
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

C++ User’s Guide

Sun™ Studio 10

Part No. 819-0496-10
January 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xxvii

How This Book Is Organized xxvii

Typographic Conventions xxviii

Shell Prompts xxix

TABLE P-2Supported Platforms –xxix

Accessing Sun Studio Software and Man Pages xxix

Accessing Compilers and Tools Documentation xxxii

Accessing Related Solaris Operating System Documentation xxxiv

Accessing C++ Related Man Pages xxxv

Commercially Available Books xxxv

Resources for Developers xxxvi

Contacting Sun Technical Support xxxvii

Sending Your Comments xxxvii

Part I C++ Compiler

1. The C++ Compiler 1–1

1.1 New Features and Functionality of the Sun Studio 10 C++ 5.7 Compiler
1–1

1.2 New Features and Functionality of the Sun Studio 9 C++ 5.6 Compiler 1–3

1.2.1 Changes to Defaults That Impact Common SPARC Processors 1–4
 iii

1.2.2 Expanded Options For New SPARC Processors 1–5

1.2.3 Expanded Options for New Intel Processors 1–5

1.2.4 New Default Optimization For SPARC and x86 1–7

1.2.5 New Options for Generating Faster Code 1–7

1.2.6 New Options for Higher Library Performance 1–8

1.2.7 Expanded Options For Faster Compilation 1–8

1.2.8 Language Enhancements 1–9

1.3 Standards Conformance 1–11

1.4 C++ Readme File 1–11

1.5 Man Pages 1–12

1.6 C++ Utilities 1–12

1.7 Native-Language Support 1–13

2. Using the C++ Compiler 2–1

2.1 Getting Started 2–1

2.2 Invoking the Compiler 2–3

2.2.1 Command Syntax 2–3

2.2.2 File Name Conventions 2–4

2.2.3 Using Multiple Source Files 2–4

2.3 Compiling With Different Compiler Versions 2–5

2.4 Compiling and Linking 2–6

2.4.1 Compile-Link Sequence 2–6

2.4.2 Separate Compiling and Linking 2–6

2.4.3 Consistent Compiling and Linking 2–7

2.4.4 Compiling for SPARC V9 2–8

2.4.5 Diagnosing the Compiler 2–8

2.4.6 Understanding the Compiler Organization 2–9

2.5 Preprocessing Directives and Names 2–10

2.5.1 Pragmas 2–10
iv C++ User’s Guide • January 2005

2.5.2 Macros With a Variable Number of Arguments 2–10

2.5.3 Predefined Names 2–11

2.5.4 #error 2–11

2.6 Memory Requirements 2–12

2.6.1 Swap Space Size 2–12

2.6.2 Increasing Swap Space 2–12

2.6.3 Control of Virtual Memory 2–13

2.6.4 Memory Requirements 2–14

2.7 Simplifying Commands 2–14

2.7.1 Using Aliases Within the C Shell 2–14

2.7.2 Using CCFLAGS to Specify Compile Options 2–14

2.7.3 Using make 2–15

3. Using the C++ Compiler Options 3–1

3.1 Syntax 3–1

3.2 General Guidelines 3–2

3.3 Options Summarized by Function 3–2

3.3.1 Code Generation Options 3–3

3.3.2 Compile-Time Performance Options 3–3

3.3.3 Debugging Options 3–4

3.3.4 Floating-Point Options 3–5

3.3.5 Language Options 3–6

3.3.6 Library Options 3–6

3.3.7 Licensing Options 3–7

3.3.8 Obsolete Options 3–8

3.3.9 Output Options 3–8

3.3.10 Run-Time Performance Options 3–10

3.3.11 Preprocessor Options 3–11

3.3.12 Profiling Options 3–12
Contents v

3.3.13 Reference Options 3–12

3.3.14 Source Options 3–12

3.3.15 Template Options 3–13

3.3.16 Thread Options 3–13

Part II Writing C++ Programs

4. Language Extensions 4–1

4.1 Linker Scoping 4–1

4.2 Thread-Local Storage 4–3

4.3 Overriding With Less Restrictive Virtual Functions 4–3

4.4 Making Forward Declarations of enum Types and Variables 4–4

4.5 Using Incomplete enum Types 4–5

4.6 Using an enum Name as a Scope Qualifier 4–5

4.7 Using Anonymous struct Declarations 4–5

4.8 Passing the Address of an Anonymous Class Instance 4–7

4.9 Declaring a Static Namespace-Scope Function as a Class Friend 4–8

4.10 Using the Predefined __func__ Symbol for Function Name 4–8

5. Program Organization 5–1

5.1 Header Files 5–1

5.1.1 Language-Adaptable Header Files 5–1

5.1.2 Idempotent Header Files 5–3

5.2 Template Definitions 5–3

5.2.1 Template Definitions Included 5–3

5.2.2 Template Definitions Separate 5–4

6. Creating and Using Templates 6–1

6.1 Function Templates 6–1

6.1.1 Function Template Declaration 6–1
vi C++ User’s Guide • January 2005

6.1.2 Function Template Definition 6–2

6.1.3 Function Template Use 6–2

6.2 Class Templates 6–3

6.2.1 Class Template Declaration 6–3

6.2.2 Class Template Definition 6–3

6.2.3 Class Template Member Definitions 6–4

6.2.4 Class Template Use 6–5

6.3 Template Instantiation 6–6

6.3.1 Implicit Template Instantiation 6–6

6.3.2 Explicit Template Instantiation 6–6

6.4 Template Composition 6–8

6.5 Default Template Parameters 6–9

6.6 Template Specialization 6–9

6.6.1 Template Specialization Declaration 6–9

6.6.2 Template Specialization Definition 6–10

6.6.3 Template Specialization Use and Instantiation 6–10

6.6.4 Partial Specialization 6–10

6.7 Template Problem Areas 6–11

6.7.1 Nonlocal Name Resolution and Instantiation 6–11

6.7.2 Local Types as Template Arguments 6–13

6.7.3 Friend Declarations of Template Functions 6–14

6.7.4 Using Qualified Names Within Template Definitions 6–16

6.7.5 Nesting Template Names 6–16

6.7.6 Referencing Static Variables and Static Functions 6–17

6.7.7 Building Multiple Programs Using Templates in the Same
Directory 6–17

7. Compiling Templates 7–1

7.1 Verbose Compilation 7–1
Contents vii

7.2 Repository Administration 7–1

7.2.1 Generated Instances 7–2

7.2.2 Whole-Class Instantiation 7–2

7.2.3 Compile-Time Instantiation 7–2

7.2.4 Template Instance Placement and Linkage 7–3

7.3 External Instances 7–3

7.3.1 Static Instances 7–5

7.3.2 Global Instances 7–5

7.3.3 Explicit Instances 7–6

7.3.4 Semi-Explicit Instances 7–6

7.4 The Template Repository 7–6

7.4.1 Repository Structure 7–7

7.4.2 Writing to the Template Repository 7–7

7.4.3 Reading From Multiple Template Repositories 7–7

7.4.4 Sharing Template Repositories 7–7

7.4.5 Template Instance Automatic Consistency With -instances=
extern 7–8

7.5 Template Definition Searching 7–8

7.5.1 Source File Location Conventions 7–9

7.5.2 Definitions Search Path 7–9

7.5.3 Troubleshooting a Problematic Search 7–9

7.6 Template Options File 7–10

7.6.1 Comments 7–10

7.6.2 Includes 7–10

7.6.3 Source File Extensions 7–11

7.6.4 Definition Source Locations 7–11

7.6.5 Template Specialization Entries 7–14

8. Exception Handling 8–1
viii C++ User’s Guide • January 2005

8.1 Synchronous and Asynchronous Exceptions 8–1

8.2 Specifying Runtime Errors 8–2

8.3 Disabling Exceptions 8–2

8.4 Using Runtime Functions and Predefined Exceptions 8–3

8.5 Mixing Exceptions With Signals and Setjmp/Longjmp 8–4

8.6 Building Shared Libraries That Have Exceptions 8–5

9. Cast Operations 9–1

9.1 const_cast 9–2

9.2 reinterpret_cast 9–2

9.3 static_cast 9–4

9.4 Dynamic Casts 9–4

9.4.1 Casting Up the Hierarchy 9–5

9.4.2 Casting to void* 9–5

9.4.3 Casting Down or Across the Hierarchy 9–5

10. Improving Program Performance 10–1

10.1 Avoiding Temporary Objects 10–1

10.2 Using Inline Functions 10–2

10.3 Using Default Operators 10–3

10.4 Using Value Classes 10–3

10.4.1 Choosing to Pass Classes Directly 10–4

10.4.2 Passing Classes Directly on Various Processors 10–5

10.5 Cache Member Variables 10–5

11. Building Multithreaded Programs 11–1

11.1 Building Multithreaded Programs 11–1

11.1.1 Indicating Multithreaded Compilation 11–2

11.1.2 Using C++ Support Libraries With Threads and Signals 11–2

11.2 Using Exceptions in a Multithreaded Program 11–3
Contents ix

11.2.1 Thread Cancellation 11–3

11.3 Sharing C++ Standard Library Objects Between Threads 11–3

11.4 Using Classic Iostreams in a Multithreading Environment 11–6

11.4.1 Organization of the MT-Safe iostream Library 11–6

11.4.2 Interface Changes to the iostream Library 11–12

11.4.3 Global and Static Data 11–15

11.4.4 Sequence Execution 11–16

11.4.5 Object Locks 11–16

11.4.6 MT-Safe Classes 11–18

11.4.7 Object Destruction 11–19

11.4.8 An Example Application 11–20

Part III Libraries

12. Using Libraries 12–1

12.1 The C Libraries 12–1

12.2 Libraries Provided With the C++ Compiler 12–2

12.2.1 C++ Library Descriptions 12–3

12.2.2 Accessing the C++ Library Man Pages 12–4

12.2.3 Default C++ Libraries 12–5

12.3 Related Library Options 12–5

12.4 Using Class Libraries 12–7

12.4.1 The iostream Library 12–7

12.4.2 The complex Library 12–8

12.4.3 Linking C++ Libraries 12–10

12.5 Statically Linking Standard Libraries 12–10

12.6 Using Shared Libraries 12–11

12.7 Replacing the C++ Standard Library 12–13

12.7.1 What Can Be Replaced 12–13
x C++ User’s Guide • January 2005

12.7.2 What Cannot Be Replaced 12–13

12.7.3 Installing the Replacement Library 12–14

12.7.4 Using the Replacement Library 12–14

12.7.5 Standard Header Implementation 12–14

13. Using The C++ Standard Library 13–1

13.1 C++ Standard Library Header Files 13–2

13.2 C++ Standard Library Man Pages 13–3

13.3 STLport 13–16

13.3.1 Redistribution and Supported STLport Libraries 13–17

14. Using the Classic iostream Library 14–1

14.1 Predefined iostreams 14–1

14.2 Basic Structure of iostream Interaction 14–2

14.3 Using the Classic iostream Library 14–3

14.3.1 Output Using iostream 14–4

14.3.2 Input Using iostream 14–7

14.3.3 Defining Your Own Extraction Operators 14–7

14.3.4 Using the char* Extractor 14–8

14.3.5 Reading Any Single Character 14–9

14.3.6 Binary Input 14–9

14.3.7 Peeking at Input 14–9

14.3.8 Extracting Whitespace 14–10

14.3.9 Handling Input Errors 14–10

14.3.10 Using iostreams With stdio 14–11

14.4 Creating iostreams 14–11

14.4.1 Dealing With Files Using Class fstream 14–11

14.5 Assignment of iostreams 14–15

14.6 Format Control 14–15
Contents xi

14.7 Manipulators 14–15

14.7.1 Using Plain Manipulators 14–17

14.7.2 Parameterized Manipulators 14–18

14.8 Strstreams: iostreams for Arrays 14–20

14.9 Stdiobufs: iostreams for stdio Files 14–20

14.10 Streambufs 14–20

14.10.1 Working With Streambufs 14–20

14.10.2 Using Streambufs 14–21

14.11 iostream Man Pages 14–22

14.12 iostream Terminology 14–24

15. Using the Complex Arithmetic Library 15–1

15.1 The Complex Library 15–1

15.1.1 Using the Complex Library 15–2

15.2 Type complex 15–2

15.2.1 Constructors of Class complex 15–2

15.2.2 Arithmetic Operators 15–3

15.3 Mathematical Functions 15–4

15.4 Error Handling 15–6

15.5 Input and Output 15–7

15.6 Mixed-Mode Arithmetic 15–8

15.7 Efficiency 15–9

15.8 Complex Man Pages 15–10

16. Building Libraries 16–1

16.1 Understanding Libraries 16–1

16.2 Building Static (Archive) Libraries 16–2

16.3 Building Dynamic (Shared) Libraries 16–3

16.4 Building Shared Libraries That Contain Exceptions 16–4
xii C++ User’s Guide • January 2005

16.5 Building Libraries for Private Use 16–4

16.6 Building Libraries for Public Use 16–5

16.7 Building a Library That Has a C API 16–5

16.8 Using dlopen to Access a C++ Library From a C Program 16–6

Part IV Appendixes

A. C++ Compiler Options A–1

A.1 How Option Information Is Organized A–2

A.2 Option Reference A–3

A.2.1 –386 A–3

A.2.2 –486 A–3

A.2.3 –a A–3

A.2.4 –Bbinding A–3

A.2.5 –c A–5

A.2.6 –cg{89|92} A–6

A.2.7 –compat[={4|5}] A–6

A.2.8 +d A–7

A.2.9 -D[]name[=def] A–8

A.2.10 –d{y|n} A–10

A.2.11 –dalign A–11

A.2.12 –dryrun A–11

A.2.13 –E A–11

A.2.14 +e{0|1} A–13

A.2.15 -erroff[=t] A–13

A.2.16 -errtags[=a] A–15

A.2.17 -errwarn[=t] A–15

A.2.18 –fast A–17

A.2.19 –features=a[,a...] A–19
Contents xiii

A.2.20 -filt[=filter[,filter...]] A–23

A.2.21 –flags A–26

A.2.22 –fnonstd A–27

A.2.23 –fns[={yes|no}] A–27

A.2.24 –fprecision=p A–29

A.2.25 –fround=r A–30

A.2.26 –fsimple[=n] A–31

A.2.27 –fstore A–33

A.2.28 –ftrap=t[,t...] A–33

A.2.29 –G A–35

A.2.30 –g A–36

A.2.31 –g0 A–37

A.2.32 –H A–38

A.2.33 –h[]name A–38

A.2.34 –help A–39

A.2.35 -Ipathname A–39

A.2.36 -I- A–40

A.2.37 –i A–42

A.2.38 -inline A–42

A.2.39 –instances=a A–42

A.2.40 –instlib=filename A–44

A.2.41 –KPIC A–45

A.2.42 –Kpic A–45

A.2.43 –keeptmp A–45

A.2.44 –Lpath A–45

A.2.45 –llib A–46

A.2.46 –libmieee A–46

A.2.47 –libmil A–46
xiv C++ User’s Guide • January 2005

A.2.48 -library=l[,l...] A–47

A.2.49 -mc A–51

A.2.50 –migration A–51

A.2.51 –misalign A–51

A.2.52 -mr[,string] A–52

A.2.53 –mt A–52

A.2.54 –native A–53

A.2.55 –noex A–53

A.2.56 –nofstore A–53

A.2.57 –nolib A–54

A.2.58 –nolibmil A–54

A.2.59 –noqueue A–54

A.2.60 –norunpath A–54

A.2.61 –O A–55

A.2.62 –Olevel A–55

A.2.63 –o filename A–55

A.2.64 +p A–56

A.2.65 –P A–56

A.2.66 –p A–57

A.2.67 –pentium A–57

A.2.68 –pg A–57

A.2.69 -PIC A–57

A.2.70 –pic A–58

A.2.71 –pta A–58

A.2.72 –ptipath A–58

A.2.73 –pto A–58

A.2.74 –ptr A–59

A.2.75 –ptv A–59
Contents xv

A.2.76 –Qoption phase option[,option…] A–59

A.2.77 –qoption phase option A–61

A.2.78 –qp A–61

A.2.79 –Qproduce sourcetype A–61

A.2.80 –qproduce sourcetype A–61

A.2.81 –Rpathname[:pathname…] A–61

A.2.82 –readme A–62

A.2.83 –S A–62

A.2.84 –s A–63

A.2.85 –sb A–63

A.2.86 –sbfast A–63

A.2.87 -staticlib=l[,l…] A–63

A.2.88 -sync_stdio=[yes|no] A–66

A.2.89 –temp=path A–67

A.2.90 –template=opt[,opt…] A–67

A.2.91 –time A–68

A.2.92 –Uname A–69

A.2.93 –unroll=n A–69

A.2.94 –V A–69

A.2.95 –v A–70

A.2.96 –vdelx A–70

A.2.97 –verbose=v[,v…] A–70

A.2.98 +w A–71

A.2.99 +w2 A–72

A.2.100 –w A–72

A.2.101 –Xm A–73

A.2.102 –xa A–73

A.2.103 -xalias_level[=n] A–74
xvi C++ User’s Guide • January 2005

A.2.104 –xar A–76

A.2.105 –xarch=isa A–77

A.2.106 -xautopar A–83

A.2.107 -xbuiltin[={%all|%none}] A–84

A.2.108 –xcache=c A–85

A.2.109 -xcg89 A–87

A.2.110 –xcg92 A–87

A.2.111 -xchar[=o] A–88

A.2.112 -xcheck[=i] A–89

A.2.113 -xchip=c A–90

A.2.114 –xcode=a A–91

A.2.115 -xcrossfile[=n] A–94

A.2.116 -xdepend=[yes|no] A–95

A.2.117 -xdumpmacros[=value[,value...]] A–95

A.2.118 -xe A–100

A.2.119 –xF[=v[,v...]] A–100

A.2.120 –xhelp=flags A–101

A.2.121 –xhelp=readme A–101

A.2.122 -xia A–102

A.2.123 –xildoff A–103

A.2.124 –xildon A–103

A.2.125 -xinline[=func_spec[,func_spec...]] A–103

A.2.126 -xipo[={0|1|2}] A–105

A.2.127 -xjobs=n A–108

A.2.128 -xlang=language[,language] A–109

A.2.129 -xldscope={v} A–111

A.2.130 –xlibmieee A–112

A.2.131 –xlibmil A–113
Contents xvii

A.2.132 –xlibmopt A–113

A.2.133 –xlic_lib=sunperf A–114

A.2.134 –xlicinfo A–115

A.2.135 -xlinkopt[=level] A–115

A.2.136 –xM A–116

A.2.137 -xM1 A–117

A.2.138 –xMerge A–117

A.2.139 -xmaxopt[=v] A–118

A.2.140 -xmemalign=ab A–118

A.2.141 -xnativeconnect[=i] A–120

A.2.142 –xnolib A–121

A.2.143 –xnolibmil A–123

A.2.144 –xnolibmopt A–123

A.2.145 -xOlevel A–124

A.2.146 -xopenmp[=i] A–127

A.2.147 -xpagesize=n A–128

A.2.148 -xpagesize_heap=n A–129

A.2.149 -xpagesize_stack=n A–130

A.2.150 -xpch=v A–131

A.2.151 -xpchstop=file A–134

A.2.152 –xpg A–135

A.2.153 -xport64[=(v)] A–136

A.2.154 -xprefetch[=a[,a...]] A–140

A.2.155 -xprefetch_auto_type=a A–142

A.2.156 -xprefetch_level[=i] A–143

A.2.157 -xprofile=p A–144

A.2.158 -xprofile_ircache[=path] A–147

A.2.159 -xprofile_pathmap A–147
xviii C++ User’s Guide • January 2005

A.2.160 –xregs=r[,r...] A–148

A.2.161 -xrestrict[=f] A–150

A.2.162 –xs A–152

A.2.163 –xsafe=mem A–152

A.2.164 –xsb A–153

A.2.165 –xsbfast A–153

A.2.166 –xspace A–153

A.2.167 –xtarget=t A–153

A.2.168 -xthreadvar[=o] A–160

A.2.169 –xtime A–162

A.2.170 -xtrigraphs[={yes|no}] A–162

A.2.171 –xunroll=n A–163

A.2.172 -xustr={ascii_utf16_ushort|no} A–164

A.2.173 -xvector[={yes|no}] A–165

A.2.174 -xvis[={yes|no}] A–165

A.2.175 –xwe A–166

A.2.176 -Yc,path A–166

A.2.177 -z[]arg A–167

B. Pragmas B–1

B.1 Pragma Forms B–1

B.1.1 Overloaded Functions as Pragma Arguments B–2

B.2 Pragma Reference B–2

B.2.1 #pragma align B–4

B.2.2 #pragma does_not_read_global_data B–5

B.2.3 #pragma does_not_return B–5

B.2.4 #pragma does_not_write_global_data B–6

B.2.5 #pragma dumpmacros B–6

B.2.6 #pragma end_dumpmacros B–8
Contents xix

B.2.7 #pragma fini B–8

B.2.8 #pragma hdrstop B–9

B.2.9 #pragma ident B–9

B.2.10 #pragma init B–9

B.2.11 #pragma no_side_effect B–10

B.2.12 #pragma opt B–11

B.2.13 #pragma pack(n) B–11

B.2.14 #pragma rarely_called B–13

B.2.15 #pragma returns_new_memory B–13

B.2.16 #pragma unknown_control_flow B–14

B.2.17 #pragma weak B–14

Glossary Glossary–1

Index Index–1
xx C++ User’s Guide • January 2005

Tables

TABLE P-1 Typeface Conventions xxviii

TABLE P-2 Code Conventions xxviii

TABLE 2-1 File Name Suffixes Recognized by the C++ Compiler 2–4

TABLE 2-2 Components of the C++ Compilation System 2–9

TABLE 3-1 Option Syntax Format Examples 3–1

TABLE 3-2 Code Generation Options 3–3

TABLE 3-3 Compile-Time Performance Options 3–3

TABLE 3-4 Debugging Options 3–4

TABLE 3-5 Floating-Point Options 3–5

TABLE 3-6 Language Options 3–6

TABLE 3-7 Library Options 3–6

TABLE 3-8 Licensing Options 3–7

TABLE 3-9 Obsolete Options 3–8

TABLE 3-10 Output Options 3–8

TABLE 3-11 Run-Time Performance Options 3–10

TABLE 3-12 Preprocessor Options 3–11

TABLE 3-13 Profiling Options 3–12

TABLE 3-14 Reference Options 3–12

TABLE 3-15 Source Options 3–12

TABLE 3-16 Template Options 3–13
 xxi

TABLE 3-17 Thread Options 3–13

TABLE 4-1 Linker Scoping Declaration Specifiers 4–2

TABLE 10-1 Passing of Structs and Unions by Architecture 10–5

TABLE 11-1 iostream Original Core Classes 11–7

TABLE 11-2 MT-Safe Reentrant Public Functions 11–8

TABLE 12-1 Libraries Shipped With the C++ Compiler 12–2

TABLE 12-2 Compiler Options for Linking C++ Libraries 12–10

TABLE 12-3 Header Search Examples 12–16

TABLE 13-1 C++ Standard Library Header Files 13–2

TABLE 13-2 Man Pages for C++ Standard Library 13–3

TABLE 14-1 iostream Routine Header Files 14–3

TABLE 14-2 iostream Predefined Manipulators 14–16

TABLE 14-3 iostream Man Pages Overview 14–22

TABLE 14-4 iostream Terminology 14–24

TABLE 15-1 Complex Arithmetic Library Functions 15–5

TABLE 15-2 Complex Mathematical and Trigonometric Functions 15–5

TABLE 15-3 Complex Arithmetic Library Functions Default Error Handling 15–7

TABLE 15-4 Man Pages for Type complex 15–10

TABLE A-1 Option Syntax Format Examples A–1

TABLE A-2 Option Subsections A–2

TABLE A-3 Predefined Macros A–9

TABLE A-4 The -erroff Values A–14

TABLE A-5 The -errwarn Values A–16

TABLE A-6 The -fast Expansion A–17

TABLE A-7 The -features Values for Compatibility Mode and Standard Mode A–19

TABLE A-8 The -features Values for Standard Mode Only A–21

TABLE A-9 The -features Values for Compatibility Mode Only A–22

TABLE A-10 The -filt Values A–24

TABLE A-11 The -fns Values A–28

TABLE A-12 The -fprecision Values A–29
xxii C++ User’s Guide • January 2005

TABLE A-13 The -fround Values A–30

TABLE A-14 The -fsimple Values A–32

TABLE A-15 The -ftrap Values A–34

TABLE A-16 The -instances Values A–43

TABLE A-17 The -library Values for Compatibility Mode A–47

TABLE A-18 The -library Values for Standard Mode A–47

TABLE A-19 The -Qoption Values A–60

TABLE A-20 The -Qproduce Values A–61

TABLE A-21 The -staticlib Values A–63

TABLE A-22 The -template Values A–67

TABLE A-23 The -verbose Values A–71

TABLE A-24 The -xarch Values for SPARC Platforms A–78

TABLE A-25 The -xarch Values for x86 Platforms A–81

TABLE A-26 The -xcache Values A–86

TABLE A-27 The -xchar Values A–88

TABLE A-28 The -xcheck Values A–89

TABLE A-29 The -xchip Values A–90

TABLE A-30 The -xcode Values A–92

TABLE A-31 The -xcrossfile Values A–94

TABLE A-32 The -xdumpmacros Values A–96

TABLE A-33 The -xF Values A–101

TABLE A-34 The -xinline Values A–104

TABLE A-35 The -xipo Values A–106

TABLE A-36 The -xldscope Values A–111

TABLE A-37 The -xlinkopt Values A–115

TABLE A-38 The -xmemalign Alignment and Behavior Values A–119

TABLE A-39 Examples of -xmemalign A–119

TABLE A-40 The -xnativeconnect Values A–120

TABLE A-41 The -xopenmp Values A–127

TABLE A-42 The -xport64 Values A–136
Tables xxiii

TABLE A-43 The -xprefetch Values A–140

TABLE A-44 The -xprefecth_level Values A–143

TABLE A-45 The -xregs Values A–148

TABLE A-46 The -xrestrict Values A–150

TABLE A-47 -xtarget Values for SPARC Platforms A–154

TABLE A-48 SPARC Platform Names for -xtarget A–155

TABLE A-49 -xtarget Expansions on Intel Architecture A–159

TABLE A-50 The -xthreadvar Values A–161

TABLE A-51 The -xtrigraphs Values A–162

TABLE A-52 The -Y Flags A–166

TABLE B-1 Strictest Alignment by Platform B–12

TABLE B-2 Storage Sizes and Default Alignments in Bytes B–12
xxiv C++ User’s Guide • January 2005

Code Samples

CODE EXAMPLE 7-1 Example of Local Type as Template Argument Problem 7-13

CODE EXAMPLE 7-2 Example of Friend Declaration Problem 7-14

CODE EXAMPLE 8-1 Redundant Definition Entry 8-12

CODE EXAMPLE 8-2 Definition of Static Data Members and Use of Simple Names 8-12

CODE EXAMPLE 8-3 Template Member Function Definition 8-12

CODE EXAMPLE 8-4 Definition of Template Functions in Different Source Files 8-13

CODE EXAMPLE 8-5 nocheck Option 8-13

CODE EXAMPLE 8-6 special Entry 8-14

CODE EXAMPLE 8-7 Example of When special Entry Should Be Used 8-14

CODE EXAMPLE 8-8 Overloading special Entries 8-15

CODE EXAMPLE 8-9 Specializing a Template Class 8-15

CODE EXAMPLE 8-10 Specializing a Static Template Class Member 8-15

CODE EXAMPLE 12-1 Checking Error State 12-9

CODE EXAMPLE 12-2 Calling gcount 12-10

CODE EXAMPLE 12-3 User-Defined I/O Operations 12-10

CODE EXAMPLE 12-4 Disabling MT-Safety 12-11

CODE EXAMPLE 12-5 Switching to MT-Unsafe 12-12

CODE EXAMPLE 12-6 Using Synchronization With MT-Unsafe Objects 12-12

CODE EXAMPLE 12-7 New Classes 12-13

CODE EXAMPLE 12-8 New Class Hierarchy 12-13
 xxv

CODE EXAMPLE 12-9 New Functions 12-14

CODE EXAMPLE 12-10 Example of Using Locking Operations 12-17

CODE EXAMPLE 12-11 Making I/O Operation and Error Checking Atomic 12-18

CODE EXAMPLE 12-12 Destroying a Shared Object 12-19

CODE EXAMPLE 12-13 Using iostream Objects in an MT-Safe Way 12-20

CODE EXAMPLE 16-1 string Extraction Operator 16-7

CODE EXAMPLE A-1 Preprocessor Example Program foo.cc A-12

CODE EXAMPLE A-2 Preprocessor Output of foo.cc Using -E Option A-12
xxvi C++ User’s Guide • January 2005

Before You Begin

This manual instructs you in the use of the C++ compiler for Sun™ Studio 9and
provides detailed information on command-line compiler options. This manual is
intended for programmers with a working knowledge of C++ and some
understanding of the Solaris™ Operating System and UNIX® commands.

How This Book Is Organized
This manual covers the following topics:

C++ Compiler. Chapter 1 provides introductory material about the compiler, such as
standards conformance and new features.Chapter 2 explains how to use the
compiler and Chapter 3 discusses how to use the compiler’s command line options.

Writing C++ Programs. Chapter 4 discusses how to compile nonstandard code that
is commonly accepted by other C++ compilers. Chapter 5 makes suggestions for
setting up and organizing header files and template definitions. Chapter 6 discusses
how to create and use templates and Chapter 7 explains various options for
compiling templates. Exception handling is discussed in Chapter 8 and information
about cast operations is provided in Chapter 9. Chapter 10 discusses performance
techniques that strongly affect the C++ compiler. Chapter 11 provides information
about building multithreaded programs.

Libraries. Chapter 12 explains how to use the libraries that are provided with the
compiler. The C++ standard library is discussed in Chapter 13, the classic iostream
library (for compatibility mode) is discussed in Chapter 14, and the complex
arithmetic library (for compatibility mode) is discussed in Chapter 15. Chapter 16
provides information about building libraries.
 xxvii

Typographic Conventions
TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos
xxviii C++ User’s Guide • January 2005

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you
are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

Accessing Sun Studio Software and Man
Pages
The compilers and tools and their man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the compilers and tools,
you must have your PATH environment variable set correctly (see Section ,
“Accessing the Compilers and Tools” on page -xxx). To access the man pages, you
must have the your MANPATH environment variable set correctly (see Section ,
“Accessing the Man Pages” on page -xxxi.).

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
Before You Begin xxix

http://www.sun.com/bigadmin/hcl

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun Studio compilers and
tools are installed in the /opt directory. If your software is not installed in the /opt
directory, ask your system administrator for the equivalent path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software or another release of Sun Studio
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

% echo $PATH
xxx C++ User’s Guide • January 2005

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

% man dbx
Before You Begin xxxi

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.

Accessing Compilers and Tools
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.
xxxii C++ User’s Guide • January 2005

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com
Before You Begin xxxiii

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com

Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Accessing Related Solaris Operating
System Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris OS.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris OS link-editor and
runtime linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
OS threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
xxxiv C++ User’s Guide • January 2005

http://docs.sun.com

Accessing C++ Related Man Pages
This manual provides lists of the man pages that are available for the C++ libraries.
The following table lists other man pages that are related to C++.

Commercially Available Books
The following is a partial list of available books on the C++ language.

The C++ Programming Language 3rd edition, Bjarne Stroustrup (Addison-Wesley,
1997).

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).

Generic Programming and the STL, Matthew Austern (Addison-Wesley, 1999).

Title Description

c++filt Copies each file name in sequence and writes it in the standard
output after decoding symbols that look like C++ demangled names

dem Demangles one or more C++ names that you specify

fbe Creates object files from assembly language source files

fpversion Prints information about the system CPU and FPU

gprof Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into
a previously built executable

inline Expands assembler inline procedure calls

lex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

sigfpe Allows signal handling for specific SIGFPE codes

stdarg Handles variable argument list

varargs Handles variable argument list

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple
automaton that executes an LALR(1) parsing algorithm
Before You Begin xxxv

Standard C++ IOStreams and Locales, Angelika Langer and Klaus Kreft (Addison-
Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup,
(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,
1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott
Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers
(Addison-Wesley, 1996).

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.
xxxvi C++ User’s Guide • January 2005

http://developers.sun.com
http://developers.sun.com/prodtech/cc

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL:

http://www.sun.com/hwdocs/feedback

Please include the part number (819-0496-10) of your document in the subject line of
your email.
Before You Begin xxxvii

http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting

xxxviii C++ User’s Guide • January 2005

PART I C++ Compiler

CHAPTER 1

The C++ Compiler

This chapter provides information about the following:

■ Section 1.1, “New Features and Functionality of the Sun Studio 10 C++ 5.7
Compiler” on page 1-1.

■ Section 1.2, “New Features and Functionality of the Sun Studio 9 C++ 5.6
Compiler” on page 1-3.

