from the dbx command line tool, and using the
col | ect command.

The Performance Analyzer displays the data recorded by the Collector, so that you
can examine the information. The Performance Analyzer processes the data and
displays various metrics of performance at the level of the program, the functions,
the source lines, and the instructions. These metrics are classed into five groups:
timing metrics, hardware counter metrics, synchronization delay metrics, memory
allocation metrics, and MPI tracing metrics. The Performance Analyzer also displays
the raw data in a graphical format as a function of time. The Performance Analyzer
can create a mapfile that you can use to improve the order of function loading in the
program’s address space. See Chapter 5 for detailed information about the
Performance Analyzer, and Chapter 6 for information about the command-line
analysis tool, er _pri nt. Chapter 7 discusses topics related to understanding the
performance analyzer and its data, including: how data collection works,

27



28

interpreting performance metrics, call stacks and program execution, and annotated
code listings. Annotated source code listings and disassembly code listings that
include compiler commentary but do not include performance data can be viewed
with the er _sr c utility (see Chapter 8 for more information).

These two tools help to answer the following kinds of questions:

= How much of the available resources does the program consume?

= Which functions or load objects are consuming the most resources?

= Which source lines and instructions are responsible for resource consumption?
=« How did the program arrive at this point in the execution?

= Which resources are being consumed by a function or load object?

The Performance Analyzer window consists of a multi-tabbed display, with a menu
bar and a toolbar. The tab that is displayed when the Performance Analyzer is
started shows a list of functions for the program with exclusive and inclusive metrics
for each function. The list can be filtered by load object, by thread, by LWP, and by
time slice. For a selected function, another tab displays the callers and callees of the
function. This tab can be used to navigate the call tree—in search of high metric
values, for example. Two more tabs display source code that is annotated line-by-
line with performance metrics and interleaved with compiler commentary, and
disassembly code that is annotated with metrics for each instruction and interleaved
with both source code and compiler commentary if they are available. The
performance data is displayed as a function of time in another tab. Other tabs show
details of the experiments and load objects, summary information for a function, and
statistics for the process. The Performance Analyzer can be navigated from the
keyboard as well as using a mouse.

The er _pri nt command presents in plain text all the displays that are presented by
the Performance Analyzer, with the exception of the Timeline display.

The Collector and Performance Analyzer are designed for use by any software
developer, even if performance tuning is not the developer’s main responsibility.
These tools provide a more flexible, detailed, and accurate analysis than the
commonly used profiling tools pr of and gpr of , and are not subject to an
attribution error in gpr of .

This manual also includes information about the following performance tools:
=« prof and gpr of

prof and gpr of are UNIX® tools for generating profile data and are included
with the Solaris™ 7, 8 and 9 operating environments (SPARC® Platform Edition).
Both tools are also provided and supported on the x86 platform.

« tcov

t cov is a code coverage tool that reports the number of times each function is
called and each source line is executed.

For more information about pr of , gpr of , and t cov, see Appendix A.
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Note — For information on starting the Performance Analyzer from the IDE, see the
Program Performance Analysis Tools Readme, which is available through the
documentationindex atfi |l e: / opt/ SUN\Wspr o/ docs/ i ndex. ht nl . If the Sun ONE
Studio 8 software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.
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CHAPTER 2

Learning to Use the Performance
Tools

This chapter shows you how to use the Collector and the Performance Analyzer by
means of a tutorial. The tutorial has three main purposes:

= To provide simple examples of performance problems and how they can be
identified.

= To demonstrate the capabilities of the Performance Analyzer.

= To show how the Performance Analyzer presents performance data and how it
handles various code constructions.

Note — For information on starting the Performance Analyzer from the IDE, see the
Program Performance Analysis Tools Readme, which is available through the
documentation index atfi | e: / opt/ SUNWspr o/ docs/ i ndex. ht mi . If the Sun ONE
Studio software is not installed in the / opt directory, ask your system administrator
for the equivalent path on your system.

Five example programs are provided that illustrate the capabilities of the
Performance Analyzer in several different situations.

= Example 1: Basic Performance Analysis. This example demonstrates the use of
timing data to identify a performance problem, shows how time is attributed to
functions, source lines and instructions, and shows how the Performance
Analyzer handles recursive calls, dynamic loading of object modules and
descendant processes. The example illustrates the use of the main Analyzer
displays: the Functions tab, the Callers-Callees tab, the Source tab, the
Disassembly tab and the Timeline tab. The example program, synpr og, is written
in C.

= Example 2: Analyzing the Performance of a Mixed Java/C++ Application. This
example demonstrates how the analyzer handles interpreted and dynamically-
compiled Java methods. The example program, j synpr og, is written in the Java
programming language and makes calls to native code using JNI.

31



= Example 3: OpenMP Parallelization Strategies. This example demonstrates the
efficiency of different approaches to parallelization of a Fortran program,
onpt est, using OpenMP directives.

= Example 4: Locking Strategies in Multithreaded Programs. This example
demonstrates the efficiency of different approaches to scheduling of work among
threads and the effect of data management on cache performance, making use of
synchronization delay data. The example uses an explicitly multithreaded C
program, nt t est, that is a model of a client/server application.

= Example 5: Cache Behavior and Optimization. This example demonstrates the
effect of memory access and compiler optimization on execution speed for a
Fortran 90 program, cachet est . The example illustrates the use of hardware
counter data and compiler commentary for performance analysis.

Note — The data that you see in this chapter might differ from the data that you see
when you run the examples for yourself.

The instructions for collecting performance data in this tutorial are given only for
the command line. For most of the examples you can also use the IDE to collect
performance data. To collect data from the IDE, you use the dbx Debugger and the
Performance Toolkit submenu of the Debug menu.

32

Setting Up the Examples for Execution

The examples are provided with the Sun™ ONE Studio 8 software release. The
source code and makefiles for each of the example programs are in the Performance
Analyzer example directory.

install-directory/ exanpl es/ anal yzer

The default for install-directory is / opt / SUN\Wspr 0. The Performance Analyzer
example directory contains a separate subdirectory for each example, named
synprog, j synprog, onpt est, nttest and cachet est.

To compile the examples with the default options:

. Ensure that install-directory/ bi n appears in your path before any other installation

of the Sun ONE Studio or Forte Developer software.
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2. Copy the files in one or more of the example subdirectories to your own work
directory.

% nkdi r -p work-directory/ example
% cp -r install-directory/ exanpl es/ anal yzer/ example work-directory

Choose example from the list of example subdirectory names given above. This
tutorial assumes that your directory is set up as described in the preceding code box.

3. Type make to compile and link the example program.

% cd work-directory/ example
% make

System Requirements

The following requirements must be met in order to run the example programs as
described in this chapter:

= synprog requires only a single CPU, but will run correctly on hardware with
more than one CPU.

= j synpr og requires only a single CPU, but will run correctly on hardware with
more than one CPU.

= onpt est will run on SPARC® hardware with any number of CPUs, but the
example (and provided Makefiles) assume 4 CPUs.

= nttest will run on SPARC hardware with any number of CPUs, but the example
(and provided Makefiles) assume 4 CPUs. You should run the test under the
Solaris 7 or 8 operating environment with the standard threads library. If you use
the alternate threads library in the Solaris 8 operating environment or the threads
library in the Solaris 9 operating environment some of the details of the example
are different.

= cachet est requires that you run the program on UltraSPARC® Il hardware with
at least 160 Mbytes of memory.

Choosing Alternative Compiler Options

The default compiler options have been chosen to make the examples work in a
particular way. Some of them can affect the performance of the program, such as the
- xar ch option, which selects the instruction set architecture. This option is set to
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nati ve so that you use the instruction set that is best suited to your computer. If
you want to use a different setting, change the definition of the ARCH environment
variable in the makefile.

If you run the examples on a SPARC platform with the default V7 architecture, the
compiler generates code that calls the . mul and . di v routines from | i bc. so rather
than using integer multiply and divide instructions. The time spent in these
arithmetic operations shows up in the <Unknown> function; see “The <Unknown>
Function” on page 221 for more information.

The makefiles for all four examples contain a selection of alternative settings for the
compiler options in the environment variable OFLAGS, which are commented out.
After you run the examples with the default setting, choose one of these alternative
settings to compile and link the program to see what effect the setting has on how
the compiler optimizes and parallelizes code. For information on the compiler
options in the OFLAGS settings, see the C User’s Guide or the Fortran User’s Guide.

34

Basic Features of the Performance
Analyzer

This section describes some basic features of the Performance Analyzer.

The Performance Analyzer displays the Functions tab when it is started. If the
default data options were used in the Collector, the Functions tab shows a list of
functions with the default clock-based profiling metrics, which are:

= Exclusive User CPU time (the amount of time spent in the function itself), in
seconds

= Inclusive User CPU time (the amount of time spent in the function itself and any
functions it calls), in seconds

The function list is sorted on exclusive CPU time by default. For a more detailed
discussion of metrics, see “How Metrics Are Assigned to Program Structure” on
page 97.

Selecting a function in the Functions tab and clicking the Callers-Callees tab displays
information about the callers and callees of a function. The tab is divided into three
horizontal panes:

= The middle pane shows data for the selected function.
= The top pane shows data for all functions that call the selected function.
= The bottom pane shows data for all functions that the selected function calls.
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In addition to exclusive and inclusive metrics, additional data can be viewed with
the following tabs.

The Callers-Callees tab displays attributed metrics for callers and callees.
Attributed metrics are the parts of the inclusive metric of the selected function
that are due to calls from a caller or calls to a callee.

The lines tab shows a list of source lines and their metrics. The source lines are
represented by the function name followed by the line number and the source file
name.

The PCs tab shows a list of program counter addresses and the metrics for the
corresponding instructions. The PCs are represented by the function name and
the offset relative to the start of the function.

The Source tab displays the source code, if it is available, for the selected function,
with performance metrics for each line of code.

The Disassembly tab displays the instructions for the selected function with
performance metrics for each instruction.

The Timeline tab displays global timing data for each experiment and the data for
each event recorded by the Collector. The data is presented for each LWP and
each data type for each experiment.

The LeakList tab shows a list of all the leaks and allocations that occurred in the
program. Each leak entry includes the number of bytes leaked and the callstack
for the allocation. Each allocation entry includes the number of bytes allocated
and the call stack for the allocation.

The Statistics tab shows totals for various system statistics summed over the
selected experiments and samples, followed by the statistics for the selected
samples of each experiment.

The Experiments tab shows information on the experiments collected and on the
load objects accessed by the collection target. The information includes any error
or warning messages generated during the processing of the experiments or load
objects.

The Summary tab summarizes data for a load object, function, source line, or PC.

The Event tab shows the available data for the selected event, including the event
type, leaf function, LWP ID, thread ID, and CPU ID.

The Legend tab shows the mapping of colors to functions for the display of events
in the TimeLine tab.

For a complete description of each tab, see Chapter 5, The Performance Analyzer
Graphical User Interface.
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Example 1: Basic Performance Analysis

This example is designed to demonstrate the main features of the Performance
Analyzer using four programming scenarios:

“Simple Metric Analysis” on page 37 demonstrates how to use the function list,
the annotated source code listing and the annotated disassembly code listing to
do a simple performance analysis of two routines that shows the cost of type
conversions.

= “Metric Attribution and the gpr of Fallacy” on page 40 demonstrates the Callers-
Callees tab and shows how time that is used in a low-level routine is attributed to
its callers. gpr of is a standard UNIX performance tool that properly identifies the
function where the program is spending most of its CPU time, but in this case
wrongly reports the caller that is responsible for most of that time. See
Appendix A for a description of gpr of .

= “The Effects of Recursion” on page 43 shows how time is attributed to callers in a
recursive sequence for both direct recursive function calls and indirect recursive
function calls.

= “Loading Dynamically Linked Shared Objects” on page 46 demonstrates the
handling of load objects and shows how a function is correctly identified even if
it is loaded in different locations at different times.

= “Descendant Processes” on page 48 demonstrates the use of the Timeline tab and
filtering to analyze experiments on a program that creates descendant processes.

Collecting Data for synpr og

Read the instructions in the sections, “Setting Up the Examples for Execution” on
page 32 and “Basic Features of the Performance Analyzer” on page 34, if you have
not done so. Compile synpr og before you begin this example.

To collect data for synpr og and start the Performance Analyzer from the command
line, type the following commands.

% cd work-directory/ synpr og
% col | ect synprog
% anal yzer test.l.er &

You are now ready to analyze the synpr og experiment using the procedures in the
following sections.
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Simple Metric Analysis

This section examines CPU times for two functions, cputi ne() and i cputi ne().
Both contain a f or loop that increments a variable x by one. In cputi ne(), x is a

floating-point variable, but in i cputi me(), x is an integer variable.

. Locate cputime() and i cputi nme() in the Functions tab.

You can use the Find tool to find the functions instead of scrolling the display.

Compare the exclusive user CPU time for the two functions. Much more time is

spent in cputi me() thanini cputi me().

. Choose File - Create New Window (Alt-F, N).

A new Analyzer window is displayed with the same data. Position the windows so

that you can see both of them.

In the Functions tab of the first window, click cput i ne() to select it, then click the

Source tab.

Functions rCaIIers-CaIIees I’Source rLines rDisassemhly PCs | Timeline r’LeakList rStatistics rExperiments

o User | B User | Source File: /export/home/denc/synprog/synprog.c

CPU CPL Object File: /fexport/home/demo/synprog/synprog.o

(sec.) (sec.) Load Object: <synprog:
500. cputime(int k)
501, {
502, int i /* temp walue for loop */
503. int e /% temp wvalue for loop */
504, wolatile float x: /% temp wariable for £.p. calculation */
5035, hrtime © start;
506. hrtime t wstart:
507,

0. 0. 503, start = gethrtime();

o. o. 509, vetart = gethrvtime():
510,
511. /% Log the ewent %/

a. a. ElZ, wlog{"=start of cputime”™, NULL):
513,

. . 514, if{k == 0) {

a. a. 515, k= BO:
5la, }

. . E17. for (1= 07 1< k: i+ |

a. a. 513, x = 0.0;

2.642 2.642 519, for{j=0; 3j<1000000; j++) §

Z.031 Z.031 520. ¥ =X + 1.0;
s2l. )
SEZ. i
5Z3.
524, whrvlog( (gethrtime() - start), (gethrvtimel) - wstart),

a. a. 525, “cputime”, NULL):

o. o. 526, return 0;

a.

EE 7l

[

FIGURE 2-1 Source Tab Showing Annotated Source Code for Function cputi ne

I

[T
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4. In the Functions tab of the second window, click i cputi me() to select it, then
click the Source tab.

Functions rCaIIers-Callees rSource rLines rDisassemhly PCs | Timeline rLeakList rStatisiics rExperimeMS
M Uger | B User | Source File: fexport/home/denc/synprog/synprog.c
CPU CPU Object File: fexport/home/dewmo/synprog/synprog.o
(sec.) (sec.) Load Object: <synprog>
532, int =
533. icputimeiint k)
534, {
535, int iz £% temp walue for loop #/
536, int iz /% tewp walue for loop */
537. wolatile long  x: A% temp variable for long calculation */
538. hrtime t start;
839, hrtime t wstart;
540.
0. 0. 541, start = gethrtime(): B
a. a. 54E. wstart = gethrvtime(); 'l
543,
544, /* Log the event */
a. a. 545, wlog("start of icputime™, NULL):
546,
0. 0. 547. iffk == 0} {
0. 0. 548, k = 80;
544, s
0. 0. 550. for (i =0; i< k; i+ |
a. a. 551 ® o= 0;
2.682  2.682 55Z. for{j=0; j<1000000; j++) §
0.580 0.580 553, X=X+ 1;
554. i
555, 3
856,
557, whrvlog({ (gethrtime() - start), (gethrvtime() - wstart),
o. o. 558, “icputime”™, NULL);
a. a. 553, return 0;
=
= [w]

FIGURE 2-2 Source Tab Showing Annotated Source Code for Function i cputi ne

The annotated source listing tells you which lines of code are responsible for the
CPU time. Most of the time in both functions is used by the loop line and the line in
which x is incremented.

The time spent on the loop line ini cputi ne() is approximately the same as the
time spent on the loop line in cputi me(), but the line in which x is incremented
takes much less time to execute ini cputi ne() than the corresponding line in
cputine().

5. In both windows, click the Disassembly tab and locate the instructions for the
line of source code in which x is incremented.

You can find these instructions by choosing High Metric Value in the Find tool
combo box and searching.

The time given for an instruction is the time spent waiting for the instruction to be
issued, not the time spent executing the instruction.
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Functions rCaIIers-CaIIees I’Suun:e Lines Disassembly | PCs | Timeline rLeakLisl I/Stmistics rExperiments

£ User | & User | Source File: fexport/home/demo/synprog/synprog.c
CPU CPU Object File: sexport/home/demo/sS¥ynprog/synprog.o
(sec) (sec) Load Object: <synprogs

0. UL T Tasrar g

»

5z0. ® =¥+ L0

520] 13378: 14 [%fp - 18], %£2
520] 1337c:  fstod xfz, %f4

520] 13380: sethi shi (0x1lag00), %10
5207 13384:  bset 696, %10 ! OxlaabB
5207 13388: ldd [%l0], %f2Z

520] 1336c:  faddd 584, %fZ, %£2 L
5207 13390:  fdtos %£2, %fz =
5207 13394: st 3fZ, [¥fp - 1A]

0.130 0.130
0.390 0.390
0. a.

0.030 0.030
0.100 0.100
0.570 0.570
0.811 0.81l
0. o.

[

r

L

[

r

L

[

r
0.200  0.200 [ 513]  13396: ld [sfp - lz], 510
0.100  0.100 [ 513]  1339c: inc 510
0. o. [ 519]  133a0: st 210, [3fp - 12]
0.680 0,680 [ 513]  l33ad: 1d [sfp - lz], 511
0. o. [ 513]  13%a8: sethi 4hi {0x£4000), %10
0.160  0.150 [ 519]  133ac: hset 576, %10 ! OXE4Z40
1,501  1.500 [ 513]  133b0: cmp 511, %10
0. o. [ 513]  133bd: bl 0213378
0 o [ 519]  133b8: nop
0 o [ 517]  lasbe: 1d [sfp - 8], 510
0 o [ 517]  133c0: inc 510
0 o [ 517]  133cd: st 210, [fp - 8
0 o [ 517]  l33cé: ld [sfp - 8], 511
0 o [ 517]  l33cc: 1d [5fp + 68], 510
0 o [ 517]  133d0: cmp 211, %10
0 o [ 517]  133dd: bl 0213348
0 o [ 517]  133ds: nop

521. }

[4]

A [

2 [v]

FIGURE 2-3 Disassembly Tab Showing Instructions for the Line in Which x Is Incremented
in Function cput i me

In cputi me(), there are six instructions that must be executed to add 1 to x. A
significant amount of time is spent loading 1.0, which is a double floating-point
constant, and adding it to x. The f dt os and f st od instructions convert the value of
x from a single floating-point value to a double floating-point value and back again,
so that 1.0 can be added with the f addd instruction.

Ini cputi nme(), there are only three instructions: a load, an increment, and a store.
These instructions take approximately a third of the time of the corresponding set of
instructions in cput i me(), because no conversions are necessary. The value 1 does
not need to be loaded into a register—it can be added directly to x by a single
instruction.

. When you have finished the exercise, close the new Analyzer window.

Extension Exercise for Simple Metric Analysis

Edit the source code for synpr og, and change the type of x to doubl e in
cputi nme() . What effect does this have on the time? What differences do you see in
the annotated disassembly listing?
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Metric Attribution and the gpr of Fallacy

This section examines how time is attributed from a function to its callers and
compares the way attribution is done by the Performance Analyzer with the way it
is done by gpr of .

1. In the Functions tab, select gpf _wor k() and then click Callers-Callees.

The Callers-Callees tab is divided into three panes. In the center pane is the selected
function. In the pane above are the callers of the selected function, and in the pane
below are the functions that are called by the selected function, which are termed
callees. This tab is described in “The Callers-Callees Tab” on page 145 and also in
“Basic Features of the Performance Analyzer” on page 34 of this chapter.

The Callers pane shows two functions that call the selected function, gpf _b() and
gpf _a() . The Callees pane is empty because gpf _wor k() does not call any other
functions. Such functions are called “leaf functions.”

Examine the attributed user CPU time in the Callers pane. Most of the time in
gpf _wor k() results from calls from gpf _b() . Much less time results from calls
from gpf _a().

Functions | Callers-Callees | Source | Lines Tmsassemhny | PCs himeline | Leaklist | Statistics | Esperiments | |

18 User |/ User
cPU CPU
= (sec) (sec) (sec.)

4,713 4723 0. gpf b =
0.420  0.420 0. opf_a

& User | Name
CPU

s 5.138  s5.134  5.134 opE womk

FIGURE 2-4 Callers-Callees Tab With gpf _wor k as the Selected Function

To see why gpf _b() calls account for over ten times as much time in gpf _wor k()
as calls from gpf _a(), you must examine the source code for the two callers.

2. Click gpf _a() in the Callers pane.

gpf _a() becomes the selected function, and moves to the center pane; its callers
appear in the Callers pane, and gpf _wor k() , its callee, appears in the Callees pane.
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3. Click the Source tab and scroll down so that you can see the code for both

gpf _a() and gpf_b().

gpf _a() calls gpf _wor k() ten times with an argument of 1, whereas gpf _b() calls
gpf _wor k() only once, but with an argument of 10. The arguments from gpf _a()
and gpf _b() are passed to the formal argument anmt in gpf _wor k().

Functions rCaIIers-Callees r80urce rLines rDisassemhly PCs | Timeline rLeakList rstmistics rExperimerrls
o8 User | 8 User | Source File: /export/hone/demo/synprog/synprog.c
CPLU CPU Object File: fexport/hone/demo/s¥ynprog/synprog.o
(sec.) (sec) | Load Object: <synprog>
815. woid il
819. gpf_al)
g20. |
821, hrtime t atart;
gzz. hrtime_t vstart;
823, int i;
824,
a. 0. 825. start = gethrtime():
a. 0. 826, wstart = gethrwtine();
827,
o. 0. 328, for{i = 0; i € 9; 1 ++)
0.4z20 0. 829, gpf_work(l)]:
330, }
831,
832, whrvlog| [gethrtime|) - start), {gethrytime() - wstart),
0. 0. 833, "gpf_a -- 9 X gpf_work(l)", NULL): =i
0. 0. 434, } -
335,
836, woid
837, gpE_bi)
838,
839, hrtime t atart;
340, hrtime_t vstart;
541,
a. 0. 842, start = gethrtime|);
0. 0. 843, wstart = gethrvtime():
344,
4,663 0. 845, gpE_work (10);
846,
847. whrvlog| [gethrtime|) - start), {gethrvtime() - wstart),
0 0 "ypf_b -- 1 X gpf_work(10)", NULL): N
-
<] d [»]

FIGURE 2-5 Source Tab Showing Annotated Source Code for Functions gpf _a and gpf _b

Now examine the code for gpf _wor k() , to see why the way the callers call

gpf _wor k() makes a difference.

Chapter 2 Learning to Use the Performance Tools
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4. Scroll down to display the code for gpf _wor k() .

Examine the line in which the variable i max is computed: i max is the upper limit
for the following f or loop.The time spent in gpf _wor k() thus depends on the
square of the argument ant . So ten times as much time is spent on one call from a
function with an argument of 10 (400 iterations) than is spent on ten calls from a
function with an argument of 1 (10 instances of 4 iterations).

In gpr of , however, the amount of time spent in a function is estimated from the
number of times the function is called, regardless of how the time depends on the
function’s arguments or any other data that it has access to. So for an analysis of
synpr og, gpr of incorrectly attributes ten times as much time to calls from

gpf _a() as it does to calls from gpf _b() . This is the gpr of fallacy.

Functions | Callers-Callees | Source | Lines | Disassembly | PCs | Timeline | Leaklist | Statistics || Experiments |

o5 User | B User | Source File: /export/home/demo/synprog/synprog.c
CPU CPU Object File: /export/home/deno/synprog/synprog.o
(sec.) (sec.) Load Object: <synprogs

ALC = WT UL TImT

o. o. 843, wstart = gethrvtime();
G4d,
4,663 0. 545. gpf_work [10)
S48,
847. whrvlog( {(gethrtime() - starc), (gethrvtime() - wstarc),
0. 0. 548, "gpf_b -- 1 X gpf_work(10)", NULL);
o. o. 548, }
&50.
851, woid
G852, gpf_work{int aut)
853. {
§54. int iz
855. int imax;
B856.
a. a. §57. imax = 4% amt * amt;
&558. e |
. . §59. for(i = 0; i < imax; 1 +) {
§60. wolatile float x:
g6l. int j;
o. o. G6Z. ® = 0.0;
863, for{j=0; j<200000; j++) §
. 242 864, x =x+ 1.0;
G685, }
866. }
o. o. 867, }
G68.
g63. /% L
§70. /% bounce -- example of indirect recursion */
&871.

[
=3
s
E3

[
=3
o
E3

. 242

872. woid bounce_alint, int):

§73. wvoid bounce_b{int, int]:

[4]

] ol

FIGURE 2-6 Source Tab Showing Annotated Source Code for Function gpf _wor k
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The Effects of Recursion

This section demonstrates how the Performance Analyzer assigns metrics to
functions in a recursive sequence. In the data collected by the Collector, each
instance of a function call is recorded, but in the analysis, the metrics for all
instances of a given function are aggregated. The synpr og program contains two
examples of recursive calling sequences:

= Function recur se() demonstrates direct recursion. It calls function
real _recurse(), which then calls itself until a test condition is met. At that
point it performs some work that requires user CPU time The flow of control
returns through successive calls to r eal _recur se() until it reachesrecurse().

= Function bounce() demonstrates indirect recursion. It calls function
bounce_a(), which checks to see if a test condition is met. If it is not, it calls
function bounce_b() . bounce_b() in turn calls bounce_a() . This sequence
continues until the test condition in bounce_a() is met. Then bounce_a()
performs some work that requires user CPU time, and the flow of control returns
through successive calls to bounce_b() and bounce_a() until it reaches
bounce().

In either case, exclusive metrics belong only to the function in which the actual work
is done, in these cases real _recurse() and bounce_a() . These metrics are
passed up as inclusive metrics to every function that calls the final function.

First, examine the metrics for recurse() and real _recurse():

1. In the Functions tab, find function r ecur se() and select it.
Instead of scrolling the function list you can use the Find tool.

Function recur se() shows inclusive user CPU time, but its exclusive user CPU
time is zero because all r ecur se() does is execute a call toreal _recurse().

Note — Because profiling experiments are statistical in nature, the experiment that
you run on synpr og might record one or two profile events in r ecur se(), and
recur se() might show a small exclusive CPU time value. However, the exclusive
time due to these events is much less than the inclusive time.

2. Click the Callers-Callees tab.

The selected function, r ecur se(), is shown in the center pane. The function
real _recurse(), which is called by r ecur se(), is shown in the lower pane. This
pane is termed the Callees pane.

3. Click real _recurse().
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Functions | Callers-Callees rsuurce fLines T’Disassemhly PCs | Timeline fLeakList rstatistics I’Experimems
18 User | /% User | & User | Name
CPU CFU CPU

= (zec) (sec) {ser)
2.342 Z.342 2.342 real_recurse =1
a. Z.342 a. recurse

18

¢'| Z.34Z Z.342 £.342 real recurse

0. 2.342 2.342 |real_recurse -~
T8

FIGURE 2-7 Callers-Callees Tab With r eal _r ecur se as the Selected Function

The Callers-Callees tab now displays information for real _recurse():

= Bothrecurse() and real _recurse() appear in the Callers pane (the upper
pane) as callers of real _recurse(), because after recur se() calls
real _recurse(),real recurse() calls itself recursively.

= real _recurse() appears in the Callees pane because it calls itself.

= Exclusive metrics as well as inclusive metrics are displayed for
real _recurse(), where the actual user CPU time is spent. The exclusive
metrics are passed up to r ecur se() as inclusive metrics.

= The callee attributed metrics are affected by the recursive nature of the call. In a
non-recursive call sequence, a single callee attributes all of its inclusive metrics to
the caller. Here, real _recurse() is a leaf function as well as a caller and a
callee of itself. To avoid double-counting of attributed metrics, the callee instance
shows no attributed time. The appearance of real _recurse() as a callee gives
information about the call sequence, but not about the attributed time.

= Likewise, the caller attributed metrics are affected by the recursive nature of the
call. None of the inclusive time spent in r eal _recur se() is attributed to the
caller recur se(), which is the ultimate caller of real _r ecur se() . Instead, the
time is attributed to the caller of the instance of real _r ecur se() where the
exclusive time is spent. To examine attributed metrics for r ecur se() , you should
make it the selected function.

Now examine what happens in the indirect recursive sequence.

1. Find function bounce() in the Functions tab and select it.

Function bounce() shows inclusive user CPU time, but its exclusive user CPU time
is zero. This is because all bounce() does is to call bounce_a().

2. Click the Callers-Callees tab.
The Callers-Callees tab shows that bounce() calls only one function, bounce_a().
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3. Cl

ick bounce_a().

Functions | Callers-Callees rSource rLines rDisassemhly PCs | Timeline rLeakLisi rstaiistics rExperiments

18 User | & User | & User | MNarme
CPU CPU CPU

= (gec) (sac) (sec)

12

| »

0.951 0.951 0. bounce b
a. 0.851 a. bounce

4]

T8

0. 0.951 0. bounce_h ol

FIGURE 2-8 Callers-Callees Tab With bounce_a as the Selected Function

The Callers-Callees tab now displays information for bounce_a():

4. Cl

Both bounce() and bounce_b() appear in the Callers pane as callers of
bounce_a().

In addition, bounce_b() appears in the Callees pane because it is called by
bounce_a().

Exclusive as well as inclusive metrics are displayed for bounce_a(), where the
actual user CPU time is spent. These are passed up to the functions that call
bounce_a() as inclusive metrics.

All of the inclusive time in bounce_b() as a caller is attributed to calls to
bounce_a(), but none of the inclusive time in bounce() is attributed to calls to
bounce_a() . The inclusive time in bounce() and bounce_b() are not separate
but are in fact the same time represented twice. To avoid double counting of
attributed time, only the direct caller of the function where the time is spent
shows the attributed time. This situation is the same as for r ecur se() and

real _recurse().

Because bounce_a() is the leaf function, bounce_b() as a callee does not
attribute any time to bounce_a(), to avoid double-counting of attributed time.

ick bounce_b().
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Functions @ Callers-Callees rSuurce rLines rDisassemhly PCs | Timeline rLeakList rStatistics rExperiments
18 User | . User | = User | Name
CPU CPU CPU

T isec) {sec.) (sec.)
0.951 0.951 0.851 bounce a sl

g

AL

w0, 0,851 0. bounce_b

D

0.951 0,951  0.951 |bounce_a
18

Ll

FIGURE 2-9 Callers-Callees Tab With bounce_b as the Selected Function

The Callers-Callees tab now displays information for bounce_b() . Function
bounce_a() appears in both the Callers pane and the Callees pane. The callee
attributed time is shown correctly, because bounce_b() is not a leaf function, and
accumulates inclusive time from its call to the instance of bounce_a() in which the
work is done.

Loading Dynamically Linked Shared Objects

This section demonstrates how the Performance Analyzer displays information for
shared objects and how it handles calls to functions that are part of a dynamically
linked shared object that can be loaded at different places at different times.

The synpr og directory contains two dynamically linked shared objects, so_syn. so
and so_syx. so. In the course of execution, synpr og first loads so_syn. so and
makes a call to one of its functions, so_bur ncpu() . Then it unloads so_syn. so,
loads so_syx. so at what happens to be the same address, and makes a call to one
of the so_syx. so functions, sx_bur ncpu() . Then, without unloading so_syx. so,
it loads so_syn. so again—at a different address, because the address where it was
first loaded is still being used by another shared object—and makes another call to
so_burncpu().

The functions so_bur ncpu() and sx_bur ncpu() perform identical operations, as
you can see if you examine their source code. Therefore they should take the same
amount of User CPU time to execute.

The addresses at which the shared objects are loaded are determined at run time,
and the run-time loader chooses where to load the objects.
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This example demonstrates that the same function can be called at different
addresses at different points in the program execution, that different functions can
be called at the same address, and that the Performance Analyzer deals correctly
with this behavior, aggregating the data for a function regardless of the address at
which it appears.

. Click the Functions tab.

. Choose View - Show/Hide Functions.

The Show/Hide Functions dialog box lists all the load objects used by the program
when it ran.

. Click Clear All, select so_syx. so and so_syn. so, then click Apply.

The functions for all the load objects except the two selected objects no longer
appear in the function list. Their entries are replaced by a single entry for the entire
load object.

The list of load objects in the Functions tab includes only the load objects for which
metrics were recorded, so it can be shorter than the list in the Show/Hide Functions
dialog box.

. In the Functions tab, examine the metrics for sx_bur ncpu() and so_burncpu().

Functions rCaIIers-CaIIees rSource rLines rDisassemhly PCs | Timeline rLeakList rStatis‘tics rExperiments |
5 User | & User | Mame
CPU CRU

T (sec.) (sec.)

49,645 30.621 «symprogx

49.645 49,645 <Totals
8.787 9.787 so0_burncpu
3.787 0. s0_cputime
7.625 4.303  <libc.so.ix
4,933 4,933  =¢_burncpu

4,933 0. sx_cputine
0. a. <ld.50.1>
0. 0. «<libcollector. sox

FIGURE 2-10 Functions Tab Showing Functions so_bur ncpu and sx_bur ncpu

so_bur ncpu() performs operations identical to those of sx_bur ncpu() . The user
CPU time for so_bur ncpu() is almost exactly twice the user CPU time for
sx_burncpu() because so_burncpu() was executed twice. The Performance
Analyzer recognized that the same function was executing and aggregated the data
for it, even though it appeared at two different addresses in the course of program
execution.
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Descendant Processes

This part of the example illustrates different ways of creating descendant processes
and how they are handled, and demonstrates the Timeline display to get an
overview of the execution of a program that creates descendant processes. The
program forks two descendant processes. The parent process does some work, then
calls popen, then does some more work. The first descendant does some work and
then calls exec. The second descendant calls syst em then calls f or k. The
descendant from this call to f or k immediately calls exec. After doing some work,
the descendant calls exec again and does some more work.

. Collect another experiment and restart the Performance Analyzer.

% cd work-directory/ synpr og
%coll ect -F on synprog i cpu. popen. cpu so. sx. exec system forkexec
% anal yzer test.2.er &

This command loads the founder and all of its descendant experiments, but data is
only loaded for the founder experiment. To load data for the descendant
experiments, choose the View->Filter Data, then select “Enable All”, then click “OK”
or “Apply”. Note that you could also open the experiment t est. 2. er in the
existing analyzer and then add the descendant experiments. If you do this you must
open the Add Experiment dialog box once for each descendant experiment and type
t est. 2. er/ descendant-name in the text box, then click OK. You cannot navigate to
the descendant experiments to select them: you must type in the name. The list of
descendant namesis: _fl.er, f1 xl.er, f2.er, f2 fl.er, f2 f1 x1.er,

_f2 f1 x1 x1.er.You must add the experiments in this order, otherwise the

remaining instructions in this part of the example do not match the experiments you
see in the Performance Analyzer.

2. Click the Timeline tab.
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FIGURE 2-11 Timeline Tab Showing the Seven Experiments Recorded for the Parent
Process and its Descendant Processes

The topmost bar for each experiment is the samples bar. The next bar contains the
clock-based profiling event data.

Some of the samples are colored yellow and green. The green color indicates that the
process is running in User CPU mode. The fraction of time spent in User CPU mode
is given by the proportion of the sample that is colored green. Because there are
three processes running most of the time, only about one-third of each sample is
colored green. The rest is colored yellow, which indicates that the process is waiting
for the CPU. This kind of display is normal when there are more processes running
than there are CPUs to run on. When the parent process (experiment 1) has finished
executing and is waiting for its children to finish, the samples for the running
processes are half green and half yellow, showing that there are only two processes
contending for the CPU. When the process that generates experiment 3 has
completed, the remaining process (experiment 7) is able to use the CPU exclusively,
and the samples in experiment 7 show all green after that time.

. Click the sample bar for experiment 7 in the region that shows half yellow and
half green samples.

. Zoom in so that you can see the individual event markers.

You can zoom in by dragging through the region you want to zoom in to, or clicking
the zoom in button %, or choosing Timeline - Zoom In x2, or typing Alt-T, I.
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Timeline

[ Functions | Callers-Callees | Source | Disassembly | Timeline | Leaklist | Statistics | Experiments |
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FIGURE 2-12 Timeline Tab at High Zoom Showing Event Markers and Gaps Between Them

There are gaps between the event markers in both experiment 3 and experiment 7,
but the gaps in one experiment occur where there are event markers in the other
experiment. These gaps show where one process is waiting for the CPU while the
other process is executing.

. Reset the display to full width.

You can reset the display by clicking the Reset Display button &, or choosing
Timeline — Reset Display, or typing Alt-T, R.

Some experiments do not extend for the entire length of the run. This situation is
indicated by a light gray color for the regions of time where these experiments do
not have any data (see FIGURE 2-11). Experiments 3, 5, 6, and 7 are created after their
parent processes have done some work. Experiments 2, 5, and 6 are terminated by a
successful call to exec. Experiment 3 ends before experiment 7 and its process
terminates normally. The points at which exec is called show clearly: the data for
experiment 3 starts where the data for experiment 2 ends, and the data for
experiment 7 starts where the data for experiment 6 ends.

. Click the Experiments tab, then click the turner for t est. 2. er.

The experiments that are terminated by a successful call to exec show up as “bad
experiments” in the Experiments tab. The experiment icon has a cross in a red circle
superimposed on it.
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Functions rCaIIers-Callees rSuurce rDisassemhly rTimeIine rLeakList rStatistics rExperiments

@ [ Experiments
@[ Load Objects
@= =] test2er
@= [ test 2 er_fl.er
@ = test2en_f1_x1.er
&= =] test 2 en_f2.er
@ [ test 2 en_f2_fl.er
@ [ test 2. en_f2_f1_x1.er
@ =] test2en_f2_f1_x1_x1.er

FIGURE 2-13 Experiments Tab Showing Seven Experiments, Three of Which Are Marked as
ALBad’V

. Click the turner fortest. 2. er/ _f1.er.

At the bottom of the text pane is a warning that the experiment terminated
abnormally. Whenever a process successfully calls exec, the process image is
replaced and the collector library is unloaded. The normal completion of the
experiment cannot take place, and is done instead when the experiment is loaded
into the Analyzer.

. Click the Timeline tab.

The dark gray regions in the samples bars indicate time spent waiting, other than
waiting for the CPU or for a user lock. The first dark gray region in experiment 1
(the experiment for the founding process) occurs during the call to popen. Most of
the time is spent waiting, but there are some events recorded during this time. In
this region, the process created by popen is using CPU time and competing with the
other processes, but it is not recorded in an experiment. Similarly, the first dark gray
region in experiment 4 occurs during a call to syst em In this case the calling
process waits until the call is complete, and does no work until that time. The
process created by the call to syst emis also competing with the other processes for
the CPU, and does not record an experiment.

The last gray region in experiment 1 occurs when the process is waiting for its
descendants to complete. The process that records experiment 4 calls f or k after the
call to syst emis complete, and then waits until all its descendant processes have
completed. This wait time is indicated by the last gray region. In both these cases,
the waiting processes do no work and have no descendants that are not recording
experiments.

Experiment 4 spends most of its time waiting. As a consequence, it records no
profiling data until the very end of the experiment.

Experiment 5 appears to have no data at all. It is created by a call to f or k that is
immediately followed by a call to exec.
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FIGURE 2-14 Timeline Tab at High Zoom, Showing Short Sample for Experiment 5

. Zoom in on the boundary between the two gray regions in experiment 4.

At sufficiently high zoom, you can see that there is a very small sample in
experiment 5.

Click the sample in experiment 5 and look at the Event tab.

The experiment recorded an initial sample point and a sample point in the call to
exec, but did not last long enough to record any profiling data. This is the reason

why there is no profiling data bar for experiment 5.
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(Summary rEvent rLegend
Data for Current Timeline Selection
Experiment Name: test.Z.er/ f2_fl.er
Sample Humber: |1
Start Time (Sec.): |21. 464575
End Time {Sec.): |21.465356
Other Wait [ 0. {0
Data Page Fault [l 0. {on
Text Page Fault [_]|0. [ Y
User Lock [_||0. {on
Wait CPU [ ] 0,000 { 3
System CPU [_]|0.001 { 65.7%)
User CPU [T] 0.000 | 25.0%)

FIGURE 2-15 Event Tab Showing Very Short Duration Sample

Extension Exercise for Descendant Processes

If you have access to a computer with more than one processor, repeat the data
collection. What differences do you see in the Timeline display?

Example 2: Analyzing the Performance
of a Mixed Java/C++ Application

This example shows how to collect and analyze performance data for an application
written in the Java™ programming language that calls C++ methods. It illustrates the
timeline of the program execution and how performance data for the program is
presented in the Performance Analyzer GUI. The process for collecting/analyzing
data as described in this chapter can be used for mixed-language applications and
programs written entirely in the Java programming language.

Chapter 2 Learning to Use the Performance Tools 53



54

] synpr og Program Structure and Control Flow

The jsynprog experiment is a simple application designed to demonstrate the
amount of time it takes to perform various tests, such as vector/array manipulation,
recursion, integer/double addition, memory allocation, system calls, and calls to
native code using JNI. The experiment consists of the following individual source
files:

= jsynprog.java: The main entry point, containing the required publ i c
static void main(String[] args) method.
=« Intface.java: A simple interface that defines two methods for adding

numbers together: public int add_int(), andpublic double
add_doubl e() .

= Routine.java: Implements the methods of I ntface and defines additional
methods that test garbage collection, inner classes, recursion, indirect recursion,
array operations, vector operations, and system calls.

= Sub_Routine.java: Subclass of Routi ne which overrides the add_i nt ()
method.

= jsynprog. h: Header file used by cl oop. cc

= cl oop.cc: C++ code for native methods called by jsynprog.

Control flow through the experiment begins and ends with j synpr og. mai n. While
in mai n, the program performs the following individual tests, in the following order,

by calling methods of other classes such as Routi ne. memal | oc and
Sub_Rout i ne. add_doubl e.

= Test 1: Rout i ne. nenal | oc: Triggers garbage collection in the JVM by creating
large memory allocations.

= Test 2: Routi ne. add_i nt: Uses nested loops to repeatedly add a set of integers.

= Test 3: Rout i ne. add_doubl e: Uses nested loops to repeatedly add a set of
doubles.

= Test 4: Sub_Rout i ne. add_i nt: Overrides the add_int test to provide different
behavior.

= Test 5: Routi ne. has_i nner _cl ass: Defines and uses an inner classes, local to
the method.

= Test 6: Routi ne. r ecur se: Demonstrates the use of direct recursion; this method
calls itself many times.

= Test 7: Rout i ne. bounce: Demonstrates the use of indirect recursion; this
method calls another method which in turn calls this method.

= Test 8 Routine. array_op: Allocates two large arrays, then performs a copy
operation on them.

= Test 9: Routi ne. vect or _op: Allocates a large Vector then performs operations
to add/remove elements from it.

Program Performance Analysis Tools « May 2003



= Test 10: Rout i ne. sys_op: Spends some time in system calls, using
java.lang. SystemcurrentTimeM | i s()

= Test 11:j synprog. j ni _JavaJavaC. Demonstrates the use of JNI: A Java
method calls another Java method which calls a C function.

= Test 12: j synpr og. JavaCC: Demonstrates the use of JNI: A Java method calls a
C function which calls another C function.

= Test 13:j synprog. JavaClava: Demonstrates the use of JNI: A Java method
calls a C function which calls a Java method.

Collecting Data for | synpr og

Read the instructions in the sections, “Setting Up the Examples for Execution” on
page 32 and “Basic Features of the Performance Analyzer” on page 34, if you have
not done so. Compile j synpr og before you begin this example.

To collect data for j synpr og and start the Performance Analyzer, type the following
at the command line:

% cd work-directory/ j synpr og
% make col | ect
% anal yzer test.l.er &

Loading the performance data takes a few seconds, and no information will appear
in the GUI until all data has finished loading. A progress bar in the upper right
corner of the screen will keep you informed of the data currently being loaded.

You are now ready to analyze the j synpr og experiment using the procedures
presented in the following section.

Analyzing j synpr og Program Data

. Viewing function data

The Functions tab contains a list of all functions for which performance data was
recorded, together with metrics that are derived from the performance data. The
performance data is aggregated to obtain metrics for each function. The term
“functions” includes both Java and C++ methods.
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In the default display, the first column of metrics is Exclusive User CPU time: time
spent inside a function. The second column of metrics is Inclusive User CPU time:
time spent inside a function and in any function that it calls. The list is sorted by the
data in the first column.

When all experiment data has finished loading, the functions tab will be selected,
showing the most costly routines (ranked in terms of user CPU time), and many of
the various tests are shown to take several seconds. At the top of the function list is
an artificial function, <Tot al >. This artificial function represents the entire program.
In the Java representation, the artificial function <no Java cal | st ack r ecor ded>
indicates that the Java virtual machine did not report a Java callstack, even though a
Java program was running. (The JVM will do so when necessary to avoid deadlocks,
or when unwinding the Java stack will cause excessive synchronization).

Click on the column header for Inclusive User CPU time, and select the top function:
j synpr og. nai n.

