
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun Performance Library
User’s Guide

Sun™ Studio 10

Part No. 819-0498-10
Janaury 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 11

Before You Read This Book 11

How This Book Is Organized 11

What Is Not in This Book 12

Related Documents and Web Sites 12

Typographic Conventions 13

Shell Prompts 14

Supported Platforms 14

Accessing Sun Studio Software and Man Pages 15

Accessing Sun Studio Documentation 18

Accessing Related Solaris Documentation 20

Resources for Developers 21

Contacting Sun Technical Support 21

Sun Welcomes Your Comments 21

1. Introduction 23

Libraries Included With Sun Performance Library 23

Netlib 24

Sun Performance Library Features 25

Mathematical Routines 26
 3

Compatibility With Previous LAPACK Versions 26

Getting Started With Sun Performance Library 27

Enabling Trap 6 28

2. Using Sun Performance Library 29

Improving Application Performance 29

Replacing Routines With Sun Performance Library Routines 29

Improving Performance of Other Libraries 30

Using Tools to Restructure Code 30

Fortran Interfaces 30

Fortran SUNPERF Module for Use With Fortran 95 31

Optional Arguments 33

Fortran Examples 34

C Interfaces 37

C Examples 39

3. SPARC Optimization and Parallel Processing 41

Using Sun Performance Library on SPARC Platforms 41

Compiling for SPARC Platforms 42

Compiling Code for a 64-Bit Enabled Solaris Operating Environment 43

64-Bit Integer Arguments 43

Parallel Processing on SPARC Platforms 46

Run-Time Issues 46

Degree of Parallelism 47

Synchronization Mechanisms 48

Parallel Processing Examples 49

4. Sun Performance Library for x86 53

Compiling for x86 Platforms 53
4 Sun Performance Library User’s Guide • January 2005

5. Working With Matrices 55

Matrix Storage Schemes 55

Banded Storage 55

Packed Storage 56

Matrix Types 57

General Matrices 57

Triangular Matrices 58

Symmetric Matrices 59

Tridiagonal Matrices 60

Sparse Matrices 60

Sparse Solver Matrix Data Formats 61

Sun Performance Library Sparse BLAS 63

Naming Conventions 63

Sparse Solver Routines 65

Routine Calling Order 67

Sparse Solver Examples 67

References 77

6. Using Sun Performance Library Signal Processing Routines 79

Forward and Inverse FFT Routines 80

Linear FFT Routines 82

Two-Dimensional FFT Routines 90

Three-Dimensional FFT Routines 95

Comments 101

Cosine and Sine Transforms 102

Fast Cosine and Sine Transform Routines 103

Fast Cosine Transforms 104

Fast Sine Transforms 105

Discrete Fast Cosine and Sine Transforms and Their Inverse 105
Contents 5

Fast Cosine Transform Examples 110

Fast Sine Transform Examples 112

Convolution and Correlation 114

Convolution 114

Correlation 115

Sun Performance Library Convolution and Correlation Routines 116

Arguments for Convolution and Correlation Routines 117

Work Array WORK for Convolution and Correlation Routines 119

Sample Program: Convolution 121

References 126

7. Interval BLAS Routines 127

Introduction 127

Intervals 127

IBLAS Routine Names 128

Naming Conventions 128

Fortran Interface 129

Binding Format 130

Language Bindings 130

References 134

A. Sun Performance Library Routines 135

LAPACK Routines 136

BLAS1 Routines 151

BLAS2 Routines 152

BLAS3 Routines 153

Sparse BLAS Routines 153

Sparse Solver Routines 155

Signal Processing Library Routines 155
6 Sun Performance Library User’s Guide • January 2005

Miscellaneous Signal Processing Routines 159

Interval BLAS (IBLAS) Routines 160

Sort Routines 166

Index 169
Contents 7

8 Sun Performance Library User’s Guide • January 2005

Tables

TABLE 3-1 Comparison of 32-bit and 64-bit Operating Environments 41

TABLE 5-1 Netlib Sparse BLAS Naming Conventions 64

TABLE 5-2 NIST Fortran Sparse BLAS Routine Naming Conventions 65

TABLE 5-3 Sparse Solver Routines 65

TABLE 5-4 Sparse Solver Routine Calling Order 67

TABLE 6-1 FFT Routines and Their Arguments 80

TABLE 6-2 Single Precision Linear FFT Routines 83

TABLE 6-3 Single Precision Two-Dimensional FFT Routines 91

TABLE 6-4 Single Precision Three-Dimensional FFT Routines 96

TABLE 6-5 Fast Cosine and Sine Transform Routines and Their Arguments 103

TABLE 6-6 Convolution and Correlation Routines 116

TABLE 6-7 Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR,
CCNVCOR, and ZCNVCOR 117

TABLE 6-8 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2,
DCNVCOR2, CCNVCOR2, and ZCNVCOR2 118

TABLE 6-9 Arguments Affecting Minimum Work Array Size for Two-Dimensional Routines: SCNVCOR2,
DCNVCOR2, CCNVCOR2, and ZCNVCOR2 120

TABLE 6-10 MYC_INIT and NYC_INIT Dependencies 120

TABLE 6-11 Minimum Dimensions and Data Types for WORK Work Array Used With Convolution and
Correlation Routines 121

TABLE 7-1 IBLAS Prefixes and Matrix Types 128

TABLE 7-2 Vector Reductions 130
 9

TABLE 7-3 Add or Cancel Vectors 131

TABLE 7-4 Vector Movements 131

TABLE 7-5 Matrix-Vector Operations 131

TABLE 7-6 O(n2) Matrix Operations 132

TABLE 7-7 O(n3) Matrix Operations 132

TABLE 7-8 Matrix Movements 132

TABLE 7-9 Vector Set Operations 132

TABLE 7-11 Vector Utilities 133

TABLE 7-10 Matrix Set Operations 133

TABLE 7-12 Matrix Utilities 134

TABLE A-1 LAPACK (Linear Algebra Package) Routines 136

TABLE A-2 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines 151

TABLE A-3 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines 152

TABLE A-4 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines 153

TABLE A-5 Sparse BLAS Routines 153

TABLE A-6 Sparse Solver Routines 155

TABLE A-7 FFT Routines 156

TABLE A-8 Sine and Cosine Transform Routines 158

TABLE A-9 Convolution and Correlation Routines 159

TABLE A-10 Convolution and Correlation Routines 159

TABLE A-11 Interval BLAS Routines 160

TABLE A-12 Sort Routines 166
10 Sun Performance Library User’s Guide • January 2005

Before You Begin

This book describes how to use the Sun™ specific extensions and features included
with the Sun Performance Library™ subroutines that are supported by the Sun™
Studio Fortran 95 and C compilers.

Before You Read This Book
In order to fully use the information in this document, the reader should have a
working knowledge of the Fortran or C language and some understanding of the
base LAPACK and BLAS libraries available from Netlib
(http://www.netlib.org).

How This Book Is Organized
This book is organized into the following chapters and appendixes:

Chapter 1 describes the benefits of using the Sun Performance Library and the
features of the Sun Performance Library.

Chapter 2 describes how to use the f95 and C interfaces provided with the Sun
Performance Library.

Chapter 3 shows how to use compiler and linking options to maximize library
performance for specific SPARC® instruction set architectures and different parallel
processing modes.
 11

http://www.netlib.org

Chapter 5 includes information on matrix storage schemes, matrix types, and sparse
matrices.

Chapter 6 describes the one-dimensional, two-dimensional, and three-dimensional
fast Fourier transform routines provided with the Sun Performance Library.

Chapter 7 provides an introduction to the Interval Basic Linear Algebra Subroutine
(IBLAS) library provided with the Sun Performance Library.

Appendix A lists the Sun Performance Library routines organized according to
name, routine, and library.

What Is Not in This Book
This book does not repeat information included in existing LAPACK books or
sources on Netlib. Refer to the next section “Related Documents and Web Sites” on
page 12 for a list of sources that contain reference material for the base routines upon
which Sun Performance Library is based.

Related Documents and Web Sites
A number of books and web sites provide reference information on the routines in
the base LAPACK and BLAS libraries upon which the Sun Performance Library is
based. The LAPACK Users’ Guide. 3rd ed., Anderson E. and others. SIAM, 1999,
augments the material in this manual and provide essential information:

The LAPACK Users’ Guide, 3rd ed. is the official reference for the base LAPACK
version 3.0 routines. An online version of the LAPACK 3.0 Users’ Guide is available at
http://www.netlib.org/lapack/lug/, and the printed version is available
from the Society for Industrial and Applied Mathematics (SIAM)
http://www.siam.org.

Sun Performance Library routines contain performance enhancements, extensions,
and features not described in the LAPACK Users’ Guide. However, because Sun
Performance Library maintains compatibility with the base LAPACK routines, the
LAPACK Users’ Guide can be used as a reference for the LAPACK routines and the
Fortran interfaces.
12 Sun Performance Library User’s Guide • January 2005

http://www.siam.org
http://www.netlib.org/lapack/lug/

Online Resources
Online information describing the performance library routines that form the basis
of the Sun Performance Library can be found at the following URLs.

Note – LINPACK has been removed from the Sun Performance Library. The
LINPACK libraries and documentation are still available from www.netlib.org.

Typographic Conventions

LAPACK version 3.0 http://www.netlib.org/lapack/

BLAS, levels 1 through 3 http://www.netlib.org/blas/

FFTPACK version 4 http://www.netlib.org/fftpack/

VFFTPACK version 2.1 http://www.netlib.org/vfftpack/

Sparse BLAS http://www.netlib.org/sparseblas/index.html

NIST (National Institute of
Standards and Technology)
Fortran Sparse BLAS

http://math.nist.gov/spblas/

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.
Before You Begin 13

www.netlib.org
http://math.nist.gov/spblas/
http://www.netlib.org/sparseblas/index.html
http://www.netlib.org/vfftpack/
http://www.netlib.org/fftpack/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
14 Sun Performance Library User’s Guide • January 2005

are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

Accessing Sun Studio Software and Man
Pages
The Sun Studio software and man pages are not installed into the /usr/bin/ and
/usr/share/man directories. To access the software, you must have your PATH
environment variable set correctly (see “Accessing the Software” on page 15). To
access the man pages, you must have the your MANPATH environment variable set
correctly (see “Accessing the Man Pages” on page 16.).

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page.

Note – The information in this section assumes that your Sun Studio software is
installed in the /opt directory. If your software is not installed in the /opt directory,
ask your system administrator for the equivalent path on your system.

Accessing the Software
Use the steps below to determine whether you need to change your PATH variable to
access the software.

To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH
Before You Begin 15

http://www.sun.com/bigadmin/hcl

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software, or another release of Sun Studio
software installed,, add the following path before the paths to those installations.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

To Set Your MANPATH Environment Variable to Enable Access
to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

% man dbx
16 Sun Performance Library User’s Guide • January 2005

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.
Before You Begin 17

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.
18 Sun Performance Library User’s Guide • January 2005

http://docs.sun.com

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.
Before You Begin 19

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
20 Sun Performance Library User’s Guide • January 2005

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun Performance Library User’s Guide, part number 819-0498-10.
Before You Begin 21

http://www.sun.com/service/contacting
http://developers.sun.com
http://developers.sun.com/prodtech/cc
http://www.sun.com/hwdocs/feedback

22 Sun Performance Library User’s Guide • January 2005

CHAPTER 1

Introduction

Sun Performance Library is a set of optimized, high-speed mathematical subroutines
for solving linear algebra and other numerically intensive problems. Sun
Performance Library is based on a collection of public domain applications available
from Netlib at http://www.netlib.org. Sun has enhanced these public domain
applications and bundled them as the Sun Performance Library.

The Sun Performance Library User’s Guide explains the Sun-specific enhancements to
the base applications available from Netlib. Reference material describing the base
routines is available from Netlib and the Society for Industrial and Applied
Mathematics (SIAM).

Libraries Included With Sun
Performance Library
Sun Performance Library contains enhanced versions of the following standard
libraries:

■ LAPACK version 3.0 – For solving linear algebra problems.

■ BLAS1 (Basic Linear Algebra Subprograms) – For performing vector-vector
operations.

■ BLAS2 – For performing matrix-vector operations.

■ BLAS3 – For performing matrix-matrix operations.

The BLAS1, BLAS2, and BLAS3 libraries do not have version numbers. There has
been only one version of the BLAS routines on Netlib.
23

http://www.netlib.org

Note – LINPACK has been removed from Sun Performance Library. LAPACK
version 3.0 supersedes LINPACK and all previous versions of LAPACK. If the
LINPACK routines are still needed, the LINPACK library and documentation can be
obtained from http://www.netlib.org.

Sun Performance Library is available in both static and dynamic library versions
optimized for the V8, V8+, and V9 architectures. Sun Performance Library supports
static and shared libraries on Solaris 7, Solaris 8, and Solaris 9 and adds support for
multiple processors.

Sun Performance Library LAPACK routines have been compiled with a Fortran 95
compiler and remain compatible with the Netlib LAPACK version 3.0 library. The
Sun Performance Library versions of these routines perform the same operations as
the Fortran callable routines and have the same interface as the standard Netlib
versions.

LAPACK contains driver, computational, and auxiliary routines. Sun Performance
Library does not support the auxiliary routines, because auxiliary routines can
change or be removed from LAPACK without notice. Because the auxiliary routines
are not supported, they are not documented in the Sun Performance Library User’s
Guide or the section 3P man pages.

Many auxiliary routines contain LA as the second and third characters in the routine
name; however, some do not. Appendix B of the LAPACK Users’ Guide contains a list
of auxiliary routines.

Auxiliary routines are available in the shared (dynamic) libraries and the static
libraries. However, there is no guarantee that auxiliary routines will continue to be
available in any form in future versions of the Sun Performance Library.

Netlib
Netlib is an online repository of mathematical software, papers, and databases
maintained by AT&T Bell Laboratories, the University of Tennessee, Oak Ridge
National Laboratory, and professionals from around the world.

Netlib provides many libraries, in addition to the libraries used in Sun Performance
Library. While some of these libraries can appear similar to libraries used with Sun
Performance Library, they can be different from, and incompatible with Sun
Performance Library.

Using routines from other libraries can produce compatibility problems, not only
with Sun Performance Library routines, but also with the base Netlib LAPACK
routines. When using routines from other libraries, refer to the documentation
provided with those libraries.
24 Sun Performance Library User’s Guide • January 2005

http://www.netlib.org

For example, Netlib provides a CLAPACK library, but the CLAPACK interfaces
differ from the C interfaces included with Sun Performance Library. A LAPACK 90
library package is also available on Netlib. The LAPACK 90 library contains
interfaces that differ from the Sun Performance Library Fortran 95 interfaces and the
Netlib LAPACK version 3.0 interfaces. If using LAPACK 90, refer to the
documentation provided with that library.

For the base libraries supported by Sun Performance Library, Netlib provides
detailed information that can supplement this user’s guide. The LAPACK 3.0 Users’
Guide describes LAPACK algorithms and how to use the routines, but it does not
describe the Sun Performance Library extensions made to the base routines.

Sun Performance Library Features
Sun Performance Library routines can increase application performance on both
serial and MP platforms, because the serial speed of many Sun Performance Library
routines has been increased, and, for SPARC, many routines have been parallelized
that might be serial in other products. Sun Performance Library routines also have
SPARC® specific optimizations that are not present in the base Netlib libraries.

Sun Performance Library provides the following optimizations and extensions to the
base Netlib libraries:

■ Extensions that support Fortran 95 and C language interfaces

■ Fortran 95 language features, including type independence, compile time
checking, and optional arguments.

■ Consistent API across the different libraries in Sun Performance Library

■ Compatibility with LAPACK 1, LAPACK 2.0, and LAPACK 3.0 libraries

■ Increased performance, and in some cases, greater accuracy

■ Optimizations for specific SPARC instruction set architectures

■ Support for 64-bit enabled Solaris operating environment

■ Support for parallel processing compiler options for SPARC

■ Support for multiple processor hardware options
Chapter 1 Introduction 25

Mathematical Routines
The Sun Performance Library routines are used to solve the following types of linear
algebra and numerical problems:

■ Elementary vector and matrix operations – Vector and matrix products; plane
rotations; 1, 2-, and infinity-norms; rank-1, 2, k, and 2k updates

■ Linear systems – Solve full-rank systems, compute error bounds, solve Sylvester
equations, refine a computed solution, equilibrate a coefficient matrix

■ Least squares – Full-rank, generalized linear regression, rank-deficient, linear
equality constrained

■ Eigenproblems – Eigenvalues, generalized eigenvalues, eigenvectors, generalized
eigenvectors, Schur vectors, generalized Schur vectors

■ Matrix factorizations or decompositions – SVD, generalized SVD, QL and LQ, QR
and RQ, Cholesky, LU, Schur, LDLT and UDUT

■ Support operations – Condition number, in-place or out-of-place transpose, inverse,
determinant, inertia

■ Sparse matrices – Solve symmetric, structurally symmetric, and unsymmetric
coefficient matrices using direct methods and a choice of fill-reducing ordering
algorithms, and user-specified orderings

■ Convolution and correlation in one and two dimensions

■ Fast Fourier transforms, Fourier synthesis, cosine and quarter-wave cosine
transforms, cosine and quarter-wave sine transforms

■ Complex vector FFTs and FFTs in two and three dimensions

Compatibility With Previous LAPACK
Versions
The Sun Performance Library routines that are based on LAPACK support the
expanded capabilities and improved algorithms in LAPACK 3.0, but are completely
compatible with both LAPACK l and LAPACK 2.0. Maintaining compatibility with
previous LAPACK versions:

■ Reduces linking errors due to changes in subroutine names or argument lists.

■ Ensures results are consistent with results generated with previous LAPACK
versions.

■ Minimizes programs terminating due to differences between argument lists.
26 Sun Performance Library User’s Guide • January 2005

Getting Started With Sun Performance
Library
This section shows the most basic compiler options used to compile an application
that uses the Sun Performance Library routines.

To use the Sun Performance Library, type one of the following commands.

or

Because Sun Performance Library routines are compiled with -dalign, the
-dalign option should be used for compilation of all files if any routine in the
program makes a Sun Performance Library call. If -dalign cannot be used,
enabling Trap 6, described in the section “Enabling Trap 6” on page 28, is a low-
performance workaround that allows misaligned data.

Sun Performance Library is linked into an application with the -xlic_lib switch
rather than the -l switch that is used to link in other libraries. The -xlic_lib
switch gives the same effect as if -l was used to specify the Sun Performance
Library and added -l switches for all of the supporting libraries that Sun
Performance Library requires.

To summarize, use the following:

■ -dalign on all files at compile time or enable trap 6
■ The same command line options for compiling and linking
■ -xlic_lib=sunperf

Additional compiler options exist that optimize application performance for the
following:

■ Specific SPARC instruction set architectures, as described in “Compiling for
SPARC Platforms” on page 42.

■ Parallel processing for SPARC platforms, as described in “Parallel Processing on
SPARC Platforms” on page 46.

my_system% f95 -dalign my_file.f -xlic_lib=sunperf

my_system% cc -dalign my_file.c -xlic_lib=sunperf
Chapter 1 Introduction 27

Enabling Trap 6
If an application cannot be compiled using -dalign, enable trap 6 to provide a
handler for misaligned data. To enable trap 6 on SPARC, do the following:

1. Place this assembly code in a file called trap6_handler.s.

2. Assemble trap6_handler.s.

The first parallelizable subroutine invoked from Sun Performance Library will call a
routine named trap6_handler_. If a trap6_handler_ is not specified, Sun
Performance Library will call a default handler that does nothing. Not supplying a
handler for any misaligned data will cause a trap that will be fatal. (fbe (1) is the
Solaris assembler for SPARC platforms.)

3. Include trap6_handler.o on the command line.

.global trap6_handler_

.text

.align 4
trap6_handler_:

retl
ta 6

my_system% fbe trap6_handler.s

my_system% f95 any.f trap6_handler.o -xlic_lib=sunperf
28 Sun Performance Library User’s Guide • January 2005

CHAPTER 2

Using Sun Performance Library

This chapter describes using the Sun Performance Library to improve the execution
speed of applications written in Fortran 95 or C. The performance of many
applications can be increased by using Sun Performance Library without making
source code changes or recompiling. However, some modifications to applications
might be required to gain peak performance with Sun Performance Library.

Improving Application Performance
The following sections describe ways of using Sun Performance Library routines
without making source code changes or recompiling.

Replacing Routines With Sun Performance
Library Routines
Many applications use one or more of the base Netlib libraries, such as LAPACK or
BLAS. Because Sun Performance Library maintains the same interfaces and
functionality of these libraries, base Netlib routines can be replaced with Sun
Performance Library routines. Application performance is increased, because Sun
Performance Library routines can be faster than the corresponding Netlib routines or
similar routines provided by other vendors.
29

Improving Performance of Other Libraries
Many commercial math libraries are built around a core of generic BLAS and
LAPACK routines. When an application has a dependency on proprietary interfaces
in another library that prevents the library from being completely replaced, the
BLAS and LAPACK routines used in that library can be replaced with the Sun
Performance Library BLAS and LAPACK routines. Because replacing the core
routines does not require any code changes, the proprietary library features can still
be used, and the other routines in the library can remain unchanged.

Using Tools to Restructure Code
Some libraries that do not directly use Sun Performance Library routines can be
modified by using automatic code restructuring tools that replace existing code with
Sun Performance Library code. For example, a source- to- source conversion tool can
replace existing BLAS code structures with calls to the Sun Performance Library
BLAS routines. These conversion tools can also recognize many user written matrix
multiplications and replace them with calls to the matrix multiplication subroutine
in Sun Performance Library.

Fortran Interfaces
Sun Performance Library contains f95 interfaces and legacy f77 interfaces for
maintaining compatibility with the standard LAPACK and BLAS libraries and
existing codes. Sun Performance Library f95 and legacy f77 interfaces use the
following conventions:

■ All arguments are passed by reference.

■ Types of arguments must be consistent within a call (For example, do not mix
REAL*8 and REAL*4 parameters in the same call.

■ Arrays are stored columnwise.

■ Indices are based at one, in keeping with standard Fortran practice.

When calling Sun Performance Library routines:

■ Do not prototype the subroutines with the Fortran 95 INTERFACE statement. Use
the USE SUNPERF statement instead.

■ Do not use -ext_names=plain to compile routines that call routines from Sun
Performance Library.
30 Sun Performance Library User’s Guide • January 2005

Fortran SUNPERF Module for Use With Fortran 95
Sun Performance Library provides a Fortran module for additional ease-of-use
features with Fortran 95 programs. To use this module, include the following line in
Fortran 95 codes.

USE SUNPERF

USE statements must precede all other statements in the code, except for the
PROGRAM or SUBROUTINE statement.

The SUNPERF module contains interfaces that simplify the calling sequences and
provides the following features:

■ Type Independence – Sun Performance Library supports interfaces where the type
of the data arguments will automatically be recognized, eliminating the need for
type-dependent prefixes (S, D, C, or Z). In the FORTRAN 77 routines, the type
must be specified as part of the routine name. For example, DGEMM is a double
precision matrix multiply and SGEMM is a single precision matrix multiply. When
calling GEMM with the Fortran 95 interfaces, Fortran will infer the type from the
arguments that are passed. Passing single-precision arguments to GEMM gets
results that are equivalent to specifying SGEMM, and passing double-precision
arguments gets results that are equivalent to DGEMM. For example, CALL
DSCAL(20,5.26D0,X,1) could be changed to CALL SCAL(20, 5.26D0, X, 1).

■ Compile-Time Checking – In FORTRAN 77, it is generally impossible for the
compiler to determine what arguments should be passed to a particular routine.
In Fortran 95, the USE SUNPERF statement allows the compiler to determine the
number, type, size, and shape of each argument to each Sun Performance Library
routine. It can check the calls against the expected value and display errors
during compilation.

■ Optional Arguments – Sun Performance Library supports interfaces where some
arguments are optional. In FORTRAN 77, all arguments must be specified in the
order determined by the interface for all routines. All interfaces will support f95
style OPTIONAL attributes on arguments that are not required. Using routines
with optional arguments, such as GEMM, are useful for new development.
Specifically named routines, such as DGEMM, are maintained to support legacy
code. To determine the optional arguments for a routine, refer to the section 3P
man pages. In the section 3P man pages, optional arguments are enclosed in
square brackets [].

■ 64-bit Integer Support– When using the 64-bit interfaces provided with Sun
Performance Library, integer arguments need to be promoted to 64-bits, and the
routine name needs to be modified by appending _64 to the routine name. With
Chapter 2 Using Sun Performance Library 31

the SUNPERF module, 64-bit integers will automatically be recognized, which
eliminates the need for appending _64 to the routine name, as shown in the
following code example.

When using Sun Performance Library routines with optional arguments, the _64
suffix is required for 64-bit integers, as shown in the following code example.

For a detailed description of using the Sun Performance Library 64-bit interfaces, see
“Compiling Code for a 64-Bit Enabled Solaris Operating Environment” on page 43.

Because the sunperf.mod file is compiled with -dalign, any code that contains
the USE SUNPERF statement must be compiled with -dalign. The following error
occurs if the code is not compiled with -dalign.

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL DAXPY(N,ALPHA,X,1_8,Y,1_8)

END

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL AXPY_64(ALPHA=ALPHA,X=X,Y=Y)

END

 use sunperf
 ^
 "test_code.f", Line = 2, Column = 11: ERROR: Procedure "SUNPERF"
and this compilation must both be compiled with -a dalign, or
without -a dalign.
32 Sun Performance Library User’s Guide • January 2005

Optional Arguments
Sun Performance Library routines support Fortran 95 optional arguments, where
argument values that can be inferred from other arguments can be omitted. For
example, the SAXPY routine is defined as follows in the man page.

The N, INCX, and INCY arguments are optional. Note the square bracket notation in
the man pages that denotes the optional arguments.

Suppose the user tries to call the SAXPY routine with the following arguments.

If mismatches in the type, shape, or number of arguments occur, the compiler would
issue the following error message:

ERROR: No specific match can be found for the generic subprogram call
"AXPY".

Using the arguments defined above, the following examples show incorrect calls to
the SAXPY routine due type, shape, or number mismatches.

■ Incorrect type of the arguments–If SAXPY is called as follows:

A compiler error occurs because mixing parameter types, such as COMPLEX
ALPHA and REAL X, is not supported.

■ Incorrect shape of the arguments– If SAXPY is called as follows:

A compiler error occurs because the XA argument is two dimensional, but the
interface is expecting a one-dimensional argument.

SUBROUTINE SAXPY([N], ALPHA, X, [INCX], Y, [INCY])
REAL ALPHA
INTEGER INCX, INCY, N
REAL X(*), Y(*)

USE SUNPERF
COMPLEX ALPHA
REAL X(100), Y(100), XA(100,100), RALPHA
INTEGER INCX, INCY

CALL AXPY(100, ALPHA, X, INCX, Y, INCY)

CALL AXPY(N, RALPHA, XA, INCX, Y, INCY)
Chapter 2 Using Sun Performance Library 33

■ Incorrect number of arguments– If SAXPY is called as follows:

A compiler error occurs because the compiler cannot find a routine in the AXPY
interface group that takes four arguments of the following form.

In the following example, the f95 keyword parameter passing capability can
allow a user to make essentially the same call using that capability.

This is a valid call to the AXPY interface. It is necessary to use keyword parameter
passing on any parameter that appears in the list after the first OPTIONAL
parameter is omitted.

The following calls to the AXPY interface are valid.

Fortran Examples
To increase the performance of single processor applications, identify code
constructs in an application that can be replaced by calls to Sun Performance Library
routines. Performance of multiprocessor applications on SPARC platforms can be
increased by identifying opportunities for parallelization.

CALL AXPY(RALPHA, X, INCX, Y)

AXPY(REAL, REAL 1-D ARRAY, INTEGER, REAL 1-D ARRAY)

CALL AXPY(ALPHA=RALPHA,X=X,INCX=INCX,Y=Y)

CALL AXPY(N,RALPHA,X,Y=Y,INCY=INCY)
CALL AXPY(N,RALPHA,X,INCX,Y)
CALL AXPY(N,RALPHA,X,Y=Y)
CALL AXPY(ALPHA=RALPHA,X=X,Y=Y)
34 Sun Performance Library User’s Guide • January 2005

To increase application performance by modifying code to use Sun Performance
Library routines, identify blocks of code that exactly duplicate the capability of a
Sun Performance Library routine. The following code example is the matrix-vector
product y ← Ax + y, which can be replaced with the DGEMV subroutine.,

In other cases, a block of code can be equivalent to several Sun Performance Library
calls or contain portions of code that can be replaced with calls to Sun Performance
Library routines. Consider the following code example.

The code example can be rewritten to use the Sun Performance Library routine
DGER, as shown here.

The same code example can also be rewritten using Fortran 95 specific statements, as
shown here.

 DO I = 1, N
 DO J = 1, N
 Y(I) = Y(I) + A(I,J) * X(J)
 END DO
 END DO

 DO I = 1, N
 IF (V2(I,K) .LT. 0.0) THEN
 V2(I,K) = 0.0
 ELSE
 DO J = 1, M
 X(J,I) = X(J,I) + Vl(J,K) * V2(I,K)
 END DO
 END IF
 END DO

 DO I = 1, N
 IF (V2(I,K) .LT. 0.0) THEN
 V2(I,K) = 0.0
 END IF
 END DO
 CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)

WHERE (V(1:N,K) .LT. 0.0) THEN
 V(1:N,K) = 0.0
END WHERE
CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)
Chapter 2 Using Sun Performance Library 35

Because the code to replace negative numbers with zero in V2 has no natural analog
in Sun Performance Library, that code is pulled out of the outer loop. With that code
removed to its own loop, the rest of the loop is a rank- 1 update of the general
matrix x that can be replaced with the DGER routine from BLAS.