■ Section 1.4, “C++ Readme File” on page 1-11.

■ Section 1.5, “Man Pages” on page 1-12.

■ Section 1.6, “C++ Utilities” on page 1-12.

■ Section 1.7, “Native-Language Support” on page 1-13.

1.1 New Features and Functionality of the
Sun Studio 10 C++ 5.7 Compiler
This section provides a brief overview of the new C compiler features and
functionality introduced in the Sun Studio 10 C 5.7 Compiler release. For specific
explanations, follow the cross references provided for each item.

■ A new -xarch option, -xarch=amd64, specifies compilation for the 64-bit AMD
instruction set. For more information about -xarch=amd64, see Section A.2.105,
“–xarch=isa” on page A-77.

■ A new -xtarget option, -xtarget=opteron, specifies the -xarch, -xchip,
and -xcache settings for 32-bit AMD compilation. For more information about
-xtarget=opteron, see Section A.2.167, “–xtarget=t” on page A-153.
1-1

Note – You must specify -xarch=amd64 to the right of -fast and -xtarget on
the command line to generate 64-bit code. For example, specify CC -fast
-xarch=amd64 or CC -xtarget=opteron -xarch=amd64. The new
-xtarget=opteron option does not automatically generate 64-bit code. It expands
to -xarch=sse2, -xchip=opteron, and -xcache=64/64/2:1024/64/16 which
results in 32-bit code. The -fast option also results in 32-bit code because it is a
macro which also defines -xtarget=native.

■ The existing -xarch=generic64 option now supports the x86 platform in
addition to the traditional SPARC platform.

■ The C++ compiler now predefines __amd64 and __x86_64 when you specify
-xarch=amd64.

■ A new x86-only flag for the -xregs option, -xregs=[no%]frameptr, lets you
use the frame-pointer register as an unallocated callee-saves register to increase
the run-time performance of applications.

For more information about -xregs=[no%]frameptr, see Section A.2.160,
“–xregs=r[,r...]” on page A-148.

■ The C++ compiler now supports template-template parameters. This means that
you can specify a template definition with parameters that are themselves
templates, rather than types or values. Recall that a template instantiated on a
type is itself a type. Consider the following code example:

Since MyClass<int> is a type, the code example does not use template-template
parameters. However, in the following code example, the class template C has a
parameter that is a class template, and object x is an instance of C using class
template A as its argument. Member y of C has type A<int>.

template<typename T> class MyClass { ... };
std::list< MyClass<int> > x;

// ordinary class template
template<typename T> class A {
 T x;
};

// class template having a template parameter
template< template<typename U> class V > class C {
 V<int> y;
};
// instantiate C on template
C<A> x;
1-2 C++ User’s Guide • January 2005

■ The C++ compiler, in default standard mode, now allows nested classes to access
private members of the enclosing class.

The C++ standard says that nested classes have no special access to members of
the enclosing class. However, most people feel this restriction is not justified
because member functions have access to private members, so member classes
should too. In the following example, function foo tries to access a private
member of class outer. According to the C++ standard, the function has no
access unless it is declared a friend function:

The C++ Committee is in the process of adopting a change to the access rules
giving the same access to member classes that member functions have. Many
compilers have implemented this rule in anticipation of the changed language
rule.

To restore the old compiler behavior, disallowing the access, use the compiler
option -features=no%nestedaccess. The default is
-features=nestedaccess. For more information on -features, see
Section A.2.19, “–features=a[,a...]” on page A-19.

■ This release provides OpenMP API for shared-memory parallelism on both the
Solaris OS on x86 based systems as well as the Solaris OS on SPARC based
systems. The same functionality is now enabled on both platforms.

1.2 New Features and Functionality of the
Sun Studio 9 C++ 5.6 Compiler
Version 5.6 of the C++ compiler introduces the following improvements and new
features.

class outer {
 int i; // private in outer
 class inner {
 int foo(outer* p) {
 return p->i; // invalid
 }
 };
};
Chapter 1 The C++ Compiler 1-3

1.2.1 Changes to Defaults That Impact Common
SPARC Processors
This release of the compiler includes number of changes to the default values of
options that are related to SPARC code generation. The changes reflect the current
practice of targeting new applications to the UltraSPARC line of processors.

The changes to default values may affect existing makefiles. In particular, the
changes will affect applications targeted to pre-Ultra processors. The following
sections detail the new default value for the -xarch, -xcode, -xmemalign, and
-xprefetch options:

■ The New -xarch Default: v8plus

The default architecture for which the C++ compiler produces code is now
v8plus (UltraSPARC). Support for v7 will be dropped in a future release.

The new default yields higher run-time performance for nearly all machines in
current use. However, applications that are intended for deployment on
pre-UltraSPARC computers no longer execute by default on those computers.
Compile with -xarch=v8 to ensure that the applications execute on those
computers.

If you want to deploy on v8 systems, you must specify the option -xarch=v8
explicitly on every compiler command line as well as any link-time commands.
The provided system libraries run on v8 architectures.

If you want to deploy on v7 systems, you must specify the option -xarch=v7
explicitly on every compiler command line as well as any link-time commands.
The provided system libraries use the v8 instruction set. For this release, the only
supported operating system for v7 is the Solaris 8 software release. When a v8
instruction is encountered, the Solaris 8 operating system interprets the
instruction in software. The program runs, but performance is degraded.

For x86, -xarch defaults to generic. Note that -fast on x86 expands to
-xarch=native.

For more information on -xarch, see Section A.2.105, “–xarch=isa” on
page A-77.

■ The New -xcode Default

(SPARC) The default on v8 is -xcode=abs32. The default on v9 is
-xcode=abs44. For more information, see Section A.2.114, “–xcode=a” on
page A-91.

■ The New -xmemalign Default

(SPARC) The default for all v8 architectures is -xmemalign=8i. The default for
all v9 architectures is -xmemalign=8s. For more information, see
Section A.2.140, “-xmemalign=ab” on page A-118
1-4 C++ User’s Guide • January 2005

■ The New -xprefetch Default

(SPARC) The default is now -xprefetch=auto,explicit. This change
adversely affects applications that have essentially non-linear memory access
patterns. To disable the change, specify -xprefetch=no%auto,no%explicit.
For more information, see Section A.2.154, “-xprefetch[=a[,a...]]” on
page A-140.

1.2.2 Expanded Options For New SPARC Processors
This release provides expanded SPARC support with new -xchip and -xtarget
options. The -xchip and -xtarget options now support ultra3i and ultra4 as
values so you can build applications that are optimized for the UltraSPARC IIIi and
UltraSPARC IV processors. For more information, see Section A.2.113, “-xchip=c”
on page A-90, and Section A.2.167, “–xtarget=t” on page A-153.

1.2.3 Expanded Options for New Intel Processors
The C++ compiler supports new flags for -xarch, -xtarget, and -xchip, flags for
the x86 architecture. These new flags are designed to take advantage of Pentium 3
and Pentium 4 chips in combination with the Solaris software support for SSE and
SSE2 instructions on the Intel platform. Here are the new flags:

■ -xchip=pentium3 optimizes for Pentium 3 style processor

■ -xchip=pentium4 optimizes for Pentium 4 style processor

■ -xtarget=pentium3 sets -xarch=sse, -xchip=pentium3, and
-xcache=16/32/4:256/32/4

■ -xtarget=pentium4 sets -xarch=sse2, -xchip=pentium4, and
-xcache=8/64/4:256/128/8

■ -xarch=sse adds the SSE instruction set to the pentium_pro instruction set
architecture

■ -xarch=sse2 adds the SSE2 instruction set to those permitted by SSE

Caution – Programs that are compiled with -xarch={sse|sse2} to run on the
Solaris OS based on x86 SSE/SSE2 Pentium 4-compatible platforms must be run only
on platforms that are SSE/SSE2 enabled. Running such programs on platforms that
are not SSE/SSE2-enabled could result in segmentation faults or incorrect results
occurring without any explicit warning messages.

Patches to the Solaris OS and compilers to prevent execution of SSE/SSE2-compiled
binaries on platforms not SSE/SSE2-enabled might be made available at a later date.
Chapter 1 The C++ Compiler 1-5

Solaris OS releases starting with the Solaris 9 4/04 OS are SSE/SSE2-enabled on
Pentium 4-compatible platforms. Earlier versions of Solaris OS are not
SSE/SSE2-enabled. This warning extends also to programs that employ .il inline
assembly language functions or __asm() assembler code that utilize SSE/SSE2
instructions.

If you compile and link in separate steps, always link using the compiler and with
-xarch={sse|sse2} to ensure that the correct startup routine is linked.

You can determine which combination of the new -xchip, -xtarget, and -xarch
flags is appropriate for your needs by following these guidelines:

■ Are you building on a Pentium 3 or Pentium 4 machine that is running an earlier
version than the Solaris 9 4/04 OS and are you specifying -fast,
-xarch=native or -xtarget=native?

If so, the compiler makes the following expansions:

■ -xarch is set to pentium_pro (not pentium3 or pentium4 as you might
expect) because a version of the Solaris OS that is earlier than the Solaris 9 4/04
OS do not support sse and sse2 instructions.

Note – You can specify -xarch=sse or -xarch=sse2 despite using these versions
of Solaris software, but you must run the executable that results from your build on
a machine that is running Solaris 9 4/04 or newer because these versions of Solaris
software support SSE and SSE2 instructions.

■ -xchip is set to pentium3 or pentium4 as appropriate.

■ -xcache is set to 16/32/4:256/32/4 for a Pentium 3 processor or
8/64/4:256/128/8 for a Pentium 4 processor.

■ Are you building on a Pentium 3 or Pentium 4 machine running the Solaris 9
4/04 OS or later and are you specifying -fast, -xarch=native or
-xtarget=native?

If so, the compiler makes the following expansions:

■ -xarch is set to sse for Pentium 3 or sse2 for Pentium 4.

■ -xchip is set to pentium3 or pentium4 as appropriate.

■ -xcache is set to 16/32/4:256/32/4 for Pentium 3 or 8/64/4:256/128/8 for
Pentium 4.

For more information, see Section A.2.105, “–xarch=isa” on page A-77,
Section A.2.113, “-xchip=c” on page A-90, and Section A.2.167, “–xtarget=t” on
page A-153.
1-6 C++ User’s Guide • January 2005

1.2.4 New Default Optimization For SPARC and x86
Traditional optimizers have been somewhat conservative due to the legacy of
software written before clear language standards and new facilities, such as the
volatile keyword, became common. However, now that modern programs are
generally much better behaved, it is appropriate to employ more aggressive
optimization. Consequently, the -O macro now expands to -xO3 instead of -xO2 on
SPARC and x86 platforms.

The change in default yields higher run-time performance. However, -x03 may be
inappropriate for programs that rely on all variables being automatically considered
volatile. Typical programs that might have this assumption are device drivers and
older multi-threaded applications that implement their own synchronization
primitives. The work around is to compile with -xO2 instead of -O. For more
information, see Section A.2.18, “–fast” on page A-17.

1.2.5 New Options for Generating Faster Code
This release of the C++ compiler provides a number of enhancements for faster
run-time performance such as new options, improved loop optimization, recognition
of restricted pointers, and control over function-level optimizations. The following
sections detail these improvements.

■ The New -xprefetch_auto_type Option

The -xprefetch_auto_type option enables the compiler to generate indirect
prefetches for the loops indicated by the option -xprefetch_level=[1|2|3] in
the same fashion that the prefetches for direct memory accesses are generated.

Options such as -xdepend, -xrestrict, and -xalias_level can improve the
optimization benefits of -xprefetch_auto_type. They affect the aggressiveness
of computing the indirect prefetch candidates and therefore the aggressiveness of
the automatic indirect prefetch insertion because they help produce better
memory alias disambiguation information. For more information on the
-xprefetch_auto_type option, see Section A.2.155,
“-xprefetch_auto_type=a” on page A-142.

■ Optimization of Loops

The C++ compiler now supports the following options for optimization of loops.
These options require additional compilation time and must be used with an
optimization level of -xO3 or higher.

■ -xautopar automatically parallelizes loops and is appropriate for
multiprocessor machines.

■ -xdepend automatically restructures loops and is appropriate for all machines.

■ -xvector automatically transforms loops into calls to the vector math library
and is appropriate for all machines.
Chapter 1 The C++ Compiler 1-7

See Section A.2.106, “-xautopar” on page A-83, Section A.2.116,
“-xdepend=[yes|no]” on page A-95, and Section A.2.173,
“-xvector[={yes|no}]” on page A-165 for more information.

■ Recognition of Restricted Pointers

C++ supports support the C compiler option -xrestrict so pointers are
restricted as defined by the C99 standard.

When you specify this option, the compiler assumes that function parameters of
pointer type do not refer to the same or overlapping objects. This option is
somewhat more dangerous for C++ than for C, because the claim may not be true
for inline functions that are defined in header files.

For more information, see Section A.2.161, “-xrestrict[=f]” on page A-150.

■ Control of Optimization Levels Through #pragma opt and -xmaxopt

You can combine the #pragma opt directive with the command line option
-xmaxopt to specify the level of optimization the compiler applies to individual
functions.

The combination is useful when you need to reduce the optimization level for
specific functions, for example to avoid a code enhancement like elimination of
stack frames, or to increase optimization level for specific functions.

For more information, see Section A.2.139, “-xmaxopt[=v]” on page A-118 and
Section B.2.12, “#pragma opt” on page B-11 for more information.

1.2.6 New Options for Higher Library Performance
■ The New -sync_stdio Option

One of the causes of poor I/O performance could be the synchronization of C++
iostreams and C stdio. Such synchronization is required by the C++ standard and
the compiler enables such synchronization by default. However, you can disable
the synchronization by specifying -sync_stdio=no. For more information see
Section A.2.88, “-sync_stdio=[yes|no]” on page A-66.

1.2.7 Expanded Options For Faster Compilation
This release of the C compiler expands the precompiled header facility to include an
automatic capability on the part of the compiler to generate the precompiled header
file. You still have the option to manually generate the precompiled header file, but
if you are interested in the new capability of the compiler, see Section A.2.150,
“-xpch=v” on page A-131 for more information.
1-8 C++ User’s Guide • January 2005

1.2.8 Language Enhancements
The C++ compiler now provides expanded support for UTF-16 character literals and
numeric escapes. This compiler also supports extern inline functions.

■ Enhanced UTF-16 Support Through -xustr

Version 5.5 of the C++ compiler introduced support for UTF-16 string literals.
This release expands support for UTF-16 character literals that use the syntax
U’x’ which is analogous to the U"x" syntax for strings. The same -xustr option
is required to enable recognition of UTF-16 character literals. For example:

unsigned short ch=U’x’;

This release also supports numeric escapes in UTF-16 character and string literals,
which are analogous to numeric escapes in ordinary character literals and strings.
For example:

U"ab\123ef" // octal representation of character

U’\xE6’ // hexadecimal representation of character

For more information, see Section A.2.172,
“-xustr={ascii_utf16_ushort|no}” on page A-164.

■ Default Support for Extern inline Functions

The C++ standard says that inline functions have external linkage, like non-inline
functions, unless declared static. C++ 5.6, for the first time, gives inline functions
external linkage by default. If an inline function must be generated out of line (for
example, if its address is needed), only one copy is linked into the final program.
Previously, each object file that needed a copy had its own copy with local
linkage.

This implementation of extern inline functions is compatible with binary files
created by earlier compiler versions, in the sense that program behavior is no less
standard-conforming than before. The old binaries might have multiple local
copies of inline functions, but new code will have at most one copy of an extern
inline function.

This implementation of extern inline functions is compatible with the C99 version
of inline functions using the C 5.6 compiler that is included in this release. That is,
following the C and C++ rules for extern inline functions, the same inline function
can be defined in both C and C++ files, and only one copy of the external function
will appear in the final program.
Chapter 1 The C++ Compiler 1-9

There is one incompatibility between the compilers in that the C language permits
a non-inline function to support (provide the external definition for) an inline
function. The C++ language has no such concept. Mixing the two approaches to
inlining will result in a linker error. Consider this example:

In file c.c, the inline function f is supported by a function that has no indication
that it is supporting an inline function.

If you mix c.c with a C++ use of f as shown in d.cc, you will get a “multiple
definition” error from the linker.

The solution is to inform the C compiler that the function f supports an inline
function. Use the following implementation of c.c instead.

//File a.h
#ifdef __cplusplus
extern "C" {
#endif
inline int f() {return 1;}
#ifdef __cplusplus
}
#endif

//File b.c
#include "a.h"
int g() {return f();}

//File c.c
int f() {return 1;}

//File d.cc
#include "a.h"
int h() {return f();}

//File c.c
#include "a.h"
extern inline int f();
1-10 C++ User’s Guide • January 2005

Chapter 1 The C++ Compiler 1-11

1.3 Standards Conformance
The C++ compiler (CC) supports the ISO International Standard for C++, ISO IS
14882:1998, Programming Language—C++. The readme file that accompanies the
current release describes any departures from requirements in the standard.

On SPARC™ platforms, the compiler provides support for the
optimization-exploiting features of SPARC V8 and SPARC V9, including the
UltraSPARC™ implementation. These features are defined in the SPARC Architecture
Manuals, Version 8 (ISBN 0-13-825001-4), and Version 9 (ISBN 0-13-099227-5),
published by Prentice-Hall for SPARC International.

In this document, “Standard” means conforming to the versions of the standards
listed above. “Nonstandard” or “Extension” refers to features that go beyond these
versions of these standards.

The responsible standards bodies may revise these standards from time to time. The
versions of the applicable standards to which the C++ compiler conforms may be
revised or replaced, resulting in features in future releases of the Sun C++ compiler
that create incompatibilities with earlier releases.

1.4 C++ Readme File
The C++ compiler’s readme file highlights important information about the
compiler, including:

■ Information discovered after the manuals were printed
■ New and changed features
■ Software corrections
■ Problems and workarounds
■ Limitations and incompatibilities
■ Shippable libraries
■ Standards not implemented

To view the text version of the C++ readme file, type the following at a command
prompt:

To access the HTML version of the readme, in your Netscape Communicator 4.0 or
compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html

example% CC -xhelp=readme

(If your C++ compiler-software is not installed in the /opt directory, ask your
system administrator for the equivalent path on your system.) Your browser
displays an index of HTML documents. To open the readme, find its entry in the
index, then click the title.

1.5 Man Pages
Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things.

You can display a man page by running the command:

Throughout the C++ documentation, man page references appear with the topic
name and man section number: CC(1) is accessed with man CC. Other sections,
denoted by ieee_flags(3M) for example, are accessed using the -s option on the
man command:

1.6 C++ Utilities
The following C++ utilities are now incorporated into traditional UNIX® tools and
are bundled with the UNIX operating system:

■ lex—Generates programs used in simple lexical analysis of text
■ yacc—Generates a C function to parse the input stream according to syntax
■ prof—Produces an execution profile of modules in a program
■ gprof—Profiles program runtime performance by procedure
■ tcov—Profiles program runtime performance by statement

See Program Performance Analysis Tools and associated man pages for further
information on these UNIX tools.

example% man topic

example% man -s 3M ieee_flags
1-12 C++ User’s Guide • January 2005

1.7 Native-Language Support
This release of C++ supports the development of applications in languages other
than English, including most European languages and Japanese. As a result, you can
easily switch your application from one native language to another. This feature is
known as internationalization.

In general, the C++ compiler implements internationalization as follows:

■ C++ recognizes ASCII characters from international keyboards (in other words, it
has keyboard independence and is 8-bit clean).

■ C++ allows the printing of some messages in the native language.

■ C++ allows native-language characters in comments, strings, and data.

■ C++ supports only Extended UNIX Character (EUC) compliant character sets - a
character set in which every null byte in a string is the null character and every
byte in the string with the ascii value of ’/’ is the ’/’ character.

Variable names cannot be internationalized and must be in the English character set.

You can change your application from one native language to another by setting the
locale. For information on this and other native-language support features, see the
operating system documentation.
Chapter 1 The C++ Compiler 1-13

1-14 C++ User’s Guide • January 2005

CHAPTER 2

Using the C++ Compiler

This chapter describes how to use the C++ compiler.

The principal use of any compiler is to transform a program written in a high-level
language like C++ into a data file that is executable by the target computer
hardware. You can use the C++ compiler to:

■ Transform source files into relocatable binary (.o) files, to be linked later into an
executable file, a static (archive) library (.a) file (using –xar), or a dynamic
(shared) library (.so) file

■ Link or relink object files or library files (or both) into an executable file

■ Compile an executable file with runtime debugging enabled (-g)

■ Compile an executable file with runtime statement or procedure-level profiling
(-pg)

2.1 Getting Started
This section gives you a brief overview of how to use the C++ compiler to compile
and run C++ programs. See Appendix A for a full reference to the command-line
options.

Note – The command-line examples in this chapter show CC usages. Printed output
might be slightly different.

The basic steps for building and running a C++ program involve:

1. Using an editor to create a C++ source file with one of the valid suffixes listed in
TABLE 2-1

2. Invoking the compiler to produce an executable file
2-1

3. Launching the program into execution by typing the name of the executable file

The following program displays a message on the screen:

In this example, CC compiles the source file greetings.cc and, by default,
compiles the executable program onto the file, a.out. To launch the program, type
the name of the executable file, a.out, at the command prompt.

Traditionally, UNIX compilers name the executable file a.out. It can be awkward to
have each compilation write to the same file. Moreover, if such a file already exists,
it will be overwritten the next time you run the compiler. Instead, use the -o
compiler option to specify the name of the executable output file, as in the following
example:

In this example, the -o option tells the compiler to write the executable code to the
file greetings. (It is common to give a program consisting of a single source file
the name of the source file without the suffix.)

Alternatively, you could rename the default a.out file using the mv command after
each compilation. Either way, run the program by typing the name of the
executable file:

example% cat greetings.cc
#include <iostream>

 int main() {
 std::cout << “Real programmers write C++!” << std::endl;
 return 0;
 }
example% CC greetings.cc
example% a.out
 Real programmers write C++!
example%

example% CC –o greetings greetings.cc

example% greetings
Real programmers write C++!
example%
2-2 C++ User’s Guide • January 2005

2.2 Invoking the Compiler
The remainder of this chapter discuss the conventions used by the CC command,
compiler source line directives, and other issues concerning the use of the compiler.

2.2.1 Command Syntax
The general syntax of a compiler command line is as follows:

An option is an option keyword prefixed by either a dash (–) or a plus sign (+). Some
options take arguments.

In general, the processing of the compiler options is from left to right, allowing
selective overriding of macro options (options that include other options). In most
cases, if you specify the same option more than once, the rightmost assignment
overrides and there is no accumulation. Note the following exceptions:

■ All linker options and the -features, –I -l, –L, -library, –pti, –R,
-staticlib, -U, -verbose, -xdumpmacros, and -xprefetch options
accumulate, they do not override.

■ All –U options are processed after all –D options.

Source files, object files, and libraries are compiled and linked in the order in which
they appear on the command line.

In the following example, CC is used to compile two source files (growth.C and
fft.C) to produce an executable file named growth with runtime debugging
enabled:

CC [options] [source-files] [object-files] [libraries]

example% CC -g -o growth growth.C fft.C
Chapter 2 Using the C++ Compiler 2-3

2.2.2 File Name Conventions
The suffix attached to a file name appearing on the command line determines how
the compiler processes the file. A file name with a suffix other than those listed in
the following table, or without a suffix, is passed to the linker.

2.2.3 Using Multiple Source Files
The C++ compiler accepts multiple source files on the command line. A single
source file compiled by the compiler, together with any files that it directly or
indirectly supports, is referred to as a compilation unit. C++ treats each source as a
separate compilation unit.

TABLE 2-1 File Name Suffixes Recognized by the C++ Compiler

 Suffix Language Action

.c C++ Compile as C++ source files, put object files in current
directory; default name of object file is that of the source but
with an .o suffix.

.C C++ Same action as .c suffix.

.cc C++ Same action as .c suffix.

.cpp C++ Same action as .c suffix.

.cxx C++ Same action as .c suffix.

.c++ C++ Same action as .c suffix.

.i C++ Preprocessor output file treated as C++ source file. Same
action as .c suffix.

.s Assembler Assemble source files using the assembler.

.S Assembler Assemble source files using both the C language
preprocessor and the assembler.

.il Inline
expansion

Process assembly inline-template files for inline expansion.
The compiler will use templates to expand inline calls to
selected routines. (Inline-template files are special assembler
files. See the inline(1) man page.)

.o Object files Pass object files through to the linker.

.a Static
(archive)
library

Pass object library names to the linker.

.so

.so.n
Dynamic
(shared)
library

Pass names of shared objects to the linker.
2-4 C++ User’s Guide • January 2005

2.3 Compiling With Different Compiler
Versions
Beginning with the C++ 5.1 compiler, the compiler marks a template cache directory
with a string that identifies the template cache’s version.

This compiler does not use the cache by default. It only uses the cache if you specify
-instances=extern. If the compiler makes use of the cache, it checks the cache
directory’s version and issues error messages whenever it encounters cache version
problems. Future C++ compilers will also check cache versions. For example, a
future compiler that has a different template cache version identification and that
processes a cache directory produced by this release of the compiler might issue an
error that is similar to the following message:

Similarly, the compiler issues an error if it encounters a cache directory that was
produced by a later version of the compiler.

Although the template cache directories produced by the C++ 5.0 compiler are not
marked with version identifiers, the current compiler processes the 5.0 cache
directories without an error or a warning. The compiler converts the 5.0 cache
directories to the directory format that it uses.

The C++ 5.0 compiler cannot use a cache directory that is produced by a later release
of the compiler. The C++ 5.0 compiler is not capable of recognizing format
differences and it will issue an assertion when it encounters a cache directory that is
produced by the C++ 5.1 compiler or by a later release.

When you upgrade your compiler, it is always good practice to clean the cache. Run
CCadmin -clean on every directory that contains a template cache directory (in
most cases, a template cache directory is named SunWS_cache). Alternatively, you
can use rm -rf SunWS_cache. For up-to-date instructions on how to clear the
template, see the article ‘Upgrading Your C++ Compiler’ at
http://forte.sun.com/s1scc/articles/index.html.

Template Database at ./SunWS_cache is incompatible with
this compiler
Chapter 2 Using the C++ Compiler 2-5

http://forte.sun.com/s1scc/articles/index.html

2.4 Compiling and Linking
This section describes some aspects of compiling and linking programs. In the
following example, CC is used to compile three source files and to link the object files
to produce an executable file named prgrm.

2.4.1 Compile-Link Sequence
In the previous example, the compiler automatically generates the loader object files
(file1.o, file2.o and file3.o) and then invokes the system linker to create the
executable program for the file prgrm.

After compilation, the object files (file1.o, file2.o,and file3.o) remain. This
convention permits you to easily relink and recompile your files.

Note – If only one source file is compiled and a program is linked in the same
operation, the corresponding .o file is deleted automatically. To preserve all .o files,
do not compile and link in the same operation unless more than one source file gets
compiled.

If the compilation fails, you will receive a message for each error. No .o files are
generated for those source files with errors, and no executable program is written.

2.4.2 Separate Compiling and Linking
You can compile and link in separate steps. The -c option compiles source files and
generates .o object files, but does not create an executable. Without the -c option,
the compiler invokes the linker. By splitting the compile and link steps, a complete
recompilation is not needed just to fix one file. The following example shows how to
compile one file and link with others in separate steps:

example% CC file1.cc file2.cc file3.cc -o prgrm

example% CC -c file1.cc Make new object file
example% CC -o prgrm file1.o file2.o file3.o Make executable file
2-6 C++ User’s Guide • January 2005

Be sure that the link step lists all the object files needed to make the complete
program. If any object files are missing from this step, the link will fail with
“undefined external reference” errors (missing routines).

2.4.3 Consistent Compiling and Linking
If you do compile and link in separate steps, consistent compiling and linking is
critical when using the following compiler options:

■ -B
■ -compat
■ –fast
■ -g
■ -g0
■ -library
■ -misalign
■ -mt
■ -p
■ -xa
■ -xarch
■ –xcg92 and -xcg89
■ -xipo
■ -xpagesize
■ -xpg
■ -xprofile
■ -xtarget

If you compile any subprogram using any of these options, be sure to link using the
same option as well:

■ In the case of the -library, -fast, -xtarget, and -xarch options, you must
be sure to include the linker options that would have been passed if you had
compiled and linked together.

■ With -p, -xpg, and -xprofile, including the option in one phase and excluding
it from the other phase will not affect the correctness of the program, but you will
not be able to do profiling.

■ With -g and -g0, including the option in one phase and excluding it from the
other phase will not affect the correctness of the program, but it will affect the
ability to debug the program. Any module that is not compiled with either of
these options, but is linked with -g or -g0 will not be prepared properly for
debugging. Note that compiling the module that contains the function main with
the -g option or the -g0 option is usually necessary for debugging.
Chapter 2 Using the C++ Compiler 2-7

In the following example, the programs are compiled using the -xcg92 compiler
option. This option is a macro for -xtarget=ss1000 and expands to: -xarch=
v8 -xchip=super -xcache=16/64/4:1024/64/1.

If the program uses templates, it is possible that some templates will get instantiated
at link time. In that case the command line options from the last line (the link line)
will be used to compile the instantiated templates.

2.4.4 Compiling for SPARC V9
The compilation, linking, and execution of 64-bit objects is supported only in a V9
SPARC, Solaris 8 operating system with a 64-bit kernel running. Compilation for 64-
bits is indicated by the –xarch=v9, –xarch=v9a, and -xarch=v9b options.

2.4.5 Diagnosing the Compiler
You can use the –verbose option to display helpful information while compiling a
program, such as the names and version numbers of the programs that it invokes
and the command line for each compilation phase.

Any arguments on the command line that the compiler does not recognize are
interpreted as linker options, object program file names, or library names.

The basic distinctions are:

■ Unrecognized options, which are preceded by a dash (–) or a plus sign (+),
generate warnings.

■ Unrecognized nonoptions, which are not preceded by a dash or a plus sign,
generate no warnings. (However, they are passed to the linker. If the linker does
not recognize them, they generate linker error messages.)

 example% CC -c -xcg92 sbr.cc
 example% CC -c -xcg92 smain.cc
 example% CC -xcg92 sbr.o smain.o
2-8 C++ User’s Guide • January 2005

In the following example, note that -bit is not recognized by CC and the option is
passed on to the linker (ld), which tries to interpret it. Because single letter ld
options can be strung together, the linker sees -bit as -b -i -t, all of which are
legitimate ld options. This might not be what you intend or expect:

In the next example, the user intended to type the CC option -fast but omitted the
leading dash. The compiler again passes the argument to the linker, which in turn
interprets it as a file name:

2.4.6 Understanding the Compiler Organization
The C++ compiler package consists of a front end, optimizer, code generator,
assembler, template pre-linker, and link editor. The CC command invokes each of
these components automatically unless you use command-line options to specify
otherwise.

Because any of these components may generate an error, and the components
perform different tasks, it may be helpful to identify the component that generates
an error. Use the -v and -dryrun options to help with this.

As shown in the following table, input files to the various compiler components
have different file name suffixes. The suffix establishes the kind of compilation that
is done. Refer to TABLE 2-1 for the meanings of the file suffixes.

example% CC -bit move.cc <- -bit is not a recognized CC option

CC: Warning: Option -bit passed to ld, if ld is invoked, ignored
otherwise

example% CC fast move.cc <- The user meant to type -fast
move.CC:
ld: fatal: file fast: cannot open file; errno=2
ld: fatal: File processing errors. No output written to a.out

TABLE 2-2 Components of the C++ Compilation System

Component Description Notes on Use

ccfe Front end (compiler preprocessor and compiler)

iropt SPARC: Code optimizer -xO[2-5], -fast

ir2hf x86: Intermediate language translator -xO[2-5], -fast

inline SPARC: Inline expansion of assembly language
templates

.il file specified
Chapter 2 Using the C++ Compiler 2-9

2.5 Preprocessing Directives and Names
This section discusses information about preprocessing directives that is specific to
the C++ compiler.

2.5.1 Pragmas
The preprocessor keyword pragma is part of the C++ standard, but the form,
content, and meaning of pragmas is different for every compiler. See Appendix B for
a list of the pragmas that the C++ compiler recognizes.

2.5.2 Macros With a Variable Number of Arguments
The C++ compiler accepts #define preprocessor directives of the following form.

ube_ipa x86: Interprocedural analyzer -xcrossfile=1 with
-xO4, -xO5, or -fast

fbe Assembler

cg SPARC: Code generator, inliner, assembler

ube x86: Code generator -xO[2-5], -fast

CClink Template pre-linker

ld Nonincremental link editor

ild Incremental link editor -g, -xildon

#define identifier (...) replacement_list
#define identifier (identifier_list, ...) replacement_list

TABLE 2-2 Components of the C++ Compilation System (Continued)

Component Description Notes on Use
2-10 C++ User’s Guide • January 2005

If the macro parameter list ends with an ellipsis, an invocation of the macro is
allowed to have more arguments than there are macro parameters. The additional
arguments are collected into a single string, including commas, that can be
referenced by the name __VA_ARGS__ in the macro replacement list. The following
example demonstrates how to use a variable-argument-list macro.

which results in the following:

2.5.3 Predefined Names
TABLE A-3 in the appendix shows the predefined macros. You can use these values in
such preprocessor conditionals as #ifdef.The +p option prevents the automatic
definition of the sun, unix, sparc, and i386 predefined macros.