Functions rCaIIers-Callees rSuurce rLines rDisassembly PCs | Timeline rLeakLis1 rStatistics rExperiments

2 User | & User | Name
CPU CPU
{sec) | = (sec)

SE.967  SE.967  «<Totalx

=B

020 44,741 | jsynprog.main 1)
845 -345 PRoutine.add double
o1
145

7
7.275 FRoutine.vector_op
7.145 java.util.Vector.remove
7.125 PRoutine.vrem first
775 6.775 PRoutineiliJImnner.buildlist
6.775 PRoutine.has_imner class
585 4,583 cfunclint)
4,583 Java_jsynprog_JavaCr
4,583 Jjsynprog.JavaCC
alo 4.463  jsynmprog. JavalavaC
4
4

-463  jsynprog. jni_davadaval

= R R R S - T =T Ry = R Ry =

. 453 .453  Java jsynprog Javalaval

[«]

[E

FIGURE 2-16 The Functions Tab, Showing Several j synpr og Experiment Methods

The full set of clock profiling metrics and selected object attributes are summarized
on the right panel.
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Summary

Name: |jsynprog.main

PC Address: |2:0x00000000

Size: | (Tnknowm)

Source File: jsymproy. java

Olject File: jsymprog

Load Ohject: [<TAVA CLASSES>

Mangled Nama:

Aliases:

Process Times (sec.) / Counts

B Exclusive 5 Inclusive
User CPL: 0.020 { 0.0%)) 44.741 | 54.5%)
wall: 0.020 { 0.0%)) 207.305 ( 54.8%)
Total L\WP: 0.020 { 0.0%)) 207.305 { 12.1%)
System CPU: 0. { 0. %)| 45.43% { 30.8%)
Wait CPU: 0. 0. %) 0.120 | 30.0%)
User Lock: a. [ 0. %) Te.834 [ 7.5%)
Text Page Fault; 0. [ 0. % 0.040 ¢ 3.6%)
Data Page Fault: a. [ 0. %)| 32.533 ( 29.4%)
Other Wait: 0. 0. %) 7.805 | E.1%)

FIGURE 2-17 The Summary Panel

Additional metrics and metric presentations can be added to the main display using

the View/Set Data Presentation/Metrics dialog.

B Exclusive o Inclusive

Time VWalue % Time Value %
User CPU [l [0 [l [0
wal [ O O 0
Total LWP [0 [0 [0 [0
System CPU [0 [0 [0 [0
Wait CPU ] [0 [0 [0
UserLock [ [0 [0 [0
Text Page Fault [0 [0 [0 [0
Data Page Fault [0 [0 [0 [0
Other Wait [0 [0 [0 [0

Size [0

PC Address [0

FIGURE 2-18 The Metrics Tab of the Set Data Presentation Dialog

2. Viewing callers-callees data

With the j synpr og. mai n function selected, click on the callers-callees tab. Note
how the test functions described in the overview appear in the list of callees.
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Functions | Callers-Callees rSuurce rLines rDisassemhly rPCs rTimeIine rLeakList rStatistics rExperiments

18 User | @ User | /& User | Name
CPU CPU CPU
F (gec.) (sec) (sec)

44.741  52.967  5Z.967 <Totalx

18

¢| 0.020 0.020 44,741 jsynprog.nain

7.545 7.545 7.545 Routine.add double
T.275 0.010 7.275 Routine.wector_op
6.775 o 6.775 Routine.has_imner class
4. 583 u] 4.533 Jjsywmprog. JavaCC
4. 463 a. 4.463 Jsynprog.jni_JavadavaC
4. 433 4. 433 4.433 FRoutine.memalloc
Z.382 0.541 2.382 Sub_Routine.add int
Z.302 Z.302 2.302Z PRoutine.add int
1.721 1.721 1.721 Routine.recurse
1.561 1.561 1.561 Routine.bounce
1.091 a. 1.091 jsynprog. JavaClava

18 0.110 0.110 0.110 Routine.sys_op
0.0s80 u] 0.080 Jjsynprog.printValue
0.070 u] 0.070 Routine.array op
0.030 u] 0.090 Jjawva.lang.ClassLoader.loadClassInternal
u] u] a. java. lang. 3ysten. go
u] u] a. jsynprog.createdcct
u] u] a. jsynprog. LoaddNILibrary

| »

4]

FIGURE 2-19 The Callers-Callees Tab, With j synpr og. mai n Selected

The first three (most expensive) functions listed are Rout i ne. add_doubl e,

Rout i ne. vect or _op, andRout i ne. has_i nner _cl ass.Thecallers-calleesdisplay
features a dynamic call tree that you can navigate through by selecting a function

from the top (caller) or bottom (callee) panels. For example, select

Rout i ne. has_i nner _cl ass from the list of callees, and notice how the display
redraws centered on it, listing an inner class as its most important callee. To return to
the caller of this function, simply select j synpr og. mai n from the top panel. You
can use this procedure to navigate through the entire experiment. Take a minute to
navigate through the various Rout i ne functions, ending back at j synpr og. nai n.
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3. Viewing source data

With j synpr og. mai n still selected, click on the source tab. The source code for
jsynprog.java appears, with performance numbers for the various lines where
jsynprog.main invokes some other method.

Functions rCaIIers-Callees rSuurce rLines rDisassemhly rPCs rTimeIine rLeakList rStatistics rExperiments
B User | ;1 User | Source File: jsynprog.java
CPL CPU Object File: jsynprog
(sec.) (sec) Load Object: <JAWA CLASSES>
-
a. a. 37. recTine() ]
0. 7.5845 38. Double nd = new Double({new Routine()).add double()):
a. a. 39, printValue ("Routine. add double™,nd)
40.
41. /% call method in derived class */
a. a. 42, recTine()
0.010 Z.412 43, ni = new Integer ((new 3ub_Routine()).add int()):
o. a. 44, print¥alue ("Jub_Routine.add int",ni):;
45.
46, /% call method that defines an inner class */
a. a. 47, recTine()
0. 6.775 45, Integer[] na = (new Foutine!)).has_immer class{):
0.010 0.010 49, printValue ("Routine.has_inner class™,na[l]):
S0,
51. /% recursion */
a. a. LY recTine()
1] 1.721 53, {new Routine()).recurse(0,30);
o. 0.010 54, printWalue ("Routine.recurse” null); |
55, ]|

FIGURE 2-20 Source Tab, Listing j synprog. j ava

This particular screen shot shows two expensive method calls highlighted in green:
add_double (7.845 seconds) and has_inner_class (6.775 seconds). Scrolling up and
down the source code listing will reveal other expensive calls, also highlighted in
green. You may also notice some lines that appear in red italicized text, such as
Routine.add_int <instructions without line numbers>. This represents HotSpot compiled
versions of the named function, since HotSpot does not provide bytecode indices for
the PCs from these instructions.

If the analyzer was unable to locate your source files, try setting the path explicitly
using the View/Set Data Presentation/Search Path dialog. The path to add is the
root directory of your sources.

4. Viewing disassembly data

Click on the disassembly tab to view the annotated bytecode with Java source
interleaved.
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Functions rCaIIers-Callees rSuurce rLines rDisassemhly rPCs rTimeIine rLeakList rStatistics rExperiments

B User | f User | Source File: jsynprog.java

CPU CPU Object File: jsynprog

(sec.) (sec) Load Object: <JAVA CLASIES>

a. a. [ 34] 0000003a: ldc "Routine.add int” (=~

a. a. [ 34] 0000003c: aload 2

a. a. [ 34] 0000003d: inwokestatic printValue() L
35, 3
36. A% add double */
37. recTime();

u] u] [ 37] 00000040: inwvokestatic recTime()

38. Double nd = new Double({new Routine()).add _double()):

u] u] [ 38] 00000043: new java.lang.Double
il il [ 38] 00000046: dup
u] u] [ 38] 00000047: new Routine
il il [ 38] 0000004a: dup
u] u] [ 38] 0000004b: inwvokespecial <init>{)
1] 7.845 [ 38] 0000004e: inwvokevirtual add double()
1] 1] [ 38] 00000051: inwokespecial <initx{)
u] u] [ 38] 00000054: astore_3
39, print¥alue ("Routine. add_double™,nd) ;
o a. [ 35] 00000055: ldc "Routine.add_double™
o a. [ 35] 000000S57: aload 3

[4]

FIGURE 2-21 The Disassembly Tab, Showing Annotated Bytecode

As before, this view shows both Exclusive and Inclusive User CPU times, with the
most expensive calls highlighted in green. In this view the Java bytecode appears in
black, while its corresponding Java source appears in light gray. You may also notice
that, similar to the Source tab, the Disassembly tabs provides lines in red italicized
text such as Routine.add_int <HotSpot-compiled leaf instructions>. As before, this
represents the HotSpot compiled version of the named function.

5. Viewing timeline data

The Performance Analyzer displays a timeline of the events that it records in a
graphical format. The progress of the program’s execution and the calls made by the
program can be tracked using this display.

To display the timeline, click the Timeline tab.

The data is displayed in horizontal bars. The colored rectangles in each bar represent
the recorded events. The colored area appears to be continuous when the events are
closely spaced, but at high zoom the individual events are resolved.
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For each experiment, the global data is displayed in the topmost bar. This bar is
labeled with the experiment number (Ex 1) and an icon. The colored rectangles in
the global data bar are called samples. The global data bar is also called the samples
bar. Samples represent timing data for the process as a whole. The timing data
includes times for all the LWPs, whether they are displayed in the timeline or not.

The event data is displayed below the global data. The display contains one event
bar for each LWP (lightweight process) for each data type. The colored rectangles in
the event bars are called event markers. Each marker represents a part of the call stack
for the event. Each function in the call stack is color coded. The color coding for the
functions is displayed in the Legend tab in the right pane.

In the Java representation, the timeline for this experiment appears as follows:

Timeling

|8 16 24 32 40 48 56 G4 T2 20 28 06 104 112 120 128 136 144 152 160 163 175 124 192 200 208 216 224 232 240
1 Y P PP Y YL PN YUY Y PR Y YO PSPPI PR PP P P YL L Y Y PRV PN YR PP YN PR PP PP PRPY Y PR Y PP PP P Y P PP IYY P PP P P YL P P 1Y PR TP e P

sac,

Ex1l

-|..G - !}! i 1 = T
© |

FIGURE 2-22 The Timeline Tab in the Java Representation

The bar labeled 1.1 is the user thread. Click on any part of it to find out which
function was executing at that particular point in time. The data will be displayed in
the Event tab on the right side of the screen. You can toggle between the Summary,
Event, and Legend tabs for information about what was happening at any given
point in time. You can use the left/right arrows located at the top of the analyzer
screen to step back or forward to the previous/next recorded event. You can also use
the up/down arrows to step though the various threads.

Switching to the Expert-Java representation reveals the following additional threads.
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FIGURE 2-23 The Timeline Tab in the Expert-Java Representation

In this representation, there are three threads of interest: the user thread, the
Garbage Collector (GC) thread, and the HotSpot compiler thread. In the above
display, these threads are numbered 1.1, 1.5, and 1.10, respectively. If you compare
the user thread from this Expert-Java representation against the previous Java-
representation display, you’ll notice some extra activity in the first 30 seconds of the
run. Clicking anywhere in this area reveals this callstack to be JVM activity. Next,
notice the burst of activity in the GC thread between 30 and 120 seconds. The

Rout i ne. menal | oc test repeatedly allocates large amounts of memory, which
causes the garbage collector to check periodically for memory that can be reclaimed.
Finally notice the shorts bursts of activity that repeatedly appear in the HotSpot
compiler thread. This indicates that HotSpot has dynamically compiled the code
shortly after the start of each task.

6. Examine the Interpreted vs.Compiled Methods

While still in the Expert-Java representation, return once again to the functions tab.
Alphabetically sort the list by selecting “Name” at the top of the screen, then scroll
down to the list of Rout i ne methods. You may notice that some methods have
duplicate entries, as shown in the following figure.

62  Program Performance Analysis Tools * May 2003



Functicns || Callers-Callees | Source | Lines | Disassembly | PCs f Timeling | Leaklist | Statistics | Experiments
o User | B User | Name
CPU CPU
(sec.) (sec) | 2
l.821 a. Routine.sys op -
0.170 0.170 FRoutine.sys_op
6,254 a. Routine.vector_op
6.144 a. Routine.wrem first
0.010 0.010 PRoutine.wrem last
0.010 o. Puntimel::generate_hlob_ for{Puntimel::StubID)
0.010 a. Funtimel::generate_code_for (Runtimel::3tubID, JtubAssembler®, int*,int*,int*)
0.010 0.010 Puntimel::generate illegal instruction handler(StubAssembler®,unsigmed char¥®) ||
0.010 a. BPuntimel::initialize (] ||
0.050 a. Safepointiynchronize: thegin)
0.010 0.010 Safepointiynchronize::can be_at safepoint before_ suspendiJavaThread®, JavaThread3tate)
0.010 a. Safepointiynchronize: tendl)
0.030 0.020 StringTable::oops_do(OopClosure™)
Z.061 0.610 Jub_Routine.add int
1.451 1.451 Sub_Routine.addcall
a. a. SuspendCheckerThread: :runi)
0.0z0 a. SymbolTable: ;basic_add{unsigned char*,int,int,Thread*)
0.310 0.150 SymbolTable::oops_do(OopClosure™)
0.1s0 0.150 JywmbolTable::unlink() =
< 1 O

FIGURE 2-24 The Functions Tab, Showing Interpreted and Dynamically-compiled Versions
of Rout i ne. sys_op

In this example, the method Rout i ne. sys_op appears twice: one is the interpreted
version, and the other is the version that was dynamically compiled by the HotSpot
virtual machine. To determine which is which, select one of the methods and
examine the Load Obiject field of the Summary tab on the right side of the screen. In
this example, selecting the first occurrence of Rout i ne. sys_op reveals that it
comes from the load object <JAVA COWVPI LED METHODS>, indicating that this is the
dynamically-compiled version. Selecting the second occurrence reveals the load
object to be <JAVA_ CLASSES>, indicating that this is the interpreted version.

The HotSpot virtual machine does not dynamically compile methods that only
execute for short periods of time. Therefore, methods listed only once will always be
the interpreted versions.
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Example 3: OpenMP Parallelization
Strategies

The Fortran program onpt est uses OpenMP parallelization and is designed to test
the efficiency of parallelization strategies for two different cases:

= The first case compares the use of a PARALLEL SECTI ONS directive with a
PARALLEL DOdirective for a section of code in which two arrays are updated
from another array. This case illustrates the issue of balancing the work load
across the threads.

= The second case compares the use of a CRI TI CAL SECTI ON directive with a
REDUCTI ONdirective for a section of code in which array elements are summed to
give a scalar result. This case illustrates the cost of contention among threads for
memory access.

See the Fortran Programming Guide for background on parallelization strategies and
OpenMP directives. When the compiler identifies an OpenMP directive, it generates
special functions and calls to the threads library. These functions appear in the
Performance Analyzer display. For more information, see “Parallel Execution and
Compiler-Generated Body Functions” on page 210 and “Compiler-Generated Body
Functions” on page 219. Messages from the compiler about the actions it has taken
appear in the annotated source and disassembly listings.

Collecting Data for onpt est

Read the instructions in the sections, “Setting Up the Examples for Execution” on
page 32 and “Basic Features of the Performance Analyzer” on page 34, if you have
not done so. Compile onpt est before you begin this example.

In this example you generate two experiments: one that is run with 4 CPUs and one
that is run with 2 CPUs. The experiments are labeled with the number of CPUs.

To collect data for onpt est, type the following commands in the C shell.

% cd ~/ work-directory/ onpt est

% setenv PARALLEL 4

% col |l ect -0 onptest.4.er onptest
% set env PARALLEL 2

% col |l ect -0 onptest.2.er onptest
% unset env PARALLEL
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If you are using the Bourne shell or the Korn shell, type the following commands.

cd ~/ work-directory/ onpt est
PARALLEL=4; export PARALLEL
collect -o onptest.4.er onptest
PARALLEL=2; export PARALLEL
collect -o onptest.2.er onptest
unset PARALLEL

H P BB PR

The collection commands are included in the makefile, so in any shell you can type
the following commands.

$ cd ~/ work-directory/ onpt est
$ make col | ect

To start the Performance Analyzer for both experiments, type:

$ anal yzer onptest.4.er &
$ anal yzer onptest.2.er &

You are now ready to analyze the onpt est experiment using the procedures in the
following sections.

Comparing Parallel Sections and Parallel Do
Strategies

This section compares the performance of two routines, psec_() and pdo_(), that
use the PARALLEL SECTI ONS directive and the PARALLEL DOdirective. The
performance of the routines is compared as a function of the number of CPUs.

To compare the four-CPU run with the two-CPU run, you must have two Analyzer
windows, with onpt est . 4. er loaded into one, and onpt est . 2. er loaded into the
other.

1. In the Functions tab of each Performance Analyzer window, find and select
psec_.

You can use the Find tool to find this function. Note that there are other functions
that start with psec_ which have been generated by the compiler.

2. Position the windows so that you can compare the Summary tabs.

Chapter 2 Learning to Use the Performance Tools 65



Performant Performance Analyzer [omptest.2.er] ==
Help
(] [enfee]=] [«afwe[ &[] (@] @] &/[M]  Fmu ot poec ] [El[2[=] [mle(=] [alw[a]s][E[a]a[E] At
Summany Event  Legend | Leak | { Summary Event | Legend  Leak ‘
Data for Selected Object: Data for Selected Object:
Name: psec_ Nameé: psec_
PC Address: 2:0x0000D800 PC Address: 2:0x0000D500
- Siza: 204 Size: z04
Source Filg: | /exporc/home/deno/ouprest/psec. £ Source File: |/export/home/deno/ouptest/psec. £
Object File: | /exporc/hone/deno/ouptest,/psec. o Object File: | /export/hone /deno /ouptest,/psec. o
Load Object: <omptest> Load Objact: <ouptest>
Mangled Name: Mangled Narne:
Aliases: Aliases:
Process Times (sac.) / Counts Process Times (sac.) f Counts
B Exclusive # Inclusive 2 Exclusive & Inclusive
User CPU: 0. {o0. %) 14,710 | 4.5%) User CPU: 0. {0, %) 7.475 | 4.4%)
Wall: 0. {0, %) 3.713 | 4.5%) Wall: 0. {0, %) 3.753 | 4.4%)
Total LWP: o. [ 0.% 14.760 {  4.5%) Total LWP: a { 0. % 7.485 | 4.4%)
System CPU: 0. {0 %) 0. [ 0.0%) System CPU: a {0, %) 0.010 { 12.5%)
Wait CPU: 0. {0, %) 0,050 1.7%) Wait CPU: a. {0, %) 0. {0%)
User Lack: o. [ 0. %) 0. 0% User Lack: o (0% 1) o0
Text Page Fault: 0. {0, %) 0. [ 0. %) Text Page Fault: a {0, %) 0. {0.%)
Data Page Fault: 0. { 0. % 0. {0.%) Data Page Fault: 0 {05 0. {0.%)
Other Wait: 0. {o0. %) 0. {00 Other Wait: [ {0, %) 0 (0%

FIGURE 2-25 Summary Tabs for Function psec_ From the Four-CPU Run (Left) and the

Two-CPU Run (Right)

3. Compare the inclusive metrics for user CPU time, wall clock time, and total LWP

time.

For the two-CPU run, the ratio of wall clock time to either user CPU time or total
LWP is about 1 to 2, which indicates relatively efficient parallelization.

For the four-CPU run, psec_() takes about the same wall clock time as for the two-
CPU run, but both the user CPU time and the total LWP time are higher. There are
only two sections within the psec_() PARALLEL SECTI ON construct, so only two
threads are required to execute them, using only two of the four available CPUs at
any given time. The other two threads are spending CPU time waiting for work.
Because there is no more work available, the time is wasted.

4. In each Analyzer window, click the line containing pdo_ in the Function List

display.

The data for pdo_() is now displayed in the Summary Metrics tabs.

5. Compare the inclusive metrics for user CPU time, wall-clock time, and total LWP.

The user CPU time for pdo_() is about the same as for psec_() . The ratio of wall-
clock time to user CPU time is about 1 to 2 on the two-CPU run, and about 1 to 4 on
the four-CPU run, indicating that the pdo_() parallelizing strategy scales much
more efficiently on multiple CPUs, taking into account how many CPUs are
available and scheduling the loop appropriately.
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Summary rEvent rLegend rLeak |

Name:

PC Address:
Size:

Source File:
Object File:
Load Object:
Mangled Name:

Aliases:

Data for Selected Object:

pdo_

Z:0x0000CCED

392

Fexport/hone /deno/onptest/pdo, £

dexport/home /deno fonptest/pdo. o

<omptest:

User CPU:

Wall:

Total L\wP:
System CPU:
Wait CPU:

User Lack:

Text Page Fault:
Data Page Fault:
Other Wait:

Process Times (sec.) / Counts
B Exclusive

0.

o|lolo|lo|lo|lo|lo|o

!
!
!
{
!
!
{
{
!

o|lolo|lojlo|lo|lolo|o

)
)
)
]
]
]
]
]

)

% Inclusive
12.329 |
3.182 { 3
12,669 |
0.040 | 15,
0.300 ¢ 10.
0. i
0. {
0. {
0. ¢

3l

FIGURE 2-26 Summary Tabs for Function
Two-CPU Run (Right)

. Close the Analyzer window that is displaying onpt est . 2. er.

o
o
o.
o

%)

.0%)
3.

8%)
4%)
a%)

Y]

-5

k2l

. %)

Ir Summary rEvent rLegend rLeak |

Name:

PC Address:
Size:

Source File:
Object File:
Laad Object:
Mangled Name:

Aliases:

Data for Selected Ohject:

poo_
2:0x0000CCED
392

Jexport/hone /deno/onptest/pdo. £

Jexport/hone /deno/onptest/pdo. o

<omprtest:

User CPU:
Wall:

Total LvwP:
System CPL:
Wait CPU:

User Lock:

Text Page Fault:
Data Page Fault:
Other Wait:

Process Times (sec.) ! Counts

2, Exclusive

0.

{
!
!
!
!
{
!
!
{

o|lolo|lolo|lo|o|o

o|lo|lo|lo|o|lo|lo|lo|o

)
. %)
. %)
.5
.5
.5
.5
.5

- %)

i1 Inclusive
10.988 { &
5,514 { &
10,995 | B
. t
o.o0Lo f 12
0 {

0. {

0 {

0 {

.4%)
L 4%)
L 4%)
%)
L5%)
%]
%]
%]

%]

pdo_ From the Four-CPU Run (Left) and the

Comparing Critical Section and Reduction
Strategies

This section compares the performance of two routines, critsec_() and

reduc_(), in which the CRI TI CAL SECTI ONS directive and REDUCTI ON directive

are used. In this case, the parallelization strategy deals with an identical assignment
statement embedded in a pair of do loops. Its purpose is to sum the contents of three

two-dimensional arrays.

t = (a(j,i)+b(j,i)+c(j,i))/k
sum = sumrt
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Functions | Callers.Callees | Source | Lines | Disassembly | PCs | Timeline | |,

o User | & User | Name
CPU CPU
(580.) (zec) | 2
al.814 0. critsum_ =
91.814  16.061 critsun_ -- MP doall from line 7 [_§dlA7.critsum_]
7.335 0. dymdo_
3.663  3.663 dvndo_ —- MP doall from line 10 [_§dlAL0.dyndo_)
3.603  3.603 dyndo_ -- MP doall from line 24 [_§dlB24.dyndo_]
7.315 0. dyndo_ -- OMP parallel region from line 9 [ §plCO.dyndo_]
0.010 0. elf_bndre
0.010 0. £1f_rrhndr
o. 0. exit
12.769 0. expldo_
6.324  3.643 expldo_ -- MP doall from line 10 [ $4lAL0.explde ]
6.414  3.663 expldo_ -- MP doall from line 23 [_§dlE23.expldao_]
2.322 0. expleum_
2.322  2.272 exploum -- MP doall frow line & [ §dlAG.exploum ]
o. 0. furite
0,010 0.010 getcwd
0. 0. init_micro_acct_
0.991 0. initarray_
0.981  0.340 initarray -- OMP parallel region from line 248 [_splazd
81.757 0. nain
o. 0. nalloc
a. 0. openéd =
0.010 0. open_a
1z.888 0. pardo_
3.643  3.643 pardo_ —- MP doall from line 10 [_$dlAL0.pardo_]
3.663  3.683 pardn_ -- MP doall from line 23 [_§dlB23.pardo_] i
12.859 0. pardo_ -- OMP parallel region from line 9 [ §plC9.parde ]
14.370 0. parsec_
14.340 0. parsec_ -- OMP parallel region from line § [ $plBS.parsed
7.185  7.195 parsec_ -- OMP sections from line 10 [_§slAl0.parsec_] :
12.329 0. pdo_
6.294  3.653 pdo_ -- MP doall frow line 23 [ §dlB23.pdo ]
6.014  3.623 pdo_ -- MP doall from line 9 [_§dlA9.pdo_]
14.710 0. psec_
14.680  7.325 posec_ -- OMP sections frow line 9 [_$slAd.psec_] |
l.z41 0. redsun_
‘1.241 1.181 redsun -- MP dosll frow line 7 [ §AIA7.redsu ] =
T ] T

FIGURE 2-27 Functions Tab Showing Entries for crit sum_and r edsum_

. For the four-CPU experiment, onpt est . 4. er, locate cri t sum_and redsum_in

the Functions tab.

. Compare the inclusive user CPU time for the two functions.

The inclusive user CPU time for crit sum () is much larger than for redsum (),
because crit sum () uses a critical section parallelization strategy. Although the
summing operation is spread over all four CPUs, only one CPU at a time is allowed
to add its value of t to sum This is not a very efficient parallelization strategy for
this kind of coding construct.

The inclusive user CPU time for redsum () is much smaller than for critsum ().
This is because r edsum () uses a reduction strategy, by which the partial sums of
(a(j,i)+b(j,i)+c(j,i))/k aredistributed over multiple processors, after which
these intermediate values are added to sum This strategy makes much more efficient
use of the available CPUs.
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Example 4. Locking Strategies in
Multithreaded Programs

The nt t est program emulates the server in a client-server, where clients queue
requests and the server uses multiple threads to service them, using explicit
threading. Performance data collected on nt t est demonstrates the sorts of
contentions that arise from various locking strategies, and the effect of caching on
execution time.

The executable nt t est is compiled for explicit multithreading, and it will run as a
multithreaded program on a machine with multiple CPUs or with one CPU. There
are some interesting differences and similarities in its performance metrics between
a multiple CPU system and a single CPU system.

Collecting Data for nt t est

Read the instructions in the sections, “Setting Up the Examples for Execution” on
page 32 and “Basic Features of the Performance Analyzer” on page 34, if you have
not done so. Compile nt t est before you begin this example.

In this example you generate two experiments: one that is run with 4 CPUs and one
that is run with 1 CPU. The experiments record synchronization wait tracing data as
well as clock data. The experiments are labeled with the number of CPUs.

To collect data for nt t est and start the Performance Analyzer, type the following
commands.

% cd work-directory/ nt t est

%collect -s on -0 mtest.4.er nttest
%collect -s on -0 mtest.l.er nttest -u
% anal yzer nttest.4.er &

% anal yzer nttest.l.er &

The col | ect commands are included in the makefile, so instead you can type the
following commands.

% cd work-directory/ ntt est

% make col | ect

% anal yzer nttest.4.er &
% anal yzer nttest.1l.er &
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After you have loaded the two experiments, position the two Performance Analyzer
windows so that you can see them both.

You are now ready to analyze the nt t est experiment using the procedures in the
following sections.

How Locking Strategies Affect Wait Time

. Find I ock_| ocal and | ock_gl obal in the Functions tab for the four-CPU

experiment, nttest. 4. er.

Both functions have approximately the same inclusive user CPU time, so they are
doing the same amount of work. However, | ock_gl obal () has a high
synchronization wait time, whereas | ock_I| ocal () has none.

Functions rcallels-callees rSDurce Lines | Disassembly PCs = Timeline rLeakList rSlatistics rExperimems ‘
2 User | /% User | & Sync | 5 Sync'Wait | Name ‘
CPU CRU Wait Count
¥ (sec) {sec.) (sec)

. . . Cone_walt =
0. 0.020  0.000 10 dump_arrays ]
0. 0. 0.000 3 fetch_work

0. 0,010 0.000 1 fopen

0. 0,010 0.000 z fprintt

0. 0. 0.000 1 init _micre_acct

0. 4,913 7.344 3 lock_global

0. 4.903 0. 0 lock_local

0. 4.953 0. 0 lock_none

0. 5.004  46.106 a8 locktest

0. 5.014  46.106 50 main

0. 0. 0. 0 nalloc

0. 4.893 0. 0 nothreads

0. 0,010 0.000 1 open_output:

0. 0,010 0.000 10 printf

0. 0. 0. 0 prhread cond_timedvait

0. 0. 7.353 3 prhread cond timedwait

0. 0. 0. 0 pthread cond wait =
0. 0. 7.345 3 prhread_cond_wait

0. 0. 46.106 36 prhread join

0. 0. 0. 0 pthread mutex_lock

0. 0. 7.344 7 pthread mutex_lock

0. 0. 0.000 1 resolve_synhols

0. 0. 0.000 1 ru_wrlock

0. 0. 0. 0 sem wait

0. 0. 1.223 5 sen_wait

0. 4.913  1.223 4 sena_global

0. 0. 0. [ sena_wait

0. 0. 0. 0 sema_wait

0. 0. 46.106 36 thread_work -

FIGURE 2-28 Functions Tab for the Four-CPU Experiment Showing Data for | ock_| ocal
and | ock_gl obal

The annotated source code for the two functions shows why this is so.

2. Click | ock_gl obal , then click the Source tab.
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Functions | Callers.Callees | Source | Lines [nisassemmy 'pcs himeline | LeakList | Statistics | Experiments
2 User | & User | % Syne | /% SynewWait | Source File: sexport/home/demo/mttest/mttest.c
CPU CPU Weait Count Object File: sexports/home/demo/mttest/mttest.o
(sec) (secy | (sec) Load Object: <mttestx
@31, wntex_lock (eglobal_lock) ; =
832. gendif
833, #ifdef POSIX
0. 0. 7.344 3 834, pthread mutex_lock {sglobal lock) ;
835, #endif
§36. #ifdef LWP
837. _lwp_mutex_lock (sglobal lock)
&38. #endif
B39,
0. 0. 0. 1] 840. array->ready = gethrrime():
0. o. o. 0 B4l. array->vready = gethrvtime():
842,
0. 0. 0. 0 843, 7 pute_ready = ¥ dy
0. o. o. 0 44, 1o :_vready = L
845, 1=
&6, /* do sowe work on the current array */
0. 4.913 0. 1] 847. {k->called_func) {sarray->1ist[0]);
&48.
0. o. o. 0 548, array->conpute_done = gethrtime();
0. 0. 0. 1] 850. array-rcompute_wdone = gethevrime():
851,
B2, /% free the global lock */
B853. §ifdef SOLARIS
854, matex_unlock (sglobal_lock) ;
855. gendif
856, #ifdef POSIX
0. 0. 0. 0 857, pthread wutex_unlock (sglobal_lock);
858. gendif L
D

FIGURE 2-29 Source Tab for the Four-CPU Experiment for Function | ock_gl obal

| ock_gl obal () uses a global lock to protect all the data. Because of the global lock,
all running threads must contend for access to the data, and only one thread has
access to it at a time. The rest of the threads must wait until the working thread
releases the lock to access the data. This line of source code is responsible for the
synchronization wait time.

3. Click | ock_I ocal in the Functions tab, then click the Source tab.
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Functions I/Callersrcallees rSDurce Lines | Disassembly PCs Timeling rLeakList rslalistics rExperiments
B User | & User | & Syne | /& SyncWait | Source File: /export/home/demo/mttest/mttest.c
CPU CPU Wiait Count Object File: /export/home/demo/nttest/nttest.o
(sec.) (sec) (sec) Load Object: <ntrests
921. #ifdef SOLARIS |~
922, wutex_lock {6 {aceag->»Llock) ) ;
923. fendif
924. #ifdef POSIX
0. 0. 0. 0 925, pthread mutex_lack {&larray->lock] ) ;
926. #endif
927. #ifdef LWFP
928, _lup_nutex_lock(s(array->lock)):
929. fendif
0. 0. 0. 0 930, array->ready = gethrtime():
0. 0. 0. 0 931. array->vready = gethrutime();
93z,
0. 0. 0. 0 933. ArTaAY->COUpUTE ready = array->ready:
0. 0. 0. 0 934, array->coupute vready = array->vready:
935.
938. /% do sone work on the current array */ L
0. 4.903 0. 0 937. (k->called_func) {sarray->1isc[0]]; =
938.
0. 0. 0. 0 939, array->coupute_done = gethrrime();
0. 0. 0. 0 240, array->coupute_vdone = gethrvtime():
941,
94z, /% free the local lock */
943. gifdef SOLARIS
944, mutex_wnlock{sarcay-»Llock) :
945, fendif
948. #ifdef POSIX
0. 0. 0. 0 947, pthread_nutex_unlock {earray->lock);
948. #endif
949. fifdef LWP -
i [v]

FIGURE 2-30 Source Tab for the Four-CPU Experiment for Function | ock_| ocal

| ock_I ocal () only locks the data in a particular thread’s work block. No thread
can have access to another thread’s work block, so each thread can proceed without
contention or time wasted waiting for synchronization. The synchronization wait
time for this line of source code, and hence for | ock_I ocal (), is zero.

. Change the metric selection for the one-CPU experiment, nttest. 1. er:

a. Choose View - Set Data Presentation.
b. Clear Exclusive User CPU Time and Inclusive Synchronization Wait Counts.

c. Select Inclusive Total LWP Time, Inclusive Wait CPU Time and Inclusive Other
Wait Time.

d. Click Apply.

In the Functions tab for the one-CPU experiment, find | ock_| ocal and

| ock_gl obal .
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Functions | Callers-Callees | Source || Lines [nisassemmy |'pcs [Timeline | Leaklist | Statistics | Experiments |
& User | % User | % Syne | 5% Sync Wait
cPU cPU iait Count

Narne

=(eec) | (sec) | (seed

a. cond_tinedwait
963 7.475
o

4. cond_timeout_global
0

0. 0.000

0

0

cand_wait

=

aump_arrays
0,000
0.000
0. 0.000
4965  7.456
4.983 0.
4843 0.
5.064  55.916
5.064 58.916
0. 0.000
4965 0.
0.000

fopen
fprintf

init micro_acet
lock_global
Llock_local

lock_none

locktest

2 o
coodrarBhocwnwe-fons

nain
mutex_lock

nothreads

0 open_output
0.010 0.000

0. 0.

0 7.474

o

=

printe

prhread cond timedwait

ceoocooocooocoeooooosoa o

pthread_cond_timedwait

prhread cond_wait o

FIGURE 2-31 Functions Tab for the One-CPU Experiment Showing Data for | ock_I| ocal
and | ock_gl obal

As in the four-CPU experiment, both functions have the same inclusive user CPU
time, and therefore are doing the same amount of work. The synchronization
behavior is also the same as on the four-CPU system: | ock_gl obal () uses a lot of
time in synchronization waiting but | ock_| ocal () does not.

However, total LWP time for | ock_gl obal () is actually less than for

| ock_l ocal (). This is because of the way each locking scheme schedules the
threads to run on the CPU. The global lock set by | ock_gl obal () allows each
thread to execute in sequence until it has run to completion. The local lock set by

| ock_l ocal () schedules each thread onto the CPU for a fraction of its run and
then repeats the process until all the threads have run to completion. In both cases,
the threads spend a significant amount of time waiting for work. The threads in

| ock_gl obal () are waiting for the lock. This wait time appears in the Inclusive
Synchronization Wait Time metric and also the Other Wait Time metric. The threads
inl ock_l ocal () are waiting for the CPU. This wait time appears in the Wait CPU
Time metric.

. Restore the metric selection to the default values for nttest. 1. er.
In the Set Data Presentation dialog box, which should still be open, do the following:

a. Select Exclusive User CPU Time and Inclusive Synchronization Wait Counts.

b. Clear Inclusive Total LWP Time, Inclusive Wait CPU Time and Inclusive Other
Wait Time in the Time column.

c. Click OK.
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How Data Management Affects Cache
Performance

1. Find conput eA and conput eB in the Functions tab of both Performance Analyzer

window.
Functions r Callers-Callees r Source Lines Disassembly = PCs  Timeline r LeakList r Statistics r Experiments
B User | (f User | & Sync | 5 SyncWait | Name
CcPU CPU Wait Count
T (sec) (zec) (sec.)
63.825 63.825 84.935 108 <Totelx [~
4.993 4.993 0. o computel
4.983 4.983 1) o computeE
4.963 4.963 1) o compute
4.963 4.963 o a computet
4.963 4.963 o a computed
4.963 4.963 a. a computeH
4.953 4.353 o a compute’
4.943 4.943 a a COMpUtEd
4.943 4.943 1) o computel
4.833 4.833 1) o addone

3.492  B3.815  Ze.010 13 do_work

3.432  8.266 0. [ computeF
3272 5.384 0. i prhread_mutex_trylock

1.621  l.621 0. i nutex_held

1271 1.271 0. i _lock_try_adaprive

l.z2l  12.349 0. i trylock_global

0,010 0.010 0. [ _rmutex_lock

0. 0. 0. [ _ sendsig

0. 0. 0.000 50 _doprnt =]

FIGURE 2-32 Functions Tab for the One-CPU Experiment Showing Data for Functions
conput eA and conput eB

In the one-CPU experiment, ntt est. 1. er, the inclusive user CPU time for
conput eA() is almost the same as for conput eB() .
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Functions | Callers-Callees | Source | Lines | Disassembly | PCs | Timeline | LeakList | Statistics | Experiments |

5 User | & User | % Sync | SyncWwait | Name ‘ ‘
(1] CcPU Wait Count
= (sec) (sec) (s8c)
131.282 131.282 69.371 70 <Total> =
73.121  73.121 0. o conputel '
5.054  5.054 0. 0 addone
4,955 4953 0. (] couputed
4813 4913 0. 0 conputer
4913 4913 0. [ cauputet
4,913 4913 0. 0 conputeH
4913 4913 0. [ couputel
4,905 4.903 0. o conputel
4.893 4893 0. 0 compute
4,855 4.833 0. o conputel
3.332 131.252 23.265 20 do_work
317z B.zzE 0. 0 couputeF =
2,712 5.8l4 0. 0 prhread_murex_trylock
214l 2141 0. [ _Lock_try_adaptive
1231 1.z31 0. 0 mutex_held
1.201 12.169 0. [ trylock_global
0,010 0.010 0. o __open
0,010 0.010 0. 0 _urite
0,010 0.010  0.000 1z u_rdlock
o. 0. 0. 0 __sendsig
o 0.020  0.000 12 _doprnt
o. 0.010 0. 0 _endopen
o 0. 0.000 2 _findbug
o. 0. 0.000 1 _findiop
o 0. 0. [ _libthread_sema_vait
o 0. 0. o _mutex_adaptive_lock
o. 0.010 0. 0 _open
o 0.010  0.000 10 _realbufend L
Il a 0.0nn thnfena id

FIGURE 2-33 Functions Tab for the Four-CPU Experiment Showing Data for Functions
conput eA and conput eB

In the four-CPU experiment, nt t est . 4. er, conput eB() uses much more inclusive
user CPU time than conput eA() .

The remaining instructions apply to the four-CPU experiment, ntt est . 4. er.
. Click conput eA, then click the Source tab. Scroll down so that the source for both
conput eA() and conput eB() is displayed.

The code for these functions is identical: a loop adding one to a variable. All the user
CPU time is spent in this loop. To find out why conput eB() uses more time than
conput eA(), you must examine the code that calls these two functions.

. Use the Find tool to find cache_t r ash. Repeat the search until the source code
for cache_trash() is displayed.

Both conput eA() and conput eB() are called by reference using a pointer, so their
names do not appear in the source code.

You can verify that cache_t rash() is the caller of comput eB() by selecting
conput eB() in the Function List display then clicking Callers-Callees.
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Source

& User | B User | Source File: /export/home/demo/WCrest/Lttest.c

CPU CPU Object File: /export/home/demo/mttest/mttest.o

(sec.) (sech Load Ohject: <mttests
1337. computed{double x) =
1338. {
1339. int i;

a. 0. 1340. *x o= 0;

4.9583 4.953 1341. for (i = 0; 1 < 20000000; i++) [ *x = ™ + 1.0 }

0. o. 1342, }
1343,
1344, woid
1345, computeB [double *x)
1348, {
1347. int i;

a. 0. 1348, Fx o= 07

-- 1349, for (i = 0; i < 20000000; i++) [ "¢ = %= + 1.0; }

0. o. 1350, }
1351.
1352. woid
1353. computel [double *x)
1354, {
1355, int i; =l

7] % P D

FIGURE 2-34 Source Tab for the Four-CPU Experiment Showing Annotated Source Code
for conput eA and conput eB

Source

1 User | B User | Jource File: fexport/home/demo/nttest/mttest.c
CPU CPL Object File: /export/home/demo/mttest/mttest.o
(Sec.) (sec.) Load Object: <mttest:
0. o. 803, 3 =
an4.
805. /7 cache_trash: multiple threads refer to adjacent words,
g06. * causing false sharing of cache lines, and trashing
a07.  */
808. woid
809, cache_trash(Workblk *array, struct scripttab *k)
g10. {
a. a. 611. array-rready = array-Fstart;
a. a. 81z, array->wvready = array->wstart;
813.
o. a. 514, array-rcompute ready = array-rready;
o. 0. 315, array-rCompute_wready = array->vready;
Glé.
817. /% use a datum that will share a cache line with others ¥/
73,121 0. 818, (k-Fcalled func) [selenent[array->rindex]):
a19.
o. 0. azi. array-roompute_done = gethrrime():
a. a. Gzl. array-rFoompute wdons gethrvtime () ; z
4 [¥]

FIGURE 2-35 Source tab for the Four-CPU Experiment Showing Annotated Source Code for
cache_trash
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4. Compare the calls to conput eA() and conput eB() .

conput eA() is called with a double in the thread’s work block as an argument
(&array->l i st[0]), that can be read and written to directly without danger of
contention with other threads.

conput eB( ), however, is called with doubles in each thread that occupy successive
words in memory (&el ement [ arr ay- >i ndex] ). These words share a cache line.
Whenever a thread writes to one of these addresses in memory, any other threads
that have that address in their cache must delete the data, which is now invalid. If
one of the threads needs the data again later in the program, the data must be copied
back into the data cache from memory, even if the data item that is needed has not
changed. The resulting cache misses, which are attempts to access data not available
in the data cache, waste a lot of CPU time. This explains why conput eB() uses
much more user CPU time than conput eA() in the four-CPU experiment.

In the one-CPU experiment, only one thread is running at a time and no other
threads can write to memory. The running thread’s cache data never becomes
invalid. No cache misses or resulting copies from memory occur, so the performance
for conput eB() is just as efficient as the performance for conput eA() when only
one CPU is available.

Extension Exercises for nt t est

1. If you are using a computer that has hardware counters, run the four-CPU
experiment again and collect data for one of the cache hardware counters, such as
cache misses or stall cycles. On UltraSPARC® 111 hardware you can use the
command

% collect -p off -h dcstall -0 nttest.3.er nttest

You can combine the information from this new experiment with the previous
experiment by choosing File - Add. Examine the hardware counter data for
Conput eA and Conput eB in the Functions tab and the Source tab.

2. The makefile contains optional settings for compilation variables that are
commented out. Try changing some of these options and see what effect the
changes have on program performance. The compilation variable to edit is
OFLAGS.
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Example 5: Cache Behavior and
Optimization

This example addresses the issue of efficient data access and optimization. It uses
two implementations of a matrix-vector multiplication routine, dgenv, which is
included in standard BLAS libraries. Three copies of the two routines are included in
the program. The first copy is compiled without optimization, to illustrate the effect
of the order in which elements of an array are accessed on the performance of the
routines. The second copy is compiled with - 2, and the third with - f ast, to
illustrate the effect of compiler loop reordering and optimization.

This example illustrates the use of hardware counters and compiler commentary for
performance analysis. You must run this example on UltraSPARC Il hardware.

Collecting Data for cachet est

Read the instructions in the sections, “Setting Up the Examples for Execution” on
page 32 and “Basic Features of the Performance Analyzer” on page 34, if you have
not done so. Compile cachet est before you begin this example.

In this example you generate several experiments with data collected from different
hardware counters, as well as an experiment that contains clock-based data.

To collect data for cachet est and start the Performance Analyzer from the
command line, type the following commands.

% cd work-directory/ cachet est

%collect -o flops.er -S off -p on -h fpadd,, fprul cachetest
%collect -o cpi.er -S off -p on -h cycles,,insts cachetest
% collect -o dcstall.er -h dcstall cachetest

The col | ect commands have been included in the makefile, so instead you can
type the following commands.

% cd work-directory/ cachet est
% nake col | ect

The Performance Analyzer shows exclusive metrics only. This is different from the
default, and has been set in a local defaults file. See “Default-Setting Commands” on
page 188 for more information.
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You are now ready to analyze the cachet est experiment using the procedures in

the following sections.

Execution Speed

. Start the analyzer on the floating point operations experiment.

% cd work-directory/ cachet est
% anal yzer flops.er &

. Click the header of the Name column.

The functions are sorted by name, and the display is centered on the selected
function, which remains the same.

. For each of the six functions, dgenv_g1, dgenv_g2, dgenmv_opt 1, dgenv_opt 2,

dgenv_hi 1, and dgenv_hi 2, add the FP Adds and FP Muls counts and divide by
the User CPU time and 106.

Functions rCaIIers-Callees r Source r Disassembly rTimeIine r LeakList rStatistics r Experiments
& User | 2 FP Adds | 2 FP Muls | Name
CRPU
(sec.) E
0. o 0 _open
0. o 0 _start
0. o 0 _write
0. o 0 barrier_
a. u] 0 catopen
0. 127 522 995 464 collector_final counters
0. 4 496 0 collector_record counters
0. o 0 collector_sample
0. o 0 collector_sample_
13.100 36 000 108 35000105 dgenv gl
4,550 36000108 36000108 dyenv gz_
0.390 36 000420 36000417 dgenv_hil
0.390 36000 355 36000420 dgenv _hiz
10.710 36000108 36000108 dgemv_optl_
1.780 36000136 36000144 dgenv opti_
0. o 0 dgenv_pl_
0. 460 36000416 35000337 dgemv_pl_-- MP doall from line 12 [_§dlalZ.dgemv _pl_ ]
o o 0 dgenv pZ_
0. 460 36000416 36000403 dgemv_pZ  -- MP doall from line 31 [_§dlE3l.dgemv _pZ_]
o o 0 file_open

-

FIGURE 2-36 Functions Tab Showing User CPU, FP Adds and FP Muls for the Six Variants
of dgenv
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The numbers obtained are the MFLOPS counts for each routine. All of the
subroutines have the same number of floating-point instructions issued but use
different amounts of CPU time. (The variation between the counts is due to counting
statistics.) The performance of dgemv_g2 is better than that of dgemv_g1, the
performance of dgemv_opt 2 is better than that of dgenv_opt 1, but the performance
of dgenv_hi 2 and dgenv_hi 1 are about the same.

. Run cachet est without collecting performance data.

. Compare the MFLOPS values obtained here with the MFLOPS values printed by

the program.

The values computed from the data are lower because of the overhead for the data
collection. The MFLOPS values computed by the program under data collection vary
because the data collection overhead is different for different data types and for
different hardware counters.