The amount of performance increase can also depend on the data the Sun
Performance Library routine uses. For example, if V2 contains many negative or zero
values, the majority of the time might not be spent in the rank- 1 update. In this case,
replacing the code with a call to DGER might not increase performance.

Evaluating other loop indexes can affect the Sun Performance Library routine used.
For example, if the reference to K is a loop index, the loops in the code sample
shown above might be part of a larger code structure, where the loops over DGEMV
or DGER could be converted to some form of matrix multiplication. If so, a single call
to a matrix multiplication routine can increase performance more than using a loop
with calls to DGER.

Because all Sun Performance Library routines are MT-safe (multithread safe), using
the auto-parallelizing compiler to parallelize loops that contain calls to Sun
Performance Library routines can increase performance on SPARC MP platforms.

An example of combining a Sun Performance Library routine with an
auto-parallelizing compiler parallelization directive is shown in the following code
example.

Sun Performance Library contains a routine named DGBMV to multiply a banded
matrix by a vector. By putting this routine into a properly constructed loop, Sun
Performance Library routines can be used to multiply a banded matrix by a matrix.
The compiler will not parallelize this loop by default, because the presence of
subroutine calls in a loop inhibits parallelization. However, Sun Performance Library
routines are MT-safe, so a user can use parallelization directives that instruct the
compiler to parallelize this loop.

Compiler directives can also be used to parallelize a loop with a subroutine call that
ordinarily would not be parallelizable. For example, it is ordinarily not possible to
parallelize a loop containing a call to some of the linear system solvers, because
some vendors have implemented those routines using code that is not MT-safe.
Loops containing calls to the expert drivers of the linear system solvers (routines
whose names end in SVX) are usually not parallelizable with other implementations

 C$PAR DOALL
 DO I = 1, N
 CALL DGBMV ('No transpose', N, N, ALPHA, A, LDA,
 $ B(l,I), 1, BETA, C(l,I), 1)
 END DO
36 Sun Performance Library User’s Guide • January 2005

of LAPACK. Because the implementation of LAPACK in Sun Performance Library
allows parallelization of loops containing such calls, users of SPARC MP platforms
can get additional performance by parallelizing these loops.

C Interfaces
The Sun Performance Library routines can be called from within a FORTRAN 77,
Fortran 95, or C program. However, C programs must still use the FORTRAN 77
calling sequence.

Sun Performance Library contains native C interfaces for each of the routines
contained in LAPACK, BLAS, FFTPACK, VFFTPACK, and SPARSE BLAS. The Sun
Performance Library C interfaces have the following features:

■ Function names have C names
■ Function interfaces follow C conventions
■ C functions do not contain redundant or unnecessary arguments for a C function

The following example compares the standard LAPACK Fortran interface and the
Sun Performance Library C interfaces for the DGBCON routine.

Note that the names of the arguments are the same and that arguments with the
same name have the same base type. Scalar arguments that are used only as input
values, such as NORM and N, are passed by value in the C version. Arrays and scalars
that will be used to return values are passed by reference.

The Sun Performance Library C interfaces improve on CLAPACK, available on
Netlib, which is an f2c translation of the standard libraries. For example, all of the
CLAPACK routines are followed by a trailing underscore to maintain compatibility
with Fortran compilers, which often postfix routine names in the object (.o) file with
an underscore. The Sun Performance Library C interfaces do not require a trailing
underscore.

Sun Performance Library C interfaces use the following conventions:

■ Input-only scalars are passed by value rather than by reference. Complex and
double complex arguments are not considered scalars because they are not
implemented as a scalar type by C.

CALL DGBCON (NORM, N, NSUB, NSUPER, DA, LDA, IPIVOT, DANORM,
DRCOND, DWORK, IWORK2, INFO)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
int lda, int *ipivot, double danorm, double drcond,
int *info)
Chapter 2 Using Sun Performance Library 37

■ Complex scalars can be passed as either structures or arrays of length 2.

■ Types of arguments must match even after C does type conversion. For example,
be careful when passing a single precision real value, because a C compiler can
automatically promote the argument to double precision.

■ Arrays are stored columnwise. For Fortran programmers, this is the natural order
in which arrays are stored. For C programmers, this is the transpose of the order
in which they usually work. References in the documentation and man pages to
rows refer to columns and vice versa.

■ Array indices are based at one, in conformance with Fortran conventions, rather
than being zero as in C.

For example, the Fortran interface to IDAMAX, which C programs access as
idamax_, would return a 1 to indicate the first element in a vector. The C
interface to idamax, which C programs access as idamax, would also return a 1,
to indicate the first element of a vector. This convention is observed in function
return values, permutation vectors, and anywhere else that vector or array indices
are used.

Note – Some Sun Performance Library routines use malloc internally, so user
codes that make calls to Sun Performance Library and to sbrk might not work
correctly.

Sun Performance Library uses global integer registers %g2, %g3, and %g4 in 32-bit
mode and %g2 through %g5 in 64-bit mode as scratch registers. User code should not
use these registers for temporary storage, and then call a Sun Performance Library
routine. The data will be overwritten when the Sun Performance Library routine
uses these registers.
38 Sun Performance Library User’s Guide • January 2005

C Examples
Transforming user-written code sequences into calls to Sun Performance Library
routines increases application performance. The following code example adapted
from LAPACK shows one example.

No Sun Performance Library routine exactly replicates the functionality of this code
example. However, the code can be accelerated by replacing it with several calls to
the Sun Performance Library routine isamax, as shown in the following code
example.

int i;
float a[n], b[n], largest;

largest = a[0];
for (i = 0; i < n; i++)
{
if (a[i] > largest)
 largest = a[i];
 if (b[i] > largest
 largest = b[i];
}

int i, large_index;
float a[n], b[n], largest;

large_index = isamax (n, a, l) - 1;
largest = a[large_index];
large_index = isamax (n, b, l) - 1;
if (b[large_index] > largest)
 largest = b[large_index];
Chapter 2 Using Sun Performance Library 39

Compare the differences between calling the native C isamax routine in Sun
Performance Library, shown in the previous code example, with calling the isamax
routine in CLAPACK, shown in the following code example.

/* 1. Declare scratch variable to allow 1 to be passed by value */
int one = l;
/* 2. Append underscore to conform to FORTRAN naming system */
/* 3. Pass all arguments, even scalar input-only, by reference */
/* 4. Subtract one to convert from FORTRAN indexing conventions */
large_index = isamax_ (&n, a, &one) - l;
largest = a[large_index]; large_index = isamax_ (&n, b, &one) - l;
if (b[large_index] > largest)
 largest = b[large_index];
40 Sun Performance Library User’s Guide • January 2005

CHAPTER 3

SPARC Optimization and Parallel
Processing

This chapter describes how to use compiler and linking options to optimize
applications for:

■ Specific SPARC® instruction set architectures
■ 64-bit enabled Solaris operating environment
■ Parallel processing on SPARC platforms

TABLE 3-1 shows a comparison of the 32-bit and 64-bit operating environments. These
items are described in greater detail in the following sections.

Using Sun Performance Library on
SPARC Platforms
The Sun Performance Library was compiled using the f95 compiler provided with
this release. The Sun Performance Library routines were compiled using -dalign,
-xparallel, and -xarch set to v8, v8plusa, or v9a.

TABLE 3-1 Comparison of 32-bit and 64-bit Operating Environments

32-bit (ILP 32) 64-bit (LP64)

-xarch v8, v8plusa, v8plusb v9, v9a, v9b

Fortran Integers INTEGER, INTEGER*4 INTEGER*8

C Integers int long

Floating-point S/D/C/Z S/D/C/Z

API Names of routines Names of routines with _64 suffix
41

When linking the program, use -dalign, -xlic_lib=sunperf, and the same
command line options that were used when compiling. If -dalign cannot be used
in the program, supply a trap 6 handler as described in “Getting Started With Sun
Performance Library” on page 27. If compiling with a value of -xarch that is not
one of [v8|v8plusa|v9a], the compiler driver will select the closest match.

Sun Performance Library is linked into an application with the -xlic_lib switch
rather than the -l switch that is used to link in other libraries, as shown here.

Compiling for SPARC Platforms
Applications using Sun Performance Library can be optimized for specific SPARC
instruction set architectures and for a 64-bit enabled Solaris operating environment.
The optimization for each architecture is targeted at one implementation of that
architecture and includes optimizations for other architectures when it does not
degrade the performance of the primary target.

Compile with the most appropriate -xarch= option for best performance. At link
time, use the same -xarch= option that was used at compile time to select the
version of the Sun Performance Library optimized for a specific SPARC instruction
set architecture.

Note – Using SPARC-specific optimization options increases application
performance on the selected instruction set architecture, but limits code portability.
When using these optimization options, the resulting code can be run only on
systems using the specific SPARC chip from Sun Microsystems and, in some cases, a
specific Solaris operating environment (32-bit or 64-bit Solaris 7, Solaris 8, or Solaris
9).

The SunOS™ command isalist(1) can be used to display a list of the native
instruction sets executable on a particular platform. The names output by isalist
are space-separated and are ordered in the sense of best performance.

For a detailed description of the different -xarch options, refer to the Fortran User’s
Guide or the C User’s Guide.

Use the following command line options to compile for 32-bit addressing in a 32-bit
enabled Solaris operating environment:

■ UltraSPARC I™ or UltraSPARC II™ systems. Use -xarch=v8plus or -xarch=
v8plusa.

■ UltraSPARC III™ systems. Use -xarch=v8plus or -xarch=v8plusb.

 my_system% f95 -dalign my_file.f -xlic_lib=sunperf
42 Sun Performance Library User’s Guide • January 2005

Use the following command line options to compile for 64-bit addressing in a 64-bit
enabled Solaris operating environment.

■ UltraSPARC I or UltraSPARC II systems. Use -xarch=v9 or -xarch=v9a.
■ UltraSPARC III systems. Use -xarch=v9 or -xarch=v9b.

Compiling Code for a 64-Bit Enabled
Solaris Operating Environment
To compile code for a 64-bit enabled Solaris operating environment, use -xarch=
v9[a|b] and convert all integer arguments to 64-bit arguments. 64-bit routines
require the use of 64-bit integers.

Sun Performance Library provides 32-bit and 64-bit interfaces. To use the 64-bit
interfaces:

■ Modify the Sun Performance Library routine name. For C and Fortran 95 code,
append _64 to the names of Sun Performance Library routines (for example,
rfftf_64 or CFFTB_64). For Fortran 95 code with the USE SUNPERF statement,
the _64 suffix is not strictly required for specific interfaces, such as DGEMM. The
_64 suffix is still required for the generic interfaces, such as GEMM.

■ Promote integers to 64 bits. Double precision variables and the real and
imaginary parts of double complex variables are already 64 bits. Only the integers
are promoted to 64 bits.

64-Bit Integer Arguments
These additional 64-bit-integer interfaces are available only in the v9, v9a, and v9b
libraries. Codes compiled for 32-bit operating environments (-xarch set to v8plusa
or v8plusb) can not call the 64-bit-integer interfaces.

To call the 64-bit-integer interfaces directly, append the suffix _64 to the standard
library name. For example, use daxpy_64() in place of daxpy().

However, if calling the 64-bit integer interfaces indirectly, do not append _64 to the
name of the Sun Performance Library routine. Calls to the Sun Performance Library
routine will access a 32-bit wrapper that promotes the 32-bit integers to 64-bit
integers, calls the 64-bit routine, and then demotes the 64-bit integers to 32-bit
integers.

For best performance, call the routine directly by appending _64 to the routine
name.
Chapter 3 SPARC Optimization and Parallel Processing 43

For C programs, use long instead of int arguments. The following code example
shows calling the 64-bit integer interfaces directly.

The following code example shows calling the 64-bit integer interfaces indirectly.

For Fortran programs, use 64-bit integers for all integer arguments. The following
methods can be used to convert integer arguments to 64-bits:

■ To promote all default integers (integers declared without explicit byte sizes) and
literal integer constants from 32 bits to 64 bits, compile with -xtypemap=
integer:64.

■ To promote specific integer declarations, change INTEGER or INTEGER*4 to
INTEGER*8.

■ To promote integer literal constants, append _8 to the constant.

Consider the following code example.

INTEGER*8 arguments cannot be used in a 32-bit environment. Routines in the 32-
bit libraries, v8, v8plusa, v8plusb, cannot be called with 64-bit arguments.
However, the 64-bit routines can be called with 32-bit arguments.

When passing constants in Fortran 95 code that have not been compiled with
-xtypemap, append _8 to literal constants to effect the promotion. For example,
when using Fortran 95, change CALL DSCAL(20,5.26D0,X,1) to CALL
DSCAL(20_8,5.26D0,X,1_8). This example assumes USE SUNPERF is included in
the code, because the _64 has not been appended to the routine name.

#include <sunperf.h>
long n, incx, incy;
double alpha, *x, *y;
daxpy_64(n, alpha, x, incx, y, incy);

#include <sunperf.h>
int n, incx, incy;
double alpha, *x, *y;
daxpy (n, alpha, x, incx, y, incy);

INTEGER*8 N
REAL*8 ALPHA, X(N), Y(N)

! _64 SUFFIX: N AND 1_8 ARE 64-BIT INTEGERS
CALL DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
44 Sun Performance Library User’s Guide • January 2005

The following code example shows calling CAXPY from Fortran 95 using 32-bit
arguments.

The following code example shows calling CAXPY from Fortran 95 (without the USE
SUNPERF statement) using 64-bit arguments.

When using 64-bit arguments, the _64 must be appended to the routine name if the
USE SUNPERF statement is not used.

The following Fortran 95 code example shows calling CAXPY using 64-bit arguments.

In C routines, the size of long is 32 bits when compiling for V8 or V8plus and 64
bits when compiling for V9. The following code example shows calling the dgbcon
routine using 32-bit arguments.

 PROGRAM TEST
 COMPLEX ALPHA
 INTEGER INCX, INCY, N
 COMPLEX X(*), Y(*)

 CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

 PROGRAM TEST
 COMPLEX ALPHA
 INTEGER*8 INCX, INCY, N
 COMPLEX X(*), Y(*)

 CALL CAXPY_64(N, ALPHA, X, INCX, Y, INCY)

 PROGRAM TEST
 USE SUNPERF
 .
 .
 .
 COMPLEX ALPHA
 INTEGER*8 INCX, INCY, N
 COMPLEX X(*), Y(*)

 CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
 int lda, int *ipivot, double danorm, double drcond,
 int *info)
Chapter 3 SPARC Optimization and Parallel Processing 45

The following code example shows calling the dgbcon routine using 64-bit
arguments.

Parallel Processing on SPARC Platforms
To enable parallel processing for the Sun Performance Library routines, use one of
the parallelization options (-xparallel, -xexplicitpar, or -xautopar) at link
time, as shown in the following examples.

or

Run-Time Issues
At run time, if running with compiler parallelization, Sun Performance Library uses
the same pool of threads that the compiler does. The per-thread stack size must be
set to at least 4 Mbytes with the STACKSIZE environment variable, as follows:

Setting the STACKSIZE environment variable is not required for programs running
with POSIX or Solaris threads. In this case, user created threads that call Sun
Performance Library routines must have a stack size of at least 4 Mbytes. Failure to
supply an adequate stack size for the Sun Performance Library routines might result
in stack overflow problems. Symptoms of stack overflow problems include runtime
failures that could be difficult to diagnose. For more information on setting the stack
size of user created threads, see the pthread_create(3THR),
pthread_attr_init(3THR) and pthread_attr_setstacksize(3THR) man
pages for POSIX threads or the thr_create(3THR) for Solaris threads.

void dgbcon_64 (char norm, long n, long nsub, long nsuper,
 double *da, long lda, long *ipivot, double danorm,
 double *drcond, long *info)

% cc -dalign -xarch=... -xparallel a.c -xlic_lib=sunperf

% f95 -dalign -xarch=... -xparallel a.f95 -xlic_lib=sunperf

% setenv STACKSIZE 4000
46 Sun Performance Library User’s Guide • January 2005

Degree of Parallelism
Sun Performance Library will attempt to parallelize each Sun Performance Library
call according to the user’s parallelization model by using either explicit threads or
loop-based compiler multithreading.

The number of threads Sun Performance Library routines will attempt to use is set at
run time by the user with the PARALLEL environment variable. The PARALLEL
environment variable can be overridden by calls to the Sun Performance Library
USE_THREADS routine.

For example, if user programs with POSIX or Solaris-thread codes are linked with
-xparallel, -xexplicitpar, or -xautopar, each Sun Performance Library call
will produce PARALLEL threads. The code will oversubscribe the machine if:

■ One bound thread per CPU is created
■ Each thread makes a Sun Performance Library call
■ PARALLEL is set to a value greater than one

For codes using compiler parallelization, Sun Performance Library routines are
parallelized with loop-based compiler directives. Because nested parallelism is not
supported, Sun Performance Library calls made from a parallel region will not be
further parallelized.

In the following code example, none of the calls to DGEMM is parallelized, because the
loop is parallelized and only one level of parallelization is supported.

The loop consists of many DGEMM instances running in parallel with one another, but
each DGEMM instance uses only one thread.

In the following code example, the loop is not parallelized.

If the code is linked for parallelization with -xparallel, -xexplicitpar, or
-xautopar, the individual calls to DGEMM will be parallelized. The number of
threads used by each DGEMM call will be taken from the run-time value of the
environment variable PARALLEL. However, if a higher-level loop has already
parallelized this region, no further parallelization would be performed.

 !$<some parallelization directive>
 DO I = 1, N
 CALL DGEMM(...)
 END DO

DO I = 1, N
 CALL DGEMM(...)
END DO
Chapter 3 SPARC Optimization and Parallel Processing 47

The number of OpenMP threads can be set by a variety of means. For example, by
setting the OMP_NUM_THREADS environment variable or by setting the
OMP_SET_NUM_THREADS() run-time call. If both environment variables are set,
they must be set to the same value. If the run-time function is called, it overrides any
environment variable setting.

The degree of parallelization within a pure-OpenMP code can be set with the
OMP_NUM_THREADS environment variable. The Sun Performance Library
USE_THREADS() routine can also be used to set the degree of parallelism for Sun
Performance Library calls, which overrides the OMP_NUM_THREADS value.

In the following code example, each DGEMM call would be parallelized.

Note that the DOSERIAL* directive suppresses parallelization, but only for the loop
nest within the same subroutine and it is overridden by any other directive within
that nest. The DOSERIAL* directive does not impact parallelization within Sun
Performance Library.

In the following code example, there will be at most two-way parallelism, regardless
of the setting of the number of OpenMP threads.

Only one level of parallelism exists, which are the two sections. Further parallelism
within a DGEMM() call is suppressed.

Synchronization Mechanisms
The underlying parallelization model determines the Sun Performance Library
behavior.

 !$PAR DOSERIAL*
 DO I = 1, N
 CALL DGEMM(...)
 END DO

 !$OMP PARALLEL SECTIONS
 !$OMP SECTION
 DO I = 1, N / 2
 CALL DGEMM(...)
 END DO
 !$OMP SECTION
 DO I = N / 2 + 1, N
 CALL DGEMM(...)
 END DO
 !$OMP END PARALLEL SECTIONS
48 Sun Performance Library User’s Guide • January 2005

The two basic modes of multithreading, compiler parallelization and POSIX or
Solaris threads, use two different types of synchronization mechanisms. Compiler
parallelized code uses spin waits, which produce the most responsive
synchronization operations, but aggressively consume CPU cycles. Compiler
parallelized code produces optimal performance when each thread has a dedicated
CPU, but wastes resources when other jobs or threads are also competing for CPUs.

However, codes that explicitly use POSIX or Solaris threads use synchronization
functions from libthread. These synchronization functions are less responsive, but
they relinquish the CPU when the thread is idle, providing good throughput and
resource usage in a shared (oversubscribed) environment.

With compiler parallelization, the environment variable SUNW_MP_THR_IDLE can be
used at run time to alter the spin-wait characteristics of the threads. Legal settings of
SUNW_MP_THR_IDLE are as follows.

These settings would cause threads to spin wait (default behavior), spin for 2
seconds before sleeping, or spin for 100 milliseconds before sleeping, respectively.

The link-time option -xlic_lib=sunperf links in Sun Performance Library
functions that employ the same parallelization model as the user code, as indicated
by the -xparallel, -xexplicitpar, or -xautopar compiler-parallelization
option. Using Sun Performance Library routines does not change the spin-wait
behavior of the code.

Parallel Processing Examples
The following sections demonstrate using the PARALLEL environment variable and
the compile and linking options for creating code that supports using:

■ A single processor
■ Multiple processors

Using a Single Processor

To use a single processor:

1. Call one or more of the routines.

% setenv SUNW_MP_THR_IDLE spin
% setenv SUNW_MP_THR_IDLE 2s
% setenv SUNW_MP_THR_IDLE 100ms
Chapter 3 SPARC Optimization and Parallel Processing 49

2. Link with -xlic_lib=sunperf specified at the end of the command line.

Do not compile or link with -xparallel, -xexplicitpar, or -xautopar.

3. Make sure the PARALLEL environment variable is unset or set equal to 1.

The following example shows how to compile and link with libsunperf.so.

or

Using Multiple Processors

To compile for multiple processors:

■ Use the same parallelization option for the compiling and linking commands.

■ Specify the number of processors at runtime with the PARALLEL environment
variable before running the executable.

For example, to use 24 processors, type the following commands.

The previous example allows Sun Performance Library routines to run in parallel,
but no part of the user code my_app.f will run in parallel. For the compiler to
attempt to parallelize my_app.f, either -xparallel or -explicitpar is required
on the compile line.

Note – Parallel processing options require using either the -dalign command-line
option or establishing a trap 6 handler, as described in “Enabling Trap 6” on page 28.
When using C, do not use -misalign.

To use multiple processors:

1. Call one or more of the routines.

2. Link with -xlic_lib=sunperf specified at the end of the command line.

Compile and link with -xparallel, -xexplicitpar, or -xautopar.

cc -dalign -xarch=... any.c -xlic_lib=sunperf

f95 -dalign -xarch=... any.f95 -xlic_lib=sunperf

 my_system% f95 -dalign -xparallel my_app.f -xlic_lib=sunperf
 my_system% setenv PARALLEL 24
 my_system% ./a.out
50 Sun Performance Library User’s Guide • January 2005

3. Set PARALLEL to the number of available processors.

The following example shows how to compile and link with libsunperf to enable
parallel operation on multiple processor systems.

or

cc -dalign -xarch=... -xparallel any.c -xlic_lib=sunperf

f95 -dalign -xarch=... -xparallel any.f95 -xlic_lib=sunperf
Chapter 3 SPARC Optimization and Parallel Processing 51

52 Sun Performance Library User’s Guide • January 2005

CHAPTER 4

Sun Performance Library for x86

This chapter describes the differences between the SPARC and x86 versions of the
Sun Performance Library, and how to use compiler and linking options for SSE2-
enabled machines and for generic x86 machines that are not SSE2-enabled.

This release of Sun Performance Library includes libraries for the Solaris/x86
platform. Two versions are available:

■ A high-performance version utilizing SSE2 instructions for systems that support
that instruction set.

■ A compatibility version suitable for systems that do not support SSE2.

The x86 version of Sun Performance Library is functionally identical to the SPARC
version, with the following exceptions:

■ Quad-precision routines (dqdoti, dqdota) are not available
■ Interval BLAS routines are not available
■ The x86 libraries are single-threaded
■ Only 32-bit addressing is available
■ The Portable Library Performance feature is not available on Solaris/x86

Compiling for x86 Platforms
The following versions of Solaris/x86 are required for SSE2 support:

■ Solaris 10 build 48
■ Solaris 9 build 6 update 5

As with the SPARC version, the Sun Performance Library is linked into the
application using the -xlic_lib=sunperf flag.1

1. If compiling and linking a C/C++ program using the C/C++ compiler driver, cc, you may need to expliciltly
link to the Fortran runtime libraries or use the Fortran F95 compiler driver to perform the link step. Refer to
the performance_library README file to see whether this restriction applies to your distribution.
53

Use the -xarch flag to select between the SSE2 and compatibility versions of the
Sun Performance Library. Setting -xarch=sse2 or -xtarget=pentium4 will
build the SSE2 version of the library. Also, if building on a Pentium 4 machine
running Solaris 9 update 6 or Solaris 10, setting -xarch=native or -xtarget=
native or -fast will build the SSE2 version of the library. Any other link settings
will build the compatibility version of the library.2

Examples:

The following compile and link settings will build the compatibility version of the
Sun Performance Library:

f95 -xarch=generic -xlic_lib=sunperf example.f -o example

The following compile and link settings will build the SSE2 version of the Sun
Performance Library:

f95 -xarch=sse2 -xlic_lib=sunperf example.f -o example

The following compile and link settings will build the SSE2 version of the Sun
Performance Library if built on a Pentium 4 machine running Solaris 9 update 6,
or build the compatibility on other platforms:

f95 -fast -xlic_lib=sunperf example.f -o example

Caution – Programs that are compiled with -xarch=sse2 to run on Solaris x86 must
be run only on platforms that are SSE2 enabled. Running such programs on
platforms that are not SSE2-enabled could result in segmentation faults or incorrect
results occurring without any explicit warning messages.

2. If statically linking the SSE2 library, you may also need to explicitly set the library path . Refer to the
performance_library README file to see whether this restriction applies to your distribution
54 Sun Performance Library User’s Guide • January 2005

CHAPTER 5

Working With Matrices

Most matrices can be stored in ways that save both storage space and computation
time. Sun Performance Library uses the following storage schemes:

■ Banded storage
■ Packed storage

The Sun Performance Library processes matrices that are in one of four forms:

■ General
■ Triangular
■ Symmetric
■ Tridiagonal

Storage schemes and matrix types are described in the following sections.

Matrix Storage Schemes
Some Sun Performance Library routines that work with arrays stored normally have
corresponding routines that take advantage of these special storage forms. For
example, DGBMV will form the product of a general matrix in banded storage and a
vector, and DTPMV will form the product of a triangular matrix in packed storage
and a vector.

Banded Storage
A banded matrix is stored so the jth column of the matrix corresponds to the jth
column of the Fortran array.
55

The following code copies a banded general matrix in a general array into banded
storage mode.

Note that this method of storing banded matrices is compatible with the storage
method used by LAPACK, BLAS, and LINPACK, but is inconsistent with the method
used by EISPACK.

Packed Storage
A packed vector is an alternate representation for a triangular, symmetric, or
Hermitian matrix. An array is packed into a vector by storing the elements
sequentially column by column into the vector. Space for the diagonal elements is
always reserved, even if the values of the diagonal elements are known, such as in a
unit diagonal matrix.

 C Copy the matrix A from the array AG to the array AB. The
 C matrix is stored in general storage mode in AG and it will
 C be stored in banded storage mode in AB. The code to copy
 C from general to banded storage mode is taken from the
 C comment block in the original DGBFA by Cleve Moler.
 C
 NSUB = 1
 NSUPER = 2
 NDIAG = NSUB + 1 + NSUPER
 DO ICOL = 1, N
 I1 = MAX0 (1, ICOL - NSUPER)
 I2 = MIN0 (N, ICOL + NSUB)
 DO IROW = I1, I2
 IROWB = IROW - ICOL + NDIAG
 AB(IROWB,ICOL) = AG(IROW,ICOL)
 END DO
 END DO
56 Sun Performance Library User’s Guide • January 2005

An upper triangular matrix or a symmetric matrix whose upper triangle is stored in
general storage in the array A, can be transferred to packed storage in the array AP as
shown below. This code comes from the comment block of the LAPACK routine
DTPTRI.

Similarly, a lower triangular matrix or a symmetric matrix whose lower triangle is
stored in general storage in the array A, can be transferred to packed storage in the
array AP as shown below:

Matrix Types
The general matrix form is the most common matrix, and most operations
performed by the Sun Performance Library can be done on general arrays. In many
cases, there are routines that will work with the other forms of the arrays. For
example, DGEMM will form the product of two general matrices and DTRMM will form
the product of a triangular and a general matrix.

General Matrices
A general matrix is stored so that there is a one-to-one correspondence between the
elements of the matrix and the elements of the array. Element Aij of a matrix A is
stored in element A(I,J) of the corresponding array A. The general form is the

 JC = 1
 DO J = 1, N
 DO I = 1, J
 AP(JC+I-1) = A(I,J)
 END DO
 JC = JC + J
 END DO

 JC = 1
 DO J = 1, N
 DO I = J, N
 AP(JC+I-1) = A(I,J)
 END DO
 JC = JC + N - J + 1
 END DO
Chapter 5 Working With Matrices 57

most common form. A general matrix, because it is dense, has no special storage
scheme. In a general banded matrix, however, the diagonal of the matrix is stored in
the row below the upper diagonals.

For example, as shown below, the general banded matrix can be represented with
banded storage. Elements shown with the symbol × are never accessed by routines
that process banded arrays.

Triangular Matrices
A triangular matrix is stored so that there is a one-to-one correspondence between
the nonzero elements of the matrix and the elements of the array, but the elements of
the array corresponding to the zero elements of the matrix are never accessed by
routines that process triangular arrays.

A triangular matrix can be stored using packed storage.

General Banded Matrix General Banded Array in Banded Storage

Triangular Matrix Triangular Array in Packed Storage

a11 a12 a13 0 0

a21 a22 a23 a24 0

0 a32 a33 a34 a35

0 0 a43 a44 a45

0 0 0 a54 a55

✕ ✕ a13 a24 a35

✕ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ✕

a11 0 0

a21 a22 0

a31 a32 a33

a11

a21

a31

a22

a32

a33
58 Sun Performance Library User’s Guide • January 2005

A triangular banded matrix can be stored using banded storage as shown below.
Elements shown with the symbol × are never accessed by routines that process
banded arrays.