2.5.4 #error
The #error directive no longer continues compilation after issuing a warning. The
previous behavior of the directive was to issue a warning and continue compilation.
The new behavior, consistent with other compilers, is to issue an error message and
immediately halt compilation. The compiler quits and reports the failure.

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug(“Flag”);
debug(“X = %d\n”,x);
showlist(The first, second, and third items.);
report(x>y, “x is %d but y is %d”, x, y);

fprintf(stderr, “Flag”);
fprintf(stderr, “X = %d\n”, x);
puts(“The first, second, and third items.”);
((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y));
Chapter 2 Using the C++ Compiler 2-11

2.6 Memory Requirements
The amount of memory a compilation requires depends on several parameters,
including:

■ Size of each procedure
■ Level of optimization
■ Limits set for virtual memory
■ Size of the disk swap file

On the SPARC platform, if the optimizer runs out of memory, it tries to recover by
retrying the current procedure at a lower level of optimization. The optimizer then
resumes subsequent routines at the original level specified in the -xOlevel option on
the command line.

If you compile a single source file that contains many routines, the compiler might
run out of memory or swap space. If the compiler runs out of memory, try reducing
the level of optimization. Alternately, split multiple-routine source files into files
with one routine per file.

2.6.1 Swap Space Size
The swap -s command displays available swap space. See the swap(1M) man page
for more information.

The following example demonstrates the use of the swap command:

2.6.2 Increasing Swap Space
Use mkfile(1M) and swap (1M) to increase the size of the swap space on a
workstation. (You must become superuser to do this.) The mkfile command creates
a file of a specific size, and swap -a adds the file to the system swap space:

example% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k available

 example# mkfile -v 90m /home/swapfile
 /home/swapfile 94317840 bytes
 example# /usr/sbin/swap -a /home/swapfile
2-12 C++ User’s Guide • January 2005

2.6.3 Control of Virtual Memory
Compiling very large routines (thousands of lines of code in a single procedure) at
-xO3 or higher can require a large amount of memory. In such cases, performance of
the system might degrade. You can control this by limiting the amount of virtual
memory available to a single process.

To limit virtual memory in an sh shell, use the ulimit command. See the sh(1)
man page for more information.

The following example shows how to limit virtual memory to 16 Mbytes:

In a csh shell, use the limit command to limit virtual memory. See the csh(1) man
page for more information.

The next example also shows how to limit virtual memory to 16 Mbytes:

Each of these examples causes the optimizer to try to recover at 16 Mbytes of data
space.

The limit on virtual memory cannot be greater than the system’s total available swap
space and, in practice, must be small enough to permit normal use of the system
while a large compilation is in progress.

Be sure that no compilation consumes more than half the swap space.

With 32 Mbytes of swap space, use the following commands:

In an sh shell:

In a csh shell:

The best setting depends on the degree of optimization requested and the amount of
real memory and virtual memory available.

 example$ ulimit -d 16000

 example% limit datasize 16M

example$ ulimit -d 16000

example% limit datasize 16M
Chapter 2 Using the C++ Compiler 2-13

2.6.4 Memory Requirements
A workstation should have at least 64 megabytes of memory; 128 Mbytes are
recommended.

To determine the actual real memory, use the following command:

2.7 Simplifying Commands
You can simplify complicated compiler commands by defining special shell aliases,
using the CCFLAGS environment variable, or by using make.

2.7.1 Using Aliases Within the C Shell
The following example defines an alias for a command with frequently used options.

The next example uses the alias CCfx.

The command CCfx is now the same as:

2.7.2 Using CCFLAGS to Specify Compile Options
You can specify options by setting the CCFLAGS variable.

example% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)
avail mem = 602476544

example% alias CCfx "CC -fast -xnolibmil"

example% CCfx any.C

example% CC -fast -xnolibmil any.C
2-14 C++ User’s Guide • January 2005

The CCFLAGS variable can be used explicitly in the command line. The following
example shows how to set CCFLAGS (C Shell):

The next example uses CCFLAGS explicitly.

When you use make, if the CCFLAGS variable is set as in the preceding example and
the makefile’s compilation rules are implicit, then invoking make will result in a
compilation equivalent to:

CC -xO2 -xsb files...

2.7.3 Using make
The make utility is a very powerful program development tool that you can easily
use with all Sun compilers. See the make(1S) man page for additional information.

2.7.3.1 Using CCFLAGS Within make

When you are using the implicit compilation rules of the makefile (that is, there is no
C++ compile line), the make program uses CCFLAGS automatically.

2.7.3.2 Adding a Suffix to Your Makefile

You can incorporate different file suffixes into C++ by adding them to your makefile.
The following example adds .cpp as a valid suffix for C++ files. Add the SUFFIXES
macro to your makefile:

SUFFIXES: .cpp .cpp~

(This line can be located anywhere in the makefile.)

 example% setenv CCFLAGS '-xO2 -xsb'

 example% CC $CCFLAGS any.cc
Chapter 2 Using the C++ Compiler 2-15

Add the following lines to your makefile. Indented lines must start with a tab.

2.7.3.3 Using make With Standard Library Header Files

The standard library file names do not have .h suffixes. Instead, they are named
istream, fstream, and so forth. In addition, the template source files are named
istream.cc, fstream.cc, and so forth.

.cpp:
 $(LINK.cc) -o $@ $< $(LDLIBS)
.cpp~:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(LINK.cc) -o $@ $*.cpp $(LDLIBS)
.cpp.o:
 $(COMPILE.cc) $(OUTPUT_OPTION) $<
.cpp~.o:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(COMPILE.cc) $(OUTPUT_OPTION) $<
.cpp.a:
 $(COMPILE.cc) -o $% $<
 $(COMPILE.cc) -xar $@ $%
 $(RM) $%
.cpp~.a:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(COMPILE.cc) -o $% $<
 $(COMPILE.cc) -xar $@ $%
 $(RM) $%
2-16 C++ User’s Guide • January 2005

CHAPTER 3

Using the C++ Compiler Options

This chapter explains how to use the command-line C++ compiler options and then
summarizes their use by function. Detailed explanations of the options are provided
in Appendix A.

3.1 Syntax
The following table shows examples of typical option syntax formats that are used in
this book.

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in
the descriptions of the options and are not part of the options themselves. See the
typographical conventions in “Before You Begin” at the front of this manual for a
detailed explanation of the usage syntax.

TABLE 3-1 Option Syntax Format Examples

Syntax Format Example

-option –E

–optionvalue –Ipathname

–option=value –xunroll=4

–option value –o filename
3-1

3.2 General Guidelines
Some general guidelines for the C++ compiler options are:

■ The –llib option links with library liblib.a (or liblib.so). It is always safer to
put –llib after the source and object files to ensure the order in which libraries are
searched.

■ In general, processing of the compiler options is from left to right (with the
exception that –U options are processed after all –D options), allowing selective
overriding of macro options (options that include other options). This rule does
not apply to linker options.

■ The -features, –I -l, –L, -library, –pti, –R, -staticlib, -U, -verbose,
and -xprefetch options accumulate, they do not override.

■ The -D option accumulates, However, multiple -D options for the same name
override each other.

Source files, object files, and libraries are compiled and linked in the order in which
they appear on the command line.

3.3 Options Summarized by Function
In this section, the compiler options are grouped by function to provide a quick
reference. For a detailed description of each option, refer to Appendix A.

The options apply to all platforms except as noted; features that are unique to the
Solaris OS on SPARC-based systems are identified as SPARC, and the features that
are unique to the Solaris OS on x86-based systems are identified as x86.
3-2 C++ User’s Guide • January 2005

3.3.1 Code Generation Options
The following code generation options are listed in alphabetical order.

3.3.2 Compile-Time Performance Options
The following compile-time performance options are listed in alphabetical order

TABLE 3-2 Code Generation Options

Option Action

–compat Sets the major release compatibility mode of the compiler.

+e{0|1} Controls virtual table generation.

–g Compiles for use with the debugger.

–KPIC Produces position-independent code.

–Kpic Produces position-independent code.

–mt Compiles and links for multithreaded code.

–xcode=a (SPARC) Specifies the code address space.

–xMerge (SPARC) Merges the data segment with the text segment.

+w Identifies code that might have unintended consequences.

+w2 Emits all the warnings emitted by +w plus warnings about
technical violations that are probably harmless, but that might
reduce the maximum portability of your program.

-xregs The compiler can generate faster code if it has more registers
available for temporary storage (scratch registers). This option
makes available additional scratch registers that might not
always be appropriate.

-z arg Linker option.

TABLE 3-3 Compile-Time Performance Options

Option Action

–instlib Inhibits the generation of template instances that are already
present in the designated library.

–xjobs Sets the number of processes the compiler can create to complete
its work.

–xpch May reduce compile time for applications whose source files
share a common set of include files.
Chapter 3 Using the C++ Compiler Options 3-3

3.3.3 Debugging Options
The following debugging options are listed in alphabetical order.

–xpchstop Specifies the last include file to be considered in creating a pre-
compiled header file with -xpch.

–xprofile_ircache (SPARC) Reuses compilation data saved during -xprofile=
collect.

–xprofile_pathmap (SPARC) Support for multiple programs or shared libraries in a
single profile directory.

TABLE 3-4 Debugging Options

Option Action

+d Does not expand C++ inline functions.

–dryrun Shows options passed by the driver to the compiler, but does not
compile.

–E Runs only the preprocessor on the C++ source files and sends result
to stdout. Does not compile.

–g Compiles for use with the debugger.

–g0 Compiles for debugging, but doesn’t disable inlining.

–H Prints path names of included files.

–keeptmp Retains temporary files created during compilation.

–migration Explains where to get information about migrating from earlier
compilers.

–P Only preprocesses source; outputs to .i file.

–Qoption Passes an option directly to a compilation phase.

–readme Displays the content of the online README file.

–s Strips the symbol table out of the executable file, thus preventing the
ability to debug code.

–temp=dir Defines directory for temporary files.

–verbose=vlst Controls compiler verbosity.

-xcheck Adds a runtime check for stack overflow.

TABLE 3-3 Compile-Time Performance Options (Continued)

Option Action
3-4 C++ User’s Guide • January 2005

3.3.4 Floating-Point Options
The following floating-point options are listed in alphabetical order.

-xdumpmacros Prints information about macros such as definition, location defined
and undefined, and locations used.

–xe Only checks for syntax and semantic errors.

–xhelp=flags Displays a summary list of compiler options.

–xildoff Turns off the Incremental Linker.

–xildon Turns on the Incremental Linker.

–xport64 Warns against common problems during a port from a 32-bit
architecture to a 64-bit architecture.

–xs Allows debugging with dbx without object (.o) files.

–xsb Produces table information for the source browser.

–xsbfast Produces only source browser information, no compilation.

TABLE 3-5 Floating-Point Options

Option Action

–fns[={no|yes}] (SPARC) Disables or enables the SPARC nonstandard floating-
point mode.

–fprecision=p x86: Sets floating-point precision mode.

–fround=r Sets IEEE rounding mode in effect at startup.

–fsimple=n Sets floating-point optimization preferences.

–fstore x86: Forces precision of floating-point expressions.

–ftrap=tlst Sets IEEE trapping mode in effect at startup.

–nofstore x86: Disables forced precision of expression.

–xlibmieee Causes libm to return IEEE 754 values for math routines in
exceptional cases.

TABLE 3-4 Debugging Options (Continued)

Option Action
Chapter 3 Using the C++ Compiler Options 3-5

3.3.5 Language Options
The following language options are listed in alphabetical order.

3.3.6 Library Options
The following library linking options are listed in alphabetical order.

TABLE 3-6 Language Options

Option Action

–compat Sets the major release compatibility mode of the compiler.

–features=alst Enables or disables various C++ language features.

-xchar Eases the migration of code from systems where the char type is
defined as unsigned.

–xldscope Controls the default linker scope of variable and function
definitions to create faster and safer shared libraries.

–xthreadvar (SPARC) Changes the default thread-local storage access mode.

-xtrigraphs Enables recognition of trigraph sequences.

–xustr Enables recognition of string literals composed of sixteen-bit
characters.

TABLE 3-7 Library Options

Option Action

–Bbinding Requests symbolic, dynamic, or static library linking.

–d{y|n} Allows or disallows dynamic libraries for the entire
executable.

–G Builds a dynamic shared library instead of an executable file.

–hname Assigns a name to the generated dynamic shared library.

–i Tells ld(1) to ignore any LD_LIBRARY_PATH setting.

–Ldir Adds dir to the list of directories to be searched for libraries.

–llib Adds liblib.a or liblib.so to the linker’s library search list.

–library=llst Forces inclusion of specific libraries and associated files into
compilation and linking.

–mt Compiles and links for multithreaded code.

–norunpath Does not build path for libraries into executable.
3-6 C++ User’s Guide • January 2005

3.3.7 Licensing Options
The following licensing options are listed in alphabetical order.

–Rplst Builds dynamic library search paths into the executable file.

–staticlib=llst Indicates which C++ libraries are to be linked statically.

–xar Creates archive libraries.

-xbuiltin[=opt] Enables or disables better optimization of standard library
calls

-xia (SPARC) Links the appropriate interval arithmetic libraries
and sets a suitable floating-point environment.

-xlang=l[,l] Includes the appropriate runtime libraries and ensures the
proper runtime environment for the specified language.

–xlibmieee Causes libm to return IEEE 754 values for math routines in
exceptional cases.

–xlibmil Inlines selected libm library routines for optimization.

–xlibmopt Uses library of optimized math routines.

-xlic_lib=sunperf (SPARC) Links in the Sun Performance Library™. Note that
for C++, -library=sunperf is the preferable method for
linking in this library.

-xnativeconnect Includes interface information inside object files and
subsequent shared libraries so that the shared library can
interface with code written in the Java™ programming
language.

–xnolib Disables linking with default system libraries.

–xnolibmil Cancels –xlibmil on the command line.

–xnolibmopt Does not use the math routine library.

TABLE 3-8 Licensing Options

Option Action

–xlic_lib=sunperf (SPARC) Links in the Sun Performance Library™. Note that for
C++, -library=sunperf is the preferable method for linking in
this library.

–xlicinfo Shows license server information.

TABLE 3-7 Library Options (Continued)

Option Action
Chapter 3 Using the C++ Compiler Options 3-7

3.3.8 Obsolete Options
The following options are obsolete or will become obsolete.

3.3.9 Output Options
The following output options are listed in alphabetical order.

TABLE 3-9 Obsolete Options

Option Action

-library=%all Obsolete option that will be removed in a future release.

–noqueue Disables license queueing.

-ptr Ignored by the compiler. A future release of the compiler may reuse
this option using a different behavior.

–vdelx Obsolete option that will be removed in a future release.

-xprefetch=yes Use -xprefetch=auto,explicit instead.

-xprefetch=no Use -xprefetch=no%auto,no%explicit instead.

TABLE 3-10 Output Options

Option Action

–c Compiles only; produces object (.o) files, but suppresses linking.

–dryrun Shows options passed by the driver to the compiler, but does not
compile.

–E Runs only the preprocessor on the C++ source files and sends
result to stdout. Does not compile.

-erroff Suppresses compiler warning messages.

-errtags Displays the message tag for each warning message.

-errwarn If the indicated warning message is issued, cc exits with a failure
status.

-filt Suppresses the filtering that the compiler applies to linker error
messages.

–G Builds a dynamic shared library instead of an executable file.

–H Prints path names of included files.

–migration Explains where to get information about migrating from earlier
compilers.
3-8 C++ User’s Guide • January 2005

–o filename Sets name of the output or executable file to filename.

–P Only preprocesses source; outputs to .i file.

–Qproduce sourcetype Causes the CC driver to produce output of the type sourcetype.

–s Strips the symbol table out of the executable file.

–verbose=vlst Controls compiler verbosity.

+w Prints extra warnings where necessary.

–w Suppresses warning messages.

-xdumpmacros Prints information about macros such as definition, location
defined and undefined, and locations used.

-xe Performs only syntax and semantic checking on the source file,
but does not produce any object or executable code.

–xhelp=flags Displays a summary list of compiler options

–xhelp=readme Displays the contents of the online README file.

–xM Outputs makefile dependency information.

–xM1 Generates dependency information, but excludes
/usr/include.

–xsb Produces table information for the source browser.

–xsbfast Produces only source browser information, no compilation.

–xtime Reports execution time for each compilation phase.

–xwe Converts all warnings to errors by returning non-zero exit status.

-z arg Linker option.

TABLE 3-10 Output Options (Continued)

Option Action
Chapter 3 Using the C++ Compiler Options 3-9

3.3.10 Run-Time Performance Options
The following run-time performance options are listed in alphabetical order.

TABLE 3-11 Run-Time Performance Options

Option Action

–fast Selects a combination of compilation options for optimum
execution speed for some programs.

-g Instructs both the compiler and the linker to prepare the program
for performance analysis (and for debugging).

–s Strips the symbol table out of the executable.

-xalias_level Enables the compiler to perform type-based alias analysis and
optimizations.

–xarch=isa Specifies target architecture instruction set.

-xbuiltin[=opt] Enables or disables better optimization of standard library calls

–xcache=c (SPARC) Defines target cache properties for the optimizer.

–xcg89 Compiles for generic SPARC architecture.

–xcg92 Compiles for SPARC V8 architecture.

–xchip=c Specifies target processor chip.

–xF Enables linker reordering of functions and variables.

-xinline=flst Specifies which user-written routines can be inlined by the
optimizer

-xipo Performs interprocedural optimizations.

–xlibmil Inlines selected libm library routines for optimization.

–xlibmopt Uses a library of optimized math routines.

–xlinkopt (SPARC) Performs link-time optimization on the resulting
executable or dynamic library over and above any optimizations in
the object files.

–xmemalign=ab (SPARC) Specify maximum assumed memory alignment and
behavior of misaligned data accesses.

–xnolibmil Cancels –xlibmil on the command line.

–xnolibmopt Does not use the math routine library.

–xOlevel Specifies optimization level to level.

–xpagesize (SPARC) Sets the preferred page size for the stack and the heap.

-xpagesize_heap (SPARC) Sets the preferred page size for the heap.

-xpagesize_stack (SPARC) Sets the preferred page size for the stack.
3-10 C++ User’s Guide • January 2005

3.3.11 Preprocessor Options
The following preprocessor options are listed in alphabetical order.

-xprefetch[=lst] (SPARC) Enables prefetch instructions on architectures that
support prefetch.

-xprefetch_level Control the aggressiveness of automatic insertion of prefetch
instructions as set by -xprefetch=auto

–xprofile (SPARC) Collects or optimizes using runtime profiling data.

–xregs=rlst (SPARC) Controls scratch register use.

–xsafe=mem (SPARC) Allows no memory-based traps.

–xspace (SPARC) Does not allow optimizations that increase code size.

–xtarget=t Specifies a target instruction set and optimization system.

–xthreadvar (SPARC) Changes the default thread-local storage access mode.

–xunroll=n Enables unrolling of loops where possible.

–xvis (SPARC) Enables compiler recognition of the assembly-language
templates defined in the VIS™ instruction set

TABLE 3-12 Preprocessor Options

Option Action

–Dname[=def] Defines symbol name to the preprocessor.

–E Runs only the preprocessor on the C++ source files and sends result
to stdout. Does not compile.

-H Prints path names of included files.

–P Only preprocesses source; outputs to .i file.

–Uname Deletes initial definition of preprocessor symbol name.

–xM Outputs makefile dependency information.

–xM1 Generates dependency information, but excludes /usr/include.

TABLE 3-11 Run-Time Performance Options (Continued)

Option Action
Chapter 3 Using the C++ Compiler Options 3-11

3.3.12 Profiling Options
The following profiling options are listed in alphabetical order.

3.3.13 Reference Options
The following options provide a quick reference to compiler information.

3.3.14 Source Options
The following source options are listed in alphabetical order.

TABLE 3-13 Profiling Options

Option Action

–p Prepares the object code to collect data for profiling using prof.

–xa Generates code for profiling.

–xpg Compiles for profiling with the gprof profiler.

–xprofile (SPARC) Collects or optimizes using runtime profiling data.

TABLE 3-14 Reference Options

Option Action

–migration Explains where to get information about migrating from earlier
compilers.

–xhelp=flags Displays a summary list of compiler options.

–xhelp=readme Displays the contents of the online README file.

TABLE 3-15 Source Options

Option Action

-H Prints path names of included files.

–Ipathname Adds pathname to the include file search path.

-I- Changes the include-file search rules

–xM Outputs makefile dependency information.

–xM1 Generates dependency information, but excludes /usr/include.
3-12 C++ User’s Guide • January 2005

3.3.15 Template Options
The following template options are listed in alphabetical order.

3.3.16 Thread Options
The following thread options are listed in alphabetical order.

TABLE 3-16 Template Options

Option Action

–instances=a Controls the placement and linkage of template instances.

–ptipath Specifies an additional search directory for the template source.

–template=wlst Enables or disables various template options.

TABLE 3-17 Thread Options

Option Action

–mt Compiles and links for multithreaded code.

–xsafe=mem (SPARC) Allows no memory-based traps.

–xthreadvar (SPARC) Changes the default thread-local storage access mode.
Chapter 3 Using the C++ Compiler Options 3-13

3-14 C++ User’s Guide • January 2005

PART II Writing C++ Programs

CHAPTER 4

Language Extensions

This chapter documents the language extensions specific to this compiler.
Appendix B also provides implementation specific information. The compiler does
not recognize some of the features described in this chapter unless you specify
certain compiler options on the command line. The relevant compiler options are
listed in each section as appropriate.

The -features=extensions option enables you to compile nonstandard code that
is commonly accepted by other C++ compilers. You can use this option when you
must compile invalid code and you are not permitted to modify the code to make it
valid.

This chapter describes the language extensions that the compiler supports when you
use the -features=extensions options.

Note – You can easily turn each supported instance of invalid code into valid code
that all compilers will accept. If you are allowed to make the code valid, you should
do so instead of using this option. Using the -features=extensions option
perpetuates invalid code that will be rejected by some compilers.

4.1 Linker Scoping
Use the following declaration specifiers to help constrain declarations and
definitions of extern symbols. The scoping restraints you specify for a static archive
or an object file will not take effect until the file is linked into a shared library or an
executable. Despite this, the compiler can still perform some optimization given the
presence of the linker scoping specifiers.
4-1

By using these specifiers, you no longer need to use mapfiles for linker scoping. You
can also control the default setting for variable scoping by specifying -xldscope on
the command line.

For more information, see Section A.2.129, “-xldscope={v}” on page A-111.

A symbol definition may be redeclared with a more restrictive specifier, but may not
be redeclared with a less restrictive specifier. A symbol may not be declared with a
different specifier once the symbol has been defined.

__global is the least restrictive scoping, __symbolic is more restrictive, and
__hidden is the most restrictive scoping.

All virtual functions must be visible to all compilation units that include the class
definition because the declaration of virtual functions affects the construction and
interpretation of virtual tables.

You can apply the linker scoping specifiers to struct, class, and union declarations
and definitions because C++ classes may require generation of implicit information,
such as virtual tables and run-time type information. The specifier, in this case,
follows the struct, class, or union keyword. Such an application implies the same
linker scoping for all its implicit members.

TABLE 4-1 Linker Scoping Declaration Specifiers

Value Meaning

__global Symbol definitions have global linker scoping and is the least
restrictive linker scoping. All references to the symbol bind to the
definition in the first dynamic load module that defines the symbol.
This linker scoping is the current linker scoping for extern symbols.

__symbolic Symbol definitions have symbolic linker scoping and is more
restrictive than global linker scoping. All references to the symbol
from within the dynamic load module being linked bind to the
symbol defined within the module. Outside of the module, the
symbol appears as though it were global. This linker scoping
corresponds to the linker option -Bsymbolic. Although you cannot
use -Bsymbolic with C++ libraries, you can use the __symbolic
specifier without causing problems. See ld(1) for more information
on the linker.

__hidden Symbol definitions have hidden linker scoping. Hidden linker
scoping is more restrictive than symbolic and global linker scoping.
All references within a dynamic load module bind to a definition
within that module. The symbol will not be visible outside of the
module.
4-2 C++ User’s Guide • January 2005

4.2 Thread-Local Storage
Take advantage of thread-local storage by declaring thread-local variables. A
thread-local variable declaration consists of a normal variable declaration with the
addition of the declaration specifier __thread. For more information, see
Section A.2.168, “-xthreadvar[=o]” on page A-160.

You must include the __thread specifier in the first declaration of the thread
variable. Variables that you declare with the __thread specifier are bound as they
would be without the __thread specifier.

You can declare variables only of static duration with the __thread specifier.
Variables with static duration include file global, file static, function local static, and
class static member. You should not declare variables with dynamic or automatic
duration with the __thread specifier. A thread variable can have a static initializer,
but it cannot have a dynamic initializer or destructors. For example, __thread int
x = 4; is permitted, but __thread int x = f(); is not. A thread variable should
not have a type with non-trivial constructors and destructors. In particular, a thread
variable may not have type std::string.

The address-of operator (&) for a thread variable is evaluated at run time and
returns the address of the current thread’s variable. Therefore, the address of a
thread variable is not a constant.

The address of a thread variable is stable for the lifetime of the corresponding
thread. Any thread in the process can freely use the address of a thread variable
during the variable’s lifetime. You cannot use a thread variable’s address after its
thread terminates. All addresses of a thread’s variables are invalid after the thread’s
termination.

4.3 Overriding With Less Restrictive Virtual
Functions
The C++ standard says that an overriding virtual function must not be less
restrictive in the exceptions it allows than any function it overrides. It can have the
same restrictions or be more restrictive. Note that the absence of an exception
specification allows any exception.
Chapter 4 Language Extensions 4-3

Suppose, for example, that you call a function through a pointer to a base class. If
the function has an exception specification, you can count on no other exceptions
being thrown. If the overriding function has a less-restrictive specification, an
unexpected exception could be thrown, which can result in bizarre program
behavior followed by a program abort. This is the reason for the rule.

When you use -features=extensions, the compiler will allow overriding
functions with less-restrictive exception specifications.

4.4 Making Forward Declarations of enum
Types and Variables
When you use -features=extensions, the compiler allows the forward
declaration of enum types and variables. In addition, the compiler allows the
declaration of a variable with an incomplete enum type. The compiler will always
assume an incomplete enum type to have the same size and range as type int on the
current platform.

The following two lines show an example of invalid code that will compile when
you use the -features=extensions option.

Because enum definitions cannot reference one another, and no enum definition can
cross-reference another type, the forward declaration of an enumeration type is
never necessary. To make the code valid, you can always provide the full definition
of the enum before it is used.

Note – On 64-bit architectures, it is possible for an enum to require a size that is
larger than type int. If that is the case, and if the forward declaration and the
definition are visible in the same compilation, the compiler will emit an error. If the
actual size is not the assumed size and the compiler does not see the discrepancy, the
code will compile and link, but might not run properly. Mysterious program
behavior can occur, particularly if an 8-byte value is stored in a 4-byte variable.

enum E; // invalid: forward declaration of enum not allowed
E e; // invalid: type E is incomplete
4-4 C++ User’s Guide • January 2005

4.5 Using Incomplete enum Types
When you use -features=extensions, incomplete enum types are taken as
forward declarations. For example, the following invalid code will compile when
you use the -features=extensions option.

As noted previously, you can always include the definition of an enum type before it
is used.

4.6 Using an enum Name as a Scope
Qualifier
Because an enum declaration does not introduce a scope, an enum name cannot be
used as a scope qualifier. For example, the following code is invalid.

To compile this invalid code, use the -features=extensions option. The
-features=extensions option instructs the compiler to ignore a scope qualifier if
it is the name of an enum type.

To make the code valid, remove the invalid qualifier E::.

Note – Use of this option increases the possibility of typographical errors yielding
incorrect programs that compile without error messages.

4.7 Using Anonymous struct Declarations
An anonymous struct declaration is a declaration that declares neither a tag for the
struct, nor an object or typedef name. Anonymous structs are not allowed in C++.

typedef enum E F; // invalid, E is incomplete

enum E {e1, e2, e3};
int i = E::e1; // invalid: E is not a scope name
Chapter 4 Language Extensions 4-5

The -features=extensions option allows the use of an anonymous struct
declaration, but only as member of a union.

The following code is an example of an invalid anonymous struct declaration that
compiles when you use the -features=extensions option.

The names of the struct members are visible without qualification by a struct
member name. Given the definition of U in this code example, you can write:

Anonymous structs are subject to the same limitations as anonymous unions.

Note that you can make the code valid by giving a name to each struct, such as:

union U {
 struct {
 int a;
 double b;
 }; // invalid: anonymous struct
 struct {
 char* c;
 unsigned d;
 }; // invalid: anonymous struct
};

U u;
u.a = 1;

union U {
 struct {
 int a;
 double b;
 } A;
 struct {
 char* c;
 unsigned d;
 } B;
};
U u;
U.A.a = 1;
4-6 C++ User’s Guide • January 2005

4.8 Passing the Address of an Anonymous
Class Instance
You are not allowed to take the address of a temporary variable. For example, the
following code is invalid because it takes the address of a variable created by a
constructor call. However, the compiler accepts this invalid code when you use the
-features=extensions option.

Note that you can make this code valid by using an explicit variable.

The temporary object is destroyed when the function returns. Ensuring that the
address of the temporary variable is not retained is the programmer’s responsibility.
In addition, the data that is stored in the temporary variable (for example, by f1) is
lost when the temporary variable is destroyed.

class C {
 public:
 C(int);
 ...
};
void f1(C*);
int main()
{
 f1(&C(2)); // invalid
}

C c(2);
f1(&c);
Chapter 4 Language Extensions 4-7

4.9 Declaring a Static Namespace-Scope
Function as a Class Friend
The following code is invalid.

Because a class name has external linkage and all definitions must be identical,
friend functions must also have external linkage. However, when you use the
-features=extensions option, the compiler to accepts this code.

Presumably the programmer’s intent with this invalid code was to provide a
nonmember “helper” function in the implementation file for class A. You can get the
same effect by making foo a static member function. You can make it private if you
do not want clients to call the function.

Note – If you use this extension, your class can be “hijacked” by any client. Any
client can include the class header, then define its own static function foo, which
will automatically be a friend of the class. The effect will be as if you made all
members of the class public.

4.10 Using the Predefined __func__ Symbol
for Function Name
When you use -features=extensions, the compiler implicitly declares the
identifier __func__ in each function as a static array of const char. If the program
uses the identifier, the compiler also provides the following definition where
function-name is the unadorned name of the function. Class membership,
namespaces, and overloading are not reflected in the name.

class A {
 friend static void foo(<args>);
 ...
};

static const char __func__[] = "function-name";
4-8 C++ User’s Guide • January 2005

For example, consider the following code fragment.

Each time the function is called, it will print the following to the standard output
stream.

#include <stdio.h>
void myfunc(void)
{
 printf("%s\n", __func__);
}

myfunc
Chapter 4 Language Extensions 4-9

4-10 C++ User’s Guide • January 2005

CHAPTER 5

Program Organization

The file organization of a C++ program requires more care than is typical for a C
program. This chapter describes how to set up your header files and your template
definitions.

5.1 Header Files
Creating an effective header file can be difficult. Often your header file must adapt
to different versions of both C and C++. To accommodate templates, make sure your
header file is tolerant of multiple inclusions (idempotent).

5.1.1 Language-Adaptable Header Files
You might need to develop header files for inclusion in both C and C++ programs.
However, Kernighan and Ritchie C (K&R C), also known as “classic C,” ANSI C,
Annotated Reference Manual C++ (ARM C++), and ISO C++ sometimes require
different declarations or definitions for the same program element within a single
header file. (See the C++ Migration Guide for additional information on the variations
between languages and versions.) To make header files acceptable to all these
standards, you might need to use conditional compilation based on the existence or
value of the preprocessor macros __STDC__ and __cplusplus.
5-1

The macro __STDC__ is not defined in K&R C, but is defined in both ANSI C and
C++. Use this macro to separate K&R C code from ANSI C or C++ code. This macro
is most useful for separating prototyped from nonprototyped function definitions.

The macro __cplusplus is not defined in C, but is defined in C++.

Note – Early versions of C++ defined the macro c_plusplus instead of
__cplusplus. The macro c_plusplus is no longer defined.

Use the definition of the __cplusplus macro to separate C and C++. This macro is
most useful in guarding the specification of an extern “C” interface for function
declarations, as shown in the following example. To prevent inconsistent
specification of extern “C”, never place an #include directive within the scope of
an extern “C” linkage specification.

In ARM C++, the __cplusplus macro has a value of 1. In ISO C++, the macro has
the value 199711L (the year and month of the standard expressed as a long
constant). Use the value of this macro to separate ARM C++ from ISO C++. The
macro value is most useful for guarding changes in template syntax.