Program Structure and Cache Behavior

In this section, we examine the reasons why dgemnv_g2 has better performance than
dgenv_gl. If you already have the Performance Analyzer running, do the following:

. Choose File ~ Open and open cpi . er.

. Choose File - Add and add dcstal | . er.

If you do not have the Performance Analyzer running, type the following commands
at the prompt:

% cd work-directory/ cachet est
% anal yzer cpi.er dcstall.er &

Program Performance Analysis Tools « May 2003




Functions rCaIIers-Callees rSuurce rDisassemhly rTimeIine rLeakList rStatistics rExperiments

B User | B CPU | & Instructions | 2 D§ and EF | Name
CPU Cycles Executed Stall Cyeles
(sec) (sec) (sec) 2

0.450 0. 440 330000128 0. _ mt_End0fTask_FEarrier a
0. 0. o 0. _ mt_MasterFunction_ |
0. 0. o 0. _ mt_JlaveFunction
0.4390 0.4s80 S70000711 0. _ mt_WaitForWork_
0. 0. 0 0. _mt init_
0. 0. o 0. _ mt_runloop_int_
0. 0. o 0. _ mt_run my_job_
0. 0. o 0. _start
0. 0. o 0. barrier_
13.160 T7.800 1970000322 3.988 dogeny_gl_
5.140 5.027 1940000196 1.321 dgeny_gz_
0.360 0.347 140000 246 0.277 dgenv_hil
0.350 0.333 140000 228 0.268 dgenv_hiz
10.770 5.587 S50 270094 3.995 degenv_optl_
Z.350 2.293 580000 269 1.433 dgeny_opti_
0. 0. o 0. degenv_pl_
0.4s80 0. 440 130000 168 0.365 dgenw _pl  -- MP doall from line 12 [_$dlAlZ.dgenv_p
0. 0. 0 0. dyenv_p2_ =
0.470 0. 440 140000 332 0.358 dgenw _pZ_ -- MP doall from line 31 [_$d1B3l.dgenv_p

l

FIGURE 2-37 Functions Tab Showing User CPU Time, CPU Cycles, Instructions Executed
and D- and E-Cache Stall Cycles for the Six Variants of dgenv

[ ]

. Compare the values for User CPU time and CPU Cycles.

There is a difference between these two metrics for dgenv_g1l because of DTLB
(data translation lookaside buffer) misses. The system clock is still running while the
CPU is waiting for a DTLB miss to be resolved, but the cycle counter is turned off.
The difference for dgemv_g2 is negligible, indicating that there are few DTLB
misses.

. Compare the D- and E-cache stall times for dgenv_g1 and dgenv_g2.

There is less time spent waiting for the cache to be reloaded in dgemv_g2 than in
dgemv_gl, because in dgemv_g2 the way in which data access occurs makes more
efficient use of the cache.

To see why, we examine the annotated source code. First, to limit the data in the
display we remove most of the metrics.

. Choose View - Set Data Presentation and deselect the metrics for Instructions
Executed and CPU Cycles in the Metrics tab.

. Click dgenmv_g1, then click the Source tab.

. Resize and scroll the display so that you can see the source code for both
dgenmv_gl and dgenv_g2.
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Functions rCaIIers-Callees rSuurce rDisassemhly rTimeIine rLeakList rStatistics rExperiments
8 User | 2 D§and E$ | Source File: /tmp/exsmples/cachetest/dgenv g.£90
CPU Stall Cycles | Object File: /tmp/examples/cachetest/dgenv_g.o
(sec) (sec) Load Object: <cachetest:
0. 0. 4. SUBROUTINE dgemv gl (transa, m, n, alpha, b, ldb, & = |
5. & c, incc, beta, a, inca)
B. CHARACTER (KIND=1) :: transa
7. INTEGER (EIND=4) :: m, n, incc, inca, ldb
g. REAL (EIND=58) :: alpha, beta
9. REAL (EIND=8) :: all:m), b{l:1ldb,l:n), ci{l:n)
10. INTEGEE, tri,
11.
0. 0. 12, aflim) = 0.0
13.
a. a. 14. oi=1,mn
0. 0.001 15. DOj=1,n
12.760 3.983 16. afi) = a{i) + b{i,31 * cii)
0. 400 0.004 17. END DO
a. a. 15. END DO
19,
a. a. z0. RETURN
a. a. zl. END
ZZ. !
a. a. 23. SUBROUTINE dgemv g2 (transa, m, n, alpha, b, ldb, &
24, & c, incc, beta, a, inca)
25. CHARACTER (KIND=1) :: transa
26, INTEGER (EIND=4) :: m, n, incc, inca, ldb
27. REAL (EIND=58) :: alpha, beta
28. REAL (EIND=8) :: all:m), b{l:1ldb,l:n), ci{l:n)
29, INTEGEE, tri,
30.
0. 0. 31. aflim) = 0.0
3Z.
a. a. 33. oj=1,n Vo= Y swapped loop indices
a. 0.001 34, oi=1,mn ! ===
4,500 1.320 35, afi) = a{i) + b{i,31 * cii)
0.640 a. 36. END DO
a. a. 37. END DO
38. ~|

FIGURE 2-38 Source Tab Showing Annotated Source Code for dgenv_g1l and dgenv_g2

The loop structure in the two routines is different. Because the code is not optimized,
the data in the array in dgemv_g1 is accessed by rows, with a large stride (in this
case, 6000). This is the cause of the DTLB and cache misses. In dgenv_g2, the data is
accessed by column, with a unit stride. Since the data for each loop iteration is
contiguous, a large segment can be mapped and loaded into cache and there are
cache misses only when this segment has been used and another is required.
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Program Optimization and Performance

In this section we examine the effect of two different optimization options on the
program performance, - Q2 and - f ast . The transformations that have been made on
the code are indicated by compiler commentary messages, which appear in the
annotated source code.

. Load the experiments cpi . er and dcstal | . er into the Performance Analyzer.

If you have just completed the previous section, Choose View - Set Data
Presentation and ensure that the metric for CPU Cycles as a time and the metric for
Instructions Executed are selected.

If you do not have the Performance Analyzer running, type the following commands
at the prompt..

% cd work-directory/ cachet est
% anal yzer cpi.er dcstall.er &

. Click the header of the Name column.

The functions are sorted by name, and the display is centered on the selected
function, which remains the same.

. Compare the metrics for dgemv_opt 1 and dgenv_opt 2 with the metrics for
dgenv_gl and dgenv_g2 (see FIGURE 2-37).

The source code is identical to that in dgenv_g1l and dgemv_g2. The difference is
that they have been compiled with the - Q2 compiler option. Both functions show
about the same decrease in CPU time, whether measured by User CPU time or by
CPU cycles, and about the same decrease in the number of instructions executed, but
in neither routine is the cache behavior improved.

. In the Functions tab, compare the metrics for dgenmv_opt 1 and dgemv_opt 2 with
the metrics for dgemv_hi 1 and dgenv_hi 2.

The source code is identical to that in dgenmv_opt 1 and dgenmv_opt 2. The difference
is that they have been compiled with the - f ast compiler option. Now both routines
have the same CPU time and the same cache performance. Both the CPU time and
the cache stall cycle time have decreased compared to dgenv_opt 1 and
dgenmv_opt 2. Waiting for the cache to be loaded takes about 80% of the execution
time.

. Click dgemv_hi 1, then click the Source tab. Resize and scroll the display so that
you can see the source for all of dgenmv_hi 1.
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Functions rCaIIers-CaIIees rSource rDisassemhly rTimeIine rLeakList rStatistics rExperiments

B Usger | 2 D and EF | Source File: /tmp/examples/cachetest/dgenv hi.£90
CPU Stall Cycles | Object File: /tmp/examples/cachetest/dgemv hi.o

(sec) {sec.) Load Object: <cachetest>
a. 0. 4, SUBROUTINE dgemv_hil (transa, m, n, alpha, b, ldh, &
5. & o, ince, beta, a, inca)
B, CHARACTER (KIND=1) :: transa
7. INTEGER (KIND=4) :: m, n, ince, inca, ldb
G, REAL (KIND=5) :: alpha, beta
9. REAL (KIND=8) :: ail:m), b{l:ldb,l:n), cil:in)
10. INTEGER i, g
11.

Array statement below generated a loop
Loop below has 0 loads, 1 stores, 2 prefetches, 0 FPadds, 0 FPmuls, and 0 FPdivs per iteration
Loop below unrolled § times
Loop below pipelined with steady-state cycle count = 1 bhefore unrolling
0. 0. 1z. atlim) = 0.0
13.

Loop below interchanged with loop on line 15
Loop below unkolled and jammed
Loop below pipelined with steady-state cycle count = 9 before unrolling
Loop below untolled 4 times
Loop below has 9 loads, 1 stores, & prefetches, 8 FPadds, & FPuuls, and 0 FPdiws per iteration
Loop below unrolled 3 times
Loop below has 2 loads, 1 stores, 0 prefetches, 1 FPadds, 1 FPmuls, and 0 FPdivs per iteration
Loop below pipelined with steady-state cycle count = 3 before unrolling
a. 0. 14. 0i=1,m

Loop below untolled and jammed

Loop below interchanged with loop on line 14

0. 0. 15, DOi=1,n
0. 360 0.277 16, ali) = alil + bii, 1) 7 2t)
17. EID DO
18, END DO
19,
20, BETURN
21, END

FIGURE 2-39 Source Tab for dgenv_hi 1 Showing Compiler Commentary That Includes
Loop Interchange Messages

The compiler has done much more work to optimize this function. It has
interchanged the loops that were the cause of the DTLB miss problems. In addition,
the compiler has created new loops that have more floating-point add and floating-
point multiply operations per loop cycle, and inserted prefetch instructions to
improve the cache behavior.

Note that the messages apply to the loop that appears in the source code and any
loops that the compiler generates from it.

. Scroll down to see the source code for dgemv_hi 2.

The compiler commentary messages are the same as for dgenv_hi 1 except for the
loop interchange. The code generated by the compiler for the two versions of the
routine is now essentially the same.
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Functions rCaIIers-CaIIees r Source r Disassembhy rTimeIine r LeakList rStatistics r Experiments
& User | 2 Df and E§ | Source File: /tmp/examples/cachetest/dgemw hi.f30

cRU Stall Cycles Object File: /twp/examplesfcachetest/dyenv _hi.o
{sec) (sec.) Load Object: <cachetest>
Zl. END
Z2. !
a. 0. 23. SUBROUTINE dgewv_hi2 (transa, m, n, alpha, b, Lldb, &
z4. & c, ince, beta, a, inca)
25, CHARACTER (EIND=1) :: transa
26, INTEGEE (KIND=4) :: m, n, ince, inca, ldb
27. EEAL (KIND=8) :: alpha, beta
Z8. REAL (KIND=8) :: a({l:m), b(l:ldb,l:n), c{l:n)
29. INTEGEE: i,
30.

Array statement below generated a loop

Loop below pipelined with steady-state cycle count = 1 before unrolling

Loop below unrolled & times

Loop below has 0 loads, 1 stores, Z prefetches, 0 FPadds, 0 FPmuls, and 0 FPdive per iteration
0. 0. 31. a{l:m) = 0.0

3E.

Loop below unrolled and jammed

a. a. 33. D0j=1,n o= Y swapped loop indices

Loop below pipelined with steady-state cycle count = 9 before unrolling

Loop below unrolled 4 times

Loop below has 9 loads, 1 stores, § prefetches, & FPadds, 5 FPmuls, and 0 FPdive per iteration
Loop below pipelined with steady-state cycle count = 3 before unrolling

Loop below unrolled 3 times

Loop below has 2 loads, 1 stores, 0 prefetches, 1 FPadds, 1 FPmuls, and 0 FPdiws per iteration

Loop below unrolled and jammed

0. 0. 34, D0i=1,m ! L=-=/
0.350 0.268 35. afi) = afi) + bii 31 * ci3)
36. END DO
37, END DO
38.
39, EETURN
40. END

FIGURE 2-40 Source Tab for dgenv_hi 2 Showing Compiler Commentary

. Click the Disassembly tab.

The line numbers for the instructions in the optimized code are no longer sequential.
The compiler has rearranged the code: in particular, the initialization loop is now
part of the main loop structure.

Compare the disassembly listing with that for dgenv_g1 or dgenv_opt 1. There are
many more instructions generated for dgemv_hi 1 than for dgemv_g1. The loop
unrolling and the insertion of prefetch instructions contribute to the larger number
of instructions. However, the number of instructions executed in dgenv_hi 1 is the
smallest of the three versions of the subroutine. Optimization can produce more
instructions, but the instructions are used more efficiently and executed less often.
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CHAPTER 3

Performance Data

The performance tools work by recording data about specific events while a
program is running, and converting the data into measures of program performance
called metrics.

This chapter describes the data collected by the performance tools, how it is
processed and displayed, and how it can be used for performance analysis. For
information on collecting and storing performance data, see Chapter 4. For
information on analyzing performance data, see Chapter 5 and Chapter 6.

Because there is more than one tool that collects performance data, the term
Collector is used to refer to any of these tools. Likewise, because there is more than
one tool that analyzes performance data, the term analysis tools is use to refer to any
of these tools.

This chapter covers the following topics.

= What Data the Collector Collects
= How Metrics Are Assigned to Program Structure

What Data the Collector Collects

The Collector collects three different kinds of data: profiling data, tracing data and

global data.

= Profiling data is collected by recording profile events at regular intervals. The
interval is either a time interval obtained by using the system clock or a number
of hardware events of a specific type. When the interval expires, a signal is
delivered to the system and the data is recorded at the next opportunity.

= Tracing data is collected by interposing a wrapper function on various system
functions so that calls to the system functions can be intercepted and data
recorded about the calls.
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= Global data is collected by calling various system routines to obtain information.
The global data packet is called a sample.

Both profiling data and tracing data contain information about specific events, and
both types of data are converted into performance metrics. Global data is not
converted into metrics, but is used to provide markers that can be used to divide the
program execution into time segments. The global data gives an overview of the
program execution during that time segment.

The data packets collected at each profiling event or tracing event include the
following information:

= A header identifying the data

= A high-resolution timestamp

= Athread ID

= A lightweight process (LWP) ID

= A processor ID, where available from the OS-- Solaris 9 or later
= A copy of the call stack

For more information on threads and lightweight processes, see Chapter 7.

In addition to the common data, each event-specific data packet contains
information specific to the data type. The five types of data that the Collector can
record are:

= Clock profile data

= Hardware-counter overflow profiling data
= Synchronization wait tracing data

= Heap tracing (memory allocation) data

= MPI tracing data

These five data types, the metrics that are derived from them, and how you might
use them, are described in the next five subsections.

Clock Data

In clock-based profiling, the state of each LWP is stored at regular time intervals.
This time interval is called the profiling interval. The information is stored in an
integer array: one element of the array is used for each of the ten microaccounting
states maintained by the kernel.The data collected is converted by the Performance
Analyzer into times spent in each state, with a resolution of the profiling interval.
The default profiling interval is approximately 10 ms. The Collector provides a high-
resolution profiling interval of approximately 1 ms and a low-resolution profiling
interval of approximately 100 ms., and, where the OS permits, allows arbitrary
intervals. Running col | ect with no arguments will print the range and resolution
allowable on the system on which it is run.
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The metrics that are computed from clock-based data are defined in the following
table.

TABLE3-1  Timing Metrics

Metric Definition

User CPU time LWP time spent running in user mode on the CPU.

Wall time LWP time spent in LWP 1. This is the “wall clock time”

Total LWP time Sum of all LWP times.

System CPU time LWP time spent running in kernel mode on the CPU or in a trap
state.

Wait CPU time LWP time spent waiting for a CPU.

User lock time LWP time spent waiting for a lock.

Text page fault time LWP time spent waiting for a text page.

Data page fault time LWP time spent waiting for a data page.

Other wait time LWP time spent waiting for a kernel page, or time spent sleeping
or stopped.

For multithreaded experiments, times other than wall clock time are summed across
all LWPs. Wall time as defined is not meaningful for multiple-program multiple-data
(MPMD) programs.

Timing metrics tell you where your program spent time in several categories and can
be used to improve the performance of your program.

= High user CPU time tells you where the program did most of the work. It can be
used to find the parts of the program where there may be the most gain from
redesigning the algorithm.

= High system CPU time tells you that your program is spending a lot of time in
calls to system routines.

= High wait CPU time tells you that there are more threads ready to run than there
are CPUs available, or that other processes are using the CPUs.

= High user lock time tells you that threads are unable to obtain the lock that they
request.

= High text page fault time means that the code generated by the linker is
organized in memory so that calls or branches cause a new page to be loaded.
Creating and using a mapfile (see “Generating and Using a Mapfile” on page 167)
can fix this kind of problem.

= High data page fault time indicates that access to the data is causing new pages to
be loaded. Reorganizing the data structure or the algorithm in your program can
fix this problem.
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Hardware-Counter Overflow Profiling Data

Hardware counters keep track of events like cache misses, cache stall cycles,
floating-point operations, branch mispredictions, CPU cycles, and instructions
executed. In hardware-counter overflow profiling, the Collector records a profile
packet when a designated hardware counter of the CPU on which an LWP is
running overflows. The counter is reset and continues counting. The profile packet
includes the overflow value and the counter type.

The UltraSPARC® 11l processor family and the 1A processor family have two
registers that can be used to count events. The Collector can collect data from either
or both registers. For each register the Collector allows you to select the type of
counter to monitor for overflow, and to set an overflow value for the counter. Some
hardware counters can use either register, others are only available on a particular
register. Consequently, not all combinations of hardware counters can be chosen in a
single experiment.

Hardware-counter overflow profiling data is converted by the Performance Analyzer
into count metrics. For counters that count in cycles, the metrics reported are
converted to times; for counters that do not count in cycles, the metrics reported are
event counts. On machines with multiple CPUs, the clock frequency used to convert
the metrics is the harmonic mean of the clock frequencies of the individual CPUs.
Because each type of processor has its own set of hardware counters, and because
the number of hardware counters is large, the hardware counter metrics are not
listed here. The next subsection tells you how to find out what hardware counters
are available.

One use of hardware counters is to diagnose problems with the flow of information
into and out of the CPU. High counts of cache misses, for example, indicate that
restructuring your program to improve data or text locality or to increase cache
reuse can improve program performance.

Some of the hardware counters provide similar or related information. For example,
branch mispredictions and instruction cache misses are often related because a
branch misprediction causes the wrong instructions to be loaded into the instruction
cache, and these must be replaced by the correct instructions. The replacement can
cause an instruction cache miss, or an instruction translation lookaside buffer (ITLB)
miss.

Hardware-counter overflows are often delivered one or more instructions after the
instruction which caused the event and the corresponding event counter to
overflow: this is referred to as "skid" and it can make counter overflow profiles
difficult to interpret. In the absence of hardware support for precise identification of
the causal instruction, an apropos backtracking search for a candidate causal
instruction may be attempted.
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When such backtracking is supported and specified during collection, hardware
counter profile packets additionally include the PC (program counter) and EA
(effective address) of a candidate memory-referencing instruction appropriate for
the hardware counter event. (Subsequent processing during analysis is required to
validate the candidate event PC and EA.) This additional information about
memory-referencing events facilitates various data-oriented analyses.

Hardware Counter Lists

Hardware counters are processor-specific, so the choice of counters available to you
depends on the processor that you are using. For convenience, the performance tools
provide aliases for a number of counters that are likely to be in common use. You
can obtain a list of available hardware counters on any particular system from the
Collector by typing col | ect with no arguments in a terminal window on that
system.

The entries in the counter list for aliased counters are formatted as follows:

CPU Cycl es (cycl es = Cycl e_cnt/*) 9999991 hi =1000003, | 0=100000007
(CPU-cycl es) Instructions Executed (insts = Instr_cnt/*) 9999991
hi =1000003, | 0=100000007 (Events) D$ Read M sses (dcrm =

DC rd_mi ss/1) 100003 hi =10007, | 0=1000003 | oad (Events)

In the first line, the first field, "CPU Cycles", is the metric name. The second field,
"cycles”, gives the alias name that can be used in the -h counter... argument. The
third field, "Cycle_cnt/*", gives the internal name as used by cput r ack( 1) and the
register number on which that counter can be used. The register number will be
either O or 1, or *, as in this case, indicating the counter is available on either register.
The next field is the overflow interval, the following field is the high-resolution
overflow interval, and the last field is the low- resolution overflow interval. The
"(CPU-cycles)" indicates that the counter counts in units of CPU-cycles, and can be
converted to time. The second line has a "(Events)" at the end of the line, indicating
that it counts events, and can not be converted to time. A line may have an
additional field, as shown in the third line above, between the low-resolution value
and the counter units, indicating whether the counter may be triggered by a load, a
store, or either, or if the counter is not program related.
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The aliased counters that are available on both UltraSPARC and IA hardware are
given in TABLE 3-2. There are other aliases that are available on UltraSPARC
hardware.

TABLE 3-2  Aliased Hardware Counters Available on SPARC and |A Hardware

Aliased Counter Name Metric Name Description

cycl es CPU Cycles CPU cycles, counted on either register

insts Instructions Executed Instructions executed, counted on either
register

Lines of output for the non-aliased counters are formatted as follows:

Cycle_cnt Events (reg. 0) 1000003 hi =100003, |0=9999991 (CPU-
cycl es)

Instr_cnt Events (reg. 0) 1000003 hi =100003, |0=9999991 (Events)
DC rd Events (reg. 0) 1000003 hi =100003, |0=9999991 | oad (Events)

In this line, the first field, "Cycle_cnt", gives the internal name as used by
cputrack(1l) and the register number on which that counter can be used. The
string "Cycle_cnt Events" is the metric name for this counter. The remainder of the
line is formatted as for an aliased counter.

For both aliased and non-aliased counters that count in cycles, indicated by a "(CPU-
cycles)" at the end of the its line, the metrics reported are converted by default to
inclusive and exclusive times, but can optionally be shown as event counts. For
counters that count in events, indicated by "(Events)" at the end of its line, the
metrics reported are inclusive and exclusive event counts.

For hardware counters that relate to memory operations, as indicated by "load",
"store”, or "load-store" following the counter name, the name of the counter may be
preceeded by a "+" sign, to request that the data collection attempt to find the precise
instruction and effective address that caused the event on the counter that
overflowed.

If a counter is not program related, using it for profiling will generate a warning,
and profiling will not record a callstack, but rather will show the time being spent in
an artificial function, " col | ect or _not _program rel at ed". Thread and LWP
ID's will be recorded, but are meaningless. The string “ not - program r el at ed”
will appear after the name of any counter that counts events unrelated to the
program running. Using such a counter reports metrics in the function

“col | ector_not_program rel at ed” and will give a warning before collection.
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In the counter list, the aliased counters appear first, then all the counters available
on register 0, then all the counters available on register 1. The aliased counters
appear twice, with and without the alias. In the non-aliased list, these counters can
have different overflow values. The default overflow values for the aliased cycle
counters have been chosen to produce approximately the same data collection rate
as for clock data. Other counters are much more sensitive to the actual behavior of
the application.

Synchronization Wait Tracing Data

In multithreaded programs, the synchronization of tasks performed by different
threads can cause delays in execution of your program, because one thread might
have to wait for access to data that has been locked by another thread, for example.
These events are called synchronization delay events and are collected by tracing
calls to the functions in the threads library, | i bt hr ead. so. The process of collecting
and recording these events is called synchronization wait tracing. The time spent
waiting for the lock is called the wait time.

Events are only recorded if their wait time exceeds a threshold value, which is given
in microseconds. A threshold value of 0 means that all synchronization delay events
are traced, regardless of wait time. The default threshold is determined by running a
calibration test, in which calls are made to the threads library without any
synchronization delay. The threshold is the average time for these calls multiplied by
an arbitrary factor (currently 6). This procedure prevents the recording of events for
which the wait times are due only to the call itself and not to a real delay. As a result,
the amount of data is greatly reduced, but the count of synchronization events can
be significantly underestimated.

Synchronization tracing for Java programs is based on events generated when a
thread attempts to acquire a Java Monitor. Both machine and Java callstacks are
collected for these events, but no synchronization tracing data is collected for
internal locks used within the JVM. In the machine representation, thread
synchronization devolves into calls to _| wp_rut ex_| ock, and no synchronization
data is shown, since these calls are not traced.

Synchronization wait tracing data is converted into the following metrics:

TABLE 3-3  Synchronization Wait Tracing Metrics

Metric Definition

Synchronization delay events.  The number of calls to a synchronization routine where
the wait time exceeded the prescribed threshold.

Synchronization wait time. Total of wait times that exceeded the prescribed threshold.
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From this information you can determine if functions or load objects are either
frequently blocked, or experience unusually long wait times when they do make a
call to a synchronization routine. High synchronization wait times indicate
contention among threads. You can reduce the contention by redesigning your
algorithms, particularly restructuring your locks so that they cover only the data for
each thread that needs to be locked.

Heap Tracing (Memory Allocation) Data

Calls to memory allocation and deallocation functions that are not properly
managed can be a source of inefficient data usage and can result in poor program
performance. In heap tracing, the Collector traces memory allocation and
deallocation requests by interposing on the C standard library memory allocation
functions mal | oc, real | oc, val | oc, and nenal i gn and the deallocation function
f ree. The Fortran functions al | ocat e and deal | ocat e call the C standard library
functions, so these routines are also traced indirectly.

For Java programs, heap tracing data records all object allocation events (generated
by the user code), and object deallocation events (generated by the garbage
collector). In addition, any use of mal | oc, f r ee, etc. also generates events that are
recorded. Those events may come from native code, or from the JVM itself.

In the machine representation, memory is allocated and deallocated by the JVM,
typically in very large chunks. Memory allocation from the Java code is handled
entirely by the JVM and its garbage-collector. Heap tracing will not show JVM
allocations, since they are done by mapping memory, rather than calling the normal
heap routines, and will not show any information about the Java memory allocation
and garbage collection.

Heap tracing data is converted into the following metrics:

TABLE 3-4  Memory Allocation (Heap Tracing) Metrics

Metric Definition
Allocations The number of calls to the memory allocation functions.
Bytes allocated The sum of the number of bytes allocated in each call to the

memory allocation functions.

Leaks The number of calls to the memory allocation functions that did
not have a corresponding call to a deallocation function.

Bytes leaked The number of bytes that were allocated but not deallocated.

Collecting heap tracing data can help you identify memory leaks in your program or
locate places where there is inefficient allocation of memory.
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There is another definition of memory leaks that is commonly used, such as in the

debugging tool, dbx. The definition is “a dynamically-allocated block of memory

that has no pointers pointing to it anywhere in the data space of the program.” The

definition of leaks used here includes this alternative definition, but also includes

memory for which pointers do exist.

MPI Tracing Data

The Collector can collect data on calls to the Message Passing Interface (MPI) library.
The functions for which data is collected are listed below.

MPI _Al | gat her MPI _Al | gat herv MPI _Al | reduce

MPI _Alltoall MPI _Alltoallv MPI _Barrier

MPI _Bcast MPI _Bsend MPI _Gat her

MPI _Gat herv MPl _Irecv MPI | send

MPl _Recv MPl _Reduce MPI _Reduce_scatter
MPl _Rsend MPI _Scan MPI _Scatter

MPl _Scatterv MPI _Send MPI _Sendr ecv

MPl _Sendrecv_repl ace MPI _Ssend MPl Wi t

MPI _Waitall MPI _Wi t any MPI Wi t sone

MPl _W n_fence MPl _W n_I ock

MPI tracing data is converted into the following metrics:

TABLE 3-5 MPI Tracing Metrics

Metric

Definition

MPI Receives

MPI Bytes Received
MPI Sends

MPI Bytes Sent
MPI Time
Other MPI Calls

Number of receive operations in MPI functions that
receive data

Number of bytes received in MPI functions

Number of send operations in MPI functions that
send data

Number of bytes sent in MPI functions
Time spent in all calls to MPI functions

Number of calls to other MPI functions

Chapter 3 Performance Data
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The number of bytes recorded as received or sent is the buffer size given in the call.
This might be larger than the actual number of bytes received or sent. In the global
communication functions and collective communication functions, the number of
bytes sent or received is the maximum number, assuming direct interprocessor
communication and no optimization of the data transfer or re-transmission of the
data.

The functions from the MPI library that are traced are listed in TABLE 3-6, categorized
as MPI send functions, MPI receive functions, MPI send and receive functions, and
other MPI functions.

TABLE 3-6  Classification of MPI Functions Into Send, Receive, Send and Receive, and

Other

Category Functions

MPI send functions MPI _Bsend, MPI _I send, VPl _Rsend, MPI _Send,
MPI _Ssend

MPI receive functions MPI _Irecv, MPl _Recv

MPI send and receive MPI _Al | gat her, MPI _Al | gat herv, MPl _Al | r educe,

functions MPI _Alltoall, Ml _Alltoallv, MPl _Bcast, MPl _Gat her,
MPI _Gat herv, MPl _Reduce, MPl _Reduce_scatter,
MPI _Scan, MPI _Scatter, MPl _Scatterv, MPl _Sendrecy,
MPI _Sendrecv_repl ace

Other MPI functions MPl _Barrier, MPl _Wait, MPl _Vaitall, MPl _Witany,

MPl _\W\i t sorme, MPI _W n_fence, MPl _W n_I ock

Collecting MPI tracing data can help you identify places where you have a
performance problem in an MPI program that could be due to MPI calls. Examples
of possible performance problems are load balancing, synchronization delays, and
communications bottlenecks.

Global (Sampling) Data

Global data is recorded by the Collector in packets called sample packets. Each
packet contains a header, a timestamp, execution statistics from the kernel such as
page fault and 170 data, context switches, and a variety of page residency (working-
set and paging) statistics. The data recorded in sample packets is global to the
program and is not converted into performance metrics. The process of recording
sample packets is called sampling.

Sample packets are recorded in the following circumstances:

= When the program stops for any reason in the Debugging window or in dbx,
such as at a breakpoint, if the option to do this is set
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= At the end of a sampling interval, if you have selected periodic sampling. The
sampling interval is specified as an integer in units of seconds. The default value
is 1 second

= When you choose Debug - Performance Toolkit — New Sample, or click the New
Sample button in the Debugging window, or use the dbx col | ector sanple
record command

= Atacalltocol | ector_sanpl e, if you have put calls to this routine in your code
(see “Controlling Data Collection From Your Program” on page 105)

= When a specified signal is delivered, if you have used the -1 option with the
col | ect command (see “Experiment Control Options” on page 122)

= When collection is initiated and terminated
= Before and after a descendant process is created

The performance tools use the data recorded in the sample packets to group the data
into time periods, which are called samples. You can filter the event-specific data by
selecting a set of samples, so that you see only information on a particular time
period. You can also view the global data for each sample.

The performance tools make no distinction between the different kinds of sample
points. To make use of sample points for analysis you should choose only one kind
of point to be recorded. In particular, if you want to record sample points that are
related to the program structure or execution sequence, you should turn off periodic
sampling, and use samples recorded when dbx stops the process, or when a signal is
delivered to the process that is recording data using the col | ect command, or
when a call is made to the Collector API functions.

How Metrics Are Assigned to Program
Structure

Metrics are assigned to program instructions using the call stack that is recorded
with the event-specific data. If the information is available, each instruction is
mapped to a line of source code and the metrics assigned to that instruction are also
assigned to the line of source code. See Chapter 7 for a more detailed explanation of
how this is done.

In addition to source code and instructions, metrics are assigned to higher level
objects: functions and load objects. The call stack contains information on the
sequence of function calls made to arrive at the instruction address recorded when a
profile was taken. The Performance Analyzer uses the call stack to compute metrics
for each function in the program. These metrics are called function-level metrics.

Chapter 3 Performance Data 97



98

Function-Level Metrics: Exclusive, Inclusive, and
Attributed

The Performance Analyzer computes three types of function-level metrics: exclusive
metrics, inclusive metrics and attributed metrics.

= Exclusive metrics for a function are calculated from events which occur inside the
function itself: they exclude metrics coming from calls to other functions.

» Inclusive metrics are calculated from events which occur inside the function and
any functions it calls: they include metrics coming from calls to other functions.

= Attributed metrics tell you how much of an inclusive metric came from calls from
or to another function: they attribute metrics to another function.

For a function at the bottom of a particular call stack (the “leaf function™), the
exclusive and inclusive metrics are the same, because the function makes no calls to
other functions.

Exclusive and inclusive metrics are also computed for load objects. Exclusive metrics
for a load object are calculated by summing the function-level metrics over all
functions in the load object. Inclusive metrics for load objects are calculated in the
same way as for functions.

Exclusive and inclusive metrics for a function give information about all recorded
paths through the function. Attributed metrics give information about particular
paths through a function. They show how much of a metric came from a particular
function call. The two functions involved in the call are described as a caller and a
callee. For each function in the call tree:

= The attributed metrics for a function’s callers tell you how much of the function’s
inclusive metric was due to calls from each caller. The attributed metrics for the
callers sum to the function’s inclusive metric.

= The attributed metrics for a function’s callees tell you how much of the function’s
inclusive metric came from calls to each callee. Their sum plus the function’s
exclusive metric equals the function’s inclusive metric.

Comparison of attributed and inclusive metrics for the caller or the callee gives
further information:

= The difference between a caller’s attributed metric and its inclusive metric tells
you how much of the metric came from calls to other functions and from work in
the caller itself.

= The difference between a callee’s attributed metric and its inclusive metric tells
you how much of the callee’s inclusive metric came from calls to it from other
functions.

To locate places where you could improve the performance of your program:

= Use exclusive metrics to locate functions that have high metric values.
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= Use inclusive metrics to determine which call sequence in your program was
responsible for high metric values.

= Use attributed metrics to trace a particular call sequence to the function or
functions that are responsible for high metric values.

Interpreting Function-Level Metrics: An Example

Exclusive, inclusive and attributed metrics are illustrated in FIGURE 3-1, which
contains a fragment of a call tree. The focus is on the central function, function C.
There may be calls to other functions which do not appear in this figure.

Function A Function B
Exclusive: 1 Exclusive: 0
Inclusive: 11 Inclusive: 20
Attributed: 10 | | Attributed: 15
Function C
Exclusive: 5
Inclusive: 25
Attributed: 10 | | Attributed: 10
Function E Function F
Exclusive: 10 Exclusive: 0
Inclusive: 10 Inclusive: 15

FIGURE 3-1 Call Tree lllustrating Exclusive, Inclusive, and Attributed Metrics

Function C calls two functions, function E and function F, and attributes 10 units of
its inclusive metric to function E and 10 units to function F. These are the callee
attributed metrics. Their sum (10+10) added to the exclusive metric of function C (5)
equals the inclusive metric of function C (25).

The callee attributed metric and the callee inclusive metric are the same for function
E but different for function F. This means that function E is only called by function C
but function F is called by some other function or functions. The exclusive metric
and the inclusive metric are the same for function E but different for function F. This
means that function F calls other functions, but function E does not.
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Function C is called by two functions: function A and function B, and attributes 10
units of its inclusive metric to function A and 15 units to function B. These are the
caller attributed metrics. Their sum (10+15) equals the inclusive metric of function C.

The caller attributed metric is equal to the difference between the inclusive and
exclusive metric for function A, but it is not equal to this difference for function B.
This means that function A only calls function C, but function B calls other functions
besides function C. (In fact, function A might call other functions but the time is so
small that it does not appear in the experiment.)

How Recursion Affects Function-Level Metrics

Recursive function calls, whether direct or indirect, complicate the calculation of
metrics. The Performance Analyzer displays metrics for a function as a whole, not
for each invocation of a function: the metrics for a series of recursive calls must
therefore be compressed into a single metric. This does not affect exclusive metrics,
which are calculated from the function at the bottom of the call stack (the “leaf
function”), but it does affect inclusive and attributed metrics.

Inclusive metrics are computed by adding the exclusive metric for the leaf function
to the inclusive metric of the functions in the call stack. To ensure that the metric is
not counted multiple times in a recursive call stack, the exclusive metric for the leaf
function is only added to the inclusive metric for each unique function.

Attributed metrics are computed from inclusive metrics. In the simplest case of
recursion, a recursive function has two callers: itself and another function (the
initiating function). If all the work is done in the final call, the inclusive metric for
the recursive function will be attributed to itself and not to the initiating function.
This is because the inclusive metric for all the higher invocations of the recursive
function are regarded as zero to avoid multiple counting of the metric. The initiating
function, however, correctly attributes to the recursive function as a callee the
portion of its inclusive metric due to the recursive call.
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CHAPTER 4

Collecting Performance Data

The first stage of performance analysis is data collection. This chapter describes
what is required for data collection, where the data is stored, how to collect data and
how to manage the data collection. For more information about the data itself, see
Chapter 3.

This chapter covers the following topics.

Compiling and Linking Your Program

Preparing Your Program for Data Collection and Analysis
Limitations on Data Collection

Where the Data Is Stored

Estimating Storage Requirements

Collecting Data Using the col | ect Command

= Collecting Data Using the dbx col | ect or Subcommands
= Collecting Data From a Running Process

= Collecting Data From MPI Programs

Compiling and Linking Your Program

You can collect and analyze data for a program compiled with almost any option,
but some choices affect what you can collect or what you can see in the Performance
Analyzer. The issues that you should take into account when you compile and link
your program are described in the following subsections.
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Source Code Information

To see source code in annotated Source and Disassembly, and source lines in the
Lines analyses, you must compile the source files of interest with the " - g" compiler
option (" - g0" for C++ to enable front-end inlining) to generate debug symbol
information. The format of the debug symbol information can be either STABS or
DWARF2, as specified via " - xdebugf or mat =( st abs| dwarf)".

To prepare compilation objects with debug information which allows correction of
hardware counter profiles, currently only for the C compiler for SPARC®, compile
specifying " - xhwepr of - xdebugf or mat =dwar f " and any level of optimization.
(Currently, this functionality is not available without optimization.) To see program
data objects in Data Objects analyses, also add " - g" to obtain full symbolic
information.

Executables and libraries built with DWARF format debugging symbols
automatically include a copy of each constituent object (.0) file's debugging symbols,
and while this is also true for STABS format debugging symbols if linked with the
"-xs" option, the default leaves STABS symbols in the various object files. If you
need to move or remove the object files for any reason, you can link your program
with the " - xs" option. With all of the debugging symbols in the executables and
libraries themselves, it is easier to move the experiment and the program-related
files to a new location before analyzing it, for example.

Static Linking

When you compile your program, you must not disable dynamic linking, which is
done with the - dn and - Bst at i ¢ compiler options. If you try to collect data for a
program that is entirely statically linked, the Collector prints an error message and
does not collect data. This is because the collector library, among others, is
dynamically loaded when you run the Collector.

You should not statically link any of the system libraries. If you do, you might not be
able to collect any kind of tracing data. Nor should you link to the Collector library,
l'ibcollector. so.

Optimization

If you compile your program with optimization turned on at some level, the
compiler can rearrange the order of execution so that it does not strictly follow the
sequence of lines in your program. The Performance Analyzer can analyze
experiments collected on optimized code, but the data it presents at the disassembly
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level is often difficult to relate to the original source code lines. In addition, the call
sequence can appear to be different from what you expect if the compiler performs
tail-call optimizations.

If you compile a C program on an IA platform with an optimization level of 4 or 5,
the Collector is unable to reliably unwind the call stack. As a consequence, only the
exclusive metrics for a function are reliable. If you compile a C++ program on an IA
platform, you can use any optimization level, as long as you do not use the - noex

(or - f eat ur es=no@xcept ) compiler option to disable C++ exceptions. If you do

use this option the Collector is unable to reliably unwind the call stack, and only the
exclusive metrics for a function are reliable.

Intermediate Files
If you generate intermediate files using the - E or - P compiler options, the
Performance Analyzer uses the intermediate file for annotated source code, not the

original source file. The #l i ne directives generated with - E can cause problems in
the assignment of metrics to source lines.

Compiling Java Programs

No special action is required for compiling Java programs with j avac.

Preparing Your Program for Data
Collection and Analysis

For most programs, you do not need to do anything special to prepare your program
for data collection and analysis. You should read one or more of the subsections
below if your program does any of the following:

= Installs a signal handler

= Explicitly dynamically loads a system library

= Dynamically loads a module (. o file)

= Dynamically compiles functions

= Creates descendant processes

= Uses the asynchronous 170 library

= Uses the profiling timer or hardware counter API directly
= Calls set ui d(2) or executes a set ui d file.
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Also, if you want to control data collection from your program you should read the
relevant subsection.

Use of System Libraries

The Collector interposes on functions from various system libraries, to collect tracing
data and to ensure the integrity of data collection. The following list describes
situations in which the Collector interposes on calls to library functions.

= Collection of synchronization wait tracing data. The Collector interposes on
functions from the threads library, | i bt hr ead. so.

= Collection of heap tracing data. The Collector interposes on the functions nmal | oc,
real | oc, memal i gn and f r ee. Versions of these functions are found in the C
standard library, | i bc. so and also in other libraries such as | i bmal | oc. so and
i bt mal | oc. so.

= Collection of MPI tracing data. The Collector interposes on functions from the
MPI library, | i brpi . so.

= Ensuring the integrity of clock data. The Collector interposes on seti ti mer and
prevents the program from using the profiling timer.

= Ensuring the integrity of hardware counter data. The Collector interposes on
functions from the hardware counter library, | i bcpc. so and prevents the
program from using the counters. Calls from the program to functions from this
library return with a return value of - 1.

= Enabling data collection on descendant processes. The Collector interposes on the
functions f or k(2), f or k1(2), vfor k(2), f or k(3F), syst en(3C), syst en(3F),
sh(3F), popen(3C), and exec(2) and its variants. Calls to vf or k are replaced
internally by calls to f or k1. These interpositions are only done for the col | ect
command.

= Guaranteeing the handling of the SI GPROF and SI GEMT signals by the Collector.
The Collector interposes on si gact i on to ensure that its signal handler is the
primary signal handler for these signals.

There are some circumstances in which the interposition does not succeed:

= Statically linking a program with any of the libraries that contain functions that
are interposed.

= Attaching dbx to a running application that does not have the collector library
preloaded.

= Dynamically loading one of these libraries and resolving the symbols by
searching only within the library.

The failure of interposition by the Collector can cause loss or invalidation of
performance data.
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Use of Signal Handlers

The Collector uses two signals to collect profiling data, SI GPROF and SI GEMI. The
Collector installs a signal handler for each of these signals, which intercept and
process the signals, but pass on signals they do not use to any other signal handlers
that are installed. If a program installs its own signal handler for these signals, the
Collector re-installs its signal handler as the primary handler to guarantee the
integrity of the performance data.

The col | ect command can also use user-specified signals for pausing and
resuming data collection and for recording samples. These signals are not protected
by the Collector. It is the responsibility of the user to ensure that there is no conflict
between use of the specified signals by the Collector and any use made by the
application of the same signals.

The signal handlers installed by the Collector set a flag that ensures that system calls
are not interrupted for signal delivery. This flag setting could change the behavior of
the program if the program’s signal handler sets the flag to permit interruption of
system calls. One important example of a change in behavior occurs for the
asynchronous 1/0 library, | i bai 0. so, which uses SI GPRCF for asynchronous
cancel operations, and which does interrupt system calls. If the collector library,

l'i bcol | ector. so, is installed, the cancel signal arrives late.

If you attach dbx to a process without preloading the collector library and enable
performance data collection, and the program subsequently installs its own signal
handler, the Collector does not re-install its own signal handler. In this case, the
program’s signal handler must ensure that the SI GPROF and S| GEMT signals are
passed on so that performance data is not lost. If the program’s signal handler
interrupts system calls, both the program behavior and the profiling behavior will be
different from when the collector library is preloaded.

Use of set ui d

There are restrictions enforced by the dynamic loader that make it difficult to use
set ui d(2) and collect performance data. If your program calls set ui d or executes a
set ui d file, it is likely that the Collector cannot write an experiment file because it
lacks the necessary permissions for the new user ID.

Controlling Data Collection From Your Program

If you want to control data collection from your program, the Collector shared
library, | i bcol | ect or. so contains some API functions that you can use. The
functions are written in C, and a Fortran interface is also provided. Both C and
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Fortran interfaces are defined in header files that are provided with the library. For
Java programs, similar functionality is provided via the CollectorAPI class, which is
described in the following section.

To use the API functions from C or C++, insert the following statement.

#include "libcollector.h"

The functions are defined as follows.

voi d col | ector_sanpl e(char *nane);

voi d col | ect or _pause(void);

voi d col | ector_resune(void);

voi d col | ector_thread_pause(unsigned int t);
voi d col I ector_thread_resune(unsigned int t);
voi d col | ector_term nate_expt(void);

To use the API functions from Fortran, insert the following statement..

include "libfcollector.h"

When you link your program, link with - | f col | ect or.

Caution — Do not link a program in any language with -1 col | ect or. If you do,
the Collector can exhibit unpredictable behavior.

To use the Java API, use the following statement to import the CollectorAPI class.
Note however that your application must be invoked with a classpath pointing to
<installation-directory>/lib/collector.jar where<installation-

di rect ory> is the directory into which the Sun ONE Studio release was installed.

i mport comsun.forte.st.collector. CollectorAPl;
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The Java CollectorAPI methods are defined as follows:

Col | ect or API . sanmpl e(String nane)

Col | ect or API . pause()

Col | ector API . resune()

Col | ect or API . t hr eadPause( Thread t hr ead)
Col | ector API . t hr eadResune( Thr ead t hr ead)
Col Il ector APl . term nat e()

The Java API includes the same functions as the Fortran API, excluding the dynamic
function API.

The C include file contains macros that bypass the calls to the real API functions if
data is not being collected. In this case the functions are not dynamically loaded. The
Fortran API subroutines call the C API functions if performance data is being
collected, otherwise they return. The overhead for the checking is very small and
should not significantly affect program performance.

To collect performance data you must run your program using the Collector, as
described later in this chapter. Inserting calls to the API functions does not enable
data collection.

If you intend to use the API functions in a multithreaded program, you should
ensure that they are only called by one thread. With the exception of

col | ector _thread_pause() and col | ector _t hread_resume(), the API
functions perform actions that apply to the process and not to individual threads. If
each thread calls the API functions, the data that is recorded might not be what you
expect. For example, if col | ect or _pause() or col |l ector_term nate_expt ()
is called by one thread before the other threads have reached the same point in the
program, collection is paused or terminated for all threads, and data can be lost from
the threads that were executing code before the API call. To control data collection at
the level of the individual threads, use the col | ect or _t hr ead_pause() and

col | ector _thread_resune() functions. There are two ways of using these
functions: by having one master thread make all the calls for all threads, including
itself; or by having each thread make calls only for itself. Any other usage can lead to
unpredictable results.