Symmetric Matrices
A symmetric matrix is similar to a triangular matrix in that the data in either the
upper or lower triangle corresponds to the elements of the array. The contents of the
other elements in the array are assumed and those array elements are never accessed
by routines that process symmetric or Hermitian arrays.

A symmetric matrix can be stored using packed storage.

Triangular Banded Matrix Triangular Banded Array
in Banded Storage

Symmetric Matrix Symmetric Array in Packed Storage

a11 0 0

a21 a22 0

0 a32 a33

a11 a22 a33

a21 a32 ✕

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11

a21

a31

a22

a32

a33
Chapter 5 Working With Matrices 59

A symmetric banded matrix can be stored using banded storage as shown below.
Elements shown with the symbol × are never accessed by routines that process
banded arrays.

Tridiagonal Matrices
A tridiagonal matrix has elements only on the main diagonal, the first
superdiagonal, and the first subdiagonal. It is stored using three 1-dimensional
arrays.

Sparse Matrices
The Sun Performance Library sparse solver package is a collection of routines that
efficiently factor and solve sparse linear systems of equations. Use the sparse solver
package to:

■ Solve symmetric, structurally symmetric, and unsymmetric coefficient matrices
■ Specify a choice of ordering methods, including user-specified orderings

Symmetric Banded Matrix Symmetric Banded Array in Banded
Storage

Tridiagonal Matrix Tridiagonal Array in Tridiagonal Storage

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

✕ a12 a23 a34

a11 a22 a33 a44

a21 a32 a43 ✕

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

a21

a32

a43

a11

a22

a33

a44

a12

a23

a34
60 Sun Performance Library User’s Guide • January 2005

The sparse solver package contains interfaces for FORTRAN 77. Fortran 95 and C
interfaces are not currently provided. To use the sparse solver routines from
Fortran 95, use the FORTRAN 77 interfaces. To use the sparse solver routines with C,
append an underscore to the routine name (dgssin_(), dgssor_(), and so on),
pass arguments by reference, and use 1-based array indexing.

Sparse Solver Matrix Data Formats
Sparse matrices are usually represented in formats that minimize storage
requirements. By taking advantage of the sparsity and not storing zeros,
considerable storage space can be saved. The storage format used by the general
sparse solver is the compressed sparse column (CSC) format (also called the
Harwell-Boeing format).

The CSC format represents a sparse matrix with two integer arrays and one floating
point array. The integer arrays (colptr and rowind) specify the location of the
nonzeros of the sparse matrix, and the floating point array (values) is used for the
nonzero values.

The column pointer (colptr) array consists of n+1 elements where colptr(i) points to
the beginning of the ith column, and colptr(i + 1) – 1 points to the end of the ith
column. The row indices (rowind) array contains the row indices of the nonzero
values. The values arrays contains the corresponding nonzero numerical values.

The following matrix data formats exist for a sparse matrix of neqns equations and
nnz nonzeros:

■ Symmetric
■ Structurally symmetric
■ Unsymmetric

The most efficient data representation often depends on the specific problem. The
following sections show examples of sparse matrix data formats.

Symmetric Sparse Matrices

A symmetric sparse matrix is a matrix where a(i, j) = a(j, i) for all i and j. Because of
this symmetry, only the lower triangular values need to be passed to the solver
routines. The upper triangle can be determined from the lower triangle.

An example of a symmetric matrix is shown below. This example is derived from A.
George and J. W-H. Liu. “Computer Solution of Large Sparse Positive Definite
Systems.”
Chapter 5 Working With Matrices 61

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 10
■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 5
■ values: 4.0, 1.0, 2.0, 0.5, 2.0, 0.5, 3.0, 0.625, 16.0

Structurally Symmetric Sparse Matrices

A structurally symmetric sparse matrix has nonzero values with the property that if
a(i, j) ≠ 0, then a(j, i) ≠ 0 for all i and j. When solving a structurally symmetric
system, the entire matrix must be passed to the solver routines.

An example of a structurally symmetric matrix is shown below.

To represent A in CSC format:

■ colptr: 1, 3, 6, 7, 9
■ rowind: 1, 2, 1, 2, 4, 3, 2, 4
■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

Unsymmetric Sparse Matrices

An unsymmetric sparse matrix does not have a(i, j) = a(j, i) for all i and j. The
structure of the matrix does not have an apparent pattern. When solving an
unsymmetric system, the entire matrix must be passed to the solver routines. An
example of an unsymmetric matrix is shown below.

A

4.0 1.0 2.0 0.5 2.0

1.0 0.5 0.0 0.0 0.0

2.0 0.0 3.0 0.0 0.0

0.5 0.0 0.0 0.625 0.0

2.0 0.0 0.0 0.0 16.0

=

A

1.0 3.0 0.0 0.0

2.0 4.0 0.0 7.0

0.0 0.0 6.0 0.0

0.0 5.0 0.0 8.0

=

62 Sun Performance Library User’s Guide • January 2005

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 11
■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 2, 5
■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

Sun Performance Library Sparse BLAS
The Sun Performance Library sparse BLAS package is based on the following two
packages:

■ Netlib Sparse BLAS package, by Dodson, Grimes, and Lewis consists of sparse
extensions to the Basic Linear Algebra Subroutines that operate on sparse vectors.

■ NIST (National Institute of Standards and Technology) Fortran Sparse BLAS
Library consists of routines that perform matrix products and solution of
triangular systems for sparse matrices in a variety of storage formats.

Refer to the following sources for additional sparse BLAS information.

■ For information on the Sun Performance Library Sparse BLAS routines, refer to
the section 3P man pages for the individual routines.

■ For more information on the Netlib Sparse BLAS package refer to
http://www.netlib.org/sparse-blas/index.html.

■ For more information on the NIST Fortran Sparse BLAS routines, refer to
http://math.nist.gov/spblas/

Naming Conventions
The Netlib Sparse BLAS and NIST Fortran Sparse BLAS Library routines each use
their own naming conventions, as described in the following two sections.

A

1.0 0.0 0.0 0.0 0.0

2.0 6.0 0.0 0.0 9.0

3.0 0.0 7.0 0.0 0.0

4.0 0.0 0.0 8.0 0.0

5.0 0.0 0.0 0.0 10.0

=

Chapter 5 Working With Matrices 63

http://www.netlib.org/sparse-blas/index.html
http://math.nist.gov/spblas/

Netlib Sparse BLAS

Each Netlib Sparse BLAS routine has a name of the form Prefix-Root-Suffix where
the:

■ Prefix represents the data type.

■ Root represents the operation.

■ Suffix represents whether or not the routine is a direct extension of an existing
dense BLAS routine.

TABLE 5-1 lists the naming conventions for the Netlib Sparse BLAS vector routines.

The prefix can be one of the following data types:

■ S: SINGLE
■ D: DOUBLE
■ C: COMPLEX
■ Z: COMPLEX*16 or DOUBLE COMPLEX

The I, CI, and UI suffixes denote sparse BLAS routines that are direct extensions to
dense BLAS routines.

NIST Fortran Sparse BLAS

Each NIST Fortran Sparse BLAS routine has a six-character name of the form
XYYYZZ where:

■ X represents the data type.
■ YYY represents the sparse storage format.
■ ZZ represents the operation.

TABLE 5-1 Netlib Sparse BLAS Naming Conventions

Operation Root of Name Prefix and Suffix

Dot product -DOT- S-I D-I C-UI Z-UI C-CI Z-CI

Scalar times a vector
added to a vector

-AXPY- S-I D-I C-I Z-I

Apply Givens
rotation

-ROT- S-I D-I

Gather x into y -GTHR- S- D- C- Z- S-Z D-Z C-Z Z-Z

Scatter x into y -SCTR- S- D- C- Z-
64 Sun Performance Library User’s Guide • January 2005

TABLE 5-2 shows the values for X, Y, and Z.

Sparse Solver Routines
The Sun Performance Library sparse solver package contains the routines listed in
TABLE 5-3.

TABLE 5-2 NIST Fortran Sparse BLAS Routine Naming Conventions

X: Data Type

X S: single precision
D: double precision
C: complex
Z: double complex

YYY: Sparse Storage Format

YYY Single entry formats: COO: coordinate
CSC: compressed sparse column
CSR: compressed sparse row
DIA: diagonal
ELL: ellpack
JAD: jagged diagonal
SKY: skyline

Block entry formats: BCO: block coordinate
BSC: block compressed sparse column
BSR: block compressed sparse row
BDI: block diagonal
BEL: block ellpack
VBR: block compressed sparse row

ZZ: Operation

ZZ MM:matrix-matrix product
SM:solution of triangular system (supported for all formats except COO)
RP: right permutation (for JAD format only)

TABLE 5-3 Sparse Solver Routines

Routine Function

DGSSFS() One call interface to sparse solver

DGSSIN() Sparse solver initialization

DGSSOR() Fill reducing ordering and symbolic factorization
Chapter 5 Working With Matrices 65

Use the regular interface to solve multiple matrices with the same structure, but
different numerical values, as shown below:

The one-call interface is not as flexible as the regular interface, but it covers the most
common case of factoring a single matrix and solving some number right-hand
sides. Additional calls to dgsssl() are allowed to solve for additional right-hand
sides, as shown in the following example.

DGSSFA() Matrix value input and numeric factorization

DGSSSL() Triangular solve

Utility Routine Function

DGSSUO() Sets user-specified ordering permutation.

DGSSRP() Returns permutation used by solver.

DGSSCO() Returns condition number estimate of coefficient matrix.

DGSSDA() De-allocates sparse solver.

DGSSPS() Prints solver statistics.

call dgssin() ! {initialization, input coefficient matrix
 ! structure}
call dgssor() ! {fill-reducing ordering, symbolic factorization}
do m = 1, number_of_structurally_identical_matrices
 call dgssfa() ! {input coefficient matrix values, numeric
 ! factorization}
 do r = 1, number_of_right_hand_sides
 call dgsssl() ! {triangular solve}
 enddo
enddo

call dgssfs() ! {initialization, input coefficient matrix
 ! structure}
 ! {fill-reducing ordering, symbolic factorization}
 ! {input coefficient matrix values, numeric
 ! factorization}
 ! {triangular solve}
do r = 1, number_of_right_hand_sides
 call dgsssl() ! {triangular solve}
enddo

TABLE 5-3 Sparse Solver Routines (Continued)
66 Sun Performance Library User’s Guide • January 2005

Routine Calling Order
To solve problems with the sparse solver package, use the sparse solver routines in
the order shown in TABLE 5-4.

Sparse Solver Examples
CODE EXAMPLE 5-1 shows solving a symmetric system using the one-call interface,
and CODE EXAMPLE 5-2 shows solving a symmetric system using the regular
interface.

TABLE 5-4 Sparse Solver Routine Calling Order

One Call Interface: For solving single matrix

Start

DGSSFS() Initialize, order, factor, solve

DGSSSL() Additional solves (optional): repeat dgsssl() as needed

DGSSDA() Deallocate working storage

Finish

End of One-Call Interface

Regular Interface: For solving multiple matrices with the same structure

Start

DGSSIN() Initialize

DGSSOR() Order

DGSSFA() Factor

DGSSSL() Solve: repeat dgssfa() or dgsssl() as needed

DGSSDA() Deallocate working storage

Finish

End of Regular Interface

CODE EXAMPLE 5-1 Solving a Symmetric System–One-Call Interface

my_system% cat example_1call.f

 program example_1call

c

c This program is an example driver that calls the sparse solver.
Chapter 5 Working With Matrices 67

c It factors and solves a symmetric system, by calling the

c one-call interface.

c

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(9)

 double precision values(9), rhs(5), xexpct(5)

 integer i

c

c Sparse matrix structure and value arrays. From George and Liu,

c page 3.

c Ax = b, (solve for x) where:

c

c 4.0 1.0 2.0 0.5 2.0 2.0 7.0

c 1.0 0.5 0.0 0.0 0.0 2.0 3.0

c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0

c 0.5 0.0 0.0 0.625 0.0 -8.0 -4.0

c 2.0 0.0 0.0 0.0 16.0 -0.5 -4.0

c

 data colstr / 1, 6, 7, 8, 9, 10 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

 data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0,

 & 0.625d0, 16.0d0 /

 data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

 data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c set calling parameters

c

 mtxtyp= 'ss'

 pivot = 'n'

 neqns = 5

 nrhs = 1

 ldrhs = 5

 outunt = 6

 msglvl = 0

 ordmthd = 'mmd'

CODE EXAMPLE 5-1 Solving a Symmetric System–One-Call Interface (Continued)
68 Sun Performance Library User’s Guide • January 2005

c

c call single call interface

c

 call dgssfs (mtxtyp, pivot, neqns , colstr, rowind,

 & values, nrhs , rhs, ldrhs , ordmthd,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

CODE EXAMPLE 5-1 Solving a Symmetric System–One-Call Interface (Continued)
Chapter 5 Working With Matrices 69

my_system% f95 -dalign example_1call.f -xlic_lib=sunperf

my_sytem% a.out

 i rhs(i) expected rhs(i) error

 1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

 2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

 3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

 4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

 5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

CODE EXAMPLE 5-2 Solving a Symmetric System–Regular Interface

my_system% cat example_ss.f

 program example_ss

c

c This program is an example driver that calls the sparse solver.

c It factors and solves a symmetric system.

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(9)

 double precision values(9), rhs(5), xexpct(5)

 integer i

c

c Sparse matrix structure and value arrays. From George and Liu,

c page 3.

c Ax = b, (solve for x) where:

c

c 4.0 1.0 2.0 0.5 2.0 2.0 7.0

c 1.0 0.5 0.0 0.0 0.0 2.0 3.0

c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0

c 0.5 0.0 0.0 0.625 0.0 -8.0 -4.0

c 2.0 0.0 0.0 0.0 16.0 -0.5 -4.0

c

 data colstr / 1, 6, 7, 8, 9, 10 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

 data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0,

 & 3.0d0, 0.625d0, 16.0d0 /

CODE EXAMPLE 5-1 Solving a Symmetric System–One-Call Interface (Continued)
70 Sun Performance Library User’s Guide • January 2005

 data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

 data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c initialize solver

c

 mtxtyp= 'ss'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 0

c

c call regular interface

c

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 5

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

CODE EXAMPLE 5-2 Solving a Symmetric System–Regular Interface (Continued)
Chapter 5 Working With Matrices 71

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_ss.f -xlic_lib=sunperf

my_sytem% a.out

 i rhs(i) expected rhs(i) error

 1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

 2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

 3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

 4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

 5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface

my_system% cat example_su.f

 program example_su

c

c This program is an example driver that calls the sparse solver.

c It factors and solves a structurally symmetric system

c (w/unsymmetric values).

CODE EXAMPLE 5-2 Solving a Symmetric System–Regular Interface (Continued)
72 Sun Performance Library User’s Guide • January 2005

c

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(5), rowind(8)

 double precision values(8), rhs(4), xexpct(4)

 integer i

c

c Sparse matrix structure and value arrays. Coefficient matrix

c has a symmetric structure and unsymmetric values.

c Ax = b, (solve for x) where:

c

c 1.0 3.0 0.0 0.0 1.0 7.0

c 2.0 4.0 0.0 7.0 2.0 38.0

c A = 0.0 0.0 6.0 0.0 x = 3.0 b = 18.0

c 0.0 5.0 0.0 8.0 4.0 42.0

c

 data colstr / 1, 3, 6, 7, 9 /

 data rowind / 1, 2, 1, 2, 4, 3, 2, 4 /

 data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

 & 8.0d0 /

 data rhs / 7.0d0, 38.0d0, 18.0d0, 42.0d0 /

 data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0 /

c

c initialize solver

c

 mtxtyp= 'su'

 pivot = 'n'

 neqns = 4

 outunt = 6

 msglvl = 0

c

c call regular interface

c

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface (Continued)
Chapter 5 Working With Matrices 73

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 4

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface (Continued)
74 Sun Performance Library User’s Guide • January 2005

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_su.f -xlic_lib=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

CODE EXAMPLE 5-4 Solving an Unsymmetric System–Regular Interface

my_system% cat example_uu.f

 program example_uu

c

c This program is an example driver that calls the sparse solver.

c It factors and solves an unsymmetric system.

c

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(10)

 double precision values(10), rhs(5), xexpct(5)

 integer i

c

c Sparse matrix structure and value arrays. Unsummetric matrix A.

c Ax = b, (solve for x) where:

c

c 1.0 0.0 0.0 0.0 0.0 1.0 1.0

c 2.0 6.0 0.0 0.0 9.0 2.0 59.0

c A = 3.0 0.0 7.0 0.0 0.0 x = 3.0 b = 24.0

c 4.0 0.0 0.0 8.0 0.0 4.0 36.0

c 5.0 0.0 0.0 0.0 10.0 5.0 55.0

CODE EXAMPLE 5-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface (Continued)
Chapter 5 Working With Matrices 75

c

 data colstr / 1, 6, 7, 8, 9, 11 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 2, 5 /

 data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

 & 8.0d0, 9.0d0, 10.0d0 /

 data rhs / 1.0d0, 59.0d0, 24.0d0, 36.0d0, 55.0d0 /

 data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0 /

c

c initialize solver

c

 mtxtyp= 'uu'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 3

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 5

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

CODE EXAMPLE 5-4 Solving an Unsymmetric System–Regular Interface (Continued)
76 Sun Performance Library User’s Guide • January 2005

References
The following books and papers provide additional information for the sparse BLAS
and sparse solver routines.

■ Dodson, D.S, R.G. Grimes, and J.G. Lewis. “Sparse Extensions to the Fortran Basic
Linear Algebra Subprograms.” ACM Transactions on Mathematical Software,
June 1991, Vol 17, No. 2.

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_uu.f -xlic_lib=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

 5 0.500000000000D+01 0.500000000000D+01 0.000000000000D+00

CODE EXAMPLE 5-4 Solving an Unsymmetric System–Regular Interface (Continued)
Chapter 5 Working With Matrices 77

■ A. George and J. W-H. Liu. “Computer Solution of Large Sparse Positive Definite
Systems.” Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

■ E. Ng and B. W. Peyton. “Block Sparse Cholesky Algorithms on Advanced
Uniprocessor Computers.” SIAM M. Sci Comput., 14:1034-1056, 1993.

■ Ian S. Duff, Roger G. Grimes and John G. Lewis, “User’s Guide for the Harwell-
Boeing Sparse Matrix Collection (Release I),” Technical Report TR/PA/92/86,
CERFACS, Lyon, France, October 1992.
78 Sun Performance Library User’s Guide • January 2005

CHAPTER 6

Using Sun Performance Library
Signal Processing Routines

The discrete Fourier transform (DFT) has always been an important analytical tool in
many areas in science and engineering. However, it was not until the development
of the fast Fourier transform (FFT) that the DFT became widely used. This is because
the DFT requires O(N2) computations, while the FFT only requires O(Nlog2N)
operations.

Sun Performance Library contains a set of routines that computes the FFT, related
FFT operations, such as convolution and correlation, and trigonometric transforms.

This chapter is divided into the following three sections.

■ Forward and Inverse FFT Routines
■ Sine and Cosine Transforms
■ Convolution and Correlation

Each section includes examples that show how the routines might be used.

For information on the Fortran 95 and C interfaces and types of arguments used in
each routine, see the section 3P man pages for the individual routines. For example,
to display the man page for the SFFTC routine, type man -s 3P sfftc. Routine
names must be lowercase. For an overview of the FFT routines, type man -s 3P
fft.
79

Forward and Inverse FFT Routines
TABLE 6-1 lists the names of the FFT routines and their calling sequence. Double
precision routine names are in square brackets. See the individual man pages for
detailed information on the data type and size of the arguments.

Sun Performance Library FFT routines use the following arguments.

■ OPT: Flag indicating whether the routine is called to initialize or to compute the
transform.

TABLE 6-1 FFT Routines and Their Arguments

Routine Name Arguments

Linear Routines

CFFTS [ZFFTD] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

SFFTC [DFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

CFFTSM [ZFFTDM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

SFFTCM [DFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

CFFTC [ZFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

CFFTCM [ZFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

Two-Dimensional Routines

CFFTS2 [ZFFTD2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

SFFTC2 [DFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

CFFTC2 [ZFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

Three-Dimensional Routines

CFFTS3 [ZFFTD3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)

SFFTC3 [DFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)

CFFTC3 [ZFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)
80 Sun Performance Library User’s Guide • January 2005

■ N1, N2, N3: Problem dimensions for one, two, and three dimensional transforms.

■ X: Input array where X is of type COMPLEX if the routine is a complex-to-complex
transform or a complex-to-real tranform. X is of type REAL for a real-to-complex
transform.

■ Y: Output array where Y is of type COMPLEX if the routine is a complex-to-
complex transform or a real-to-complex tranform. Y is of type REAL for a
complex-to-real transform.

■ LDX1, LDX2 and LDY1, LDY2: LDX1 and LDX2 are the leading dimensions of the
input array, and LDY1 and LDY2 are the leading dimensions of the output array.
The FFT routines allow the output to overwrite the input, which is an in-place
transform, or to be stored in a separate array apart from the input array, which is
an out-of-place transform. In complex-to-complex tranforms, the input data is of
the same size as the output data. However, real-to-complex and complex-to-real
transforms have different memory requirements for input and output data. Care
must be taken to ensure that the input array is large enough to acommodate the
transform results when computing an in-place tranform.

■ TRIGS: Array containing the trigonometric weights.

■ IFAC: Array containing factors of the problem dimensions. The problem sizes are
as follows:

■ Linear FFT: Problem size of dimension N1
■ Two-dimensional FFT: Problem size of dimensions N1 and N2
■ Three-dimensional FFT: Problem size of dimensions N1, N2, and N3

While N1, N2, and N3 can be of any size, a real-to-complex or a complex-to-real
transform can be computed most efficiently when

and a complex-to-complex transform can be computed most efficiently when

where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

■ WORK: Workspace whose size depends on the routine and the number of threads
that are being used to compute the transform if the routine is parallelized.

■ LWORK: Size of workspace. If LWORK is zero, the routine will allocate a workspace
with the required size.

■ SCALE: A scalar with which the output is scaled. Occasionally in literature, the
inverse transform is defined with a scaling factor of for one-dimensional
transforms, for two-dimensional transforms, and
for three-dimensional transforms. In such case, the inverse transform is said to be
normalized. If a normalized FFT is followed by its inverse FFT, the result is the
original input data. The Sun Performance Library FFT routines are not
normalized. However, normalization can be done easily by calling the inverse
FFT routine with the appropriate scaling factor stored in SCALE.

N1 N2 N3, , 2
p

3
q× 4

r× 5
s×=

N1 N2 N3, , 2
p

3
q× 4

r× 5
s× 7

t
11

u
13

v×××=

1 N1⁄
C 1 N1 N2×()⁄(1 N1 N2 N3××()⁄
Chapter 6 Using Sun Performance Library Signal Processing Routines 81

■ ERR: A flag returning a nonzero value if an error is encountered in the routine and
zero otherwise.

Linear FFT Routines
Linear FFT routines compute the FFT of real or complex data in one dimension only.
The data can be one or more complex or real sequences. For a single sequence, the
data is stored in a vector. If more than one sequence is being transformed, the
sequences are stored column-wise in a two-dimensional array and a one-
dimensional FFT is computed for each sequence along the column direction. The
linear forward FFT routines compute

,

where , or expressed in polar form,

.

The inverse FFT routines compute

,

or in polar form,

.

With the forward transform, if the input is one or more complex sequences of size
N1, the result will be one or more complex sequences, each consisting of N1
unrelated data points. However, if the input is one or more real sequences, each
containing N1 real data points, the result will be one or more complex sequences
that are conjugate symmetric. That is,

.

X k() x n()e
2πink–
N 1

n 0=

N 1 1–

∑ ,= k 0 … N1 1–, ,=

i 1–=

X k() x n() 2πnk
N1

------------- 
 cos i

2πnk
N1

------------- 
 sin– 

  ,
n 0=

N 1 1–

∑= k 0 … N1 1–, ,=

x n() X k()e

2πink
N 1

,
k 0=

N 1 1–

∑
˙

= n 0 … N1 1–, ,=

x n() X k() 2πnk
N1

------------- 
 cos i

2πnk
N1

------------- 
 sin+ 

  ,
n 0=

N 1 1–

∑= n 0 … N1 1–, ,=

X k() X∗ N1 k–(),= k
N1
2

------- 1 … N1 1–, ,+=
82 Sun Performance Library User’s Guide • January 2005

The imaginary part of X(0) is always zero. If N1 is even, the imaginary part of
is also zero. Both zeros are stored explicitly. Because the second half of each
sequence can be derived from the first half, only complex data points are
computed and stored in the output array. Here and elsewhere in this chapter, integer
division is rounded down.

With the inverse transform, if an N1-point complex-to-complex transform is being
computed, then N1 unrelated data points are expected in each input sequence and
N1 data points will be returned in the output array. However, if an N1-point
complex-to-real transform is being computed, only the first complex data
points of each conjugate symmetric input sequence are expected in the input, and
the routine will return N1 real data points in each output sequence.

For each value of N1, either the forward or the inverse routine must be called to
compute the factors of N1 and the trigonometric weights associated with those
factors before computing the actual FFT. The factors and trigonometric weights can
be reused in subsequent transforms as long as N1 remains unchanged.

TABLE 6-2 lists the single precision linear FFT routines and their purposes. For
routines that have two-dimensional arrays as input and output, TABLE 6-2 also lists
the leading dimension requirements. The same information applies to the
corresponding double precision routines except that their data types are double
precision and double complex. See TABLE 6-2 for the mapping. See the individual
man pages for a complete description of the routines and their arguments.

TABLE 6-2 Single Precision Linear FFT Routines

Name Purpose
Size and Type
of Input

Size and Type
of Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC OPT = 0 initialization

OPT = -1 real-to-
complex forward linear
FFT of a single vector

N1,
Real

,

Complex

SFFTC OPT = 0 initialization

OPT = 1 complex-to-
real inverse linear FFT
of single vector

,

Complex

N1
Real

CFFTC OPT = 0 initialization

OPT = -1 complex-to-
complex forward linear
FFT of a single vector

N1,
Complex

N1,
Complex

X N 1
2

-------()

N 1
2

------- 1+

N 1
2

------- 1+

N1
2

------- 1+

N1
2

------- 1+
Chapter 6 Using Sun Performance Library Signal Processing Routines 83

TABLE 6-2 Notes.

■ LDX1 is the leading dimension of the input array.

■ LDY1 is the leading dimension of the output array.

■ N1 is the first dimension of the FFT problem.

■ N2 is the second dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error checking
that is done is to determine if N1 < 0

CODE EXAMPLE 6-1 shows how to compute the linear real-to-complex and complex-
to-real FFT of a set of sequences.

OPT = 1 complex-to-
complex inverse linear
FFT of a single vector

N1,
Complex

N1,
Complex

SFFTCM OPT = 0 initialization

OPT = -1 real-to-
complex forward linear
FFT of M vectors

N1 × M,
Real

,

Complex

LDX1 = 2 ×
LDY1

LDX1 ≥ N1

CFFTSM OPT = 0 initialization

OPT = 1 complex-to-
real inverse linear FFT
of M vectors

,

Complex

N1 × M,
Real

LDX1 ≥

LDY1=2 × LDX1

LDX1 ≥

LDY1 ≥ N1

CFFTCM OPT = 0 initialization

OPT = -1 complex-to-
complex forward linear
FFT of M vectors

N1 × M,
Complex

N1 × M,
Complex

LDX1 ≥ N1
LDY1 ≥ N1

LDX1 ≥ N1
LDY1 ≥ N1

OPT = 1 complex-to-
complex inverse linear
FFT of M vectors

N1 × M,
Complex

N1 × M,
Complex

LDX1 ≥ N1
LDY1 ≥ N1

LDX1 ≥ N1
LDY1 ≥ N1

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT

my_system% cat testscm.f
 PROGRAM TESTSCM
 IMPLICIT NONE
 INTEGER :: LW, IERR, I, J, K, LDX, LDC

TABLE 6-2 Single Precision Linear FFT Routines (Continued)

Name Purpose
Size and Type
of Input

Size and Type
of Output Leading Dimension Requirements

In-place Out-of-Place

N1
2

------- 1+ 
  M×

N1
2

------- 1+ 
  M× N1

2
------- 1+ N1

2
------- 1+
84 Sun Performance Library User’s Guide • January 2005

 INTEGER,PARAMETER :: N1 = 3, N2 = 2, LDZ = N1,
 $ LDC = N1, LDX = 2*LDC
 INTEGER, DIMENSION(:) :: IFAC(128)
 REAL :: SCALE
 REAL, PARAMETER :: ONE = 1.0
 REAL, DIMENSION(:) :: SW(N1), TRIGS(2*N1)
 REAL, DIMENSION(0:LDX-1,0:N2-1) :: X, V, Y
 COMPLEX, DIMENSION(0:LDZ-1, 0:N2-1) :: Z
* workspace size LW = N1 SCALE = ONE/N1
 WRITE(*,*) $ 'Linear complex-to-real and real-to-complex FFT of a sequence'
 WRITE(*,*)
 X = RESHAPE(SOURCE = (/.1, .2, .3,0.0,0.0,0.0,7.,8.,9.,
 $ 0.0, 0.0, 0.0/), SHAPE=(/6,2/)) V = X
 WRITE(*,*) 'X = '
 DO I = 0,N1-1
 WRITE(*,'(2(F4.1,2x))') (X(I,J), J = 0, N2-1)
 END DO
 WRITE(*,*)
* intialize trig table and compute factors of N1
 CALL SFFTCM(0, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF

* Compute out-of-place forward linear FFT.
* Let FFT routine allocate memory.
 CALL SFFTCM(-1, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
 $ SW, 0, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*)'Z ='
 DO I = 0, N1/2
 WRITE(*,'(2(A1, F4.1,A1,F4.1,A1,2x))') ('(',REAL(Z(I,J)),
 $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)
 END DO
 WRITE(*,*)
* Compute in-place forward linear FFT.
* X must be large enough to store N1/2+1 complex values
 CALL SFFTCM(-1, N1, N2, ONE, X, LDX, X, LDC, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)
Chapter 6 Using Sun Performance Library Signal Processing Routines 85

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'in-place forward FFT of X:'
 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, X, LDC, N2)
 WRITE(*,*)
* Compute out-of-place inverse linear FFT.
 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, X, LDX, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'out-of-place inverse FFT of Z:'
 DO I = 0, N1-1
 WRITE(*,'(2(F4.1,2X))') (X(I,J), J = 0, N2-1)
 END DO
 WRITE(*,*)
* Compute in-place inverse linear FFT.
 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, Z, LDZ*2, TRIGS,
 $ IFAC, SW, 0, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF

 WRITE(*,*) 'in-place inverse FFT of Z:'
 CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Z, LDZ*2, N2)
 WRITE(*,*)
 END PROGRAM TESTSCM
 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 REAL A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F4.1,2X))') (A(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 COMPLEX A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F4.1,A1,F4.1,A1,2X))') ('(',REAL(A(I,J,K)),

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)
86 Sun Performance Library User’s Guide • January 2005

CODE EXAMPLE 6-1 Notes:

The forward FFT of X is actually

Because of symmetry, Z(2) is the complex conjugate of Z(1), and therefore only the
first two complex values are stored. For the in-place forward transform,
SFFTCM is called with real array X as the input and output. Because SFFTCM expects
the output array to be of type COMPLEX, the leading dimension of X as an output
array must be as if X were complex. Since the leading dimension of real array X is
LDX = 2 × LDC, the leading dimension of X as a complex output array must be LDC.
Similarly, in the in-place inverse transform, CFFTSM is called with complex array Z

 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
my_system% f95 -dalign testscm.f -xlic_lib=sunperf
my_system% a.out
Linear complex-to-real and real-to-complex FFT of a sequence
X =
0.1 7.0
0.2 8.0
0.3 9.0
out-of-place forward FFT of X:
Z =
(0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
in-place forward FFT of X:
(0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
out-of-place inverse FFT of Z:
0.1 7.0
0.2 8.0
0.3 9.0

in-place inverse FFT of Z:
0.1 7.0
0.2 8.0
0.3 9.0

(0.6, 0.0) (24.0, 0.0)

Z = (-0.2, 0.1) (-1.5, 0.9)

(-0.2, -0.1) (-1.5, -0.9)

CODE EXAMPLE 6-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)

N 1
2

------- 1+ 2=
Chapter 6 Using Sun Performance Library Signal Processing Routines 87

as the input and output. Because CFFTSM expects the output array to be of type
REAL, the leading dimension of Z as an output array must be as if Z were real. Since
the leading dimension of complex array Z is LDZ, the leading dimension of Z as a
real output array must be LDZ × 2.