#ifdef __STDC__
int function(char*,...); // C++ & ANSI C declaration
#else
int function(); // K&R C
#endif

#include “header.h”
... // ... other include files...
#if defined(__cplusplus)
extern “C” {
#endif
 int g1();
 int g2();
 int g3()
#if defined(__cplusplus)
}
#endif

// template function specialization
#if __cplusplus < 199711L
int power(int,int); // ARM C++
#else
template <> int power(int,int); // ISO C++
#endif
5-2 C++ User’s Guide • January 2005

5.1.2 Idempotent Header Files
Your header files should be idempotent. That is, the effect of including a header file
many times should be exactly the same as including the header file only once. This
property is especially important for templates. You can best accomplish
idempotency by setting preprocessor conditions that prevent the body of your
header file from appearing more than once.

5.2 Template Definitions
You can organize your template definitions in two ways: with definitions included
and with definitions separated. The definitions-included organization allows greater
control over template compilation.

5.2.1 Template Definitions Included
When you put the declarations and definitions for a template within the file that
uses the template, the organization is definitions-included. For example:

#ifndef HEADER_H
#define HEADER_H
/* contents of header file */
#endif

main.cc template <class Number> Number twice(Number original);
template <class Number> Number twice(Number original)
 { return original + original; }
int main()
 { return twice<int>(-3); }
Chapter 5 Program Organization 5-3

When a file using a template includes a file that contains both the template’s
declaration and the template’s definition, the file that uses the template also has the
definitions-included organization. For example:

Note – It is very important to make your template headers idempotent. (See
Section 5.1.2, “Idempotent Header Files” on page 5-3.)

5.2.2 Template Definitions Separate
Another way to organize template definitions is to keep the definitions in template
definition files, as shown in the following example.

twice.h #ifndef TWICE_H
#define TWICE_H
template <class Number>
Number twice(Number original);
template <class Number> Number
twice(Number original)
 { return original + original; }
#endif

main.cc #include “twice.h”
int main()
 { return twice(-3); }

twice.h #ifndef TWICE_H
#define TWICE_H
template <class Number>
Number twice(Number original);
#endif TWICE_H

twice.cc template <class Number>
Number twice(Number original)
 { return original + original; }

main.cc #include “twice.h”
int main()
 { return twice<int>(-3); }
5-4 C++ User’s Guide • January 2005

Template definition files must not include any non-idempotent header files and often
need not include any header files at all. (See Section 5.1.2, “Idempotent Header
Files” on page 5-3.) Note that not all compilers support the definitions-separate
model for templates.

Because a separate definitions file is a header file, it might be included implicitly in
many files. It therefore should not contain any function or variable definitions,
unless they are part of a template definition. A separate definitions file can include
type definitions, including typedefs.

Note – Although source-file extensions for template definition files are commonly
used (that is, .c, .C, .cc, .cpp, .cxx, or .c++), template definition files are header
files. The compiler includes them automatically if necessary. Template definition files
should not be compiled independently.

If you place template declarations in one file and template definitions in another file,
you have to be very careful how you construct the definition file, what you name it,
and where you put it. You might also need to identify explicitly to the compiler the
location of the definitions. Refer to Section 7.5, “Template Definition Searching” on
page 7-8” for information about the template definition search rules.
Chapter 5 Program Organization 5-5

5-6 C++ User’s Guide • January 2005

CHAPTER 6

Creating and Using Templates

Templates make it possible for you to write a single body of code that applies to a
wide range of types in a type-safe manner. This chapter introduces template
concepts and terminology in the context of function templates, discusses the more
complicated (and more powerful) class templates, and describes the composition of
templates. Also discussed are template instantiation, default template parameters,
and template specialization. The chapter concludes with a discussion of potential
problem areas for templates.

6.1 Function Templates
A function template describes a set of related functions that differ only by the types
of their arguments or return values.

6.1.1 Function Template Declaration
You must declare a template before you can use it. A declaration, as in the following
example, provides enough information to use the template, but not enough
information to implement the template.

In this example, Number is a template parameter; it specifies the range of functions that
the template describes. More specifically, Number is a template type parameter, and its
use within the template definition stands for a type determined at the location where
the template is used.

template <class Number> Number twice(Number original);
6-1

6.1.2 Function Template Definition
If you declare a template, you must also define it. A definition provides enough
information to implement the template. The following example defines the template
declared in the previous example.

Because template definitions often appear in header files, a template definition
might be repeated in several compilation units. All definitions, however, must be the
same. This restriction is called the One-Definition Rule.

The compiler does not support expressions involving non-type template parameters
in the function parameter list, as shown in the following example.

6.1.3 Function Template Use
Once declared, templates can be used like any other function. Their use consists of
naming the template and providing function arguments. The compiler can infer the
template type arguments from the function argument types. For example, you can
use the previously declared template as follows.

If a template argument cannot be inferred from the function argument types, it must
be supplied where the function is called. For example:

template <class Number> Number twice(Number original)
 { return original + original; }

// Expressions with non-type template parameters
// in the function parameter list are not supported
template<int I> void foo(mytype<2*I>) { ... }
template<int I, int J> void foo(int a[I+J]) { ... }

double twicedouble(double item)
 { return twice(item); }

template<class T> T func(); // no function arguments
int k = func<int>(); // template argument supplied explicitly
6-2 C++ User’s Guide • January 2005

6.2 Class Templates
A class template describes a set of related classes or data types that differ only by
types, by integral values, by pointers or references to variables with global linkage,
or by a combination thereof. Class templates are particularly useful in describing
generic, but type-safe, data structures.

6.2.1 Class Template Declaration
A class template declaration provides only the name of the class and its template
arguments. Such a declaration is an incomplete class template.

The following example is a template declaration for a class named Array that takes
any type as an argument.

This template is for a class named String that takes an unsigned int as an
argument.

6.2.2 Class Template Definition
A class template definition must declare the class data and function members, as in
the following examples.

template <class Elem> class Array;

template <unsigned Size> class String;

template <class Elem> class Array {
 Elem* data;
 int size;
 public:
 Array(int sz);
 int GetSize();
 Elem& operator[](int idx);
};
Chapter 6 Creating and Using Templates 6-3

Unlike function templates, class templates can have both type parameters (such as
class Elem) and expression parameters (such as unsigned Size). An expression
parameter can be:

■ A value that has an integral type or enumeration
■ A pointer or a reference to an object
■ A pointer or a reference to a function
■ A pointer to a class member function

6.2.3 Class Template Member Definitions
The full definition of a class template requires definitions for its function members
and static data members. Dynamic (nonstatic) data members are sufficiently defined
by the class template declaration.

6.2.3.1 Function Member Definitions

The definition of a template function member consists of the template parameter
specification followed by a function definition. The function identifier is qualified by
the class template’s class name and the template arguments. The following example
shows definitions of two function members of the Array class template, which has a
template parameter specification of template <class Elem>. Each function
identifier is qualified by the template class name and the template argument
Array<Elem>.

template <unsigned Size> class String {
 char data[Size];
 static int overflows;
 public:
 String(char *initial);
 int length();
};

template <class Elem> Array<Elem>::Array(int sz)
 {size = sz; data = new Elem[size];}

template <class Elem> int Array<Elem>::GetSize()
 { return size; }
6-4 C++ User’s Guide • January 2005

This example shows definitions of function members of the String class template.

6.2.3.2 Static Data Member Definitions

The definition of a template static data member consists of the template parameter
specification followed by a variable definition, where the variable identifier is
qualified by the class template name and its template actual arguments.

6.2.4 Class Template Use
A template class can be used wherever a type can be used. Specifying a template
class consists of providing the values for the template name and arguments. The
declaration in the following example creates the variable int_array based upon
the Array template. The variable’s class declaration and its set of methods are just
like those in the Array template except that Elem is replaced with int (see
Section 6.3, “Template Instantiation” on page 6-6).

The declaration in this example creates the short_string variable using the
String template.

#include <string.h>
template <unsigned Size> int String<Size>::length()
 {int len = 0;
 while (len < Size && data[len]!= '\0') len++;
 return len;}

template <unsigned Size> String<Size>::String(char *initial)
 {strncpy(data, initial, Size);
 if (length() == Size) overflows++;}

template <unsigned Size> int String<Size>::overflows = 0;

Array<int> int_array(100);

String<8> short_string("hello");
Chapter 6 Creating and Using Templates 6-5

You can use template class member functions as you would any other member
function.

6.3 Template Instantiation
Template instantiation involves generating a concrete class or function (instance) for a
particular combination of template arguments. For example, the compiler generates
a class for Array<int> and a different class for Array<double>. The new classes
are defined by substituting the template arguments for the template parameters in
the definition of the template class. In the Array<int> example, shown in the
preceding “Class Templates” section, the compiler substitutes int wherever Elem
appears.

6.3.1 Implicit Template Instantiation
The use of a template function or template class introduces the need for an instance.
If that instance does not already exist, the compiler implicitly instantiates the
template for that combination of template arguments.

6.3.2 Explicit Template Instantiation
The compiler implicitly instantiates templates only for those combinations of
template arguments that are actually used. This approach may be inappropriate for
the construction of libraries that provide templates. C++ provides a facility to
explicitly instantiate templates, as seen in the following examples.

int x = int_array.GetSize();

int x = short_string.length();
6-6 C++ User’s Guide • January 2005

6.3.2.1 Explicit Instantiation of Template Functions

To instantiate a template function explicitly, follow the template keyword by a
declaration (not definition) for the function, with the function identifier followed by
the template arguments.

Template arguments may be omitted when the compiler can infer them.

6.3.2.2 Explicit Instantiation of Template Classes

To instantiate a template class explicitly, follow the template keyword by a
declaration (not definition) for the class, with the class identifier followed by the
template arguments.

When you explicitly instantiate a class, all of its members are also instantiated.

6.3.2.3 Explicit Instantiation of Template Class Function Members

To explicitly instantiate a template class function member, follow the template
keyword by a declaration (not definition) for the function, with the function
identifier qualified by the template class, followed by the template arguments.

template float twice<float>(float original);

template int twice(int original);

template class Array<char>;

template class String<19>;

template int Array<char>::GetSize();

template int String<19>::length();
Chapter 6 Creating and Using Templates 6-7

6.3.2.4 Explicit Instantiation of Template Class Static Data Members

To explicitly instantiate a template class static data member, follow the template
keyword by a declaration (not definition) for the member, with the member
identifier qualified by the template class, followed by the template argument.

6.4 Template Composition
You can use templates in a nested manner. This is particularly useful when defining
generic functions over generic data structures, as in the standard C++ library. For
example, a template sort function may be declared over a template array class:

and defined as:

The preceding example defines a sort function over the predeclared Array class
template objects. The next example shows the actual use of the sort function.

template int String<19>::overflows;

template <class Elem> void sort(Array<Elem>);

template <class Elem> void sort(Array<Elem> store)
 {int num_elems = store.GetSize();
 for (int i = 0; i < num_elems-1; i++)
 for (int j = i+1; j < num_elems; j++)
 if (store[j-1] > store[j])
 {Elem temp = store[j];
 store[j] = store[j-1];
 store[j-1] = temp;}}

Array<int> int_array(100); // construct an array of ints
sort(int_array); // sort it
6-8 C++ User’s Guide • January 2005

6.5 Default Template Parameters
You can give default values to template parameters for class templates (but not
function templates).

If a template parameter has a default value, all parameters after it must also have
default values. A template parameter can have only one default value.

6.6 Template Specialization
There may be performance advantages to treating some combinations of template
arguments as a special case, as in the following examples for twice. Alternatively, a
template description might fail to work for a set of its possible arguments, as in the
following examples for sort. Template specialization allows you to define
alternative implementations for a given combination of actual template arguments.
The template specialization overrides the default instantiation.

6.6.1 Template Specialization Declaration
You must declare a specialization before any use of that combination of template
arguments. The following examples declare specialized implementations of twice
and sort.

You can omit the template arguments if the compiler can unambiguously determine
them. For example:

template <class Elem = int> class Array;
template <unsigned Size = 100> class String;

template <> unsigned twice<unsigned>(unsigned original);

template <> sort<char*>(Array<char*> store);

template <> unsigned twice(unsigned original);
Chapter 6 Creating and Using Templates 6-9

6.6.2 Template Specialization Definition
You must define all template specializations that you declare. The following
examples define the functions declared in the preceding section.

6.6.3 Template Specialization Use and Instantiation
A specialization is used and instantiated just as any other template, except that the
definition of a completely specialized template is also an instantiation.

6.6.4 Partial Specialization
In the previous examples, the templates are fully specialized. That is, they define an
implementation for specific template arguments. A template can also be partially
specialized, meaning that only some of the template parameters are specified, or that
one or more parameters are limited to certain categories of type. The resulting
partial specialization is itself still a template. For example, the following code
sample shows a primary template and a full specialization of that template.

template <> sort(Array<char*> store);

template <> unsigned twice<unsigned>(unsigned original)
 {return original << 1;}

#include <string.h>
template <> void sort<char*>(Array<char*> store)
 {int num_elems = store.GetSize();
 for (int i = 0; i < num_elems-1; i++)
 for (int j = i+1; j < num_elems; j++)
 if (strcmp(store[j-1], store[j]) > 0)
 {char *temp = store[j];
 store[j] = store[j-1];
 store[j-1] = temp;}}

template<class T, class U> class A {...}; //primary template
template<> class A<int, double> {...}; //specialization
6-10 C++ User’s Guide • January 2005

The following code shows examples of partial specialization of the primary
template.

■ Example 1 provides a special template definition for cases when the first template
parameter is type int.

■ Example 2 provides a special template definition for cases when the first template
parameter is any pointer type.

■ Example 3 provides a special template definition for cases when the first template
parameter is pointer-to-pointer of any type, and the second template parameter is
type char.

6.7 Template Problem Areas
This section describes problems you might encounter when using templates.

6.7.1 Nonlocal Name Resolution and Instantiation
Sometimes a template definition uses names that are not defined by the template
arguments or within the template itself. If so, the compiler resolves the name from
the scope enclosing the template, which could be the context at the point of
definition, or at the point of instantiation. A name can have different meanings in
different places, yielding different resolutions.

Name resolution is complex. Consequently, you should not rely on nonlocal names,
except those provided in a pervasive global environment. That is, use only nonlocal
names that are declared and defined the same way everywhere. In the following
example, the template function converter uses the nonlocal names intermediary
and temporary. These names have different definitions in use1.cc and use2.cc,

template<class U> class A<int> {...}; // Example 1
template<class T, class U> class A<T*> {...}; // Example 2
template<class T> class A<T**, char> {...}; // Example 3
Chapter 6 Creating and Using Templates 6-11

and will probably yield different results under different compilers. For templates to
work reliably, all nonlocal names (intermediary and temporary in this case)
must have the same definition everywhere.

A common use of nonlocal names is the use of the cin and cout streams within a
template. Few programmers really want to pass the stream as a template parameter,
so they refer to a global variable. However, cin and cout must have the same
definition everywhere.

use_common.h // Common template definition
template <class Source, class Target>
Target converter(Source source)
 {temporary = (intermediary)source;
 return (Target)temporary;}

use1.cc typedef int intermediary;
int temporary;

#include "use_common.h"

use2.cc typedef double intermediary;
unsigned int temporary;

#include "use_common.h"
6-12 C++ User’s Guide • January 2005

6.7.2 Local Types as Template Arguments
The template instantiation system relies on type-name equivalence to determine
which templates need to be instantiated or reinstantiated. Thus local types can cause
serious problems when used as template arguments. Beware of creating similar
problems in your code. For example:

The Foo type as registered in file1.cc is not the same as the Foo type registered
in file2.cc. Using local types in this way could lead to errors and unexpected
results.

CODE EXAMPLE 6-1 Example of Local Type as Template Argument Problem

array.h template <class Type> class Array {
 Type* data;
 int size;
 public:
 Array(int sz);
 int GetSize();
};

array.cc template <class Type> Array<Type>::Array(int sz)
 {size = sz; data = new Type[size];}
template <class Type> int Array<Type>::GetSize()
 {return size;}

file1.cc #include "array.h"
struct Foo {int data;};
Array<Foo> File1Data(10);

file2.cc #include "array.h"
struct Foo {double data;};
Array<Foo> File2Data(20);
Chapter 6 Creating and Using Templates 6-13

6.7.3 Friend Declarations of Template Functions
Templates must be declared before they are used. A friend declaration constitutes a
use of the template, not a declaration of the template. A true template declaration
must precede the friend declaration. For example, when the compilation system
attempts to link the produced object file for the following example, it generates an
undefined error for the operator<< function, which is not instantiated.

CODE EXAMPLE 6-2 Example of Friend Declaration Problem

array.h // generates undefined error for the operator<< function
#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

template<class T> class array {
 int size;
public:
 array();
 friend std::ostream&
 operator<<(std::ostream&, const array<T>&);
};
#endif

array.cc #include <stdlib.h>
#include <iostream>

template<class T> array<T>::array() {size = 1024;}

template<class T>
std::ostream&
operator<<(std::ostream& out, const array<T>& rhs)
 {return out <<’[’ << rhs.size <<’]’;}

main.cc #include <iostream>
#include "array.h"

int main()
{
 std::cout
 << "creating an array of int... " << std::flush;
 array<int> foo;
 std::cout << "done\n";
 std::cout << foo << std::endl;
 return 0;
}

6-14 C++ User’s Guide • January 2005

Note that there is no error message during compilation because the compiler reads
the following as the declaration of a normal function that is a friend of the array
class.

Because operator<< is really a template function, you need to supply a template
declaration for prior to the declaration of template class array. However,
because operator<< has a parameter of type array<T>, you must precede the
function declaration with a declaration of array<T>. The file array.h must look
like this:

friend ostream& operator<<(ostream&, const array<T>&);

#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

// the next two lines declare operator<< as a template function
template<class T> class array;
template<class T>
 std::ostream& operator<<(std::ostream&, const array<T>&);

template<class T> class array {
 int size;
public:
 array();
 friend std::ostream&
 operator<< <T> (std::ostream&, const array<T>&);
};
#endif
Chapter 6 Creating and Using Templates 6-15

6.7.4 Using Qualified Names Within Template
Definitions
The C++ standard requires types with qualified names that depend upon template
arguments to be explicitly noted as type names with the typename keyword. This is
true even if the compiler can “know” that it should be a type. The comments in the
following example show the types with qualified names that require the typename
keyword.

6.7.5 Nesting Template Names
Because the “>>” character sequence is interpreted as the right-shift operator, you
must be careful when you use one template names inside another. Make sure you
separate adjacent “>” characters with at least one blank space.

For example, the following ill-formed statement:

struct simple {
 typedef int a_type;
 static int a_datum;
};
int simple::a_datum = 0; // not a type
template <class T> struct parametric {
 typedef T a_type;
 static T a_datum;
};
template <class T> T parametric<T>::a_datum = 0; // not a type
template <class T> struct example {
 static typename T::a_type variable1; // dependent
 static typename parametric<T>::a_type variable2; // dependent
 static simple::a_type variable3; // not dependent
};
template <class T> typename T::a_type // dependent
 example<T>::variable1 = 0; // not a type
template <class T> typename parametric<T>::a_type // dependent
 example<T>::variable2 = 0; // not a type
template <class T> simple::a_type // not dependent
example<T>::variable3 = 0; // not a type

Array<String<10>> short_string_array(100); // >> = right-shift
6-16 C++ User’s Guide • January 2005

 is interpreted as:

The correct syntax is:

6.7.6 Referencing Static Variables and Static Functions
Within a template definition, the compiler does not support referencing an object or
function that is declared static at global scope or in a namespace. If multiple
instances are generated, the One-Definition Rule (C++ standard section 3.2) is
violated, because each instance refers to a different object. The usual failure
indication is missing symbols at link time.

If you want a single object to be shared by all template instantiations, then make the
object a nonstatic member of a named namespace. If you want a different object for
each instantiation of a template class, then make the object a static member of the
template class. If you want a different object for each instantiation of a template
function, then make the object local to the function.

6.7.7 Building Multiple Programs Using Templates in
the Same Directory
If you are building more than one program or library by specifying
-instances=extern, it’s advisable to build them in separate directories. If you
want to build in the same directory then you should clean the repository between
the different builds. This avoids any unpredictable errors. For more information see
Section 7.4.4, “Sharing Template Repositories” on page 7-7.

Array<String<10 >> short_string_array(100);

Array<String<10> > short_string_array(100);
Chapter 6 Creating and Using Templates 6-17

Consider the following example with make files a.cc, b.cc, x.h, and x.cc. Note
that this example is meaningful only if you specify -instances=extern:

........
Makefile
........
CCC = CC

all: a b

a:
 $(CCC) -I. -instances=extern -c a.cc
 $(CCC) -instances=extern -o a a.o

b:
 $(CCC) -I. -instances=extern -c b.cc
 $(CCC) -instances=extern -o b b.o

clean:
 /bin/rm -rf SunWS_cache *.o a b

...
x.h
...
template <class T> class X {
public:
 int open();
 int create();
 static int variable;
};

...
x.cc
...
template <class T> int X<T>::create() {
 return variable;
}

template <class T> int X<T>::open() {
 return variable;
}

template <class T> int X<T>::variable = 1;
6-18 C++ User’s Guide • January 2005

If you build both a and b, add a make clean between the two builds. The following
commands result in an error:

The following commands will not produce any error:

...
a.cc
...
#include "x.h"

int main()
{
 X<int> temp1;

 temp1.open();
 temp1.create();
}

...
b.cc
...
#include "x.h"

int main()
{
 X<int> temp1;

 temp1.create();
}

example% make a
example% make b

example% make a
example% make clean
example% make b
Chapter 6 Creating and Using Templates 6-19

6-20 C++ User’s Guide • January 2005

CHAPTER 7

Compiling Templates

Template compilation requires the C++ compiler to do more than traditional UNIX
compilers have done. The C++ compiler must generate object code for template
instances on an as-needed basis. It might share template instances among separate
compilations using a template repository. It might accept some template compilation
options. It must locate template definitions in separate source files and maintain
consistency between template instances and mainline code.

7.1 Verbose Compilation
When given the flag -verbose=template, the C++ compiler notifies you of
significant events during template compilation. Conversely, the compiler does not
notify you when given the default, -verbose=no%template. The +w option might
give other indications of potential problems when template instantiation occurs.

7.2 Repository Administration
The CCadmin(1) command administers the template repository. For example,
changes in your program can render some instantiations superfluous, thus wasting
storage space. The CCadmin –clean command (formerly ptclean) clears out all
instantiations and associated data. Instantiations are recreated only when needed.
7-1

7.2.1 Generated Instances
The compiler treats inline template functions as inline functions for the purposes of
template instance generation. The compiler manages them as it does other inline
functions, and the descriptions in this chapter do not apply to template inline
functions.

7.2.2 Whole-Class Instantiation
The compiler usually instantiates members of template classes independently of
other members, so that the compiler instantiates only members that are used within
the program. Methods written solely for use through a debugger will therefore not
normally be instantiated.

There are two means to ensure that debugging members are available to the
debugger.

■ First, write a non-template function that uses the template class instance members
that are otherwise unused. This function need not be called.

■ Second, use the -template=wholeclass compiler option, which instructs the
compiler to instantiate all non-template non-inline members of a template class if
any of those same members are instantiated.

The ISO C++ Standard permits developers to write template classes for which all
members may not be legal with a given template argument. As long as the illegal
members are not instantiated, the program is still well formed. The ISO C++
Standard Library uses this technique. However, the -template=wholeclass
option instantiates all members, and hence cannot be used with such template
classes when instantiated with the problematic template arguments.

7.2.3 Compile-Time Instantiation
Instantiation is the process by which a C++ compiler creates a usable function or
object from a template. The C++ compiler uses compile-time instantiation, which
forces instantiations to occur when the reference to the template is being compiled.

The advantages of compile-time instantiation are:

■ Debugging is much easier—error messages occur within context, allowing the
compiler to give a complete traceback to the point of reference.

■ Template instantiations are always up-to-date.

■ The overall compilation time, including the link phase, is reduced.
7-2 C++ User’s Guide • January 2005

Templates can be instantiated multiple times if source files reside in different
directories or if you use libraries with template symbols.

7.2.4 Template Instance Placement and Linkage
Beginning with version 5.5 of Sun’s C++ compiler, instances go into special address
sections, and the linker recognizes and discards duplicates. You can instruct the
compiler to use one of five instance placement and linkage methods: external, static,
global, explicit, and semi-explicit.

■ External instances are suitable for most program development and perform best
when the following is true:

■ The set of instances in the program is small, but each compilation unit
references a large subset of the instances.

■ There are few instances referenced in more than one or two compilation units.

■ Static, deprecated - see below.

■ Global instances, the default, are suitable for all development, and perform best
when objects reference a variety of instances.

■ Explicit instances are suitable for some carefully controlled application
compilation environments.

■ Semi-explicit instances require slightly less controlled compilation environments
but produce larger object files and have restricted uses.

This section discusses the five instance placement and linkage methods. Additional
information about generating instances can be found in Section 6.3, “Template
Instantiation” on page 6-6.

7.3 External Instances
With the external instances method, all instances are placed within the template
repository. The compiler ensures that exactly one consistent template instance exists;
instances are neither undefined nor multiply defined. Templates are reinstantiated
only when necessary. For non-debug code, the total size of all object files (including
any within the template cache) may be smaller with -instances=extern than
with -instances=global.

Template instances receive global linkage in the repository. Instances are referenced
from the current compilation unit with external linkage.
Chapter 7 Compiling Templates 7-3

Note – If you are compiling and linking in separate steps and you specify
-instance=extern for the compilation step, you must also specify it for the link
step.

The disadvantage of this method is that the cache must be cleared whenever
changing programs or making significant program changes. The cache is a
bottleneck for parallel compilation, as when using dmake because access to the cache
must be restricted to one compilation at a time. Also, you can only build one
program within a directory.

It can take longer to determine whether a valid template instance is already in the
cache than just to create the instance in the main object file and discard it later if
needed.

Specify external linkage with the —instances=extern option.

Because instances are stored within the template repository, you must use the CC
command to link C++ objects that use external instances into programs.

If you wish to create a library that contains all template instances that it uses, use the
CC command with the —xar option. Do not use the ar command. For example:

See Chapter 16 for more information.

7.3.0.1 Possible Cache Conflicts

Do not run different compiler versions in the same directory due to possible cache
conflicts when you specify -instance=extern. Consider the following when you
use the -instances=extern template model:

■ Do not create unrelated binaries in the same directory. Any binaries (.o, .a, .so,
executable programs) created in the same directory should be related, in that
names of all objects, functions, and types common to two or more object files have
identical definitions.

■ It is safe to run multiple compilations simultaneously in the same directory, such
as when using dmake. It is not safe to run any compilations or link steps at the
same time as another link step. "Link step" means any operation that creates a
library or executable program. Be sure that dependencies in a makefile do not
allow anything to run in parallel with a link step.

example% CC –xar -instances=extern –o libmain.a a.o b.o c.o
7-4 C++ User’s Guide • January 2005

7.3.1 Static Instances

Note – The -instances=static option is deprecated. There is no longer any
reason to use -instances=static, because -instances=global now gives you
all the advantages of static without the disadvantages. This option was provided
in earlier compilers to overcome problems that do not exist in C++ 5.5.

With the static instances method, all instances are placed within the current
compilation unit. As a consequence, templates are reinstantiated during each
recompilation; instances are not saved to the template repository.

The disadvantage of this method is that it does not follow language semantics and
makes substantially larger objects and executables.

Instances receive static linkage. These instances will not be visible or usable outside
the current compilation unit. As a result, templates might have identical
instantiations in several object files. Because multiple instances produce
unnecessarily large programs, static instance linkage is suitable only for small
programs, where templates are unlikely to be multiply instantiated.

Compilation is potentially faster with static instances, so this method might also be
suitable during Fix-and-Continue debugging. (See Debugging a Program With dbx.)

Note – If your program depends on sharing template instances (such as static data
members of template classes or template functions) across compilation units, do not
use the static instances method. Your program will not work properly.

Specify static instance linkage with the —instances=static compiler option.

7.3.2 Global Instances
Unlike previous compiler releases, it is no longer necessary to guard against
multiple copies of a global instance.

The advantage of this method is that incorrect source code commonly accepted by
other compilers is now also accepted in this mode. In particular, references to static
variables from within a template instances are not legal, but commonly accepted.

The disadvantage of this method is that individual object files may be larger, due to
copies of template instances in multiple files. If you compile some object files for
debug using the -g option, and some without, it is hard to predict whether you will
get a debug or non-debug version of a template instance linked into the program.
Chapter 7 Compiling Templates 7-5

Template instances receive global linkage. These instances are visible and usable
outside the current compilation unit.

Specify global instances with the —instances=global option (this is the default).

7.3.3 Explicit Instances
In the explicit instances method, instances are generated only for templates that are
explicitly instantiated. Implicit instantiations are not satisfied. Instances are placed
within the current compilation unit. As a consequence, templates are reinstantiated
during each recompilation; they are not saved to the template repository.

The advantage of this method is that you have the least amount of template
compilation and smallest object sizes.

The disadvantage is that you must perform all instantiation manually.

Template instances receive global linkage. These instances are visible and usable
outside the current compilation unit. The linker recognizes and discards duplicates.

Specify explicit instances with the —instances=explicit option.

7.3.4 Semi-Explicit Instances
When you use the semi-explicit instances method, instances are generated only for
templates that are explicitly instantiated or implicitly instantiated within the body of
a template. Instances required by explicitly-created instances are generated
automatically. Implicit instantiations in the mainline code are not satisfied. Instances
are placed within the current compilation unit. As a consequence, templates are
reinstantiated during each recompilation; instances receive global linkage and they
are not saved to the template repository.

Specify semi-explicit instances with the —instances=semiexplicit option.

7.4 The Template Repository
The template repository stores template instances between separate compilations so
that template instances are compiled only when it is necessary. The template
repository contains all nonsource files needed for template instantiation when using
the external instances method. The repository is not used for other kinds of
instances.
7-6 C++ User’s Guide • January 2005

7.4.1 Repository Structure
The template repository is contained, by default, within a cache directory called
SunWS_cache.

The cache directory is contained within the directory in which the object files are
placed. You can change the name of the cache directory by setting the
SUNWS_CACHE_NAME environment variable. Note that the value of the
SUNWS_CACHE_NAME variable must be a directory name and not a path name. This is
because the compiler automatically places the template cache directory under the
object file directory so the compiler already has a path.

7.4.2 Writing to the Template Repository
When the compiler must store template instances, it stores them within the template
repository corresponding to the output file. For example, the following command
line writes the object file to ./sub/a.o and writes template instances into the
repository contained within ./sub/SunWS_cache. If the cache directory does not
exist, and the compiler needs to instantiate a template, the compiler will create the
directory.

7.4.3 Reading From Multiple Template Repositories
The compiler reads from the template repositories corresponding to the object files
that it reads. That is, the following command line reads from
./sub1/SunWS_cache and ./sub2/SunWS_cache, and, if necessary, writes to
./SunWS_cache.

7.4.4 Sharing Template Repositories
Templates that are within a repository must not violate the one-definition rule of the
ISO C++ standard. That is, a template must have the same source in all uses of the
template. Violating this rule produces undefined behavior.

example% CC -o sub/a.o a.cc

example% CC sub1/a.o sub2/b.o
Chapter 7 Compiling Templates 7-7

The simplest, though most conservative, way to ensure that the rule is not violated is
to build only one program or library within any one directory. Two unrelated
programs might use the same type name or external name to mean different things.
If the programs share a template repository, template definitions could conflict, thus
yielding unpredictable results.

7.4.5 Template Instance Automatic Consistency With
-instances=extern

The template repository manager ensures that the states of the instances in the
repository are consistent and up-to-date with your source files when you specify
-instances=extern.

For example, if your source files are compiled with the –g option (debugging on),
the files you need from the database are also compiled with –g.

In addition, the template repository tracks changes in your compilation. For
example, if you have the —DDEBUG flag set to define the name DEBUG, the database
tracks this. If you omit this flag on a subsequent compile, the compiler reinstantiates
those templates on which this dependency is set.

7.5 Template Definition Searching
When you use the definitions-separate template organization, template definitions
are not available in the current compilation unit, and the compiler must search for
the definition. This section describes how the compiler locates the definition.

Definition searching is somewhat complex and prone to error. Therefore, you should
use the definitions-included template file organization if possible. Doing so helps
you avoid definition searching altogether. See Section 5.2.1, “Template Definitions
Included” on page 5-3.

Note – If you use the -template=no%extdef option, the compiler will not search
for separate source files.
7-8 C++ User’s Guide • January 2005

7.5.1 Source File Location Conventions
Without the specific directions provided with an options file, the compiler uses a
Cfront-style method to locate template definition files. This method requires that
the template definition file contain the same base name as the template declaration
file. This method also requires that the template definition file be on the current
include path. For example, if the template function foo() is located in foo.h, the
matching template definition file should be named foo.cc or some other
recognizable source-file extension (.C, .c, .cc, .cpp, .cxx, or .c++). The template
definition file must be located in one of the normal include directories or in the
same directory as its matching header file.