The descriptions of the API functions follow.
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col | ector _sanpl e(char *nane) (C and C++)
col | ector _sanpl e(string) (Fortran)
Col | ector APl . sanpl e( Stri ng) (Java)

Record a sample packet and label the sample with the given name or string. The
label is displayed by the Performance Analyzer in the Event tab. The Fortran
argument stri ng is of type char act er.

Sample points contain data for the process and not for individual threads. In a
multithreaded application, the col | ect or _sanpl e() API function ensures that
only one sample is written if another call is made while it is recording a sample. The
number of samples recorded can be less than the number of threads making the call.

The Performance Analyzer does not distinguish between samples recorded by
different mechanisms. If you want to see only the samples recorded by API calls,
you should turn off all other sampling modes when you record performance data.

col | ector _pause() (C,C++, Fortran)

Col | ect or API . pause() (Java)

Stop writing event-specific data to the experiment. The experiment remains open,
and global data continues to be written. The call is ignored if no experiment is active
or if data recording is already stopped. This function stops the writing of all event-
specific data even if it is enabled for specific threads by the

col l ector _thread_resunme() function.

col l ector _resune() (C,C++, Fortran)

Col | ector APl . resune() (Java)

Resume writing event-specific data to the experiment after a call to
col | ect or _pause(). The call is ignored if no experiment is active or if data
recording is active.

col l ector _thread_pause(unsigned int t) (Cand
C++ only)

Col | ect or API . t hr eadPause( Thread) (Java)

Stop writing event-specific data from the thread specified in the argument list to the
experiment. The argument t is the POSIX thread identifier. If the experiment is
already terminated, or no experiment is active, or writing of data for that thread is
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already turned off, the call is ignored. This function stops the writing of data from
the specified thread even if the writing of data is globally enabled. By default,
recording of data for individual threads is turned on.

coll ector_thread resune(unsigned int t) (Cand
C++ only)

Col | ector API . t hr eadResune( Thr ead) (Java)

Resume writing event-specific data from the thread specified in the argument list to
the experiment. The argument t is the POSIX thread identifier. If the experiment is
already terminated, or no experiment is active, or writing of data for that thread is

already turned on, the call is ignored. Data is written to the experiment only if the

writing of data is globally enabled as well as enabled for the thread.

coll ector_term nate_expt() (C,C++, Fortran)
Col | ector APl .term nate (Java)

Terminate the experiment whose data is being collected. No further data is collected,
but the program continues to run normally. The call is ignored if no experiment is
active.

Dynamic Functions and Modules

If your C program or C++ program dynamically compiles functions or dynamically
loads modules (. o files) into the data space of the program, you must supply
information to the Collector if you want to see data for the dynamic function or
module in the Performance Analyzer. The information is passed by calls to collector
API functions. The definitions of the API functions are as follows.

voi d col | ector_func_|l oad(char *nane, char *ali as,
char *sourcenane, void *vaddr, int size, int |ntsize,
Li neno *I ntabl e);
voi d col | ector_func_unl oad(void *vaddr);
voi d col | ector_nodul e_| oad(char *nodul ename, void *vaddr);
voi d col | ector_nodul e_unl oad(void *vaddr);
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You do not need to use these API functions for Java™ methods that are compiled by
the Java HotSpot™ virtual machine, for which a different interface is used. The Java
interface provides the name of the method that was compiled to the Collector. You
can see function data and annotated disassembly listings for Java compiled methods,
but not annotated source listings.

The descriptions of the four API functions follow.

col l ector _func_| oad()

Pass information about dynamically compiled functions to the Collector for
recording in the experiment. The parameter list is described in the following table.

TABLE 4-1  Parameter List for col | ect or _func_| oad()

Parameter Definition

name The name of the dynamically compiled function that is used by the
performance tools. The name does not have to be the actual name of
the function. The name need not follow any of the normal naming
conventions of functions, although it should not contain embedded
blanks or embedded quote characters.

alias An arbitrary string used to describe the function. It can be NULL. It
is not interpreted in any way, and can contain embedded blanks. It
is displayed in the Summary tab of the Analyzer. It can be used to
indicate what the function is, or why the function was dynamically

constructed.
sour cenamne The path to the source file from which the function was constructed.
It can be NULL. The source file is used for annotated source listings.
vaddr The address at which the function was loaded.
size The size of the function in bytes.
I ntsize A count of the number of entries in the line number table. It should

be zero if line number information is not provided.

I ntabl e A table containing | nt si ze entries, each of which is a pair of
integers. The first integer is an offset, and the second entry is a line
number. All instructions between an offset in one entry and the
offset given in the next entry are attributed to the line number given
in the first entry. Offsets must be in increasing numeric order, but
the order of line numbers is arbitrary. If | nt abl e is NULL, no source
listings of the function are possible, although disassembly listings
are available.
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col I ector _func_unl oad()

Inform the collector that the dynamic function at the address vaddr has been
unloaded.

col I ector _nodul e_| oad()

Used to inform the collector that the module nodul enane has been loaded into the
address space at address vaddr by the program. The module is read to determine its
functions and the source and line number mappings for these functions.

col | ect or _nodul e_unl oad()

Inform the collector that the module that was loaded at the address vaddr has been
unloaded.

Limitations on Data Collection

This section describes the limitations on data collection that are imposed by the
hardware, the operating environment, the way you run your program or by the
Collector itself.

There are no limitations on simultaneous collection of different data types: you can
collect any data type with any other data type.

Limitations on Clock-based Profiling

The minimum value of the profiling interval and the resolution of the clock used for
profiling depend on the particular operating environment. The maximum value is
set to 1 second. The value of the profiling interval is rounded down to the nearest
multiple of the clock resolution. The minimum and maximum value and the clock
resolution can be found by typing the col | ect command with no arguments.
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In the Solaris 7 operating environment and earlier versions of the Solaris 8 operating
environment, the system clock is used for profiling. It has a resolution of 10
milliseconds, unless you choose to enable the high-resolution system clock. If you
have root privilege, you can do this by adding the following line to the file

/ et c/ syst em and then rebooting.

set hires_tick=1

In the Solaris 9 operating environment and later versions of the Solaris 8 operating
environment, it is not necessary to enable the high-resolution system clock for high-
resolution profiling.

Runtime Distortion and Dilation with Clock-profiling

Clock profiling records data when a SIGPROF signal is delivered to the target. It will
cause dilation to process that signal, and unwind the callstack. The deeper the
callstack, and the more frequent the signals, the greater the dilation. To a limited
extent, clock-profiling will show some distortion, deriving from greater dilation for
those parts of the program executing with the deepest stacks.

Limitations on Collection of Tracing Data

You cannot collect any kind of tracing data from a program that is already running
unless the Collector library, I i bcol | ect or. so, has been preloaded. See “Collecting
Data From a Running Process” on page 133 for more information.

Runtime Distortion and Dilation with Tracing

Tracing data will dilate the run, in proportion to the number of events that are traced.
If done with clock-profiling, the clock data will be distorted by the dilation induced by
tracing events.
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Limitations on Hardware-Counter Overflow
Profiling

There are several limitations on hardware counter overflow profiling:

= You can only collect hardware-counter overflow data on processors that have
hardware counters and that support overflow profiling. On other systems,
hardware-counter overflow profiling is disabled. UltraSPARC® processors prior to
the UltraSPARC® Il processor family do not support hardware-counter overflow
profiling.

= You cannot collect hardware-counter overflow data with versions of the operating
environment that precede the Solaris™ 8 release.

= You can record data for at most two hardware counters in an experiment. To
record data for more than two hardware counters or for counters that use the
same register you must run separate experiments.

= You cannot collect hardware-counter overflow data on a system while
cpust at (1) is running, because cpust at takes control of the counters and does
not let a user process use the counters. If cpust at is started during data
collection, the hardware counter overflow profiling is terminated.

= You cannot use the hardware counters in your own code via the | i bcpc(3) API if
you are doing hardware-counter overflow profiling. The Collector interposes on
the | i bcpc library functions and returns with a return value of - 1 if the call did
not come from the Collector.

= If you try to collect hardware counter data on a running program that is using the
hardware counter library, by attaching dbx to the process, the experiment is
corrupted.

Note — To view a list of all available counters, run col | ect with no arguments.

Runtime Distortion and Dilation With HWC Overflow
Profiling

HW counter profiling records data when a SIGEMT is delivered to the target. It will
cause dilation to process that signal, and unwind the callstack. Unlike clock profiling,
for some HW counters, different parts of the program may generate events more
rapidly than other parts, and will show dilation in that part of the code. Any part of
the program that generates such events very rapidly may be significantly distorted.
Similarly, some events may be generated in one thread disproportionately to the other
threads.
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Limitations on Data Collection for Descendant
Processes

You can collect data on descendant processes subject to the following limitations:

= If you want to collect data for all descendant processes that are followed by the
Collector, you must use the col | ect command with the - F on option.

= You can collect data automatically for calls to f or k and its variants and exec and
its variants. Calls to syst em popen, and sh are not followed by the Collector.

= If you want to collect data for individual descendant processes, you must attach
dbx to the process. See Appendix “Collecting Data From a Running Process” on
page 133 for more information.

= If you want to collect data for individual descendant processes, or those created
by syst em popen, sh, etc., you must use a separate dbx to attach to each
process and enable the collector.

Limitations on Java Profiling

You can collect data on Java programs subject to the following limitations:

= You should use a version of the Java™ 2 Software Development Kit no earlier than
1.4.2. The path to the Java virtual machinel should be specified in one of the
following four environment variables: JDK_1_4 HOVE, JDK_HOVE, JAVA PATH,
PATH. The Collector verifies that the version of j ava it finds in these environment
variables is an ELF executable, and if it is not, an error message is printed,
indicating which environment variable was used, and the full path name that was
tried.

= You must use the col | ect command to collect data. You cannot use the dbx
col | ect or subcommands or the data collection capabilities of the IDE.

= If you want to use the 64 bit JVM™, it must either be the default, or you must
specify the path to it when you collect data. Do not use j ava - d64 to collect data
using the 64 bit JVM. If you do, no data is collected.

Using JVM versions earlier than 1.4.2 will compromise the data as follows:

= JVM 1.4.1; The Java representation is correctly recorded and shown, but all J)VM
housekeeping is shown as the JVM functions themselves. Some of the time spent
executing JVM code in data space is shown with names for the code regions as
supplied by the JVM. A significant amount of time will be shown in the
<Unknown> function, since some of the code regions created by the JVM are not
named. In addition, there are various bugs in JVM 1.4.1 that may cause the
program being profiled to crash.
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1. The terms “Java virtual machine” and “JVM” mean a virtual machine for the Java platform.
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= JVM 1.4.0: No Java representation is possible, and a significant amount of time is
shown in <Unknown>. HotSpot-compiled functions are shown by name in the
machine representation.

= JVMs earlier than 1.4.0: Profiling Java applications with JVMs earlier than 1.4.0 is
not supported.

Runtime Performance Distortion and Dilation for
Applications Written in the Java Programming
Language

Java profiling uses the JVMPI interface, which can cause some distortion and
dilation of the run. For clock- and hwc-profiling, the data collection process makes
various calls into the JVM, and handles profiling events in signal handlers. The
overhead of these routines, and the cost of writing the experiments to disk will dilate
the runtime of the Java program. Such dilation is estimated to be less than 10%.

In addition, although the default garbage collector supports JVMPI, there are other
garbage collectors that do not. Any data-collection run specifying such a garbage
collector will get a fatal error.

For Heap profiling, the data collection process uses JVMPI events describing
memory allocation and garbage collection, which can cause significant dilation in
runtime. Most Java applications generate many of these events, which will lead to
large experiments, and scalability problems processing the data. Furthermore, if
these events are requested, the garbage collector disables some inlined allocations,
costing additional CPU time for the longer allocation path.

For synchronization tracing, data collection uses other JVMPI events, which will
cause dilation in proportion to the amount of monitor contention in the application.

Where the Data Is Stored

The data collected during one execution of your application is called an experiment.
The experiment consists of a set of files that are stored in a directory. The name of
the experiment is the name of the directory.

In addition to recording the experiment data, the Collector creates its own archives
of the load objects used by the program. These archives contain the addresses, sizes
and names of each object file and each function in the load object, as well as the
address of the load object and a time stamp for its last modification.
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Experiments are stored by default in the current directory. If this directory is on a
networked file system, storing the data takes longer than on a local file system, and
can distort the performance data. You should always try to record experiments on a
local file system if possible. You can change the storage location when you run the
Collector.

Experiments for descendant processes are stored inside the experiment for the
founder process.

Experiment Names

The default name for a new experiment ist est . 1. er. The suffix . er is mandatory:
if you give a name that does not have it, an error message is displayed and the name
is not accepted.

If you choose a name with the format experiment. n. er, where n is a positive integer,
the Collector automatically increments n by one in the names of subsequent
experiments—for example, myt est . 1. er is followed by nyt est. 2. er,

nyt est. 3. er, and so on. The Collector also increments n if the experiment already
exists, and continues to increment n until it finds an experiment name that is not in
use. If the experiment name does not contain n and the experiment exists, the
Collector prints an error message.

Experiments can be collected into groups. The group is defined in an experiment
group file, which is stored by default in the current directory. The experiment group
file is a plain text file with a special header line and an experiment name on each
subsequent line. The default name for an experiment group file is t est . er g. If the
name does not end in . er g, an error is displayed and the name is not accepted.
Once you have created an experiment group, any experiments you run with that
group name are added to the group.

You can create an experiment group file by creating a plain text file whose first line
is

#anal yzer experinent group

and adding the names of the experiments on subsequent lines. The name of the file
must end in . erg.

The default experiment name is different for experiments collected from MPI
programs, which create one experiment for each MPI process. The default
experiment name is t est . m. er, where m is the MPI rank of the process. If you
specify an experiment group group. er g, the default experiment name is group. m. er.
If you specify an experiment name, it overrides these defaults. See “Collecting Data
From MPI Programs” on page 135 for more information.
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Experiments for descendant processes are named with their lineage as follows. To
form the experiment name for a descendant process, an underscore, a code letter and
a number are added to the stem of its creator’s experiment name. The code letter is
f for a fork and x for an exec. The number is the index of the fork or exec (whether
successful or not). For example, if the experiment name for the founder process is
test. 1. er, the experiment for the child process created by the third call to f or k is
test. 1. er/ _f 3. er. If that child process calls exec successfully, the experiment
name for the new descendant processistest.1.er/_f3 x1.er.

Moving Experiments

If you want to move an experiment to another computer to analyze it, you should be
aware of the dependencies of the analysis on the operating environment in which
the experiment was recorded.

The archive files contain all the information necessary to compute metrics at the
function level and to display the timeline. However, if you want to see annotated
source code or annotated disassembly code, you must have access to versions of the
load objects or source files that are identical to the ones used when the experiment
was recorded.

The Performance Analyzer searches for the source, object and executable files in the
following locations in turn, and stops when it finds a file of the correct basename:

= The archive directories of experiments.
= The current working directory.
= The absolute pathname as recorded in the executables or compilation objects.

To ensure that you see the correct annotated source code and annotated disassembly
code for your program, you can copy the source code, the object files and the
executable into the experiment before you move or copy the experiment. If you don’t
want to copy the object files, you can link your program with - xs to ensure that the
information on source lines and file locations are inserted into the executable. You
can automatically copy the load objects into the experiment using the - A option of
the col | ect command or the dbx col | ect or ar chi ve command.

Estimating Storage Requirements

In this section some guidelines are given for estimating the amount of disk space
needed to record an experiment. The size of the experiment depends directly on the
size of the data packets and the rate at which they are recorded, the number of LWPs
used by the program, and the execution time of the program.
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The data packets contain event-specific data and data that depends on the program
structure (the call stack). The amount of data that depends on the data type is
approximately 50 to 100 bytes. The call stack data consists of return addresses for
each call, and contains 4 bytes (8 bytes on 64 bit SPARC architecture) per address.
Data packets are recorded for each LWP in the experiment. Note that for Java
programs, there will be two callstacks of interest: the Java callstack and the machine
callstack, which therefore will result in more data being written to disk.

The rate at which profiling data packets are recorded is controlled by the profiling
interval for clock data and by the overflow value for hardware counter data.
However, the choice of these parameters also affects the data quality and the
distortion of program performance due to the data collection overhead. Smaller
values of these parameters give better statistics but also increase the overhead. The
default values of the profiling interval and the overflow value have been carefully
chosen as a compromise between obtaining good statistics and minimizing the
overhead. Smaller values also mean more data.

For a clock-based profiling experiment with a profiling interval of 10ms and a small
call stack, such that the packet size is 100 bytes, data is recorded at a rate of 10
kbytes/sec per LWP. For a hardware counter overflow profiling experiment
collecting data for CPU cycles and instructions executed on a 750MHz processor
with an overflow value of 1000000 and a packet size of 100 bytes, data is recorded at
a rate of 150 kbytes/sec per LWP. Applications that have call stacks with a depth of
hundreds of calls could easily record data at ten times these rates.

Your estimate of the size of the experiment should also take into account the disk
space used by the archive files, which is usually a small fraction of the total disk
space requirement (see the previous section). If you are not sure how much space
you need, try running your experiment for a short time. From this test you can
obtain the size of the archive files, which are independent of the data collection time,
and scale the size of the profile files to obtain an estimate of the size for the full-
length experiment.

As well as allocating disk space, the Collector allocates buffers in memory to store
the profile data before writing it to disk. There is currently no way to specify the size
of these buffers. If the Collector runs out of memory, you should try to reduce the
amount of data collected.

If your estimate of the space required to store the experiment is larger than the space
you have available, you can consider collecting data for part of the run rather than
the whole run. You can do this with the col | ect command, with the dbx

col | ect or subcommands, or by inserting calls in your program to the collector
API. You can also limit the total amount of profiling and tracing data collected with
the col | ect command or with the dbx col | ect or subcommands.

Note — The Performance Analyzer cannot read more than 2 GB of performance data.

Program Performance Analysis Tools « May 2003



Collecting Data Using the col | ect
Command

To run the Collector from the command line using the col | ect command, type the
following.

% col | ect collect-options program program-arguments

Here, collect-options are the col | ect command options, program is the name of the
program you want to collect data on, and program-arguments are its arguments.

If no command arguments are given, the default is to turn on clock-based profiling
with a profiling interval of 10 milliseconds.

To obtain a list of options and a list of the names of any hardware counters that are
available for profiling, type the col | ect command with no arguments.

% col | ect

For a description of the list of hardware counters, see “Hardware-Counter Overflow
Profiling Data” on page 90. See also “Limitations on Hardware-Counter Overflow
Profiling” on page 113.

Data Collection Options

These options control the types of data that are collected. See “What Data the
Collector Collects” on page 87 for a description of the data types.

If no data collection options are given, the default is - p on, which enables clock-
based profiling with the default profiling interval of 10 milliseconds. The default is
turned off by the - h option but not by any of the other data collection options.

If clock-based profiling is explicitly disabled, and neither any kind of tracing nor
hardware counter overflow profiling is enabled, the col | ect command prints a
warning message, and collects global data only.
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-p option

Collect clock-based profiling data. The allowed values of option are:
= of f — Turn off clock-based profiling.

= on - Turn on clock-based profiling with the default profiling interval of 10
milliseconds.

= | o[w] - Turn on clock-based profiling with the low-resolution profiling interval
of 100 milliseconds.

= hi [ gh] —Turn on clock-based profiling with the high-resolution profiling interval
of 1 millisecond. In the Solaris 7 operating environment and earlier versions of the
Solaris 8 operating environment, high-resolution profiling must be explicitly
enabled. See “Limitations on Clock-based Profiling” on page 111 for information
on enabling high-resolution profiling.

= value — Turn on clock-based profiling and set the profiling interval to value. The
default units for value are milliseconds. You can specify value as an integer or a
floating-point number. The numeric value can optionally be followed by the suffix
mto select millisecond units or u to select microsecond units. The value should be
a multiple of the clock resolution. If it is larger but not a multiple it is rounded
down. If it is smaller, a warning message is printed and it is set to the clock
resolution.

Collecting clock-based profiling data is the default action of the col | ect command.

- h counter[ , value[ , counter?[ , value?] ] ]

Collect hardware counter overflow profiling data. The counter names counter and
counter2 can be one of the following:

= An aliased counter name

= An internal name, as used by cput r ack(1). If the counter can use either event
register, the event register to be used can be specified by appending /0 or /1 to
the internal name.

If two counters are specified, they must use different registers. If they do not use
different registers, the col | ect command prints an error message and exits. Some
counters can count on either register.

To obtain a list of available counters, type col | ect with no arguments in a terminal
window. A description of the counter list is given in the section “Hardware Counter
Lists” on page 91.

If the hardware counter counts events that relate to memory access, the counter
name can be prefixed with a + sign to turn on searching for the true PC of the
instruction that caused the counter overflow. If the search is successful, the PC and
effective address that was referenced are stored in the event data packet.
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The overflow value is the number of events counted at which the hardware counter
overflows and the overflow event is recorded. The overflow values can be specified
using value and value2, which can be set to one of the following:

= hi[gh] - The high-resolution value for the chosen counter is used. The
abbreviation h is also supported for compatibility with previous software
releases.

= | o[w] - The low-resolution value for the chosen counter is used.

= number — The overflow value. Must be a positive integer.

= on, or a null string — The default overflow value is used.

The default is the normal threshold, which is predefined for each counter and which

appears in the counter list. See also “Limitations on Hardware-Counter Overflow
Profiling” on page 113.

If you use the - h option without explicitly specifying a - p option, clock-based
profiling is turned off. To collect both hardware counter data and clock-based data,
you must specify both a - h option and a - p option.

- s option

Collect synchronization wait tracing data. The allowed values of option are:

= al | - Enable synchronization wait tracing with a zero threshold. This option
forces all synchronization events to be recorded.

= cal i brat e - Enable synchronization wait tracing and set the threshold value by
calibration at runtime. (Equivalent to on.)

= of f — Disable synchronization wait tracing.

= on - Enable synchronization wait tracing with the default threshold, which is to
set the value by calibration at runtime. (Equivalent to cal i br at e.)

= value — Set the threshold to value, given as a positive integer in microseconds.

Synchronization wait tracing data is not recorded for Java monitors.

- H option

Collect heap tracing data. The allowed values of option are:

= on - Turn on tracing of heap allocation and deallocation requests.
=« of f — Turn off heap tracing.

Heap tracing is turned off by default.

Heap tracing data is not recorded for Java memory allocations.
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- m option

Collect MPI tracing data. The allowed values of option are:
= 0on - Turn on tracing of MPI calls.

=« of f — Turn off tracing of MPI calls.

MPI tracing is turned off by default.

See “MPI Tracing Data” on page 95 for more information about the MPI functions
whose calls are traced and the metrics that are computed from the tracing data.

- S option

Record sample packets periodically. The allowed values of option are:

=« of f — Turn off periodic sampling.

= 0on — Turn on periodic sampling with the default sampling interval of 1 second.

= value — Turn on periodic sampling and set the sampling interval to value. The
interval value must be positive, and is given in seconds.

By default, periodic sampling at 1 second intervals is enabled.

Experiment Control Options

- F option

Control whether or not descendant processes should have their data recorded. The
allowed values of option are:

= 0on — Record experiments on all descendant processes that are followed by the
Collector.

=« of f — Do not record experiments on descendant processes.

The Collector follows processes created by calls to the functions f or k(2), f or k1(2),
f or k(3F), vf or k(2), and exec(2) and its variants. The call to vf or k is replaced
internally by a call to f or k1. The Collector does not follow processes created by
calls to syst em(3C), syst em(3F), sh(3F), and popen(3C).
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-] option

Enable Java profiling for a nonstandard Java installation, or choose whether to
collect data on methods compiled by the Java HotSpot virtual machine. The allowed
values of option are:

= 0on - Recognize methods compiled by the Java HotSpot virtual machine, and
attempt to record Java stacks.

= of f — Do not attempt to recognize methods compiled by the Java HotSpot virtual
machine.

This option is not needed if you want to collect dataon a . cl ass fileora. j ar file,
provided that the path to the j ava executable is in one of the following environment
variables: JDK_1_4_ HOVE, JDK_HOVE, JAVA_PATH, or PATH. You can then specify
program as the . cl ass file or the . j ar file, with or without the extension.

If you cannot define the path to j ava in any of these variables, or if you want to
disable the recognition of methods compiled by the Java HotSpot virtual machine
you can use this option. If you use this option, program must be a Java virtual
machine whose version is not earlier than 1.4. The col | ect command does not
verify that program is a JVM machine, and collection can fail if it is not. However it
does verify that program is an ELF executable, and if it is not, the col | ect command
prints an error message.

If you want to collect data using the 64 bit JVM machine, you must not use the - d64
option to j ava for a 32 bit JVM machine. If you do, no data is collected. Instead you
must specify the path to the 64 bit JVM machine either in program or in one of the
environment variables given in this section.

-1 signal
Record a sample packet when the signal named signal is delivered to the process.

The signal can be specified by the full signal name, by the signal name without the
initial letters SI G or by the signal number. Do not use a signal that is used by the
program or that would terminate execution. Suggested signals are SI GUSR1 and

SI GUSR2. Signals can be delivered to a process by the ki I | (1) command.

If you use both the - | and the - y options, you must use different signals for each
option.

If you use this option and your program has its own signal handler, you should
make sure that the signal that you specify with - | is passed on to the Collector’s
signal handler, and is not intercepted or ignored.

See the si gnal (3HEAD) man page for more information about signals.

Chapter 4 Collecting Performance Data 123



124

-X

Leave the target process stopped on exit from the exec system call in order to allow
a debugger to attach to it. If you attach dbx to the process, use the dbx commands
i gnor e PROF and i gnor e EMT to ensure that collection signals are passed on to the
col | ect command.

-y signal[, r]

Control recording of data with the signal named signal. Whenever the signal is
delivered to the process, it switches between the paused state, in which no data is
recorded, and the recording state, in which data is recorded. Sample points are
always recorded, regardless of the state of the switch.

The signal can be specified by the full signal name, by the signal name without the
initial letters SI G or by the signal number. Do not use a signal that is used by the
program or that would terminate execution. Suggested signals are SI GUSR1 and

SI GQUSR2. Signals can be delivered to a process by the ki I | (1) command.

If you use both the - | and the - y options, you must use different signals for each
option.

When the -y option is used, the Collector is started in the recording state if the
optional r argument is given, otherwise it is started in the paused state. If the -y
option is not used, the Collector is started in the recording state.

If you use this option and your program has its own signal handler, you should
make sure that the signal that you specify with -y is passed on to the Collector’s
signal handler, and is not intercepted or ignored.

See the si gnal (3HEAD) man page for more information about signals.

Output Options

-d directory-name

Place the experiment in directory directory-name. This option only applies to
individual experiments and not to experiment groups. If the directory does not exist,
the col | ect command prints an error message and exits.
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-g group-name

Make the experiment part of experiment group group-name. If group-name does not
end in . er g, the col | ect command prints an error message and exits. If the group
exists, the experiment is added to it. If group-name is not an absolute path, the
experiment group is placed in the directory directory-name if a directory has been
specified with - d, otherwise it is placed in the current directory.

-0 experiment-name

Use experiment-name as the name of the experiment to be recorded. If experiment-name
does not end in . er, the col | ect command prints an error message and exits. See
“Experiment Names” on page 116 for more information on experiment names and
how the Collector handles them.

- A option

Control whether or not load objects used by the target process should be archived or
copied into the recorded experiment. The allowed values of option are:

=« of f —do not archive load objects into the experiment.
= on - archive load objects into the experiment.
= copy - copy and archive load objects into the experiment.

If you expect to copy experiments to a different machine from which they were
recorded, or to read the experiments from a different machine, you should specify
- A copy. Using this option does not copy any source files or object files into the
experiment. You should ensure that those files are accessible on the machine to
which you are copying the experiment.

-L size

Limit the amount of profiling data recorded to size megabytes. The limit applies to
the sum of the amounts of clock-based profiling data, hardware-counter overflow
profiling data, and synchronization wait tracing data, but not to sample points. The
limit is only approximate, and can be exceeded.

When the limit is reached, no more profiling data is recorded but the experiment
remains open until the target process terminates. If periodic sampling is enabled,
sample points continue to be written.

The default limit on the amount of data recorded is 2000 Mbytes. This limit was
chosen because the Performance Analyzer cannot process experiments that contain
more than 2 Gbytes of data. To remove the limit, set size to unl i mi t ed or none.
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Other Options

-Nn

Do not run the target but print the details of the experiment that would be generated
if the target were run. This is a “dry run” option.

-R

Display the text version of the performance tools readme in the terminal window. If
the readme is not found, a warning is printed.

-V

Print the current version of the col | ect command. No further arguments are
examined, and no further processing is done.

-V

Print the current version of the col | ect command and detailed information about
the experiment being run.
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Collecting Data Using the dbx
col | ect or Subcommands

To run the Collector from dbx:

. Load your program into dbx by typing the following command.

% dbx program
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2. Use the col | ect or command to enable data collection, select the data types, and
set any optional parameters.

(dbx) coll ector subcommand

To get a listing of available col | ect or subcommands, type:

(dbx) help collector

You must use one col | ect or command for each subcommand.

3. Set up any dbx options you wish to use and run the program.

If a subcommand is incorrectly given, a warning message is printed and the
subcommand is ignored. A complete listing of the col | ect or subcommands
follows.

Data Collection Subcommands

The following subcommands control the types of data that are collected by the
Collector. They are ignored with a warning if an experiment is active.

profil e option

Controls the collection of clock-based profiling data. The allowed values for option

are:

= on - Enables clock-based profiling with the default profiling interval of 10 ms.

= of f — Disables clock-based profiling.

= timer interval — Sets the profiling interval. The allowed values of interval are

on — Use the default profiling interval of 10 milliseconds.
I o[ W] - Use the low-resolution profiling interval of 100 milliseconds.

hi [ gh] — Use the high-resolution profiling interval of 1 millisecond. In the
Solaris 7 operating environment and earlier versions of the Solaris 8 operating
environment, high-resolution profiling must be explicitly enabled. See
“Limitations on Clock-based Profiling” on page 111 for information on
enabling high-resolution profiling.

value — Set the profiling interval to value. The default units for value are
milliseconds. You can specify value as an integer or a floating-point number.
The numeric value can optionally be followed by the suffix mto select
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millisecond units or u to select microsecond units. The value should be a
multiple of the clock resolution. If the value is larger than the clock resolution
but not a multiple it is rounded down. If the value is smaller than the clock
resolution it is set to the clock resolution. In both cases a warning message is
printed.

The default setting is 10 ms.

The Collector collects clock-based profiling data by default, unless the collection of
hardware-counter overflow profiling data is turned on using the hwprofil e
subcommand.

hwpr of i | e option

Controls the collection of hardware-counter overflow profiling data. If you attempt
to enable hardware-counter overflow profiling on systems that do not support it,
dbx returns a warning message and the command is ignored. The allowed values for
option are:

= on - Turns on hardware-counter overflow profiling. The default action is to
collect data for the cycl es counter at the normal overflow value.

=« of f — Turns off hardware-counter overflow profiling.

= |ist —Returns a list of available counters See “Hardware Counter Lists” on
page 91 for a description of the list. If your system does not support hardware-
counter overflow profiling, dbx returns a warning message.

= count er name value [ name2 value2 ] — Selects the hardware counter name, and
sets its overflow value to value; optionally selects a second hardware counter
name2 and sets its overflow value to value2. The overflow value can be one of the
following.

« hi[gh] - The high-resolution value for the chosen counter is used. The
abbreviation h is also supported.

« |l o[w - The low-resolution value for the chosen counter is used.
« number — The overflow value. Must be a positive integer.
« 0n - The default overflow value is used.

The two counters must use different registers. If they do not, a warning message
is printed and the command is ignored.

If the hardware counter counts events that relate to memory access, the counter
name can be prefixed with a + sign to turn on searching for the true PC of the
instruction that caused the counter overflow. If the search is successful, the PC
and the effective address that was referenced are stored in the event data packet.

The Collector does not collect hardware-counter overflow profiling data by default.
If hardware-counter overflow profiling is enabled and a pr of i | e command has not
been given, clock-based profiling is turned off.
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See also “Limitations on Hardware-Counter Overflow Profiling” on page 113.

synctrace option

Controls the collection of synchronization wait tracing data. The allowed values for

option are
= on - Enable synchronization wait tracing with the default threshold.
= of f — Disable synchronization wait tracing.

= threshol d value — Sets the threshold for the minimum synchronization delay.

The allowed values for value are:

« all —Use a zero threshold. This option forces all synchronization events to be

recorded.

« cali brate - Set the threshold value by calibration at runtime. (Equivalent to

on.)
« of f — Turn off synchronization wait tracing.

« on - Use the default threshold, which is to set the value by calibration at
runtime. (Equivalent to cal i brat e.)

« number — Set the threshold to number, given as a positive integer in
microseconds. If val ue is 0, all events are traced.

By default, the Collector does not collect synchronization wait tracing data.

heapt r ace option

Controls the collection of heap tracing data. The allowed values for option are

= 0nh - Enables heap tracing.
= of f — Disables heap tracing.

By default, the Collector does not collect heap tracing data.

npi trace option

Controls the collection of MPI tracing data. The allowed values for option are

= on - Enables tracing of MPI calls.
=« of f — Disables tracing of MPI calls.

By default, the Collector does not collect MPI tracing data.
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sanpl e option

Controls the sampling mode. The allowed values for option are;

= periodi c — Enables periodic sampling.
= manual - Disables periodic sampling. Manual sampling remains enabled.
= peri od value — Sets the sampling interval to value, given in seconds.

By default, periodic sampling is enabled, with a sampling interval value of 1 second.

dbxsanpl e {on | of f }

Controls the recording of samples when dbx stops the target process. The meanings
of the keywords are as follows:

= on — A sample is recorded each time dbx stops the target process.
= of f — Samples are not recorded when dbx stops the target process.

By default, samples are recorded when dbx stops the target process.

Experiment Control Subcommands

di sabl e

Disables data collection. If a process is running and collecting data, it terminates the
experiment and disables data collection. If a process is running and data collection is
disabled, it is ignored with a warning. If no process is running, it disables data
collection for subsequent runs.

enabl e

Enables data collection. If a process is running but data collection is disabled, it
enables data collection and starts a new experiment. If a process is running and data
collection is disabled, it is ignored with a warning. If no process is running, it
enables data collection for subsequent runs.

You can enable and disable data collection as many times as you like during the
execution of any process. Each time you enable data collection, a new experiment is
created.
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pause

Suspends the collection of data, but leaves the experiment open. Sample points are
still recorded. This subcommand is ignored if data collection is already paused.

resune

Resumes data collection after a pause has been issued. This subcommand is ignored
if data is being collected.

sanpl e record name

Record a sample packet with the label name. The label is displayed in the Event tab
of the Performance Analyzer.

Output Subcommands

The following subcommands define storage options for the experiment. They are
ignored with a warning if an experiment is active.

ar chi ve mode

Set the mode for archiving the experiment. The allowed values for mode are

= on - normal archiving of load objects
= of f —no archiving of load objexts
= copy - copy load objects into experiment in addition to normal archiving

If you intend to move the experiment to a different machine, or read it from another
machine, you should enable the copying of load objects. If an experiment is active,

the command is ignored with a warning. This command does not copy source files

or object files into the experiment.

[imt value

Limit the amount of profiling data recorded to value megabytes. The limit applies to
the sum of the amounts of clock-based profiling data, hardware-counter overflow
profiling data, and synchronization wait tracing data, but not to sample points. The
limit is only approximate, and can be exceeded.
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When the limit is reached, no more profiling data is recorded but the experiment
remains open and sample points continue to be recorded.

The default limit on the amount of data recorded is 2000 Mbytes. This limit was
chosen because the Performance Analyzer cannot process experiments that contain
more than 2 Gbytes of data. To remove the limit, set value to unl i m t ed or none.

st or e option

Governs where the experiment is stored. This command is ignored with a warning if
an experiment is active. The allowed values for option are:

= di rectory directory-name — Sets the directory where the experiment and any
experiment group is stored. This subcommand is ignored with a warning if the
directory does not exist.

= experinment experiment-name — Sets the name of the experiment. If the
experiment name does not end in . er, the subcommand is ignored with a
warning. See “Where the Data Is Stored” on page 115 for more information on
experiment names and how the Collector handles them.

= group group-name — Sets the name of the experiment group. If the group name
does not end in . er g, the subcommand is ignored with a warning. If the group
already exists, the experiment is added to the group. If the directory name has
been set using the st ore directory subcommand and the group name is not
an absolute path, the group name is prefixed with the directory name.

Information Subcommands

show

Shows the current setting of every Collector control.

st at us

Reports on the status of any open experiment.
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Collecting Data From a Running Process

The Collector allows you to collect data from a running process. If the process is
already under the control of dbx (either in the command line version or in the IDE),
you can pause the process and enable data collection using the methods described in
previous sections.

Note — For information on starting the Performance Analyzer from the IDE, see the
Program Performance Analysis Tools Readme, which is available through the
documentation index at fi | e: / opt / SUNWspr o/ docs/ i ndex. ht ml . If the Sun
ONE Studio 8 software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

If the process is not under the control of dbx, you can attach dbx to it, collect
performance data, and then detach from the process, leaving it to continue. If you
want to collect performance data for selected descendant processes, you must attach
dbx to each process.

To collect data from a running process that is not under the control of dbx:
. Determine the program’s process ID (PID).

If you started the program from the command line and put it in the background, its
PID will be printed to standard output by the shell. Otherwise you can determine
the program’s PID by typing the following.

% ps -ef | grep program-name

. Attach to the process.

= From the Debug menu of the IDE, choose Debug - Attach to Solaris Process and
select the process using the dialog box. Use the online help for instructions.

= From dbx, type the following.

(dbx) attach program-name pid

If dbx is not already running, type the following.

% dbx program-name pid
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See the manual, Debugging a Program With dbx, for more details on attaching to a
process. Attaching to a running process pauses the process.

. Start data collection.

= From the Debug menu of the IDE, choose Performance Toolkit -. Enable Collector
and use the dialog box to set up the data collection parameters. Then choose
Debug - Continue to resume execution of the process.

= From dbx, use the col | ect or command to set up the data collection parameters
and the cont command to resume execution of the process.

. Detach from the process.

When you have finished collecting data, pause the program and then detach the
process from dbx.

= In the IDE, right-click the session for the process in the Sessions view of the
Debugger window and choose Detach from the contextual menu. If the Sessions
view is not displayed, click the Sessions button at the top of the Debugger
window.

= From dbx, type the following.

(dbx) detach

If you want to collect any kind of tracing data, you must preload the Collector
library, | i bcol | ect or. so, before you run your program, because the library
provides wrappers to the real functions that enable data collection to take place. In
addition, the Collector adds wrapper functions to other system library calls to
guarantee the integrity of performance data. If you do not preload the Collector
library, these wrapper functions cannot be inserted. See “Use of System Libraries” on
page 104 for more information on how the Collector interposes on system library
functions.

To preload | i bcol | ect or. so, you must set both the name of the library and the
path to the library using environment variables. Use the environment variable
LD_PRELQAD to set the name of the library. Use the environment variables

LD LI BRARY_PATH, LD _LI BRARY_PATH_ 32, and/or LD LI BRARY_PATH 64 to set
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the path to the library. (LD_LI BRARY_PATH is used if the _32 and _64 variants are
not defined.) If you have already defined these environment variables, add new
values to them.

TABLE 4-2  Environment Variable Settings for Preloading the Library
l'i bcoll ector. so

Environment variable Value
LD PRELCAD l'ibcollector.so
LD LI BRARY_PATH /opt/ SUNWpro/lib

LD_LI BRARY_PATH 32  /opt/SUNWpro/lib
LD LI BRARY_PATH 64  /opt/SUNWpro/ | i b/ v

If your Sun ONE Studio software is not installed in / opt / SUNWpr o, ask your
system administrator for the correct path. You can set the full path in LD_PRELQAD,
but doing this can create complications when using SPARC V9 64-bit architecture.

Note — Remove the LD_PRELOAD and LD_LI BRARY_PATH settings after the run, so
they do not remain in effect for other programs that are started from the same shell.

If you want to collect data from an MPI program that is already running, you must
attach a separate instance of dbx to each process and enable the Collector for each
process. When you attach dbx to the processes in an MPI job, each process will be
halted and restarted at a different time. The time difference could change the
interaction between the MPI processes and affect the performance data you collect.
To minimize this problem, one solution is to use pst op(1) to halt all the processes.
However, once you attach dbx to the processes, you must restart them from dbx,
and there will be a timing delay in restarting the processes, which can affect the
synchronization of the MPI processes. See also “Collecting Data From MPI
Programs” on page 135.

Collecting Data From MPI Programs

The Collector can collect performance data from multi-process programs that use the
Sun Message Passing Interface (MPI) library. The MPI library is included in the Sun
HPC ClusterTools™ software. You should use the latest version of the ClusterTools
software if possible, which is 4.0, but you can use 3.1 or a compatible version. To
start the parallel jobs, use the Sun Cluster Runtime Environment (CRE) command
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npr un. See the Sun HPC ClusterTools documentation for more information. For
information about MPI and the MPI standard, see the MPI web site
http://ww. nts. anl . gov/ npi .

Because of the way MPI and the Collector are implemented, each MPI process
records a separate experiment. Each experiment must have a unique name. Where
and how the experiment is stored depends on the kinds of file systems that are
available to your MPI job. Issues about storing experiments are discussed in the next
subsection.

To collect data from MPI jobs, you can either run the col | ect command under MPI
or start dbx under MPI and use the dbx col | ect or subcommands. Each of these
options is discussed in subsequent subsections.

Storing MPI Experiments

Because multiprocessing environments can be complex, there are some issues about
storing MPI experiments you should be aware of when you collect performance data
from MPI programs. These issues concern the efficiency of data collection and
storage, and the naming of experiments. See “Where the Data Is Stored” on page 115
for information on naming experiments, including MPI experiments.

Each MPI process that collects performance data creates its own experiment. When
an MPI process creates an experiment, it locks the experiment directory. All other
MPI processes must wait until the lock is released before they can use the directory.
Thus, if you store the experiments on a file system that is accessible to all MPI
processes, the experiments are created sequentially, but if you store the experiments
on file systems that are local to each MPI process, the experiments are created
concurrently.

If you store the experiments on a common file system and specify an experiment
name in the standard format, experiment. n. er, the experiments have unique names.
The value of n is determined by the order in which MPI processes obtain a lock on
the experiment directory, and cannot be guaranteed to correspond to the MPI rank of
the process. If you attach dbx to MPI processes in a running MPI job, n will be
determined by the order of attachment.

If you store the experiments on a local file system and specify an experiment name
in the standard format, the names are not unique. For example, suppose you ran an
MPI job on a machine with 4 single-processor nodes labelled nodeO, nodel, node2
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and node3. Each node has a local disk called / scr at ch, and you store the
experiments in directory username on this disk. The experiments created by the MPI
job have the following full path names.

nodeO: / scrat ch/ username/ test. 1. er
nodel: / scrat ch/ username/ t est. 1. er
node2: / scrat ch/ username/ t est. 1. er
node3: / scrat ch/ username/ t est. 1. er

The full name including the node name is unique, but in each experiment directory
there is an experiment named t est . 1. er. If you move the experiments to a common
location after the MPI job is completed, you must make sure that the names remain
unique. For example, to move these experiments to your home directory, which is
assumed to be accessible from all nodes, and rename the experiments, type the
following commands.

rsh nodeO "er_nv /scratch/username/test.1.er test.0.er
rsh nodel "er_mv /scratch/username/test.1.er test.1l.er’
rsh node2 'er_nv /scratch/username/test.1.er test.2. er’
rsh node3 'er_nv /scratch/username/test.1l.er test.3.er’

For large MPI jobs, you might want to move the experiments to a common location
using a script. Do not use the Unix commands cp or nv; see “Manipulating
Experiments” on page 235 for information on how to copy and move experiments.

If you do not specify an experiment name, the Collector uses the MPI rank to
construct an experiment name with the standard form experiment.n. er, but in this
case n is the MPI rank. The stem, experiment, is the stem of the experiment group
name if you specify an experiment group, otherwise it is t est . The experiment
names are unique, regardless of whether you use a common file system or a local file
system. Thus, if you use a local file system to record the experiments and copy them
to a common file system, you will not have to rename the experiments when you
copy them and reconstruct any experiment group file.

If you do not know which local file systems are available to you, use the df -1k
command or ask your system administrator. You should always make sure that the
experiments are stored in a directory that already exists, that is uniquely defined and
that is not in use for any other experiment. You should also make sure that the file
system has enough space for the experiments. See “Estimating Storage
Requirements” on page 117 for information on how to estimate the space needed.
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Note — If you copy or move experiments between computers or nodes you cannot
view the annotated source code or source lines in the annotated disassembly code
unless you have access to the load objects and source files that were used to run the
experiment, or a copy with the same path and timestamp.

Running the col | ect Command Under MPI

To collect data with the col | ect command under the control of MPI, use the
following syntax.

%nprun -np n col | ect [collect-arguments] program-name [ program-arguments]

Here, n is the number of processes to be created by MPI. This procedure creates n
separate instances of col | ect, each of which records an experiment. Read the
section “Where the Data Is Stored” on page 115 for information on where and how
to store the experiments.

To ensure that the sets of experiments from different MPI runs are stored separately,
you can create an experiment group with the - g option for each MPI run. The
experiment group should be stored on a file system that is accessible to all MPI
processes. Creating an experiment group also makes it easier to load the set of
experiments for a single MPI run into the Performance Analyzer. An alternative to
creating a group is to specify a separate directory for each MPI run with the - d
option.

Collecting Data by Starting dbx Under MPI

To start dbx and collect data under the control of MPI, use the following syntax.