CODE EXAMPLE 6-2 shows how to compute the linear complex-to-complex FFT of a
set of sequences.

CODE EXAMPLE 6-2 Linear Complex-to-Complex FFT

my_system% cat testccm.f
 PROGRAM TESTCCM
 IMPLICIT NONE
 INTEGER :: LDX1, LDY1, LW, IERR, I, J, K, LDZ1, NCPUS,
 $ USING_THREADS, IFAC(128)
 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1, LDZ1 = N1,
 $ LDY1 = N1+2
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/N1
 COMPLEX :: Z(0:LDZ1-1,0:N2-1), X(0:LDX1-1,0:N2-1),
 $ Y(0:LDY1-1,0:N2-1)

 REAL :: TRIGS(2*N1)
 REAL, DIMENSION(:), ALLOCATABLE :: SW
* get number of threads
 NCPUS = USING_THREADS()
* workspace size
 LW = 2 * N1 * NCPUS
 WRITE(*,*)'Linear complex-to-complex FFT of one or more sequences'
 WRITE(*,*)
 ALLOCATE(SW(LW))
 X = RESHAPE(SOURCE =(/(.1,.2),(.3,.4),(.5,.6),(.7,.8),(.9,1.0),
 $ (1.1,1.2),(1.3,1.4),(1.5,1.6),(1.7,1.8),(1.9,2.0),(2.1,2.2),
 $ (1.2,2.0)/), SHAPE=(/LDX1,N2/))
 Z = X
 WRITE(*,*) 'X = '
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(X(I,J)),
 $ ',',AIMAG(X(I,J)),')', J = 0, N2-1)
 END DO WRITE(*,*)
* intialize trig table and compute factors of N1
 CALL CFFTCM(0, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
* Compute out-of-place forward linear FFT.
88 Sun Performance Library User’s Guide • January 2005

* Let FFT routine allocate memory.
 CALL CFFTCM(-1, N1, N2, ONE, X, LDX1, Y, LDY1, TRIGS, IFAC,
 $ SW, 0, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
* Compute in-place forward linear FFT. LDZ1 must equal LDX1
 CALL CFFTCM(-1, N1, N2, ONE, Z, LDX1, Z, LDZ1, TRIGS,
 $ IFAC, SW, 0, IERR)
 WRITE(*,*) 'in-place forward FFT of X:'
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Z(I,J)),
 $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)
 END DO

 WRITE(*,*)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*) 'Y ='
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
 END DO
 WRITE(*,*)
* Compute in-place inverse linear FFT.
 CALL CFFTCM(1, N1, N2, SCALE, Y, LDY1, Y, LDY1, TRIGS, IFAC,
 $ SW, LW, IERR)
 IF (IERR .NE. 0) THEN
 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
 STOP
 END IF
 WRITE(*,*) 'in-place inverse FFT of Y:'
 WRITE(*,*) 'Y ='
 DO I = 0, N1-1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
 END DO
 DEALLOCATE(SW)
 END PROGRAM TESTCCM
my_system% f95 -dalign testccm.f -xlic_lib=sunperf
my_system% a.out
Linear complex-to-complex FFT of one or more sequences
X =
(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)
(0.3, 0.4) (0.9, 1.0) (1.5, 1.6) (2.1, 2.2)
(0.5, 0.6) (1.1, 1.2) (1.7, 1.8) (1.2, 2.0)

CODE EXAMPLE 6-2 Linear Complex-to-Complex FFT (Continued)
Chapter 6 Using Sun Performance Library Signal Processing Routines 89

Two-Dimensional FFT Routines
For the linear FFT routines, when the input is a two-dimensional array, the FFT is
computed along one dimension only, namely, along the columns of the array. The
two-dimensional FFT routines take a two-dimensional array as input and compute
the FFT along both the column and row dimensions. Specifically, the forward two-
dimensional FFT routines compute

,

and the inverse two-dimensional FFT routines compute

.

For both the forward and inverse two-dimensional transforms, a complex-to-
complex transform where the input problem is N1 × N2 will yield a complex array
that is also N1 × N2.

When computing a real-to-complex two-dimensional transform (forward FFT), if the
real input array is of dimensions N1 × N2, the result will be a complex array of
dimensions . Conversely, when computing a complex-to-real transform
(inverse FFT) of dimensions N1 × N2, an complex array is required as
input. As with the real-to-complex and complex-to-real linear FFT, because of

in-place forward FFT of X:
(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)
(-0.5, -0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)
(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)
out-of-place forward FFT of X:
Y =
(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)
(-0.5, -0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)
(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)
in-place inverse FFT of Y:
Y =
(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)
(0.3, 0.4) (0.9, 1.0) (1.5, 1.6) (2.1, 2.2)
(0.5, 0.6) (1.1, 1.2) (1.7, 1.8) (1.2, 2.0)

CODE EXAMPLE 6-2 Linear Complex-to-Complex FFT (Continued)

X k n,() x j l,()e

2– πiln
N 2

j 0=

N 1 1–

∑
l 0=

N 2 1–

∑ e

2– πijk
N 1

,= k 0 … N1, 1 n,–, 0 … N2 1–, ,= =

x j l,() X k n,()e

2πiln
N 2

k 0=

N 1 1–

∑
n 0=

N 2 1–

∑ e

2πijk
N 1

,= j 0 … N1, 1 l,–, 0 … N2 1–, ,= =

N 1
2

------- 1+() N2×
N 1
2

------- 1+() N2×
90 Sun Performance Library User’s Guide • January 2005

conjugate symmetry, only the first complex data points need to be stored in
the input or output array along the first dimension. The complex subarray

 can be obtained from as follows:

To compute a two-dimensional transform, an FFT routine must be called twice. One
call initializes the routine and the second call actually computes the transform. The
initialization includes computing the factors of N1 and N2 and the trigonometric
weights associated with those factors. In subsequent forward or inverse transforms,
initialization is not necessary as long as N1 and N2 remain unchanged.

IMPORTANT: Upon returning from a two-dimensional FFT routine, Y(0 : N - 1, :)
contains the transform results and the original contents of Y(N : LDY-1, :) is
overwritten. Here, N = N1 in the complex-to-complex and complex-to-real
transforms and N = in the real-to-complex transform.

TABLE 6-3 lists the single precision two-dimensional FFT routines and their purposes.
The same information applies to the corresponding double precision routines except
that their data types are double precision and double complex. See TABLE 6-3 for the
mapping. Refer to the individual man pages for a complete description of the
routines and their arguments.

TABLE 6-3 Single Precision Two-Dimensional FFT Routines

Name Purpose
Size, Type of
Input

Size, Type of
Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC2 OPT = 0 initialization

OPT = -1 real-to-complex
forward two-dimensional
FFT

N1 × N2, Real ,
Complex

LDX1 = 2 × LDY1
LDY1 ≥

LDX1 ≥ N1
LDY1 ≥

CFFTS2 OPT = 0 initialization

OPT = 1 complex-to-real
inverse two-dimensional
FFT

,
Complex

N1 × N2, Real LDX1 ≥
LDY1=2 × LDX1

LDX1 ≥
LDY1≥ 2 × LDX1
LDY1 is even

N 1
2

------- 1+

X N 1
2

------- 1:+ N1 1– :,() X 0:N 1
2

------- :,()

X k n,() X* N1 k n,–(),=

k
N1
2

------- 1 … N1, 1–,+=

n 0 … N2, 1–,=

N 1
2

------- 1+

N 1
2

------- 1+() N2×
N 1
2

------- 1+ N 1
2

------- 1+

N 1
2

------- 1+() N2× N 1
2

------- 1+ N 1
2

------- 1+
Chapter 6 Using Sun Performance Library Signal Processing Routines 91

TABLE 6-3 Notes:

■ LDX1 is leading dimension of input array.

■ LDY1 is leading dimension of output array.

■ N1 is first dimension of the FFT problem.

■ N2 is second dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error
checking that is done is to determine if N1, N2 < 0.

The following example shows how to compute a two-dimensional real-to-complex
FFT and complex-to-real FFT of a two-dimensional array.

CFFTC2 OPT = 0 initialization

OPT = -1 complex-to-
complex forward two-
dimensional FFT

N1 × N2,
Complex

N1 × N2,
Complex

LDX1 ≥ N1
LDY1 = LDX1

LDX1 ≥ N1
LDY1 ≥ N1

OPT = 1 complex-to-
complex inverse two-
dimensional FFT

N1 × N2,
Complex

N1 × N2,
Complex

LDX1 ≥ N1
LDY1 = LDX1

LDX1 ≥ N1
LDY1 = LDX1

CODE EXAMPLE 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Two-
Dimensional Array

my_system% cat testsc2.f
 PROGRAM TESTSC2
 IMPLICIT NONE
 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1,
 $ LDY1 = N1/2+1, LDR1 = 2*(N1/2+1)
 INTEGER LW, IERR, I, J, K, IFAC(128*2)
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2)
 REAL :: V(LDR1,N2), X(LDX1, N2), Z(LDR1,N2),
 $ SW(2*N2), TRIGS(2*(N1+N2))
 COMPLEX :: Y(LDY1,N2)
 WRITE(*,*) $'Two-dimensional complex-to-real and real-to-complex FFT'
 WRITE(*,*)
 X = RESHAPE(SOURCE = (/.1, .2, .3, .4, .5, .6, .7, .8,
 $ 2.0,1.0, 1.1, 1.2/), SHAPE=(/LDX1,N2/))
 DO I = 1, N2
 V(1:N1,I) = X(1:N1,I)
 END DO

TABLE 6-3 Single Precision Two-Dimensional FFT Routines

Name Purpose
Size, Type of
Input

Size, Type of
Output Leading Dimension Requirements

In-place Out-of-Place
92 Sun Performance Library User’s Guide • January 2005

 WRITE(*,*) 'X ='
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (X(I,J), J = 1, N2)
 END DO
 WRITE(*,*)
* Initialize trig table and get factors of N1, N2
 CALL SFFTC2(0,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
 $ IFAC,SW,0,IERR)
* Compute 2-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform in X because LDX1 < 2*(N1/2+1)
 CALL SFFTC2(-1,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*)'Y ='
 DO I = 1, N1/2+1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J)),
 $ ',',AIMAG(Y(I,J)),')', J = 1, N2)
 END DO
 WRITE(*,*)

* Compute 2-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
 CALL SFFTC2(-1,N1,N2,ONE,V,LDR1,V,LDR1/2,TRIGS,
 $ IFAC,SW,LW,IERR)
 WRITE(*,*) 'in-place forward FFT of X:'
 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, V, LDR1/2, N2)
* Compute 2-dimensional out-of-place inverse FFT.
* Leading dimension of Z must be even
 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Z,LDR1,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place inverse FFT of Y:'
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (Z(I,J), J = 1, N2)
 END DO
 WRITE(*,*)
* Compute 2-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Y,2*LDY1,
 $ TRIGS,IFAC,SW,0,IERR)

CODE EXAMPLE 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Two-
Dimensional Array (Continued)
Chapter 6 Using Sun Performance Library Signal Processing Routines 93

 WRITE(*,*) 'in-place inverse FFT of Y:'
 CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Y, 2*LDY1, N2)
 END PROGRAM TESTSC2
 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 REAL A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END

 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 COMPLEX A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),
 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
my_system% f95 -dalign testsc2.f -xlic_lib=sunperf
my_system% a.out
Two-dimensional complex-to-real and real-to-complex FFT
x =
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2
out-of-place forward FFT of X:
Y =
(8.9, 0.0) (-2.9, 1.8) (-0.7, 0.0) (-2.9, -1.8)
(-1.2, 1.3) (0.5, -1.0) (-0.5, 1.0) (0.5, -1.0)
in-place forward FFT of X:
(8.9, 0.0) (-2.9, 1.8) (-0.7, 0.0) (-2.9, -1.8)
(-1.2, 1.3) (0.5, -1.0) (-0.5, 1.0) (0.5, -1.0)
out-of-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2
in-place inverse FFT of Y:

CODE EXAMPLE 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Two-
Dimensional Array (Continued)
94 Sun Performance Library User’s Guide • January 2005

Three-Dimensional FFT Routines
Sun Performance Library includes routines that compute three-dimensional FFT. In
this case, the FFT is computed along all three dimensions of a three-dimensional
array. The forward FFT computes

,

k = 0, …, N1 - 1

n = 0, …, N2 - 1

m = 0, …, N3 - 1

and the inverse FFT computes

,

j = 0, …, N1 - 1

l = 0, …, N2 - 1

h = 0, …, N3 - 1

In the complex-to-complex transform, if the input problem is N1 × N2 × N3, a three-
dimensional transform will yield a complex array that is also N1 × N2 × N3. When
computing a real-to-complex three-dimensional transform, if the real input array is
of dimensions N1 × N2 × N3, the result will be a complex array of dimensions

. Conversely, when computing a complex-to-real FFT of dimensions
N1 × N2 × N3, an complex array is required as input. As with the
real-to-complex and complex-to-real linear FFT, because of conjugate symmetry, only
the first complex data points need to be stored along the first dimension. The
complex subarray can be obtained from as follows:

0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2

CODE EXAMPLE 6-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Two-
Dimensional Array (Continued)

X k n m, ,() x j l h, ,() e

2πihm–
N 3

e

2πiln–
N 2

e

2πijk–
N 1

j 0=

N 1 1–

∑
l 0=

N 2 1–

∑
h 0=

N 3 1–

∑=

x j l h, ,() X k n m, ,() e

2πihm
N 3

e

2πiln
N 2

e

2πijk
N 1

k 0=

N 1 1–

∑
n 0=

N 2 1–

∑
m 0=

N 3 1–

∑=

N 1
2

------- 1+() N2 N3××
N 1
2

------- 1+() N2 N3××

N 1
2

------- 1+
X N 1

2
------- 1:+ N1 1– :, :,() X 0:N 1

2
------- :, :,()
Chapter 6 Using Sun Performance Library Signal Processing Routines 95

To compute a three-dimensional transform, an FFT routine must be called twice:
Once to initialize and once more to actually compute the transform. The
initialization includes computing the factors of N1, N2, and N3 and the
trigonometric weights associated with those factors. In subsequent forward or
inverse transforms, initialization is not necessary as long as N1, N2, and N3 remain
unchanged.

IMPORTANT: Upon returning from a three-dimensional FFT routine, Y(0 : N - 1, :, :)
contains the transform results and the original contents of Y(N:LDY1-1, :, :) is
overwritten. Here, N = N1 in the complex-to-complex and complex-to-real
transforms and N = in the real-to-complex transform.

TABLE 6-4 lists the single precision three-dimensional FFT routines and their
purposes. The same information applies to the corresponding double precision
routines except that their data types are double precision and double complex. See
TABLE 6-4 for the mapping. See the individual man pages for a complete description
of the routines and their arguments.

TABLE 6-4 Single Precision Three-Dimensional FFT Routines

Name Purpose Size, Type of Input Size, Type of Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC3 OPT = 0
initialization

OPT = -1 real-to-
complex forward
three-
dimensional FFT

N1 × N2 × N3, Real ,
Complex

LDX1=2 × LDY1
LDX2 ≥ N2
LDY1 ≥
LDY2 = LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥
LDY2 ≥ N2

CFFTS3 OPT = 0
initialization

OPT = 1 complex-
to-real inverse
three-
dimensional FFT

,
Complex

N1 × N2 × N3, Real LDX1 ≥
LDX2 ≥ N2
LDY1=2 × LDX1

LDY2=LDX2

LDX1 ≥
LDX2 ≥ N2
LDY1 ≥
2 × LDX1
LDY1 is even
LDY2 ≥ N2

X k n m, ,() X∗ N1 k n m, ,–(),=

k
N1
2

------- 1 …N1 1–,+=

n 0 … N2, 1–,=

m 0 … N3, 1–,=

N 1
2

------- 1+

N 1
2

------- 1+() N2 N3××

N 1
2

------- 1+ N 1
2

------- 1+

N 1
2

------- 1+() N2 N3×× N 1
2

------- 1+ N 1
2

------- 1+
96 Sun Performance Library User’s Guide • January 2005

TABLE 6-4 Notes:

■ LDX1 is first leading dimension of input array.

■ LDX2 is the second leading dimension of the input array.

■ LDY1 is the first leading dimension of the output array.

■ LDY2 is the second leading dimension of the output array.

■ N1 is the first dimension of the FFT problem.

■ N2 is the second dimension of the FFT problem.

■ N3 is the third dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error checking
that is done is to determine if N1, N2, N3 < 0.

CODE EXAMPLE 6-4 shows how to compute the three-dimensional real-to-complex
FFT and complex-to-real FFT of a three-dimensional array.

CFFTC3 OPT = 0
initialization

OPT = -1
complex-to-
complex forward
three-
dimensional FFT

N1 × N2 × N3,
Complex

N1 × N2 × N3,
Complex

LDX1 ≥ N1
LDX2 ≥ N2
LDY1=LDX1
LDY2=LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥ N1
LDY2 ≥ N2

OPT = 1 complex-
to-complex
inverse three-
dimensional FFT

N1 × N2 × N3,
Complex

N1 × N2 × N3,
Complex

LDX1 ≥ N1
LDX2 ≥ N2
LDY1=LDX1
LDY2=LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥ N1
LDY2 ≥ N2

CODE EXAMPLE 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Three-
Dimensional Array

my_system% cat testsc3.f
 PROGRAM TESTSC3
 IMPLICIT NONE
 INTEGER LW, NCPUS, IERR, I, J, K, USING_THREADS, IFAC(128*3)
 INTEGER, PARAMETER :: N1 = 3, N2 = 4, N3 = 2, LDX1 = N1,
 $ LDX2 = N2, LDY1 = N1/2+1, LDY2 = N2,
 $ LDR1 = 2*(N1/2+1), LDR2 = N2
 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2*N3)

TABLE 6-4 Single Precision Three-Dimensional FFT Routines (Continued)

Name Purpose Size, Type of Input Size, Type of Output Leading Dimension Requirements

In-place Out-of-Place
Chapter 6 Using Sun Performance Library Signal Processing Routines 97

 REAL :: V(LDR1,LDR2,N3), X(LDX1,LDX2,N3), Z(LDR1,LDR2,N3),
 $ TRIGS(2*(N1+N2+N3))
 REAL, DIMENSION(:), ALLOCATABLE :: SW
 COMPLEX :: Y(LDY1,LDY2,N3)
 WRITE(*,*) $'Three-dimensional complex-to-real and real-to-complex FFT'
 WRITE(*,*)
* get number of threads
 NCPUS = USING_THREADS()
* compute workspace size required
 LW = (MAX(MAX(N1,2*N2),2*N3) + 16*N3) * NCPUS
 ALLOCATE(SW(LW))
 X = RESHAPE(SOURCE =
 $ (/ .1, .2, .3, .4, .5, .6, .7, .8, .9,1.0,1.1,1.2,
 $ 4.1,1.2,2.3,3.4,6.5,1.6,2.7,4.8,7.9,1.0,3.1,2.2/),
 $ SHAPE=(/LDX1,LDX2,N3/))
 V = RESHAPE(SOURCE =
 $ (/.1,.2,.3,0.,.4,.5,.6,0.,.7,.8,.9,0.,1.0,1.1,1.2,0.,
 $ 4.1,1.2,2.3,0.,3.4,6.5,1.6,0.,2.7,4.8,7.9,0.,
 $ 1.0,3.1,2.2,0./), SHAPE=(/LDR1,LDR2,N3/))
 WRITE(*,*) 'X ='
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (X(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
* Initialize trig table and get factors of N1, N2 and N3
 CALL SFFTC3(0,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
 $ IFAC,SW,0,IERR)
* Compute 3-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform because LDX1 < 2*(N1/2+1)
 CALL SFFTC3(-1,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place forward FFT of X:'
 WRITE(*,*)'Y ='
 DO K = 1, N3
 DO I = 1, N1/2+1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J,K)),
 $ ',',AIMAG(Y(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO

CODE EXAMPLE 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Three-
Dimensional Array (Continued)
98 Sun Performance Library User’s Guide • January 2005

* Compute 3-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
 CALL SFFTC3(-1,N1,N2,N3,ONE,V,LDR1,LDR2,V,LDR1/2,LDR2,TRIGS,
 $ IFAC,SW,LW,IERR)
 WRITE(*,*) 'in-place forward FFT of X:'
 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, N3, V, LDR1/2, LDR2)
* Compute 3-dimensional out-of-place inverse FFT.
* First leading dimension of Z (LDR1) must be even
 CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Z,LDR1,LDR2,TRIGS,
 $ IFAC,SW,0,IERR)
 WRITE(*,*) 'out-of-place inverse FFT of Y:'
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (Z(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
* Compute 3-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
 CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Y,2*LDY1,LDY2,
 $ TRIGS,IFAC,SW,LW,IERR)
 WRITE(*,*) 'in-place inverse FFT of Y:'
 CALL PRINT_COMPLEX_AS_REAL(N1, N2, N3, Y, 2*LDY1, LDY2)
 DEALLOCATE(SW)
 END PROGRAM TESTSC3
 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K
 REAL A(LD1, LD2, *)
 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
 INTEGER N1, N2, N3, I, J, K COMPLEX A(LD1, LD2, *)

CODE EXAMPLE 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Three-
Dimensional Array (Continued)
Chapter 6 Using Sun Performance Library Signal Processing Routines 99

 DO K = 1, N3
 DO I = 1, N1
 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),
 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)
 END DO
 WRITE(*,*)
 END DO
 END
my_system% f95 -dalign testsc3.f -xlic_lib=sunperf
my_system% a.out
Three-dimensional complex-to-real and real-to-complex FFT
X =
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
out-of-place forward FFT of X:
Y =
(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)
(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)
(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)
(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)
in-place forward FFT of X:
(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)
(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)
(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)
(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)
out-of-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
in-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2

CODE EXAMPLE 6-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Three-
Dimensional Array (Continued)
100 Sun Performance Library User’s Guide • January 2005

Comments
When doing an in-place real-to-complex or complex-to-real transform, care must be
taken to ensure the size of the input array is large enough to hold the results. For
example, if the input is of type complex stored in a complex array with first leading
dimension N, then to use the same array to store the real results, its first leading
dimension as a real output array would be 2 × N. Conversely, if the input is of type
real stored in a real array with first leading dimension 2 × N, then to use the same
array to store the complex results, its first leading dimension as a complex output
array would be N. Leading dimension requirements for in-place and out-of-place
transforms can be found in TABLE 6-2, TABLE 6-3, and TABLE 6-4.

In the linear and multi-dimensional FFT, the transform between real and complex
data through a real-to-complex or complex-to-real transform can be confusing
because N1 real data points correspond to complex data points. N1 real data
points do map to N1 complex data points, but because there is conjugate symmetry
in the complex data, only data points need to be stored as input in the
complex-to-real transform and as output in the real-to-complex transform. In the
multi-dimensional FFT, symmetry exists along all the dimensions, not just in the
first. However, the two-dimensional and three-dimensional FFT routines store the
complex data of the second and third dimensions in their entirety.

While the FFT routines accept any size of N1, N2 and N3, FFTs can be computed
most efficiently when values of N1, N2 and N3 can be decomposed into relatively
small primes. A real-to-complex or a complex-to-real transform can be computed
most efficiently when

,

and a complex-to-complex transform can be computed most efficiently when

,

where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

N 1
2

------- 1+

N 1
2

------- 1+

N1 N2 N3, , 2
p

3
q× 4

r× 5
s×=

N1 N2 N3, , 2
p

3
q× 4

r× 5
s× 7

t
11

u
13

v×××=
Chapter 6 Using Sun Performance Library Signal Processing Routines 101

The function xFFTOPT can be used to determine the optimal sequence length, as
shown in CODE EXAMPLE 6-5.

Cosine and Sine Transforms
Input to the DFT that possess special symmetries occur in various applications. A
transform that exploits symmetry usually saves in storage and computational count,
such as with the real-to-complex and complex-to-real FFT transforms. The Sun
Performance Library cosine and sine transforms are special cases of FFT routines
that take advantage of the symmetry properties found in even and odd functions.

CODE EXAMPLE 6-5 RFFTOPT Example

my_system% cat fft_ex01.f

 PROGRAM TEST

 INTEGER N, N1, N2, N3, RFFTOPT

C

 N = 1024

 N1 = 1019

 N2 = 71

 N3 = 49

C

 PRINT *, ’N Original N Suggested’

 PRINT ’(I5, I12)’, (N, RFFTOPT(N))

 PRINT ’(I5, I12)’, (N1, RFFTOPT(N1))

 PRINT ’(I5, I12)’, (N2, RFFTOPT(N2))

 PRINT ’(I5, I12)’, (N3, RFFTOPT(N3))

 END

my_system% f95 -dalign fft_ex01.f -xlic_lib=sunperf

my_system% a.out

 N Original N Suggested

 1024 1024

 1019 1024

 71 72

 49 49
102 Sun Performance Library User’s Guide • January 2005

Note – Sun Performance Library sine and cosine transform routines are based on
the routines contained in FFTPACK (http://www.netlib.org/fftpack/).
Routines with a V prefix are vectorized routines that are based on the routines
contained in VFFTPACK (http://www.netlib.org/vfftpack/).

Fast Cosine and Sine Transform Routines
TABLE 6-5 lists the Sun Performance Library fast cosine and sine transforms. Names
of double precision routines are in square brackets. Routines whose name begins
with 'V' can compute the transform of one or more sequences simultaneously. Those
whose name ends with 'I' are initialization routines.

TABLE 6-5 Fast Cosine and Sine Transform Routines and Their Arguments

Name Arguments

Fast Cosine Transforms for Even Sequences

COST [DCOST] (LEN+1, X, WORK)

COSTI [DCOSTI] (LEN+1, WORK)

VCOST [VDCOST] (M, LEN+1, X, WORK, LD, TABLE)

VCOSTI [VDCOSTI] (LEN+1, TABLE)

Fast Cosine Transforms for Quarter-Wave Even Sequences

COSQF [DCOSQF] (LEN, X, WORK)

COSQB [DCOSQB] (LEN, X, WORK)

COSQI [DCOSQI] (LEN, WORK)

VCOSQF [VDCOSQF] (M, LEN, X, WORK, LD, TABLE)

VCOSQB [VDCOSQB] (M, LEN, X, WORK, LD, TABLE)

VCOSQI [VDCOSQI] (LEN, TABLE)

Fast Sine Transforms for Odd Sequences

SINT [DSINT] (LEN-1, X, WORK)

SINTI [DSINTI] (LEN-1, WORK)

VSINT [VDSINT] (M, LEN-1, X, WORK, LD, TABLE)

VSINTI [VDSINTI] (LEN-1, TABLE)

Fast Sine Transforms for Quarter-Wave Odd Sequences

SINQF [DSINQF] (LEN, X, WORK)
Chapter 6 Using Sun Performance Library Signal Processing Routines 103

http://www.netlib.org/vfftpack/
http://www.netlib.org/fftpack/

TABLE 6-5 Notes:

■ M: Number of sequences to be transformed.