7.5.2 Definitions Search Path
As an alternative to the normal search path set with –I, you can specify a search
directory for template definition files with the option –ptidirectory. Multiple -pti
flags define multiple search directories—that is, a search path. If you use
-ptidirectory, the compiler looks for template definition files on this path and
ignores the –I flag. Since the –ptidirectory flag complicates the search rules for
source files, use the –I option instead of the –ptidirectory option.

7.5.3 Troubleshooting a Problematic Search
Sometimes the compiler generates confusing warnings or error messages because it
is looking for file that you don’t intend to compile. Usually, the problem is that a file,
for example foo.h, contains template declarations and another file, such as foo.cc,
gets implicitly included.

If a header file, foo.h, has template declarations, the compiler searches for a file
called foo with a C++ file extension (.C, .c, .cc, .cpp, .cxx, or .c++) by default. If
the compiler finds such a file, it includes the file automatically. See Section 7.5,
“Template Definition Searching” on page 7-8 for more information on such searches.

If you have a file foo.cc that you don’t intend to be treated this way, you have two
options:

■ Change the name of the .h or the .cc file to eliminate the name match.

■ Disable the automatic search for template definition files by specifying the
-template=no%extdef option. You must then include all template definitions
explicitly in your code and will not be able to use the “definitions separate”
model.
Chapter 7 Compiling Templates 7-9

7.6 Template Options File
The template options file is a user-provided optional file that contains the options
needed to locate template definitions and to control instance recompilation. In
addition, the options file provides features for controlling template specialization
and explicit instantiation. However, because the C++ compiler now supports the
syntax required to declare specializations and explicit instantiation in the source
code, you should not use these features.

Note – The template options file will not be supported in future releases of the C++
compiler.

The options file is named CC_tmpl_opt and resides within the SunWS_cache
directory. The options file is an ASCII text file containing a number of entries. An
entry consists of a keyword followed by expected text and terminated with a
semicolon (;). Entries can span multiple lines, although the keywords cannot be split.

7.6.1 Comments
Comments start with a # character and extend to the end of the line. Text within a
comment is ignored.

7.6.2 Includes
You may share options files among several template databases by including the
options files. This facility is particularly useful when building libraries containing
templates. During processing, the specified options file is textually included in the
current options file. You can have more than one include statement and place them
anywhere in the options file. The options files can also be nested.

Comment text is ignored until the end of the line.

include "options-file";
7-10 C++ User’s Guide • January 2005

7.6.3 Source File Extensions
You can specify different source file extensions for the compiler to search for when
the compiler is using its default Cfront-style source-file-locator mechanism. The
format is:

The ext-list is a list of extensions for valid source files in a space-separated format
such as:

In the absence of this entry from the options file, the valid extensions for which the
compiler searches are .cc, .c, .cpp, .C, .cxx, and .c++.

7.6.4 Definition Source Locations
You can explicitly specify the locations of definition source files using the
definition option file entry. Use the definition entry when the template
declaration and definition file names do not follow the standard Cfront-style
conventions. The entry syntax is:

The name field indicates the template for which the option entry is valid. Only one
definition entry per name is allowed. That name must be a simple name; qualified
names are not allowed. Parentheses, return types, and parameter lists are not
allowed. Regardless of the return type or parameters, only the name itself counts. As
a consequence, a definition entry may apply to several (possibly overloaded)
templates.

The “file-n” list field specifies the files that contain the template definitions. The
search for the files uses the definition search path. The file names must be enclosed in
quotes (" "). Multiple files are available because the simple template name may refer
to different templates defined in different files, or because a single template may
have definitions in multiple files. For example, if func is defined in three files, then
those three files must be listed in the definition entry.

The nocheck field is described at the end of this section.

extensions "ext-list";

extensions ".CC .c .cc .cpp";

definition name in "file-1",["file-2" ..., "file-n"] [nocheck "options"];
Chapter 7 Compiling Templates 7-11

In the following example, the compiler locates the template function foo in foo.cc,
and instantiates it. In this case, the definition entry is redundant with the default
search.

The following example shows the definition of static data members and the use of
simple names.

The name provided for the definition of fooref is a simple name and not a
qualified name (such as foo::fooref). The reason for the definition entry is that
the file name is not foo.cc (or some other recognizable extension) and cannot be
located using the default Cfront-style search rules.

The following example shows the definition of a template member function. As the
example shows, member functions are handled exactly like static member
initializers.

CODE EXAMPLE 7-1 Redundant Definition Entry

foo.cc template <class T> T foo(T t) {}

CC_tmpl_opt definition foo in "foo.cc";

CODE EXAMPLE 7-2 Definition of Static Data Members and Use of Simple Names

foo.h template <class T> class foo {static T* fooref;};

foo_statics.cc #include "foo.h"
template <class T> T* foo<T>::fooref = 0

CC_tmpl_opt definition fooref in "foo_statics.cc";

CODE EXAMPLE 7-3 Template Member Function Definition

foo.h template <class T> class foo {T* foofunc(T);};

foo_funcs.cc #include “foo.h”
template <class T> T* foo<T>::foofunc(T t) {}

CC_tmpl_opt definition foofunc in "foo_funcs.cc";
7-12 C++ User’s Guide • January 2005

The following example shows the definition of template functions in two different
source files.

In this example, the compiler must be able to find both of the definitions of the
overloaded function func(). The definition entry tells the compiler where to find
the appropriate function definitions.

Sometimes recompiling is unnecessary when certain compilation flags change. You
can avoid unnecessary recompilation using the nocheck field of the definition
option file entry, which tells the compiler and template database manager to ignore
certain options when checking dependencies. If you do not want the compiler to
reinstantiate a template function because of the addition or deletion of a specific
command-line flag, use the nocheck flag. The entry syntax is:

The options must be enclosed in quotes (" ").

In the following example, the compiler locates the template function foo in foo.cc,
and instantiates it. If a reinstantiation check is later required, the compiler will
ignore the -g option.

CODE EXAMPLE 7-4 Definition of Template Functions in Different Source Files

foo.h template <class T> class foo {
 T* func(T t);
 T* func(T t, T x);
};

foo1.cc #include "foo.h"
template <class T> T* foo<T>::func(T t) {}

foo2.cc #include "foo.h"
template <class T> T* foo<T>::func(T t, T x) {}

CC_tmpl_opt definition func in "foo1.cc", "foo2.cc";

definition name in "file-1"[, "file-2" ..., "file-n"] [nocheck "options"];

CODE EXAMPLE 7-5 nocheck Option

foo.cc template <class T> T foo(T t) {}

CC_tmpl_opt definition foo in "foo.cc" nocheck "-g";
Chapter 7 Compiling Templates 7-13

7.6.5 Template Specialization Entries
Until recently, the C++ language provided no mechanism for specializing templates,
so each compiler provided its own mechanism. This section describes the
specialization of templates using the mechanism of previous versions of the C++
compilers. This mechanism is only supported in compatibility mode (-compat[=4]).

The special entry tells the compiler that a given function is a specialization and
should not be instantiated when the compiler encounters the function. When using
the compile-time instantiation method, use special entries in the options file to
preregister the specializations. The syntax is:

The declaration is a legal C++-style declaration without return types. For example:

The preceding options file informs the compiler that the template function foo()
should not be instantiated for the type int, and that a specialized version is
provided by the user. Without that entry in the options file, the function may be
instantiated unnecessarily, resulting in errors:

In the preceding example, when the compiler compiles main.cc, the specialized
version of foo is correctly used because the compiler has seen its definition. When
file.cc is compiled, however, the compiler instantiates its own version of foo
because it doesn't know foo exists in main.cc. In most cases, this process results in

special declaration;

CODE EXAMPLE 7-6 special Entry

foo.h template <class T> T foo(T t) {};

main.cc #include "foo.h"

CC_tmpl_opt special foo(int);

CODE EXAMPLE 7-7 Example of When special Entry Should Be Used

foo.h template <classT> T foo(T t) {return t + t;}

file.cc #include "foo.h"
int func() {return foo(10);}

main.cc #include "foo.h"
int foo(int i) {return i * i;} // the specialization
int main() {int x = foo(10); int y = func();
return 0;}
7-14 C++ User’s Guide • January 2005

a multiply-defined symbol during the link, but in some cases (especially libraries),
the wrong function may be used, resulting in runtime errors. If you use specialized
versions of a function, you should register those specializations.

The special entries can be overloaded, as in this example:

To specialize a template class, include the template arguments in the special entry:

If a template class member is a static member, you must include the keyword
static in your specialization entry:

CODE EXAMPLE 7-8 Overloading special Entries

foo.h template <classT> T foo(T t) {}

main.cc #include "foo.h"
int foo(int i) {}
char* foo(char* p) {}

CC_tmpl_opt special foo(int);
special foo(char*);

CODE EXAMPLE 7-9 Specializing a Template Class

foo.h template <class T> class Foo {... various members...};

main.cc #include "foo.h"
int main() {Foo<int> bar; return 0;}

CC_tmpl_opt special class Foo<int>;

CODE EXAMPLE 7-10 Specializing a Static Template Class Member

foo.h template <class T> class Foo {public: static T func(T);};

main.cc #include "foo.h"
int main() {Foo<int> bar; return 0;}

CC_tmpl_opt special static Foo<int>::func(int);
Chapter 7 Compiling Templates 7-15

7-16 C++ User’s Guide • January 2005

CHAPTER 8

Exception Handling

This chapter discusses the C++ compiler’s implementation of exception handling.
Additional information can be found in Section 11.2, “Using Exceptions in a
Multithreaded Program” on page 11-3. For more information on exception handling,
see The C++ Programming Language, Third Edition, by Bjarne Stroustrup (Addison-
Wesley, 1997).

8.1 Synchronous and Asynchronous
Exceptions
Exception handling is designed to support only synchronous exceptions, such as
array range checks. The term synchronous exception means that exceptions can be
originated only from throw expressions.

The C++ standard supports synchronous exception handling with a termination
model. Termination means that once an exception is thrown, control never returns to
the throw point.

Exception handling is not designed to directly handle asynchronous exceptions such
as keyboard interrupts. However, you can make exception handling work in the
presence of asynchronous events if you are careful. For instance, to make exception
handling work with signals, you can write a signal handler that sets a global
variable, and create another routine that polls the value of that variable at regular
intervals and throws an exception when the value changes. You cannot throw an
exception from a signal handler.
8-1

8.2 Specifying Runtime Errors
There are five runtime error messages associated with exceptions:

■ No handler for the exception
■ Unexpected exception thrown
■ An exception can only be re-thrown in a handler
■ During stack unwinding, a destructor must handle its own exception
■ Out of memory

When errors are detected at runtime, the error message displays the type of the
current exception and one of the five error messages. By default, the predefined
function terminate() is called, which then calls abort().

The compiler uses the information provided in the exception specification to
optimize code production. For example, table entries for functions that do not throw
exceptions are suppressed, and runtime checking for exception specifications of
functions is eliminated wherever possible.

8.3 Disabling Exceptions
If you know that exceptions are not used in a program, you can use the compiler
option -features=no%except to suppress generation of code that supports
exception handling. The use of the option results in slightly smaller code size and
faster code execution. However, when files compiled with exceptions disabled are
linked to files using exceptions, some local objects in the files compiled with
exceptions disabled are not destroyed when exceptions occur. By default, the
compiler generates code to support exception handling. Unless the time and space
overhead is important, it is usually better to leave exceptions enabled.

Note – Because the C++ standard library, dynamic_cast, and the default operator
new require exceptions, you should not turn off exceptions when you compile in
standard mode (the default mode).
8-2 C++ User’s Guide • January 2005

8.4 Using Runtime Functions and
Predefined Exceptions
The standard header <exception> provides the classes and exception-related
functions specified in the C++ standard. You can access this header only when
compiling in standard mode (compiler default mode, or with option -compat=5).
The following excerpt shows the <exception> header file declarations.

The standard class exception is the base class for all exceptions thrown by selected
language constructs or by the C++ standard library. An object of type exception
can be constructed, copied, and destroyed without generating an exception. The
virtual member function what() returns a character string that describes the
exception.

// standard header <exception>
namespace std {
 class exception {
 exception() throw();
 exception(const exception&) throw();
 exception& operator=(const exception&) throw();
 virtual ~exception() throw();
 virtual const char* what() const throw();
 };
 class bad_exception: public exception {...};
 // Unexpected exception handling
 typedef void (*unexpected_handler)();
 unexpected_handler
 set_unexpected(unexpected_handler) throw();
 void unexpected();
 // Termination handling
 typedef void (*terminate_handler)();
 terminate_handler set_terminate(terminate_handler)
throw();
 void terminate();
 bool uncaught_exception() throw();
}

Chapter 8 Exception Handling 8-3

For compatibility with exceptions as used in C++ release 4.2, the header
<exception.h> is also provided for use in standard mode. This header allows for a
transition to standard C++ code and contains declarations that are not part of
standard C++. Update your code to follow the C++ standard (using <exception>
instead of <exception.h>) as development schedules permit.

In compatibility mode (—compat[=4]), header <exception> is not available, and
header <exception.h> refers to the same header provided with C++ release 4.2. It
is not reproduced here.

8.5 Mixing Exceptions With Signals and
Setjmp/Longjmp
You can use the setjmp/longjmp functions in a program where exceptions can
occur, as long as they do not interact.

All the rules for using exceptions and setjmp/longjmp separately apply. In
addition, a longjmp from point A to point B is valid only if an exception thrown at
A and caught at B would have the same effect. In particular, you must not longjmp
into or out of a try-block or catch-block (directly or indirectly), or longjmp past the
initialization or non-trivial destruction of auto variables or temporary variables.

You cannot throw an exception from a signal handler.

// header <exception.h>, used for transition
#include <exception>
#include <new>
using std::exception;
using std::bad_exception;
using std::set_unexpected;
using std::unexpected;
using std::set_terminate;
using std::terminate;
typedef std::exception xmsg;
typedef std::bad_exception xunexpected;
typedef std::bad_alloc xalloc;
8-4 C++ User’s Guide • January 2005

8.6 Building Shared Libraries That Have
Exceptions
Never use -Bsymbolic with programs containing C++ code, use linker map files
instead. With -Bsymbolic, references in different modules can bind to different
copies of what is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

When shared libraries are opened with dlopen, you must use RTLD_GLOBAL for
exceptions to work.
Chapter 8 Exception Handling 8-5

8-6 C++ User’s Guide • January 2005

CHAPTER 9

Cast Operations

This chapter discusses the newer cast operators in the C++ standard: const_cast,
reinterpret_cast, static_cast, and dynamic_cast. A cast converts an object
or value from one type to another.

These cast operations provide finer control than previous cast operations. The
dynamic_cast<> operator provides a way to check the actual type of a pointer to a
polymorphic class. You can search with a text editor for all new-style casts (search
for _cast), whereas finding old-style casts required syntactic analysis.

Otherwise, the new casts all perform a subset of the casts allowed by the classic cast
notation. For example, const_cast<int*>(v) could be written (int*)v. The new
casts simply categorize the variety of operations available to express your intent
more clearly and allow the compiler to provide better checking.

The cast operators are always enabled. They cannot be disabled.
9-1

9.1 const_cast
The expression const_cast<T>(v) can be used to change the const or volatile
qualifiers of pointers or references. (Among new-style casts, only const_cast<>
can remove const qualifiers.) T must be a pointer, reference, or pointer-to-member
type.

9.2 reinterpret_cast
The expression reinterpret_cast<T>(v)changes the interpretation of the value
of the expression v. It can be used to convert between pointer and integer types,
between unrelated pointer types, between pointer-to-member types, and between
pointer-to-function types.

Usage of the reinterpret_cast operator can have undefined or implementation-
dependent results. The following points describe the only ensured behavior:

■ A pointer to a data object or to a function (but not a pointer to member) can be
converted to any integer type large enough to contain it. (Type long is always
large enough to contain a pointer value on the architectures supported by the C++
compiler.) When converted back to the original type, the pointer value will
compare equal to the original pointer.

■ A pointer to a (nonmember) function can be converted to a pointer to a different
(nonmember) function type. If converted back to the original type, the pointer
value will compare equal to the original pointer.

class A
{
public:
 virtual void f();
 int i;
};
extern const volatile int* cvip;
extern int* ip;
void use_of_const_cast()
{
 const A a1;
 const_cast<A&>(a1).f(); // remove const
ip = const_cast<int*> (cvip); // remove const and volatile
}
9-2 C++ User’s Guide • January 2005

■ A pointer to an object can be converted to a pointer to a different object type,
provided that the new type has alignment requirements no stricter than the
original type. When converted back to the original type, the pointer value will
compare equal to the original pointer.

■ An lvalue of type T1 can be converted to a type “reference to T2” if an expression
of type “pointer to T1” can be converted to type “pointer to T2” with a reinterpret
cast.

■ An rvalue of type “pointer to member of X of type T1” can be explicitly converted
to an rvalue of type “pointer to member of Y of type T2” if T1 and T2 are both
function types or both object types.

■ In all allowed cases, a null pointer of one type remains a null pointer when
converted to a null pointer of a different type.

■ The reinterpret_cast operator cannot be used to cast away const; use
const_cast for that purpose.

■ The reinterpret_cast operator should not be used to convert between
pointers to different classes that are in the same class hierarchy; use a static or
dynamic cast for that purpose. (reinterpret_cast does not perform the
adjustments that might be needed.) This is illustrated in the following example:

class A {int a; public: A();};
class B: public A {int b, c;};
void use_of_reinterpret_cast()
{
 A a1;
 long l = reinterpret_cast<long>(&a1);
 A* ap = reinterpret_cast<A*>(l); // safe
 B* bp = reinterpret_cast<B*>(&a1); // unsafe
 const A a2;
 ap = reinterpret_cast<A*>(&a2); // error, const removed
}

Chapter 9 Cast Operations 9-3

9.3 static_cast
The expression static_cast<T>(v) converts the value of the expression v to type
T. It can be used for any type conversion that is allowed implicitly. In addition, any
value can be cast to void, and any implicit conversion can be reversed if that cast
would be legal as an old-style cast.

The static_cast operator cannot be used to cast away const. You can use
static_cast to cast “down” a hierarchy (from a base to a derived pointer or
reference), but the conversion is not checked; the result might not be usable. A
static_cast cannot be used to cast down from a virtual base class.

9.4 Dynamic Casts
A pointer (or reference) to a class can actually point (refer) to any class derived from
that class. Occasionally, it may be desirable to obtain a pointer to the fully derived
class, or to some other subobject of the complete object. The dynamic cast provides
this facility.

Note – When compiling in compatibility mode (-compat[=4]), you must compile
with -features=rtti if your program uses dynamic casts.

The dynamic type cast converts a pointer (or reference) to one class T1 into a pointer
(reference) to another class T2. T1 and T2 must be part of the same hierarchy, the
classes must be accessible (via public derivation), and the conversion must not be
ambiguous. In addition, unless the conversion is from a derived class to one of its
base classes, the smallest part of the hierarchy enclosing both T1 and T2 must be
polymorphic (have at least one virtual function).

class B {...};
class C: public B {...};
enum E {first=1, second=2, third=3};
void use_of_static_cast(C* c1)
{
 B* bp = c1; // implicit conversion
 C* c2 = static_cast<C*>(bp); // reverse implicit conversion
 int i = second; // implicit conversion
 E e = static_cast<E>(i); // reverse implicit conversion
}

9-4 C++ User’s Guide • January 2005

In the expression dynamic_cast<T>(v), v is the expression to be cast, and T is the
type to which it should be cast. T must be a pointer or reference to a complete class
type (one for which a definition is visible), or a pointer to cv void, where cv is an
empty string, const, volatile, or const volatile.

9.4.1 Casting Up the Hierarchy
When casting up the hierarchy, if T points (or refers) to a base class of the type
pointed (referred) to by v, the conversion is equivalent to static_cast<T>(v).

9.4.2 Casting to void*
If T is void*, the result is a pointer to the complete object. That is, v might point to
one of the base classes of some complete object. In that case, the result of
dynamic_cast<void*>(v) is the same as if you converted v down the hierarchy to
the type of the complete object (whatever that is) and then to void*.

When casting to void*, the hierarchy must be polymorphic (have virtual functions).

9.4.3 Casting Down or Across the Hierarchy
When casting down or across the hierarchy, the hierarchy must be polymorphic
(have virtual functions). The result is checked at runtime.

The conversion from v to T is not always possible when casting down or across a
hierarchy. For example, the attempted conversion might be ambiguous, T might be
inaccessible, or v might not point (or refer) to an object of the necessary type. If the
runtime check fails and T is a pointer type, the value of the cast expression is a null
pointer of type T. If T is a reference type, nothing is returned (there are no null
references in C++), and the standard exception std::bad_cast is thrown.
Chapter 9 Cast Operations 9-5

For example, this example of public derivation succeeds:

whereas this example fails because base class B is inaccessible.

#include <assert.h>
#include <stddef.h> // for NULL

class A {public: virtual void f();};
class B {public: virtual void g();};
class AB: public virtual A, public B {};

void simple_dynamic_casts()
{
 AB ab;
 B* bp = &ab; // no casts needed
 A* ap = &ab;
 AB& abr = dynamic_cast<AB&>(*bp); // succeeds
 ap = dynamic_cast<A*>(bp); assert(ap!= NULL);
 bp = dynamic_cast<B*>(ap); assert(bp!= NULL);
 ap = dynamic_cast<A*>(&abr); assert(ap!= NULL);
 bp = dynamic_cast<B*>(&abr); assert(bp!= NULL);
}

#include <assert.h>
#include <stddef.h> // for NULL
#include <typeinfo>

class A {public: virtual void f() {}};
class B {public: virtual void g() {}};
class AB: public virtual A, private B {};

void attempted_casts()
{
 AB ab;
 B* bp = (B*)&ab; // C-style cast needed to break protection
 A* ap = dynamic_cast<A*>(bp); // fails, B is inaccessible
 assert(ap == NULL);
 try {
 AB& abr = dynamic_cast<AB&>(*bp); // fails, B is inaccessible
 }
 catch(const std::bad_cast&) {
 return; // failed reference cast caught here
 }
 assert(0); // should not get here
}

9-6 C++ User’s Guide • January 2005

In the presence of virtual inheritance and multiple inheritance of a single base class,
the actual dynamic cast must be able to identify a unique match. If the match is not
unique, the cast fails. For example, given the additional class definitions:

Example:

The null-pointer error return of dynamic_cast is useful as a condition between two
bodies of code—one to handle the cast if the type guess is correct, and one if it is not.

In compatibility mode (-compat[=4]), if runtime type information has not been
enabled with the -features=rtti compiler option, the compiler converts
dynamic_cast to static_cast and issues a warning.

class AB_B: public AB, public B {};
class AB_B__AB: public AB_B, public AB {};

void complex_dynamic_casts()
{
 AB_B__AB ab_b__ab;
 A*ap = &ab_b__ab;
 // okay: finds unique A statically
 AB*abp = dynamic_cast<AB*>(ap);
 // fails: ambiguous
 assert(abp == NULL);
 // STATIC ERROR: AB_B* ab_bp = (AB_B*)ap;
 // not a dynamic cast
 AB_B*ab_bp = dynamic_cast<AB_B*>(ap);
 // dynamic one is okay
 assert(ab_bp!= NULL);
}

void using_dynamic_cast(A* ap)
{
 if (AB *abp = dynamic_cast<AB*>(ap))
 { // abp is non-null,
 // so ap was a pointer to an AB object
 // go ahead and use abp
 process_AB(abp);}
 else
 { // abp is null,
 // so ap was NOT a pointer to an AB object
 // do not use abp
 process_not_AB(ap);
 }
}

Chapter 9 Cast Operations 9-7

If exceptions have been disabled, the compiler converts dynamic_cast<T&> to
static_cast<T&> and issues a warning. (A dynamic_cast to a reference type
requires an exception to be thrown if the conversion is found at run time to be
invalid.). For information about exceptions, see Chapter 8.

Dynamic cast is necessarily slower than an appropriate design pattern, such as
conversion by virtual functions. See Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma (Addison-Wesley, 1994).
9-8 C++ User’s Guide • January 2005

CHAPTER 10

Improving Program Performance

You can improve the performance of C++ functions by writing those functions in a
manner that helps the compiler do a better job of optimizing them. Many books have
been written on software performance in general and C++ in particular. For
example, see C++ Programming Style by Tom Cargill (Addison-Wesley, 1992), Writing
Efficient Programs by Jon Louis Bentley (Prentice-Hall, 1982), Efficient C++:
Performance Programming Techniques by Dov Bulka and David Mayhew (Addison-
Wesley, 2000), and Effective C++—50 Ways to Improve Your Programs and Designs,
Second Edition, by Scott Meyers, (Addison-Wesley, 1998). This chapter does not
repeat such valuable information, but discusses only those performance techniques
that strongly affect the C++ compiler.

10.1 Avoiding Temporary Objects
C++ functions often produce implicit temporary objects, each of which must be
created and destroyed. For non-trivial classes, the creation and destruction of
temporary objects can be expensive in terms of processing time and memory usage.
The C++ compiler does eliminate some temporary objects, but it cannot eliminate all
of them.

Write functions to minimize the number of temporary objects as long as your
programs remain comprehensible. Techniques include using explicit variables rather
than implicit temporary objects and using reference parameters rather than value
parameters. Another technique is to implement and use operations such as += rather
than implementing and using only + and =. For example, the first line below
introduces a temporary object for the result of a + b, while the second line does not.

T x = a + b;
T x(a); x += b;
10-1

10.2 Using Inline Functions
Calls to small and quick functions can be smaller and quicker when expanded inline
than when called normally. Conversely, calls to large or slow functions can be larger
and slower when expanded inline than when branched to. Furthermore, all calls to
an inline function must be recompiled whenever the function definition changes.
Consequently, the decision to use inline functions requires considerable care.

Do not use inline functions when you anticipate changes to the function definition
and recompiling all callers is expensive. Otherwise, use inline functions when the
code to expand the function inline is smaller than the code to call the function or the
application performs significantly faster with the function inline.

The compiler cannot inline all function calls, so making the most effective use of
function inlining may require some source changes. Use the +w option to learn when
function inlining does not occur. In the following situations, the compiler will not
inline the function:

■ The function contains difficult control constructs, such as loops, switch
statements, and try/catch statements. Many times these functions execute the
difficult control constructs infrequently. To inline such a function, split the
function into two parts, an inner part that contains the difficult control constructs
and an outer part that decides whether or not to call the inner part. This
technique of separating the infrequent part from the frequent part of a function
can improve performance even when the compiler can inline the full function.

■ The inline function body is large or complicated. Apparently simple function
bodies may be complicated because of calls to other inline functions within the
body, or because of implicit constructor and destructor calls (as often occurs in
constructors and destructors for derived classes). For such functions, inline
expansion rarely provides significant performance improvement, and the function
is best left uninlined.

■ The arguments to an inline function call are large or complicated. The compiler is
particularly sensitive when the object for an inline member function call is itself
the result of an inline function call. To inline functions with complicated
arguments, simply compute the function arguments into local variables and then
pass the variables to the function.
10-2 C++ User’s Guide • January 2005

10.3 Using Default Operators
If a class definition does not declare a parameterless constructor, a copy constructor,
a copy assignment operator, or a destructor, the compiler will implicitly declare
them. These are called default operators. A C-like struct has these default operators.
When the compiler builds a default operator, it knows a great deal about the work
that needs to be done and can produce very good code. This code is often much
faster than user-written code because the compiler can take advantage of assembly-
level facilities while the programmer usually cannot. So, when the default operators
do what is needed, the program should not declare user-defined versions of these
operators.

Default operators are inline functions, so do not use default operators when inline
functions are inappropriate (see the previous section). Otherwise, default operators
are appropriate when:

■ The user-written parameterless constructor would only call parameterless
constructors for its base objects and member variables. Primitive types effectively
have “do nothing” parameterless constructors.

■ The user-written copy constructor would simply copy all base objects and
member variables.

■ The user-written copy assignment operator would simply copy all base objects
and member variables.

■ The user-written destructor would be empty.

Some C++ programming texts suggest that class programmers always define all
operators so that any reader of the code will know that the class programmer did
not forget to consider the semantics of the default operators. Obviously, this advice
interferes with the optimization discussed above. The resolution of the conflict is to
place a comment in the code stating that the class is using the default operator.

10.4 Using Value Classes
C++ classes, including structures and unions, are passed and returned by value. For
Plain-Old-Data (POD) classes, the C++ compiler is required to pass the struct as
would the C compiler. Objects of these classes are passed directly. For objects of
classes with user-defined copy constructors, the compiler is effectively required to
construct a copy of the object, pass a pointer to the copy, and destruct the copy after
the return. Objects of these classes are passed indirectly. For classes that fall between
these two requirements, the compiler can choose. However, this choice affects binary
compatibility, so the compiler must choose consistently for every class.
Chapter 10 Improving Program Performance 10-3

For most compilers, passing objects directly can result in faster execution. This
execution improvement is particularly noticeable with small value classes, such as
complex numbers or probability values. You can sometimes improve program
efficiency by designing classes that are more likely to be passed directly than
indirectly.

In compatibility mode (-compat[=4]), a class is passed indirectly if it has any one
of the following:

■ A user-defined constructor
■ A virtual function
■ A virtual base class
■ A base that is passed indirectly
■ A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

In standard mode (the default mode), a class is passed indirectly if it has any one of
the following:

■ A user-defined copy constructor
■ A user-defined destructor
■ A base that is passed indirectly
■ A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

10.4.1 Choosing to Pass Classes Directly
To maximize the chance that a class will be passed directly:

■ Use default constructors, especially the default copy constructor, where possible.

■ Use the default destructor where possible. The default destructor is not virtual,
therefore a class with a default destructor should generally not be a base class.

■ Avoid virtual functions and virtual bases.
10-4 C++ User’s Guide • January 2005

10.4.2 Passing Classes Directly on Various Processors
Classes (and unions) that are passed directly by the C++ compiler are passed exactly
as the C compiler would pass a struct (or union). However, C++ structs and unions
are passed differently on different architectures.

10.5 Cache Member Variables
Accessing member variables is a common operation in C++ member functions.

The compiler must often load member variables from memory through the this
pointer. Because values are being loaded through a pointer, the compiler sometimes
cannot determine when a second load must be performed or whether the value
loaded before is still valid. In these cases, the compiler must choose the safe, but
slow, approach and reload the member variable each time it is accessed.

You can avoid unnecessary memory reloads by explicitly caching the values of
member variables in local variables, as follows:

■ Declare a local variable and initialize it with the value of the member variable.

■ Use the local variable in place of the member variable throughout the function.

■ If the local variable changes, assign the final value of the local variable to the
member variable. However, this optimization may yield undesired results if the
member function calls another member function on that object.

TABLE 10-1 Passing of Structs and Unions by Architecture

Architecture Description

SPARC V7/V8 Structs and unions are passed and returned by allocating storage within
the caller and passing a pointer to that storage. (That is, all structs and
unions are passed by reference.)

SPARC V9 Structs with a size no greater than 16 bytes (32 bytes) are passed
(returned) in registers. Unions and all other structs are passed and
returned by allocating storage within the caller and passing a pointer to
that storage. (That is, small structs are passed in registers; unions and
large structs are passed by reference.) As a consequence, small value
classes are passed as efficiently as primitive types.

x86 platforms Structs and unions are passed by allocating space on the stack and
copying the argument onto the stack. Structs and unions are returned by
allocating a temporary object in the caller's frame and passing the address
of the temporary object as an implicit first parameter.
Chapter 10 Improving Program Performance 10-5

This optimization is most productive when the values can reside in registers, as is
the case with primitive types. The optimization may also be productive for memory-
based values because the reduced aliasing gives the compiler more opportunity to
optimize.

This optimization may be counter-productive if the member variable is often passed
by reference, either explicitly or implicitly.

On occasion, the desired semantics of a class requires explicit caching of member
variables, for instance when there is a potential alias between the current object and
one of the member function’s arguments. For example:

will yield unintended results when called with:

complex& operator*= (complex& left, complex& right)
{
 left.real = left.real * right.real + left.imag * right.imag;
 left.imag = left.real * right.imag + left.image * right.real;
}

x*=x;
10-6 C++ User’s Guide • January 2005

CHAPTER 11

Building Multithreaded Programs

This chapter explains how to build multithreaded programs. It also discusses the use
of exceptions, explains how to share C++ Standard Library objects across threads,
and describes how to use classic (old) iostreams in a multithreading environment.

For more information about multithreading, see the Multithreaded Programming
Guide, the Tools.h++ User’s Guide, and the Standard C++ Library User’s Guide.