%nprun -np n dbx program-name < collection-script

Here, n is the number of processes to be created by MPI and collection-script is a dbx
script that contains the commands necessary to set up and start data collection. This
procedure creates n separate instances of dbx, each of which records an experiment
on one of the MPI processes. If you do not define the experiment name, the
experiment will be labelled with the MPI rank. Read the section “Storing MPI
Experiments” on page 136 for information on where and how to store the
experiments.
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You can name the experiments with the MPI rank by using the collection script and
a call to MPl _Conm r ank() in your program. For example, in a C program you
would insert the following line.

ier = MPl _Comm rank(MPI _COVM WORLD, &ne) ;

In a Fortran program you would insert the following line.

call MPI_Comm rank(MPI _COVM WORLD, ne, ier)

If this call was inserted at line 17, for example, you could use a script like this.

stop at 18

run program-arguments

rank=$[ ne]

col | ector enable

collector store filenane experiment. $rank. er
cont

qui t
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CHAPTER 5

The Performance Analyzer
Graphical User Interface

The Performance Analyzer analyzes the program performance data that is collected
by the Sampling Collector. This chapter provides a brief description of the
Performance Analyzer GUI, its capabilities, and how to use it. The online help
system of the Performance Analyzer provides information on new features, the GUI
displays, how to use the GUI, interpreting performance data, finding performance
problems, troubleshooting, a quick reference, keyboard shortcuts and mnemonics,
and a tutorial.

This chapter covers the following topics.
= Running the Performance Analyzer

= The Performance Analyzer Displays
= Using the Performance Analyzer

For an introduction to the Performance Analyzer in tutorial format, see Chapter 2.

For a more detailed description of how the Performance Analyzer analyzes data and
relates it to program structure, see Chapter 7.

Running the Performance Analyzer

Starting the Analyzer from the Command Line

To start the Performance Analyzer from the command line, use the anal yzer (1)
command. The syntax of the anal yzer command is as follows:

% anal yzer [-h] [-] jvm-path] [-J jvm-options] [-V] [-Vv] [ experiment-list]
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Here, experiment-list is a list of experiment names or experiment group names. See
“Where the Data Is Stored” on page 115 for information on experiment names. If you
omit the experiment name, the Open Experiment dialog box is displayed when the
Performance Analyzer starts. If you give more than one experiment name, the data
for all experiments are added in the Performance Analyzer.

The options for the anal yzer command are described in TABLE 5-1.

TABLE5-1  Options for the anal yzer Command

-h Prints a usage message for the anal yzer command

-j jvm-path Specify the path to the Java™ virtual machine used to run the
Performance Analyzer

- J jvm-options Specify options to the JVM™ machine used to run the Performance
Analyzer

-V Print information while the Performance Analyzer is starting

-V Prints the version number of the Performance Analyzer to st dout

To exit the Performance Analyzer, choose File - Exit.

Starting the Analyzer from the IDE

For information on starting the Performance Analyzer from the IDE, see the Program
Performance Analysis Tools Readme, which is available through the documentation
index atfile:/opt/ SUN\Wspr o/ docs/i ndex. htn . If the Sun ONE Studio 8,
software is not installed in the / opt directory, ask your system administrator for
the equivalent path on your system.
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The Performance Analyzer Displays

The Performance Analyzer window contains a menu bar, a tool bar, and a split pane
for data display. Each pane of the split pane contains several tab panes that are used
for the displays of the Performance Analyzer. The Performance Analyzer window is
shown in FIGURE 5-1.
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The Menu Bar

The menu bar contains a File menu, a View menu, a Timeline menu and a Help
menu. In the center of the menu bar, the selected function or load object is displayed
in a text box. This function or load object can be selected from any of the tabs that
display information for functions. From the File menu you can open new
Performance Analyzer windows that use the same experiment data. From each
window, whether new or the original, you can close the window or close all
windows.

The Toolbar

The toolbar contains a number of buttons grouped according to menu.

The first group contains buttons related to the File menu: [a[=[=| E|&|[=]=

= Open Experiment

= Add Experiment

= Drop Experiment

= Create Mapfile

= Print

= Create New Window
= Close

The second group contains buttons related to the View menu: [|:'|:| ﬁn o

= Set Data Presentation
= Filter Data
= Show/Hide Functions

The third group contains buttons related to the Timeline menu:
[afis[a]5][&]a]s][=]

= Back One Event

= Forward One Event

= Up One Bar

= Down One Bar

= Reset Display

= Zoom in X2

=« Zoom Out x2

= Show Function Color Chooser

Additionally, the toolbar contains a Find text box, with buttons to Find Previous and

F|nd Next Fing|Text:| EHE@

Chapter 5 The Performance Analyzer Graphical User Interface 143



144

The following subsections describe what is displayed in each of the tabs.

File View Timeline Help

[slelEElelEE meE= oplslsalaalm e  FE(E

Functions | Callers-Callees | Source | Lines | Disassembly | PCs | Timeline | Leaklist | Statistics | Experiments | | Swnmary | Event | Legend | Leak |

#, User | 2 User | Name Datafor Selected Object:
el | epi s [

52.967 52.967 <Totalx (= EC Address: Z: 0x00000000
7.845  7.545 Routine,add_double = Size: 256
7.145  7.145  java,ucil.Vector.remove Source File: [Jsynprog. java
6.775 6.775 Routinefl§dImmer.buildlist Object File: |issmprog
4.583  4.563  cfune{int) Load Object: |<TAVA_CLASSES>
4,453  4.453 Java_lsynprog_lavalaval Mangled Narme:
4,433 4.453 Routine.memalloc = )
2.302 2.302 PRoutine. add_int A*Imses;
1.721  1.721 Routine.recurse Pracess Times (sec.) / Counts
1.561  1.561 Routine.bounce 2 Exclusive <& Inclusive
1.541  1.541 Sub_Routine.addcall User CPU: 0.020 { 0.0%)| 44.74L { 84.8%)
1.061  1.081 jsynprog.javafunc Wall: 0.020 { 0.0%)| 207.305 { 84.8%)
2.382 0.841 Sub_Routine. add_int Total LYWP: 0.0z0 { 0.0%) 207.305 | 12.1%)
0.851  0.841 constantPoolKlass::oop_follow_contents{oopDesct) System CPU: 0. 0. %| 45.432 { 30.8%)
0,680  0.660 gettimeofday Wit CPU: 0.t 0. %] 0.120 ¢ 30.0%)
0.650  0.650 _ divbd User Lock: 0 ¢ 0. %) ve.633( 7.5%)
0.620  0.620 constantPoolKlass::oop_adjust_pointers{oopDesc®) Text Page Fault o o 041 ¢ 3.6%)
0.630  0.310 ContiguousSpace::prepare_for_compactioni{CompactPointt) -
1611 0290 ost:javaTinelillis] Data Page Fauli: 0 o0 %) 32.533 ( 29.4%)
Other Wait: 0 ] B 7.805 { 2.1%)

FIGURE 5-1 The Performance Analyzer Window

The Functions Tab

The Functions tab shows a list of functions and load objects and their metrics. Only
the functions that have non-zero metrics are listed. The term functions includes
Fortran functions and subroutines, C functions, C++ functions and methods, and
Java™ methods. The function list in the Java representation shows metrics against the
interpreted Java methods, and any native methods called. The Expert-Java
representation additionally lists methods that were dynamically compiled by the
HotSpot virtual machine. In the machine representation, multiple HotSpot
compilations of a given method will be shown as completely independent functions,
although the functions will all have the same name. All functions from the JVM will be
shown as such.

The Functions tab can display inclusive metrics and exclusive metrics. The metrics
initially shown are based on the data collected and on the default settings. The
function list is sorted by the data in one of the columns. This allows you to easily
identify which functions have high metric values. The sort column header text is
displayed in bold face and a triangle appears in the lower left corner of the column
header. Changing the sort metric in the Functions tab changes the sort metric in the
Callers-Callees tab unless the sort metric in the Callers-Callees tab is an attributed
metric.
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FIGURE 5-2 The Functions Tab

The Callers-Callees Tab

The Callers-Callees tab shows the selected function in a pane in the center, with
callers of that function in a pane above it, and callees of that function in a pane
below it. Functions that appear in the Functions tab can appear in the Callers-Callees
tab.

In addition to showing exclusive and inclusive metric values for each function, the
tab also shows attributed metrics. If either an inclusive or an exclusive metric is
shown, the corresponding attributed metric is also shown. The default metrics
shown are derived from the metrics shown in the Function List display.

The percentages given for attributed metrics are the percentages that the attributed
metrics contribute to the selected function’s inclusive metric. For exclusive and
inclusive metrics, the percentages are percentages of the total program metrics.

You can navigate through the structure of your program, searching for high metric
values, by selecting a function from the callers or the callees pane. Whenever a new
function is selected in any tab, the Callers-Callees tab is updated to center it on the
selected function.
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The callers list and the callees list are sorted by the data in one of the columns. This
allows you to easily identify which functions have high metric values. The sort
column header text is displayed in bold face. Changing the sort metric in the Callers-
Callees tab changes the sort metric in the Functions tab.

In the machine representation for applications written in the Java programming
language, the caller-callee relationships will show all overhead frames, and all frames
representing the transitions between interpreted, compiled, and native methods.

Functions | Callers-Callees || Source | Lines | Disassembly [ PCs [Timeline | LeakList | statistics | Experiments |

1% User | & User | 2 User | Mame
CPU CPU CPU
=i (Sec.) (sec.) (seC.)

49,855 49,955 a. _start -~

&

al o 49,555 nain

49,945 49,945
0.010 0.010
a. 0.

commandline

stpwtch calibrate

o o ol

acct_init

18

FIGURE 5-3 The Callers-Callees Tab

The Source Tab

The Source tab shows the source file that contains the selected function. Each line in
the source file for which instructions have been generated is annotated with
performance metrics. If compiler commentary is available, it appears above the
source line to which it refers.

Lines with high metric values have the metrics highlighted. A high metric value is
one that exceeds a threshold percentage of the maximum value of that metric on any
line in the file. The entry point for the function you selected is also highlighted.

The choice of performance metrics, compiler commentary and highlighting
threshold can be changed in the Set Data Presentation dialog box. The default
choices can be set in a defaults file. See “Default-Setting Commands” on page 188 for
more information on setting defaults.
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You can view annotated source code for a C or C++ function that was dynamically
compiled if you provide information on the function using the collector API, but you
only see non-zero metrics for the selected function, even if there are more functions
in the source file.

The source for a Java method corresponds to the source code in the .j ava file from
which it was compiled, with metrics on each source line. In the machine
representation, the source from compiled methods will be shown against the Java
source; the data will represent the specific instance of the compiled-method selected.

Functions rCaIIerstaIIees rSDurce rLines rDisassemhly rPCs rTimeIine rLeakLis‘t |/Statis1ics rExperiments ‘ |

& User | B User | Source File: /home/shommel /analyzer/synprog/synprog.c
CPU CPU Object File: /home/shoumel/analyzer/synprog/synprog.o
(sec) (sec) Load Object: <synprog:
o. o. 154. acct_init{acct_file): -
1&5.
136, 4% Start a timer */ L
0. 0. 187, start = gethrtime(); 2]
a. 0. 1&8. vstart = gethrvtime():

&9,
190, #ifndef N0 M3 ACCT

0.0Lo a. 191, stpwtch calibrate();
19z, fgendif
193,
o. o. 194, iffargs == 1) {
49,945 a. 195, commandline (DEFAULT COMMAND) ;
196, 1 oelse {
a 0. 197, i=Z:
a a. 195, while (i < argc) {
a a. 193, forkcopylargw[i], i-1):
1) a. 200, i+
201. 1

[«]

4]

FIGURE 5-4 The Source Tab

The Lines Tab

The Lines tab shows a list of source lines and their metrics. The source lines are
represented by the function name followed by the line number and the source file
name.

The source lines are ordered by the data in one of the columns. This allows you to

easily identify which lines have high metric values. The sort column header text is

displayed in bold face and a triangle appears in the lower left corner of the column
header. You can select the sort metric column by clicking its column header.
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If you select a source line, this line becomes the selected object, and is displayed in
the Selected Object text box. When you click the Source tab, the source code from
which the line came is displayed with the source line selected. When you click the
Functions tab or Callers-Callees tab, the function from which the line came is the
selected function.

Functions rCaIIers-Callees rSoun:e rLines rDisassemhly PCs Timeline rLeakList rStaiistics rExperiments
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851 wy_iramd, line 2§ in "fitos.c”

791 sigtime_handler, line 267 in "synprog.c”

0O O O - R M MMM B R R R W e
0O 0 O b F b ROROR BB R R OR W [

710 gettimeofday <source file name not recorded: -

FIGURE 5-5 The Lines Tab

The Disassembly Tab

The Disassembly tab shows a disassembly listing for the object file that contains the
selected function, annotated with performance metrics for each instruction. The
instructions can also be displayed in hexadecimal. Instructions that are marked with
an asterisk are synthetic instructions. These instructions are generated for hardware
counters that count memory access events if the search for the PC that triggered the
event is unsuccessful.

If the compilation object was compiled with debugging information, and the source
code is available, it is inserted into the listing. Each source line is placed above the
first instruction that it generates. Source lines can appear in blocks when compiler
optimizations of the code rearrange the order of the instructions. If compiler
commentary is available it is inserted with the source code. The source code can also
be annotated with performance metrics.

If the compilation object was compiled with support for hardware counter profiling
(see “Source Code Information” on page 102) control transfer targets are
distinguished from the (immediately following) instruction at the (same) address
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with the label "<branch target>" and by marking their address with an asterisk.
Hardware counter events corresponding to memory operations which were collected
with backtracking enabled (see “- h counter[, value[, counter2[ , value2]]]” on
page 120 and “hwpr of i | e option” on page 128) may be associated with these
synthetic instructions whenever they prevent the causal instruction from being
determined.

If the compilation object was compiled with both debugging information and
support for hardware counter profiling, memory referencing instructions may be
annotated with the referenced dataobject descriptor, which constitutes the basis for
program data-oriented analyses (see “The Data Objects Tab” on page 151).

Lines with high metric values have the metric highlighted. A high metric value is
one that exceeds a threshold percentage of the maximum value of that metric on any
line in the file.

If the selected function was dynamically compiled, you only see instructions for that
function. If you provided information on the function using the Collector API (see
“Dynamic Functions and Modules” on page 109), you only see non-zero source
metrics for the specified function, even if there are more functions in the source file.
You can see instructions for Java compiled methods without using the Collector API.
The disassembly of any Java method shows the bytecode generated for it, with
metrics against each bytecode, and interleaved Java source, where available. In the
machine representation, disassembly for compiled methods will show the generated
machine assembler code, not the Java bytecode.

Functions | Callers Callees | Source | Lines | Disassembly | PCs |'Timeline | LeakList | Statistics | Expariments

& User | B User | Source File: /home/shommel/analyzer/synprog/synprog.c
CPU CPU Object File: shome/shommel/analyzer/synprog/synprod.o
(sec) (sec.) Load Ohject: <synprog:
I36. int cpuid; —
137. hrtime t start; :
133, hrtime £ vstart; u
139, char *name;
140, char buf[l0z4]:
141. char arglist[4096]
14z,
143, progstart = gethrtime();
<function: mainw
a a [ 143] 12105: sethi shi(0xEEELed00), %gl
o o [ 143] 1Z10c: hset 888, %gl ! OxLfffeb7s
a a [ 143] 12110: s=awve %sp, %4l, %sp
i i [ 143] 12114: st %il, [%fp + 72]
o o [ 143] 12118: st %i0, [%fp + 68]
o o [ 143] 1Ellc:  call gethrrtime ! 0xZbodd
0 0 [ 143] 12120: nop
i i [ 143] 12124:  or %o0l, %g0, %13
i i [ 143] 12128: or %00, %g0, %12
o o [ 143] 1212c:  sethi %hi(0x2cc00), %10

[]

FIGURE 5-6 The Disassembly Tab
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The choice of performance metrics, compiler commentary, highlighting threshold,
source annotation and hexadecimal display can be changed in the Set Data
Presentation dialog box. The default choices can be set in a defaults file. See
“Default-Setting Commands” on page 188 for more information on setting defaults.

The PCs Tab

The PCs tab shows a list of program counter addresses and the metrics for the
corresponding instructions. The PCs are represented by the function name and the
offset relative to the start of the function.

For hardware counter experiments profiling events corresponding to memory
operations which were collected with backtracking enabled (see “- h

counter[ , value[ , counter?[ , value2] ]] ” on page 120 and “hwpr of i | e option” on
page 128), a PC may have been adjusted to that of the most likely memory-
referencing instruction, or backtracking may have been blocked, e.g., by an
intervening control transfer target. Where backtracking is blocked, a synthetic PC is
created to distinguish it from the actual instruction PC: such synthetic PCs are
visibly distinguished with an appended asterisk character (e.g., "mai n +
0x0000ABCA*" represents the synthetic control transfer target with the same
address as the instruction "mai n + 0x0000ABC4").

The list of PCs is ordered by the data in one of the columns. This allows you to
easily identify which PCs have high metric values. The sort column header text is
displayed in bold face and a triangle appears in the lower left corner of the column
header. You can select the sort metric column by clicking its column header.

If you select a PC from the list this PC becomes the selected object. When you click
the Disassembly tab, the disassembly listing for the function from which the PC
came is displayed with the PC selected. When you click the Source tab, the source
listing for the function from which the PC came is displayed with the line containing
the PC selected. When you click the Functions tab or Callers-Callees tab, the function
from which the PC came is the selected function.

The choice of performance metrics and sort metric can be changed in the Set Data
Presentation dialog box. The default choices can be set in a defaults file. See
“Default-Setting Commands” on page 188 for more information on setting defaults.

For applications written in the Java programming language, a PC for a method (in
the Java representation) corresponds to the method-id and a bytecode index into that
method; a PC for a native function corresponds to a machine PC. The callstack for a
Java thread may have a mixture of Java PCs and machine PCs. It will not have any
frames corresponding to Java housekeeping code, which does not have a Java
representation.

Program Performance Analysis Tools « May 2003



Functions rCaIIers-CaIIees r Source r Lines |/ Disassembly | PCs | Timeline r LeakList rStatistics r Experiments
% User | B User | PCs
CPU CPU Function + offset

(zec) | = (sec)
49,955 49,8955  «Total>
482 482 2o _burncpu + (0x000000CS =
72 272 underflow + 0x000000D4
981 981 gpf_work + Ox000000EO
731 731 icputime + Ox000000CC
BBl 66l =¥ _burncpu + 0x000000CE
581 581 cputime + O0x000000ES
561 561 sigrime handler + O0x00000054
461 46l gethrtime + 0x00000004
181 181 s=o_burncpu + O0x000000A8
08l 06l =o_burncpu + 0x00000054
951 931  so_burncpu + O0x00000024
801 8§01 so_burncpu + Ox000000B4
761 781 real_recurse + 000000040
T2l T2l  sx_burncpu + Ox000000A&

&80 690 sigtime_handler + Ox00000040
L1:01) 630 gethrvtime + Ox00000004
&70 670  so_burncpu + Ox000000A0
B30 630 so_burncpu + Ox0000005C
580 580 gpf_work + Ox000000&C hd

5

o o0 oo o000 oo FFRRRRRR®
0000000 OoOOrRKFRRRRRRTL®RI@GD

FIGURE 5-7 The PCs Tab

The Data Objects Tab

The Data Objects tab is only presented when Data Space Display Mode has been
enabled (see “The Formats Tab” on page 163 and “dat anode { on| off}” on
page 191). The Data Objects tab shows a list of dataobjects and their metrics. Only
dataobjects that have non-zero metrics are listed. The term “dataobjects” includes
program constants, variables, arrays and aggregates such as structures and unions,
along with distinct aggregate elements. Various synthetic dataobjects are also
defined as required (see “The <Unknown> Dataobject” on page 224).

The Data Objects tab shows only data-derived metrics from hardware counter events
for memory operations collected with backtracking enabled for compilation objects
built with associated hardware profiling support. The metrics initially shown are
based on the data collected and the data presentation settings for inclusive and
exclusive (code) metrics. The dataobject list is sorted by the data in one of the
columns. This allows you to easily identify which dataobjects have high metric
values. The sort column header text is displayed in bold face and a triangle appears
in the lower left corner of the column header. The initial sort metric is based on the
corresponding inclusive or exclusive (code) metric, if a data-derived metric variant is
appropriate.

Data-derived metrics apply only to dataobjects, and are similar to inclusive (code)
metrics: the metric value for an element of an aggregate is also included in the
metric value for the aggregate.
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Functions rCaIIers-CaIIees r Source r Lines r Disassembhy rPCs rDataOhiects rTimeIine r LeakList r_ _J_;l
i E$ Read fa EF Stall Marne [
Misses Cycles |
= @) | ey %)
148 768 753 100.0  20.989 100.0 <Totels il
145500005 98.0 20.760 98.9 {structure:foo -}
145100005 97.5 20,535 97.8 ({structure:foo -}.{int fcode}
Z 455 745 1.7 0.115 0.5 <Unknowns
1 500000 1.0 0.070 0.3 (Unresolwvable)
988 748 0.7 0.039 0.2 (Unascertainable)
700 000 0.5 0.09%9& 0.5 {structure:foo -}.{pointer+structure:foo fright}
500 000 0.3 0.075 0.4 {structure:foo -}
S00ooo0 0.3 0.078 0.4 {structure:foo -}.{pointer+structure: foo fnext}
o a. 0.00L 0.0 (Unidentified)
u] o. 0.005 0.0 (Unspecified)
o a. 0.038 0.2 «<S5calars>
0o 0.039 0.2 {int iter}
o a. 0.066 0.3 {structure:foo -}.{int fstat}
u] o. 0.023 0.1 {structure:foo -}.{int fwval}
u] o. 0.038 0.2 {structure:foo -}.{pointer+structure:foo fleft}
-

FIGURE 5-8 Data Objects Tab

The Timeline Tab

The Timeline tab shows a chart of events as a function of time. The event and sample
data for each experiment and each LWP (or thread or CPU) is displayed separately,
rather than being aggregated. The Timeline display allows you to examine
individual events recorded by the Collector.

Data is displayed in horizontal bars. The display for each experiment consists of a
number of bars. By default, the top bar shows sample information, and is followed
by a set of bars for each LWP, one bar for each data type (clock-based profiling,
hardware counter profiling, synchronization tracing, heap tracing), showing the
events recorded. The bar label for each data type contains an icon that identifies the
data type and a number in the format n.m that identifies the experiment (n) and the
LWP (m). LWPs that are created in multithreaded programs to execute system
threads are not displayed in the Timeline tab, but their numbering is included in the
LWP index. See “Parallel Execution and Compiler-Generated Body Functions” on
page 210 for more information. You can choose to display data for threads or for
CPUs (if recorded in an experiment) rather than for LWPs, using the Timeline
Options dialog box. The index m is then the index of the thread or the CPU.

The sample bar shows a color-coded representation of the process times, which are
aggregated in the same way as the timing metrics. Each sample is represented by a
rectangle, colored according to the proportion of time spent in each microstate.
Clicking a sample displays the data for that sample in the Event tab. When you click
a sample, the Legend and Summary tabs are dimmed.
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The event markers in the other bars consist of a color-coded representation of part of
the call stack. Each function in the call stack is represented by a small colored
rectangle. These rectangles are aligned vertically. By default, the leaf function is at
the top. The call stack can be aligned on the leaf function or the root function using
the Timeline Options dialog box. The color coding of the functions in the call stack is
displayed in the Legend tab and can be changed using the Timeline Color Chooser
dialog box.

Selecting a sample bar or event marker results in the corresponding horizontal data
channel being highlighted, along with a vertical cursor showing the duration of the
sample or event. This will be a line, 1 pixel wide, if the event is instantaneous or of
short duration.

Clicking a colored rectangle in an event marker selects the corresponding function
and PC from the call stack and displays the data for that event and that function in
the Event tab. The selected function is highlighted in both the Event tab and the
Legend tab and the PC address for the event is displayed in the menu bar as a
function with an offset from the function. Clicking the Disassembly tab displays the
annotated disassembly code for the function with the line for the PC selected.

Timeling

8 16 24 32 40 48 56 B4 72 B0 88 86 104 112 120 128 136 144 152 160 168 176 ’\BA 192 200 208 216 224 232 240
TR PRSP DY I PR DU VN PR PPN PRV R PEL IS PR YO PR PR YU PYOL PUPR PR YN PYON RPN 1 PRSP AV PN PRSP PRI PR S PP U PO IO PO I Y R NP A A R Y )

sec
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i Pl sl
. =

FIGURE 5-9 The Timeline Tab

| o

The Event tab is displayed by default in the right pane when the Timeline tab is
selected. The Legend tab, also in the right pane, shows color-coding information for
functions.

The default choice of data type, display type (by LWP, CPU or thread), call stack
alignment and maximum depth can be set in a defaults file. See “Default-Setting
Commands” on page 188 for more information on setting defaults.

In the Java representation, each Java thread's event callstack is shown with its Java
methods. In the machine representation, the timeline will show bars for all threads
LWPs or CPUs, and the callstack in each will be the machine-representation callstack.
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The LeakList Tab

The LeakList tab shows all leak and allocation events that occurred in the program.
The tab is divided into two panels: a top panel, showing leak events, and a bottom
panel, showing allocation events. Timeline information appears at the top of the tab,
and call stacks for the events appear in both panels.

r Functions rCaIIers-Callees r Source r Lines r Disassembly | PCs | Timeline r LeakList rStaﬁstics r Experiments
Leak# 5 10 15 20 25 a0 35 a0 a5 50 55 &0 85 70
I 1 I 1 1 I 1 I 1 1 I 1 I 1

[+]

Bytes

Allocs

Bytes

FIGURE 5-10 The LeakList Tab

The leak and allocation event panels are each subdivided into three sections: the
number of bytes leaked/allocated, the call stack for the selected event, and the
number of times the leak or allocation has occurred. To select an individual leak or
allocation event, single-click on any data portion of the display. Data for the selected
event will be displayed in the Leak tab on the right side of the main analyzer
display. Pressing the arrow buttons in the toolbar will step event selection back and
forth between the displayed events in each bar. The up and down buttons are
disabled because, unlike on the timeline, there is no correlation between leaks and
allocations.

The Statistics Tab

The Statistics tab shows totals for various system statistics summed over the selected
experiments and samples, followed by the statistics for the selected samples of each
experiment. The process times are summed over the microaccounting states in the
same way that metrics are summed. See “Clock Data” on page 88 for more
information.
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The statistics displayed in the Statistics tab should in general match the timing
metrics displayed for the <Tot al > function in the Functions tab. The values
displayed in the Statistics tab are more accurate than the microstate accounting
values for <Tot al >. But in addition, the values displayed in the Statistics tab
include other contributions that account for the difference between the timing metric
values for <Tot al > and the timing values in the Statistics tab. These contributions
come from the following sources:

= Threads that are created by the system that are not profiled. The standard threads
library in the Solaris 7 and 8 operating environments creates system threads that
are not profiled. These threads spend most of their time sleeping, and the time
shows in the Statistics tab as Other Wait time.

= Periods of time in which data collection is paused.

For information on the definitions and meanings of the execution statistics that are
presented, see the get r usage(3C) and pr oc(4) man pages.

Functions r/CaIIers-Callees rSDurce r/Lines rDisassembly PCs | Timeline rLeakList rﬁlalis'lics rExperimerrls

@ [ Experiments
@ [ «5um across selected experiments=
Execution statistics for entire program:

Start Time (sec.k Hih Minor Page Faults: ]
End Time (sec.k /A Major Page Faults: 7
Duration (sec.): 54,400 Process swaps: o
Process Times (Sec.): EpRbERs: i
User CPU: | 49.102 { 90.3%) CUIENHIEERS o
System CPU: 0.343 { 0.6%) Messages sent: a
Wit CPU: 0.057 { 0.1%) Messages received: 1]

User Lock: 0 {on. % Signals handled: 510l

Text Page Fault: 0,000 { 0.0%) Voluntary context switches: 254
DataPageFauttt | o0.051 ¢ o.1% (| pETESEEES Y 2600
Other Wait: 4.847 { B.9%) System calls: | 21237

Characters of N0: | 34331

@ [, ftrrplexarnplesisynprogiast. 2.0

FIGURE 5-11 The Statistics Tab

The Experiments Tab

The Experiments tab is divided into two panes.

The top pane contains a tree that shows information on the experiments collected
and on the load objects accessed by the collection target. The information includes
any error messages or warning messages generated during the processing of the
experiment or the load objects. Experiments that were incomplete but otherwise
readable by the Analyzer have a cross in a red circle superimposed on the
experiment icon.
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The bottom pane lists error and warning messages from the Performance Analyzer
session.

Functions | Callers-Callees | Source | Lines || Disassembly | PCs | Timeline | Leaklist | Statistics | Experiments

@ [ Bxperiments
& ] Load Ohjects
© [ Hrnplexarmplesisynprogiest 2.er
@ [ Amplexarnplesisynprogitest ] er

Ermrmmmgkﬂgs —_— e
Error: ftrpfexarnplesisynprogitest.2.er: Experiment has wamings, see experiment panel for details
Error: ftrpfexamplesiisynprogitest.1.er: Experiment has wamings, see experiment panel for details

FIGURE 5-12 The Experiments Tab

Data in the Experiments tab is organized into a hierarchical tree, with “Experiments”
shown as its root node. Beneath that is the “Load Objects” branch node, with
additional nodes representing each currently loaded experiment. When expanded,
the “Load Objects” node will list all loadobjects in the experiments, with any errors
or warnings recorded at the time of archiving, and a message about the process that
did the archiving. In addition, if "- A copy" was specified to col | ect, or the
"col | ector archi ve copy"” command was given to dbx, or the "- A" flag was
given during an explicit invocation of er _ar chi ve, a copy of each load object (the
a. out and any shared objects referenced) will be copied into the archive
subdirectory. Expanding an experiment node reveals information about how the
experiment was collected, such as the target command, collector version, host name,
data collection parameters, and warning messages.
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The archive subdirectory

Each experiment has an archive subdirectory, which contains binary files describing
each loadobject referenced in the loadobjects file. These files are produced by

er _ar chi ve, which runs at the end of data collection. If the process terminates
abnormally, er _ar chi ve may not be invoked, in which case, the archive files are
written by er _pri nt or Analyzer when first invoked on the experiment.

The Summary Tab

The upper section of the Summary tab shows information about the selected object.
When the selected object is a loadobject, a function, a source line or a PC, the
information displayed includes the name, address and size, and for functions, source
lines and PCs, the name of the source file, object file and load object. Selected
functions are shown with their mangled names and also any aliases which may have
been defined. In Dataspace Display mode (see “The Formats Tab” on page 163 and
“dat anode { on| off}” on page 191), the alias for a selected PC is its descriptor
(when it is ascertainable from the available debugging information). When the
selected object is a dataobject, the information displayed includes the name, scope,
type and size. If the selected dataobject is an aggregate (such as a structure or
union), a list is shown with its elements and their sizes and offsets in the aggregate.
If the selected dataobject is a member of an aggregate, the aggregate's name is shown
along with the member's offset in the aggregate.

The lower section of the Summary tab shows all the available metrics for the selected
object. For loadobjects, functions, source lines and PCs, both exclusive and inclusive
metrics are shown as values and percentages, with an additional line for hardware
counters that count in cycles. For dataobjects, only data-derived metrics are shown.

The information in the Summary tab is not affected by metric selection. The
Summary tab is updated whenever a new object is selected.
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Data for Selected Object:

Name: |jsynproy. nain

PC Address: Z:0x00000000

Size: | |Unkrnown)

Source File: |1synprog. Java

Ohject File: |jsynproy

Load Object: |<JAVA CLASSES:»

Mangled Name:

Aliases:
Process Times (sec.) / Counts
. Exclusive f1 Inclusive
User CPU: 0,050 ( 0.1%) 44,741 ( 84,5%)
Wall: 0,180 ( 0.1%) 207.305 { 84.8%)
Total L\WP: 0,180 ( 0.0%) 207.305 { 12.1%)
System CPU: 0,080 ( 0.1%) 45,432 ( 30.8%)
Wait CPU: 0. {0, 0%) 0.120 ( 30.0%)
User Lock: a. [ 0. 0%) 76.634 | 7.5%)
Text Page Fault: 0.010 ( 0.9%) 0.040 (  3.6%)
Data Page Fault: 0,040 ( 0.0%) 32,533 ( 29.4%)
Other Wait: 0. {0, 0%) 7.805 ( Z.1%)

FIGURE 5-13 The Summary Tab

(| Summry | Event | Logend | L2k |
: Data for Selected Ohject:
Data Object: |{structure:foo -}.{int foode}
Scope: | /export/home/K2/perftools/pico_ile/fon.o
Type: int
Member of: |{structure: foo -}
Offset: |16
Size: 4
Elements:
List:
Process Times (sec.) ! Counts
5 Exclusive o Inclusive
E % Read Misses: 0 0. %) 145100005 { 97.5%)
E$ Stall Cycles: 0. {0, %) 20,535 { 97.8%)
" count: o 24642415431

FIGURE 5-14 Data Objects Summary

Program Performance Analysis Tools « May 2003




The Event Tab

The Event tab shows the available data for the selected event, including the
experiment name, event type, leaf function, timestamp, LWP ID, thread ID, CPU ID,
Duration, and Micro State information. Below the data panel the call stack is
displayed with the color coding that is used in the event markers for each function
in the stack. Clicking a function in the call stack makes it the selected function.

For hardware counter events corresponding to memory operations which were
collected with backtracking enabled (see “- h

counter[ , value[ , counter?[, value2] ]] ” on page 120 and “hwpr of i | e option” on
page 128), corresponding data address information is also shown where
determinable and verifiable.

When a sample is selected, the Event tab shows the sample number, the start and
end time of the sample, and a list of timing metrics. For each timing metric the
amount of time spent and the color coding is shown. The timing information in a
sample is more accurate than the timing information recorded in clock profiling.

fSummary rEvent rLegend rLeak |
Data for Current Timeling Selection

Experiment Name: |/tup/exanples/isynprog/test. l.er

Sample Number: |1
Sample Start Label: |collector_open_experiment
Sample End Label: periodic

Start Time (Sec.). 0. 065441

End Time (sec.): |1, 021245

Duration (sec.): 0.355304

Other Wait [I] 2. 373 { 62.1%)

Data Page Fault [l |0. 054 ( 2z.2%)

Text Page Fault [ ](0.115 | 3.0%)
User Lock [ (0,956 { 25.0%)
Wait CPU [ ]|0.001 { 0.0%)

SystemCPU [_|(0.269 { 7.0%)
User CPU [[]|0.0z6 ( 0.7%)

FIGURE 5-15 The Event Tab, Showing Event Data

The Legend Tab

The Legend tab shows the mapping of colors to functions for the display of events in
the Timeline tab. The Legend tab is only enabled when an event is selected in the
Timeline tab. It is dimmed when a sample is selected in the Timeline tab. The color
coding can be changed using the color chooser in the Timeline menu.
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ﬂ <static>@@0x 19954
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[ <static>@ox20ce

|:| <static>@0x2d38

[ <static>g@o0x71ec

[l <static>@ox8824

[[] «static>@0xad90

<static>@0xh488

<static>goxhedch

[l <static>@0xca88

[ <static>@0xchhba

[ <static>@0xd818

[l Abstractinterpreter::ignore_safepoints()
Abstractinterpreter::initialize()

Abstractinterpreter
o (5

[

FIGURE 5-16 The Legend Tab

The Leak Tab

The leak tab shows detailed data for the selected leak or allocation in the LeakList
tab. It is divided into two panels: a top panel, showing data for the LeakList, and a
bottom panel, showing the call stack for the selected event.

The top panel displays the event type, leak/allocation number, number of bytes
leaked or allocated, and the instances count. In the bottom panel, clicking on a
function in the call stack makes it the selected function.

[ Summary = Event | Legend | Leak

Data for LeakList
Event Type: LEAK
Leak/Alloc Num: |1
Bytes Leak/flloc: &z00

Instances Count: |1

Call Stack for Selected Event
malloc + 0x00000158
_findbuf + 0x00000094
_doprnt + 0x00000058
fprintf + 0x000000E 8
acct_init + 00000000 4
main + 0x000002F8
_start + 0x000000D C

FIGURE 5-17 The Leak Tab

160 Program Performance Analysis Tools « May 2003



Using the Performance Analyzer

This section describes some of the capabilities of the Performance Analyzer and how
its displays can be configured.

Comparing Metrics

The Performance Analyzer computes a single set of performance metrics for the data
that is loaded. The data can come from a single experiment, from a predefined
experiment group or from several experiments.

To compare two selections of metrics from the same set, you can open a new
Analyzer window by choosing File - Open New Window from the menu bar. To
dismiss this window, choose File . Close from the menu bar in the new window.

To compute and display more than one set of metrics—if you want to compare two
experiments, for example—you must start an instance of the Performance Analyzer
for each set.

Selecting Experiments

The Performance Analyzer allows you to compute metrics for a single experiment,
from a predefined experiment group or from several experiments. This section tells
you how to load, add and drop experiments from the Performance Analyzer.

Opening an Experiment. Opening an experiment clears all experiment data from the
Performance Analyzer and reads in a new set of data. (It has no effect on the
experiments as stored on disk.)

Adding an Experiment. Adding an experiment to the Performance Analyzer reads a
set of data into a new storage location in the Performance Analyzer and recomputes
all the metrics. The data for each experiment is stored separately, but the metrics
displayed are the combined metrics for all experiments. This capability is useful
when you have to record data for the same program in separate runs—for example,
if you want timing data and hardware counter data for the same program.

To examine the data collected from an MPI run, open one experiment in the
Performance Analyzer, then add the others, so you can see the data for all the MPI
processes in aggregate. If you have defined an experiment group, loading the
experiment group has the same effect.
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Dropping an Experiment. Dropping an experiment clears the data for that
experiment from the Performance Analyzer, and recomputes the metrics. (It has no
effect on the experiment files.)

If you have loaded an experiment group, you can only drop individual experiments,
not the whole group.

Selecting the Data to Be Displayed

Once you have experiment data loaded into the Performance Analyzer, there are
various ways for you to select what is displayed.

The Set Data Presentation Dialog

You can open the Set Data Presentation dialog box using the following toolbar
button, or by selecting View->Set Data Presentation... from the menu.

it

The Set Data Presentation dialog contains the following individual tabs: Metrics,
Sort, Source/Disassembly, Formats, Timeline, and Search Path.

The Metrics Tab

You can select the metrics that are displayed and the sort metric using the Metrics
and Sort tabs of the Set Data Presentation dialog box. The choice of metrics applies
to all tabs. The Callers-Callees tab adds attributed metrics for any metric that is
chosen for display.

All metrics are available as either a time in seconds or a count, and as a percentage
of the total program metric. Hardware counter metrics for which the count is in
cycles are available as a time, a count, and a percentage.

The Sort Tab

The Sort tab allows you to set the sort metric and order in which the metric columns
are displayed. To change the sort metric, double-click the metric or its radio button.
To change the order of the metrics, click the metric then use the Move Up or Move
Down buttons to move the metric.
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The sort tab allows the data to be sorted by any of the following:

= Inclusive or Exclusive User CPU

= Inclusive or Exclusive Wall

= Inclusive or Exclusive Total LWP

= Inclusive or Exclusive System CPU

= Inclusive or Exclusive Wait CPU

= Inclusive or Exclusive User Lock

= Inclusive or Exclusive Text Page Fault
= Inclusive or Exclusive Data Page Fault
= Inclusive or Exclusive Other Wait

= Size

= PC Address

= Name

The visible metrics appear in bold text.

The Source/Disassembly Tab

You can select the threshold for highlighting high metric values, select the classes of
compiler commentary and choose whether to display metrics on annotated source
code and whether to display the hexadecimal code for the instructions in the
annotated disassembly listing from the Source/Disassembly tab of the Set Data
Presentation dialog box.

The Formats Tab

The formats tab allows you to specify whether you want C++ function names to be
displayed in short or long form. The long form is the full, demangled name
including parameters; the short form does not include the parameters. The formats
tab also allows you to set the Java representation (to on, expert, or off), and lets you
enable or disable the data space display.
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FIGURE 5-18 The Formats Tab

The Timeline Tab

You can choose to display event data for LWPs, for threads or for CPUs in the
Timeline tab, choose the number of levels of the call stack to display, choose the
alignment of the call stacks in the event markers, and select the data types to
display.

The Search Path Tab

Sets the path used for finding source, object etc. files. The search path is also used to
locate the . j ar files for the Java™ Runtime Environment (JRE) on your system. The
special directory name $expt s refers to the set of current experiments, in the order
in which they were loaded. To change the search order, single-click on an entry and
press the Move Up/Move Down buttons. The compiled-in full pathname will be used
if a file is not found in searching the current path setting.

164  Program Performance Analysis Tools « May 2003



The Filter Data Dialog

Filtering by Experiment, Sample, Thread, LWP and CPU. You can control the
information in the Performance Analyzer displays by specifying only certain
experiments, samples, threads, LWPs, and CPUs for which to display metrics. You
make the selection using the Filter Data dialog box. Selection by thread, by sample,
and by CPU does not apply to the Timeline display.

You can open the Filter Data dialog box using the following toolbar button:

B8

The Show/Hide Functions Dialog

Showing and Hiding Functions. For each load object, you can choose whether to
show metrics for each function separately or to show metrics for the load object as a
whole, using the Show/Hide Functions dialog box. You can open the Show/Hide
Functions dialog box using the following toolbar button, or by selecting
View->Show/Hide Functions... from the menu.

maa]

Setting Defaults

The settings for all the data displays are initially determined by a defaults file, which
you can edit to set your own defaults.

The default metrics are read from a defaults file. In the absence of any user defaults
files, the system defaults file is read. A defaults file can be stored in a user’s home
directory, where it will be read each time the Performance Analyzer is started, or in
any other directory, where it will be read when the Performance Analyzer is started
from that directory. The user defaults files, which must be named . er. r c, can
contain selected er _pri nt commands. See “Default-Setting Commands” on
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page 188 for more details. The selection of metrics to be displayed, the order of the
metrics and the sort metric can be specified in the defaults file. The following table
summarizes the system default settings for metrics.

TABLE5-2  Default Metrics Displayed in the Functions Tab

Data Type Default Metrics

clock-based profiling inclusive and exclusive User CPU time

hardware-counter overflow inclusive and exclusive times (for counters that count

profiling in cycles) or event counts (for other counters)

synchronization delay tracing inclusive synchronization wait count and inclusive
synchronization delay time

heap tracing inclusive leaks and inclusive bytes leaked

MPI tracing inclusive MPI Time, inclusive MPI Bytes Sent,

inclusive MPI Sends, inclusive MPI Bytes Received,
inclusive MPI Receives, and inclusive MPI

Other

For each function or load-object metric displayed, the system defaults select a value
in seconds or in counts, depending on the metric. The lines of the display are sorted
by the first metric in the default list.

For C++ programs, you can display the long or the short form of a function name.
The default is long. This choice can also be set up in the defaults file.

You can save any settings you make in the Set Data Presentation dialog box in a
defaults file.

See “Default-Setting Commands” on page 188 for more information about defaults
files and the commands that you can use in them.

Searching for Names or Metric Values

Find tool. The Performance Analyzer includes a Find tool in the toolbar that you can
use to locate text in the Name column of the Functions tab and the Callers-Callees
tab, and in the code column of the Source tab and the Disassembly tab. You can also
use the Find tool to locate a high metric value in the Source tab and the Disassembly
tab. High metric values are highlighted if they exceed a given threshold of the
maximum value in a source file. See “Selecting the Data to Be Displayed” on

page 162 for information on selecting the highlighting threshold.
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Generating and Using a Mapfile

Using the performance data from an experiment, the Performance Analyzer can
generate a mapfile that you can use with the static linker (I d) to create an executable
with a smaller working-set size, more effective instruction cache behavior, or both.
The mapfile provides the linker with an order in which it loads the functions.

To create the mapfile, you must compile your program with the - g option or the - xF
option. Both of these options ensure that the required symbol table information is
inserted into the object files.

The order of the functions in the mapfile is determined by the metric sort order. If
you want to use a particular metric to order the functions, you must collect the
corresponding performance data. Choose the metric carefully: the default metric is
not always the best choice, and if you record heap tracing data, the default metric is
likely to be a very poor choice.

To use the mapfile to reorder your program, you must ensure that your program is
compiled using the - xF option, which causes the compiler to generate functions that
can be relocated independently, and link your program with the - Moption.

% compiler - xF -c source-file-list
% compiler - M mapfile - o program object-file-list

Here, compiler is one of f 95, cc or CC.
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CHAPTER 6

Theer _print Command Line
Performance Analysis Tool

This chapter explains how to use the er _pri nt utility for performance analysis. The
er _print utility prints an ASCII version of the various displays supported by the
Performance Analyzer. The information is written to standard output unless you
redirect it to a file or printer. You must give the er _pri nt utility the name of one or
more experiments or experiment groups generated by the Collector as arguments.
Using the er _pri nt utility you can display metrics of performance for functions,
callers and callees; source code and disassembly listings; sampling information;
address-space data; and execution statistics.

This chapter covers the following topics.

= er_print Syntax

= Metric Lists

= Commands Controlling the Function List

= Command Controlling the Callers-Callees List

= Commands Controlling the Leak and Allocation Lists

= Commands Controlling the Source and Disassembly Listings
= Commands Controlling the Data Space List

= Commands Listing Experiments, Samples, Threads, and LWPs
= Commands Controlling Selections

= Commands Controlling Load Object Selection

= Commands That List Metrics

= Commands That Control Output

= Commands That Print Other Displays

= Default-Setting Commands

= Default-Setting Commands Affecting Only the Performance Analyzer
= Miscellaneous Commands

For a description of the data collected by the Collector, see Chapter 3.

For instructions on how to use the Performance Analyzer to display information in a
graphical format, see Chapter 5.
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er _print Syntax

The command-line syntax for er _pri nt is as follows.

er_print [ -script script | -command | - | -V ] experiment-list

The options for er _pri nt are listed in TABLE 6-1.

TABLE6-1  Options for the er _pri nt Command

Option Description

- Read er _pri nt commands entered from the keyboard.

-script script Read commands from the file script, which contains a list of
er _print commands, one per line. If the - scri pt option is not
present, er _pri nt reads commands from the terminal or from the
command line.

- command [argument]  Process the given command.

-V Display version information and exit.

Multiple options can appear on the er _pri nt command line. They are processed in
the order they appear. You can mix scripts, hyphens, and explicit commands in any
order. The default action if you do not supply any commands or scripts is to enter
interactive mode, in which commands are entered from the keyboard. To exit
interactive mode type qui t or Ctrl-D.

The commands accepted by er _pri nt are listed in the following sections. You can
abbreviate any command with a shorter string as long as the command is
unambiguous.

170

Metric Lists

Many of the er _pri nt commands use a list of metric keywords. The syntax of the
list is as follows.

metric-keyword-1[ : metric-keyword2..]
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Except for the si ze, addr ess, and nanme keywords, a metric keyword consists of
three parts: a metric type string, a metric visibility string, and a metric name string.
These are joined with no spaces, as follows.