■ LEN, LEN-1, LEN+1: Length of the input sequence or sequences.

■ X: A real array which contains the sequence or sequences to be transformed. On
output, the real transform results are stored in X.

■ TABLE: Array of constants particular to a transform size that is required by the
transform routine. The constants are computed by the initialization routine.

■ WORK: Workspace required by the transform routine. In routines that operate on a
single sequence, WORK also contains constants computed by the initialization
routine.

Fast Cosine Transforms
A special form of the FFT that operates on real even sequences is the fast cosine
transform (FCT). A real sequence x is said to have even symmetry if x(n) = x(-n)
where n = -N + 1, …, 0, …, N. An FCT of a sequence of length 2N requires N + 1
input data points and produces a sequence of size N + 1. Routine COST computes the
FCT of a single real even sequence while VCOST computes the FCT of one or more
sequences. Before calling [V]COST, [V]COSTI must be called to compute
trigonometric constants and factors associated with input length N + 1. The FCT is
its own inverse transform. Calling VCOST twice will result in the original N +1 data
points. Calling COST twice will result in the original N +1 data points multiplied by
2N.

An even sequence x with symmetry such that x(n) = x(-n - 1) where n =
 -N + 1, … , 0, …, N is said to have quarter-wave even symmetry. COSQF and COSQB
compute the FCT and its inverse, respectively, of a single real quarter-wave even
sequence. VCOSQF and VCOSQB operate on one or more sequences. The results of
[V]COSQB are unormalized, and if scaled by , the original sequences are obtained.
An FCT of a real sequence of length 2N that has quarter-wave even symmetry
requires N input data points and produces an N-point resulting sequence.
Initialization is required before calling the transform routines by calling [V]COSQI.

SINQB [DSINQB] (LEN, X, WORK)

SINQI [DSINQI] (LEN, WORK)

VSINQF [VDSINQF] (M, LEN, X, WORK, LD, TABLE)

VSINQB [VDSINQB] (M, LEN, X, WORK, LD, TABLE)

VSINQI [VDSINQI] (LEN, TABLE)

TABLE 6-5 Fast Cosine and Sine Transform Routines and Their Arguments

Name Arguments

1
4N

104 Sun Performance Library User’s Guide • January 2005

Fast Sine Transforms
Another type of symmetry that is commonly encountered is the odd symmetry
where x(n) = -x(-n) for n = -N+1, …, 0, …, N. As in the case of the fast cosine
transform, the fast sine transform (FST) takes advantage of the odd symmetry to
save memory and computation. For a real odd sequence x, symmetry implies that
x(0) = -x(0) = 0. Therefore, if x is of length 2N then only N = 1 values of x are
required to compute the FST. Routine SINT computes the FST of a single real odd
sequence while VSINT computes the FST of one or more sequences. Before calling
[V]SINT, [V]SINTI must be called to compute trigonometric constants and factors
associated with input length N - 1. The FST is its own inverse transform. Calling
VSINT twice will result in the original N -1 data points. Calling SINT twice will
result in the original N -1 data points multiplied by 2N.

An odd sequence with symmetry such that x(n) = -x(-n - 1), where
n = -N + 1, …, 0, …, N is said to have quarter-wave odd symmetry. SINQF and
SINQB compute the FST and its inverse, respectively, of a single real quarter-wave
odd sequence while VSINQF and VSINQB operate on one or more sequences. SINQB
is unnormalized, so using the results of SINQF as input in SINQB produces the
original sequence scaled by a factor of 4N. However, VSINQB is normalized, so a call
to VSINQF followed by a call to VSINQB will produce the original sequence. An FST
of a real sequence of length 2N that has quarter-wave odd symmetry requires N
input data points and produces an N-point resulting sequence. Initialization is
required before calling the transform routines by calling [V]SINQI.

Discrete Fast Cosine and Sine Transforms and
Their Inverse
Sun Performance Library routines use the equations in the following sections to
compute the fast cosine and sine transforms and inverse transforms.

[D]COST: Forward and Inverse Fast Cosine Transform (FCT)
of a Sequence

The forward and inverse FCT of a sequence is computed as

.

[D]COST Notes:

■ N + 1 values are needed to compute the FCT of an N-point sequence.

X k() x 0() 2 x n() πnk
N

--------- 
 cos

n 1=

N 1–

∑ x N() πk(),cos+ += k 0 … N, ,=
Chapter 6 Using Sun Performance Library Signal Processing Routines 105

■ [D]COST also computes the inverse transform. When [D]COST is called twice, the
result will be the original sequence scaled by .

V[D]COST: Forward and Inverse Fast Cosine Transforms of
Multiple Sequences (VFCT)

The forward and inverse FCTs of multiple sequences are computed as

For i = 0, M - 1

.

V[D]COST Notes

■ M × (N+1) values are needed to compute the VFCT of M N-point sequences.

■ The input and output sequences are stored row-wise.

■ V[D]COST is normalized and is its own inverse. When V[D]COST is called twice,
the result will be the original data.

[D]COSQF: Forward FCT of a Quarter-Wave Even Sequence

The forward FCT of a quarter-wave even sequence is computed as

.

N values are needed to compute the forward FCT of an N-point quarter-wave even
sequence.

[D]COSQB: Inverse FCT of a Quarter-Wave Even Sequence

The inverse FCT of a quarter-wave even sequence is computed as

.

Calling the forward and inverse routines will result in the original input scaled by
.

1
2N

X i k,() x i 0,()
2N

1
N
---- x i n,() πnk

N
--------- 

 cos
n 1=

N 1–

∑ x i N,()
2N

----------------- πk(),cos+ += k 0 … N, ,=

X k() x 0() 2 x n() πn 2k 1+()
2N

--------------------------- 
  ,cos

n 1=

N 1–

∑+= k 0 … N 1–, ,=

x n() X k() πn 2k 1+()
2N

--------------------------- 
 cos ,

k 0=

N 1–

∑= n 0 … N 1–, ,=

1
4N

106 Sun Performance Library User’s Guide • January 2005

V[D]COSQF: Forward FCT of One or More Quarter-Wave
Even Sequences

The forward FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

.

V[D]COSQF Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if the inverse routine V[D]COSQB is called
immediately after calling V[D]COSQF, the original data is obtained.

V[D]COSQB: Inverse FCT of One or More Quarter-Wave Even
Sequences

The inverse FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

.

V[D]COSQB Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if V[D]COSQB is called immediately after
calling V[D]COSQF, the original data is obtained.

[D]SINT: Forward and Inverse Fast Sine Transform (FST) of a
Sequence

The forward and inverse FST of a sequence is computed as

.

[D]SINT Notes:

■ N-1 values are needed to compute the FST of an N-point sequence.

X i k,() 1
N
---- x i 0,() 2 x i n,() πn 2k 1+()

2N
--------------------------- 

 cos
n 1=

N 1–

∑+ ,= k 0 … N 1–, ,=

x i n,() X i k,() πn 2k 1+()
2N

--------------------------- 
 cos ,

k 0=

N 1–

∑= n 0 … N 1–, ,=

X k() 2 x n() π n 1+() k 1+()
N

-------------------------------------- 
  ,sin

n 0=

N 2–

∑= k 0 … N 2–, ,=
Chapter 6 Using Sun Performance Library Signal Processing Routines 107

■ [D]SINT also computes the inverse transform. When [D]SINT is called twice, the
result will be the original sequence scaled by .

V[D]SINT: Forward and Inverse Fast Sine Transforms of
Multiple Sequences (VFST)

The forward and inverse fast sine transforms of multiple sequences are computed as

For i = 0, M - 1

.

V[D]SINT Notes:

■ M × (N - 1) values are needed to compute the VFST of M N-point sequences.

■ The input and output sequences are stored row-wise.

■ V[D]SINT is normalized and is its own inverse. Calling V[D]SINT twice yields
the original data.

[D]SINQF: Forward FST of a Quarter-Wave Odd Sequence

The forward FST of a quarter-wave odd sequence is computed as

.

N values are needed to compute the forward FST of an N-point quarter-wave odd
sequence.

[D]SINQB: Inverse FST of a Quarter-Wave Odd Sequence

The inverse FST of a quarter-wave odd sequence is computed as

.

Calling the forward and inverse routines will result in the original input scaled by
.

1
2N

X i k,() 2

2N
------------ x i n,() π n 1+() k 1+()

N
-------------------------------------- 

  ,sin
n 0=

N 2–

∑= k 0 … N 2–, ,=

X k() 2 x n() π n 1+() 2k 1+()
2N

--- 
 sin x N 1–() πk()cos ,+

n 0=

N 2–

∑= k 0 … N 1–, ,=

x n() 2 X k() π n 1+() 2k 1+()
2N

--- 
 sin ,

k 0=

N 1–

∑= n 0 … N 1–, ,=

1
4N

108 Sun Performance Library User’s Guide • January 2005

V[D]SINQF: Forward FST of One or More Quarter-Wave Odd
Sequences

The forward FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQF Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if the inverse routine V[D]SINQB is called
immediately after calling V[D]SINQF, the original data is obtained.

V[D]SINQB: Inverse FST of One or More Quarter-Wave Odd
Sequences

The inverse FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQB Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized, so that if V[D]SINQB is called immediately after
calling V[D]SINQF, the original data is obtained.

X i k,() 1

4N
------------ 2 x n i,() π n 1+() 2k 1+()

2N
--- 

 sin x N 1 i,–() πkcos+
n 0=

N 2–

∑ ,= k 0 … N 1–, ,=

x n i,() 4

4N
------------ X k i,() π n 1+() 2k 1+()

2N
--- 

  ,sin
k 0=

N 1–

∑= n 0 … N 1–, ,=
Chapter 6 Using Sun Performance Library Signal Processing Routines 109

Fast Cosine Transform Examples
CODE EXAMPLE 6-6 calls COST to compute the FCT and the inverse transform of a real
even sequence. If the real sequence is of length 2N, only N + 1 input data points
need to be stored and the number of resulting data points is also N + 1. The results
are stored in the input array.

CODE EXAMPLE 6-6 Compute FCT and Inverse FCT of Single Real Even Sequence

my_system% cat cost.f

 program cost

 implicit none

 integer,parameter :: len=4

 real x(0:len),work(3*(len+1)+15), z(0:len), scale

 integer i

 scale = 1.0/(2.0*len)

 call RANDOM_NUMBER(x(0:len))

 z(0:len) = x(0:len)

 write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',

 $ len,' requires ', len+1,' data points'

 write(*,'(5(f8.3,2x),/)')(x(i),i=0,len)

 call costi(len+1, work)

 call cost(len+1, z, work)

 write(*,*)'Forward fast cosine transform'

 write(*,'(5(f8.3,2x),/)')(z(i),i=0,len)

 call cost(len+1, z, work)

 write(*,*)

 $ 'Inverse fast cosine transform (results scaled by 1/2*N)'

 write(*,'(5(f8.3,2x),/)')(z(i)*scale,i=0,len)

 end

my_system% f95 -dalign cost.f -xlic_lib=sunperf

my_system% a.out

Input sequence of length 4 requires 5 data points

0.557 0.603 0.210 0.352 0.867

Forward fast cosine transform

3.753 0.046 1.004 -0.666 -0.066

Inverse fast cosine transform (results scaled by 1/2*N)

0.557 0.603 0.210 0.352 0.867
110 Sun Performance Library User’s Guide • January 2005

CODE EXAMPLE 6-7 calls VCOSQF and VCOSQB to compute the FCT and the inverse
FCT, respectively, of two real quarter-wave even sequences. If the real sequences are
of length 2N, only N input data points need to be stored, and the number of
resulting data points is also N. The results are stored in the input array.

CODE EXAMPLE 6-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences

my_system% cat vcosq.f
 program vcosq
 implicit none
 integer,parameter :: len=4, m = 2, ld = m+1
 real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
 integer i, j
 call RANDOM_NUMBER(x)
 z = x
 write(*,'(a27,i1)')' Input sequences of length ',len
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(x(j,i),i=1,len),')'
 end do
 call vcosqi(len, work)
 call vcosqf(m,len, z, xt, ld, work)
 write(*,*)
 $ 'Forward fast cosine transform for quarter-wave even sequences'
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(z(j,i),i=1,len),')'
 end do
 call vcosqb(m,len, z, xt, ld, work)
 write(*,*)
 $ 'Inverse fast cosine transform for quarter-wave even sequences'

 write(*,*)'(results are normalized)'
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(z(j,i),i=1,len),')'
 end do
 end
Chapter 6 Using Sun Performance Library Signal Processing Routines 111

Fast Sine Transform Examples
In CODE EXAMPLE 6-8, SINT is called to compute the FST and the inverse transform of
a real odd sequence. If the real sequence is of length 2N, only N - 1 input data points
need to be stored and the number of resulting data points is also N - 1. The results
are stored in the input array.

my_system% f95 -dalign vcosq.f -xlic_lib=sunperf
my_system% a.out
Input sequences of length 4
seq1 = (0.557 0.352 0.990 0.539)
seq2 = (0.603 0.867 0.417 0.156)
Forward fast cosine transform for quarter-wave even sequences
seq1 = (0.755 -.392 -.029 0.224)
seq2 = (0.729 0.097 -.091 -.132)
Inverse fast cosine transform for quarter-wave even sequences
(results are normalized)
seq1 = (0.557 0.352 0.990 0.539)
seq2 = (0.603 0.867 0.417 0.156)

CODE EXAMPLE 6-8 Compute FST and the Inverse FST of a Real Odd Sequence

my_system% cat sint.f
 program sint
 implicit none
 integer,parameter :: len=4
 real x(0:len-2),work(3*(len-1)+15), z(0:len-2), scale
 integer i
 call RANDOM_NUMBER(x(0:len-2))
 z(0:len-2) = x(0:len-2)
 scale = 1.0/(2.0*len)
 write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',
 $ len,' requires ', len-1,' data points'
 write(*,'(3(f8.3,2x),/)')(x(i),i=0,len-2)
 call sinti(len-1, work)
 call sint(len-1, z, work)
 write(*,*)'Forward fast sine transform'
 write(*,'(3(f8.3,2x),/)')(z(i),i=0,len-2)

CODE EXAMPLE 6-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences
112 Sun Performance Library User’s Guide • January 2005

In CODE EXAMPLE 6-9 VSINQF and VSINQB are called to compute the FST and inverse
FST, respectively, of two real quarter-wave odd sequences. If the real sequence is of
length 2N, only N input data points need to be stored and the number of resulting
data points is also N. The results are stored in the input array.

 call sint(len-1, z, work)
 write(*,*) $ 'Inverse fast sine transform (results scaled by 1/2*N)'
 write(*,'(3(f8.3,2x),/)')(z(i)*scale,i=0,len-2)
 end
my_system% f95 -dalign sint.f -xlic_lib=sunperf
my_system% a.out
Input sequence of length 4 requires 3 data points
0.557 0.603 0.210
Forward fast sine transform
2.291 0.694 -0.122
Inverse fast sine transform (results scaled by 1/2*N)
0.557 0.603 0.210

CODE EXAMPLE 6-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd
Sequences

my_system% cat vsinq.f
 program vsinq
 implicit none
 integer,parameter :: len=4, m = 2, ld = m+1
 real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
 integer i, j
 call RANDOM_NUMBER(x)
 z = x
 write(*,'(a27,i1)')' Input sequences of length ',len
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(x(j,i),i=1,len),')'
 end do
 call vsinqi(len, work)
 call vsinqf(m,len, z, xt, ld, work)
 write(*,*)
 $ 'Forward fast sine transform for quarter-wave odd sequences'
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(z(j,i),i=1,len),')'
 end do

CODE EXAMPLE 6-8 Compute FST and the Inverse FST of a Real Odd Sequence (Continued)
Chapter 6 Using Sun Performance Library Signal Processing Routines 113

Convolution and Correlation
Two applications of the FFT that are frequently encountered especially in the signal
processing area are the discrete convolution and discrete correlation operations.

Convolution
Given two functions x(t) and y(t), the Fourier transform of the convolution of x(t)
and y(t), denoted as x y, is the product of their individual Fourier transforms:
DFT(x y)=X Y where denotes the convolution operation and denotes
pointwise multiplication.

Typically, x(t) is a continuous and periodic signal that is represented discretely by a
set of N data points xj, j = 0, …, N -1, sampled over a finite duration, usually for one
period of x(t) at equal intervals. y(t) is usually a response that starts out as zero,
peaks to a maximum value, and then returns to zero. Discretizing y(t) at equal

 call vsinqb(m,len, z, xt, ld, work)
 write(*,*)
 $ 'Inverse fast sine transform for quarter-wave odd sequences'
 write(*,*)'(results are normalized)'
 do j = 1,m
 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $ 'seq',j,' = (',(z(j,i),i=1,len),')'
 end do
 end
my_system% f95 vsinq.f -xlic_lib=sunperf
my_system% a.out
Input sequences of length 4
seq1 = (0.557 0.352 0.990 0.539)
seq2 = (0.603 0.867 0.417 0.156)
Forward fast sine transform for quarter-wave odd sequences
seq1 = (0.823 0.057 0.078 0.305)
seq2 = (0.654 0.466 -.069 -.037)
Inverse fast sine transform for quarter-wave odd sequences
(results are normalized)
seq1 = (0.557 0.352 0.990 0.539)
seq2 = (0.603 0.867 0.417 0.156)

CODE EXAMPLE 6-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd
Sequences (Continued)

★

★ ★
114 Sun Performance Library User’s Guide • January 2005

intervals produces a set of N data points, yk, k = 0, …, N -1. If the actual number of
samplings in yk is less than N, the data can be padded with zeros. The discrete
convolution can then be defined as

(x y)j .

The values of , are the same as those of but in the
wrap-around order.

The Sun Performance Library routines allow the user to compute the convolution by
using the definition above with k = 0, …, N -1, or by using the FFT. If the FFT is used
to compute the convolution of two sequences, the following steps are performed:

■ Compute X = forward FFT of x
■ Compute Y = forward FFT of y
■ Compute Z = X Y DFT(x y)
■ Compute z = inverse FFT of Z; z = (x y)

One interesting characteristic of convolution is that the product of two polynomials
is actually a convolution. A product of an m-term polynomial

and an n-term polynomial

has m + n - 1 coefficients that can be obtained by

,

where k = 0, …, m + n - 2.

Correlation
Closely related to convolution is the correlation operation. It computes the
correlation of two sequences directly superposed or when one is shifted relative to
the other. As with convolution, we can compute the correlation of two sequences
efficiently as follows using the FFT:

■ Compute the FFT of the two input sequences.

■ Compute the pointwise product of the resulting transform of one sequence and
the complex conjugate of the transform of the other sequence.

■ Compute the inverse FFT of the product.

★ x j k– yk,

k
N–
2

------- 1+=

N
2

∑≡ j 0 … N, 1–,=

yk k, N–
2

------- 1 …,N
2
----,+= k 0 … N, 1–,=

 ⇔ ★

★

a x() a0 a1x … am 1– x
m 1–

+ + +=

b x() b0 b1x … bn 1– x
n 1–

+ + +=

ck a jbk j–
j max k m 1–()–() 0,()=

min k n 1–,()

∑=
Chapter 6 Using Sun Performance Library Signal Processing Routines 115

The routines in the Performance Library also allow correlation to be computed by
the following definition:

.

There are various ways to interpret the sampled input data of the convolution and
correlation operations. The argument list of the convolution and correlation routines
contain parameters to handle cases in which

■ The signal and/or response function can start at different sampling time

■ The user might want only part of the signal to contribute to the output

■ The signal and/or response function can begin with one or more zeros that are
not explicitly stored.

Sun Performance Library Convolution and
Correlation Routines
Sun Performance Library contains the convolution routines shown in TABLE 6-6.

The [S,D,C,Z]CNVCOR routines are used to compute the convolution or
correlation of a filter with one or more input vectors. The [S,D,C,Z]CNVCOR2
routines are used to compute the two-dimensional convolution or correlation of two
matrices.

TABLE 6-6 Convolution and Correlation Routines

Routine Arguments Function

SCNVCOR,
DCNVCOR,
CCNVCOR,
ZCNVCOR

CNVCOR,FOUR,NX,X,IFX,
INCX,NY,NPRE,M,Y,IFY,
INC1Y,INC2Y,NZ,K,Z,
IFZ,INC1Z,INC2Z,WORK,
LWORK

Convolution or correlation of a filter
with one or more vectors

SCNVCOR2,
DCNVCOR2,
CCNVCOR2,
ZCNVCOR2

CNVCOR,METHOD,TRANSX,
SCRATCHX,TRANSY,
SCRATCHY,MX,NX,X,LDX,
MY,NY,MPRE,NPRE,Y,LDY,
MZ,NZ,Z,LDZ,WORKIN,
LWORK

Two-dimensional convolution or
correlation of two matrices

SWIENER,
DWIENER

N_POINTS,ACOR,XCOR,
FLTR,EROP,ISW,IERR

Wiener deconvolution of two signals

Corr x y,() j x j k+ yk,
k 0=

N 1–

∑≡ j 0 … N 1–, ,=
116 Sun Performance Library User’s Guide • January 2005

Arguments for Convolution and Correlation
Routines
The one-dimensional convolution and correlation routines use the arguments shown
in TABLE 6-7.

TABLE 6-7 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.
‘R’ or ‘r’ specifies that correlation is computed.

FOUR ‘T’ or ‘t’ specifies that the Fourier transform method is used.
‘D’ or ‘d’ specifies that the direct method is used, where the
convolution or correlation is computed from the definition of
convolution and correlation. *

NX Length of filter vector, where NX ≥ 0.

X Filter vector

IFX Index of first element of X, where NX ≥ IFX ≥ 1

INCX Stride between elements of the vector in X, where INCX > 0.

NY Length of input vectors, where NY ≥ 0.

NPRE Number of implicit zeros prefixed to the Y vectors, where NPRE ≥ 0.

M Number of input vectors, where M ≥ 0.

Y Input vectors.

IFY Index of the first element of Y, where NY ≥ IFY ≥ 1

INC1Y Stride between elements of the input vectors in Y, where INC1Y > 0.

INC2Y Stride between input vectors in Y, where INC2Y > 0.

NZ Length of the output vectors, where NZ ≥ 0.

K Number of Z vectors, where K ≥ 0. If K < M, only the first K vectors
will be processed. If K > M, all input vectors will be processed and
the last M-K output vectors will be set to zero on exit.

Z Result vectors

IFZ Index of the first element of Z, where NZ ≥ IFZ ≥ 1

INC1Z Stride between elements of the output vectors in Z, where
INCYZ > 0.
Chapter 6 Using Sun Performance Library Signal Processing Routines 117

The two-dimensional convolution and correlation routines use the arguments shown
in TABLE 6-8.

INC2Z Stride between output vectors in Z, where INC2Z > 0.

WORK Work array

LWORK Length of work array

* When the lengths of the two sequences to be convolved are similar, the FFT method is faster than the direct
method. However, when one sequence is much larger than the other, such as when convolving a large time-
series signal with a small filter, the direct method performs faster than the FFT-based method.

TABLE 6-8 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.
‘R’ or ‘r’ specifies that correlation is computed.

METHOD ‘T’ or ‘t’ specifies that the Fourier transform method is used.
‘D’ or ‘d’ specifies that the direct method is used, where the
convolution or correlation is computed from the definition of
convolution and correlation. *

TRANSX ‘N’ or ‘n’ specifies that X is the filter matrix
‘T’ or ‘t’ specifies that the transpose of X is the filter matrix

SCRATCHX ‘N’ or ‘n’ specifies that X must be preserved
‘S’ or ‘s’ specifies that X can be used for scratch space. The
contents of X are undefined after returning from a call where X is
used for scratch space.

TRANSY ‘N’ or ‘n’ specifies that Y is the input matrix
‘T’ or ‘t’ specifies that the transpose of Y is the input matrix

SCRATCHY ‘N’ or ‘n’ specifies that Y must be preserved
‘S’ or ‘s’ specifies that Y can be used for scratch space. The
contents of X are undefined after returning from a call where Y is
used for scratch space.

MX Number of rows in the filter matrix X, where MX ≥ 0

NX Number of columns in the filter matrix X, where NX ≥ 0

X Filter matrix. X is unchanged on exit when SCRATCHX is ‘N’ or ‘n’
and undefined on exit when SCRATCHX is ‘S’ or ‘s’.

LDX Leading dimension of array containing the filter matrix X.

MY Number of rows in the input matrix Y, where MY ≥ 0.

TABLE 6-7 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR (Continued)

Argument Definition
118 Sun Performance Library User’s Guide • January 2005

Work Array WORK for Convolution and
Correlation Routines
The minimum dimensions for the WORK work arrays used with the one-dimensional
and two-dimensional convolution and correlation routines are shown in TABLE 6-11.
The minimum dimensions for one-dimensional convolution and correlation routines
depend upon the values of the arguments NPRE, NX, NY, and NZ.

NY Number of columns in the input matrix Y, where NY ≥ 0

MPRE Number of implicit zeros prefixed to each row of the input matrix Y
vectors, where MPRE ≥ 0.

NPRE Number of implicit zeros prefixed to each column of the input
matrix Y, where NPRE ≥ 0.

Y Input matrix. Y is unchanged on exit when SCRATCHY is ‘N’ or ‘n’
and undefined on exit when SCRATCHY is ‘S’ or ‘s’.

LDY Leading dimension of array containing the input matrix Y.

MZ Number of output vectors, where MZ ≥ 0.

NZ Length of output vectors, where NZ ≥ 0.

Z Result vectors

LDZ Leading dimension of the array containing the result matrix Z,
where LDZ ≥ MAX(1,MZ).

WORKIN Work array

LWORK Length of work array

* When the sizes of the two matrices to be convolved are similar, the FFT method is faster than the direct method.
However, when one sequence is much larger than the other, such as when convolving a large data set with a
small filter, the direct method performs faster than the FFT-based method.

TABLE 6-8 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 (Continued)

Argument Definition
Chapter 6 Using Sun Performance Library Signal Processing Routines 119

The minimum dimensions for two-dimensional convolution and correlation routines
depend upon the values of the arguments shown TABLE 6-9.

MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix
and Y is the input matrix.

TABLE 6-9 Arguments Affecting Minimum Work Array Size for Two-Dimensional
Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

MX Number of rows in the filter matrix

MY Number of rows in the input matrix

MZ Number of output vectors

NX Number of columns in the filter matrix

NY Number of columns in the input matrix

NZ Length of output vectors

MPRE Number of implicit zeros prefixed to each row of the input
matrix

NPRE Number of implicit zeros prefixed to each column of the input
matrix

MPOST MAX(0,MZ-MYC)

NPOST MAX(0,NZ-NYC)

MYC MPRE + MPOST + MYC_INIT, where MYC_INIT depends upon
filter and input matrices, as shown in TABLE 6-10

NYC NPRE + NPOST + NYC_INIT, where NYC_INIT depends upon
filter and input matrices, as shown in TABLE 6-10

TABLE 6-10 MYC_INIT and NYC_INIT Dependencies

Y Transpose(Y)

X Transpose(X) X Transpose(X)

 MYC_INIT MAX(MX,MY) MAX(NX,MY) MAX(MX,NY) MAX(NX,NY)

 NYC_INIT MAX(NX,NY) MAX(MX,NY) MAX(NX,MY) MAX(MX,MY)
120 Sun Performance Library User’s Guide • January 2005

The values assigned to the minimum work array size is shown in TABLE 6-11.

Sample Program: Convolution
CODE EXAMPLE 6-10 uses CCNVCOR to perform FFT convolution of two complex
vectors.

TABLE 6-11 Minimum Dimensions and Data Types for WORK Work Array Used With
Convolution and Correlation Routines

Routine Minimum Work Array Size (WORK) Type

SCNVCOR, DCNVCOR 4*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY))

REAL, REAL*8

CCNVCOR, ZCNVCOR 2*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY)))

COMPLEX,
COMPLEX*16

SCNVCOR2*, DCNVCOR21

* Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

MY + NY + 30 COMPLEX,
COMPLEX*16

CCNVCOR21, ZCNVCOR21 If MY = NY: MYC + 8
If MY ≠ NY: MYC + NYC + 16

COMPLEX,
COMPLEX*16

CODE EXAMPLE 6-10 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEX Data

my_system% cat con_ex20.f

 PROGRAM TEST

C

 INTEGER LWORK

 INTEGER N

 PARAMETER (N = 3)

 PARAMETER (LWORK = 4 * N + 15)

 COMPLEX P1(N), P2(N), P3(2*N-1), WORK(LWORK)

 DATA P1 / 1, 2, 3 /, P2 / 4, 5, 6 /

C

 EXTERNAL CCNVCOR

C

 PRINT *, ’P1:’

 PRINT 1000, P1

 PRINT *, ’P2:’

 PRINT 1000, P2
Chapter 6 Using Sun Performance Library Signal Processing Routines 121

If any vector overlaps a writable vector, either because of argument aliasing or ill-
chosen values of the various INC arguments, the results are undefined and can vary
from one run to the next.

The most common form of the computation, and the case that executes fastest, is
applying a filter vector X to a series of vectors stored in the columns of Y with the
result placed into the columns of Z. In that case, INCX = 1, INC1Y = 1, INC2Y ≥ NY,
INC1Z = 1, INC2Z ≥ NZ. Another common form is applying a filter vector X to a
series of vectors stored in the rows of Y and store the result in the row of Z, in which
case INCX = 1, INC1Y ≥ NY, INC2Y = 1, INC1Z ≥ NZ, and INC2Z = 1.