11.1 Building Multithreaded Programs
All libraries shipped with the C++ compiler are multithreading-safe. If you want to
build a multithreaded application, or if you want to link your application to a
multithreaded library, you must compile and link your program with the –mt
option. This option passes –D_REENTRANT to the preprocessor and passes –lthread
in the correct order to ld. For compatibility mode (–compat[=4]), the –mt option
ensures that libthread is linked before libC. For standard mode (the default
mode), the -mt option ensures that libthread is linked before libCrun.

Do not link your application directly with –lthread because this causes
libthread to be linked in an incorrect order.

The following example shows the correct way to build a multithreaded application
when the compilation and linking are done in separate steps:

example% CC -c -mt myprog.cc
example% CC -mt myprog.o
11-1

The following example shows the wrong way to build a multithreaded application:

11.1.1 Indicating Multithreaded Compilation
You can check whether an application is linked to libthread or not by using the
ldd command:

11.1.2 Using C++ Support Libraries With Threads and
Signals
The C++ support libraries, libCrun, libiostream, libCstd, and libC are
multithread safe but are not async safe. This means that in a multithreaded
application, functions available in the support libraries should not be used in signal
handlers. Doing so can result in a deadlock situation.

It is not safe to use the following in a signal handler in a multithreaded application:

■ Iostreams
■ new and delete expressions
■ Exceptions

example% CC -c -mt myprog.o
example% CC myprog.o -lthread <- libthread is linked incorrectly

example% CC -mt myprog.cc
example% ldd a.out
libm.so.1 => /usr/lib/libm.so.1
libCrun.so.1 => /usr/lib/libCrun.so.1
libthread.so.1 => /usr/lib/libthread.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
11-2 C++ User’s Guide • January 2005

11.2 Using Exceptions in a Multithreaded
Program
The current exception-handling implementation is safe for multithreading;
exceptions in one thread do not interfere with exceptions in other threads. However,
you cannot use exceptions to communicate across threads; an exception thrown from
one thread cannot be caught in another.

Each thread can set its own terminate() or unexpected() function. Calling
set_terminate() or set_unexpected() in one thread affects only the
exceptions in that thread. The default function for terminate() is abort() for the
main thread, and thr_exit() for other threads (see Section 8.2, “Specifying
Runtime Errors” on page 8-2).

11.2.1 Thread Cancellation
Thread cancellation through a call to pthread_cancel(3T) results in the
destruction of automatic (local nonstatic) objects on the stack except when you
specify -noex or -features=no%except.

pthread_cancel(3T)uses the same mechanism as exceptions. When a thread is
cancelled, the execution of local destructors is interleaved with the execution of
cleanup routines that the user has registered with pthread_cleanup_push(). The
local objects for functions called after a particular cleanup routine is registered are
destroyed before that routine is executed.

11.3 Sharing C++ Standard Library Objects
Between Threads
The C++ Standard Library (libCstd -library=Cstd) is MT-Safe, with the
exception of some locales, and it ensures that the internals of the library work
properly in a multi-threaded environment. You still need to lock around any library
objects that you yourself share between threads. See the man pages for
setlocale(3C) and attributes(5).
Chapter 11 Building Multithreaded Programs 11-3

For example, if you instantiate a string, then create a new thread and pass that string
to the thread by reference, then you must lock around write access to that string,
since you are explicitly sharing the one string object between threads. (The facilities
provided by the library to accomplish this task are described below.)

On the other hand, if you pass the string to the new thread by value, you do not
need to worry about locking, even though the strings in the two different threads
may be sharing a representation through Rogue Wave’s “copy on write” technology.
The library handles that locking automatically. You are only required to lock when
making an object available to multiple threads explicitly, either by passing references
between threads or by using global or static objects.

The following describes the locking (synchronization) mechanism used internally in
the C++ Standard Library to ensure correct behavior in the presence of multiple
threads.

Two synchronization classes provide mechanisms for achieving multithreaded
safety; _RWSTDMutex and _RWSTDGuard.

The _RWSTDMutex class provides a platform-independent locking mechanism
through the following member functions:

■ void acquire()—Acquires a lock on self, or blocks until such a lock can be
obtained.

■ void release()—Releases a lock on self.

The _RWSTDGuard class is a convenience wrapper class that encapsulates an object
of _RWSTDMutex class. An _RWSTDGuard object attempts to acquire the
encapsulated mutex in its constructor (throwing an exception of type
::thread_error, derived from std::exception on error), and releases the
mutex in its destructor (the destructor never throws an exception).

class _RWSTDMutex
{
public:
 _RWSTDMutex ();
 ~_RWSTDMutex ();
 void acquire ();
 void release ();
};

class _RWSTDGuard
{
public:
 _RWSTDGuard (_RWSTDMutex&);
 ~_RWSTDGuard ();
};
11-4 C++ User’s Guide • January 2005

Additionally, you can use the macro _RWSTD_MT_GUARD(mutex) (formerly
_STDGUARD) to conditionally create an object of the _RWSTDGuard class in
multithread builds. The object guards the remainder of the code block in which it is
defined from being executed by multiple threads simultaneously. In single-threaded
builds the macro expands into an empty expression.

The following example illustrates the use of these mechanisms.

#include <rw/stdmutex.h>

//
// An integer shared among multiple threads.
//
int I;

//
// A mutex used to synchronize updates to I.
//
_RWSTDMutex I_mutex;

//
// Increment I by one. Uses an _RWSTDMutex directly.
//

void increment_I ()
{
 I_mutex.acquire(); // Lock the mutex.
 I++;
 I_mutex.release(); // Unlock the mutex.
}

//
// Decrement I by one. Uses an _RWSTDGuard.
//

void decrement_I ()
{
 _RWSTDGuard guard(I_mutex); // Acquire the lock on I_mutex.
 --I;
 //
 // The lock on I is released when destructor is called on guard.
 //
}

Chapter 11 Building Multithreaded Programs 11-5

11.4 Using Classic Iostreams in a
Multithreading Environment
This section describes how to use the iostream classes of the libC and
libiostream libraries for input-output (I/O) in a multithreaded environment. It
also provides examples of how to extend functionality of the library by deriving
from the iostream classes. This section is not a guide for writing multithreaded
code in C++, however.

The discussion here applies only to the old iostreams (libC and libiostream) and
does not apply to libCstd, the new iostream that is part of the C++ Standard
Library.

The iostream library allows its interfaces to be used by applications in a
multithreaded environment by programs that utilize the multithreading capabilities
when running supported versions of the Solaris operating system. Applications that
utilize the single-threaded capabilities of previous versions of the library are not
affected.

A library is defined to be MT-safe if it works correctly in an environment with
threads. Generally, this “correctness” means that all of its public functions are
reentrant. The iostream library provides protection against multiple threads that
attempt to modify the state of objects (that is, instances of a C++ class) shared by
more than one thread. However, the scope of MT-safety for an iostream object is
confined to the period in which the object’s public member function is executing.

Note – An application is not automatically guaranteed to be MT-safe because it uses
MT-safe objects from the libC library. An application is defined to be MT-safe only
when it executes as expected in a multithreaded environment.

11.4.1 Organization of the MT-Safe iostream Library
The organization of the MT-safe iostream library is slightly different from other
versions of the iostream library. The exported interface of the library refers to the
public and protected member functions of the iostream classes and the set of base
classes available, and is consistent with other versions; however, the class hierarchy
is different. See Section 11.4.2, “Interface Changes to the iostream Library” on
page 11-12 for details.
11-6 C++ User’s Guide • January 2005

The original core classes have been renamed with the prefix unsafe_. TABLE 11-1
lists the classes that are the core of the iostream package.

Each MT-safe class is derived from the base class stream_MT. Each MT-safe class,
except streambuf, is also derived from the existing unsafe_ base class. Here are
some examples:

The class stream_MT provides the mutual exclusion (mutex) locks required to make
each iostream class MT-safe; it also provides a facility that dynamically enables
and disables the locks so that the MT-safe property can be dynamically changed. The
basic functionality for I/O conversion and buffer management are organized into
the unsafe_ classes; the MT-safe additions to the library are confined to the derived
classes. The MT-safe version of each class contains the same protected and public
member functions as the unsafe_ base class. Each member function in the
MT-safe version class acts as a wrapper that locks the object, calls the same function
in the unsafe_ base class, and unlocks the object.

Note – The class streambuf is not derived from an unsafe class. The public and
protected member functions of class streambuf are reentrant by locking. Unlocked
versions, suffixed with _unlocked, are also provided.

TABLE 11-1 iostream Original Core Classes

Class Description

stream_MT The base class for MT-safe classes.

streambuf The base class for buffers.

unsafe_ios A class that contains state variables that are common to the
various stream classes; for example, error and formatting state.

unsafe_istream A class that supports formatted and unformatted conversion
from sequences of characters retrieved from the streambufs.

unsafe_ostream A class that supports formatted and unformatted conversion to
sequences of characters stored into the streambufs.

unsafe_iostream A class that combines unsafe_istream and unsafe_ostream
classes for bidirectional operations.

class streambuf: public stream_MT {...};
class ios: virtual public unsafe_ios, public stream_MT {...};
class istream: virtual public ios, public unsafe_istream {...};
Chapter 11 Building Multithreaded Programs 11-7

11.4.1.1 Public Conversion Routines

A set of reentrant public functions that are MT-safe have been added to the
iostream interface. A user-specified buffer is an additional argument to each
function. These functions are described as follows.

Note – The public conversion routines of the iostream library (oct, hex, dec, chr,
and form) that are present to ensure compatibility with an earlier version of libC
are not MT-safe.

TABLE 11-2 MT-Safe Reentrant Public Functions

Function Description

char *oct_r (char *buf,

 int buflen,

 long num,

 int width)

Returns a pointer to the ASCII string that represents the
number in octal. A width of nonzero is assumed to be
the field width for formatting. The returned value is not
guaranteed to point to the beginning of the
user-provided buffer.

char *hex_r (char *buf,

 int buflen,

 long num,

 int width)

Returns a pointer to the ASCII string that represents the
number in hexadecimal. A width of nonzero is assumed
to be the field width for formatting. The returned value
is not guaranteed to point to the beginning of the
user-provided buffer.

char *dec_r (char *buf,

 int buflen,

 long num,

 int width)

Returns a pointer to the ASCII string that represents the
number in decimal. A width of nonzero is assumed to
be the field width for formatting. The returned value is
not guaranteed to point to the beginning of the
user-provided buffer.

char *chr_r (char *buf,

 int buflen,

 long num,

 int width)

Returns a pointer to the ASCII string that contains
character chr. If the width is nonzero, the string
contains width blanks followed by chr. The returned
value is not guaranteed to point to the beginning of the
user-provided buffer.

char *form_r (char *buf,

 int buflen,

 long num,

 int width)

Returns a pointer of the string formatted by sprintf,
using the format string format and any remaining
arguments. The buffer must have sufficient space to
contain the formatted string.
11-8 C++ User’s Guide • January 2005

11.4.1.2 Compiling and Linking With the MT-Safe libC Library

When you build an application that uses the iostream classes of the libC library to
run in a multithreaded environment, compile and link the source code of the
application using the -mt option. This option passes -D_REENTRANT to the
preprocessor and -lthread to the linker.

Note – Use -mt (rather than -lthread) to link with libC and libthread. This
option ensures proper linking order of the libraries. Using -lthread improperly
could cause your application to work incorrectly.

Single-threaded applications that use iostream classes do not require special
compiler or linker options. By default, the compiler links with the libC library.

11.4.1.3 MT-Safe iostream Restrictions

The restricted definition of MT-safety for the iostream library means that a number
of programming idioms used with iostream are unsafe in a multithreaded
environment using shared iostream objects.

Checking Error State

To be MT-safe, error checking must occur in a critical region with the I/O operation
that causes the error. The following example illustrates how to check for errors:

CODE EXAMPLE 11-1 Checking Error State

#include <iostream.h>

enum iostate {IOok, IOeof, IOfail};

iostate read_number(istream& istr, int& num)

{

stream_locker sl(istr, stream_locker::lock_now);

istr >> num;

if (istr.eof()) return IOeof;

if (istr.fail()) return IOfail;

return IOok;

}

Chapter 11 Building Multithreaded Programs 11-9

In this example, the constructor of the stream_locker object sl locks the istream
object istr. The destructor of sl, called at the termination of read_number,
unlocks istr.

Obtaining Characters Extracted by Last Unformatted Input Operation

To be MT-safe, the gcount function must be called within a thread that has
exclusive use of the istream object for the period that includes the execution of the
last input operation and gcount call. The following example shows a call to
gcount:

In this example, the lock and unlock member functions of class stream_locker
define a mutual exclusion region in the program.

User-Defined I/O Operations

To be MT-safe, I/O operations defined for a user-defined type that involve a specific
ordering of separate operations must be locked to define a critical region. The
following example shows a user-defined I/O operation:

CODE EXAMPLE 11-2 Calling gcount

#include <iostream.h>

#include <rlocks.h>

void fetch_line(istream& istr, char* line, int& linecount)

{

stream_locker sl(istr, stream_locker::lock_defer);

sl.lock(); // lock the stream istr

istr >> line;

linecount = istr.gcount();

sl.unlock(); // unlock istr

...

}

CODE EXAMPLE 11-3 User-Defined I/O Operations

#include <rlocks.h>

#include <iostream.h>

class mystream: public istream {

// other definitions...

int getRecord(char* name, int& id, float& gpa);

};
11-10 C++ User’s Guide • January 2005

11.4.1.4 Reducing Performance Overhead of MT-Safe Classes

Using the MT-safe classes in this version of the libC library results in some amount
of performance overhead, even in a single-threaded application; however, if you use
the unsafe_ classes of libC, this overhead can be avoided.

The scope resolution operator can be used to execute member functions of the base
unsafe_ classes; for example:

Note – The unsafe_ classes cannot be safely used in multithreaded applications.

Instead of using unsafe_ classes, you can make the cout and cin objects unsafe
and then use the normal operations. A slight performance deterioration results. The
following example shows how to use unsafe cout and cin:

int mystream::getRecord(char* name, int& id, float& gpa)

{

stream_locker sl(this, stream_locker::lock_now);

*this >> name;

*this >> id;

*this >> gpa;

return this->fail() == 0;

}

cout.unsafe_ostream::put('4');

cin.unsafe_istream::read(buf, len);

CODE EXAMPLE 11-4 Disabling MT-Safety

#include <iostream.h>

//disable mt-safety
cout.set_safe_flag(stream_MT::unsafe_object);

//disable mt-safety
cin.set_safe_flag(stream_MT::unsafe_object);

cout.put(‘4’);

cin.read(buf, len);

CODE EXAMPLE 11-3 User-Defined I/O Operations (Continued)
Chapter 11 Building Multithreaded Programs 11-11

When an iostream object is MT-safe, mutex locking is provided to protect the
object's member variables. This locking adds unnecessary overhead to an application
that only executes in a single-threaded environment. To improve performance, you
can dynamically switch an iostream object to and from MT-safety. The following
example makes an iostream object MT-unsafe:

You can safely use an MT-unsafe stream in code where an iostream is not shared by
threads; for example, in a program that has only one thread, or in a program where
each iostream is private to a thread.

If you explicitly insert synchronization into the program, you can also safely use
MT-unsafe iostreams in an environment where an iostream is shared by threads.
The following example illustrates the technique:

where the generic_lock and generic_unlock functions can be any
synchronization mechanism that uses such primitives as mutex, semaphores, or
reader/writer locks.

Note – The stream_locker class provided by the libC library is the preferred
mechanism for this purpose.

See Section 11.4.5, “Object Locks” on page 11-16 for more information.

11.4.2 Interface Changes to the iostream Library
This section describes the interface changes made to the iostream library to make it
MT-Safe.

CODE EXAMPLE 11-5 Switching to MT-Unsafe

fs.set_safe_flag(stream_MT::unsafe_object);// disable MT-safety

.... do various i/o operations

CODE EXAMPLE 11-6 Using Synchronization With MT-Unsafe Objects

generic_lock();

fs.set_safe_flag(stream_MT::unsafe_object);

... do various i/o operations

generic_unlock();
11-12 C++ User’s Guide • January 2005

11.4.2.1 The New Classes

The following table lists the new classes added to the libC interfaces.

11.4.2.2 The New Class Hierarchy

The following table lists the new class hierarchy added to the iostream interfaces.

CODE EXAMPLE 11-7 New Classes

stream_MT

stream_locker

unsafe_ios

unsafe_istream

unsafe_ostream

unsafe_iostream

unsafe_fstreambase

unsafe_strstreambase

CODE EXAMPLE 11-8 New Class Hierarchy

class streambuf: public stream_MT {...};

class unsafe_ios {...};

class ios: virtual public unsafe_ios, public stream_MT {...};

class unsafe_fstreambase: virtual public unsafe_ios {...};

class fstreambase: virtual public ios, public unsafe_fstreambase

 {...};

class unsafe_strstreambase: virtual public unsafe_ios {...};

class strstreambase: virtual public ios, public unsafe_strstreambase
{...};

class unsafe_istream: virtual public unsafe_ios {...};

class unsafe_ostream: virtual public unsafe_ios {...};

class istream: virtual public ios, public unsafe_istream {...};

class ostream: virtual public ios, public unsafe_ostream {...};

class unsafe_iostream: public unsafe_istream, public unsafe_ostream
{...};
Chapter 11 Building Multithreaded Programs 11-13

11.4.2.3 The New Functions

The following table lists the new functions added to the iostream interfaces.

CODE EXAMPLE 11-9 New Functions

 class streambuf {

 public:

 int sgetc_unlocked();

 void sgetn_unlocked(char *, int);

 int snextc_unlocked();

 int sbumpc_unlocked();

 void stossc_unlocked();

 int in_avail_unlocked();

 int sputbackc_unlocked(char);

 int sputc_unlocked(int);

 int sputn_unlocked(const char *, int);

 int out_waiting_unlocked();

 protected:

 char* base_unlocked();

 char* ebuf_unlocked();

 int blen_unlocked();

 char* pbase_unlocked();

 char* eback_unlocked();

 char* gptr_unlocked();

 char* egptr_unlocked();

 char* pptr_unlocked();

 void setp_unlocked(char*, char*);

 void setg_unlocked(char*, char*, char*);

 void pbump_unlocked(int);

 void gbump_unlocked(int);

 void setb_unlocked(char*, char*, int);

 int unbuffered_unlocked();

 char *epptr_unlocked();

 void unbuffered_unlocked(int);

 int allocate_unlocked(int);

 };

 class filebuf: public streambuf {

 public:

 int is_open_unlocked();

 filebuf* close_unlocked();

 filebuf* open_unlocked(const char*, int, int =

 filebuf::openprot);

11-14 C++ User’s Guide • January 2005

11.4.3 Global and Static Data
Global and static data in a multithreaded application are not safely shared among
threads. Although threads execute independently, they share access to global and
static objects within the process. If one thread modifies such a shared object, all the
other threads within the process observe the change, making it difficult to maintain
state over time. In C++, class objects (instances of a class) maintain state by the
values in their member variables. If a class object is shared, it is vulnerable to
changes made by other threads.

When a multithreaded application uses the iostream library and includes
iostream.h, the standard streams—cout, cin, cerr, and clog— are, by default,
defined as global shared objects. Since the iostream library is MT-safe, it protects
the state of its shared objects from access or change by another thread while a

 filebuf* attach_unlocked(int);

 };

 class strstreambuf: public streambuf {

 public:

 int freeze_unlocked();

 char* str_unlocked();

 };

 unsafe_ostream& endl(unsafe_ostream&);

 unsafe_ostream& ends(unsafe_ostream&);

 unsafe_ostream& flush(unsafe_ostream&);

 unsafe_istream& ws(unsafe_istream&);

 unsafe_ios& dec(unsafe_ios&);

 unsafe_ios& hex(unsafe_ios&);

 unsafe_ios& oct(unsafe_ios&);

 char* dec_r (char* buf, int buflen, long num, int width)

 char* hex_r (char* buf, int buflen, long num, int width)

 char* oct_r (char* buf, int buflen, long num, int width)

 char* chr_r (char* buf, int buflen, long chr, int width)

 char* str_r (char* buf, int buflen, const char* format, int width

 = 0);

 char* form_r (char* buf, int buflen, const char* format,...)

CODE EXAMPLE 11-9 New Functions (Continued)
Chapter 11 Building Multithreaded Programs 11-15

member function of an iostream object is executing. However, the scope of
MT-safety for an object is confined to the period in which the object’s public member
function is executing. For example,

gets the next character in the get buffer and updates the buffer pointer in ThreadA.
However, if the next instruction in ThreadA is another get call, the libC library does
not guarantee to return the next character in the sequence. It is not guaranteed
because, for example, ThreadB may have also executed the get call in the intervening
period between the two get calls made in ThreadA.

See Section 11.4.5, “Object Locks” on page 11-16 for strategies for dealing with the
problems of shared objects and multithreading.

11.4.4 Sequence Execution
Frequently, when iostream objects are used, a sequence of I/O operations must be
MT-safe. For example, the code:

involves the execution of three member functions of the cout stream object. Since
cout is a shared object, the sequence must be executed atomically as a critical
section to work correctly in a multithreaded environment. To perform a sequence of
operations on an iostream class object atomically, you must use some form of
locking.

The libC library now provides the stream_locker class for locking operations on
an iostream object. See Section 11.4.5, “Object Locks” on page 11-16 for information
about the stream_locker class.

11.4.5 Object Locks
The simplest strategy for dealing with the problems of shared objects and
multithreading is to avoid the issue by ensuring that iostream objects are local to a
thread. For example,

■ Declare objects locally within a thread’s entry function.

■ Declare objects in thread-specific data. (For information on how to use thread
specific data, see the thr_keycreate(3T) man page.)

int c;
cin.get(c);

cout << " Error message:" << errstring[err_number] << "\n";
11-16 C++ User’s Guide • January 2005

■ Dedicate a stream object to a particular thread. The object thread is private by
convention.

However, in many cases, such as default shared standard stream objects, it is not
possible to make the objects local to a thread, and an alternative strategy is required.

To perform a sequence of operations on an iostream class object atomically, you
must use some form of locking. Locking adds some overhead even to a
single-threaded application. The decision whether to add locking or make
iostream objects private to a thread depends on the thread model chosen for the
application: Are the threads to be independent or cooperating?

■ If each independent thread is to produce or consume data using its own
iostream object, the iostream objects are private to their respective threads
and locking is not required.

■ If the threads are to cooperate (that is, they are to share the same iostream
object), then access to the shared object must be synchronized and some form of
locking must be used to make sequential operations atomic.

11.4.5.1 Class stream_locker

The iostream library provides the stream_locker class for locking a series of
operations on an iostream object. You can, therefore, minimize the performance
overhead incurred by dynamically enabling or disabling locking in iostream
objects.

Objects of class stream_locker can be used to make a sequence of operations on a
stream object atomic. For example, the code shown in the example below seeks to
find a position in a file and reads the next block of data.

CODE EXAMPLE 11-10 Example of Using Locking Operations

#include <fstream.h>

#include <rlocks.h>

void lock_example (fstream& fs)

{

 const int len = 128;

 char buf[len];

 int offset = 48;

stream_locker s_lock(fs, stream_locker::lock_now);

.....// open file

fs.seekg(offset, ios::beg);

fs.read(buf, len);

}

Chapter 11 Building Multithreaded Programs 11-17

In this example, the constructor for the stream_locker object defines the
beginning of a mutual exclusion region in which only one thread can execute at a
time. The destructor, called after the return from the function, defines the end of the
mutual exclusion region. The stream_locker object ensures that both the seek to a
particular offset in a file and the read from the file are performed together,
atomically, and that ThreadB cannot change the file offset before the original ThreadA
reads the file.

An alternative way to use a stream_locker object is to explicitly define the mutual
exclusion region. In the following example, to make the I/O operation and
subsequent error checking atomic, lock and unlock member function calls of a
vbstream_locker object are used.

For more information, see the stream_locker(3CC4) man page.

11.4.6 MT-Safe Classes
You can extend or specialize the functionality of the iostream classes by deriving
new classes. If objects instantiated from the derived classes will be used in a
multithreaded environment, the classes must be MT-safe.

Considerations when deriving MT-safe classes include:

■ Making a class object MT-safe by protecting the internal state of the object from
multiple-thread modification. To do this, serialize access to member variables in
public and protected member functions with mutex locks.

■ Making a sequence of calls to member functions of an MT-safe base class atomic,
using a stream_locker object.

CODE EXAMPLE 11-11 Making I/O Operation and Error Checking Atomic

{

...

stream_locker file_lck(openfile_stream,
 stream_locker::lock_defer);

....

file_lck.lock(); // lock openfile_stream

openfile_stream << "Value: " << int_value << "\n";

if(!openfile_stream) {

file_error("Output of value failed\n");

return;

}

file_lck.unlock(); // unlock openfile_stream

}

11-18 C++ User’s Guide • January 2005

■ Avoiding locking overhead by using the _unlocked member functions of
streambuf within critical regions defined by stream_locker objects.

■ Locking the public virtual functions of class streambuf in case the functions are
called directly by an application. These functions are: xsgetn, underflow,
pbackfail, xsputn, overflow, seekoff, and seekpos.

■ Extending the formatting state of an ios object by using the member functions
iword and pword in class ios. However, a problem can occur if more than one
thread is sharing the same index to an iword or pword function. To make the
threads MT-safe, use an appropriate locking scheme.

■ Locking member functions that return the value of a member variable greater in
size than a char.

11.4.7 Object Destruction
Before an iostream object that is shared by several threads is deleted, the main
thread must verify that the subthreads are finished with the shared object. The
following example shows how to safely destroy a shared object.

CODE EXAMPLE 11-12 Destroying a Shared Object

#include <fstream.h>

#include <thread.h>

fstream* fp;

void *process_rtn(void*)

{

// body of sub-threads which uses fp...

}

void multi_process(const char* filename, int numthreads)

{

fp = new fstream(filename, ios::in); // create fstream
object

 // before creating threads.

// create threads

for (int i=0; i<numthreads; i++)

thr_create(0, STACKSIZE, process_rtn, 0, 0, 0);

...

// wait for threads to finish

for (int i=0; i<numthreads; i++)

thr_join(0, 0, 0);
Chapter 11 Building Multithreaded Programs 11-19

11.4.8 An Example Application
The following code provides an example of a multiply-threaded application that
uses iostream objects from the libC library in an MT-safe way.

The example application creates up to 255 threads. Each thread reads a different
input file, one line at a time, and outputs the line to an output file, using the
standard output stream, cout. The output file, which is shared by all threads, is
tagged with a value that indicates which thread performed the output operation.

delete fp; // delete fstream object
after

fp = NULL; // all threads have
completed.

}

CODE EXAMPLE 11-13 Using iostream Objects in an MT-Safe Way

// create tagged thread data

// the output file is of the form:

// <tag><string of data>\n

// where tag is an integer value in a unsigned char.

// Allows up to 255 threads to be run in this application

// <string of data> is any printable characters

// Because tag is an integer value written as char,

// you need to use od to look at the output file, suggest:

// od -c out.file |more

#include <stdlib.h>

#include <stdio.h>

#include <iostream.h>

#include <fstream.h>

#include <thread.h>

struct thread_args {

 char* filename;

 int thread_tag;

};

const int thread_bufsize = 256;

// entry routine for each thread

void* ThreadDuties(void* v) {

CODE EXAMPLE 11-12 Destroying a Shared Object (Continued)
11-20 C++ User’s Guide • January 2005

// obtain arguments for this thread

 thread_args* tt = (thread_args*)v;

 char ibuf[thread_bufsize];

 // open thread input file

 ifstream instr(tt->filename);

 stream_locker lockout(cout, stream_locker::lock_defer);

 while(1) {

 // read a line at a time

 instr.getline(ibuf, thread_bufsize - 1, ’\n’);

 if(instr.eof())

 break;

 // lock cout stream so the i/o operation is atomic

 lockout.lock();

 // tag line and send to cout

 cout << (unsigned char)tt->thread_tag << ibuf << "\n";

 lockout.unlock();

 }

 return 0;

}

int main(int argc, char** argv) {

 // argv: 1+ list of filenames per thread

 if(argc < 2) {

 cout << “usage: " << argv[0] << " <files..>\n";

 exit(1);

 }

 int num_threads = argc - 1;

 int total_tags = 0;

// array of thread_ids

 thread_t created_threads[thread_bufsize];

// array of arguments to thread entry routine

 thread_args thr_args[thread_bufsize];

 int i;

 for(i = 0; i < num_threads; i++) {

 thr_args[i].filename = argv[1 + i];

// assign a tag to a thread - a value less than 256

 thr_args[i].thread_tag = total_tags++;

// create threads

 thr_create(0, 0, ThreadDuties, &thr_args[i],

 THR_SUSPENDED, &created_threads[i]);

 }

CODE EXAMPLE 11-13 Using iostream Objects in an MT-Safe Way (Continued)
Chapter 11 Building Multithreaded Programs 11-21

 for(i = 0; i < num_threads; i++) {

 thr_continue(created_threads[i]);

 }

 for(i = 0; i < num_threads; i++) {

 thr_join(created_threads[i], 0, 0);

 }

 return 0;

}

CODE EXAMPLE 11-13 Using iostream Objects in an MT-Safe Way (Continued)
11-22 C++ User’s Guide • January 2005

PART III Libraries

CHAPTER 12

Using Libraries

Libraries provide a way to share code among several applications and a way to
reduce the complexity of very large applications. The C++ compiler gives you access
to a variety of libraries. This chapter explains how to use these libraries.

12.1 The C Libraries
The Solaris operating system comes with several libraries installed in /usr/lib.
Most of these libraries have a C interface. Of these, the libc and libm, libraries are
linked by the CC driver by default. The library libthread is linked if you use the –
mt option. To link any other system library, use the appropriate –l option at link
time. For example, to link the libdemangle library, pass –ldemangle on the CC
command line at link time:

The C++ compiler has its own runtime support libraries. All C++ applications are
linked to these libraries by the CC driver. The C++ compiler also comes with several
other useful libraries, as explained in the following section.

example% CC text.c -ldemangle
12-1

12.2 Libraries Provided With the C++
Compiler
Several libraries are shipped with the C++ compiler. Some of these libraries are
available only in compatibility mode (–compat=4), some are available only in the
standard mode (–compat=5), and some are available in both modes. The libgc and
libdemangle libraries have a C interface and can be linked to an application in
either mode.

The following table lists the libraries that are shipped with the C++ compiler and the
modes in which they are available.

Note – Do not redefine or modify any of the configuration macros for STLport,
Rogue Wave or Sun Microsystems C++ libraries. The libraries are configured and
built in a way that works with the C++ compiler. libCstd and Tool.h++ are
configured to inter-operate so modifying the configuration macros results in
programs that will not compile, will not link, or do not run properly.

TABLE 12-1 Libraries Shipped With the C++ Compiler

Library Description Available Modes

libstlport STLport implementation of the
standard library.

–compat=5

libstlport_dbg STLport library for debug mode –compat=5

libCrun C++ runtime –compat=5

libCstd C++ standard library –compat=5

libiostream Classic iostreams –compat=5

libC C++ runtime, classic iostreams –compat=4

libcsunimath Supports the -xia optoin –compat=5

libcomplex complex library –compat=4

librwtool Tools.h++ 7 –compat=4, –compat=5

librwtool_dbg Debug-enabled Tools.h++ 7 –compat=4,–compat=5

libgc Garbage collection C interface

libdemangle Demangling C interface
12-2 C++ User’s Guide • January 2005

12.2.1 C++ Library Descriptions
A brief description of each of these libraries follows.

■ libCrun: This library contains the runtime support needed by the compiler in
the standard mode (–compat=5). It provides support for new/delete,
exceptions, and RTTI.

libCstd: This is the C++ standard library. In particular, it includes iostreams.
If you have existing sources that use the classic iostreams and you want to
make use of the standard iostreams, you have to modify your sources to
conform to the new interface. See the C++ Standard Library Reference online
manual for details. You can access this manual by pointing your web browser to:

If your compiler software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ libiostream: This is the classic iostreams library built with –compat=5. If you
have existing sources that use the classic iostreams and you want to compile these
sources with the standard mode (–compat=5), you can use libiostream
without modifying your sources. Use –library=iostream to get this library.

Note – Much of the standard library depends on using standard iostreams. Using
classic iostreams in the same program can cause problems.

■ libC: This is the library needed in compatibility mode (–compat=4). It contains
the C++ runtime support as well as the classic iostreams.

■ libcomplex: This library provides complex arithmetic in compatibility mode
(-compat=4). In the standard mode, the complex arithmetic functionality is
available in libCstd.

■ libstlport: This is the STLport implementation of the C++ standard library.
You can use this library instead of the default libCstd by specifying the option -
library=stlport4. However, you cannot use libstlport and libCstd in the
same program. You must compile and link everything, including imported
libraries, using one or the other exclusively.

■ librwtool (Tools.h++): Tools.h++ is a C++ foundation class library from
RogueWave. Version 7 of this library is provided with this release. This library is
available in classic-iostreams form (-library=rwtools7) and standard-
iostreams form (-library=rwtools7_std). For further information about this
library, see the following online documentation.