<type><vi si bi | i t y><name>

The metric type and metric visibility strings are composed of type and visibility
characters.

The allowed metric type characters are given in TABLE 6-2. A metric keyword that
contains more than one type character is expanded into a list of metric keywords.
For example, i e. user is expanded into i . user: e. user.

TABLE6-2  Metric Type Characters

Character Description

e Show exclusive metric value
i Show inclusive metric value

a Show attributed metric value (only for callers-callees metrics)

The allowed metric visibility characters are given in TABLE 6-3. The order of the
visibility characters in the visibility string does not matter: it does not affect the
order in which the corresponding metrics are displayed. For example, both i % user
and i . Yuser are interpreted as i . user: i Yuser.

Metrics that differ only in the visibility are always displayed together in the
standard order. If two metric keywords that differ only in the visibility are separated
by some other keywords, the metrics appear in the standard order at the position of
the first of the two metrics.

TABLE 6-3  Metric Visibility Characters

Character Description

Show metric as a time. Applies to timing metrics and hardware counter
metrics that measure cycle counts. Interpreted as “+” for other metrics.

% Show metric as a percentage of the total program metric. For attributed
metrics in the callers-callees list, show metric as a percentage of the
inclusive metric for the selected function.

+ Show metric as an absolute value. For hardware counters, this value is
the event count. Interpreted as a *“. ” for timing metrics.

! Do not show any metric value. Cannot be used in combination with other
visibility characters.
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When both type and visibility strings have more than one character, the type is
expanded first. Thus i e. Yuser is expanded to i . Yuser: e. %user, which is then
interpreted as i . user:i %user: e. user: e%user.

The visibility characters . ”, “+” and “9%’ are equivalent for the purposes of defining

the sort order. Thus sort
“sort by inclusive user CPU time if it is visible in any form”, and sor t

i Y%user, sort

i +user all mean
i luser

i .user,and sort

means “sort by inclusive user CPU time, whether or not it is visible”.

TABLE 6-4 lists the available er _pri nt metric name strings for timing metrics,
synchronization delay metrics, memory allocation metrics, MPI tracing metrics, and
the two common hardware counter metrics. For other hardware counter metrics, the
metric name string is the same as the counter name. A list of counter names can be
obtained by using the col | ect command with no arguments. See “Hardware-
Counter Overflow Profiling Data” on page 90 for more information on hardware

counters.
TABLE 6-4 Metric Name Strings
Category String Description
Timing metrics user User CPU time

wal | Wall-clock time

t ot al Total LWP time

system System CPU time

wai t CPU wait time

ul ock User lock time

t ext Text-page fault time

dat a Data-page fault time

owai t Other wait time
Synchronization sync Synchronization wait time
delay metrics

syncn Synchronization wait count
MPI tracing metrics  nrpi ti me Time spent in MPI calls

npi send Number of MPI send operations

nmpi byt essent
npi recei ve
npi byt esrecv
npi ot her

Number of bytes sent in MPI send operations
Number of MPI receive operations
Number of bytes received in MPI receive operations

Number of calls to other MPI functions
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TABLE 6-4  Metric Name Strings (Continued)

Category String Description
Memory allocation all oc Number of allocations
metrics
bal | oc Bytes allocated
| eak Number of leaks
bl eak Bytes leaked
Hardware counter cycl es CPU cycles

overflow metrics
insts Instructions issued

In addition to the name strings listed in TABLE 6-4, there are two name strings that
can only be used in default metrics lists. These are hwc, which matches any
hardware counter name, and any, which matches any metric name string. Also note
that cycl es and i nst' s are common to SPARC® and Intel, but other flavors also
exist that are architecture-specific. To list all available counters, use the col | ect
command with no arguments.

Commands Controlling the Function
List

The following commands control the display of function information.

functi ons

Write the function list with the currently selected metrics. The function list includes
all functions in load objects that are selected for display of functions, and any load
objects whose functions are hidden with the obj ect _sel ect command.

The number of lines written can be limited by using the | i m t command (see
“Commands That Control Output” on page 186).

The default metrics printed are exclusive and inclusive user CPU time, in both
seconds and percentage of total program metric. You can change the current metrics
displayed with the net ri cs command. This must be done before you issue the
functi ons command. You can also change the defaults with the dnetri cs
command.

For applications written in the Java programming language, the displayed function
information varies depending on whether Java mode is set to on, expert, or of f.
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When Java mode is set to “on”, the displayed function information includes metrics
against the Java methods, and any native methods called. Setting the Java mode to
“expert” shows HotSpot-compiled methods separately from the interpreted version of
the method. Setting the mode to “off” shows functions from the JVM itself, rather than
from the Java application being interpreted by the JVM, along with any compiled
methods and native methods.

nmetrics metric_spec

Specify a selection of function-list metrics. The string metric_spec can either be the
keyword def aul t , which restores the default metric selection, or a list of metric
keywords, separated by colons. The following example illustrates a metric list.

% metrics i.user:i%iser:e.user:eduser

This command instructs er _pri nt to display the following metrics:

= Inclusive user CPU time in seconds
= Inclusive user CPU time percentage
= Exclusive user CPU time in seconds
= Exclusive user CPU time percentage

When the net ri cs command is finished, a message is printed showing the current
metric selection. For the preceding example the message is as follows.

current: i.user:i%user:e.user:e%ser: name

For information on the syntax of metric lists, see “Metric Lists” on page 170. To see a
listing of the available metrics, use the netri c_| i st command.

If ametri cs command has an error in it, it is ignored with a warning, and the
previous settings remain in effect.

sort metric_spec

Sort the function list on the specified metric. The string metric_spec is one of the
metric keywords described in “Metric Lists” on page 170, as shown in this example.

% sort i.user
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This command tells er _pri nt to sort the function list by inclusive user CPU time. If
the metric is not in the experiments that have been loaded, a warning is printed and
the command is ignored. When the command is finished, the sort metric is printed.

f summary

Write a summary metrics panel for each function in the function list. The number of
panels written can be limited by using the | i ni t command (see “Commands That
Control Output” on page 186).

The summary metrics panel includes the name, address and size of the function or
load object, and for functions, the name of the source file, object file and load object,
and all the recorded metrics for the selected function or load object, both exclusive
and inclusive, as values and percentages.

f si ngl e function_name [ N]

Write a summary metrics panel for the specified function. The optional parameter N
is needed for those cases where there are several functions with the same name. The
summary metrics panel is written for the Nth function with the given function name.
When the command is given on the command line, N is required; if it is not needed
it is ignored. When the command is given interactively without N but N is required,
a list of functions with the corresponding N value is printed.

For a description of the summary metrics for a function, see the f summary
command description.

Command Controlling the Callers-
Callees List

The following commands control the display of caller and callee information.
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call ers-cal | ees

Print the callers-callees panel for each of the functions, in the order in which they are
sorted. The number of panels written can be limited by using the | i m t command
(see “Commands That Control Output” on page 186). The selected (center) function
is marked with an asterisk, as shown in this example.

Attr. Excl . I ncl. Nane
User CPU User CPU User CPU
sec. sec. sec.
4. 440 0. 42.910 conmandl i ne
0. 0. 4,440 * gpf
4,080 0. 4,080 gpf_b
0. 360 0. 0. 360 gpf_a

In this example, gpf is the selected function; it is called by commandl i ne, and it
calls gpf _a and gpf _b.

cnetrics metric_spec

Specify a selection of callers-callees metrics. metric_spec is a list of metric keywords,
separated by colons, as shown in this example.

% cnetrics i.user:i%user:a.user:a%user

This command instructs er _pri nt to display the following metrics.

= Inclusive user CPU time in seconds
= Inclusive user CPU time percentage
= Attributed user CPU time in seconds
= Attributed user CPU time percentage

When the cnet ri cs command is finished, a message is printed showing the current
metric selection. For the preceding example the message is as follows.

current: i.user:i%user:a.user:a%ser: name

For information on the syntax of metric lists, see “Metric Lists” on page 170. To see a
listing of the available metrics, use the cretric_| i st command.
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csi ngl e function_name [ N]

Write the callers-callees panel for the named function. The optional parameter N is
needed for those cases where there are several functions with the same name. The
callers-callees panel is written for the Nth function with the given function name.
When the command is given on the command line, N is required; if it is not needed
it is ignored. When the command is given interactively without N but N is required,
a list of functions with the corresponding N value is printed.

csort metric_spec

Sort the callers-callees display by the specified metric. The string metric_spec is one of
the metric keywords described in “Metric Lists” on page 170, as shown in this
example.

% csort a.user

This command tells er _pri nt to sort the callers-callees display by attributed user
CPU time. When the command finishes, the sort metric is printed.

Commands Controlling the Leak and
Allocation Lists

This section describes commands relating to memory allocations and deallocations.

| eaks

Display a list of memory leaks, aggregated by common call stack. Each entry
presents the total number of leaks and the total bytes leaked for the given call stack.
The list is sorted by the number of bytes leaked.

al |l ocs

Display a list of memory allocations, aggregated by common call stack. Each entry
presents the number of allocations and the total bytes allocated for the given call
stack. The list is sorted by the number of bytes allocated.
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Commands Controlling the Source and
Disassembly Listings

The following commands control the display of annotated source and disassembly
code.

pcs

Write a list of program counters (PCs) and their metrics, ordered by the current sort
metric. The list includes lines that show aggregated metrics for each load object
whose functions are hidden with the obj ect _sel ect command.

psunmary

Write the summary metrics panel for each PC in the PC list, in the order specified by
the current sort metric.

i nes

Write a list of source lines and their metrics, ordered by the current sort metric. The
list includes lines that show aggregated metrics for each function that does not have
line-number information, or whose source file is unknown, and lines that show
aggregated metrics for each load object whose functions are hidden with the

obj ect _sel ect command.

| summary

Write the summary metrics panel for each line in the lines list, in the order specified
by the current sort metric.

source { filename | function_name} [ N]

Write out annotated source code for either the specified file or the file containing the
specified function. The file in either case must be in a directory in your path.
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Use the optional parameter N (a positive integer) only in those cases where the file
or function name is ambiguous; in this case, the Nth possible choice is used. If you
give an ambiguous name without the numeric specifier, er _pri nt prints a list of
possible object-file names; if the name you gave was a function, the name of the
function is appended to the object-file name, and the number that represents the
value of N for that object file is also printed.

di sasm { filename | function_name } [ N]

Write out annotated disassembly code for either the specified file, or the file
containing the specified function. The file in either case must be in a directory in
your path.

The optional parameter N is used in the same way as for the sour ce command.

SCC com_spec

Specify the classes of compiler commentary that are shown in the annotated source
listing. The class list is a colon-separated list of classes, containing zero or more of
the following message classes.

TABLE6-5 Compiler Commentary Message Classes

Class Meaning
b[ asi c] Show the basic level messages.
v[ ersion] Show version messages, including source file name and last

modified date, versions of the compiler components, compilation
date and options.

pa[rallel] Show messages about parallelization.

q[ uery] Show questions about the code that affect its optimization.

I [ oop] Show messages about loop optimizations and transformations.

pi [ pe] Show messages about pipelining of loops.

i[nline] Show messages about inlining of functions.

n{ enops] Show messages about memory operations, such as load, store,
prefetch.

fle] Show front-end messages.

al | Show all messages.

none Do not show any messages.
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The classes al | and none cannot be used with other classes.

If no scc command is given, the default class shown is basi c. If the scc command
is given with an empty class-list, compiler commentary is turned off. The scc
command is normally used only ina . er. rc file.

st hresh value

Specify the threshold percentage for highlighting metrics in the annotated source
code. If the value of any metric is equal to or greater than value % of the maximum
value of that metric for any source line in the file, the line on which the metrics occur
have ## inserted at the beginning of the line.

dcc com_spec

Specify the classes of compiler commentary that are shown in the annotated
disassembly listing. The class list is a colon-separated list of classes. The list of
available classes is the same as the list of classes for annotated source code listing.
The following options can be added to the class list.

TABLE 6-6  Additional Options for the dcc Command

Option Meaning

h[ ex] Show the hexadecimal value of the instructions.

noh[ ex] Do not show the hexadecimal value of the instructions.

s[rc] Interleave the source listing in the annotated disassembly listing.

nos[rc] Do not interleave the source listing in the annotated disassembly
listing.

as[rc] Interleave the annotated source code in the annotated disassembly
listing.

dt hr esh value

Specify the threshold percentage for highlighting metrics in the annotated
disassembly code. If the value of any metric is equal to or greater than value % of the
maximum value of that metric for any instruction line in the file, the line on which
the metrics occur have ## inserted at the beginning of the line.
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set pat h path_list

Set the path used to find source, object, etc. files. path_list is a colon-separated list of
directories. If any directory has a colon character in it, it should be escaped with a
backslash. The special directory name, $expt s, refers to the set of current
experiments, in the order in which they were loaded; it may be abbreviated with a
single $ character.

The default setting is: $expt s: .. The compiled-in full pathname will be used if a
file is not found in searching the current path setting.

set pat h with no argument will print the current path.

addpat h path_list

Append path_list to the current set pat h settings.

Commands Controlling the Data Space
List

dat a_obj ects

Write the list of data objects with their metrics. Applicable only to HW counter
experiments where aggressive backtracking was specified, and for objects in files
that were compiled with - xhwcpr of . (Available on SPARC for C only). See the C
compiler manual for further information.

data_osi ngl e name [ N]

Write the summary metrics panel for the named data object. The optional parameter
N is needed for those cases where the object name is ambiguous. When the directive
is on the command-line, N is required; if it is not needed, it is ignored. Applicable
only to HW counter experiments where aggressive backtracking was specified, and
for objects in files that were compiled with - xhwcpr of . (Available on SPARC for C
only). See the C compiler manual for further information.
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Commands Listing Experiments,
Samples, Threads, and LWPs

This section describes commands that are used to list experiments, samples, threads,
and LWPs.

experiment _|ist

Display the full list of experiments loaded with their ID number. Each experiment is
listed with an index, which is used when selecting samples, threads, or LWPs.

The following example is an example of an experiment list.

(er_print) experinent_|ist
| D Experi ment

1 test.l. er
2 test.6.er

sanpl e _|i st
Display the list of samples currently selected for analysis.

The following example is an example of a sample list.

(er_print) sanple_list
Exp Sel Tot al
11-6 31
2 7-10,15 31
| wp_|i st

Display the list of LWPs currently selected for analysis.

thread |i st

Display the list of threads currently selected for analysis.
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cpu_list

Display the list of CPUs currently selected for analysis.

Commands Controlling Selections

Selection Lists

The syntax of a selection is shown in the following example. This syntax is used in
the command descriptions.

[ experiment-list: ] selection-list[ +[ experiment-list: ] selection-list ... ]

Each selection list can be preceded by an experiment list, separated from it by a
colon and no spaces. You can make multiple selections by joining selection lists with
a + sign.

The experiment list and the selection list have the same syntax, which is either the
keyword al | or a list of numbers or ranges of numbers (n-m) separated by commas
but no spaces, as shown in this example.

2,4,9-11, 23- 32, 38, 40

The experiment numbers can be determined by using the exp_I| i st command.

Some examples of selections are as follows.

1:1-4+2:5,6
all:1,3-6

In the first example, objects 1 through 4 are selected from experiment 1 and objects 5
and 6 are selected from experiment 2. In the second example, objects 1 and 3 through
6 are selected from all experiments. The objects may be LWPs, threads, or samples.
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Selection Commands

The commands to select LWPs, samples, CPUs, and threads are not independent. If
the experiment list for a command is different from that for the previous command,
the experiment list from the latest command is applied to all three selection targets —
LWPs, samples, and threads, in the following way.

= Existing selections for experiments not in the latest experiment list are turned off.
= Existing selections for experiments in the latest experiment list are kept.
= Selections are set to “al |  for targets for which no selection has been made.

sanpl e_sel ect sample_spec

Select the samples for which you want to display information. The list of samples
you selected is displayed when the command finishes.

| wp_sel ect Ilwp_spec

Select the LWPs about which you want to display information. The list of LWPs you
selected is displayed when the command finishes.

t hread_sel ect thread spec

Select the threads about which you want to display information. The list of threads
you selected is displayed when the command finishes.

cpu_sel ect cpu_spec

Select the CPUs about which you want to display information. The list of CPUs you
selected is displayed when the command finishes.
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Commands Controlling Load Object
Selection

obj ect _|i st

Display the list of load objects. The name of each load object is preceded by a “+” if
its functions are shown in the function list, and by a “-” if its functions are not
shown in the function list.

The following example is an example of a load object list.

(er_print) object_list
Sel Load Obj ect

yes [tnp/var/synprog/ synprog

yes /opt/SUNWspro/lib/libcollector.so
yes /usr/lib/libdl.so.1

yes /usr/lib/libc.so.1

obj ect _sel ect objectl,object2,...

Select the load objects for which you want to display information about the
functions in the load object. object-list is a list of load objects, separated by commas
but no spaces. For load objects that are not selected, information for the entire load
object is displayed instead of information for the functions in the load object.

The names of the load objects should be either full path names or the basename. If
an object name itself contains a comma, you must surround the name with double
guotation marks.

Commands That List Metrics

The following commands list the currently selected metrics and all available metric
keywords.

Chapter 6 The er _pri nt Command Line Performance Analysis Tool 185



metric |ist

Display the currently selected metrics in the function list and a list of metric
keywords that you can use in other commands (for example, netri cs and sort) to
reference various types of metrics in the function list.

cnetric_|ist

Display the currently selected metrics in the callers-callees list and a list of metric
keywords that you can use in other commands (for example, cnetri cs and csort)
to reference various types of metrics in the callers-callees list.

Note — Attributed metrics can only be specified for display with the cnetrics
command, not the et ri cs command, and displayed only with the cal | er s-
cal | ees command, not the f uncti ons command.
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Commands That Control Output

The following commands control er _pri nt display output.

outfile { filename | -}

Close any open output file, then open filename for subsequent output. If you specify
a dash (- ) instead of filename, output is written to standard output.

limt n

Limit output to the first n entries of the report; n is an unsigned positive integer.

name { long | short }

Specify whether to use the long or the short form of function names (C++ only).

javanode { on | expert | off }
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Set the mode for Java experiments to on (show the Java model), expert (show the
Java model, but show HotSpot-compiled methods independently from interpreted
methods), or off (show the machine model).

Commands That Print Other Displays

header exp_id

Display descriptive information about the specified experiment. The exp_id can be
obtained from the exp_l i st command. If the exp_id is al | or is not given, the
information is displayed for all experiments loaded.

Following each header, any errors or warnings are printed. Headers for each
experiment are separated by a line of dashes.

exp_id is required on the command line, but not in a script or in interactive mode.

obj ects

List the load objects with any error or warning messages that result from the use of
the load object for performance analysis. The number of load objects listed can be
limited by using the | i mi t command (see “Commands That Control Output” on
page 186).

overvi ew exp_id

Write out the sample data of each of the currently selected samples for the specified
experiment. The exp_id can be obtained from the exp_I i st command. If the exp_id
is al | oris not given, the sample data is displayed for all experiments. exp_id is
required on the command line, but not in a script or in interactive mode.

statistics exp_id

Write out execution statistics, aggregated over the current sample set for the
specified experiment. For information on the definitions and meanings of the
execution statistics that are presented, see the get r usage(3C) and pr oc(4) man
pages. The execution statistics include statistics from system threads for which the
Collector does not collect any data. The standard threads library in the Solaris™ 7

Chapter 6 The er _pri nt Command Line Performance Analysis Tool 187



and 8 operating environments creates system threads that are not profiled. These
threads spend most of their time sleeping, and the time shows in the statistics
display as Other Wait time.

The exp_id can be obtained from the experi nent _| i st command. If the exp_id is
not given, the sum of data for all experiments is displayed, aggregated over the
sample set for each experiment. If exp_id is al | , the sum and the individual statistics
for each experiment are displayed.
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Default-Setting Commands

The following commands can be used to set the defaults for er _pri nt and for the
Performance Analyzer. They can only be used for setting defaults: they cannot be
used in input for er _pri nt. They can be included in a defaults filed named

. er.rc. Some of the commands only apply to the Performance Analyzer.

A defaults file can be included in your home directory, to set defaults for all
experiments, or in any other directory, to set defaults locally. When er _pri nt,

er _src or the Performance Analyzer is started, the current directory and your home
directory are scanned for defaults files, which are read if they are present, and the
system defaults file is also read. Defaults from the . er. r ¢ file in your home
directory override the system defaults, and defaults from the . er. r ¢ file in the
current directory override both home and system defaults.

Note — To ensure that you read the defaults file from the directory where your
experiment is stored, you must start the Performance Analyzer or the er _pri nt
utility from that directory.

The defaults file can also include the scc, st hr esh, dcc, and dt hr esh commands.
Multiple dmret ri cs and dsort commands can be given in a defaults file, and the
commands within a file are concatenated.

dnetrics metric_spec

Specify the default metrics to be displayed or printed in the function list. The syntax
and use of the metric list is described in the section “Metric Lists” on page 170. The
order of the metric keywords in the list determines the order in which the metrics
are presented and the order in which they appear in the Metric chooser in the
Performance Analyzer.
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Default metrics for the Callers-Callees list are derived from the function list default
metrics by adding the corresponding attributed metric before the first occurrence of
each metric name in the list.

dsort metric_spec

Specify the default metric by which the function list is sorted. The sort metric is the
first metric in this list that matches a metric in any loaded experiment, subject to the
following conditions:

= If the entry in metric_spec has a visibility string of “!”, the first metric whose name
matches is used, whether it is visible or not.

= If the entry in metric_spec has any other visibility string, the first visible metric
whose name matches is used.

The syntax and use of the metric list is described in the section “Metric Lists” on
page 170.

The default sort metric for the Callers-Callees list is the attributed metric
corresponding to the default sort metric for the function list.

gdemangl e library.so

Set the path to the shared object that supports an API to demangle C++ function
names. The shared object must export the C function cpl us_denmangl e(),
conforming to the GNU standard | i bi berty. so interface.
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Default-Setting Commands Affecting
Only the Performance Analyzer

t | node tl_mode

Set the display mode options for the Timeline tab of the Performance Analyzer. The
list of options is a colon-separated list. The allowed options are described in the
following table.

TABLE6-7  Timeline Display Mode Options

Option Meaning

I'W p] Display events for LWPs

t [ hr ead] Display events for threads

c[ pu] Display events for CPUs

r[oot] Align call stack at the root

I e[ af] Align call stack at the leaf

dlepth] nn Set the maximum depth of the call stack that can be displayed

The options | wp, t hr ead, and cpu are mutually exclusive, as are r oot and | eaf . If
more than one of a set of mutually exclusive options is included in the list, the last
one is the only one that is used.

tl data tl data

Select the default data types shown in the Timeline tab of the Performance Analyzer.
The types in the type list are separated by colons. The allowed types are listed in the
following table.

TABLE 6-8  Timeline Display Data Types

Type Meaning

sa[ mpl e] Display sample data

c[l ock] Display clock profiling data

hw c] Display hardware counter profiling data
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TABLE6-8  Timeline Display Data Types

Type Meaning
sy[nctrace] Display thread synchronization tracing data
mp[itrace] Display MPI tracing data

he[ aptrace] Display heap tracing data

dat anode { on| off}

Set the mode for showing dataspace-related screens to on (tabs are visible), or off (do
not have them visible).

Miscellaneous Commands

mapfil e load-object { mapfilename | - }

Write a mapfile for the specified load object to the file mapfilename. If you specify a
dash (-) instead of mapfilename, er _pri nt writes the mapfile to standard output.

script file

Process additional commands from the script file file.

ver si on

Print the current release number of er _pri nt.

qgui t

Terminate processing of the current script, or exit interactive mode.

hel p

Print a list of er _pri nt commands.
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CHAPTER 7

Understanding the Performance
Analyzer and Its Data

The Performance Analyzer reads the event data that is collected by the Collector and
converts it into performance metrics. The metrics are computed for various elements
in the structure of the target program, such as instructions, source lines, functions,
and load objects. In addition to a header, the data recorded for each event collected
has two parts:

= Some event-specific data that is used to compute metrics

= A call stack of the application that is used to associate those metrics with the
program structure

The process of associating the metrics with the program structure is not always
straightforward, due to the insertions, transformations, and optimizations made by
the compiler. This chapter describes the process in some detail and discusses the
effect on what you see in the Performance Analyzer displays.

This chapter covers the following topics:

= How Data Collection Works

= Interpreting Performance Metrics

= Call Stacks and Program Execution

= Mapping Addresses to Program Structure

= Mapping Data Addresses to Program Data Objects
= Annotated Code Listings

How Data Collection Works

The output from a data collection run is an experiment, which is stored as a
directory with various internal files and subdirectories in the file system.
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Experiment Format

All experiments must have three files:

= A log file; an ASCII file that contains information about what data was collected,
what versions of various components, and a record of various events during the
life of the target.

= A loadobjects file; an ASCII file that records the time-dependent information
about what loadobjects are loaded into the address space of the target, and the
times at which they are loaded or unloaded.

= An overview file; a binary file containing usage information recorded at every
sample point in the experiment.

In addition, experiments have binary data files representing the profile events in the
life of the process. Each data file has a series of events, as described below under
"Interpreting Performance Metrics." Separate files are used for each type of data, but
each file is shared by all LWPs in the target. The data files are named as follows:

TABLE 7-1  Data Types and Corresponding File Names

Data Type File Name
clock-profiling profile
HWC-profiling hwcounters
Synchronization- synctrace
tracing

Heap-tracing heaptrace
MPI-tracing mpitrace

For clock-profiling, or HW-counter-overflow-profiling, the data is written in a signal
handler invoked by the clock-tick or counter-overflow. For synchronization tracing,
heap tracing, or MPI tracing, data is written from | i bcol | ect or . so routines that
are interposed by LD _PRELOAD on the normal user-invoked routines. Each such
interposition routine partially fills in a data record, then invokes the normal user-
invoked routine, and fills in the rest of the data record when that routine returns,
and writes the record to the data file.

All data files are memory-mapped, and filled in blocks. The records are filled in such
a way as to always have a valid record structure, so that experiments can be read as
they are being written. The buffer management strategy is designed to minimize
contention and serialization between LWPs.
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The archive subdirectory

Each experiment has an archive subdirectory, which contains binary files describing
each loadobject referenced in the loadobjects file. These files are produced by

er _archi ve, which runs at the end of data collection. If the process terminates
abnormally, er _ar chi ve may not be invoked, in which case, the archive files are
written by er _pri nt or Analyzer when firt invoked on the experiment.

Descendant Processes

Descendant processes write their experiments into subdirectories within the
founder-process' experiment. These subdirectories are named with an underscore, a
code letter (“f” for fork and “x” for exec), and a number are added to its immediate
creator's experiment name, giving the genealogy of the descendant. For example, if
the experiment name for the founder process is "t est. 1. er", the experiment for
the child process created by its third fork is"test. 1. er/ _f 3. er". If that child
process execs a new image, the corresponding experiment name is

"test.l.er/ _f3 x1.er".Descendant experiments consist of the same files as the
parent experiment, but they do not have descendant experiments (all descendants
are represented by subdirectories in the founder experiment), and they do not have
archive subdirectories (all archiving is done into the founder experiment).

Dynamic Functions

Experiments where the target creates dynamic functions have additional records in
the loadobijects file describing those functions, and an additional file, dyntext,
containing a copy of the actual instructions of the dynamic functions. The copy is
needed to produce annotated disassembly of dynamic functions.

Java Experiments

Java experiments also have additional records in the loadobijects file, both for
dynamic functions created by the JVM for its internal purposes, and for
dynamically-compiled (HotSpot) versions of the target Java methods.

Java experiments also have additional records in the loadobijects file, both for
dynamic functions created by the JVM for its internal purposes, and for
dynamically-compiled (HotSpot) versions of the target Java methods.

In addition, Java experiments have a JAVA_CLASSES file, containing information
about all of the user's Java classes invoked.
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Java heap- and synchronization tracing data is recorded using a JVMPI agent, which
is part of libcollector.so. It receives events that are mapped into the recorded trace
events. The agent also receives events for class loading and HotSpot compilation,
that are used to write the JAVA_CLASSES file, and the Java-compiled method
records in the loadobjects file.

Recording Experiments

There are three different ways to record an experiment, with the collect command,
with dbx creating a process, and with dbx creating an experiment from a running
process.

col | ect Experiments

When col | ect is used to record an experiment, the collect program itself creates
the experiment directory, sets LD_PRELOAD to ensure that libcollector.so is
preloaded into the target's address space, and sets LD_AUDI T to ensure that

col l audi t. so is preloaded into the target's address space, and will be invoked by
Id.so in processing all shared object loads and unloads. It then sets environment
variables to inform libcollector about the experiment name, and data collection
options, and exec's the target on top of itself.

In collect experiments, | i bcol | ect or. so is responsible for writing all experiment
files, other than the loadobjects file. col | audi t . so is responsible for writing the
shared-object records in the loadobjects file, while | i bcol | ect or. so writes the
dynamic function and compiled-method records.

dbx Experiments, Creating the Process

When dbx is used to launch a process with data collection enabled, it also creates the
experiment directory, and ensures preloading of | i bcol | ect or. so. It stops the
process at a breakpoint before its first instruction, and then calls an initialization
routine in libcollector to start the data collection. dbx is responsible for writing the
loadobjects records that are written by col | audi t . so in a collect experiment, but
I'i bcol | ect or. so otherwise behaves as it does in a collect experiment.

Java experiments can not be collected by dbx, since dbx uses a JVMDI agent for
debugging, and that agent can not coexist with the JVMPI agent needed for data
collection.
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dbx Experiments, on a Running Process

When dbx is used to start an experiment on a running process, it creates the
experiment directory, but can not use LD_PRELOAD. It makes an interactive
function call into the target to dlopen | i bcol | ect or. so, and then calls

I'i bcol | ect or. so'sinitialization routine, just as it does when creating the process.
Data is written by | i bcol | ect or. so just as in a collect experiment.

dbx is responsible for writing the loadobjects records that are written by
col l audi t. so in a collect experiment, but | i bcol | ect or. so otherwise writes
loadobjects records as it does in a collect experiment.

Since | i bcol | ect or. so was not in the target address space when the process
started, any data collection that depends on interposition on user-callable functions
(synchronization tracing, heap tracing, MPI tracing), may not work. In general, the
symbols will have already been resolved to the underlying functions, so the
interposition can not happen. Furthermore, the following of descendant processes
also depends on interposition, and will not work properly for experiments created
by dbx on a running process.

If the user has explicitly LD_PRELOAD'ed | i bcol | ect or. so before starting the
process with dbx, or before using dbx to attach to the running process, tracing data
may be collected.

Interpreting Performance Metrics

The data for each event contains a high-resolution timestamp, a thread ID, an LWP
ID, and a processor ID. The first three of these can be used to filter the metrics in the
Performance Analyzer by time, thread or LWP. See the get cpui d(2) man page for
information on processor IDs. On systems where get cpui d is not available, the
processor ID is -1, which maps to Unknown.

In addition to the common data, each event generates specific raw data, which is
described in the following sections. Each section also contains a discussion of the
accuracy of the metrics derived from the raw data and the effect of data collection on
the metrics.

Clock-Based Profiling

The event-specific data for clock-based profiling consists of an array of profiling
interval counts for each of the ten microstates maintained by the kernel for each
LWP. At the end of the profiling interval, the count for the microstate of each LWP is
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incremented by 1, and a profiling signal is scheduled. The array is only recorded and
reset when the LWP is in user mode in the CPU. If the LWP is in user mode when
the profiling signal is scheduled, the array element for the User-CPU state is 1, and
the array elements for all the other states are 0. If the LWP is not in user mode, the
data is recorded when the LWP next enters user mode, and the array can contain an
accumulation of counts for various states.

The call stack is recorded at the same time as the data. If the LWP is not in user
mode at the end of the profiling interval, the call stack cannot change until the LWP
enters user mode again. Thus the call stack always accurately records the position of
the program counter at the end of each profiling interval.

The metrics to which each of the microstates contributes are shown in TABLE 7-2.

TABLE 7-2  How Kernel Microstates Contribute to Metrics

Kernel Microstate Description Metric Name
LMS_USER Running in user mode User CPU Time
LMS_SYSTEM Running in system call or page fault System CPU Time
LMS_TRAP Running in any other trap System CPU Time
LMS_TFAULT Asleep in user text page fault Text Page Fault Time
LMS_DFAULT Asleep in user data page fault Data Page Fault Time
LMS_KFAULT Asleep in kernel page fault Other Wait Time
LMS_USER_LOCK Asleep waiting for user-mode lock User Lock Time
LMS_SLEEP Asleep for any other reason Other Wait Time
LMS_STOPPED Stopped (/ pr oc, job control, or | wp_st op)  Other Wait Time
LMS_WAIT_CPU Waiting for CPU Wait CPU Time

Accuracy of Timing Metrics

Timing data is collected on a statistical basis, and is therefore subject to all the errors
of any statistical sampling method. For very short runs, in which only a small
number of profile packets is recorded, the call stacks might not represent the parts of
the program which consume the most resources. You should run your program for
long enough or enough times to accumulate hundreds of profile packets for any
function or source line you are interested in.

In addition to statistical sampling errors, there are specific errors that arise from the
way the data is collected and attributed and the way the program progresses
through the system. Some of the circumstances in which inaccuracies or distortions
can appear in the timing metrics are described in what follows.
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= When an LWP is created, the time it has spent before the first profile packet is
recorded is less than the profiling interval, but the entire profiling interval is
ascribed to the microstate recorded in the first profile packet. If there are many
LWPs created the error can be many times the profiling interval.

= When an LWP is destroyed, some time is spent after the last profile packet is
recorded. If there are many LWPs destroyed the error can be many times the
profiling interval.

= LWP rescheduling can occur during a profiling interval. As a consequence, the
recorded state of the LWP might not represent the microstate in which it spent
most of the profiling interval. The errors are likely to be larger when there are
more LWPs to run than there are processors to run them.

= It is possible for a program to behave in a way which is correlated with the
system clock. In this case, the profiling interval always expires when the LWP is
in a state which might represent a small fraction of the time spent, and the call
stacks recorded for a particular part of the program are overrepresented. On a
multiprocessor system, it is possible for the profiling signal to induce a
correlation: processors that are interrupted by the profiling signal while they are
running LWPs for the program are likely to be in the Trap-CPU microstate when
the microstate is recorded.

= The kernel records the microstate value when the profiling interval expires. When
the system is under heavy load, that value might not represent the true state of
the process. This situation is likely to result in overaccounting of the Trap-CPU or
Wait-CPU microstate.

= The threads library sometimes discards profiling signals when it is in a critical
section, resulting in an underaccounting of timing metrics.

= When the system clock is being synchronized with an external source, the time
stamps recorded in profile packets do not reflect the profiling interval but include
any adjustment that was made to the clock. The clock adjustment can make it
appear that profile packets are lost. The time period involved is usually several
seconds, and the adjustments are made in increments.

In addition to the inaccuracies just described, timing metrics are distorted by the
process of collecting data. The time spent recording profile packets never appears in
the metrics for the program, because the recording is initiated by profiling signal.
(This is another instance of correlation.) The user CPU time spent in the recording
process is distributed over whatever microstates are recorded. The result is an
underaccounting of the User CPU Time metric and an overaccounting of other
metrics. The amount of time spent recording data is typically less than one percent
of the CPU time for the default profiling interval.
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Comparisons of Timing Metrics

If you compare timing metrics obtained from the profiling done in a clock-based
experiment with times obtained by other means, you should be aware of the
following issues.

For a single-threaded application, the total LWP time recorded for a process is
usually accurate to a few tenths of a percent, compared with the values returned by
get hrti me(3C) for the same process. The CPU time can vary by several percentage
points from the values returned by get hr vt i me(3C) for the same process. Under
heavy load, the variation might be even more pronounced. However, the CPU time
differences do not represent a systematic distortion, and the relative times reported
for different functions, source-lines, and such are not substantially distorted.

For multithreaded applications using unbound threads, differences in values
returned by get hrvti me() could be meaningless. This is because get hr vti me()
returns values for an LWP, and a thread can change from one LWP to another.

The LWP times that are reported in the Performance Analyzer can differ
substantially from the times that are reported by vnst at , because virst at reports
times that are summed over CPUs. If the target process has more LWPs than the
system on which it is running has CPUs, the Performance Analyzer shows more wait
time than virst at reports.

The microstate timings that appear in the Statistics tab of the Performance Analyzer
and the er _pri nt statistics display are based on process file system usage reports,
for which the times spent in the microstates are recorded to high accuracy. See the
pr oc(4) man page for more information. You can compare these timings with the
metrics for the <Tot al > function, which represents the program as a whole, to gain
an indication of the accuracy of the aggregated timing metrics. However, the values
displayed in the Statistics tab can include other contributions that are not included
in the timing metric values for <Tot al >. These contributions come from the
following sources:

= Threads that are created by the system that are not profiled. The standard threads
library in the Solaris™ 7 and 8 operating environments creates system threads that
are not profiled. These threads spend most of their time sleeping, and the time
shows in the Statistics tab as Other Wait time.

= Periods of time in which data collection is paused.

Synchronization Wait Tracing

The Collector collects synchronization delay events by tracing calls to the functions
in the threads library, | i bt hr ead. so, or to the real time extensions library,
librt.so. The event-specific data consists of high-resolution timestamps for the
request and the grant (beginning and end of the call that is traced), and the address
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of the synchronization object (the mutex lock being requested, for example). The
thread and LWP IDs are the IDs at the time the data is recorded. The wait time is the
difference between the request time and the grant time. Only events for which the
wait time exceeds the specified threshold are recorded. The synchronization wait
tracing data is recorded in the experiment at the time of the grant.

If the program uses bound threads, the LWP on which the waiting thread is
scheduled cannot perform any other work until the event that caused the delay is
completed. The time spent waiting appears both as Synchronization Wait Time and
as User Lock Time. User Lock Time can be larger than Synchronization Wait Time
because the synchronization delay threshold screens out delays of short duration.

If the program uses unbound threads, it is possible for the LWP on which the
waiting thread is scheduled to have other threads scheduled on it and continue to
perform user work. The User Lock Time is zero if all LWPs are kept busy while some
threads are waiting for a synchronization event. However, the Synchronization Wait
Time is not zero because it is associated with a particular thread, not with the LWP
on which the thread is running.

The wait time is distorted by the overhead for data collection. The overhead is
proportional to the number of events collected. The fraction of the wait time spent in
overhead can be minimized by increasing the threshold for recording events.

Hardware-Counter Overflow Profiling

Hardware-counter overflow profiling data includes a counter ID and the overflow
value. The value can be larger than the value at which the counter is set to overflow,
because the processor executes some instructions between the overflow and the
recording of the event. This is especially true of cycle and instruction counters,
which are incremented much more frequently than counters such as floating-point
operations or cache misses. The delay in recording the event also means that the
program counter address recorded with call stack does not correspond exactly to the
overflow event. See “Attribution of Hardware Counter Overflows” on page 232 for
more information.

The amount of data collected depends on the overflow value. Choosing a value that
is too small can have the following consequences.

= The amount of time spent collecting data can be a substantial fraction of the
execution time of the program. The collection run might spend most of its time
handling overflows and writing data instead of running the program.

= A substantial fraction of the counts can come from the collection process. These
counts are attributed to the collector function col | ector _record_counters. If
you see high counts for this function, the overflow value is too small.
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= The collection of data can alter the behavior of the program. For example, if you
are collecting data on cache misses, the majority of the misses could come from
flushing the collector instructions and profiling data from the cache and replacing
it with the program instructions and data. The program would appear to have a
lot of cache misses, but without data collection there might in fact be very few
cache misses.

Choosing a value that is too large can result in too few overflows for good statistics.
The counts that are accrued after the last overflow are attributed to the collector
function col | ect or _fi nal _count ers. If you see a substantial fraction of the
counts in this function, the overflow value is too large.

Heap Tracing

The Collector records tracing data for calls to the memory allocation and
deallocation functions mal | oc, real | oc, nemal i gn and f r ee by interposing on
these functions. If your program bypasses these functions to allocate memory,
tracing data is not recorded. Tracing data is not recorded for Java memory
management, which uses a different mechanism.

The functions that are traced could be loaded from any of a number of libraries. The
data that you see in the Performance Analyzer might depend on the library from
which a given function is loaded.

If a program makes a large number of calls to the traced functions in a short space of
time, the time taken to execute the program can be significantly lengthened. The
extra time is used in recording the tracing data.

MPI Tracing

MPI tracing records information about calls to MPI library functions. The event-
specific data consists of high-resolution timestamps for the request and the grant
(beginning and end of the call that is traced), the number of send and receive
operations and the number of bytes sent or received. Tracing is done by interposing
on the calls to the MPI library. The interposing functions do not have detailed
information about the optimization of data transmission, nor about transmission
errors, so the information that is presented represents a simple model of the data
transmission, which is explained in the following paragraphs.

The number of bytes received is the length of the buffer as defined in the call to the
MPI function. The actual number of bytes received is not available to the interposing
function.
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Some of the Global Communication functions have a single origin or a single
receiving process known as the root. The accounting for such functions is done as
follows:

= Root sends data to all processes, itself included.
= Root receives data from all processes. itself included.
= Each process communicates with each process, itself included

The following examples illustrate the accounting procedure. In these examples, G is
the size of the group.

For a call to MPl _Bcast (),

= Root sends G packets of N bytes, one packet to each process, including itself

= All G processes in the group (including root) receive N bytes

For a call to MPI _Al | reduce(),

= Each process sends G packets of N bytes

= Each process receives G packets of N bytes

For a call to MPl _Reduce_scatter(),

= Each process sends G packets of N/G bytes
= Each process receives G packets of N/G bytes

Call Stacks and Program Execution

A call stack is a series of program counter addresses (PCs) representing instructions
from within the program. The first PC, called the leaf PC, is at the bottom of the
stack, and is the address of the next instruction to be executed. The next PC is the
address of the call to the function containing the leaf PC; the next PC is the address
of the call to that function, and so forth, until the top of the stack is reached. Each
such address is known as a return address. The process of recording a call stack
involves obtaining the return addresses from the program stack and is referred to as
“unwinding the stack”.

The leaf PC in a call stack is used to assign exclusive metrics from the performance
data to the function in which that PC is located. Each PC on the stack, including the
leaf PC, is used to assign inclusive metrics to the function in which it is located.

Most of the time, the PCs in the recorded call stack correspond in a natural way to
functions as they appear in the source code of the program, and the Performance
Analyzer’s reported metrics correspond directly to those functions. Sometimes,
however, the actual execution of the program does not correspond to a simple
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intuitive model of how the program would execute, and the Performance Analyzer’s
reported metrics might be confusing. See “Mapping Addresses to Program
Structure” on page 215 for more information about such cases.

Single-Threaded Execution and Function Calls

The simplest case of program execution is that of a single-threaded program calling
functions within its own load object.

When a program is loaded into memory to begin execution, a context is established
for it that includes the initial address to be executed, an initial register set, and a
stack (a region of memory used for scratch data and for keeping track of how
functions call each other). The initial address is always at the beginning of the
function _st art (), which is built into every executable.

When the program runs, instructions are executed in sequence until a branch
instruction is encountered, which among other things could represent a function call
or a conditional statement. At the branch point, control is transferred to the address
given by the target of the branch, and execution proceeds from there. (Usually the
next instruction after the branch is already committed for execution: this instruction
is called the branch delay slot instruction. However, some branch instructions annul
the execution of the branch delay slot instruction.)

When the instruction sequence that represents a call is executed, the return address
is put into a register, and execution proceeds at the first instruction of the function
being called.

In most cases, somewhere in the first few instructions of the called function, a new
frame (a region of memory used to store information about the function) is pushed
onto the stack, and the return address is put into that frame. The register used for
the return address can then be used when the called function itself calls another
function. When the function is about to return, it pops its frame from the stack, and
control returns to the address from which the function was called.

Function Calls Between Shared Objects

When a function in one shared object calls a function in another shared object, the
execution is more complicated than in a simple call to a function within the
program. Each shared object contains a Program Linkage Table, or PLT, which
contains entries for every function external to that shared object that is referenced
from it. Initially the address for each external function in the PLT is actually an
address within | d. so, the dynamic linker. The first time such a function is called,
control is transferred to the dynamic linker, which resolves the call to the real
external function and patches the PLT address for subsequent calls.
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If a profiling event occurs during the execution of one of the three PLT instructions,
the PLT PCs are deleted, and exclusive time is attributed to the call instruction. If a
profiling event occurs during the first call through a PLT entry, but the leaf PC is not
one of the PLT instructions, any PCs that arise from the PLT and code in ld.so are
replaced by a call to an artificial function, @I t, which accumulates inclusive time.
There is one such artificial function for each shared object. If the program uses the
LD_AUDI T interface, the PLT entries might never be patched, and non-leaf PCs from
@l t can occur more frequently.

Signals

When a signal is sent to a process, various register and stack operations occur that
make it look as though the leaf PC at the time of the signal is the return address for
a call to a system function, si gact handl er (). si gact handl er () calls the user-
specified signal handler just as any function would call another.

The Performance Analyzer treats the frames resulting from signal delivery as
ordinary frames. The user code at the point at which the signal was delivered is
shown as calling the system function si gact handl er (), and it in turn is shown as
calling the user’s signal handler. Inclusive metrics from both si gact handl er ()
and any user signal handler, and any other functions they call, appear as inclusive
metrics for the interrupted function.

The Collector interposes on si gacti on() to ensure that its handlers are the
primary handlers for the SI GPROF signal when clock data is collected and SI GEMI
signal when hardware counter data is collected.

Traps

Traps can be issued by an instruction or by the hardware, and are caught by a trap
handler. System traps are traps which are initiated from an instruction and trap into
the kernel. All system calls are implemented using trap instructions, for example.
Some examples of hardware traps are those issued from the floating point unit when
it is unable to complete an instruction (such as the fi t os instruction on the
UltraSPARC® 11l platform), or when the instruction is not implemented in the
hardware.

When a trap is issued, the LWP enters system mode. The microstate is usually
switched from User CPU state to Trap state then to System state. The time spent
handling the trap can show as a combination of System CPU time and User CPU
time, depending on the point at which the microstate is switched. The time is
attributed to the instruction in the user’s code from which the trap was initiated (or
to the system call).
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For some system calls, it is considered critical to provide as efficient handling of the
call as possible. The traps generated by these calls are known as fast traps. Among
the system functions which generate fast traps are get hrti me and get hrvti ne. In
these functions, the microstate is not switched because of the overhead involved.