 CALL CCNVCOR (’V’, ’T’, N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,

 $ 2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)

C

 PRINT *, ’P3:’

 PRINT 1000, P3

C

 1000 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i ’))

C

 END

my_system% f95 -dalign con_ex20.f -xlic_lib=sunperf

my_system% a.out

 P1:

 1.0 + 0.0i 2.0 + 0.0i 3.0 + 0.0i

 P2:

 4.0 + 0.0i 5.0 + 0.0i 6.0 + 0.0i

 P3:

 4.0 + 0.0i 13.0 + 0.0i 28.0 + 0.0i 27.0 + 0.0i 18.0 + 0.0i

CODE EXAMPLE 6-10 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEX Data (Continued)
122 Sun Performance Library User’s Guide • January 2005

Convolution can be used to compute the products of polynomials.
CODE EXAMPLE 6-11 uses SCNVCOR to compute the product of 1 + 2x + 3x2 and
4 + 5x + 6x2.

Making the output vector longer than the input vectors, as in the example above,
implicitly adds zeros to the end of the input. No zeros are actually required in any of
the vectors, and none are used in the example, but the padding provided by the
implied zeros has the effect of an end-off shift rather than an end-around shift of the
input vectors.

CODE EXAMPLE 6-11 One-Dimensional Convolution Using Fourier Transform Method and
REAL Data

my_system% cat con_ex21.f

 PROGRAM TEST

 INTEGER LWORK, NX, NY, NZ

 PARAMETER (NX = 3)

 PARAMETER (NY = NX)

 PARAMETER (NZ = 2*NY-1)

 PARAMETER (LWORK = 4*NZ+32)

 REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

 DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /

C

 PRINT 1000, ’X’

 PRINT 1010, X

 PRINT 1000, ’Y’

 PRINT 1010, Y

 CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

 $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1, WORK, LWORK)

 PRINT 1020, ’Z’

 PRINT 1010, Z

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

 END

my_system% f95 -dalign con_ex21.f -xlic_lib=sunperf

my_system% a.out

 Input vector X

 1. 2. 3.

 Input vector Y

 4. 5. 6.

 Output vector Z

 4. 13. 28. 27. 18.
Chapter 6 Using Sun Performance Library Signal Processing Routines 123

CODE EXAMPLE 6-12 will compute the product between the vector [1, 2, 3] and the
circulant matrix defined by the initial column vector [4, 5, 6].

CODE EXAMPLE 6-12 Convolution Used to Compute the Product of a Vector and Circulant
Matrix

my_system% cat con_ex22.f

 PROGRAM TEST

C

 INTEGER LWORK, NX, NY, NZ

 PARAMETER (NX = 3)

 PARAMETER (NY = NX)

 PARAMETER (NZ = NY)

 PARAMETER (LWORK = 4*NZ+32)

 REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

 DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /

C

 PRINT 1000, ’X’

 PRINT 1010, X

 PRINT 1000, ’Y’

 PRINT 1010, Y

 CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

 $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1,

 $WORK, LWORK)

 PRINT 1020, ’Z’

 PRINT 1010, Z

C

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

 END

my_system% f95 -dalign con_ex22.f -xlic_lib=sunperf

my_system% a.out

 Input vector X

 1. 2. 3.

 Input vector Y

 4. 5. 6.

 Output vector Z

 31. 31. 28.
124 Sun Performance Library User’s Guide • January 2005

The difference between this example and the previous example is that the length of
the output vector is the same as the length of the input vectors, so there are no
implied zeros on the end of the input vectors. With no implied zeros to shift into, the
effect of an end-off shift from the previous example does not occur and the end-
around shift results in a circulant matrix product.

CODE EXAMPLE 6-13 Two-Dimensional Convolution Using Direct Method

my_system% cat con_ex23.f
 PROGRAM TEST
C
 INTEGER M, N
 PARAMETER (M = 2)
 PARAMETER (N = 3)
C
 INTEGER I, J
 COMPLEX P1(M,N), P2(M,N), P3(M,N)
 DATA P1 / 1, -2, 3, -4, 5, -6 /, P2 / -1, 2, -3, 4, -5, 6 /
 EXTERNAL CCNVCOR2
C
 PRINT *, ’P1:’
 PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)
 PRINT *, ’P2:’
 PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)
C
 CALL CCNVCOR2 (’V’, ’Direct’, ’No Transpose X’, ’No Overwrite X’,
 $ ’No Transpose Y’, ’No Overwrite Y’, M, N, P1, M,
 $ M, N, 0, 0, P2, M, M, N, P3, M, 0, 0)
C
 PRINT *, ’P3:’
 PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)
C
 1000 FORMAT (3(F5.1,’ +’,F5.1,’i ’))
C
 END
my_system% f95 -dalign con_ex23.f -xlic_lib=sunperf
my_system% a.out
 P1:
 1.0 + 0.0i 3.0 + 0.0i 5.0 + 0.0i
 -2.0 + 0.0i -4.0 + 0.0i -6.0 + 0.0i
 P2:
 -1.0 + 0.0i -3.0 + 0.0i -5.0 + 0.0i
 2.0 + 0.0i 4.0 + 0.0i 6.0 + 0.0i
 P3:
-83.0 + 0.0i -83.0 + 0.0i -59.0 + 0.0i
 80.0 + 0.0i 80.0 + 0.0i 56.0 + 0.0i
Chapter 6 Using Sun Performance Library Signal Processing Routines 125

References
For additional information on the DFT or FFT, see the following sources.

Briggs, William L., and Henson, Van Emden. The DFT: An Owner’s Manual for the
Discrete Fourier Transform. Philadelphia, PA: SIAM, 1995.

Brigham, E. Oran. The Fast Fourier Transform and Its Applications. Upper Saddle River,
NJ: Prentice Hall, 1988.

Chu, Eleanor, and George, Alan. Inside the FFT Black Box: Serial and Parallel Fast
Fourier Transform Algorithms. Boca Raton, FL: CRC Press, 2000.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P.
Numerical Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge, United
Kingdom: Cambridge University Press, 1992.

Ramirez, Robert W. The FFT: Fundamentals and Concepts. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1985.

Swartzrauber, Paul N. Vectorizing the FFTs. In Rodrigue, Garry ed. Parallel
Computations. New York: Academic Press, Inc., 1982.

Strang, Gilbert. Linear Algebra and Its Applications. 3 ed. Orlando, FL: Harcourt Brace
& Company, 1988.

Van Loan, Charles. Computational Frameworks for the Fast Fourier Transform.
Philadelphia, PA: SIAM, 1992.

Walker, James S. Fast Fourier Transforms. Boca Raton, FL: CRC Press, 1991.
126 Sun Performance Library User’s Guide • January 2005

CHAPTER 7

Interval BLAS Routines

Introduction
This chapter provides a brief overview of an interval Fortran 95 version of the basic
linear algebra subroutine (BLAS) library. The interval BLAS version is referred to as
the IBLAS library. For a more complete description of the IBLAS library routines, see
the white paper Interval Version of the Basic Linear Algebra Subprograms (IBLAS).

For information on the Fortran 95 interfaces and types of arguments used in each
IBLAS routine, see the section 3P man pages for the individual routines. For
example, to display the man page for the SFFTC routine, type man -s 3P sfftc.
Routine names must be lowercase.

For more information on the non-interval version of the BLAS library, see the
document Basic Linear Algebra Subprogram Technical (BLAST) Forum Standard,
available at http://www.netlib.org/blas/blast-forum/.

Note – For the Sun Studio Fortran 95 IBLAS routines, information contained in the
Interval Version of the Basic Linear Algebra Subprograms (IBLAS) white paper
supersedes interval information contained in the Basic Linear Algebra Subprogram
Technical (BLAST) Forum Standard document that is available from NetLib.

Intervals
Intervals have a dual identity as intervals of numbers and as sets of numbers. The
empty interval ∅ contains no members and is the same as the empty set in the
theory of sets. In computer input and output, the empty interval is denoted
127

http://www.netlib.org/blas/blast-forum/

[empty]. For more information on intrinsic Fortran 95 compiler support for interval
data types, see the Fortran 95 Interval Arithmetic Programming Reference and the
interval white papers referenced therein.

IBLAS Routine Names
This section summarizes IBLAS naming conventions derived from the BLAS
specification. “Language Bindings” on page 130 contains a list of IBLAS routine
names organized into the following groups. For the corresponding detailed Fortran
language bindings, see the IBLAS man pages or the IBLAS white paper.

As in the BLAS, mathematical operations and routines are grouped into:

■ Vector Operations Tables, listed in TABLE 7-2 through TABLE 7-4.
■ Matrix-Vector Operations Table, listed in TABLE 7-5.
■ Matrix Operations Tables, listed in TABLE 7-6 through TABLE 7-8.

New interval-specific routines are grouped into:

■ Set Operations on Vectors, listed in TABLE 7-9.
■ Set Operations on Matrices, listed in TABLE 7-10.
■ Utility Functions of Vectors, listed in TABLE 7-11.
■ Utility Functions of Matrices, listed in TABLE 7-12.

Naming Conventions
Except that the suffix _I or _i is added, IBLAS routines are named the same as the
corresponding BLAS routines described in (ref BLAST Standard). IBLAS routine
names have the same prefixes as the BLAS routines. Routines with prefixes identify
the matrix type. TABLE 7-1 lists the IBLAS prefixes and matrix types.

TABLE 7-1 IBLAS Prefixes and Matrix Types

Prefix Matrix Type

GE General

GB General Banded

SY Symmetric

SB Symmetric Banded

SP Symmetric Packed
128 Sun Performance Library User’s Guide • January 2005

As in the BLAS, sparse or complex interval matrices are not treated.

A number of interval-specific, set, and utility IBLAS routines are given new BLAS-
style names. See TABLE 7-9 through TABLE 7-12.

Fortran Interface
The IBLAS Fortran bindings are implemented in a module. Its interface block defines
the default interval data type to be TYPE(INTERVAL).

Interval BLAS routines are consistent with regard to:

■ Generic interfaces
■ Precision
■ Rank
■ Assumed-shape arrays
■ Derived types
■ Operator arguments.

Error handling is described in the Basic Linear Algebra Subprogram Technical (BLAST)
Forum Standard and in the IBLAS white paper.

Numeric error handling is not required because exceptions are not possible in the
closed interval system implemented in the Sun Studio f95 compiler. Argument
inconsistency errors are handled as described in IBLAS white paper, the IBLAS man
pages, and the BLAST standard.

In general, actual argument shape inconsistencies cause IBLAS routines to return the
largest impossible value of -1 for integer indices, a default NaN for REAL values, and
the interval =[-∞ ,+∞] for computed intervals. The normal BLAS error handling
mechanism is also used to communicate actual-parameter errors.

TR Triangular

TB Triangular Banded

TP Triangular Packed

TABLE 7-1 IBLAS Prefixes and Matrix Types (Continued)

Prefix Matrix Type

GE General

ℜ∗
Chapter 7 Interval BLAS Routines 129

Binding Format
Each interface is summarized as a SUBROUTINE or FUNCTION statement, in which all
the required and optional arguments appear. Optional arguments are grouped in
square brackets after the required arguments. Binding format is illustrated with the
Scaled Vector Sum Update (AXPBY_I) routine.

SUBROUTINE axpby_i(x, y [, alpha] [,beta])

TYPE(INTERVAL) (<wp>), INTENT (IN) :: x (:)

TYPE(INTERVAL) (<wp>), INTENT (INOUT) :: y (:)

TYPE(INTERVAL) (<wp>), INTENT (IN), OPTIONAL :: alpha, beta

Because generic interfaces are used, the working precision, denoted <wp> is
implicitly defined by the following actual arguments:

<wp> ::= KIND(4) | KIND(8) | KIND(16)

Variables in IBLAS routines are INTEGER, REAL, or TYPE(INTERVAL). See the
IBLAS man pages or the IBLAS white pager for individual routine bindings.

Language Bindings
This section is a brief overview of the IBLAS Fortran routine names and their
function. With the one exception of the CANCEL routines, which perform the same
operation as the .DSUB. operator in f95, vector and set reductions and operations
are the same as in the BLAS. The CANCEL routines and all the vector and matrix set
operations and utilities are interval-specific. For interval-specific routines, the f95
equivalent scalar routines are also shown in TABLE 7-3 and TABLE 7-9 through
TABLE 7-12. For clarity, lowercase and uppercase Fortran variable names are used to
distinguish point from interval types. See TABLE A-11 for an alphabetical list of all the
IBLAS routines.

TABLE 7-2 Vector Reductions

Name Function

DOT_I Dot Product

NORM_I Vector Norms

SUM_I Sum

AMIN_VAL_I Minimum Absolute Value and Location

AMAX_VAL_I Maximum Absolute Value and Location

SUMSQ_I Scaled Sum of Squares and Update
130 Sun Performance Library User’s Guide • January 2005

TABLE 7-3 Add or Cancel Vectors

Name Operation f95 Equivalent

RSCALE_I Reciprocally Scale Vector

AXPBY_I Add Scaled Vectors and Update

WAXPBY_I Add Scaled Vectors

CANCEL_I Cancel Scaled Vectors and Update Y = a*X .DSUB. b*Y

WCANCEL_I Cancel Scaled Vectors W = a*X .DSUB. b*Y

SUMSQ_I Scaled Sum of Squares and Update

TABLE 7-4 Vector Movements

Name Operation

COPY_I Vector Copy

SWAP_I Vector Swap

PERMUTE_I Permute Vector and Update

TABLE 7-5 Matrix-Vector Operations

Name Operation

{GE,GB}MV_I General Matrix-Vector Product and Update

{SY,SB,SP}MV_I Symmetric Matrix-Vector Product and Update

{TR,TB,TP}MV_I Triangular Matrix-Vector Product and Update

{TR,TB,TP}SV_I Triangular Matrix Solve and Update

GER_I General-Matrix Rank-One Update

{SY,SP}R_I Symmetric-Matrix Rank-One Update
Chapter 7 Interval BLAS Routines 131

TABLE 7-6 O(n2) Matrix Operations

Name Operation

{GE, GB, SY, SB, SP, TR, TB, TP}_NORM_I Matrix Norms

{GE, GB}_DIAG_SCALE_I Scale General Matrix Rows or Columns
and Update

{GE, GB}_LRSCALE_I Scale General Matrix Rows and Columns
and Update

{SY, SB, SP}_LRSCALE_I Scale Symmetric Matrix Rows and
Columns and Update

{GE, GB, SY, SB, SP, TR, TB, TP}_ACC_I Add Scaled Matrices and Update

{GE, GB, SY, SB, SP, TR, TB, TP}_ADD_I Add Scaled Matrices

TABLE 7-7 O(n3) Matrix Operations

Name Operation

GEMM_I General Matrix-Matrix Product and Update

SYMM_I Symmetric-General Matrix-Matrix Product and Update

TRMM_I Triangular-General Matrix-Matrix Product and Update

TRSM_I Triangular Matrix Solve

TABLE 7-8 Matrix Movements

Name Operation

{GE,GB,SY,SB,SP,TR,TB,TP}_COPY_I Copy Matrix

GE_TRANS_I Transpose Matrix

GE_PERMUTE_I Permute Matrix

TABLE 7-9 Vector Set Operations

Name Operation f95 Equivalent

ENCLOSEV_I Enclose Vector Test X.SB.Y

INTERIORV_I Vector Interior Test X.INT.Y

DISJOINTV_I Disjoint Vector Test X.DJ.Y
132 Sun Performance Library User’s Guide • January 2005

INTERSECTV_I Intersect Vectors and Update Y = X.IX.Y

WINTERSECTV_I Intersect Vectors W = X.IX.Y

HULLV_I Hull of Vectors and Update Y = X.IH.Y

WHULLV_I Hull of Vectors W = X.IH.Y

TABLE 7-10 Matrix Set Operations

Prefix Name Operation f95 Equivalent

ENCLOSEM_I Enclose Matrix Test A.SB.B

INTERIORM_I Matrix Interior Test A.INT.B

DISJOINTM_I Disjoint Matrix Test A.DJ.B

{GE, GB, SY, SB, SP, TR, TB, TP}_ INTERSECTM_I Intersect Matrices and Update B = X.IX.B

WINTERSECTM_I Intersect Matrices W = X.IX.B

HULLM_I Hull of Matrices and Update B = X.IH.B

WHULLM_I Hull of Matrices W = X.IH.B

Note: Prefix depends upon matrix type and applies to all routine names in this table.

TABLE 7-11 Vector Utilities

Name Operation f95 Equivalent

EMPTYV_I Empty Vector Element Test and Location ISEMPTY(X)

INFV_I Vector Infimum v = INF(X)

SUPV_I Vector Supremum v = SUP(X)

MIDV_I Vector Midpoint v = MID(X)

WIDTHV_I Vector Width v = WID(X)

INTERVALV_I Vector Type Conversion to Interval X = INTERVAL(u,v)

TABLE 7-9 Vector Set Operations (Continued)

Name Operation f95 Equivalent
Chapter 7 Interval BLAS Routines 133

References
The following white paper is available online. See the Interval Arithmetic readme for
the location of this file.

“Interval Version of the Basic Linear Algebra Subprograms Standard (IBLAS),”
derived by G.W. Walster from the draft INTERVAL BLAS Chapter 5 prepared by
Chenyi Hu, et. al., to be included in the Basic Linear Algebra Subprogram Technical
(BLAST) Forum Standard.

TABLE 7-12 Matrix Utilities

Prefix Name Operation f95 Equivalent

EMPTYM_I Empty Matrix Element Test
and Location

ISEMPTY(A)

INFM_I Matrix Infimum c = INF(A)

{GE, GB, SY, SB, SP, TR, TB, TP}_ SUPM_I Matrix Supremum c = SUP(A)

MIDM_I Matrix Midpoint c = MID(A)

WIDTHM_I Matrix Width c = WID(A)

INTERVALM_I Matrix Type Conversion to
Interval

A = INTERVAL(b,c)

Note: Prefix depends upon matrix type and applies to all routine names in this table.
134 Sun Performance Library User’s Guide • January 2005

APPENDIX A

Sun Performance Library Routines

This appendix lists the Sun Performance Library routines by library, routine name,
and function.

For a description of the function and a listing of the Fortran and C interfaces, refer to
the section 3P man pages for the individual routines. For example, to display the
man page for the SBDSQR routine, type man -s 3P sbdsqr. The man page routine
names use lowercase letters.

For many routines, separate routines exist that operate on different data types.
Rather than list each routine separately, a lowercase x is used in a routine name to
denote single, double, complex, and double complex data types. For example, the
routine xBDSQR is available as four routines that operate with the following data
types:

■ SBDSQR – Single data type
■ BBDSQR – Double data type
■ CBDSQR – Complex data type
■ ZBDSQR – Double complex data type

If a routine name is not available for S, B, C, and Z, the x prefix will not be used and
each routine name will be listed.
 135

LAPACK Routines
TABLE A-1 lists the Sun Performance Library LAPACK routines. (P) denotes routines
that are parallelized..

TABLE A-1 LAPACK (Linear Algebra Package) Routines

Routine Function

Bidiagonal Matrix

SBDSDC or
DBDSDC

Computes the singular value decomposition (SVD) of a bidirectional
matrix, using a divide and conquer method.

xBDSQR Computes SVD of real upper or lower bidiagonal matrix, using the
bidirectional QR algorithm.

Diagonal Matrix

SDISNA or
DDISNA

Computes the reciprocal condition numbers for eigenvectors of real
symmetric or complex Hermitian matrix.

General Band Matrix

xGBBRD Reduces real or complex general band matrix to upper bidiagonal form.

xGBCON Estimates the reciprocal of the condition number of general band matrix
using LU factorization.

xGBEQU Computes row and column scalings to equilibrate a general band matrix
and reduce its condition number.

xGBRFS Refines solution to general banded system of linear equations.

xGBSV Solves a general banded system of linear equations (simple driver).

xGBSVX Solves a general banded system of linear equations (expert driver).

xGBTRF LU factorization of a general band matrix using partial pivoting with row
interchanges.

xGBTRS (P) Solves a general banded system of linear equations, using the
factorization computed by xGBTRF.

General Matrix (Unsymmetric or Rectangular)

xGEBAK Forms the right or left eigenvectors of a general matrix by backward
transformation on the computed eigenvectors of the balanced matrix
output by xGEBAL.

xGEBAL Balances a general matrix.

xGEBRD Reduces a general matrix to upper or lower bidiagonal form by an
orthogonal transformation.

xGECON Estimates the reciprocal of the condition number of a general matrix,
using the factorization computed by xGETRF.
136 Sun Performance Library User’s Guide • January 2005

xGEEQU Computes row and column scalings intended to equilibrate a general
rectangular matrix and reduce its condition number.

xGEES Computes the eigenvalues and Schur factorization of a general matrix
(simple driver).

xGEESX Computes the eigenvalues and Schur factorization of a general matrix
(expert driver).

xGEEV Computes the eigenvalues and left and right eigenvectors of a general
matrix (simple driver).

xGEEVX Computes the eigenvalues and left and right eigenvectors of a general
matrix (expert driver).

xGEGS Depreciated routine replaced by xGGES.

xGEGV Depreciated routine replaced by xGGEV.

xGEHRD Reduces a general matrix to upper Hessenberg form by an orthogonal
similarity transformation.

xGELQF (P) Computes LQ factorization of a general rectangular matrix.

xGELS Computes the least squares solution to an over-determined system of
linear equations using a QR or LQ factorization of A.

xGELSD Computes the least squares solution to an over-determined system of
linear equations using a divide and conquer method using a QR or LQ
factorization of A.

xGELSS Computes the minimum-norm solution to a linear least squares problem
by using the SVD of a general rectangular matrix (simple driver).

xGELSX Depreciated routine replaced by xSELSY.

xGELSY Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization.

xGEQLF (P) Computes QL factorization of a general rectangular matrix.

xGEQP3 Computes QR factorization of general rectangular matrix using Level 3
BLAS.

xGEQPF Depreciated routine replaced by xGEQP3.

xGEQRF (P) Computes QR factorization of a general rectangular matrix.

xGERFS Refines solution to a system of linear equations.

xGERQF (P) Computes RQ factorization of a general rectangular matrix.

xGESDD Computes SVD of general rectangular matrix using a divide and conquer
method.

xGESV Solves a general system of linear equations (simple driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 137

xGESVX Solves a general system of linear equations (expert driver).

xGESVD Computes SVD of general rectangular matrix.

xGETRF (P) Computes an LU factorization of a general rectangular matrix using
partial pivoting with row interchanges.

xGETRI Computes inverse of a general matrix using the factorization computed
by xGETRF.

xGETRS (P) Solves a general system of linear equations using the factorization
computed by xGETRF.

General Matrix-Generalized Problem (Pair of General Matrices)

xGGBAK Forms the right or left eigenvectors of a generalized eigenvalue problem
based on the output by xGGBAL.

xGGBAL Balances a pair of general matrices for the generalized eigenvalue
problem.

xGGES Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors for two nonsymmetric matrices.

xGGESX Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors.

xGGEV Computes the generalized eigenvalues and the left and/or right
generalized eigenvalues for two nonsymmetric matrices.

xGGEVX Computes the generalized eigenvalues and the left and/or right
generalized eigenvectors.

xGGGLM Solves the GLM (Generalized Linear Regression Model) using the GQR
(Generalized QR) factorization.

xGGHRD Reduces two matrices to generalized upper Hessenberg form using
orthogonal transformations.

xGGLSE Solves the LSE (Constrained Linear Least Squares Problem) using the
GRQ (Generalized RQ) factorization.

xGGQRF Computes generalized QR factorization of two matrices.

xGGRQF Computes generalized RQ factorization of two matrices.

xGGSVD Computes the generalized singular value decomposition.

xGGSVP Computes an orthogonal or unitary matrix as a preprocessing step for
calculating the generalized singular value decomposition.

General Tridiagonal Matrix

xGTCON Estimates the reciprocal of the condition number of a tridiagonal matrix,
using the LU factorization as computed by xGTTRF.

xGTRFS Refines solution to a general tridiagonal system of linear equations.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
138 Sun Performance Library User’s Guide • January 2005

xGTSV Solves a general tridiagonal system of linear equations (simple driver).

xGTSVX Solves a general tridiagonal system of linear equations (expert driver).

xGTTRF Computes an LU factorization of a general tridiagonal matrix using
partial pivoting and row exchanges.

xGTTRS (P) Solves general tridiagonal system of linear equations using the
factorization computed by x.

Hermitian Band Matrix

CHBEV or
ZHBEV

(Replacement with newer version CHBEVD or ZHBEVD suggested)
Computes all eigenvalues and eigenvectors of a Hermitian band matrix.

CHBEVD or
ZHBEVD

Computes all eigenvalues and eigenvectors of a Hermitian band matrix
and uses a divide and conquer method to calculate eigenvectors.

CHBEVX or
ZHBEVX

Computes selected eigenvalues and eigenvectors of a Hermitian band
matrix.

CHBGST or
ZHBGST

Reduces Hermitian-definite banded generalized eigenproblem to
standard form.

CHBGV or
ZHBGV

(Replacement with newer version CHBGVD or ZHBGVD suggested)
Computes all eigenvalues and eigenvectors of a generalized Hermitian-
definite banded eigenproblem.

CHBGVD or
ZHBGVD

Computes all eigenvalues and eigenvectors of generalized Hermitian-
definite banded eigenproblem and uses a divide and conquer method to
calculate eigenvectors.

CHBGVX or
ZHBGVX

Computes selected eigenvalues and eigenvectors of a generalized
Hermitian-definite banded eigenproblem.

CHBTRD or
ZHBTRD

Reduces Hermitian band matrix to real symmetric tridiagonal form by
using a unitary similarity transform.

Hermitian Matrix

CHECON or
ZHECON

Estimates the reciprocal of the condition number of a Hermitian matrix
using the factorization computed by CHETRF or ZHETRF.

CHEEV or
ZHEEV

(Replacement with newer version CHEEVR or ZHEEVR suggested)
Computes all eigenvalues and eigenvectors of a Hermitian matrix (simple
driver).

CHEEVD or
ZHEEVD

(Replacement with newer version CHEEVR or ZHEEVR suggested)
Computes all eigenvalues and eigenvectors of a Hermitian matrix and
uses a divide and conquer method to calculate eigenvectors.

CHEEVR or
ZHEEVR

Computes selected eigenvalues and the eigenvectors of a complex
Hermitian matrix.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 139

CHEEVX or
ZHEEVX

Computes selected eigenvalues and eigenvectors of a Hermitian matrix
(expert driver).

CHEGST or
ZHEGST

Reduces a Hermitian-definite generalized eigenproblem to standard form
using the factorization computed by CPOTRF or ZPOTRF.

CHEGV or
ZHEGV

(Replacement with newer version CHEGVD or ZHEGVD suggested)
Computes all the eigenvalues and eigenvectors of a complex generalized
Hermitian-definite eigenproblem.

CHEGVD or
ZHEGVD

Computes all the eigenvalues and eigenvectors of a complex generalized
Hermitian-definite eigenproblem and uses a divide and conquer method
to calculate eigenvectors.

CHEGVX or
ZHEGVX

Computes selected eigenvalues and eigenvectors of a complex
generalized Hermitian-definite eigenproblem.

CHERFS or
ZHERFS

Improves the computed solution to a system of linear equations when the
coefficient matrix is Hermitian indefinite.

CHESV or
ZHESV

Solves a complex Hermitian indefinite system of linear equations (simple
driver).

CHESVX or
ZHESVX

Solves a complex Hermitian indefinite system of linear equations (simple
driver).

CHETRD or
ZHETRD

Reduces a Hermitian matrix to real symmetric tridiagonal form by using
a unitary similarity transformation.

CHETRF or
ZHERTF

Computes the factorization of a complex Hermitian indefinite matrix,
using the diagonal pivoting method.

CHETRI or
ZHETRI

Computes the inverse of a complex Hermitian indefinite matrix, using the
factorization computed by CHETRF or ZHETRF.

CHETRS (P) or
ZHETRS (P)

Solves a complex Hermitian indefinite matrix, using the factorization
computed by CHETRF or ZHETRF.

Hermitian Matrix in Packed Storage

CHPCON or
ZHPCON

Estimates the reciprocal of the condition number of a Hermitian
indefinite matrix in packed storage using the factorization computed by
CHPTRF or ZHPTRF.

CHPEV or
ZHPEV

(Replacement with newer version CHPEVD or ZHPEVD suggested)
Computes all the eigenvalues and eigenvectors of a Hermitian matrix in
packed storage (simple driver).

CHPEVX or
ZHPEVX

Computes selected eigenvalues and eigenvectors of a Hermitian matrix in
packed storage (expert driver).

CHPEVD or
ZHPEVD

Computes all the eigenvalues and eigenvectors of a Hermitian matrix in
packed storage and uses a divide and conquer method to calculate
eigenvectors.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
140 Sun Performance Library User’s Guide • January 2005

CHPGST or
ZHPGST

Reduces a Hermitian-definite generalized eigenproblem to standard form
where the coefficient matrices are in packed storage and uses the
factorization computed by CPPTRF or ZPPTRF.

CHPGV or
ZHPGV

(Replacement with newer version CHPGVD or ZHPGVD suggested)
Computes all the eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage (simple driver).

CHPGVX or
ZHPGVX

Computes selected eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage (expert driver).

CHPGVD or
ZHPGVD

Computes all the eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage, and uses a divide and conquer method to calculate
eigenvectors.

CHPRFS or
ZHPRFS

Improves the computed solution to a system of linear equations when the
coefficient matrix is Hermitian indefinite in packed storage.

CHPSV or
ZHPSV

Computes the solution to a complex system of linear equations where the
coefficient matrix is Hermitian in packed storage (simple driver).

CHPSVX or
ZHPSVX

Uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations where the coefficient matrix is
Hermitian in packed storage (expert driver).

CHPTRD or
ZHPTRD

Reduces a complex Hermitian matrix stored in packed form to real
symmetric tridiagonal form.