■ Tools.h++ User’s Guide (Version 7)
■ Tools.h++ Class Library Reference (Version 7)

file:/opt/SUNWspro/docs/index.html
Chapter 12 Using Libraries 12-3

You can access this documentation by pointing your web browser to:

If your compiler software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ libgc: This library is used in deployment mode or garbage collection mode.
Simply linking with the libgc library automatically and permanently fixes a
program’s memory leaks. When you link your program with the libgc library,
you can program without calling free or delete while otherwise programming
normally. The garbage collection library has a dependency on the dynamic load
library so specify -lgc and -ldl when you link your program.

Additional information can be found in the gcFixPrematureFrees(3) and
gcInitialize(3) man pages.

■ libdemangle: This library is used for demangling C++ mangled names.

12.2.2 Accessing the C++ Library Man Pages
The man pages associated with the libraries described in this section are located in:

■ /opt/SUNWspro/man/man1
■ /opt/SUNWspro/man/man3
■ /opt/SUNWspro/man/man3C++
■ /opt/SUNWspro/man/man3cc4

Note – If your compiler software is not installed in the /opt directory, ask your
system administrator for the equivalent path on your system.

To access these man pages, ensure that your MANPATH includes
/opt/SUNWspro/man (or the equivalent path on your system for the compiler
software). For instructions on setting your MANPATH, see Section , “Accessing the
Man Pages” on page -xxxi in “Before You Begin” at the front of this book.

To access man pages for the C++ libraries, type:

To access man pages for version 4.2 of the C++ libraries, type:

file:/opt/SUNWspro/docs/index.html

example% man library-name

example% man -s 3CC4 library-name
12-4 C++ User’s Guide • January 2005

You can also access the man pages by pointing your browser to:

12.2.3 Default C++ Libraries
Some of the C++ libraries are linked by default by the CC driver, while others need
to be linked explicitly. In the standard mode, the following libraries are linked by
default by the CC driver:

-lCstd -lCrun -lm -lc

In compatibility mode (-compat), the following libraries are linked by default:

-lC -lm -lc

See Section A.2.48, “-library=l[,l...]” on page A-47 for more information.

12.3 Related Library Options
The CC driver provides several options to help you use libraries.

■ Use the –l option to specify a library to be linked.

■ Use the –L option to specify a directory to be searched for the library.

■ Use the -mt option compile and link multithreaded code.

■ Use the -xia option to link the interval arithmetic libraries.

■ Use the -xlang option to link Fortran runtime libraries.

■ Use the –library option to specify the following libraries that are shipped with
the Sun C++ compiler:

■ libCrun
■ libCstd
■ libiostream
■ libC
■ libcomplex
■ libstlport, libstlport_dbg
■ librwtool, librwtool_dbg
■ libgc

file:/opt/SUNWspro/docs/index.html
Chapter 12 Using Libraries 12-5

Note – To use the classic-iostreams form of librwtool, use the -library=
rwtools7 option. To use the standard-iostreams form of librwtool, use the
-library=rwtools7_std option.

A library that is specified using both –library and –staticlib options will be
linked statically. Some examples:

■ The following command links the classic-iostreams form of Tools.h++ version 7
and libiostream libraries dynamically.

■ The following command links the libgc library statically.

■ The following command compiles test.cc in compatibility mode and links
libC statically. Because libC is linked by default in compatibility mode, you are
not required to specify this library using the –library option.

■ The following command excludes the libraries libCrun and libCstd, which
would otherwise be included by default.

By default, CC links various sets of system libraries depending on the command line
options. If you specify -xnolib (or -nolib), CC links only those libraries that are
specified explicitly with the -l option on the command line. (When -xnolib or
-nolib is used, the -library option is ignored, if present.)

The –R option allows you to build dynamic library search paths into the executable
file. At execution time, the runtime linker searches these paths for the shared
libraries needed by the application. The CC driver passes –R/opt/SUNWspro/lib
to ld by default (if the compiler is installed in the standard location). You can use
-norunpath to disable building the default path for shared libraries into the
executable.

example% CC test.cc -library=rwtools7,iostream

example% CC test.cc -library=gc -staticlib=gc

example% CC test.cc -compat=4 -staticlib=libC

example% CC test.cc -library=no%Crun,no%Cstd
12-6 C++ User’s Guide • January 2005

12.4 Using Class Libraries
Generally, two steps are involved in using a class library:

1. Include the appropriate header in your source code.

2. Link your program with the object library.

12.4.1 The iostream Library
The C++ compiler provides two implementations of iostreams:

■ Classic iostreams. This term refers to the iostreams library shipped with the C++
4.0, 4.0.1, 4.1, and 4.2 compilers, and earlier with the cfront-based 3.0.1
compiler. There is no standard for this library, but a lot of existing code uses it.
This library is part of libC in compatibility mode and is also available in
libiostream in the standard mode.

■ Standard iostreams. This is part of the C++ standard library, libCstd, and is
available only in standard mode. It is neither binary- nor source-compatible with
the classic iostreams library.

If you have existing C++ sources, your code might look like the following example,
which uses classic iostreams.

The following command compiles in compatibility mode and links prog1.cc into
an executable program called prog1. The classic iostream library is part of libC,
which is linked by default in compatibility mode.

// file prog1.cc
#include <iostream.h>

int main() {
 cout << "Hello, world!" << endl;
 return 0;
}

example% CC -compat prog1.cc -o prog1
Chapter 12 Using Libraries 12-7

The next example uses standard iostreams.

The following command compiles and links prog2.cc into an executable program
called prog2. The program is compiled in standard mode and libCstd, which
includes the standard iostream library, is linked by default.

For more information about libCstd, see Chapter 13. For more information about
libiostream, see Chapter 14.

For a full discussion of compilation modes, see the C++ Migration Guide.

12.4.2 The complex Library
The standard library provides a templatized complex library that is similar to the
complex library provided with the C++ 4.2 compiler. If you compile in standard
mode, you must use <complex> instead of <complex.h>. You cannot use
<complex> in compatibility mode.

In compatibility mode, you must explicitly ask for the complex library when linking.
In standard mode, the complex library is included in libCstd, and is linked by
default.

There is no complex.h header for standard mode. In C++ 4.2, “complex” is the
name of a class, but in standard C++, “complex” is the name of a template. It is not
possible to provide typedefs that allow old code to work unchanged. Therefore, code

// file prog2.cc
#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

example% CC prog2.cc -o prog2
12-8 C++ User’s Guide • January 2005

written for 4.2 that uses complex numbers will need some straightforward editing to
work with the standard library. For example, the following code was written for 4.2
and will compile in compatibility mode.

The following example compiles and links ex1.cc in compatibility mode, and then
executes the program.

Here is ex1.cc rewritten as ex2.cc to compile in standard mode:

The following example compiles and links the rewritten ex2.cc in standard mode,
and then executes the program.

// file ex1.cc (compatibility mode)
#include <iostream.h>
#include <complex.h>

int main()
{
 complex x(3,3), y(4,4);
 complex z = x * y;
 cout << "x=" << x << ", y=" << y << ", z=" << z << endl;
}

example% CC -compat ex1.cc -library=complex
example% a.out
x=(3, 3), y=(4, 4), z=(0, 24)

// file ex2.cc (ex1.cc rewritten for standard mode)
#include <iostream>
#include <complex>
using std::complex;

int main()
{
 complex<double> x(3,3), y(4,4);
 complex<double> z = x * y;
 std::cout << "x=" << x << ", y=" << y << ", z=" << z <<
 std::endl;
}

% CC ex2.cc
% a.out
x=(3,3), y=(4,4), z=(0,24)
Chapter 12 Using Libraries 12-9

For more information about using the complex arithmetic library, see Chapter 15.

12.4.3 Linking C++ Libraries
The following table shows the compiler options for linking the C++ libraries. See
Section A.2.48, “-library=l[,l...]” on page A-47 for more information.

12.5 Statically Linking Standard Libraries
The CC driver links in shared versions of several libraries by default, including libc
and libm, by passing a -llib option for each of the default libraries to the linker.
(See Section 12.2.3, “Default C++ Libraries” on page 12-5 for the list of default
libraries for compatibility mode and standard mode.)

If you want any of these default libraries to be linked statically, you can use the
-library option along with the –staticlib option to link a C++ library statically.
This alternative is much easier than the one described earlier. For example:

TABLE 12-2 Compiler Options for Linking C++ Libraries

Library Compile Mode Option

Classic iostream –compat=4

–compat=5

None needed
-library=iostream

complex –compat=4

-compat=5

-library=complex

None needed

Tools.h++ version 7 –compat=4

–compat=5

-library=rwtools7

-library=rwtools7,iostream

-library=rwtools7_std

Tools.h++ version 7 debug –compat=4

–compat=5

-library=rwtools7_dbg

-library=rwtools7_dbg,iostream

-library=rwtools7_std_dbg

Garbage collection –compat=4

–compat=5

-library=gc

-library=gc

STLport version 4 –compat=5 -library=stlport4

STLport version 4 debug –compat=5 -library=stlport4_dbg

example% CC test.c -staticlib=Crun
12-10 C++ User’s Guide • January 2005

In this example, the -library option is not explicitly included in the command. In
this case the -library option is not necessary because the default setting for
-library is Cstd,Crun in standard mode (the default mode).

Alternately, you can use the -xnolib compiler option. With the -xnolib option,
the driver does not pass any -l options to ld; you must pass these options yourself.
The following example shows how you would link statically with libCrun, and
dynamically with libm, and libc in the Solaris 8, or Solaris 9 operating systems:

The order of the -l options is important. The –lCstd, –lCrun, and -lm options
appear before -lc.

Some CC options link to other libraries. These library links are also suppressed by
-xnolib. For example, using the -mt option causes the CC driver to pass -lthread
to ld. However, if you use both –mt and –xnolib, the CC driver does not pass
-lthread to ld. See Section A.2.142, “–xnolib” on page A-121 for more
information. See Linker and Libraries Guide for more information about ld.

12.6 Using Shared Libraries
The following shared libraries are included with the C++ compiler:

■ libCrun.so
■ libC.so
■ libcomplex.so
■ libstlport.so
■ librwtool.so
■ libgc.so
■ libgc_dbg.so
■ libCstd.so
■ libiostream.so

The occurrence of each shared object linked with the program is recorded in the
resulting executable (a.out file); this information is used by ld.so to perform
dynamic link editing at runtime. Because the work of incorporating the library code
into an address space is deferred, the runtime behavior of the program using a
shared library is sensitive to an environment change—that is, moving a library from
one directory to another. For example, if your program is linked with

example% CC test.c –xnolib –lCstd –Bstatic –lCrun –Bdynamic –lm –lc
Chapter 12 Using Libraries 12-11

libcomplex.so.5 in /opt/SUNWspro/lib, and the libcomplex.so.5 library is
later moved into /opt2/SUNWspro/lib, the following message is displayed when
you run the binary code:

You can still run the old binary code without recompiling it by setting the
environment variable LD_LIBRARY_PATH to the new library directory.

In a C shell:

In a Bourne shell:

Note – release is specific for each release of the compiler software.

The LD_LIBRARY_PATH has a list of directories, usually separated by colons. When
you run a C++ program, the dynamic loader searches the directories in
LD_LIBRARY_PATH before it searches the default directories.

Use the ldd command as shown in the following example to see which libraries are
linked dynamically in your executable:

This step should rarely be necessary, because the shared libraries are seldom moved.

Note – When shared libraries are opened with dlopen, RTLD_GLOBAL must be
used for exceptions to work.

See Linker and Libraries Guide for more information on using shared libraries.

ld.so: libcomplex.so.5: not found

example% setenv LD_LIBRARY_PATH \
/opt2/SUNWspro/release/lib:${LD_LIBRARY_PATH}

example$ LD_LIBRARY_PATH=\
/opt2/SUNWspro/release/lib:${LD_LIBRARY_PATH}
example$ export LD_LIBRARY_PATH

example% ldd a.out
12-12 C++ User’s Guide • January 2005

12.7 Replacing the C++ Standard Library
Replacing the standard library that is distributed with the compiler is risky, and
good results are not guaranteed. The basic operation is to disable the standard
headers and library supplied with the compiler, and to specify the directories where
the new header files and library are found, as well as the name of the library itself.

The compiler supports the STLport implementation of the standard library. See
Section 13.3, “STLport” on page 13-16 for more information.

12.7.1 What Can Be Replaced
You can replace most of the standard library and its associated headers. The replaced
library is libCstd, and the associated headers are listed in the following table:

The replaceable part of the library consists of what is loosely known as “STL”, plus
the string classes, the iostream classes, and their helper classes. Because these classes
and headers are interdependent, replacing just a portion of them is unlikely to work.
You should replace all of the headers and all of libCstd if you replace any part.

12.7.2 What Cannot Be Replaced
The standard headers <exception>, <new>, and <typeinfo> are tied tightly to
the compiler itself and to libCrun, and cannot reliably be replaced. The library
libCrun contains many “helper” functions that the compiler depends on, and
cannot be replaced.

The 17 standard headers inherited from C (<stdlib.h>, <stdio.h>, <string.h>,
and so forth) are tied tightly to the Solaris operating system and the basic Solaris
runtime library libc, and cannot reliably be replaced. The C++ versions of those
headers (<cstdlib>, <cstdio>, <cstring>, and so forth) are tied tightly to the
basic C versions and cannot reliably be replaced.

<algorithm> <bitset> <complex> <deque> <fstream <functional>
<iomanip> <ios> <iosfwd> <iostream> <istream> <iterator> <limits>
<list> <locale> <map> <memory> <numeric> <ostream> <queue> <set>
<sstream> <stack> <stdexcept> <streambuf> <string> <strstream>
<utility> <valarray> <vector>
Chapter 12 Using Libraries 12-13

12.7.3 Installing the Replacement Library
To install the replacement library, you must first decide on the locations for the
replacement headers and on the replacement for libCstd. For purposes of
discussion, assume the headers are placed in /opt/mycstd/include and the
library is placed in /opt/mycstd/lib. Assume the library is called libmyCstd.a.
(It is often convenient if the library name starts with “lib”.)

12.7.4 Using the Replacement Library
On each compilation, use the -I option to point to the location where the headers
are installed. In addition, use the -library=no%Cstd option to prevent finding the
compiler’s own versions of the libCstd headers. For example:

During compiling, the -library=no%Cstd option prevents searching the directory
where the compiler’s own version of these headers is located.

On each program or library link, use the -library=no%Cstd option to prevent
finding the compiler’s own libCstd, the -L option to point to the directory where
the replacement library is, and the -l option to specify the replacement library.
Example:

Alternatively, you can use the full path name of the library directly, and omit using
the -L and -l options. For example:

During linking, the -library=no%Cstd option prevents linking the compiler’s own
version of libCstd.

12.7.5 Standard Header Implementation
C has 17 standard headers (<stdio.h>, <string.h>, <stdlib.h>, and others).
These headers are delivered as part of the Solaris operating system, in the directory
/usr/include. C++ has those same headers, with the added requirement that the
various declared names appear in both the global namespace and in namespace std.

example% CC -I/opt/mycstd/include -library=no%Cstd... (compile)

example% CC -library=no%Cstd -L/opt/mycstd/lib -lmyCstd... (link)

example% CC -library=no%Cstd /opt/mycstd/lib/libmyCstd.a... (link)
12-14 C++ User’s Guide • January 2005

On versions of the Solaris operating system prior to version 8, the C++ compiler
supplies its own versions of these headers instead of replacing those in the
/usr/include directory.

C++ also has a second version of each of the C standard headers (<cstdio>,
<cstring>, and <cstdlib>, and others) with the various declared names
appearing only in namespace std. Finally, C++ adds 32 of its own standard headers
(<string>, <utility>, <iostream>, and others).

The obvious implementation of the standard headers would use the name found in
C++ source code as the name of a text file to be included. For example, the standard
headers <string> (or <string.h>) would refer to a file named string (or
string.h) in some directory. That obvious implementation has the following
drawbacks:

■ You cannot search for just header files or create a makefile rule for the header
files if they do not have file name suffixes.

■ If you have a directory or executable program named string, it might
erroneously be found instead of the standard header file.

■ On versions of the Solaris operating system prior to the Solaris 8 operating
system, the default dependencies for makefiles when .KEEP_STATE is enabled
can result in attempts to replace standard headers with an executable program. (A
file without a suffix is assumed by default to be a program to be built.)

To solve these problems, the compiler include directory contains a file with the
same name as the header, along with a symbolic link to it that has the unique suffix
.SUNWCCh (SUNW is the prefix for all compiler-related packages, CC is the C++
compiler, and h is the usual suffix for header files). When you specify <string>, the
compiler rewrites it to <string.SUNWCCh> and searches for that name. The suffixed
name will be found only in the compiler’s own include directory. If the file so
found is a symbolic link (which it normally is), the compiler dereferences the link
exactly once and uses the result (string in this case) as the file name for error
messages and debugger references. The compiler uses the suffixed name when
emitting file dependency information.

The name rewriting occurs only for the two forms of the 17 standard C headers and
the 32 standard C++ headers, only when they appear in angle brackets and without
any path specified. If you use quotes instead of angle brackets, specify any path
components, or specify some other header, no rewriting occurs.
Chapter 12 Using Libraries 12-15

The following table illustrates common situations.

If the compiler does not find header.SUNWCCh, the compiler restarts the search
looking for the name as provided in the #include directive. For example, given the
directive #include <string>, the compiler attempts to find a file named
string.SUNWCCh. If that search fails, the compiler looks for a file named string.

12.7.5.1 Replacing Standard C++ Headers

Because of the search algorithm described in Section 12.7.5, “Standard Header
Implementation” on page 12-14, you do not need to supply SUNWCCh versions of the
replacement headers described in Section 12.7.3, “Installing the Replacement
Library” on page 12-14. But you might run into some of the described problems. If
so, the recommended solution is to add symbolic links having the suffix .SUNWCCh
for each of the unsuffixed headers. That is, for file utility, you would run the
command

When the compiler looks first for utility.SUNWCCh, it will find it, and not be
confused by any other file or directory called utility.

12.7.5.2 Replacing Standard C Headers

Replacing the standard C headers is not supported. If you nevertheless wish to
provide your own versions of standard headers, the recommended procedure is as
follows:

■ Put all the replacement headers in one directory.

■ Create a .SUNWCCh symbolic link to each of the replacement headers in that
directory.

TABLE 12-3 Header Search Examples

Source Code Compiler Searches For Comments

<string> string.SUNWCCh C++ string templates

<cstring> cstring.SUNWCCh C++ version of C string.h

<string.h> string.h.SUNWCCh C string.h

<fcntl.h> fcntl.h Not a standard C or C++ header

"string" string Double-quotation marks, not angle brackets

<../string> ../string Path specified

example% ln -s utility utility.SUNWCCh
12-16 C++ User’s Guide • January 2005

■ Cause the directory that contains the replacement headers to be searched by using
the -I directives on each invocation of the compiler.

For example, suppose you have replacements for <stdio.h> and <cstdio>. Put
the files stdio.h and cstdio in directory /myproject/myhdr. In that directory,
run these commands:

Use the option -I/myproject/mydir on every compilation.

Caveats:
■ If you replace any C headers, you must replace them in pairs. For example, if you

replace <time.h>, you should also replace <ctime>.

■ Replacement headers must have the same effects as the versions being replaced.
That is, the various runtime libraries such as libCrun, libC, libCstd, libc,
and librwtool are built using the definitions in the standard headers. If your
replacements do not match, your program is unlikely to work.

example% ln -s stdio.h stdio.h.SUNWCCh
example% ln -s cstdio cstdio.SUNWCCh
Chapter 12 Using Libraries 12-17

12-18 C++ User’s Guide • January 2005

CHAPTER 13

Using The C++ Standard Library

When compiling in default (standard) mode, the compiler has access to the complete
library specified by the C++ standard. The library components include what is
informally known as the Standard Template Library (STL), as well as the following
components.

■ string classes
■ numeric classes
■ the standard version of stream I/O classes
■ basic memory allocation
■ exception classes
■ run-time type information

The term STL does not have a formal definition, but is usually understood to include
containers, iterators, and algorithms. The following subset of the standard library
headers can be thought of as comprising the STL.

■ <algorithm>
■ <deque>
■ <iterator>
■ <list>
■ <map>
■ <memory>
■ <queue>
■ <set>
■ <stack>
■ <utility>
■ <vector>

The C++ standard library (libCstd) is based on the RogueWave™ Standard C++
Library, Version 2. This library is available only for the default mode (-compat=5) of
the compiler and is not supported with use of the -compat[=4] option.

The C++ compiler also supports STLport’s Standard Library implementation version
4.5.3. libCstd is still the default library, but STLport’s product is available as an
alternative. See Section 13.3, “STLport” on page 13-16 for more information.
13-1

If you need to use your own version of the C++ standard library instead of one of
the versions that is supplied with the compiler, you can do so by specifying the
-library=no%Cstd option. Replacing the standard library that is distributed with
the compiler is risky, and good results are not guaranteed. For more information, see
Section 12.7, “Replacing the C++ Standard Library” on page 12-13.

For details about the standard library, see the Standard C++ Library User’s Guide and
the Standard C++ Class Library Reference. Section , “Accessing Compilers and Tools
Documentation” on page -xxxii in “Before You Begin” at the front of this book
contains information about accessing this documentation. For a list of available
books about the C++ standard library see Section , “Commercially Available Books”
on page -xxxv in “Before You Begin.”

13.1 C++ Standard Library Header Files
TABLE 13-1 lists the headers for the complete standard library along with a brief
description of each.

TABLE 13-1 C++ Standard Library Header Files

Header File Description

<algorithm> Standard algorithms that operate on containers

<bitset> Fixed-size sequences of bits

<complex> The numeric type representing complex numbers

<deque> Sequences supporting addition and removal at each end

<exception> Predefined exception classes

<fstream> Stream I/O on files

<functional> Function objects

<iomanip> iostream manipulators

<ios> iostream base classes

<iosfwd> Forward declarations of iostream classes

<iostream> Basic stream I/O functionality

<istream> Input I/O streams

<iterator> Class for traversing a sequence

<limits> Properties of numeric types

<list> Ordered sequences
13-2 C++ User’s Guide • January 2005

13.2 C++ Standard Library Man Pages
TABLE 13-2 lists the documentation available for each of the components of the
standard library.

<locale> Support for internationalization

<map> Associative containers with key/value pairs

<memory> Special memory allocators

<new> Basic memory allocation and deallocation

<numeric> Generalized numeric operations

<ostream> Output I/O streams

<queue> Sequences supporting addition at the head and removal at the tail

<set> Associative container with unique keys

<sstream> Stream I/O using an in-memory string as source or sink

<stack> Sequences supporting addition and removal at the head

<stdexcept> Additional standard exception classes

<streambuf> Buffer classes for iostreams

<string> Sequences of characters

<typeinfo> Run-time type identification

<utility> Comparison operators

<valarray> Value arrays useful for numeric programming

<vector> Sequences supporting random access

TABLE 13-2 Man Pages for C++ Standard Library

Man Page Overview

Algorithms Generic algorithms for performing various operations
on containers and sequences

Associative_Containers Ordered containers

Bidirectional_Iterators An iterator that can both read and write and can
traverse a container in both directions

TABLE 13-1 C++ Standard Library Header Files (Continued)

Header File Description
Chapter 13 Using The C++ Standard Library 13-3

Containers A standard template library (STL) collection

Forward_Iterators A forward-moving iterator that can both read and
write

Function_Objects Object with an operator() defined

Heap_Operations See entries for make_heap, pop_heap, push_heap
and sort_heap

Input_Iterators A read-only, forward moving iterator

Insert_Iterators An iterator adaptor that allows an iterator to insert
into a container rather than overwrite elements in the
container

Iterators Pointer generalizations for traversal and modification
of collections

Negators Function adaptors and function objects used to reverse
the sense of predicate function objects

Operators Operators for the C++ Standard Template Library
Output

Output_Iterators A write-only, forward moving iterator

Predicates A function or a function object that returns a boolean
(true/false) value or an integer value

Random_Access_Iterators An iterator that reads, writes, and allows random
access to a container

Sequences A container that organizes a set of sequences

Stream_Iterators Includes iterator capabilities for ostreams and istreams
that allow generic algorithms to be used directly on
streams

__distance_type Determines the type of distance used by an iterator—
obsolete

__iterator_category Determines the category to which an iterator
belongs—obsolete

__reverse_bi_iterator An iterator that traverses a collection backwards

accumulate Accumulates all elements within a range into a single
value

adjacent_difference Outputs a sequence of the differences between each
adjacent pair of elements in a range

adjacent_find Find the first adjacent pair of elements in a sequence
that are equivalent

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-4 C++ User’s Guide • January 2005

advance Moves an iterator forward or backward (if available)
by a certain distance

allocator The default allocator object for storage management in
Standard Library containers

auto_ptr A simple, smart pointer class

back_insert_iterator An insert iterator used to insert items at the end of a
collection

back_inserter An insert iterator used to insert items at the end of a
collection

basic_filebuf Class that associates the input or output sequence with
a file

basic_fstream Supports reading and writing of named files or devices
associated with a file descriptor

basic_ifstream Supports reading from named files or other devices
associated with a file descriptor

basic_ios A base class that includes the common functions
required by all streams

basic_iostream Assists in formatting and interpreting sequences of
characters controlled by a stream buffer

basic_istream Assists in reading and interpreting input from
sequences controlled by a stream buffer

basic_istringstream Supports reading objects of class
basic_string<charT,traits,Allocator> from
an array in memory

basic_ofstream Supports writing into named files or other devices
associated with a file descriptor

basic_ostream Assists in formatting and writing output to sequences
controlled by a stream buffer

basic_ostringstream Supports writing objects of class
basic_string<charT,traits,Allocator>

basic_streambuf Abstract base class for deriving various stream buffers
to facilitate control of character sequences

basic_string A templatized class for handling sequences of
character-like entities

basic_stringbuf Associates the input or output sequence with a
sequence of arbitrary characters

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-5

basic_stringstream Supports writing and reading objects of class
basic_string<charT,traits,Allocator> to or
from an array in memory

binary_function Base class for creating binary function objects

binary_negate A function object that returns the complement of the
result of its binary predicate

binary_search Performs a binary search for a value on a container

bind1st Templatized utilities to bind values to function objects

bind2nd Templatized utilities to bind values to function objects

binder1st Templatized utilities to bind values to function objects

binder2nd Templatized utilities to bind values to function objects

bitset A template class and related functions for storing and
manipulating fixed-size sequences of bits

cerr Controls output to an unbuffered stream buffer
associated with the object stderr declared in <cstdio>

char_traits A traits class with types and operations for the
basic_string container and iostream classes

cin Controls input from a stream buffer associated with
the object stdin declared in <cstdio>

clog Controls output to a stream buffer associated with the
object stderr declared in <cstdio>

codecvt A code conversion facet

codecvt_byname A facet that includes code set conversion classification
facilities based on the named locales

collate A string collation, comparison, and hashing facet

collate_byname A string collation, comparison, and hashing facet

compare A binary function or a function object that returns true
or false

complex C++ complex number library

copy Copies a range of elements

copy_backward Copies a range of elements

count Count the number of elements in a container that
satisfy a given condition

count_if Count the number of elements in a container that
satisfy a given condition

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-6 C++ User’s Guide • January 2005

cout Controls output to a stream buffer associated with the
object stdout declared in <cstdio>

ctype A facet that includes character classification facilities

ctype_byname A facet that includes character classification facilities
based on the named locales

deque A sequence that supports random access iterators and
efficient insertion/deletion at both beginning and end

distance Computes the distance between two iterators

divides Returns the result of dividing its first argument by its
second

equal Compares two ranges for equality

equal_range Finds the largest subrange in a collection into which a
given value can be inserted without violating the
ordering of the collection

equal_to A binary function object that returns true if its first
argument equals its second

exception A class that supports logic and runtime errors

facets A family of classes used to encapsulate categories of
locale functionality

filebuf Class that associates the input or output sequence with
a file

fill Initializes a range with a given value

fill_n Initializes a range with a given value

find Finds an occurrence of value in a sequence

find_end Finds the last occurrence of a sub-sequence in a
sequence

find_first_of Finds the first occurrence of any value from one
sequence in another sequence

find_if Finds an occurrence of a value in a sequence that
satisfies a specified predicate

for_each Applies a function to each element in a range

fpos Maintains position information for the iostream classes

front_insert_iterator An insert iterator used to insert items at the beginning
of a collection

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-7

front_inserter An insert iterator used to insert items at the beginning
of a collection

fstream Supports reading and writing of named files or devices
associated with a file descriptor

generate Initialize a container with values produced by a value-
generator class

generate_n Initialize a container with values produced by a value-
generator class

get_temporary_buffer Pointer based primitive for handling memory

greater A binary function object that returns true if its first
argument is greater than its second

greater_equal A binary function object that returns true if its first
argument is greater than or equal to its second

gslice A numeric array class used to represent a generalized
slice from an array

gslice_array A numeric array class used to represent a BLAS-like
slice from a valarray

has_facet A function template used to determine if a locale has a
given facet

ifstream Supports reading from named files or other devices
associated with a file descriptor

includes A basic set of operation for sorted sequences

indirect_array A numeric array class used to represent elements
selected from a valarray

inner_product Computes the inner product A X B of two ranges A
and B

inplace_merge Merges two sorted sequences into one

insert_iterator An insert iterator used to insert items into a collection
rather than overwrite the collection

inserter An insert iterator used to insert items into a collection
rather than overwrite the collection

ios A base class that includes the common functions
required by all streams

ios_base Defines member types and maintains data for classes
that inherit from it

iosfwd Declares the input/output library template classes and
specializes them for wide and tiny characters

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-8 C++ User’s Guide • January 2005

isalnum Determines if a character is alphabetic or numeric

isalpha Determines if a character is alphabetic

iscntrl Determines if a character is a control character

isdigit Determines if a character is a decimal digit

isgraph Determines if a character is a graphic character

islower Determines whether a character is lower case

isprint Determines if a character is printable

ispunct Determines if a character is punctuation

isspace Determines if a character is a space

istream Assists in reading and interpreting input from
sequences controlled by a stream buffer

istream_iterator A stream iterator that has iterator capabilities for
istreams

istreambuf_iterator Reads successive characters from the stream buffer for
which it was constructed

istringstream Supports reading objects of class
basic_string<charT,traits,Alocator>
from an array in memory

istrstream Reads characters from an array in memory

isupper Determines whether a character is upper case

isxdigit Determines whether a character is a hexadecimal digit

iter_swap Exchanges values in two locations

iterator A base iterator class

iterator_traits Returns basic information about an iterator

less A binary function object that returns true if tis first
argument is less than its second

less_equal A binary function object that returns true if its first
argument is less than or equal to its second

lexicographical_compare Compares two ranges lexicographically

limits Refer to numeric_limits

list A sequence that supports bidirectional iterators

locale A localization class containing a polymorphic set of
facets

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-9

logical_and A binary function object that returns true if both of its
arguments are true

logical_not A unary function object that returns true if its
argument is false

logical_or A binary function object that returns true if either of its
arguments are true

lower_bound Determines the first valid position for an element in a
sorted container

make_heap Creates a heap

map An associative container with access to non-key values
using unique keys

mask_array A numeric array class that gives a masked view of a
valarray

max Finds and returns the maximum of a pair of values

max_element Finds the maximum value in a range

mem_fun Function objects that adapt a pointer to a member
function, to take the place of a global function

mem_fun1 Function objects that adapt a pointer to a member
function, to take the place of a global function

mem_fun_ref Function objects that adapt a pointer to a member
function, to take the place of a global function

mem_fun_ref1 Function objects that adapt a pointer to a member
function, to take the place of a global function

merge Merges two sorted sequences into a third sequence

messages Messaging facets

messages_byname Messaging facets

min Finds and returns the minimum of a pair of values

min_element Finds the minimum value in a range

minus Returns the result of subtracting its second argument
from its first

mismatch Compares elements from two sequences and returns
the first two elements that don't match each other

modulus Returns the remainder obtained by dividing the first
argument by the second argument

money_get Monetary formatting facet for input

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-10 C++ User’s Guide • January 2005

money_put Monetary formatting facet for output

moneypunct Monetary punctuation facets

moneypunct_byname Monetary punctuation facets

multimap An associative container that gives access to non-key
values using keys

multiplies A binary function object that returns the result of
multiplying its first and second arguments

multiset An associative container that allows fast access to
stored key values

negate Unary function object that returns the negation of its
argument

next_permutation Generates successive permutations of a sequence based
on an ordering function

not1 A function adaptor used to reverse the sense of a
unary predicate function object

not2 A function adaptor used to reverse the sense of a
binary predicate function object

not_equal_to A binary function object that returns true if its first
argument is not equal to its second

nth_element Rearranges a collection so that all elements lower in
sorted order than the nth element come before it and
all elements higher in sorter order than the nth element
come after it

num_get A numeric formatting facet for input

num_put A numeric formatting facet for output

numeric_limits A class for representing information about scalar types

numpunct A numeric punctuation facet

numpunct_byname A numeric punctuation facet

ofstream Supports writing into named files or other devices
associated with a file descriptor

ostream Assists in formatting and writing output to sequences
controlled by a stream buffer

ostream_iterator Stream iterators allow for use of iterators with
ostreams and istreams

ostreambuf_iterator Writes successive characters onto the stream buffer
object from which it was constructed