In other circumstances it is also considered critical to provide as efficient handling of
the trap as possible. Some examples of these are TLB (translation lookaside buffer)
misses and register window spills and fills, for which the microstate is not switched.

In both cases, the time spent is recorded as User CPU time. However, the hardware
counters are turned off because the mode has been switched to system mode. The
time spent handling these traps can therefore be estimated by taking the difference
between User CPU time and Cycles time, preferably recorded in the same
experiment.

There is one case in which the trap handler switches back to user mode, and that is
the misaligned memory reference trap for an 8-byte integer which is aligned on a 4-
byte boundary in Fortran. A frame for the trap handler appears on the stack, and a
call to the handler can appear in the Performance Analyzer, attributed to the integer
load or store instruction.

When an instruction traps into the kernel, the instruction following the trapping
instruction appears to take a long time, because it cannot start until the kernel has
finished executing the trapping instruction.

Tail-Call Optimization

The compiler can do one particular optimization whenever the last thing a particular
function does is to call another function. Rather than generating a new frame, the
callee re-uses the frame from the caller, and the return address for the callee is
copied from the caller. The motivation for this optimization is to reduce the size of
the stack, and, on SPARC® platforms, to reduce the use of register windows.

Suppose that the call sequence in your program source looks like this:
A->B->C->D

When B and C are tail-call optimized, the call stack looks as if function A calls
functions B, C, and D directly.

A->B

A->C

A->D

That is, the call tree is flattened. When code is compiled with the - g option, tail-call
optimization takes place only at a compiler optimization level of 4 or higher. When

code is compiled without the - g option, tail-call optimization takes place at a
compiler optimization level of 2 or higher.
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Explicit Multithreading

A simple program executes in a single thread, on a single LWP (light-weight
process). Multithreaded executables make calls to a thread creation function, to
which the target function for execution is passed. When the target exits, the thread is
destroyed by the threads library. Newly-created threads begin execution at a
function called _t hread_start (), which calls the function passed in the thread
creation call. For any call stack involving the target as executed by this thread, the
top of the stack is _t hread_st art (), and there is no connection to the caller of the
thread creation function. Inclusive metrics associated with the created thread
therefore only propagate up as far as _t hread_st art () and the <Tot al > function.

In addition to creating the threads, the threads library also creates LWPs to execute
the threads. Threading can be done either with bound threads, where each thread is
bound to a specific LWP, or with unbound threads, where each thread can be
scheduled on a different LWP at different times.

= If bound threads are used, the threads library creates one LWP per thread.

= If unbound threads are used, the threads library decides how many LWPs to
create to run efficiently, and which LWPs to schedule the threads on. The threads
library can create more LWPs at a later time if they are needed. Unbound threads
are not part of the Solaris 9 operating environment or of the alternate threads
library in the Solaris 8 operating environment.

As an example of the scheduling of unbound threads, when a thread is at a
synchronization barrier such as a nmut ex_| ock, the threads library can schedule a
different thread on the LWP on which the first thread was executing. The time
spent waiting for the lock by the thread that is at the barrier appears in the
Synchronization Wait Time metric, but since the LWP is not idle, the time is not
accrued into the User Lock Time metric.

In addition to the user threads, the standard threads library in the Solaris 7 and
Solaris 8 operating environments creates some threads are used to perform signal
handling and other tasks. If the program uses bound threads, additional LWPs are
also created for these threads. Performance data is not collected or displayed for
these threads, which spend most of their time sleeping. However, the time spent in
these threads is included in the process statistics and in the times recorded in the
sample data. The threads library in the Solaris 9 operating environment and the
alternate threads library in the Solaris 8 operating environment do not create these
extra threads.
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Overview of Java Technology-Based Software
Execution

To the typical developer, a Java™ technology-based application runs just like any other
program. It begins at a main entry point, typically named cl ass. mai n, which may
call other methodes, just as a C or C++ application does.

To the operating system, an application written in the Java programming language,
(pure or mixed with C/C++), runs as a process instantiating the Java virtual machine
(JVM). The IVM™ software is compiled from C++ sources and starts execution at _start,
which calls main, and so forth. It reads bytecode from . cl ass and/or . j ar files, and
performs the operations specified in that program. Among the operations that can be
specified is the dynamic loading of a shared object, and calls into various functions or
methods contained within that object.

During execution of a Java technology-based application, most methods are
interpreted by the JVM software; these methods are referred to in this document as
interpreted methods. Other methods may be dynamically compiled by the Java
HotSpot™ virtual machine, and are referred to as compiled methods. Dynamically
compiled methods are loaded into the data space of the application, and may be
unloaded at some later point in time. For any particular method, there will be an
interpreted version, and there may also be one or more compiled versions. Code
written in the Java programming language may also call directly into native-compiled
code, either C, C++, or native-compiled (SBA SPARC Bytecode Accelerator) Java; the
targets of such calls are referred to as native methods.

The JVM software does a number of things that are typically not done by applications
written in traditional languages. At startup, it creates a number of regions of
dynamically-generated code in its data space. One of these is the actual interpreter
code used to process the application’s bytecode methods.

During the interpretive execution, the Java HotSpot virtual machine monitors
performance, and may decide to take one or more methods that it has been
interpreting, generate machine code for them, and execute the more-efficient machine
code version, rather than interpret the original. That generated machine code is also in
the data space of the process. In addition, other code is generated in the data space to
execute the transitions between interpreted and compiled code.

Applications written in the Java programming language are inherently multithreaded,
and have one JVM software thread for each thread in the user's program. It also has
several housekeeping threads used for signal handling, memory management, and
Java HotSpot virtual machine compilation. Depending on the version of libthread.so
used, there may be a one-to-one correspondence between threads and LWPs, or a
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1. The terms “Java virtual machine” and “JVM” mean a virtual machine for the Java™ platform.

Program Performance Analysis Tools « May 2003



more complex relationship. But for any version of the library, at any instant a thread
may be unscheduled, or scheduled onto an LWP. Data for a thread is not collected
while that thread is not scheduled onto an LWP.

The Sun ONE™ Studio performance tools collect their data by recording events in the
life of the each LWP of the process, along with the callstack at the time of the event. At
any point in the execution of any application, Java technology-based or otherwise, the
callstack represents where the program is in its execution, and how it got there. One
important way that mixed-model Java technology-based applications differ from
traditional C, C++, and Fortran applications is that at any instant during the run of the
target there are two callstacks that are meaningful: a Java callstack, and a machine
callstack. Both stacks are collected and correlated with each other.

Java Processing Representations

There are three representations for displaying performance data for applications
written in the Java programming language: the Java Representation, the Expert-Java
Representation, and the Machine Representation. By default, where the data supports
it, the Java representation is shown. The following section summarizes the main
differences between these three representations.

The Java Representation

The Java representation shows compiled and interpreted Java methods by name, and
shows native methods in their natural form. During execution, there may be many
instances of a particular Java method executed: the interpreted version, and,
perhaps, one or more compiled versions. In the Java representation all methods are
shown aggregated as a single method. This mode is selected in the analyzer by
default.

The Expert-Java Representation

The Expert-Java Representation is similar to the Java Representation, except that
HotSpot-compiled methods are shown independently of the interpreted version of the
method. Some details of the JVM internals that are suppressed in the Java
Representation are exposed in the Expert-Java Representation.

The Machine Representation

The Machine Representation shows functions from the JVM itself, rather than from
the application being interpreted by the JVM. It also shows all compiled and native
methods. The machine representation looks the same as that of applications written
in traditional languages. The callstack shows JVM frames, native frames, and
compiled-method frames. Some of the JVM frames represent transition code between
interpreted Java, compiled Java, and native code.
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Parallel Execution and Compiler-Generated Body
Functions

If your code contains Sun, Cray, or OpenMP parallelization directives, it can be
compiled for parallel execution. OpenMP is a feature available with the Sun™ ONE
Studio compilers. Refer to the OpenMP API User’s Guide and the relevant sections in
the Fortran Programming Guide and C User’s Guide, or visit the web site defining the
OpenMP standard, htt p: / / ww. opennp. or g.

When a loop or other parallel construct is compiled for parallel execution, the
compiler-generated code is executed by multiple threads, coordinated by the
microtasking library. Parallelization by the Sun ONE Studio compilers follows the
procedure outlined below.

Generation of Body Functions

When the compiler encounters a parallel construct, it sets up the code for parallel
execution by placing the body of the construct in a separate body function and
replacing the construct with a call to a microtasking library function. The
microtasking library function is responsible for dispatching threads to execute the
body function. The address of the body function is passed to the microtasking
library function as an argument.

If the parallel construct is delimited with one of the directives in the following list,
then the construct is replaced with a call to the microtasking library function
__m_MasterFunction_().

= The Sun Fortran directive ! $par doal |
= The Cray Fortran directive c$mi ¢ doal |

= A Fortran OpenMP ! $onp PARALLEL, ! $onp PARALLEL DO, or ! $onp PARALLEL
SECTI ONS directive

= A Cor C++ OpenMP #pragma onp par al | el , #pr agma onp paral | el for, or
#pragma onp par al | el secti ons directive

A loop that is parallelized automatically by the compiler is also replaced by a call to
__m _MasterFunction_().

If an OpenMP parallel construct contains one or more worksharing do, for or
sections directives, each worksharing construct is replaced by a call to the
microtasking library function __nm _Wyrkshari ng_() and a new body function is
created for each.
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The compiler assigns names to body functions that encode the type of parallel
construct, the name of the function from which the construct was extracted, the line
number of the beginning of the construct in the original source, and the sequence
number of the parallel construct. These mangled names vary from release to release
of the microtasking library.

Parallel Execution Sequence

The program begins execution with only one thread, the main thread. The first time
the program calls __nt _Mast er Functi on_(), this function calls the Solaris
threads library function, t hr _creat e() to create worker threads. Each worker
thread executes the microtasking library function __m Sl aveFunction_(),
which was passed as an argumenttot hr _create().

In addition to worker threads, the standard threads library in the Solaris 7 and
Solaris 8 operating environments creates some threads to perform signal handling
and other tasks. Performance data is not collected for these threads, which spend
most of their time sleeping. However, the time spent in these threads is included in
the process statistics and the times recorded in the sample data. The threads library
in the Solaris 9 operating environment and the alternate threads library in the Solaris
8 operating environment do not create these extra threads.

Once the threads have been created, __nt _Mast er Functi on_() manages the
distribution of available work among the main thread and the worker threads. If
work is not available, __mt _Sl aveFunction_() calls__nt_Wait ForWork_(), in
which the worker thread waits for available work. As soon as work becomes
available, the thread returnsto __nt _Sl aveFunction_().

When work is available, each thread executesacall to __nt_run_mny_job_(), to
which information about the body function is passed. The sequence of execution
from this point depends on whether the body function was generated from a parallel
sections directive, a parallel do (or parallel for) directive, a parallel workshare
directive, or a parallel directive.

= In the parallel sections case, __ nt _run_ny_j ob_() calls the body function
directly.

= Inthe parallel do or for case, __mt _run_mny_j ob_() calls other functions, which
depend on the nature of the loop, and the other functions call the body function.

= Inthe parallel case, __nt _run_mny_j ob_() calls the body function directly, and
all threads execute the code in the body function until they encounter a call to
__m _WorkSharing_(). In this function there is another call to
__m _run_ny_job_(), which calls the worksharing body function, either
directly in the case of a worksharing section, or through other library functions in
the case of a worksharing do or for. If nowai t was specified in the worksharing
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directive, each thread returns to the parallel body function and continues
executing. Otherwise, the threads return to _ _nt _Wor kShari ng_(), which calls
__m _EndCOf TaskBarri er _() to synchronize the threads before continuing.

-—|function

——| __mt_MasterFunction_ |- - - +| _thread_start

i —>|_m_run_rry_j ob_ | _m_Sl aveFunction_|
__nt_runLoop_int _ | ——|__nt_W.1itForV‘ork_ |
loop body function | - __nt_run_ny_job_ |
L~ __nmt_EndOf TaskBarri er _| __n _runLoop_int_ |
loop body function |

——| __mt_EndOf TaskBarri er_|

FIGURE 7-1  Schematic Call Tree for a Multithreaded Program That Contains a Parallel Do
or Parallel For Construct

When all parallel work is finished, the threads return to either

__m _MasterFunction_() or __m _SlaveFunction_() and call
__m _EndOf TaskBarri er _() to perform any synchronization work involved in

the termination of the parallel construct. The worker threads then call

__m Wit ForWrk_() again, while the main thread continues to execute in the

serial region.

The call sequence described here applies not only to a program running in parallel,
but also to a program compiled for parallelization but running on a single-CPU
machine, or on a multiprocessor machine using only one LWP.
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The call sequence for a simple parallel do construct is illustrated in FIGURE 7-1. The
call stack for a worker thread begins with the threads library function
_thread_start (), the function which actually calls __nt _Sl aveFunction_().
The dotted arrow indicates the initiation of the thread as a consequence of a call
from __mt _MasterFunction_() tothr_create(). The continuing arrows
indicate that there might be other function calls which are not represented here.

The call sequence for a parallel region in which there is a worksharing do construct
is illustrated in FIGURE 7-2. The caller of _ _ nt _run_my_j ob_() is either

__m _MasterFunction_() or __nt_SlaveFuncti on_(). The entire diagram
can replace thecall to _ _m _run_ny_job_() in FIGURE 7-1.

__m_run_ny_job_ |

parallel body function |

——| _ mt_WorkSharing_ |

, —>|_m_run_nyJ' ob_ |

_ nt_runLoop_int _ |

loop body function |

—>| _ mt_EndO TaskBarrier_ |

FIGURE 7-2 Schematic Call Tree for a Parallel Region With a Worksharing Do or
Worksharing For Construct

In these call sequences, all the compiler-generated body functions are called from the
same function (or functions) in the microtasking library, which makes it difficult to
associate the metrics from the body function with the original user function. The
Performance Analyzer inserts an imputed call to the body function from the original
user function, and the microtasking library inserts an imputed call from the body
function to the barrier function, __nt _EndOf TaskBarri er _() . The metrics due to
the synchronization are therefore attributed to the body function, and the metrics for
the body function are attributed to the original function. With these insertions,
inclusive metrics from the body function propagate directly to the original function
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rather than through the microtasking library functions. The side effect of these
imputed calls is that the body function appears as a callee of both the original user
function and the microtasking functions. In addition, the user function appears to
have microtasking library functions as its callers, and can appear to call itself.
Double-counting of inclusive metrics is avoided by the mechanism used for
recursive function calls (see “How Recursion Affects Function-Level Metrics” on
page 100).

Worker threads typically use CPU time while they are in __nt Wi t For Wr k_()
in order to reduce latency when new work arrives, that is, when the main thread
reaches a new parallel construct. This is known as a busy-wait. However, you can set
an environment variable to specify a sleep wait, which shows up in the Performance
Analyzer as Other Wait time instead of User CPU time. There are generally two
situations where the worker threads spend time waiting for work, where you might
want to redesign your program to reduce the waiting:

= When the main thread is executing in a serial region and there is nothing for the
worker threads to do

= When the work load is unbalanced, and some threads have finished and are
waiting while others are still executing

By default, the microtasking library uses threads that are bound to LWPs. You can
override this default in the Solaris 7 and 8 operating environments by setting the
environment variable MI_BI ND_LWP to FALSE.

Note — The multiprocessing dispatch process is implementation-dependent and
might change from release to release.

Incomplete Stack Unwinds

If the call stack contains more than about 250 frames, the Collector does not have the
space to completely unwind the call stack. In this case, PCs for functions from
_start to some point in the call stack are not recorded in the experiment, and
<Tot al > appears as the caller of the last function whose PC was recorded.
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Mapping Addresses to Program
Structure

Once a call stack is processed into PC values, the Performance Analyzer maps those
PCs to shared objects, functions, source lines, and disassembly lines (instructions) in
the program. This section describes those mappings.

The Process Image

When a program is run, a process is instantiated from the executable for that
program. The process has a number of regions in its address space, some of which
are text and represent executable instructions, and some of which are data which is
not normally executed. PCs as recorded in the call stack normally correspond to
addresses within one of the text segments of the program.

The first text section in a process derives from the executable itself. Others
correspond to shared objects that are loaded with the executable, either at the time
the process is started, or dynamically loaded by the process. The PCs in a call stack
are resolved based on the executable and shared objects loaded at the time the call
stack was recorded. Executables and shared objects are very similar, and are
collectively referred to as load objects.

Because shared objects can be loaded and unloaded in the course of program
execution, any given PC might correspond to different functions at different times
during the run. In addition, different PCs might correspond to the same function,
when a shared object is unloaded and then reloaded at a different address.

Load Objects and Functions

Each load object, whether an executable or a shared object, contains a text section
with the instructions generated by the compiler, a data section for data, and various
symbol tables. All load objects must contain an ELF symbol table, which gives the
names and addresses of all the globally-known functions in that object. Load objects
compiled with the - g option contain additional symbolic information, which can
augment the ELF symbol table and provide information about functions that are not
global, additional information about object modules from which the functions came,
and line number information relating addresses to source lines.
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The term function is used to describe a set of instructions that represent a high-level
operation described in the source code. The term covers subroutines as used in
Fortran, methods as used in C++ and Java, and the like. Functions are described
cleanly in the source code, and normally their names appear in the symbol table
representing a set of addresses; if the program counter is within that set, the
program is executing within that function.

In principle, any address within the text segment of a load object can be mapped to
a function. Exactly the same mapping is used for the leaf PC and all the other PCs on
the call stack. Most of the functions correspond directly to the source model of the
program. Some do not; these functions are described in the following sections.

Aliased Functions

Typically, functions are defined as global, meaning that their names are known
everywhere in the program. The name of a global function must be unique within
the executable. If there is more than one global function of a given name within the
address space, the runtime linker resolves all references to one of them. The others
are never executed, and so do not appear in the function list. In the Summary tab,
you can see the shared object and object module that contain the selected function.

Under various circumstances, a function can be known by several different names. A
very common example of this is the use of so-called weak and strong symbols for the
same piece of code. A strong name is usually the same as the corresponding weak
name, except that it has a leading underscore. Many of the functions in the threads
library also have alternate names for pthreads and Solaris threads, as well as strong
and weak names and alternate internal symbols. In all such cases, only one name is
used in the function list of the Performance Analyzer. The name chosen is the last
symbol at the given address in alphabetic order. This choice most often corresponds
to the name that the user would use. In the Summary tab, all the aliases for the
selected function are shown.

Non-Unique Function Names

While aliased functions reflect multiple names for the same piece of code, there are
circumstances under which multiple pieces of code have the same name:

= Sometimes, for reasons of modularity, functions are defined as static, meaning
that their names are known only in some parts of the program (usually a single
compiled object module). In such cases, several functions of the same name
referring to quite different parts of the program appear in the Performance
Analyzer. In the Summary tab, the object module name for each of these functions
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is given to distinguish them from one another. In addition, any selection of one of
these functions can be used to show the source, disassembly, and the callers and
callees of that specific function.

= Sometimes a program uses wrapper or interposition functions that have the weak
name of a function in a library and supersede calls to that library function. Some
wrapper functions call the original function in the library, in which case both
instances of the name appear in the Performance Analyzer function list. Such
functions come from different shared objects and different object modules, and
can be distinguished from each other in that way. The Collector wraps some
library functions, and both the wrapper function and the real function can appear
in the Performance Analyzer.

Static Functions From Stripped Shared Libraries

Static functions are often used within libraries, so that the name used internally in a
library does not conflict with a name that the user might use. When libraries are
stripped, the names of static functions are deleted from the symbol table. In such
cases, the Performance Analyzer generates an artificial name for each text region in
the library containing stripped static functions. The name is of the form

<stati c>@x12345, where the string following the @sign is the offset of the text
region within the library. The Performance Analyzer cannot distinguish between
contiguous stripped static functions and a single such function, so two or more such
functions can appear with their metrics coalesced.

Stripped static functions are shown as called from the correct caller, except when the
PC from the static function is a leaf PC that appears after the save instruction in the
static function. Without the symbolic information, the Performance Analyzer does
not know the save address, and cannot tell whether to use the return register as the
caller. It always ignores the return register. Since several functions can be coalesced
into a single <st at i c>@x12345 function, the real caller or callee might not be
distinguished from the adjacent functions.

Fortran Alternate Entry Points

Fortran provides a way of having multiple entry points to a single piece of code,
allowing a caller to call into the middle of a function. When such code is compiled,
it consists of a prologue for the main entry point, a prologue to the alternate entry
point, and the main body of code for the function. Each prologue sets up the stack
for the function’s eventual return and then branches or falls through to the main
body of code.
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The prologue code for each entry point always corresponds to a region of text that

has the name of that entry point, but the code for the main body of the subroutine

receives only one of the possible entry point names. The name received varies from
one compiler to another.

The prologues rarely account for any significant amount of time, and the “functions”
corresponding to entry points other than the one that is associated with the main
body of the subroutine rarely appear in the Performance Analyzer. Call stacks
representing time in Fortran subroutines with alternate entry points usually have
PCs in the main body of the subroutine, rather than the prologue, and only the name
associated with the main body will appear as a callee. Likewise, all calls from the
subroutine are shown as being made from the name associated with the main body
of the subroutine.

Cloned Functions

The compilers have the ability to recognize calls to a function for which extra
optimization can be performed. An example of such calls is a call to a function for
which some of the arguments are constants. When the compiler identifies particular
calls that it can optimize, it creates a copy of the function, which is called a clone,
and generates optimized code. The clone function name is a mangled name that
identifies the particular call. The Analyzer demangles the name, and presents each
instance of a cloned function separately in the function list. Each cloned function has
a different set of instructions, so the annotated disassembly listing shows the cloned
functions separately. Each cloned function has the same source code, so the
annotated source listing sums the data over all copies of the function.

Inlined Functions

An inlined function is a function for which the instructions generated by the
compiler are inserted at the call site of the function instead of an actual call. There
are two kinds of inlining, both of which are done to improve performance, and both
of which affect the Performance Analyzer.

= C++ inline function definitions. The rationale for inlining in this case is that the
cost of calling a function is much greater than the work done by the inlined
function, so it is better to simply insert the code for the function at the call site,
instead of setting up a call. Typically, access functions are defined to be inlined,
because they often only require one instruction. When you compile with the - g
option, inlining of functions is disabled; compilation with - g0 permits inlining of
functions.
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= Explicit or automatic inlining performed by the compiler at high optimization
levels (4 and 5). Explicit and automatic inlining is performed even when - g is
turned on. The rationale for this type of inlining can be to save the cost of a
function call, but more often it is to provide more instructions for which register
usage and instruction scheduling can be optimized.

Both kinds of inlining have the same effect on the display of metrics. Functions that
appear in the source code but have been inlined do not show up in the function list,
nor do they appear as callees of the functions into which they have been inlined.
Metrics that would otherwise appear as inclusive metrics at the call site of the
inlined function, representing time spent in the called function, are actually shown
as exclusive metrics attributed to the call site, representing the instructions of the
inlined function.

Note — Inlining can make data difficult to interpret, so you might want to disable
inlining when you compile your program for performance analysis.

In some cases, even when a function is inlined, a so-called out-of-line function is left.
Some call sites call the out-of-line function, but others have the instructions inlined.
In such cases, the function appears in the function list but the metrics attributed to it
represent only the out-of-line calls.

Compiler-Generated Body Functions

When a compiler parallelizes a loop in a function, or a region that has parallelization
directives, it creates new body functions that are not in the original source code.
These functions are described in “Parallel Execution and Compiler-Generated Body
Functions” on page 210.

The Performance Analyzer shows these functions as normal functions, and assigns a
name to them based on the function from which they were extracted, in addition to
the compiler-generated name. Their exclusive and inclusive metrics represent the
time spent in the body function. In addition, the function from which the construct
was extracted shows inclusive metrics from each of the body functions. The means
by which this is achieved is described in “Parallel Execution Sequence” on page 211.

When a function containing parallel loops is inlined, the names of its compiler-
generated body functions reflect the function into which it was inlined, not the
original function.

Note — The names of compiler-generated body functions can only be demangled for
modules compiled with -g
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Outline Functions

Outline functions can be created during feedback optimization. They represent code
that is not normally expected to be executed. Specifically, it is code that is not
executed during the “training run” used to generate the feedback. To improve
paging and instruction-cache behavior, such code is moved elsewhere in the address
space, and is made into a separate function. The name of the outline function
encodes information about the section of outlined code, including the name of the
function from which the code was extracted and the line number of the beginning of
the section in the source code. These mangled names can vary from release to
release. The Performance Analyzer provides a readable version of the function
name.

Outline functions are not really called, but rather are jumped to; similarly they do

not return, they jump back. In order to make the behavior more closely match the

user’s source code model, the Performance Analyzer imputes an artificial call from
the main function to its outline portion.

Outline functions are shown as normal functions, with the appropriate inclusive and
exclusive metrics. In addition, the metrics for the outline function are added as
inclusive metrics in the function from which the code was outlined.

Dynamically Compiled Functions

Dynamically compiled functions are functions that are compiled and linked while
the program is executing. The Collector has no information about dynamically
compiled functions that are written in C or C++, unless the user supplies the
required information using the Collector API functions. See “Dynamic Functions
and Modules” on page 109 for information about the API functions. If information is
not supplied, the function appears in the performance analysis tools as <Unknown>,

For Java programs, the Collector obtains information on methods that are compiled
by the Java HotSpot™ virtual machine, and there is no need to use the API functions
to provide the information. For other methods, the performance tools show
information for the Java™ virtual machine that executes the methods. In Java mode,
all methods are merged with the interpreted version. In Expert-Java mode, the
HotSpot-compiled and interpreted versions of each method are both shown
separately. In the machine mode, each HotSpot-compiled version is shown
separately, and JVM functions are shown for each interpreted method.
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The <Unknown> Function

Under some circumstances, a PC does not map to a known function. In such cases,
the PC is mapped to the special function named <Unknown>.

The following circumstances show PCs mapping to <Unknown>:

= When a function written in C or C++ is dynamically generated, and information
about the function is not provided to the Collector using the Collector API
functions. See “Dynamic Functions and Modules” on page 109 for more
information about the Collector API functions.

= When a Java method is dynamically compiled but Java profiling is disabled.

= When the PC corresponds to an address in the data section of the executable or a
shared object. One case is the SPARC V7 version of | i bc. so, which has several
functions (. mul and . di v, for example) in its data section. The code is in the data
section so that it can be dynamically rewritten to use machine instructions when
the library detects that it is executing on a SPARC V8 or V9 platform.

= When the PC corresponds to a shared object in the address space of the executable
that is not recorded in the experiment.

= When the PC is not within any known load object. The most likely cause of this is
an unwind failure, where the value recorded as a PC is not a PC at all, but rather
some other word. If the PC is the return register, and it does not seem to be within
any known load object, it is ignored, rather than attributed to the <Unknown>
function.

= When a PC maps to an internal part of the Java™ virtual machine for which the
Collector has no symbolic information.

Callers and callees of the <Unknown> function represent the previous and next PCs
in the call stack, and are treated normally.

The <no Java cal | st ack recor ded> Function

The <no Java cal | st ack r ecor ded> function is similar to the <Unknown>
function, but for Java threads, in the Java representation only. When the collector
receives an event from a Java thread, it unwinds the native stack and calls into the
Java virtual machine to obtain the corresponding Java stack. If that call fails for any
reason, the event is shown in the analyzer with the artificial function <no Java

cal | stack recorded>. The JVM may refuse to report a callstack either to avoid
deadlock, or when unwinding the Java stack would cause excessive synchronization.
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The <Tot al > Function

The <Tot al > function is an artificial construct used to represent the program as a
whole. All performance metrics, in addition to being attributed to the functions on
the call stack, are attributed to the special function <Tot al >. It appears at the top of
the function list and its data can be used to give perspective on the data for other
functions. In the Callers-Callees list, it is shown as the nominal caller of _start ()
in the main thread of execution of any program, and also as the nominal caller of

thread_start () for created threads. If the stack unwind was incomplete, the

<Tot al > function can appear as the caller of other functions.

Functions Related to HW Counter Profiling

The following functions are related to HW counter profiling:

col | ector _not _program r el at ed: The counter does not relate to the
program.

col l ector _| ost _hwc_over fl ow. The counter appears to have exceeded the
overflow value without generating an overflow signal. The value is recorded and
the counter reset.

col | ector _| ost _si gent : The counter appears to have exceeded the overflow
value and been halted but the overflow signal appears to be lost. The value is
recorded and the counter reset.

col | ect or _hwc_ABORT: Reading the hardware counters has failed, typically
when a privileged process has taken control of the counters, resulting in the
termination of hardware counter collection.

col l ector _final _counters: The values of the counters taken immediately
before suspending or terminating collection, with the count since the previous
overflow. If this corresponds to a significant fraction of the <Tot al > count, a
smaller overflow interval (i.e., higher resolution configuration) is recommended.

col l ector _record_count ers: The counts accumulated while handling and
recording hardware counter events, partially accounting for hardware counter
profiling overhead. If this corresponds to a significant fraction of the <Tot al >
count, a larger overflow interval (i.e., lower resolution configuration) is
recommended.
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Mapping Data Addresses to Program
Data Objects

Once a PC from a hardware counter event corresponding to a memory operation has
been processed to successfully backtrack to a likely causal memory-referencing
instruction, the Performance Analyzer uses instruction identifiers and descriptors
provided by the compiler in its hardware profiling support information to derive the
associated program data object.

The term dataobject is used to refer to program constants, variables, arrays and
aggregates such as structures and unions, along with distinct aggregate elements,
described in source code. Depending on the source language, dataobject types and
their sizes will vary. Many dataobjects are explicitly named in source programs,
while others may be unnamed. Some dataobjects are derived or aggregated from
other (simpler) dataobjects, resulting in a rich, often complex, set of dataobjects.

Each dataobject has an associated scope, the region of the source program where it is
defined and can be referenced, which may be global (i.e., a loadobject), a particular
compilation unit (i.e., object file), or function. Identical dataobjects may be defined
with different scopes, or particular dataobjects referred to differently in different
scopes.

Data-derived metrics from hardware counter events for memory operations collected
with backtracking enabled are attributed to the associated program dataobject and
propagate to any aggregates containing the dataobject and the artificial <Tot al >
which is considered to contain all dataobjects (including <Unknown> and

<Scal ar s>). The different subtypes of <Unknown> propagate up to the <Unknown>
aggregate. The following section describes the <Tot al >, <Scal ar s>, and
<Unknown> dataobijects.

Dataobject Descriptors

Dataobjects are fully described by a combination of their declared type and name. A
simple scalar dataobject "{i nt i }" describes an variable called "i " of type "i nt ",
while "{ const +poi nt er +i nt p}" describes a constant pointer to a type "i nt"
called "p". Types containing spaces have them replaced with "_" (underscore), and
unnamed dataobjects are represented with a name of "- " (dash), e.g.,

"{doubl e_precision_conplex -}".

An entire aggregate is similarly represented "{structure:foo_t foo}" fora
structure of type "f oo_t " called "f 00". A single element of an aggregate requires the
additional specification of its container, e.g.,"{ structure: foo_t foo}.{int i}"
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for a member "i " of type "i nt " of the previous structure "f 00". Aggregates may also
themselves be elements of (larger) aggregates, with their corresponding descriptor
constructed as a concatenation of aggregate descriptors and ultimately a scalar
descriptor.

While a fully-qualified descriptor may not always be necessary to disambiguate
dataobjects, it provides a generic complete specification to assist with dataobject
identification.

The <Tot al > Dataobject

The <Tot al > dataobject is an artificial construct used to represent the program's
dataobjects as a whole. All performance metrics, in addition to being attributed to a
distinct dataobject (and any aggregate to which it belongs), are attributed to the
special dataobject <Tot al >. It appears at the top of the dataobject list and its data
can be used to give perspective to the data for other dataobjects.

The <Scal ar s> Dataobject

While aggregate elements have their performance metrics additionally attributed
into the metric value for their associated aggregate, all of the scalar constants and
variables have their performance metrics additionally attributed into the metric
value for the artificial <Scal ar s> dataobject.

The <Unknown> Dataobject

Under various circumstances, event data can't be mapped to a particular dataobject.
In such cases, the data is mapped to the special dataobject named <Unknown>.

The following circumstances result in data mapped to <Unknown>, as well as the
particular subcategory:

(Unascertainable): One or more compilation objects were compiled without
hardware profiling support, such that it is not possible to ascertain dataobjects
associated with memory-referencing instructions or validate backtracking.

(Unverifiable): The hardware profiling support information provided in the
compilation object was insufficient to verify the validity of backtracking.

(Unresolvable): Event backtracking encountered a control transfer target and, being
unable to resolve whether the control transfer actually occurred or not, was unable
to determine the likely causal memory-referencing instruction (and its associated
dataobject).
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(Unspecified): Backtracking determined the likely causal memory-referencing
instruction, but its associated dataobject was not specified by the compiler.

(Unidentified): Backtracking determined the likely causal memory-referencing
instruction, but it was not identified by the compiler and associated dataobject
determination is therefore not possible. Compiler temporaries are generally
unidentified.

Annotated Code Listings

Annotated source code and annotated disassembly code are useful for determining
which source lines or instructions within a function are responsible for poor
performance. This section describes the annotation process and some of the issues
involved in interpreting the annotated code.

Annotated Source Code

Annotated source code shows the resource consumption of an application at the
source-line level. It is produced by taking the PCs that are recorded in the
application’s call stack, and mapping each PC to a source line. To produce an
annotated source file, the Performance Analyzer first determines all of the functions
that are generated in a particular object module (. o file) or load object, then scans
the data for all PCs from each function. In order to produce annotated source, the
Performance Analyzer must be able to find and read the object module or load object
to determine the mapping from PCs to source lines, and it must be able to read the
source file to produce an annotated copy, which is displayed. The Performance
Analyzer searches for the source, object and executable files in the following
locations in turn, and stops when it finds a file of the correct basename:

= The archive directories of experiments.
= The current working directory.
= The absolute pathname as recorded in the executables or compilation objects.

The compilation process goes through many stages, depending on the level of
optimization requested, and transformations take place which can confuse the
mapping of instructions to source lines. For some optimizations, source line
information might be completely lost, while for others, it might be confusing. The
compiler relies on various heuristics to track the source line for an instruction, and
these heuristics are not infallible.
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Interpreting Source Line Metrics

Metrics for an instruction must be interpreted as metrics accrued while waiting for
the instruction to be executed. If the instruction being executed when an event is
recorded comes from the same source line as the leaf PC, the metrics can be
interpreted as due to execution of that source line. However, if the leaf PC comes
from a different source line than the instruction being executed, at least some of the
metrics for the source line that the leaf PC belongs to must be interpreted as metrics
accumulated while this line was waiting to be executed. An example is when a value
that is computed on one source line is used on the next source line.

The issue of how to interpret the metrics matters most when there is a substantial
delay in execution, such as at a cache miss or a resource queue stall, or when an
instruction is waiting for a result from a previous instruction. In such cases the
metrics for the source lines can seem to be unreasonably high, and you should look
at other lines in the code to find the line responsible for the high metric value.

Metric Formats

The four possible formats for the metrics that can appear on a line of annotated
source code are explained in TABLE 7-3.

TABLE 7-3  Annotated Source-Code Metrics

Metric Significance

(Blank)  No PC in the program corresponds to this line of code. This case should always
apply to comment lines, and applies to apparent code lines in the following
circumstances:
= All the instructions from the apparent piece of code have been eliminated
during optimization.

= The code is repeated elsewhere, and the compiler performed common
subexpression recognition and tagged all the instructions with the lines for the
other copy.

= The compiler tagged an instruction with an incorrect line number.

0. Some PCs in the program were tagged as derived from this line, but there was no
data that referred to those PCs: they were never in a call stack that was sampled
statistically or traced for thread-synchronization data. The 0. metric does not
indicate that the line was not executed, only that it did not show up statistically
in a profiling data packet or a tracing data packet.

0. 000 At least one PC from this line appeared in the data, but the computed metric
value rounded to zero.

1.234 The metrics for all PCs attributed to this line added up to the non-zero numerical
value shown.
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Compiler Commentary

Various parts of the compiler can incorporate commentary into the executable. Each
comment is associated with a specific line of source code. When the annotated
source is written, the compiler commentary for any source line appears immediately
preceding the source line.

The compiler commentary describes many of the transformations which have been
made to the source code to optimize it. These transformations include loop
optimizations, parallelization, inlining and pipelining.

Common Subexpression Elimination

One very common optimization recognizes that the same expression appears in
more than one place, and that performance can be improved by generating the code
for that expression in one place. For example, if the same operation appears in both
the i f and the el se branches of a block of code, the compiler can move that
operation to just before the i f statement. When it does so, it assigns line numbers to
the instructions based on one of the previous occurrences of the expression. If the
line numbers assigned to the common code correspond to one branch of an i f
structure, and the code actually always takes the other branch, the annotated source
shows metrics on lines within the branch that is not taken.

Parallelization Directives

When the compiler generates body functions from code that contains parallelization
directives, inclusive metrics for the parallel loop or section are attributed to the
parallelization directive, because this line is the call site for the compiler-generated
body function. Inclusive and exclusive metrics also appear on the code in the loops
or sections. These metrics sum to the inclusive metrics on the parallelization
directives.

Special Lines in the Source

Whenever the source line for a PC cannot be determined, the metrics for that PC are
attributed to a special source line that is inserted at the top of the annotated source
file. High metrics on that line indicates that part of the code from the given object
module does not have line-mappings. Annotated disassembly can help you
determine the instructions that do not have mappings. The special lines are:

= Function <instructions w thout |ine nunbers>
Where function is the name of the function from which the instruction came.

= Function <source file nane not recorded>
Where function is the name of the function from which the instruction came.
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Annotated Disassembly Code

Annotated disassembly provides an assembly-code listing of the instructions of a
function or object module, with the performance metrics associated with each
instruction. Annotated disassembly can be displayed in several ways, determined by
whether line-number mappings and the source file are available, and whether the
object module for the function whose annotated disassembly is being requested is
known:

= If the object module is not known, the Performance Analyzer disassembles the
instructions for just the specified function, and does not show any source lines in
the disassembly.

= If the object module is known, the disassembly covers all functions within the
object module.

» If the source file is available, and line number data is recorded, the Performance
Analyzer can interleave the source with the disassembly, depending on the
display preference.

= If the compiler has inserted any commentary into the object code, it too, is
interleaved in the disassembly if the corresponding preferences are set.

Each instruction in the disassembly code is annotated with the following
information.

= A source line number, as reported by the compiler

= Its relative address

= The hexadecimal representation of the instruction, if requested
= The assembler ASCII representation of the instruction

Where possible, call addresses are resolved to symbols (such as function names).
Metrics are shown on the lines for instructions, and can be shown on any interleaved
source code if the corresponding preference is set. Possible metric values are as
described for source-code annotations, in TABLE 7-3.

When code is not optimized, the line numbers for each instruction are in sequential
order, and the interleaving of source lines and disassembled instructions occurs in
the expected way. When optimization takes place, instructions from later lines
sometimes appear before those from earlier lines. The Performance Analyzer’s
algorithm for interleaving is that whenever an instruction is shown as coming from
line N, all source lines up to and including line N are written before the instruction.
One effect of optimization is that source code can appear between a control transfer
instruction and its delay slot instruction. Compiler commentary associated with line
N of the source is written immediately before that line.
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Interpreting annotated disassembly is not straightforward. The leaf PC is the address
of the next instruction to execute, so metrics attributed to an instruction should be
considered as time spent waiting for the instruction to execute. However, the
execution of instructions does not always happen in sequence, and there might be
delays in the recording of the call stack. To make use of annotated disassembly, you
should become familiar with the hardware on which you record your experiments
and the way in which it loads and executes instructions.

The next few subsections discuss some of the issues of interpreting annotated
disassembly.

Instruction Issue Grouping

Instructions are loaded and issued in groups known as instruction issue groups.
Which instructions are in the group depends on the hardware, the instruction type,
the instructions already being executed, and any dependencies on other instructions
or registers. This means that some instructions might be underrepresented because
they are always issued in the same clock cycle as the previous instruction, so they
never represent the next instruction to be executed. It also means that when the call
stack is recorded, there might be several instructions which could be considered the
“next” instruction to execute.

Instruction issue rules vary from one processor type to another, and depend on the
instruction alignment within cache lines. Since the linker forces instruction
alignment at a finer granularity than the cache line, changes in a function that might
seem unrelated can cause different alignment of instructions. The different
alignment can cause a performance improvement or degradation.

The following artificial situation shows the same function compiled and linked in
slightly different circumstances. The two output examples shown below are the
annotated disassembly listings from er _pri nt. The instructions for the two
examples are identical, but the instructions are aligned differently.
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In this example the instruction alignment maps the two instructions cnp and bl , a
to different cache lines, and a significant amount of time is used waiting to execute
these two instructions.

Excl . I ncl.
User CPU User CPU
sec. sec.
1. static int
2. ifunc()
3. {
4, int i;
5.
6. for (i=0; i<10000; i++)
<function: ifunc>

0. 010 0. 010 [ 6] 1066¢: clr %00

0. 0. [ 6] 10670: sethi %i (0x2400), %05

0. 0. [ 6] 10674: inc 784, %05

7. i ++;

0. 0. [ 7] 10678: inc 2, %0
## 1. 360 1. 360 [ 7] 1067c: cnp %0, %05
## 1.510 1.510 [ 7] 10680: bl,a 0x1067c

0. 0. [ 7] 10684: inc 2, %0

0. 0. [ 7] 10688: retl

0. 0. [ 7] 1068c: nop

8. return i;
9. }
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In this example, the instruction alignment maps the two instructions cnp and bl , a
to the same cache line, and a significant amount of time is used waiting to execute

only one of these instructions.

Excl . I ncl.
User CPU User CPU
sec. sec.
1. static int
2. ifunc()
3. {
4, int i;
5.
6. for (i=0; i<10000;
<function: ifunc>
0. 0. [ 6] 10684: clr
0. 0. [ 6] 10688: sethi
0. 0. [ 6] 1068c: inc
7. i ++;
0. 0. [ 7] 10690: inc
## 1. 440 1. 440 [ 7] 10694: cnp
0. 0. [ 7] 10698: bl,a
0. 0. [ 7] 1069c: inc
0. 0. [ 7] 106a0: retl
0. 0. [ 7] 106a4: nop
8. return i;
9. }

%00
%i (0x2400),
784, %05

2, %0
%00, %05
0x10694
2, %0

%05

Instruction Issue Delay

Sometimes, specific leaf PCs appear more frequently because the instruction that
they represent is delayed before issue. This can occur for a number of reasons, some
of which are listed below:

The previous instruction takes a long time to execute and is not interruptible, for

example when an instruction traps into the kernel.

An arithmetic instruction needs a register that is not available because the register
contents were set by an earlier instruction that has not yet completed. An example
of this sort of delay is a load instruction that has a data cache miss.

A floating-point arithmetic instruction is waiting for another floating-point
instruction to complete. This situation occurs for instructions that cannot be

pipelined, such as square root and floating-point divide.

The instruction cache does not include the memory word that contains the

instruction (I-cache miss).
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= On UltraSPARC IlI processors, a cache miss on a load instruction blocks all
instructions that follow it until the miss is resolved, regardless of whether these
instructions use the data item that is being loaded. UltraSPARC® Il processors
only block instructions that use the data item that is being loaded.

Attribution of Hardware Counter Overflows

Apart from TLB misses, the call stack for a hardware counter overflow event is
recorded at some point further on in the sequence of instructions than the point at
which the overflow occurred, for various reasons including the time taken to handle
the interrupt generated by the overflow. For some counters, such as cycles or
instructions issued, this does not matter. For other counters, such as those counting
cache misses or floating point operations, the metric is attributed to a different
instruction from that which is responsible for the overflow. Often the PC that caused
the event is only a few instructions before the recorded PC, and the instruction can
be correctly located in the disassembly listing. However, if there is a branch target
within this instruction range, it might be difficult or impossible to tell which
instruction corresponds to the PC that caused the event. For hardware counters that
count memory access events, the Collector searches for the PC that caused the event
if the counter name is prefixed with a “+”.

Special Lines in the Disassembly and PCs Tabs

There are a number of special lines that may appear in the Disassembly and PCs
tabs. This section describes such lines using examples as they might appear in the
analyzer.

= <static>@x1a4400 + 0x000032B8
Represents a static function and its offset

» <library.so> -- no functions found + O0x0000F870
As above, with offset

= Method_Name <Hot Spot-conpiled |eaf instructions>
Represents the HotSpot-compiled version of the named Java method

= Method Name <Java native nethod>
Represents instructions generated by a Java native method

= <no Java callstack recorded> + 0x00000000
The offset is an error code from the JVM, usually 0 indicating nothing -- but no
unwind

= <branch target>
In disassembly, where the backtracking for event PC and its effective address fails
because it runs into a branch target, and so can not back up past it.
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Program Linkage Table (PLT) Instructions

When a function in one load object calls a function in a different shared object, the

actual call transfers first to a three-instruction sequence in the PLT, and then to the

real destination. The analyzer removes PCs that correspond to the PLT, and assigns
the metrics for these PCs to the call instruction. Therefore, if a call instruction has an
unexpectedly high metric, it could be due to the PLT instructions rather than the call
instructions. See also “Function Calls Between Shared Objects” on page 204.

Chapter 7 Understanding the Performance Analyzer and Its Data 233



234  Program Performance Analysis Tools « May 2003



CHAPTER 8

Manipulating Experiments and
Viewing Annotated Code Listings

This chapter describes the utilities which are available for use with the Collector and
Performance Analyzer.

This chapter covers the following topics:

= Manipulating Experiments
= Viewing Annotated Code Listings With er _src
= Other Utilities

Manipulating Experiments

Experiments are stored in a directory that is created by the Collector. To manipulate
experiments, you can use the usual Unix commands cp, mv and r mand apply them
to the directory. This is not true for experiments from releases earlier than Forte
Developer 7 (Sun™ ONE Studio 7, Enterprise Edition for Solaris™). Three utilities
which behave like the Unix commands have been provided to copy, move and delete
experiments. These utilities are er _cp(1), er _mv(1) and er _r n(1), and are described
below.