CHPTRF or
ZHPTRF

Computes the factorization of a complex Hermitian indefinite matrix in
packed storage, using the diagonal pivoting method.

CHPTRI or
ZHPTRI

Computes the inverse of a complex Hermitian indefinite matrix in packed
storage using the factorization computed by CHPTRF or ZHPTRF.

CHPTRS (P) or
ZHPTRS (P)

Solves a complex Hermitian indefinite matrix in packed storage, using
the factorization computed by CHPTRF or ZHPTRF.

Upper Hessenberg Matrix

xHSEIN Computes right and/or left eigenvectors of upper Hessenberg matrix
using inverse iteration.

xHSEQR Computes eigenvectors and Shur factorization of upper Hessenberg
matrix using multishift QR algorithm.

Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular Matrix)

xHGEQZ Implements single-/double-shift version of QZ method for finding the
generalized eigenvalues of the equation det(A - w(i) * B) = 0.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 141

Real Orthogonal Matrix in Packed Storage

SOPGTR or
DOPGTR

Generates an orthogonal transformation matrix from a tridiagonal matrix
determined by SSPTRD or DSPTRD.

SOPMTR or
DOPMTR

Multiplies a general matrix by the orthogonal transformation matrix
reduced to tridiagonal form by SSPTRD or DSPTRD.

Real Orthogonal Matrix

SORGBR or
DORGBR

Generates the orthogonal transformation matrices from reduction to
bidiagonal form, as determined by SGEBRD or DGEBRD.

SORGHR or
DORGHR

Generates the orthogonal transformation matrix reduced to Hessenberg
form, as determined by SGEHRD or DGEHRD.

SORGLQ or
DORGLQ

Generates an orthogonal matrix Q from an LQ factorization, as returned
by SGELQF or DGELQF.

SORGQL or
DORGQL

Generates an orthogonal matrix Q from a QL factorization, as returned by
SGEQLF or DGEQLF.

SORGQR or
DORGQR

Generates an orthogonal matrix Q from a QR factorization, as returned by
SGEQRF or DGEQRF.

SORGRQ or
DORGRQ

Generates orthogonal matrix Q from an RQ factorization, as returned by
SGERQF or DGERQF.

SORGTR or
DORGTR

Generates an orthogonal matrix reduced to tridiagonal form by SSYTRD
or DSYTRD.

SORMBR or
DORMBR

Multiplies a general matrix with the orthogonal matrix reduced to
bidiagonal form, as determined by SGEBRD or DGEBRD.

SORMHR or
DORMHR

Multiplies a general matrix by the orthogonal matrix reduced to
Hessenberg form by SGEHRD or DGEHRD.

SORMLQ (P) or
DORMLQ (P)

Multiplies a general matrix by the orthogonal matrix from an LQ
factorization, as returned by SGELQF or DGELQF.

SORMQL (P) or
DORMQL (P)

Multiplies a general matrix by the orthogonal matrix from a QL
factorization, as returned by SGEQLF or DGEQLF.

SORMQR (P) or
DORMQR (P)

Multiplies a general matrix by the orthogonal matrix from a QR
factorization, as returned by SGEQRF or DGEQRF.

SORMR3 or
DORMR3

Multiplies a general matrix by the orthogonal matrix returned by STZRZF
or DTZRZF.

SORMRQ (P) or
DORMRQ (P)

Multiplies a general matrix by the orthogonal matrix from an RQ
factorization returned by SGERQF or DGERQF.

SORMRZ or
DORMRZ

Multiplies a general matrix by the orthogonal matrix from an RZ
factorization, as returned by STZRZF or DTZRZF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
142 Sun Performance Library User’s Guide • January 2005

SORMTR or
DORMTR

Multiplies a general matrix by the orthogonal transformation matrix
reduced to tridiagonal form by SSYTRD or DSYTRD.

Symmetric or Hermitian Positive Definite Band Matrix

xPBCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite band matrix, using the Cholesky factorization
returned by xPBTRF.

xPBEQU Computes equilibration scale factors for a symmetric or Hermitian
positive definite band matrix.

xPBRFS Refines solution to a symmetric or Hermitian positive definite banded
system of linear equations.

xPBSTF Computes a split Cholesky factorization of a real symmetric positive
definite band matrix.

xPBSV Solves a symmetric or Hermitian positive definite banded system of
linear equations (simple driver).

xPBSVX Solves a symmetric or Hermitian positive definite banded system of
linear equations (expert driver).

xPBTRF Computes Cholesky factorization of a symmetric or Hermitian positive
definite band matrix.

xPBTRS (P) Solves symmetric positive definite banded matrix, using the Cholesky
factorization computed by xPBTRF.

Symmetric or Hermitian Positive Definite Matrix

xPOCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite matrix, using the Cholesky factorization
returned by xPOTRF.

xPOEQU Computes equilibration scale factors for a symmetric or Hermitian
positive definite matrix.

xPORFS Refines solution to a linear system in a Cholesky-factored symmetric or
Hermitian positive definite matrix.

xPOSV Solves a symmetric or Hermitian positive definite system of linear
equations (simple driver).

xPOSVX Solves a symmetric or Hermitian positive definite system of linear
equations (expert driver).

xPOTRF (P) Computes Cholesky factorization of a symmetric or Hermitian positive
definite matrix.

xPOTRI Computes the inverse of a symmetric or Hermitian positive definite
matrix using the Cholesky-factorization returned by xPOTRF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 143

xPOTRS (P) Solves a symmetric or Hermitian positive definite system of linear
equations, using the Cholesky factorization returned by xPOTRF.

Symmetric or Hermitian Positive Definite Matrix in Packed Storage

xPPCON Reciprocal condition number of a Cholesky-factored symmetric positive
definite matrix in packed storage.

xPPEQU Computes equilibration scale factors for a symmetric or Hermitian
positive definite matrix in packed storage.

xPPRFS Refines solution to a linear system in a Cholesky-factored symmetric or
Hermitian positive definite matrix in packed storage.

xPPSV Solves a linear system in a symmetric or Hermitian positive definite
matrix in packed storage (simple driver).

xPPSVX Solves a linear system in a symmetric or Hermitian positive definite
matrix in packed storage (expert driver).

xPPTRF Computes Cholesky factorization of a symmetric or Hermitian positive
definite matrix in packed storage.

xPPTRI Computes the inverse of a symmetric or Hermitian positive definite
matrix in packed storage using the Cholesky-factorization returned by
xPPTRF.

xPPTRS (P) Solves a symmetric or Hermitian positive definite system of linear
equations where the coefficient matrix is in packed storage, using the
Cholesky factorization returned by xPPTRF.

Symmetric or Hermitian Positive Definite Tridiagonal Matrix

xPTCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite tridiagonal matrix using the Cholesky
factorization returned by xPTTRF.

xPTEQR Computes all eigenvectors and eigenvalues of a real symmetric or
Hermitian positive definite system of linear equations.

xPTRFS Refines solution to a symmetric or Hermitian positive definite tridiagonal
system of linear equations.

xPTSV Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations (simple driver).

xPTSVX Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations (expert driver).

xPTTRF Computes the LDLH factorization of a symmetric or Hermitian positive
definite tridiagonal matrix.

xPTTRS (P) Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations using the LDLH factorization returned by xPTTRF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
144 Sun Performance Library User’s Guide • January 2005

Real Symmetric Band Matrix

SSBEV or
DSBEV

(Replacement with newer version SSBEVD or DSBEVD suggested)
Computes all eigenvalues and eigenvectors of a symmetric band matrix.

SSBEVD or
DSBEVD

Computes all eigenvalues and eigenvectors of a symmetric band matrix
and uses a divide and conquer method to calculate eigenvectors.

SSBEVX or
DSBEVX

Computes selected eigenvalues and eigenvectors of a symmetric band
matrix.

SSBGST or
DSBGST

Reduces symmetric-definite banded generalized eigenproblem to
standard form.

SSBGV or
DSBGV

(Replacement with newer version SSBGVD or DSBGVD suggested)
Computes all eigenvalues and eigenvectors of a generalized symmetric-
definite banded eigenproblem.

SSBGVD or
DSBGVD

Computes all eigenvalues and eigenvectors of generalized symmetric-
definite banded eigenproblem and uses a divide and conquer method to
calculate eigenvectors.

SSBGVX or
DSBGVX

Computes selected eigenvalues and eigenvectors of a generalized
symmetric-definite banded eigenproblem.

SSBTRD or
DSBTRD

Reduces symmetric band matrix to real symmetric tridiagonal form by
using an orthogonal similarity transform.

Symmetric Matrix in Packed Storage

xSPCON Estimates the reciprocal of the condition number of a symmetric packed
matrix using the factorization computed by xSPTRF.

SSPEV or
DSPEV

(Replacement with newer version SSPEVD or DSPEVD suggested)
Computes all the eigenvalues and eigenvectors of a symmetric matrix in
packed storage (simple driver).

SSPEVX or
DSPEVX

Computes selected eigenvalues and eigenvectors of a symmetric matrix in
packed storage (expert driver).

SSPEVD or
DSPEVD

Computes all the eigenvalues and eigenvectors of a symmetric matrix in
packed storage and uses a divide and conquer method to calculate
eigenvectors.

SSPGST or
DSPGST

Reduces a real symmetric-definite generalized eigenproblem to standard
form where the coefficient matrices are in packed storage and uses the
factorization computed by SPPTRF or DPPTRF.

SSPGVD or
DSPGVD

Computes all the eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage, and uses a divide and conquer method to calculate
eigenvectors.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 145

SSPGV or
DSPGV

(Replacement with newer version SSPGVD or DSPGVD suggested)
Computes all the eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage (simple driver).

SSPGVX or
DSPGVX

Computes selected eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage (expert driver).

xSPRFS Improves the computed solution to a system of linear equations when the
coefficient matrix is symmetric indefinite in packed storage.

xSPSV Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric matrix in packed storage (simple driver).

xSPSVX Uses the diagonal pivoting factorization to compute the solution to a
system of linear equations where the coefficient matrix is a symmetric
matrix in packed storage (expert driver).

SSPTRD or
DSPTRD

Reduces a real symmetric matrix stored in packed form to real symmetric
tridiagonal form using an orthogonal similarity transform.

xSPTRF Computes the factorization of a symmetric packed matrix using the
Bunch-Kaufman diagonal pivoting method.

xSPTRI Computes the inverse of a symmetric indefinite matrix in packed storage
using the factorization computed by xSPTRF.

xSPTRS (P) Solves a system of linear equations by the symmetric matrix stored in
packed format using the factorization computed by xSPTRF.

Real Symmetric Tridiagonal Matrix

SSTEBZ or
DSTEBZ

Computes the eigenvalues of a real symmetric tridiagonal matrix.

xSTEDC Computes all the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix using a divide and conquer method.

xSTEGR Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using Relatively Robust Representations.

xSTEIN Computes selected eigenvectors of a real symmetric tridiagonal matrix
using inverse iteration.

xSTEQR Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using the implicit QL or QR algorithm.

SSTERF or
DSTERF

Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using a root-free QL or QR algorithm variant.

SSTEV or
DSTEV

(Replacement with newer version SSTEVR or DSTEVR suggested)
Computes all eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix (simple driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
146 Sun Performance Library User’s Guide • January 2005

SSTEVX or
DSTEVX

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix (expert driver).

SSTEVD or
DSTEVD

(Replacement with newer version SSTEVR or DSTEVR suggested)
Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using a divide and conquer method.

SSTEVR or
DSTEVR

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using Relatively Robust Representations.

xSTSV Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric tridiagonal matrix.

xSTTRF Computes the factorization of a symmetric tridiagonal matrix.

xSTTRS (P) Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric tridiagonal matrix.

Symmetric Matrix

xSYCON Estimates the reciprocal of the condition number of a symmetric matrix
using the factorization computed by SSYTRF or DSYTRF.

SSYEV or
DSYEV

(Replacement with newer version SSYEVR or DSYEVR suggested)
Computes all eigenvalues and eigenvectors of a symmetric matrix.

SSYEVX or
DSYEVX

Computes eigenvalues and eigenvectors of a symmetric matrix (expert
driver).

SSYEVD or
DSYEVD

(Replacement with newer version SSYEVR or DSYEVR suggested)
Computes all eigenvalues and eigenvectors of a symmetric matrix and
uses a divide and conquer method to calculate eigenvectors.

SSYEVR or
DSYEVR

Computes selected eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.

SSYGST or
DSYGST

Reduces a symmetric-definite generalized eigenproblem to standard form
using the factorization computed by SPOTRF or DPOTRF.

SSYGV or
DSYGV

(Replacement with newer version SSYGVD or DSYGVD suggested)
Computes all the eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem.

SSYGVX or
DSYGVX

Computes selected eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem.

SSYGVD or
DSYGVD

Computes all the eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem and uses a divide and conquer method
to calculate eigenvectors.

xSYRFS Improves the computed solution to a system of linear equations when the
coefficient matrix is symmetric indefinite.

xSYSV Solves a real symmetric indefinite system of linear equations (simple
driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 147

xSYSVX Solves a real symmetric indefinite system of linear equations (expert
driver).

SSYTRD or
DSYTRD

Reduces a symmetric matrix to real symmetric tridiagonal form by using
a orthogonal similarity transformation.

xSYTRF Computes the factorization of a real symmetric indefinite matrix using
the diagonal pivoting method.

xSYTRI Computes the inverse of a symmetric indefinite matrix using the
factorization computed by xSYTRF.

xSYTRS (P) Solves a system of linear equations by the symmetric matrix using the
factorization computed by xSYTRF.

Triangular Band Matrix

xTBCON Estimates the reciprocal condition number of a triangular band matrix.

xTBRFS Determines error bounds and estimates for solving a triangular banded
system of linear equations.

xTBTRS (P) Solves a triangular banded system of linear equations.

Triangular Matrix-Generalized Problem (Pair of Triangular Matrices)

xTGEVC Computes right and/or left generalized eigenvectors of two upper
triangular matrices.

xTGEXC Reorders the generalized Schur decomposition of a real or complex
matrix pair using an orthogonal or unitary equivalence transformation.

xTGSEN Reorders the generalized real-Schur or Schur decomposition of two
matrixes and computes the generalized eigenvalues.

xTGSJA Computes the generalized SVD from two upper triangular matrices
obtained from xGGSVP.

xTGSNA Estimates reciprocal condition numbers for specified eigenvalues and
eigenvectors of two matrices in real-Schur or Schur canonical form.

xTGSYL Solves the generalized Sylvester equation.

Triangular Matrix in Packed Storage

xTPCON Estimates the reciprocal or the condition number of a triangular matrix in
packed storage.

xTPRFS Determines error bounds and estimates for solving a triangular system of
linear equations where the coefficient matrix is in packed storage.

xTPTRI Computes the inverse of a triangular matrix in packed storage.

xTPTRS (P) Solves a triangular system of linear equations where the coefficient matrix
is in packed storage.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
148 Sun Performance Library User’s Guide • January 2005

Triangular Matrix

xTRCON Estimates the reciprocal or the condition number of a triangular matrix.

xTREVC Computes right and/or left eigenvectors of an upper triangular matrix.

xTREXC Reorders Schur factorization of matrix using an orthogonal or unitary
similarity transformation.

xTRRFS Determines error bounds and estimates for triangular system of a linear
equations.

xTRSEN Reorders Schur factorization of matrix to group selected cluster of
eigenvalues in the leading positions on the diagonal of the upper
triangular matrix T and the leading columns of Q form an orthonormal
basis of the corresponding right invariant subspace.

xTRSNA Estimates the reciprocal condition numbers of selected eigenvalues and
eigenvectors of an upper quasi-triangular matrix.

xTRSYL Solves Sylvester matrix equation.

xTRTRI Computes the inverse of a triangular matrix.

xTRTRS (P) Solves a triangular system of linear equations.

Trapezoidal Matrix

xTZRQF Depreciated routine replaced by routine xTZRZF.

xTZRZF Reduces a rectangular upper trapezoidal matrix to upper triangular form
by means of orthogonal transformations.

Unitary Matrix

CUNGBR or
ZUNGBR

Generates the unitary transformation matrices from reduction to
bidiagonal form, as determined by CGEBRD or ZGEBRD.

CUNGHR or
ZUNGHR

Generates the orthogonal transformation matrix reduced to Hessenberg
form, as determined by CGEHRD or ZGEHRD.

CUNGLQ or
ZUNGLQ

Generates a unitary matrix Q from an LQ factorization, as returned by
CGELQF or ZGELQF.

CUNGQL or
ZUNGQL

Generates a unitary matrix Q from a QL factorization, as returned by
CGEQLF or ZGEQLF.

CUNGQR or
ZUNGQR

Generates a unitary matrix Q from a QR factorization, as returned by
CGEQRF or ZGEQRF.

CUNGRQ or
ZUNGRQ

Generates a unitary matrix Q from an RQ factorization, as returned by
CGERQF or ZGERQF.

CUNGTR or
ZUNGTR

Generates a unitary matrix reduced to tridiagonal form, by CHETRD or
ZHETRD.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 149

CUNMBR or
ZUNMBR

Multiplies a general matrix with the unitary transformation matrix
reduced to bidiagonal form, as determined by CGEBRD or ZGEBRD.

CUNMHR or
ZUNMHR

Multiplies a general matrix by the unitary matrix reduced to Hessenberg
form by CGEHRD or ZGEHRD.

CUNMLQ (P) or
ZUNMLQ (P)

Multiplies a general matrix by the unitary matrix from an LQ
factorization, as returned by CGELQF or ZGELQF.

CUNMQL (P) or
ZUNMQL (P)

Multiplies a general matrix by the unitary matrix from a QL factorization,
as returned by CGEQLF or ZGEQLF.

CUNMQR (P) or
ZUNMQR (P)

Multiplies a general matrix by the unitary matrix from a QR factorization,
as returned by CGEQRF or ZGEQRF.

CUNMRQ (P) or
ZUNMRQ (P)

Multiplies a general matrix by the unitary matrix from an RQ
factorization, as returned by CGERQF or ZGERQF.

CUNMRZ or
ZUNMRZ

Multiplies a general matrix by the unitary matrix from an RZ
factorization, as returned by CTZRZF or ZTZRZF.

CUNMTR or
ZUNMTR

Multiplies a general matrix by the unitary transformation matrix reduced
to tridiagonal form by CHETRD or ZHETRD.

Unitary Matrix in Packed Storage

CUPGTR or
ZUPGTR

Generates the unitary transformation matrix from a tridiagonal matrix
determined by CHPTRD or ZHPTRD.

CUPMTR or
ZUPMTR

Multiplies a general matrix by the unitary transformation matrix reduced
to tridiagonal form by CHPTRD or ZHPTRD.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
150 Sun Performance Library User’s Guide • January 2005

BLAS1 Routines
TABLE A-2 lists the Sun Performance Library BLAS1 routines. No Sun Performance
Library BLAS1 routines are currently parallelized.

TABLE A-2 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines

Routine Function

SASUM, DASUM,
SCASUM, DZASUM

Sum of the absolute values of a vector

xAXPY Product of a scalar and vector plus a vector

xCOPY Copy a vector

SDOT, DDOT, DSDOT,
SDSDOT, CDOTU,
ZDOTU, DQDOTA,
DQDOTI

Dot product (inner product)

CDOTC, ZDOTC Dot product conjugating first vector

SNRM2, DNRM2,
SCNRM2, DZNRM2

Euclidean norm of a vector

xROTG Set up Givens plane rotation

xROT, CSROT, ZDROT Apply Given’s plane rotation

SROTMG, DROTMG Set up modified Given’s plane rotation

SROTM, DROTM Apply modified Given’s rotation

ISAMAX, DAMAX,
ICAMAX, IZAMAX

Index of element with maximum absolute value

xSCAL, CSSCAL,
ZDSCAL

Scale a vector

xSWAP Swap two vectors

CVMUL, ZVMUL Compute scaled product of complex vectors
Appendix A Sun Performance Library Routines 151

BLAS2 Routines
TABLE A-3 lists the Sun Performance Library BLAS2 routines. (P) denotes routines
that are parallelized.

TABLE A-3 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines

Routine Function

xGBMV Product of a matrix in banded storage and a vector

xGEMV (P) Product of a general matrix and a vector

SGER (P), DGER (P),
CGERC (P), ZGERC (P),
CGERU (P), ZGERU (P)

Rank-1 update to a general matrix

CHBMV, ZHBMV Product of a Hermitian matrix in banded storage and a vector

CHEMV (P), ZHEMV (P) Product of a Hermitian matrix and a vector

CHER (P), ZHER (P) Rank-1 update to a Hermitian matrix

CHER2, ZHER2 Rank-2 update to a Hermitian matrix

CHPMV (P), ZHPMV (P) Product of a Hermitian matrix in packed storage and a vector

CHPR, ZHPR Rank-1 update to a Hermitian matrix in packed storage

CHPR2, ZHPR2 Rank-2 update to a Hermitian matrix in packed storage

SSBMV, DSBMV Product of a symmetric matrix in banded storage and a vector

SSPMV (P), DSPMV (P) Product of a Symmetric matrix in packed storage and a vector

SSPR, DSPR Rank-1 update to a real symmetric matrix in packed storage

SSPR2 (P), DSPR2 (P) Rank-2 update to a real symmetric matrix in packed storage

SSYMV, (P) DSYMV (P) Product of a symmetric matrix and a vector

SSYR (P), DSYR (P) Rank-1 update to a real symmetric matrix

SSYR2 (P), DSYR2 (P) Rank-2 update to a real symmetric matrix

xTBMV Product of a triangular matrix in banded storage and a vector

xTBSV Solution to a triangular system in banded storage of linear
equations

xTPMV Product of a triangular matrix in packed storage and a vector

xTPSV Solution to a triangular system of linear equations in packed
storage

xTRMV (P) Product of a triangular matrix and a vector

xTRSV (P) Solution to a triangular system of linear equations
152 Sun Performance Library User’s Guide • January 2005

BLAS3 Routines
TABLE A-4 lists the Sun Performance Library BLAS3 routines. (P) denotes routines
that are parallelized.

Sparse BLAS Routines
TABLE A-5 lists the Sun Performance Library sparse BLAS routines. (P) denotes
routines that are parallelized.

TABLE A-4 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines

Routine Function

xGEMM (P) Product of two general matrices

CHEMM (P) or
ZHEMM (P)

Product of a Hermitian matrix and a general matrix

CHERK (P) or
ZHERK (P)

Rank-k update of a Hermitian matrix

CHER2K (P) or
ZHER2K (P)

Rank-2k update of a Hermitian matrix

xSYMM (P) Product of a symmetric matrix and a general matrix

xSYRK (P) Rank-k update of a symmetric matrix

xSYR2K (P) Rank-2k update of a symmetric matrix

xTRMM (P) Product of a triangular matrix and a general matrix

xTRSM (P) Solution for a triangular system of equations

TABLE A-5 Sparse BLAS Routines

Routines Function

xAXPYI Adds a scalar multiple of a sparse vector X to a full vector Y.

xBCOMM (P) Block coordinate matrix-matrix multiply.

xBDIMM (P) Block diagonal format matrix-matrix multiply.

xBDISM (P) Block Diagonal format triangular solve.

xBELMM (P) Block Ellpack format matrix-matrix multiply.

xBELSM (P) Block Ellpack format triangular solve.

xBSCMM (P) Block compressed sparse column format matrix-matrix multiply.

xBSCSM (P) Block compressed sparse column format triangular solve.
Appendix A Sun Performance Library Routines 153

xBSRMM (P) Block compressed sparse row format matrix-matrix multiply.

xBSRSM (P) Block compressed sparse row format triangular solve.

xCOOMM (P) Coordinate format matrix-matrix multiply.

xCSCMM (P) Compressed sparse column format matrix-matrix multiply

xCSCSM (P) Compressed sparse column format triangular solve

xCSRMM (P) Compressed sparse row format matrix-matrix multiply.

xCSRSM (P) Compressed sparse row format triangular solve.

xDIAMM (P) Diagonal format matrix-matrix multiply.

xDIASM (P) Diagonal format triangular solve.

SDOTI, DDOTI,
CDOTUI, or ZDOTUI

Computes the dot product of a sparse vector and a full vector.

CDOTCI, or ZDOTCI Computes the conjugate dot product of a sparse vector and a full
vector.

xELLMM (P) Ellpack format matrix-matrix multiply.

xELLSM (P) Ellpack format triangular solve.

xCGTHR Given a full vector, creates a sparse vector and corresponding
index vector.

xCGTHRZ Given a full vector, creates a sparse vector and corresponding
index vector and zeros the full vector.

xJADMM (P) Jagged diagonal matrix-matrix multiply.

SJADRP or DJADRP Right permutation of a jagged diagonal matrix.

xJADSM (P) Jagged diagonal triangular solve.

SROTI or DROTI Applies a Givens rotation to a sparse vector and a full vector.

xCSCTR Given a sparse vector and corresponding index vector, puts those
elements into a full vector.

xSKYMM (P) Skyline format matrix-matrix multiply.

xSKYSM (P) Skyline format triangular solve.

xVBRMM (P) Variable block sparse row format matrix-matrix multiply.

xVBRSM (P) Variable block sparse row format triangular solve.

TABLE A-5 Sparse BLAS Routines (Continued)

Routines Function
154 Sun Performance Library User’s Guide • January 2005

Sparse Solver Routines
TABLE A-6 lists the Sun Performance Library sparse solver routines. (P) denotes
routines that are parallelized.

Signal Processing Library Routines
Sun Performance Library contains routines for computing the fast Fourier transform,
sine and cosine transforms, and convolution and correlation.

TABLE A-6 Sparse Solver Routines

Routines Function

SGSSFS (P), DGSSFS
(P), CGSSFS (P), or
ZGSSFS (P)

One call interface to sparse solver.

SGSSIN, DGSSIN,
CGSSIN, or ZGSSIN

Sparse solver initialization.

SGSSOR, DGSSOR,
CGSSOR, or ZGSSOR

Fill reducing ordering and symbolic factorization.

SGSSFA (P), DGSSFA
(P), CGSSFA (P), or
ZGSSFA (P)

Matrix value input and numeric factorization.

SGSSSL, DGSSSL,
CGSSSL, or ZGSSSL

Triangular solve.

SGSSUO, DGSSUO,
CGSSUO, or ZGSSUO

Sets user-specified ordering permutation.

SGSSRP, DGSSRP,
CGSSRP, or ZGSSRP

Returns permutation used by solver.

SGSSCO, DGSSCO,
CGSSCO, or ZGSSCO

Returns condition number estimate of coefficient matrix.

SGSSDA, DGSSDA,
CGSSDA, or ZGSSDA

De-allocates sparse solver.

SGSSPS, DGSSPS,
CGSSPS, or ZGSSPS

Prints solver statistics.
Appendix A Sun Performance Library Routines 155

FFT Routines

Sun Performance Library provides a set of FFT interfaces that supersedes a subset of
the FFTPACK and VFFTPACK routines provided in earlier Sun Performance Library
releases. The legacy FFT routines and man pages for the routines are still included to
maintain compatibility with existing codes, but the routines are no longer supported.
For information on using the legacy FFT routines, see the section 3P man pages.

TABLE A-7 shows the mapping between the Sun Performance Library FFT routines
and the corresponding FFTPACK and VFFTPACK routines. (P) denotes routines that
are parallelized.

TABLE A-7 FFT Routines

Routine Replaces Function

CFFTC (P) CFFTI

CFFTF (P)
CFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a complex
sequence.

CFFTC2 (P) CFFT2I

CFFT2F (P)
CFFT2B (P)

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward or inverse FFT of a two-
dimensional complex array.

CFFTC3 (P) CFFT3I

CFFT3F (P)
CFFT3B (P)

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward or inverse FFT of three-
dimensional complex array.

CFFTCM (P) VCFFTI

VCFFTF (P)
VCFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a set of data
sequences stored in a two-dimensional complex array.

CFFTS RFFTI, RFFTB
EZFFTI, EZFFTB

Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a complex sequence.

CFFTS2 RFFT2I

RFFT2B

Initialize the trigonometric weight and factor tables or compute
the two-dimensional inverse FFT of a two-dimensional complex
array.

CFFTS3 (P) RFFT3I

RFFT3B

Initialize the trigonometric weight and factor tables or compute
the three-dimensional inverse FFT of three-dimensional
complex array.

CFFTSM VRFFTI

VRFFTB (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a set of data sequences
stored in a two-dimensional complex array.

DFFTZ DFFTI, DFFTF
DEZFFTI, DEZFFTF

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a double precision
sequence.
156 Sun Performance Library User’s Guide • January 2005

DFFTZ2 DFFT2I

DFFT2F

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward FFT of a two-dimensional double
precision array.

DFFTZ3 (P) DFFT3I

DFFT3F

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward FFT of three-dimensional double
precision array.

DFFTZM VDFFTI

VDFFTF (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a set of data sequences
stored in a two-dimensional double precision array.

SFFTC RFFTI, RFFTF
EZFFTI, EZFFTF

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a real sequence.

SFFTC2 RFFT2I

RFFT2F

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward FFT of a two-dimensional real
array.

SFFTC3 (P) RFFT3I

RFFT3F

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward FFT of three-dimensional real
array.

SFFTCM VRFFTI

VRFFTF (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a set of data sequences
stored in a two-dimensional real array.

ZFFTD DFFTI, DFFTB
DEZFFTI, DEZFFTB

Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a double complex sequence.

ZFFTD2 DFFT2I

DFFT2B

Initialize the trigonometric weight and factor tables or compute
the two-dimensional inverse FFT of a two-dimensional double
complex array.

ZFFTD3 (P) DFFT3I

DFFT3B

Initialize the trigonometric weight and factor tables or compute
the three-dimensional inverse FFT of three-dimensional double
complex array.

ZFFTDM VDFFTI

VDFFTB (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a set of data sequences
stored in a two-dimensional double complex array.