The data in the experiment includes archive files for each of the load objects used by
your program. These archive files contain the absolute path of the load object and
the date on which it was last modified. This information is not changed when you
move or copy an experiment.

er _cp [-V] experimentl experiment2

er_cp [-V] experiment-list directory
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The first form of the er _cp command copies experimentl to experiment2. If
experiment2 exists, er _cp exits with an error message. The second form copies a
blank-separated list of experiments to a directory. If the directory already contains
an experiment with the same name as one of the experiments being copied, er _nv
exits with an error message. The - V option prints the version of er _cp. This
command does not copy experiments created with software releases earlier than the
Forte Developer 7 release.

er _mv [-V] experimentl experiment2
er_mv [-V] experiment-list directory

The first form of the er _mv command moves experimentl to experiment2. If
experiment2 exists, er _mv exits with an error message. The second form moves a
blank-separated list of experiments to a directory. If the directory already contains
an experiment with the same name as one of the experiments being moved, er _nmv
exits with an error message. The - V option prints the version of er _nv. This
command does not move experiments created with software releases earlier than the
Forte Developer 7 release.

er_rm [-f] [-V] experiment-list

Removes a list of experiments or experiment groups. When experiment groups are
removed, each experiment in the group is removed then the group file is removed.
The - f option suppresses error messages and ensures successful completion,
whether or not the experiments are found. The - V option prints the version of

er _rm This command removes experiments created with software releases earlier
than the Forte Developer 7 release.
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Viewing Annotated Code Listings With
er_src

Annotated source code and annotated disassembly code can be viewed using the
er _sr c utility, without running an experiment. The display is generated in the same
way as in the Performance Analyzer, except that it does not display any metrics. The
syntax of the er _src command is

er_src [ options ] object item tag
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object is the name of an executable, a shared object, or an object file (. o file).

item is the name of a function or of a source or object file used to build the executable
or shared object; it can be omitted when an object file is specified.

tag is an index used to determine which item is being referred to when multiple
functions have the same name. If it is not needed, it can be omitted. If it is needed
and is omitted, a message listing the possible choices is printed.

The following sections describe the options accepted by the er _sr c utility.

-C commentary-classes

Define the compiler commentary classes to be shown. commentary-classes is a list of
classes separated by colons. See “Commands Controlling the Source and
Disassembly Listings” on page 178 for a description of these classes.

The commentary classes can be specified in a defaults file. The system wide er. rc
defaults file is read first, then a . er. r ¢ file in the user’s home directory, if present,
then a . er. rc file in the current directory. Defaults from the . er. r c file in your
home directory override the system defaults, and defaults from the . er. r ¢ file in
the current directory override both home and system defaults. These files are also
used by the Performance Analyzer and er _pri nt, but only the settings for source
and disassembly compiler commentary are used by er _src.

See “Default-Setting Commands” on page 188 for a description of the defaults files.
Commands in a defaults file other than scc and dcc are ignored by er _src.

-d

Include the disassembly in the listing. The default listing does not include the
disassembly. If there is no source available, a listing of the disassembly without
compiler commentary is produced.

-0 filename

Open the file filename for output of the listing. By default, output is written to
st dout .

-V

Print the current release version.
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Other Utilities

There are some other utilities that should not need to be used in normal
circumstances. They are documented here for completeness, with a description of
the circumstances in which it might be necessary to use them.

The er _ar chi ve Utility

The syntax of the er_archive command is as follows.

er_archive [—gAF] experiment
er _archive -V

The er _ar chi ve utility is automatically run when an experiment completes
normally, or when the Performance Analyzer or er _pri nt command is started on
an experiment. It reads the list of shared objects referenced in the experiment, and
constructs an archive file for each. Each output file is named with a suffix of

. archi ve, and contains function and module mappings for the shared object.

If the target program terminates abnormally, er _ar chi ve might not be run by the
Collector. If you want to examine the experiment from an abnormally-terminated
run on a different machine from the one on which it was recorded, you must run
er _ar chi ve on the experiment, on the machine on which the data was recorded. To
ensure that the load objects are available on the machine to which the experiment is
copied, use the - A option.

An archive file is generated for all shared objects referred to in the experiment. These
archives contain the addresses, sizes and names of each object file and each function
in the load object, as well as the absolute path of the load object and a time stamp for
its last modification.

If the shared object cannot be found when er _ar chi ve is run, or if it has a time
stamp differing from that recorded in the experiment, or if er _ar chi ve isrun on a
different machine from that on which the experiment was recorded, the archive file
contains a warning. Warnings are also written to st derr whenever er _ar chi ve is
run manually (without the - q flag).

The following sections describe the options accepted by the er _ar chi ve utility.
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—q
Do not write any warnings to st der r. Warnings are incorporated into the archive
file, and shown in the Performance Analyzer or er _pri nt output.

A

Request writing of all load objects into the experiment. This argument can be used to
generate experiments that are more readily copied to a machine other than the one
on which the experiment was recorded.

—F

Force writing or rewriting of archive files. This argument can be used to run

er _ar chi ve by hand, to rewrite files that had warnings.

-V

Write version number information for er _ar chi ve and exit.

The er _export Utility

The syntax of the er _export command is as follows.

er_export [-V] experiment

The er _export utility converts the raw data in an experiment into ASCII text. The
format and the content of the file are subject to change, and should not be relied on
for any use. This utility is intended to be used only when the Performance Analyzer
cannot read an experiment; the output allows the tool developers to understand the
raw data and analyze the failure. The —V option prints version number information.
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APPENDIX A

Profiling Programs With pr of ,
gpr of ,andt cov

The tools discussed in this appendix are standard utilities for timing programs and
obtaining performance data to analyze, and are called “traditional profiling tools”.
The profiling tools pr of and gpr of are provided with the Solaris™ operating
environment. t cov is a code coverage tool provided with the Sun™ ONE Studio
product.

Note — If you want to track how many times a function is called or how often a line
of source code is executed, use the traditional profiling tools. If you want a detailed
analysis of where your program is spending time, you can get more accurate
information using the Collector and Performance Analyzer. See Chapter 4 and
Chapter 5 for information on using these tools.

TABLE A-1 describes the information that is generated by these standard performance
profiling tools.

TABLE A-1  Performance Profiling Tools

Command Output

pr of Generates a statistical profile of the CPU time used by a program and an exact
count of the number of times each function is entered.

gpr of Generates a statistical profile of the CPU time used by a program, along with an
exact count of the number of times each function is entered and the number of
times each arc (caller-callee pair) in the program’s call graph is traversed.

tcov Generates exact counts of the number of times each statement in a program is
executed.

Not all the traditional profiling tools work on modules written in programming
languages other than C. See the sections on each tool for more information about
languages.
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This appendix covers the following topics:

= Using pr of to Generate a Program Profile

= Using gpr of to Generate a Call Graph Profile

= Using t cov for Statement-Level Analysis

= Using t cov Enhanced for Statement-Level Analysis

242

Using pr of to Generate a Program
Profile

pr of generates a statistical profile of the CPU time used by a program and counts
the number of times each function in a program is entered. Different or more
detailed data is provided by the gpr of call-graph profile and the t cov code
coverage tools.

To generate a profile report using pr of :

. Compile your program with the - p compiler option.

. Run your program.

Profiling data is sent to a profile file called non. out . This file is overwritten each
time you run the program.

. Run prof to generate a profile report.

The syntax of the pr of command is as follows.

% prof program-name

Here, program-name is the name of the executable. The profile report is written to
st dout . It is presented as a series of rows for each function under these column
headings:

= %I me—The percentage of the total CPU time consumed by this function.
= Seconds—The total CPU time accounted for by this function.

= Cumsecs—A running sum of the number of seconds accounted for by this
function and those listed before it.

» #Cal | s—The number of times this function is called.

= nsecs/ cal | —The average number of milliseconds this function consumes each
time it is called.

= Nanme—The name of the function.

Program Performance Analysis Tools « May 2003



%I me
19. 4
15.6
12. 6
10.5

©C 0 0 0 0 o w6 koo
o N N ©® © © Rk A O N W ©

The use of prof is illustrated in the following example.

%cc -p -0 index.assist index.assist.c
% i ndex. assi st
% prof index. assi st

The profile report from pr of is shown in the table below:

Seconds Cunsecs #Cal | s nsecs/ cal | Narme

3.28 3.28 11962 0.27 conpare_strings
2.64 5.92 32731 0.08 _strlen

2.14 8.06 4579 0.47 __dopr nt

1.78 9.84 ncount

1.68 11.52 6849 0.25 _get_field

0.90 12.42 762 1.18 _fgets

0. 80 13. 22 19715 0. 04 _strcnp

0. 67 13. 89 5329 0.13 _mal | oc

0.57 14. 46 11152 0. 05 _insert_index_entry
0.53 14.99 11152 0.05 _conpare_entry
0.42 15.41 1289 0.33 | modt

0.16 15. 57 761 0.21 _get_index_terns
0.16 15.73 3805 0. 04 _strcpy

0.14 15. 87 6849 0.02 _ski p_space

0.12 15. 99 13 9.23 _read

0.12 16. 11 1289 0. 09 I di vt

0. 10 16. 21 1405 0. 07 _print_index

(The rest of the output is insignificant)

The profile report shows that most of the program execution time is spent in the
conpar e_strings() function; after that, most of the CPU time is spent in the

_strlen() library function. To make this program more efficient, the user would

concentrate on the conpar e_stri ngs() function, which consumes nearly 20% of
the total CPU time, and improve the algorithm or reduce the number of calls.
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It is not obvious from the pr of profile report that conpar e_stri ngs() is heavily
recursive, but you can deduce this by using the call graph profile described in
“Using gpr of to Generate a Call Graph Profile” on page 244. In this particular case,
improving the algorithm also reduces the number of calls.

Note — For Solaris 7 and 8 platforms, the profile of CPU time is accurate for
programs that use multiple CPUs, but the fact that the counts are not locked may
affect the accuracy of the counts for functions.

Using gpr of to Generate a Call Graph
Profile

While the flat profile from pr of can provide valuable data for performance
improvements, a more detailed analysis can be obtained by using a call graph profile
to display a list identifying which modules are called by other modules, and which
modaules call other modules. Sometimes removing calls altogether can result in
performance improvements.

Note — gpr of attributes the time spent within a function to the callers in proportion
to the number of times that each arc is traversed. Because all calls are not equivalent
in performance, this behavior might lead to incorrect assumptions. See “Metric
Attribution and the gpr of Fallacy” on page 40 for an example.

Like pr of , gpr of generates a statistical profile of the CPU time that is used by a
program and it counts the number of times that each function is entered. gpr of also
counts the number of times that each arc in the program’s call graph is traversed. An
arc is a caller-callee pair.

Note — For Solaris 7 and 8 platforms, the profile of CPU time is accurate for
programs that use multiple CPUs, but the fact that the counts are not locked may
affect the accuracy of the counts for functions.

To generate a profile report using gpr of :

1. Compile your program with the appropriate compiler option.

= For C programs, use the - xpg option.
= For Fortran programs, use the - pg option.
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2. Run your program.
Profiling data is sent to a profile file called gnon. out . This file is overwritten each
time you run the program.

3. Run gpr of to generate a profile report.
The syntax of the pr of command is as follows.

% gpr of program-name

Here, program-name is the name of the executable. The profile report is written to
st dout, and can be large. The report consists of two major items:

= The full call graph profile, which shows information about the callers and callees
of each function in the program. The format is illustrated in the example given
below.

= The “flat” profile, which is similar to the summary the pr of command supplies.
The profile report from gpr of contains an explanation of what the various parts of

the summary mean and identifies the granularity of the sampling, as shown in the
following example.

granul arity: each sanple hit covers 4 byte(s) for 0.07%of 14.74
seconds

The “4 bytes” means resolution to a single instruction. The “0.07% of 14.74 seconds
means that each sample, representing ten milliseconds of CPU time, accounts for
0.07% of the run.

The use of gpr of is illustrated in the following example.

% cc -xpg -0 index.assist index.assist.c
% i ndex. assi st
% gprof index.assist > g.output
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The following table is part of the call graph profile.

i ndex % i me sel f

descendant s

called/tota

.00
.00
.59

[2] 98. 2

.02
.20

.06
.10
.09
.04

0
0
0
0
0
0.94
0
0
0
0
0.07

14. 47
14. 47
5.70
3.16

.06
62
46
23
23
00

.59
[3] 42.6 59
53
.02

.00

© o o o o

.70
70
13
01
.00

© o o u v

parents

cal | ed+sel f nane

cal l ed/ total

children

1/1 start

1 _main

760/ 760 _insert_index_entry
1/1 _print_index

761/ 761 _get _index_terns
762/ 762 _fgets

761/ 761 _get _page_nunber
761/ 761 _get _page_type

761/ 761 _skip_start

761/ 761 _get _i ndex_type
761/ 820 _insert_page_entry
10392 _insert_index_entry
760/ 760 _main

760+10392 _insert_index_entry

11152/ 11152 _conpare_entry

59/ 112 _free
59/ 820 _insert_page_entry
10392 _insert_index_entry

i ndex

(1]
(2]
(3]
[ 6]
[11]
[13]
[18]
[22]
[24]
[ 26]
[34]

(3]
(2]
(3]
[4]
[38]
[ 34]
(3]

In this example there are 761 lines of data in the input file to the i ndex. assi st
program. The following conclusions can be made:

= fgets() iscalled 762 times. The last call to f get s() returns an end-of-file.

= Theinsert_index_entry() function is called 760 times from mai n() .
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In addition to the 760 times thati nsert _i ndex_entry() is called from
mai n(),insert_index_entry() also calls itself 10,392 times.
i nsert _i ndex_entry() is heavily recursive.

conpar e_entry(), which is called from i nsert _i ndex_entry(), is called
11,152 times, which is equal to 760+10,392 times. There is one call to
conpare_entry() for every time thati nsert i ndex_entry() is called. This
is correct. If there were a discrepancy in the number of calls, you would suspect
some problem in the program logic.

i nsert _page_entry() is called 820 times in total: 761 times from mai n()
while the program is building index nodes, and 59 times from

i nsert _i ndex_entry(). This frequency indicates that there are 59 duplicated
index entries, so their page number entries are linked into a chain with the index
nodes. The duplicate index entries are then freed; hence the 59 calls to free() .

Using t cov for Statement-Level
Analysis

The t cov utility gives information on how often a program executes segments of
code. It produces a copy of the source file, annotated with execution frequencies. The
code can be annotated at the basic block level or the source line level. A basic block
is a linear segment of source code with no branches. The statements in a basic block
are executed the same number of times, so a count of basic block executions also tells
you how many times each statement in the block was executed. The t cov utility
does not produce any time-based data.

Note — Although t cov works with both C and C++ programs, it does not support
files that contain #1 i ne or #f i | e directives. t cov does not enable test coverage
analysis of the code in the #i ncl ude header files.

To generate annotated source code using t cov:

. Compile your program with the appropriate compiler option.

For C programs, use the - xa option.
For Fortran and C++ programs, use the - a option.

If you compile with the - a or - xa option you must also link with it. The compiler
creates a coverage data file with the suffix . d for each object file. The coverage data
file is created in the directory specified by the environment variable TCOVDI R. If
TCOVDI Ris not set, the coverage data file is created in the current directory.
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Note — Programs compiled with - xa (C) or - a (other compilers) run more slowly
than they normally would, because updating the . d file for each execution takes
considerable time.

2. Run your program.
When your program completes, the coverage data files are updated.

3. Runt cov to generate annotated source code.
The syntax of the t cov command is as follows.

% t cov options source-file-list

Here, source-file-list is a list of the source code filenames. For a list of options, see the
t cov(1l) man page. The default output of t cov is a set of files, each with the suffix
. t cov, which can be changed with the - o filename option.

A program compiled for code coverage analysis can be run multiple times (with
potentially varying input); t cov can be used on the program after each run to
compare behavior.

The following example illustrates the use of t cov.

% cc -xa -0 index.assist index.assist.c
% i ndex. assi st
% tcov i ndex.assist.c
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This small fragment of the C code from one of the modules of i ndex. assi st shows
the i nsert _i ndex_entry() function, which is called recursively. The numbers to
the left of the C code show how many times each basic block was executed. The
insert _i ndex_entry() function is called 11,152 times.

11152

59

11093

3956
3626

330

7137
6766

371

->

->

->
->

->
->

struct index_entry *

i nsert _i ndex_entry(node, entry)
struct index_entry *node;
struct index_entry *entry;

{
int result;
int |evel;
result = conpare_entry(node, entry);
if (result == 0) { /* exact match */
/* Place the page entry for the duplicate */
/* into the |list of pages for this node */
i nsert _page_entry(node, entry->page_entry);
free(entry)
return(node);
}
if (result > 0) /* node greater than new entry -- */
/* nove to | esser nodes */
i f (node->lesser != NULL)
i nsert_i ndex_entry(node->l esser, entry);
el se {
node- >l esser = entry;
return (node->l esser);
}
el se /* node | ess than new entry -- */
/* move to greater nodes */
if (node->greater != NULL)
i nsert_i ndex_entry(node->greater, entry);
el se {
node- >greater = entry;
return (node->greater);
}
}

The t cov utility places a summary like the following at the end of the annotated
program listing. The statistics for the most frequently executed basic blocks are listed
in order of execution frequency. The line number is the number of the first line in the
block.

Appendix A Profiling Programs With pr of , gpr of ,and tcov 249




The following is the summary for the i ndex. assi st program:

Top 10 Bl ocks

Li ne Count
240 21563
241 21563
245 21563
251 21563
250 21400
244 21299
255 20612
257 16805
123 12021
124 11962
77 Basic blocks in this file
55 Basi ¢ bl ocks executed
71.43 Percent of the file executed
439144 Total basic block executions

5703. 17 Aver age executions per basic block

Creating t cov Profiled Shared Libraries

It is possible to create a t cov profiled shareable library and use it in place of the
corresponding library in binaries which have already been linked. Include the - xa
(C) or - a (other compilers) option when creating the shareable libraries, as shown in
this example.

%cc -G-xa -o foo.so.1 foo.o
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This command includes a copy of the t cov profiling functions in the shareable
libraries, so that clients of the library do not need to relink. If a client of the library is
already linked for profiling, then the version of the t cov functions used by the client
is used to profile the shareable library.

Locking Files

t cov uses a simple file-locking mechanism for updating the block coverage database
in the . d files. It employs a single file, t cov. | ock, for this purpose. Consequently,
only one executable compiled with - xa (C) or - a (other compilers) should be
running on the system at a time. If the execution of the program compiled with the
- xa (or - a) option is manually terminated, then the t cov. | ock file must be deleted
manually.

Files compiled with the - xa or - a option call the profiling tool functions
automatically when a program is linked for t cov profiling. At program exit, these
functions combine the information collected at runtime for file xyz. f (for example)
with the existing profiling information stored in file xyz. d. To ensure this
information is not corrupted by several people simultaneously running a profiled
binary, axyz. d. | ock lock file is created for xyz. d for the duration of the update. If
there are any errors in opening or reading xyz. d or its lock file, or if there are
inconsistencies between the runtime information and the stored information, the
information stored in xyz. d is not changed.

If you edit and recompile xyz. f the number of counters in xyz. d can change. This
is detected if an old profiled binary is run.

If too many people are running a profiled binary, some of them cannot obtain a lock.
An error message is displayed after a delay of several seconds. The stored
information is not updated. This locking is safe across a network. Since locking is
performed on a file-by-file basis, other files may be correctly updated.

The profiling functions attempt to deal with automounted file systems that have
become inaccessible. They still fail if the file system containing a coverage data file is
mounted with different names on different machines, or if the user running the
profiled binary does not have permission to write to either the coverage data file or
the directory containing it. Be sure all the directories are uniformly named and
writable by anyone expected to run the binary.
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Errors Reported by t cov Runtime Functions

The following error messages may be reported by the t cov runtime functions:

= The user running the binary lacks permission to read or write to the coverage
data file. The problem also occurs if the coverage data file has been deleted.

tcov_exit: Coul d not open coverage data fil e ' coverage-data-file-name'
because ' system-error-message-string' .

= The user running the binary lacks permission to write to the directory containing
the coverage data file. The problem also occurs if the directory containing the
coverage data file is not mounted on the machine where the binary is being run.

tcov_exit: Couldnot wite coverage data fil e ' coverage-data-file-name'
because ' system-error-message-string' .

= ToO many users are trying to update a coverage data file at the same time. The
problem also occurs if a machine has crashed while a coverage data file is being
updated, leaving behind a lock file. In the event of a crash, the longer of the two
files should be used as the post-crash coverage data file. Manually remove the
lock file.

tcov_exit: Failed to create | ock file 'lock-file-name' for coverage
data file 'coverage-data-file-name' after 5 tries. |s soneone el se
runni ng this executabl e?

= No memory is available, and the standard 1/0 package will not work. You cannot
update the coverage data file at this point.

tcov_exit: Stdio failure, probably no menory left.

= The lock file name is longer by six characters than the coverage data file name.
Therefore, the derived lock file name may not be legal.

tcov_exit: Coverage data file path nane too | ong (length
char act ers) ' coverage-data-file-name' .

= A library or binary that has t cov profiling enabled is simultaneously being run,
edited, and recompiled. The old binary expects a coverage data file of a certain
size, but the editing often changes that size. If the compiler creates a new
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coverage data file at the same time that the old binary is trying to update the old
coverage data file, the binary may see an apparently empty or corrupt coverage
file.

tcov_exit: Coverage data file 'coverage-data-file-name' is too short.
Is it out of date?

Using t cov Enhanced for Statement-
Level Analysis

Like the original t cov, t cov Enhanced gives line-by-line information on how a
program executes. It produces a copy of the source file, annotated to show which
lines are used and how often. It also gives a summary of information about basic
blocks. t cov Enhanced works with both C and C++ source files.

t cov Enhanced overcomes some of the shortcomings of the original t cov. The
improved features of t cov Enhanced are:
= It provides more complete support for C++.

= It supports code found in #i ncl ude header files and corrects a flaw that
obscured coverage numbers for template classes and functions.

= Its runtime is more efficient than the original t cov runtime.
= It is supported for all the platforms that the compilers support.

To generate annotated source code using t cov Enhanced:

. Compile your program with the - xpr of i | e=t cov compiler option.
Unlike t cov, t cov Enhanced does not generate any files at compile time.

. Run your program.

A directory is created to store the profile data, and a single coverage data file called
t covd is created in that directory. By default, the directory is created in the location
where you run the program program-name, and it is called program-name. profi | e.

The directory is also known as the profile bucket. The defaults can be changed using
environment variables (see “t cov Directories and Environment Variables” on

page 255).
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3. Run t cov to generate annotated source code.
The syntax of the t cov command is as follows.

% t cov option-list source-file-list

Here, source-file-list is a list of the source code filenames, and option-list is a list of
options, which can be obtained from the t cov(1) man page. You must include the - x
option to enable t cov Enhanced processing.

The default output of t cov Enhanced is a set of annotated source files whose names
are derived by appending . t cov to the corresponding source file name.

The following example illustrates the syntax of t cov Enhanced.

% cc -xprofile=tcov -0 index.assist index.assist.c
% i ndex. assi st
%tcov -x index.assist.profile index.assist.c

The output of t cov Enhanced is identical to the output from the original t cov.

Creating Profiled Shared Libraries for t cov
Enhanced

You can create profiled shared libraries for use with t cov Enhanced by including
the - xpr of i | e=t cov compiler option, as shown in the following example.

%cc -G -xprofile=tcov -0 foo.so.1 foo.o

Locking Files

t cov Enhanced uses a simple file-locking mechanism for updating the block
coverage data file. It employs a single file created in the same directory as the t covd
file. The file name is t covd. t enp. | ock. If execution of the program compiled for
coverage analysis is manually terminated, then the lock file must be deleted
manually.
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The locking scheme does an exponential back-off if there is a contention for the lock.
If, after five tries, the t cov runtime cannot acquire the lock, it exits, and the data is
lost for that run. In this case, the following message is displayed.

tcov_exit: temp file exists, is someone else running this
execut abl e?

t cov Directories and Environment Variables

When you compile a program for t cov and run the program, the running program
generates a profile bucket. If a previous profile bucket exists, the program uses that
profile bucket. If a profile bucket does not exist, it creates the profile bucket.

The profile bucket specifies the directory where the profile output is generated. The
name and location of the profile output are controlled by defaults that you can
modify with environment variables.

Note — t cov uses the same defaults and environment variables that are used by the
compiler options that you use to gather profile feedback: - xpr of i | e=col | ect and
- xprof i | e=use. For more information about these compiler options, see the
documentation for the relevant compiler.

The default profile bucket is named after the executable with a . profi | e extension
and is created in the directory where the executable is run. Therefore, if you run a
program called / usr/ bi n/ xyz from / hone/ user di r, the default behavior is to
create a profile bucket called xyz. profil e in/hone/userdir.

A UNIX process can change its current working directory during the execution of a
program. The current working directory used to generate the profile bucket is the
current working directory of the program at exit. In the rare case where a program
actually does change its current working directory during execution, you can use the
environment variables to control where the profile bucket is generated.

You can set the following environment variables to modify the defaults:
= SUN_PROFDATA

Can be used to specify the name of the profile bucket at runtime. The value of this
variable is always appended to the value of SUN_PROFDATA_DI Rif both variables
are set. Doing this may be useful if the name of the executable is not the same as
the value in ar gv[ 0] (for example, the invocation of the executable was through
a symbolic link with a different name).

Appendix A Profiling Programs With pr of , gpr of , and tcov = 255



= SUN_PROFDATA_DI R

Can be used to specify the name of the directory that contains the profile bucket.
It is used at runtime and by the t cov command.

= TCOVDI R

TCOVDI R is supported as a synonym for SUN_PROFDATA DI R to maintain
backward compatibility. Any setting of SUN_PROFDATA_DI R causes TCOVDI Rto
be ignored. If both SUN_PROFDATA DI Rand TCOVDI R are set, a warning is
displayed when the profile bucket is generated.

TCOVDI Ris used at runtime and by the t cov command.
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Index

A
accessible documentation, 23
adding experiments to the Performance
Analyzer, 161
address spaces, text and data regions, 215
aliased functions, 216
alternate entry points in Fortran functions, 217
anal yzer command, 141
Analyzer, See Performance Analyzer
annotated disassembly code, See disassembly code,
annotated
annotated source code, See source code, annotated
API, Collector, 105
arc, call graph, defined, 244
archiving load objects in experiments, 125, 131
asynchronous 170 library, interaction with data
collection, 105
attaching the Collector to a running process, 133
attributed metrics
defined, 98
displayed in the Callers-Callees tab, 145
effect of recursion on, 100
illustrated, 99
use of, 99

B

body functions, compiler-generated
defined, 210
displayed by the Performance Analyzer, 219

names, 211
propagation of inclusive metrics, 213

C

C++ name demangling, setting default library in
.er.rcfile, 189
call stacks
default alignment and depth in the Timeline
tab, 190
defined, 203
effect of tail-call optimization on, 206
in the Event tab, 159
incomplete unwind, 214
mapping addresses to program structure, 215
navigating, 145
representation in the Timeline tab, 153
unwinding, 203
callers-callees metrics
attributed, defined, 98
default, 145
displaying list of iner _print, 186
printing for a single function iner _print, 177
printinginer _print, 176
selecting iner _print, 176
sortorderiner _print, 177
clock-based profiling
accuracy of metrics, 200
collecting data in dbx, 127
collecting data with collect, 120
comparison with get hrti me and
get hrvti nme, 200
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data in profile packet, 197
defined, 88

distortion due to overheads, 199
interval, See profiling interval
metrics, 89, 198

cloned functions, 218
col | ect command

archiving (- A) option, 125

clock-based profiling (- p) option, 120

collecting data with, 119

data limit (- L) option, 125

dry run (- n) option, 126

experiment directory (- d) option, 124

experiment group (- g) option, 125

experiment name (- 0) option, 125

follow descendant processes (- F) option, 122

hardware-counter overflow profiling (- h)
option, 120

heap tracing (- H) option, 121

Java version (- j ) option, 123

listing the options of, 119

MPI tracing (- m) option, 122

pause and resume data recording (- y)
option, 124

periodic sampling (- S) option, 122

readme display (- R) option, 126

record sample point (- | ) option, 123

stop target after exec (- x) option, 124

synchronization wait tracing (- s) option, 121

syntax, 119

verbose (- v) option, 126

version (- V) option, 126

Collector

API, using in your program, 105
attaching to a running process, 133
defined, 27, 87

disabling in dbx, 130

enabling in dbx, 130

running in dbx, 126

running with col | ect, 119

color coding

for all functions, 159
for functions in event markers, 159
in the Timeline tab, 152

description of, 227
example, 84
in the Disassembly tab, 148
in the Source tab, 146
selecting for annotated disassembly listing in
er_print, 180
selecting for annotated source listing in
er_print, 179
selecting for display in the Source and
Disassembly tabs, 163
compiler-generated body functions
defined, 210
displayed by the Performance Analyzer, 219
names, 211
propagation of inclusive metrics, 213
compilers, accessing, 20
compiling
for gpr of , 244
for prof , 242
fort cov, 247
for t cov Enhanced, 253
copying an experiment, 236
correlation, effect on metrics, 199
CPUs
listing selected, iner _print, 183
selectinginer _print, 184

D

data collection
controlling from your program, 105
disabling from your program, 109
disabling in dbx, 130
enabling in dbx, 130
from MPI programs, 135
linking for, 102
MPI program, using col | ect, 138
MPI program, using dbx, 138
pausing for col | ect, 124
pausing from your program, 108
pausing in dbx, 131
rate of, 118
resuming for col | ect, 124

common subexpression elimination, 227
comparing experiments, 161

compiler commentary
classes defined, 179

resuming from your program, 108
resuming in dbx, 131

using col | ect, 119

using dbx, 126
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data types, 88

clock-based profiling, 88

default, in the Timeline tab, 190
hardware counter overflow profiling, 90
heap tracing, 94

MPI tracing, 95

synchronization wait tracing, 93

dbx

collecting data under MPI, 138
running the Collector in, 126

dbx col | ect or subcommands

archive, 131

dbxsanpl e, 130

di sabl e, 130

enabl e, 130

enabl e_once (obsolete), 132
hwpr of i | e, 128

limt, 131

pause, 131

profile, 127

qui t (obsolete), 132
resune, 131

sanpl e, 130

sanpl e record, 131

show, 132

st at us, 132

store, 132

store fil enane (obsolete), 132
synctrace, 129

defaults

read by the Performance Analyzer, 165
saving from the Performance Analyzer, 166
setting in a defaults file, 188

descendant processes

collecting data for all followed, 122
collecting data for selected, 133
example, 48

experiment location, 116

experiment names, 117

followed by Collector, 114
limitations on data collection for, 114

directives, parallelization

attribution of metrics to, 227
microtasking library calls from, 210

disassembly code, annotated

description, 228
for cloned functions, 218
for Java compiled methods, 149

hardware counter metric attribution, 232
in the Disassembly tab, 148
instruction issue dependencies, 229
interpreting, 229
location of executable, 117
metric formats, 226
printing iner _print, 179
setting preferences iner _print, 180
setting preferences in the Performance
Analyzer, 163
setting the highlighting threshold in
er_print, 180
viewing with er _src, 236
disk space, estimating for experiments, 117
documentation index, 22
documentation, accessing, 22 to 23
dropping experiments from the Performance
Analyzer, 162
dynamically compiled functions
Collector API for, 109
definition, 220
in the Source tab, 147

E

entry points, alternate, in Fortran functions, 217

environment variables
JAVA PATH, 114
JDK_1_4 HOME, 114
JDK_HOVE, 114
LD LI BRARY_PATH, 135
LD PRELOAD, 134
PATH, 114
SUN_PROFDATA, 255
SUN_PROFDATA DI R, 256
TCOVDI R, 247, 256

er _archi ve utility, 238

er _cp utility, 236

er _export utility, 239

er _nv utility, 236

er _print commands
al l ocs, 177
cal l ers-call ees, 176
cnetric_list, 186
crmetrics, 176
cpu_list, 183
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cpu_sel ect, 184 commands, See er _pri nt commands

csingle, 177 metric keywords, 172

csort, 177 metric lists, 170

dcc, 180 purpose, 169

di sasm 179 syntax, 170

dnetrics, 188 er _r mutility, 236

dsort, 189 er_src utility, 236

exp_l st 182 error messages, from Performance Analyzer
fsingle, 175 session, 156

fsumary, 175
functi ons, 173
gdemangl e, 189

errors reported by t cov, 252
event markers

header, 187 color coding, 159

hel p, 191 description, 153

| eaks, 177 events

limt, 186 default display type in the Timeline tab, 190
l'i nes, 178 exclusive metrics

| sunmary, 178 defined, 98

lwp_list, 182 for PLT instructions, 205

I wp_sel ect, 184 how computed, 203

mapfile, 191 illustrated, 99

netric_list, 186 use of, 98

metrics, 174 execution statistics

nane, 186 comparison of times with the <Tot al >
obj ect _|ist, 185 function, 200

obj ect _sel ect, 185 in the Statistics tab, 154

obj ects, 187 printinginer _print, 187

outfile, 186 experiment directory

overvi ew, 187 default, 116

pcs, 178 specifying in dbx, 132

psunmmary, 178 specifying with col | ect, 124

quit, 191

experiment groups

sanmpl e_l i st, 182 default name, 116

sanpl e_sel ect, 184 defined, 116

scc, 179 name restrictions, 116

script, 191 removing, 236

sort, 174 specifying name in dbx, 132
source, 178 specifying name with col | ect, 125
src, 178

experiment names
default, 116
MPI default, 116, 137
MPI, using MPl _conmm r ank and a script, 139
restrictions, 116

statistics, 187

st hresh, 180
thread |ist, 182

t hread_sel ect, 184

E: 23;2‘ 138 specifying in dbx, 132
Ver si oln 101 specifying with col | ect, 125
ver si on: 191 experiments
er_print utility See also experiment directory; experiment

command-line options, 170 groups; experiment names
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adding to the Performance Analyzer, 161
archiving load objects in, 125, 131
comparing, 161

copying, 236

default name, 116

defined, 115

dropping from the Performance Analyzer, 162
groups, 116

header information in er _pri nt, 187
header information in the Experiments tab, 155
limiting the size of, 125, 131

listinginer _print, 182

location, 116

moving, 117, 236

moving MPI, 137

MPI storage issues, 136

naming, 116

removing, 236

storage requirements, estimating, 117
terminating from your program, 109
where stored, 124, 132

explicit multithreading, 207

F
fast traps, 206
Fortran
alternate entry points, 217
Collector API, 105
subroutines, 216
frames, stack, See stack frames
function calls
between shared objects, 204
imputed, in OpenMP programs, 213
in single-threaded programs, 204
recursive, example, 43
recursive, metric assignment to, 100
function list
printinginer _print, 173
sort order, specifying iner _print, 174
function names, C++
choosing long or short form iner _pri nt, 186
setting default demangling library in. er.rc
file, 189
function-list metrics
displaying listof iner _pri nt, 186
selecting defaultin . er. r ¢ file, 188

selecting iner _print, 174
setting default sort order in . er . r c file, 189
functions

@l t, 205

address within a load object, 216

aliased, 216

alternate entry points (Fortran), 217

body, compiler-generated, See body functions,
compiler-generated

cloned, 218

Collector API, 105, 110

color coding for Timeline tab, 159

definition of, 216

dynamically compiled, 109, 220

global, 216

inlined, 218

Java methods displayed, 144

MPI, traced, 95

non-unique, names of, 216

outline, 220

searching for in the Functions and Callers-
Callees tabs, 166

selected, 143

static, in stripped shared libraries, 217

static, with duplicate names, 216

system library, interposition by Collector, 104

<Tot al >, 222

<Unknown>, 221

variation in addresses of, 215

wrapper, 217

G
gpr of
fallacy, 42
limitations, 244
output from, interpreting, 245
summary, 241
using, 244
H

hardware counter library, | i bcpc. so, 113
hardware counter list

description of fields, 91

obtaining with col | ect, 119

obtaining with dbx col | ect or, 128
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hardware counters
choosing with col | ect, 120
choosing with dbx col | ect or, 128
list described, 91
obtaining a list of, 119, 128
overflow value, 90
hardware-counter overflow profiling
collecting data with col | ect, 120
collecting data with dbx, 128
data in profile packet, 201
defined, 90
example, 78
limitations, 113
hardware-counter overflow value
consequences of too small or too large, 201
defined, 90
experiment size, effect on, 118
setting in dbx, 128
setting with col | ect, 121
heap tracing
collecting data in dbx, 129
collecting data with col | ect, 121
metrics, 94
preloading the Collector library, 134
high metric values
in annotated disassembly code, 149, 180
in annotated source code, 146, 180
searching for in the Source and Disassembly
tabs, 166

highlighting threshold, See threshold, highlighting

inclusive metrics
defined, 98
effect of recursion on, 100
for PLT instructions, 205
how computed, 203
illustrated, 99
use of, 99
inlined functions, 218
input file
terminating iner _pri nt, 191
toer_print, 191
instruction issue
delay, 231

grouping, effect on annotated disassembly, 229
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intermediate files, use for annotated source
listings, 103

interposition by Collector on system library
functions, 104

interval, profiling, See profiling interval

interval, sampling, See sampling interval

J

Java memory allocations, 94
Java methods
annotated disassembly code for, 149
annotated source code for, 147
dynamically compiled, 110, 220
in the Functions tab, 144
Java monitors, 93
Java profiling, limitations, 114
JAVA PATHenvironment variable, 114
JDK_1_4 HOME environment variable, 114
JDK_HOME environment variable, 114

K
keywords, metric, er _pri nt utility, 172

L

LD LI BRARY_PATHenvironment variable, 135
LD PRELOAD environment variable, 134

leaf PC, defined, 203

leaks, memory: definition, 95

| i bai 0. so, interaction with data collection, 105

I'i bcol | ector. soshared library
preloading, 134
using in your program, 105
I'i bcpc. so, use of, 113
libraries
interposition on, 104
|'i bai 0.so, 105
l'ibcollector. so, 105,134
I'i bcpc. so, 104,113
|'i bt hr ead. so, 104, 207, 211
MPI, 104, 135
static linking, 102



stripped shared, and static functions, 217 clock-based profiling, 89, 198

system, 104 default, 166
limitations defined, 87
descendant process data collection, 114 effect of correlation, 199
experiment group names, 116 exclusive, See exclusive metrics
experiment name, 116 function-list, See function-list metrics
hardware-counter overflow profiling, 113 hardware counter, attributing to
Java profiling, 114 instructions, 232
profiling interval value, 111 heap tracing, 94
t cov, 247 inclusive, See inclusive metrics
limiting output in er _print, 186 interpreting for instructions, 229

interpreting for source lines, 226
memory allocation, 94
MPI tracing, 95
synchronization wait tracing, 93
timing, 89

microstates
contribution to metrics, 198
switching, 206

limiting the experiment size, 125, 131
load objects
addresses of functions, 216
contents of, 215
defined, 215
information on in Experiments tab, 155
listing selected, iner _print, 185
printing listiner _print, 187

searching for in the Functions and Callers- microtasking library routines, 210
Callees tabs, 166 moving an experiment, 117, 236

selecting iner _print, 185 MPI experiments
symbol tables, 215 default name, 116

lock file management loading into the Performance Analyzer, 161
tcov, 251 moving, 137
t cov Enhanced, 254 storage issues, 136

LWPs MPI programs
creation by threads library, 207 attaching to, 135
data display in Timeline tab, 152 collecting data from, 135
listing selected, iner _print, 182 collecting data with col | ect, 138
selecting iner _print, 184 collecting data with dbx, 138
selecting in the Performance Analyzer, 165 experiment names, 116, 136, 137

experiment storage issues, 136
MPI tracing

collecting data in dbx, 129

M collecting data with col | ect, 122

man pages, accessing, 20 data in profile packet, 202

MANPATH environment variable, setting, 21 functions traced, 95

mapfiles interpretation of metrics, 202
generating with er _print, 191 metrics, 95
generating with the Performance Analyzer, 167 preloading the Collector library, 134
reordering a program with, 167 multithreaded applications

memory allocations, 94 attaching the Collector to, 133

execution sequence, 211
multithreading

explicit, 207

parallelization directives, 210

memory leaks, definition, 95
methods, See functions

metrics
attributed, See attributed metrics
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N

naming an experiment, 116
navigating program structure, 145
non-unique function names, 216

O

OpenMP parallelization, 210

optimizations
common subexpression elimination, 227
tail-call, 206

options, command-line, er _pri nt utility, 170

outline functions, 220

output file, iner _print, 186

overflow value, hardware-counter, See hardware-
counter overflow value

overview data, printing iner _pri nt, 187

P

parallel execution

call sequence, 211

directives, 210
PATHenvironment variable, 114
PATHenvironment variable, setting, 21
pausing data collection

forcol | ect, 124

from your program, 108

indbx, 131
PCs
defined, 203

from PLT, 205

ordered listiner _print, 178

ordered list in the Performance Analyzer, 150
Performance Analyzer

adding experiments to, 161

callers-callees metrics, default, 145

configuring the display, 162

defined, 27, 141

display defaults, 165

dropping experiments from, 162

main window, 142

mapfiles, generating, 167

saving settings, 166

searching for functions and load objects, 166
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starting, 141
performance data, conversion into metrics, 87
performance metrics, See metrics
PLT (Program Linkage Table), 204, 233
@l t function, 205
preloading | i bcol | ector. so, 134
process address-space text and data regions, 215
pr of
limitations, 244
output from, 243
summary, 241
using, 242
profile bucket, t cov Enhanced, 253, 255
profile packet
clock-based data, 197
hardware-counter overflow data, 201
MPI tracing data, 202
size of, 118
synchronization wait tracing data, 200
profiled shared libraries, creating
fort cov, 250
for t cov Enhanced, 254
profiling interval
defined, 88
experiment size, effect on, 118
limitations on value, 111
setting with dbx col | ect or, 127
setting with the col | ect command, 120, 127
profiling, defined, 87
program counter (PC), defined, 203
program execution
call stacks described, 203
explicit multithreading, 207
OpenMP parallel, 211
shared objects and function calls, 204
signal handling, 205
single-threaded, 204
tail-call optimization, 206
traps, 205
Program Linkage Table (PLT), 204, 233
program structure, mapping call-stack addresses
to, 215
program, reordering with a mapfile, 167



R profiling, passing from dbx to col | ect, 124
use for manual sampling with col | ect, 123
use for pause and resume with col | ect, 124

recursive function calls
apparent, in OpenMP programs, 214

example, 43 single-threaded program execution, 204
metric assignment to, 100 sort order
removing an experiment or experiment group, 236 callers-callees metrics, iner _print, 177

function list, specifying iner _pri nt, 174
source code, annotated

compiler commentary, 227

description, 225

for cloned functions, 218

fromt cov, 249

in the Disassembly tab, 148

interpreting, 226

location of source files, 117
S metric formats, 226
parallelization directives in, 227

reordering a program with a mapfile, 167
restrictions, See limitations
resuming data collection

forcol | ect, 124

from your program, 108

in dbx, 131

samples Lo : 178
circumstances of recording, 96 prlqtlng iIner_pri nt, .
defined. 97 setting compiler commentary classes in

er_print, 179

setting preferences in the Performance
Analyzer, 163

setting the highlighting threshold in
er_print, 180

<Unknown> line, 227

use of intermediate files, 103

viewing with er _src, 236

information contained in packet, 96
interval, See sampling interval

listing selected, iner _pri nt, 182
manual recording in dbx, 131

manual recording with col | ect, 123
periodic recording in dbx, 130
periodic recording with col | ect, 122
recording from your program, 108

recording when dbx stops a process, 130 source lines _
representation in the Timeline tab, 152 ordered listiner _print, 178
selecting iner _print, 184 ordered list in the Performance Analyzer, 147
selecting in the Performance Analyzer, 165 stack frames
Sampling Collector, See Collector defined, 204
sampling interval from trap handler, 206
defined. 97 reuse of in tail-call optimization, 206
setting i’n dbx, 130 starting the Performance Analyzer, 141
setting with the col | ect command, 122 static functions
searching for functions and load objects in the duplicate names, 216
Performance Analyzer, 166 in stripped shared libraries, 217
set ui d, use of, 105 static linking, effect on data collection, 102
shared objects, function calls between, 204 storage requirements, estimating for

experiments, 117

shell prompts, 19 ) )
subroutines, See functions

signal handlers

installed by Collector, 105, 205 summary metrics

user program, 105 for a single function, printing iner _pri nt, 175
signals for all functions, printing iner _print, 175

calls to handlers, 205 SUN_PROFDATA environment variable, 255

profiling, 105 SUN_PROFDATA_DI Renvironment variable, 256
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symbol tables, load-object, 215
synchronization delay events
data in profile packet, 200
defined, 93
metric defined, 93
synchronization wait time
defined, 93, 201
metric, defined, 93
with unbound threads, 201
synchronization wait tracing
collecting data in dbx, 129
collecting data with col | ect, 121
data in profile packet, 200
defined, 93
example, 69
metrics, 93
preloading the Collector library, 134
threshold, See threshold, synchronization wait
tracing
wait time, 93, 201
syntax
er _ar chi ve utility, 238
er _export utility, 239
er _print utility, 170
er _src utility, 236

T
tail-call optimization, 206
t cov
annotated source code, 249
compiling a program for, 247
errors reported by, 252
limitations, 247
lock file management, 251
output, interpreting, 249
profiled shared libraries, creating, 250
summary, 241
using, 247
t cov Enhanced
advantages of, 253
compiling a program for, 253
lock file management, 254
profile bucket, 253, 255
profiled shared libraries, creating, 254
using, 253
TCOVDI Renvironment variable, 247, 256
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threads
bound and unbound, 207, 214
creation of, 207
library, 104, 207, 211
listing selected, iner _print, 182
main, 211
scheduling of, 207, 210
selectinginer _print, 184
selecting in the Performance Analyzer, 165
system, 200, 211
wait mode, 214
worker, 207, 211
threshold, highlighting
defined, 146
in annotated disassembly code, er _pri nt, 180
in annotated source code, er _print, 180
selecting for the Source and Disassembly
tabs, 163
threshold, synchronization wait tracing
calibration, 93
defined, 93
effect on collection overhead, 201
setting with dbx col | ect or, 129
setting with the col | ect command, 121, 129
TLB (translation lookaside buffer) misses, 81, 206,
232
<Tot al > function
comparing times with execution statistics, 200
described, 222
traps, 205
typographic conventions, 18

U

<Unknown> function

callers and callees, 221

mapping of PC to, 221
<Unknown> line, in annotated source code, 227
unwinding the call stack, 203

\%

version information
forcol | ect, 126
forer _cp, 236
forer _nv, 236



forer_print, 191

forer _rm 236

forer_src, 237

for the Performance Analyzer, 142

W

wait time, See synchronization wait time
warning messages, 156

wrapper functions, 217
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