ZFFTZ (P) ZFFTI

ZFFTF (P)
ZFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a double
complex sequence.

TABLE A-7 FFT Routines (Continued)

Routine Replaces Function
Appendix A Sun Performance Library Routines 157

Fast Cosine and Sine Transforms

Sun Performance Library fast cosine and sine transform routines are based on the
routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines
with a V prefix are vectorized routines that are based on the routines contained in
VFFTPACK (http://www.netlib.org/vfftpack/).

TABLE A-8 lists the Sun Performance Library sine and cosine transform routines.

ZFFTZ2 (P) ZFFT2I

ZFFT2F (P)
ZFFT2B (P)

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward or inverse FFT of a two-
dimensional double complex array.

ZFFTZ3 (P) ZFFT3I

ZFFT3F (P)
ZFFT3B (P)

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward or inverse FFT of three-
dimensional double complex array.

ZFFTZM (P) VZFFTI

VZFFTF (P)
VZFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a set of data
sequences stored in a two-dimensional double complex array.

TABLE A-8 Sine and Cosine Transform Routines

Routine Function

COSQB, DCOSQB,
VCOSQB, VDCOSQB

Cosine quarter-wave synthesis.

COSQF, DCOSQF,
VCOSQF, VDCOSQF

Cosine quarter-wave transform.

COSQI, DCOSQI,
VCOSQI, VDCOSQI

Initialize cosine quarter-wave transform and synthesis.

COST, DCOST,
VCOST, VDCOST

Cosine even-wave transform.

COSTI, DCOSTI,
VCOSTI, VDCOSTI

Initialize cosine even-wave transform.

SINQB, DSINQB,
VSINQB, VDSINQB

Sine quarter-wave synthesis.

SINQF, DSINQF,
VSINQF, VDSINQF

Sine quarter-wave transform.

TABLE A-7 FFT Routines (Continued)

Routine Replaces Function
158 Sun Performance Library User’s Guide • January 2005

http://www.netlib.org/vfftpack/
http://www.netlib.org/fftpack/

Convolution and Correlation Routines

TABLE A-9 lists the Sun Performance Library convolution and correlation routines.

Miscellaneous Signal Processing Routines
TABLE A-10 lists the miscellaneous Sun Performance Library signal processing
routines.

SINQI, DSINQI,
VSINQI, VDSINQI

Initialize sine quarter-wave transform and synthesis.

SINT, DSINT,
VSINT, VDSINT

Sine odd-wave transform.

SINTI, DSINT,
VSINTI, VDSINTI

Initialize sine odd-wave transform.

TABLE A-9 Convolution and Correlation Routines

Routines Function

xCNVCOR Computes convolution or correlation

xCNVCOR2 Computes two-dimensional convolution or correlation

TABLE A-10 Convolution and Correlation Routines

Routines Function

RFFTOPT, DFFTOPT,
CFFTOPT, ZFFTOPT

Compute the length of the closest FFT

SWIENER or DWEINER Performs Wiener deconvolution of two signals

xTRANS Transposes array

TABLE A-8 Sine and Cosine Transform Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 159

Interval BLAS (IBLAS) Routines
Sun Performance Library includes the interval BLAS routines listed in TABLE A-11,
which operate on interval scalars, interval vectors, and interval matrices (dense,
banded, symmetric, and triangular).

TABLE A-11 Interval BLAS Routines

Routine Function

amax_val_i Max absolute value and location.

amin_val_i Min absolute value and location.

axpby_i Scaled vector accumulation.

cancel_i Scaled cancellation.

constructv_i Constructs an interval vector.

copy_i Interval vector copy.

disjv_i Checks if two interval vectors disjoint.

dot_i Scaled dot product of two interval vectors.

emptyelev_i Empty entry and its location.

encv_i Check if an interval vector is enclosed in another.

fpinfo_i Environmental enquiry.

gbmv_i Interval matrix-vector multiplication.

gb_acc_i General band matrix accumulation and scale.

gb_add_i General band matrix add and scale.

gb_constructm_i Constructs an interval matrix from two floating point matrices.

gb_copy_i General band interval matrix copy.

gb_diag_scale_i Diagonal scaling of an interval matrix.

gb_disjm_i If two interval matrices are disjoint.

gb_emptyelem_i Empty entry and its location.

gb_encm_i If an interval matrix is enclosed in another.

gb_hullm_i Convex hull of two interval matrices.

gb_infm_i Left endpoint of an interval matrix.

gb_interiorm_i If an interval matrix is in interior of another.

gb_interm_i Intersection of two interval matrices.

gb_lrscale_i Two-sided diagonal scaling.

gb_midm_i Midpoint matrix of an interval matrix.
160 Sun Performance Library User’s Guide • January 2005

gb_norm_i General band interval matrix norms.

gb_supm_i Right endpoint of an interval matrix.

gb_whullm_i Convex hull of two interval matrices.

gb_widthm_i Elementwise width of an interval matrix.

gb_winterm_i Intersection of two interval matrices.

gemm_i General interval matrix product.

gemv_i General interval matrix and vector multiplication.

ger_i Rank one update.

ge_acc_i General matrix accumulation and scale.

ge_add_i General interval matrix add and scale.

ge_constructm_i Constructs an interval matrix from two floating point matrices.

ge_copy_i General interval matrix copy.

ge_diag_scale_i Diagonal scaling an interval matrix.

ge_disjm_i If two interval matrices are disjoint.

ge_emptyelem_i Empty entry and its location.

ge_encm_i If an interval matrix is enclosed in another.

ge_hullm_i Convex hull of two interval matrices.

ge_infm_i Left endpoint of an interval matrix.

ge_interiorm_i If an interval matrix is in interior of another.

ge_interm_i Intersection of two interval matrices.

ge_lrscale_i Two-sided diagonal scaling.

ge_midm_i Midpoint matrix of an interval matrix.

ge_norm_i General interval matrix norms.

ge_permute_i Permute an general interval matrix.

ge_supm_i Right endpoint of an interval matrix.

ge_trans_i Matrix transposition.

ge_whullm_i Convex hull of two interval matrices.

ge_widthm_i Elementwise width of an interval matrix.

ge_winterm_i Intersection of two interval matrices.

hullv_i Convex hull of an interval vector with another.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 161

infv_i The left endpoint of an interval vector.

interiorv_i If an interval vector is in the interior of another.

interv_i Intersection of an interval vector with another.

midv_i The approximate midpoint of an interval vector.

norm_i Interval vector norms.

permute_i Permute interval vector.

rscale_i Reciprocal scale of an interval vector.

sbmv_i Interval symmetric matrix vector product.

sb_acc_i Symmetric band matrix accumulation and scale.

sb_add_i Symmetric band matrix add and scale.

sb_constructm_i Constructs an interval matrix from two floating point matrices.

sb_copy_i Symmetric band interval matrix copy.

sb_disjm_i If two interval matrices are disjoint.

sb_emptyelem_i Empty entry and its location.

sb_encm_i If an interval matrix is enclosed in another.

sb_hullm_i Convex hull of two interval matrices.

sb_infm_i Left endpoint of an interval matrix.

sb_interiorm_i If an interval matrix is in interior of another.

sb_interm_i Intersection of two interval matrices.

sb_lrscale_i Two-sided diagonal scaling.

sb_midm_i Midpoint matrix of an interval matrix.

sb_norm_i Symmetric band interval matrix norms.

sb_supm_i Right endpoint of an interval matrix.

sb_whullm_i Convex hull of two interval matrices.

sb_widthm_i Elementwise width of an interval matrix.

sb_winterm_i Intersection of two interval matrices.

spmv_i Interval symmetric matrix vector product.

spr_i Symmetric rank one update.

sp_acc_i Symmetric packed matrix accumulation and scale.

sp_add_i Symmetric packed matrix add and scale.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
162 Sun Performance Library User’s Guide • January 2005

sp_constructm_i Constructs an interval matrix from two floating point matrices.

sp_copy_i Symmetric packed interval matrix copy.

sp_disjm_i If two interval matrices are disjoint.

sp_emptyelem_i Empty entry and its location.

sp_encm_i If an interval matrix is enclosed in another.

sp_hullm_i Convex hull of two interval matrices.

sp_infm_i Left endpoint of an interval matrix.

sp_interiorm_i If an interval matrix is in interior of another.

sp_interm_i Intersection of two interval matrices.

sp_lrscale_i Two-sided diagonal scaling.

sp_midm_i Midpoint matrix of an interval matrix.

sp_norm_i Symmetric packed interval matrix norms.

sp_supm_i Right endpoint of an interval matrix.

sp_whullm_i Convex hull of two interval matrices.

sp_widthm_i Elementwise width of an interval matrix.

sp_winterm_i Intersection of two interval matrices.

sumsq_i Sum of squares.

sum_i Sum the entries of an interval vector.

supv_i The right endpoint of an interval vector.

swap_i Interval vector swap.

symm_i Symmetric interval matrix product.

symv_i Interval symmetric matrix vector product.

syr_i Symmetric rank one update.

sy_acc_i Symmetric interval matrix accumulation and scale.

sy_add_i Symmetric matrix add and scale.

sy_constructm_i Constructs an interval matrix from two floating point matrices.

sy_copy_i Symmetric interval matrix copy.

sy_disjm_i If two interval matrices are disjoint.

sy_emptyelem_i Empty entry and its location.

sy_encm_i If an interval matrix is enclosed in another.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 163

sy_hullm_i Convex hull of two interval matrices.

sy_infm_i Left endpoint of an interval matrix.

sy_interiorm_i If an interval matrix is in interior of another.

sy_interm_i Intersection of two interval matrices.

sy_lrscale_i Two-sided diagonal scaling.

sy_midm_i Midpoint matrix of an interval matrix.

sy_norm_i Symmetric interval matrix norms.

sy_supm_i Right endpoint of an interval matrix.

sy_whullm_i Convex hull of two interval matrices.

sy_widthm_i Elementwise width of an interval matrix.

sy_winterm_i Intersection of two interval matrices.

tbmv_i Interval triangular matrix vector product.

tbsv_i Interval triangular solve with a vector.

tb_acc_i Matrix accumulation and scale.

tb_add_i Triangular band matrix add and scale.

tb_constructm_i Constructs an interval matrix from two floating point matrices.

tb_copy_i Triangular band interval matrix copy.

tb_disjm_i If two interval matrices are disjoint.

tb_emptyelem_i Empty entry and its location.

tb_encm_i If an interval matrix is enclosed in another.

tb_hullm_i Convex hull of two interval matrices.

tb_infm_i Left endpoint of an interval matrix.

tb_interiorm_i If an interval matrix is in interior of another.

tb_interm_i Intersection of two interval matrices.

tb_midm_i Midpoint matrix of an interval matrix.

tb_norm_i Triangular band interval matrix norms.

tb_supm_i Right endpoint of an interval matrix.

tb_whullm_i Convex hull of two interval matrices.

tb_widthm_i Elementwise width of an interval matrix.

tb_winterm_i Intersection of two interval matrices.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
164 Sun Performance Library User’s Guide • January 2005

tpmv_i Interval triangular matrix vector product.

tpsv_i Interval triangular solve with a vector.

tp_acc_i Matrix accumulation and scale.

tp_add_i Triangular packed matrix add and scale.

tp_constructm_i Constructs an interval matrix from two floating point matrices.

tp_copy_i Triangular packed interval matrix copy.

tp_disjm_i If two interval matrices are disjoint.

tp_emptyelem_i Empty entry and its location.

tp_encm_i If an interval matrix is enclosed in another.

tp_hullm_i Convex hull of two interval matrices.

tp_infm_i Left endpoint of an interval matrix.

tp_interiorm_i If an interval matrix is in interior of another.

tp_interm_i Intersection of two interval matrices.

tp_midm_i Midpoint matrix of an interval matrix.

tp_norm_i Triangular packed interval matrix norms.

tp_supm_i Right endpoint of an interval matrix.

tp_whullm_i Convex hull of two interval matrices.

tp_widthm_i Elementwise width of an interval matrix.

tp_winterm_i Intersection of two interval matrices.

trmm_i Triangular interval matrix matrix product.

trmv_i Interval triangular matrix vector product.

trsm_i Interval triangular solve.

trsv_i Interval triangular solve with a vector.

tr_acc_i Matrix accumulation and scale.

tr_add_i Triangular matrix add and scale.

tr_constructm_i Constructs an interval matrix from two floating point matrices.

tr_copy_i Triangular interval matrix copy.

tr_disjm_i If two interval matrices are disjoint.

tr_emptyelem_i Empty entry and its location.

tr_encm_i If an interval matrix is enclosed in another.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 165

See the section 3P man pages for information on using each routine.

Sort Routines
TABLE A-12 lists the Sun Performance Library sort routines. (P) denotes routines that
are parallelized on Solaris/SPARC platforms. All routines are single-threaded on
Solaris/x86 platforms whether denoted by (P) or not.

tr_hullm_i Convex hull of two interval matrices.

tr_infm_i Left endpoint of an interval matrix.

tr_interiorm_i If an interval matrix is in interior of another.

tr_interm_i Intersection of two interval matrices.

tr_midm_i Midpoint matrix of an interval matrix.

tr_norm_i Triangular interval matrix norms.

tr_supm_i Right endpoint of an interval matrix.

tr_whullm_i Convex hull of two interval matrices.

tr_widthm_i Elementwise width of an interval matrix.

tr_winterm_i Intersection of two interval matrices.

waxpby_i Scaled vector addition.

wcancel_i Scaled cancellation.

whullv_i Convex hull of an interval vector with another.

widthv_i The elementwise width of an interval vector.

winterv_i Intersection of an interval vector with another.

TABLE A-12 Sort Routines

Routines Function

BLAS_DSORT (P) Sorts a real (double precision) vector X in increasing or
decreasing order using quick sort algorithm.

BLAS_DSORTV (P) Sorts a real (double precision) vector X in increasing or
decreasing order using quick sort algorithm and overwrite P with
the permutation vector.

BLAS_DPERMUTE (P) Permutes a real (double precision) array in terms of the
permutation vector P, output by DSORTV.

TABLE A-11 Interval BLAS Routines (Continued)

Routine Function
166 Sun Performance Library User’s Guide • January 2005

BLAS_ISORT (P) Sorts an integer vector X in increasing or decreasing order using
quick sort algorithm.

BLAS_ISORTV (P) Sorts a real vector X in increasing or decreasing order using
quick sort algorithm and overwrite P with the permutation
vector.

BLAS_IPERMUTE (P) Permutes an integer array in terms of the permutation vector P,
output by DSORTV.

BLAS_SSORT (P) Sorts a real vector X in increasing or decreasing order using quick
sort algorithm.

BLAS_SSORTV (P) Sorts a real vector X in increasing or decreasing order using quick
sort algorithm and overwrite P with the permutation vector.

BLAS_SPERMUTE (P) Permutes a real array in terms of the permutation vector P,
output by DSORTV.

TABLE A-12 Sort Routines (Continued)

Routines Function
Appendix A Sun Performance Library Routines 167

168 Sun Performance Library User’s Guide • January 2005

Index
Symbols
%g2, %g3, %g4, and %g5 global integer registers, 38
_64, appending to routine name, 32, 43

Numerics
2D FFT routines

complex sequences as input, 90
conjugate symmetry, 91
data storage format, 90
forward 2D FFT, 90
inverse 2D FFT, 90
real sequences as input, 90
routines, 80, 91

32-bit addressing, 42
3D FFT routines

complex sequences as input, 95
conjugate symmetry, 95
data storage format, 95
forward 3D FFT, 95
inverse 3D FFT, 95
real sequences as input, 95
routines, 80, 96

64-bit addressing, 43
64-bit code

C, 45
Fortran 95, 44
See also 64-bit enabled Solaris operating

environment
64-bit enabled Solaris operating environment

appending _64 to routine names, 43
compiling code, 43
integer promotion, 44

64-bit integer arguments, 31
promoting integers to 64-bits, 43, 44

64-bit integer interfaces, calling, 43

A
accessible documentation, 19
argument data types

summary, 116
arguments

convolution and correlation, 117
FFT routines, 80

automatic code restructuring tools, 30

B
banded matrix, 55
bidiagonal matrix, 136
BLAS1, 23, 151
BLAS2, 23, 152
BLAS3, 23, 153

C
C

64-bit code, 45
array storage, 38
routine calling conventions, 37

C interfaces
advantages, 37
compared to Fortran interfaces, 37
routine calling conventions, 37

calling 64-bit integer interfaces, 43
 169

calling conventions
C, 37
f77/f95, 30

CLAPACK, 25
compatibility, LAPACK, 24, 26
compiler parallelization, 49
compilers, accessing, 15
compile-time checking, 31
compressed sparse column (CSC) format, 61
conjugate symmetric, 82
conjugate symmetry

2D FFT routines, 91
3D FFT routines, 95
FFT routines, 82

convolution, 114
convolution and correlation

arguments, 117
routines, 116

correlation, 115
cosine transforms, 102

D
-dalign, 27, 42
data storage format

2D FFT routines, 90
3D FFT routines, 95
FFT routines, 83

data types
arguments, 116

degree of parallelism, 47
DFT

efficiency of FFT versus DFT, 79
diagonal matrix, 136
discrete Fourier transform

See DFT
documentation index, 18
documentation, accessing, 18 to 19
DOSERIAL* directive, 48

E
empty interval, 127
enable trap 6, 28
environment variable

OMP_NUM_THREADS, 48
PARALLEL, 47, 50

STACKSIZE, 46
SUNW_MP_THR_IDLE, 49

even sequences
fast cosine transform routines, 103

F
f95 interfaces

calling conventions, 30
fast cosine transform routines, 104

even sequences, 103
forward and inverse, 105
forward transform (multiple quarter-wave even

sequences), 107
forward transform (quarter-wave even

sequence), 106
inverse transform (multiple quarter-wave even

sequences), 107
inverse transform (quarter-wave even

sequence), 106
multiple sequences, 106
quarter-wave even sequences, 103

fast Fourier transform
See FFT

fast sine transform routines, 105
forward and inverse, 107
forward and inverse (multiple sequences), 108
forward transform (multiple quarter-wave odd

sequences), 109
forward transform (quarter-wave odd

sequence), 108
inverse transform (multiple quarter-wave odd

sequences), 109
inverse transform (quarter-wave odd

sequence), 108
odd sequences, 103
quarter-wave odd sequences, 103

FFT
efficiency of FFT versus DFT, 79

FFT routines
2D FFT routines, 80
3D FFT routines, 80
arguments, 80
complex sequences as input, 82
conjugate symmetry, 82
data storage format, 83
forward and inverse, 80
linear FFT routines, 80, 83
linear forward FFT, 82
170 Sun Performance Library User’s Guide • January 2005

linear forward FFT (polar form), 82
linear inverse FFT, 82
linear inverse FFT (polar form), 82
real sequences as input, 82
sequence length for most efficient

computation, 81, 101
FFTPACK, 103, 156, 158
Fortran 95

64-bit code, 44
compile-time checking, 31
optional arguments, 31, 33
type independence, 31
USE SUNPERF, 31

Fortran interfaces
IBLAS routines, 129

G
general band matrix, 136
general matrix, 57, 136
general tridiagonal matrix, 138
global integer registers, 38

H
Hermitian band matrix, 139
Hermitian matrix, 139
Hermitian matrix in packed storage, 140

I
IBLAS

add or cancel vectors routines, 131
f95 language bindings, 130
Fortran interfaces, 129
matrix movements routines, 132
matrix set operations routines, 133
matrix utilities routines, 134
matrix-vector operations routines, 131
O(n2 matrix operations routines, 132
O(n3 matrix operations routines, 132
vector movements routines, 131
vector reductions routines, 130
vector set operations routines, 132
vector utilities routines, 133

IBLAS naming conventions, 128
including routines in development environment, 29
interval BLAS

See IBLAS

intervals, 127
empty interval, 127

isalist, 42

L
LAPACK, 23, 136
LAPACK 90, 25
LAPACK compatibility, 24, 26

M
malloc, 38
man pages

section 3P, 79, 127, 135
man pages, accessing, 15
MANPATH environment variable, setting, 16
matrix

banded, 55
bidiagonal, 136
diagonal, 136
general, 57, 136
general band, 136
general tridiagonal, 138
Hermitian, 139
Hermitian band, 139
Hermitian in packed storage, 140
real orthogonal, 142
real orthogonal in packed storage, 142
real symmetric band, 145
real symmetric tridiagonal, 146
structurally symmetric sparse, 62
symmetric, 59, 147
symmetric banded, 60
symmetric in packed storage, 145
symmetric or Hermitian-positive definite, 143
symmetric or Hermitian-positive definite

band, 143
symmetric or Hermitian-positive definite in

packed storage, 144
symmetric or Hermitian-positive definite

tridiagonal, 144
symmetric sparse, 61
trapezoidal, 149
triangular, 58, 148, 149
triangular band, 148
triangular in packed storage, 148
tridiagonal, 60
unitary, 149
Index 171

unitary in packed storage, 150
unsymmetric sparse, 62
upper Hessenberg, 141

-misalign, 50
MT-safe routines, 36
multithreading

compiler parallelization, 49
POSIX/Solaris threads, 49

N
naming conventions

IBLAS, 128
IBLAS prefixes, 128

Netlib, 24
Netlib Sparse BLAS, 63

naming conventions, 64
NIST Fortran Sparse BLAS, 63

naming conventions, 64

O
odd sequences

fast sine transform routines, 103
OMP_NUM_THREADS, 48
one-call interface, 66
optimizing

64-bit code, 42
SPARC instruction set, 42

optional f95 arguments, 31, 33

P
packed storage, 56
PARALLEL environment variable, 47, 50
parallel processing

degree of parallelism, 47
examples, 49

PATH environment variable, setting, 16
POSIX/Solaris threads, 49
promoting integer arguments to 64-bits, 43, 44

Q
quarter-wave even sequences

fast cosine transform routines, 103
quarter-wave odd sequences

fast sine transform routines, 103

R
real orthogonal matrix, 142
real orthogonal matrix in packed storage, 142
real symmetric band matrix, 145
real symmetric tridiagonal matrix, 146
regular interface, 66
replacing routines, 30
routines

2D FFT routines, 80, 91
3D FFT routines, 80, 96
BLAS1, 151
BLAS2, 152
BLAS3, 153
C calling conventions, 37
convolution and correlation, 116
f95 calling conventions, 30
fast cosine transform routines, 103, 104
fast cosine transform routines (multiple

sequences), 106
fast sine transform routines, 103, 105
FFTPACK, 156, 158
forward and inverse FFT, 80
forward fast cosine transform routines, 105
forward fast cosine transform routines (multiple

quarter-wave even sequences), 107
forward fast cosine transform routines (quarter-

wave even sequence), 106
forward fast sine transform routines, 107
forward fast sine transform routines (multiple

quarter-wave odd sequences), 109
forward fast sine transform routines (multiple

sequences), 108
forward fast sine transform routines (quarter-

wave odd sequence), 108
IBLAS add or cancel vectors routines, 131
IBLAS matrix movements routines, 132
IBLAS matrix set operations routines, 133
IBLAS matrix utilities routines, 134
IBLAS matrix-vector operations routines, 131
IBLAS O(n2 matrix operations routines, 132
IBLAS O(n3 matrix operations routines, 132
IBLAS vector movements routines, 131
IBLAS vector reductions, 130
IBLAS vector set operations routines, 132
IBLAS vector utilities routines, 133
inverse fast cosine transform routines, 105
inverse fast cosine transform routines (multiple

quarter-wave even sequences), 107
172 Sun Performance Library User’s Guide • January 2005

inverse fast cosine transform routines (quarter-
wave even sequence), 106

inverse fast sine transform routines, 107
inverse fast sine transform routines (multiple

quarter-wave odd sequences), 109
inverse fast sine transform routines (multiple

sequences), 108
inverse fast sine transform routines (quarter-

wave odd sequence), 108
LAPACK, 136
linear FFT routines, 80, 83
sparse BLAS, 153
sparse solvers, 155
VFFTPACK, 156, 158

S
section 3P man pages, 79, 127, 135
shell prompts, 14
sine transforms, 102
single processor, 49
sparse BLAS, 153
sparse matrices

CSC storage format, 61
structurally symmetric, 62
symmetric, 61
unsymmetric, 62

sparse solver, 155
sparse solver package, 60

one-call interface, 66
regular interface, 66
routine calling order, 67
routines, 65
using with C, 61

STACKSIZE environment variable, 46
structurally symmetric sparse matrix, 62
SUNW_MP_THR_IDLE, 49
symmetric banded matrix, 60
symmetric matrix, 59, 147
symmetric matrix in packed storage, 145
symmetric or Hermitian positive definite band

matrix, 143
symmetric or Hermitian positive definite

matrix, 143
symmetric or Hermitian positive definite matrix in

packed storage, 144

symmetric or Hermitian positive definite tridiagonal
matrix, 144

symmetric sparse matrix, 61

T
trap 6, enabling, 28
trapezoidal matrix, 149
triangular band matrix, 148
triangular matrix, 58, 148, 149
triangular matrix in packed storage, 148
tridiagonal matrix, 60
type Independence, 31
typographic conventions, 13

U
unitary matrix, 149
unitary matrix in packed storage, 150
unsymmetric sparse matrix, 62
upper Hessenberg matrix, 141
USE SUNPERF

enabling Fortran 95 features, 31
USE_THREADS routine, 47

V
VFFTPACK, 103, 156, 158

X
-xarch, 42
xFFTOPT, 102
-xlic_lib=sunperf, 27, 42
-xtypemap, 44
Index 173

174 Sun Performance Library User’s Guide • January 2005

	Sun Performance Library User’s Guide
	Contents
	Tables
	Before You Begin
	Introduction
	Libraries Included With Sun Performance Library
	Netlib

	Sun Performance Library Features
	Mathematical Routines
	Compatibility With Previous LAPACK Versions
	Getting Started With Sun Performance Library
	Enabling Trap 6

	Using Sun Performance Library
	Improving Application Performance
	Replacing Routines With Sun Performance Library Routines
	Improving Performance of Other Libraries
	Using Tools to Restructure Code

	Fortran Interfaces
	Fortran SUNPERF Module for Use With Fortran 95
	Optional Arguments

	Fortran Examples
	C Interfaces
	C Examples

	SPARC Optimization and Parallel Processing
	Using Sun Performance Library on SPARC Platforms
	Compiling for SPARC Platforms

	Compiling Code for a 64-Bit Enabled Solaris Operating Environment
	64-Bit Integer Arguments

	Parallel Processing on SPARC Platforms
	Run-Time Issues
	Degree of Parallelism
	Synchronization Mechanisms
	Parallel Processing Examples
	Using a Single Processor
	Using Multiple Processors

	Sun Performance Library for x86
	Compiling for x86 Platforms

	Working With Matrices
	Matrix Storage Schemes
	Banded Storage
	Packed Storage

	Matrix Types
	General Matrices
	Triangular Matrices
	Symmetric Matrices
	Tridiagonal Matrices

	Sparse Matrices
	Sparse Solver Matrix Data Formats
	Symmetric Sparse Matrices
	Structurally Symmetric Sparse Matrices
	Unsymmetric Sparse Matrices

	Sun Performance Library Sparse BLAS
	Naming Conventions
	Netlib Sparse BLAS
	NIST Fortran Sparse BLAS

	Sparse Solver Routines
	Routine Calling Order
	Sparse Solver Examples

	References

	Using Sun Performance Library Signal Processing Routines
	Forward and Inverse FFT Routines
	Linear FFT Routines
	Two-Dimensional FFT Routines
	Three-Dimensional FFT Routines
	Comments

	Cosine and Sine Transforms
	Fast Cosine and Sine Transform Routines
	Fast Cosine Transforms
	Fast Sine Transforms
	Discrete Fast Cosine and Sine Transforms and Their Inverse
	[D]COST: Forward and Inverse Fast Cosine Transform (FCT) of a Sequence
	V[D]COST: Forward and Inverse Fast Cosine Transforms of Multiple Sequences (VFCT)
	[D]COSQF: Forward FCT of a Quarter-Wave Even Sequence
	[D]COSQB: Inverse FCT of a Quarter-Wave Even Sequence
	V[D]COSQF: Forward FCT of One or More Quarter-Wave Even Sequences
	V[D]COSQB: Inverse FCT of One or More Quarter-Wave Even Sequences
	[D]SINT: Forward and Inverse Fast Sine Transform (FST) of a Sequence
	V[D]SINT: Forward and Inverse Fast Sine Transforms of Multiple Sequences (VFST)
	[D]SINQF: Forward FST of a Quarter-Wave Odd Sequence
	[D]SINQB: Inverse FST of a Quarter-Wave Odd Sequence
	V[D]SINQF: Forward FST of One or More Quarter-Wave Odd Sequences
	V[D]SINQB: Inverse FST of One or More Quarter-Wave Odd Sequences

	Fast Cosine Transform Examples
	Fast Sine Transform Examples

	Convolution and Correlation
	Convolution
	Correlation
	Sun Performance Library Convolution and Correlation Routines
	Arguments for Convolution and Correlation Routines
	Work Array WORK for Convolution and Correlation Routines
	Sample Program: Convolution

	References

	Interval BLAS Routines
	Introduction
	Intervals

	IBLAS Routine Names
	Naming Conventions

	Fortran Interface
	Binding Format
	Language Bindings
	References

	Sun Performance Library Routines
	LAPACK Routines
	BLAS1 Routines
	BLAS2 Routines
	BLAS3 Routines
	Sparse BLAS Routines
	Sparse Solver Routines
	Signal Processing Library Routines
	FFT Routines
	Fast Cosine and Sine Transforms
	Convolution and Correlation Routines

	Miscellaneous Signal Processing Routines
	Interval BLAS (IBLAS) Routines
	Sort Routines

	Index