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-11

ostringstream Supports writing objects of class
basic_string<charT,traits,Allocator>

ostrstream Writes to an array in memory

pair A template for heterogeneous pairs of values

partial_sort Templatized algorithm for sorting collections of
entities

partial_sort_copy Templatized algorithm for sorting collections of
entities

partial_sum Calculates successive partial sums of a range of values

partition Places all of the entities that satisfy the given predicate
before all of the entities that do not

permutation Generates successive permutations of a sequence based
on an ordering function

plus A binary function object that returns the result of
adding its first and second arguments

pointer_to_binary_function A function object that adapts a pointer to a binary
function, to take the place of a binary_function

pointer_to_unary_function A function object class that adapts a pointer to a
function, to take the place of a unary_function

pop_heap Moves the largest element off the heap

prev_permutation Generates successive permutations of a sequence based
on an ordering function

priority_queue A container adapter that behaves like a priority queue

ptr_fun A function that is overloaded to adapt a pointer to a
function, to take the place of a function

push_heap Places a new element into a heap

queue A container adaptor that behaves like a queue (first in,
first out)

random_shuffle Randomly shuffles elements of a collection

raw_storage_iterator Enables iterator-based algorithms to store results into
uninitialized memory

remove Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-12 C++ User’s Guide • January 2005

remove_copy Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

remove_copy_if Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

remove_if Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

replace Substitutes elements in a collection with new values

replace_copy Substitutes elements in a collection with new values,
and moves the revised sequence into result

replace_copy_if Substitutes elements in a collection with new values,
and moves the revised sequence into result

replace_if Substitutes elements in a collection with new values

return_temporary_buffer A pointer-based primitive for handling memory

reverse Reverses the order of elements in a collection

reverse_copy Reverses the order of elements in a collection while
copying them to a new collection

reverse_iterator An iterator that traverses a collection backwards

rotate Swaps the segment that contains elements from first
through middle-1 with the segment that contains the
elements from middle through last

rotate_copy Swaps the segment that contains elements from first
through middle-1 with the segment that contains the
elements from middle through last

search Finds a sub-sequence within a sequence of values that
is element-wise equal to the values in an indicated
range

search_n Finds a sub-sequence within a sequence of values that
is element-wise equal to the values in an indicated
range

set An associative container that supports unique keys

set_difference A basic set operation for constructing a sorted
difference

set_intersection A basic set operation for constructing a sorted
intersection

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-13

set_symmetric_difference A basic set operation for constructing a sorted
symmetric difference

set_union A basic set operation for constructing a sorted union

slice A numeric array class for representing a BLAS-like
slice from an array

slice_array A numeric array class for representing a BLAS-like
slice from a valarray

smanip Helper classes used to implement parameterized
manipulators

smanip_fill Helper classes used to implement parameterized
manipulators

sort A templatized algorithm for sorting collections of
entities

sort_heap Converts a heap into a sorted collection

stable_partition Places all of the entities that satisfy the given predicate
before all of the entities that do not, while maintaining
the relative order of elements in each group

stable_sort A templatized algorithm for sorting collections of
entities

stack A container adapter that behaves like a stack (last in,
first out)

streambuf Abstract base class for deriving various stream buffers
to facilitate control of character sequences

string A typedef for basic_string<char,
char_traits<char>, allocator<char>>

stringbuf Associates the input or output sequence with a
sequence of arbitrary characters

stringstream Supports writing and reading objects of class
basic_string<charT,traits,Alocator>
to/from an array in memory

strstream Reads and writes to an array in memory

strstreambuf Associates either the input sequence or the output
sequence with a tiny character array whose elements
store arbitrary values

swap Exchanges values

swap_ranges Exchanges a range of values in one location with those
in another

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-14 C++ User’s Guide • January 2005

time_get A time formatting facet for input

time_get_byname A time formatting facet for input, based on the named
locales

time_put A time formatting facet for output

time_put_byname A time formatting facet for output, based on the
named locales

tolower Converts a character to lower case.

toupper Converts a character to upper case

transform Applies an operation to a range of values in a
collection and stores the result

unary_function A base class for creating unary function objects

unary_negate A function object that returns the complement of the
result of its unary predicate

uninitialized_copy An algorithm that uses construct to copy values from
one range to another location

uninitialized_fill An algorithm that uses the construct algorithm for
setting values in a collection

uninitialized_fill_n An algorithm that uses the construct algorithm for
setting values in a collection

unique Removes consecutive duplicates from a range of values
and places the resulting unique values into the result

unique_copy Removes consecutive duplicates from a range of values
and places the resulting unique values into the result

upper_bound Determines the last valid position for a value in a
sorted container

use_facet A template function used to obtain a facet

valarray An optimized array class for numeric operations

vector A sequence that supports random access iterators

wcerr Controls output to an unbuffered stream buffer
associated with the object stderr declared in <cstdio>

wcin Controls input from a stream buffer associated with
the object stdin declared in <cstdio>

wclog Controls output to a stream buffer associated with the
object stderr declared in <cstdio>

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 13 Using The C++ Standard Library 13-15

13.3 STLport
Use the STLport implementation of the standard library if you wish to use an
alternative standard library to libCstd. You can issue the following compiler
option to turn off libCstd and use the STLport library instead:

■ -library=stlport4

See Section A.2.48, “-library=l[,l...]” on page A-47 for more information.

wcout Controls output to a stream buffer associated with the
object stdout declared in <cstdio>

wfilebuf Class that associates the input or output sequence with
a file

wfstream Supports reading and writing of named files or devices
associated with a file descriptor

wifstream Supports reading from named files or other devices
associated with a file descriptor

wios A base class that includes the common functions
required by all streams

wistream Assists in reading and interpreting input from
sequences controlled by a stream buffer

wistringstream Supports reading objects of class
basic_string<charT,traits,Allocator>
from an array in memory

wofstream Supports writing into named files or other devices
associated with a file descriptor

wostream Assists in formatting and writing output to sequences
controlled by a stream buffer

wostringstream Supports writing objects of class
basic_string<charT,traits,Allocator>

wstreambuf Abstract base class for deriving various stream buffers
to facilitate control of character sequences

wstring A typedef for basic_string<wchar_t,
char_traits<wchar_t>, allocator<wchar_t>>

wstringbuf Associates the input or output sequence with a
sequence of arbitrary characters

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
13-16 C++ User’s Guide • January 2005

This release includes both a static archive called libstlport.a and a dynamic
library called libstlport.so.

Consider the following information before you decide whether or not you are going
to use the STLport implementation:

■ STLport is an open source product and does not guarantee compatibility across
different releases. In other words, compiling with a future version of STLport may
break applications compiled with STLport 4.5.3. It also might not be possible to
link binaries compiled using STLport 4.5.3 with binaries compiled using a future
version of STLport.

■ The stlport4, Cstd and iostream libraries provide their own implementation
of I/O streams. Specifying more than one of these with the -library option can
result in undefined program behavior.

■ Future releases of the compiler might not include STLport4. They might include
only a later version of STLport. The compiler option -library=stlport4 might
not be available in future releases, but could be replaced by an option referring to
a later STLport version.

■ Tools.h++ is not supported with STLport.

■ STLport is binary incompatible with the default libCstd. If you use the STLport
implementation of the standard library, then you must compile and link all files,
including third-party libraries, with the option -library=stlport4. This
means, for example, that you cannot use the STLport implementation and the
C++ interval math library libCsunimath together. The reason for this is that
libCsunimath was compiled with the default library headers, not with STLport.

■ If you decide to use the STLport implementation, be certain to include header
files that your code implicitly references. The standard headers are allowed, but
not required, to include one another as part of the implementation.

■ You cannot use the STLport implementation if you compile with -compat=4.

13.3.1 Redistribution and Supported STLport Libraries
See the Runtime Libraries Readme for a list of libraries and object files that you can
redistribute with your executables or libraries under the terms of the End User
Object Code License. The C++ section of this readme lists which version of the
STLport .so this release of the compiler supports. This readme is available as part of
the installed product. To view the HTML version of this readme, point your browser
to the default installation directory:

 file:/opt/SUNWspro/docs/index.html

Note – If your product software is not installed in the default directory, ask your
system administrator for the equivalent path on your system.
Chapter 13 Using The C++ Standard Library 13-17

The following test case does not compile with STLport because the code in the
test case makes unportable assumptions about the library implementation. In
particular, it assumes that either <vector> or <iostream> automatically include
<iterator>, which is not a valid assumption.

To fix the problem, include <iterator> in the source.

#include <vector>
#include <iostream>

using namespace std;

int main ()
{
 vector <int> v1 (10);
 vector <int> v3 (v1.size());
 for (int i = 0; i < v1.size (); i++)
 {v1[i] = i; v3[i] = i;}
 vector <int> v2(v1.size ());
 copy_backward (v1.begin (), v1.end (), v2.end ());
 ostream_iterator<int> iter (cout, " ");
 copy (v2.begin (), v2.end (), iter);
 cout << endl;
 return 0;
}

13-18 C++ User’s Guide • January 2005

CHAPTER 14

Using the Classic iostream Library

C++, like C, has no built-in input or output statements. Instead, I/O facilities are
provided by a library. The C++ compiler provides both the classic implementation
and the ISO standard implementation of the iostream classes.

■ In compatibility mode (-compat[=4]), the classic iostream classes are
contained in libC.

■ In standard mode (default mode), the classic iostream classes are contained in
libiostream. Use libiostream when you have source code that uses the
classic iostream classes and you want to compile the source in standard mode.
To use the classic iostream facilities in standard mode, include the iostream.h
header file and compile using the -library=iostream option.

■ The standard iostream classes are available only in standard mode, and are
contained in the C++ standard library, libCstd.

This chapter provides an introduction to the classic iostream library and provides
examples of its use. This chapter does not provide a complete description of the
iostream library. See the iostream library man pages for more details. To access
the classic iostream man pages type:

14.1 Predefined iostreams
There are four predefined iostreams:

■ cin, connected to standard input
■ cout, connected to standard output
■ cerr, connected to standard error
■ clog, connected to standard error

example% man -s 3CC4 name
14-1

The predefined iostreams are fully buffered, except for cerr. See Section 14.3.1,
“Output Using iostream” on page 14-4 and Section 14.3.2, “Input Using
iostream” on page 14-7.

14.2 Basic Structure of iostream Interaction
By including the iostream library, a program can use any number of input or
output streams. Each stream has some source or sink, which may be one of the
following:

■ Standard input
■ Standard output
■ Standard error
■ A file
■ An array of characters

A stream can be restricted to input or output, or a single stream can allow both input
and output. The iostream library implements these streams using two processing
layers.

■ The lower layer implements sequences, which are simply streams of characters.
These sequences are implemented by the streambuf class, or by classes derived
from it.

■ The upper layer performs formatting operations on sequences. These formatting
operations are implemented by the istream and ostream classes, which have as
a member an object of a type derived from class streambuf. An additional class,
iostream, is for streams on which both input and output can be performed.

Standard input, output, and error are handled by special class objects derived from
class istream or ostream.

The ifstream, ofstream, and fstream classes, which are derived from istream,
ostream, and iostream respectively, handle input and output with files.

The istrstream, ostrstream, and strstream classes, which are derived from
istream, ostream, and iostream respectively, handle input and output to and
from arrays of characters.

When you open an input or output stream, you create an object of one of these
types, and associate the streambuf member of the stream with a device or file. You
generally do this association through the stream constructor, so you don’t work with
the streambuf directly. The iostream library predefines stream objects for the
standard input, standard output, and error output, so you don’t have to create your
own objects for those streams.
14-2 C++ User’s Guide • January 2005

You use operators or iostream member functions to insert data into a stream
(output) or extract data from a stream (input), and to control the format of data that
you insert or extract.

When you want to insert and extract a new data type—one of your classes—you
generally overload the insertion and extraction operators.

14.3 Using the Classic iostream Library
To use routines from the classic iostream library, you must include the header files
for the part of the library you need. The header files are described in the following
table.

You usually do not need all of these header files in your program. Include only the
ones that contain the declarations you need. In compatibility mode (-compat[=4]),
the classic iostream library is part of libC, and is linked automatically by the CC
driver. In standard mode (the default), libiostream contains the classic iostream
library.

TABLE 14-1 iostream Routine Header Files

Header File Description

iostream.h Declares basic features of iostream library.

fstream.h Declares iostreams and streambufs specialized to files. Includes
iostream.h.

strstream.h Declares iostreams and streambufs specialized to character arrays.
Includes iostream.h.

iomanip.h Declares manipulators: values you insert into or extract from
iostreams to have different effects. Includes iostream.h.

stdiostream.h (obsolete) Declares iostreams and streambufs specialized to use
stdio FILEs.Includes iostream.h.

stream.h (obsolete) Includes iostream.h, fstream.h, iomanip.h, and
stdiostream.h. For compatibility with old-style streams from C++
version 1.2.
Chapter 14 Using the Classic iostream Library 14-3

14.3.1 Output Using iostream
Output using iostream usually relies on the overloaded left-shift operator (<<)
which, in the context of iostream, is called the insertion operator. To output a value
to standard output, you insert the value in the predefined output stream cout. For
example, given a value someValue, you send it to standard output with a statement
like:

The insertion operator is overloaded for all built-in types, and the value represented
by someValue is converted to its proper output representation. If, for example,
someValue is a float value, the << operator converts the value to the proper
sequence of digits with a decimal point. Where it inserts float values on the output
stream, << is called the float inserter. In general, given a type X, << is called the X
inserter. The format of output and how you can control it is discussed in the
ios(3CC4) man page.

The iostream library does not support user-defined types. If you define types that
you want to output in your own way, you must define an inserter (that is, overload
the << operator) to handle them correctly.

The << operator can be applied repetitively. To insert two values on cout, you can
use a statement like the one in the following example:

The output from the above example will show no space between the two values. So
you may want to write the code this way:

The << operator has the precedence of the left shift operator (its built-in meaning).
As with other operators, you can always use parentheses to specify the order of
action. It is often a good idea to use parentheses to avoid problems of precedence. Of
the following four statements, the first two are equivalent, but the last two are not.

cout << someValue;

cout << someValue << anotherValue;

cout << someValue << " " << anotherValue;

cout << a+b; // + has higher precedence than <<
cout << (a+b);
cout << (a&y);// << has precedence higher than &
cout << a&y; // probably an error: (cout << a) & y
14-4 C++ User’s Guide • January 2005

14.3.1.1 Defining Your Own Insertion Operator

The following example defines a string class:

The insertion and extraction operators must in this case be defined as friends
because the data part of the string class is private.

Here is the definition of operator<< overloaded for use with strings.

operator<< takes ostream& (that is, a reference to an ostream) as its first
argument and returns the same ostream, making it possible to combine insertions
in one statement.

14.3.1.2 Handling Output Errors

Generally, you don’t have to check for errors when you overload operator<<
because the iostream library is arranged to propagate errors.

When an error occurs, the iostream where it occurred enters an error state. Bits in
the iostream’s state are set according to the general category of the error. The
inserters defined in iostream ignore attempts to insert data into any stream that is
in an error state, so such attempts do not change the iostream’s state.

#include <stdlib.h>
#include <iostream.h>

class string {
private:

char* data;
size_t size;

public:
// (functions not relevant here)

friend ostream& operator<<(ostream&, const string&);
friend istream& operator>>(istream&, string&);

};

ostream& operator<< (ostream& ostr, const string& output)
{ return ostr << output.data;}

cout << string1 << string2;
Chapter 14 Using the Classic iostream Library 14-5

In general, the recommended way to handle errors is to periodically check the state
of the output stream in some central place. If there is an error, you should handle it
in some way. This chapter assumes that you define a function error, which takes a
string and aborts the program. error is not a predefined function. See
Section 14.3.9, “Handling Input Errors” on page 14-10 for an example of an error
function. You can examine the state of an iostream with the operator !,which
returns a nonzero value if the iostream is in an error state. For example:

There is another way to test for errors. The ios class defines operator void *(),
so it returns a NULL pointer when there is an error. You can use a statement like:

You can also use the function good, a member of ios:

The error bits are declared in the enum:

For details on the error functions, see the iostream man pages.

14.3.1.3 Flushing

As with most I/O libraries, iostream often accumulates output and sends it on in
larger and generally more efficient chunks. If you want to flush the buffer, you
simply insert the special value flush. For example:

flush is an example of a kind of object known as a manipulator, which is a value that
can be inserted into an iostream to have some effect other than causing output of
its value. It is really a function that takes an ostream& or istream& argument and
returns its argument after performing some actions on it (see Section 14.7,
“Manipulators” on page 14-15).

if (!cout) error("output error");

if (cout << x) return; // return if successful

if (cout.good()) return; // return if successful

enum io_state {goodbit=0, eofbit=1, failbit=2,
badbit=4, hardfail=0x80};

cout << "This needs to get out immediately." << flush;
14-6 C++ User’s Guide • January 2005

14.3.1.4 Binary Output

To obtain output in the raw binary form of a value, use the member function write
as shown in the following example. This example shows the output in the raw
binary form of x.

The previous example violates type discipline by converting &x to char*. Doing so
is normally harmless, but if the type of x is a class with pointers, virtual member
functions, or one that requires nontrivial constructor actions, the value written by
the above example cannot be read back in properly.

14.3.2 Input Using iostream
Input using iostream is similar to output. You use the extraction operator >> and
you can string together extractions the way you can with insertions. For example:

This statement gets two values from standard input. As with other overloaded
operators, the extractors used depend on the types of a and b (and two different
extractors are used if a and b have different types). The format of input and how
you can control it is discussed in some detail in the ios(3CC4) man page. In general,
leading whitespace characters (spaces, newlines, tabs, form-feeds, and so on) are
ignored.

14.3.3 Defining Your Own Extraction Operators
When you want input for a new type, you overload the extraction operator for it,
just as you overload the insertion operator for output.

Class string defines its extraction operator in the following code example:

cout.write((char*)&x, sizeof(x));

cin >> a >> b;

CODE EXAMPLE 14-1 string Extraction Operator

istream& operator>> (istream& istr, string& input)

{

 const int maxline = 256;

 char holder[maxline];

 istr.get(holder, maxline, ‘\n’);
Chapter 14 Using the Classic iostream Library 14-7

The get function reads characters from the input stream istr and stores them in
holder until maxline-1 characters have been read, or a new line is encountered, or
EOF, whichever happens first. The data in holder is then null-terminated. Finally,
the characters in holder are copied into the target string.

By convention, an extractor converts characters from its first argument (in this case,
istream& istr), stores them in its second argument, which is always a reference,
and returns its first argument. The second argument must be a reference because an
extractor is meant to store the input value in its second argument.

14.3.4 Using the char* Extractor
This predefined extractor is mentioned here because it can cause problems. Use it
like this:

This extractor skips leading whitespace and extracts characters and copies them to x
until it reaches another whitespace character. It then completes the string with a
terminating null (0) character. Be careful, because input can overflow the given array.

You must also be sure the pointer points to allocated storage. For example, here is a
common error:

There is no telling where the input data will be stored, and it may cause your
program to abort.

 input = holder;

 return istr;

}

char x[50];
cin >> x;

char * p; // not initialized
cin >> p;

CODE EXAMPLE 14-1 string Extraction Operator (Continued)
14-8 C++ User’s Guide • January 2005

14.3.5 Reading Any Single Character
In addition to using the char extractor, you can get a single character with either
form of the get member function. For example:

Note – Unlike the other extractors, the char extractor does not skip leading
whitespace.

Here is a way to skip only blanks, stopping on a tab, newline, or any other character:

14.3.6 Binary Input
If you need to read binary values (such as those written with the member function
write), you can use the read member function. The following example shows how
to input the raw binary form of x using the read member function, and is the
inverse of the earlier example that uses write.

14.3.7 Peeking at Input
You can use the peek member function to look at the next character in the stream
without extracting it. For example:

char c;
cin.get(c); // leaves c unchanged if input fails

int b;
b = cin.get(); // sets b to EOF if input fails

int a;
do {
 a = cin.get();
 }
while(a ==’ ’);

cin.read((char*)&x, sizeof(x));

if (cin.peek()!= c) return 0;
Chapter 14 Using the Classic iostream Library 14-9

14.3.8 Extracting Whitespace
By default, the iostream extractors skip leading whitespace. You can turn off the
skip flag to prevent this from happening. The following example turns off whitespace
skipping from cin, then turns it back on:

You can use the iostream manipulator ws to remove leading whitespace from the
iostream, whether or not skipping is enabled. The following example shows how
to remove the leading whitespace from iostream istr:

14.3.9 Handling Input Errors
By convention, an extractor whose first argument has a nonzero error state should
not extract anything from the input stream and should not clear any error bits. An
extractor that fails should set at least one error bit.

As with output errors, you should check the error state periodically and take some
action, such as aborting, when you find a nonzero state. The ! operator tests the
error state of an iostream. For example, the following code produces an input error
if you type alphabetic characters for input:

cin.unsetf(ios::skipws); // turn off whitespace skipping
...
cin.setf(ios::skipws); // turn it on again

istr >> ws;

#include <stdlib.h>
#include <iostream.h>
void error (const char* message) {

 cerr << message << "\n";
 exit(1);

}
int main() {

 cout << "Enter some characters: ";
 int bad;
 cin >> bad;
 if (!cin) error("aborted due to input error");
 cout << "If you see this, not an error." << "\n";
 return 0;

}
14-10 C++ User’s Guide • January 2005

Class ios has member functions that you can use for error handling. See the man
pages for details.

14.3.10 Using iostreams With stdio
You can use stdio with C++ programs, but problems can occur when you mix
iostreams and stdio in the same standard stream within a program. For example,
if you write to both stdout and cout, independent buffering occurs and produces
unexpected results. The problem is worse if you input from both stdin and cin,
since independent buffering may turn the input into trash.

To eliminate this problem with standard input, standard output and standard error,
use the following instruction before performing any input or output. It connects all
the predefined iostreams with the corresponding predefined stdio FILEs.

Such a connection is not the default because there is a significant performance
penalty when the predefined streams are made unbuffered as part of the connection.
You can use both stdio and iostreams in the same program applied to different
files. That is, you can write to stdout using stdio routines and write to other files
attached to iostreams. You can open stdio FILEs for input and also read from
cin so long as you don’t also try to read from stdin.

14.4 Creating iostreams
To read or write a stream other than the predefined iostreams, you need to create
your own iostream. In general, that means creating objects of types defined in the
iostream library. This section discusses the various types available.

14.4.1 Dealing With Files Using Class fstream
Dealing with files is similar to dealing with standard input and standard output;
classes ifstream, ofstream, and fstream are derived from classes istream,
ostream, and iostream, respectively. As derived classes, they inherit the insertion
and extraction operations (along with the other member functions) and also have
members and constructors for use with files.

ios::sync_with_stdio();
Chapter 14 Using the Classic iostream Library 14-11

Include the file fstream.h to use any of the fstreams. Use an ifstream when
you only want to perform input, an ofstream for output only, and an fstream for
a stream on which you want to perform both input and output. Use the name of the
file as the constructor argument.

For example, copy the file thisFile to the file thatFile as in the following
example:

This code:

■ Creates an ifstream object called fromFile with a default mode of ios::in
and connects it to thisFile. It opens thisFile.

■ Checks the error state of the new ifstream object and, if it is in a failed state,
calls the error function, which must be defined elsewhere in the program.

■ Creates an ofstream object called toFile with a default mode of ios::out and
connects it to thatFile.

■ Checks the error state of toFile as above.

■ Creates a char variable to hold the data while it is passed.

■ Copies the contents of fromFile to toFile one character at a time.

Note – It is, of course, undesirable to copy a file this way, one character at a time.
This code is provided just as an example of using fstreams. You should instead
insert the streambuf associated with the input stream into the output stream. See
Section 14.10, “Streambufs” on page 14-20, and the man page sbufpub(3CC4).

14.4.1.1 Open Mode

The mode is constructed by or-ing bits from the enumerated type open_mode,
which is a public type of class ios and has the definition:

ifstream fromFile("thisFile");
if (!fromFile)

error("unable to open ’thisFile’ for input");
ofstream toFile ("thatFile");
if (!toFile)

error("unable to open ’thatFile’ for output");
char c;
while (toFile && fromFile.get(c)) toFile.put(c);

enum open_mode {binary=0, in=1, out=2, ate=4, app=8, trunc=0x10,
 nocreate=0x20, noreplace=0x40};
14-12 C++ User’s Guide • January 2005

Note – The binary flag is not needed on UNIX, but is provided for compatibility
with systems that do need it. Portable code should use the binary flag when
opening binary files.

You can open a file for both input and output. For example, the following code
opens file someName for both input and output, attaching it to the fstream variable
inoutFile.

14.4.1.2 Declaring an fstream Without Specifying a File

You can declare an fstream without specifying a file and open the file later. For
example, the following creates the ofstream toFile for writing.

14.4.1.3 Opening and Closing Files

You can close the fstream and then open it with another file. For example, to
process a list of files provided on the command line:

14.4.1.4 Opening a File Using a File Descriptor

If you know a file descriptor, such as the integer 1 for standard output, you can open
it like this:

fstream inoutFile("someName", ios::in|ios::out);

ofstream toFile;
toFile.open(argv[1], ios::out);

ifstream infile;
for (char** f = &argv[1]; *f; ++f) {
 infile.open(*f, ios::in);
 ...;
 infile.close();
}

ofstream outfile;
outfile.attach(1);
Chapter 14 Using the Classic iostream Library 14-13

When you open a file by providing its name to one of the fstream constructors or
by using the open function, the file is automatically closed when the fstream is
destroyed (by a delete or when it goes out of scope). When you attach a file to an
fstream, it is not automatically closed.

14.4.1.5 Repositioning Within a File

You can alter the reading and writing position in a file. Several tools are supplied for
this purpose.

■ streampos is a type that can record a position in an iostream.

■ tellg (tellp) is an istream (ostream) member function that reports the file
position. Since istream and ostream are the parent classes of fstream, tellg
and tellp can also be invoked as a member function of the fstream class.

■ seekg (seekp) is an istream (ostream) member function that finds a given
position.

■ The seek_dir enum specifies relative positions for use with seek.

For example, given an fstream aFile:

seekg (seekp) can take one or two parameters. When it has two parameters, the
first is a position relative to the position indicated by the seek_dir value given as
the second parameter. For example:

moves to 10 bytes from the end while

moves to 10 bytes forward from the current position.

enum seek_dir {beg=0, cur=1, end=2};

streampos original = aFile.tellp(); //save current position
aFile.seekp(0, ios::end); //reposition to end of file
aFile << x; //write a value to file
aFile.seekp(original); //return to original position

aFile.seekp(-10, ios::end);

aFile.seekp(10, ios::cur);
14-14 C++ User’s Guide • January 2005

Note – Arbitrary seeks on text streams are not portable, but you can always return
to a previously saved streampos value.

14.5 Assignment of iostreams
iostreams does not allow assignment of one stream to another.

The problem with copying a stream object is that there are then two versions of the
state information, such as a pointer to the current write position within an output
file, which can be changed independently. As a result, problems could occur.

14.6 Format Control
Format control is discussed in detail in the in the man page ios(3CC4).

14.7 Manipulators
Manipulators are values that you can insert into or extract from iostreams to have
special effects.

Parameterized manipulators are manipulators that take one or more parameters.

Because manipulators are ordinary identifiers, and therefore use up possible names,
iostream doesn’t define them for every possible function. A number of
manipulators are discussed with member functions in other parts of this chapter.

There are 13 predefined manipulators, as described in TABLE 14-2. When using that
table, assume the following:

■ i has type long.
■ n has type int.
■ c has type char.
■ istr is an input stream.
■ ostr is an output stream.
Chapter 14 Using the Classic iostream Library 14-15

To use predefined manipulators, you must include the file iomanip.h in your
program.

You can define your own manipulators. There are two basic types of manipulator:

■ Plain manipulator—Takes an istream&, ostream&, or ios& argument, operates
on the stream, and then returns its argument.

■ Parameterized manipulator—Takes an istream&, ostream&, or ios& argument,
one additional argument (the parameter), operates on the stream, and then
returns its stream argument.

TABLE 14-2 iostream Predefined Manipulators

Predefined Manipulator Description

 1 ostr << dec, istr >> dec Makes the integer conversion base 10.

 2 ostr << endl Inserts a newline character ('\n') and
invokes ostream::flush().

 3 ostr << ends Inserts a null (0) character. Useful
when dealing with strstreams.

 4 ostr << flush Invokes ostream::flush().

 5 ostr << hex, istr >> hex Makes the integer conversion base 16.

 6 ostr << oct, istr >> oct Make the integer conversion base 8.

 7 istr >> ws Extracts whitespace characters (skips
whitespace) until a non-whitespace
character is found (which is left in
istr).

 8 ostr << setbase(n),
istr >> setbase(n)

Sets the conversion base to n (0, 8, 10,
16 only).

 9 ostr << setw(n), istr >> setw(n) Invokes ios::width(n). Sets the
field width to n.

10 ostr << resetiosflags(i),
istr >> resetiosflags(i)

Clears the flags bitvector according to
the bits set in i.

11 ostr << setiosflags(i),
istr >> setiosflags(i)

Sets the flags bitvector according to the
bits set in i.

12 ostr << setfill(c),
istr >> setfill(c)

Sets the fill character (for padding a
field) to c.

13 ostr << setprecision(n),
istr >> setprecision(n)

Sets the floating-point precision to n
digits.
14-16 C++ User’s Guide • January 2005

14.7.1 Using Plain Manipulators
A plain manipulator is a function that:

■ Takes a reference to a stream
■ Operates on it in some way
■ Returns its argument

The shift operators taking (a pointer to) such a function are predefined for
iostreams, so the function can be put in a sequence of input or output operators.
The shift operator calls the function rather than trying to read or write a value. An
example of a tab manipulator that inserts a tab in an ostream is:

This is an elaborate way to achieve the following:

ostream& tab(ostream& os) {
 return os <<’\t’;
}

...
cout << x << tab << y;

const char tab = '\t';
...
cout << x << tab << y;
Chapter 14 Using the Classic iostream Library 14-17

The following code is another example, which cannot be accomplished with a simple
constant. Suppose you want to turn whitespace skipping on and off for an input
stream. You can use separate calls to ios::setf and ios::unsetf to turn the
skipws flag on and off, or you could define two manipulators.

14.7.2 Parameterized Manipulators
One of the parameterized manipulators that is included in iomanip.h is setfill.
setfill sets the character that is used to fill out field widths. It is implemented as
shown in the following example:

A parameterized manipulator is implemented in two parts:

#include <iostream.h>
#include <iomanip.h>
istream& skipon(istream &is) {
 is.setf(ios::skipws, ios::skipws);
 return is;
}
istream& skipoff(istream& is) {
 is.unsetf(ios::skipws);
 return is;
}
...
int main ()
{
 int x,y;
 cin >> skipon >> x >> skipoff >> y;
 return 1;
}

//file setfill.cc
#include<iostream.h>
#include<iomanip.h>

//the private manipulator
static ios& sfill(ios& i, int f) {
 i.fill(f);
 return i;
}
//the public applicator
smanip_int setfill(int f) {
 return smanip_int(sfill, f);
}

14-18 C++ User’s Guide • January 2005

■ The manipulator. It takes an extra parameter. In the previous code example, it takes
an extra int parameter. You cannot place this manipulator function in a sequence
of input or output operations, since there is no shift operator defined for it.
Instead, you must use an auxiliary function, the applicator.

■ The applicator. It calls the manipulator. The applicator is a global function, and
you make a prototype for it available in a header file. Usually the manipulator is
a static function in the file containing the source code for the applicator. The
manipulator is called only by the applicator, and if you make it static, you keep
its name out of the global address space.

Several classes are defined in the header file iomanip.h. Each class holds the
address of a manipulator function and the value of one parameter. The iomanip
classes are described in the man page manip(3CC4). The previous example uses the
smanip_int class, which works with an ios. Because it works with an ios, it also
works with an istream and an ostream. The previous example also uses a second
parameter of type int.

The applicator creates and returns a class object. In the previous code example the
class object is an smanip_int, and it contains the manipulator and the int
argument to the applicator. The iomanip.h header file defines the shift operators
for this class. When the applicator function setfill appears in a sequence of input
or output operations, the applicator function is called, and it returns a class. The
shift operator acts on the class to call the manipulator function with its parameter
value, which is stored in the class.

In the following example, the manipulator print_hex:

■ Puts the output stream into the hex mode.
■ Inserts a long value into the stream.
■ Restores the conversion mode of the stream.

The class omanip_long is used because this code example is for output only, and it
operates on a long rather than an int:

#include <iostream.h>
#include <iomanip.h>
static ostream& xfield(ostream& os, long v) {
 long save = os.setf(ios::hex, ios::basefield);
 os << v;
 os.setf(save, ios::basefield);
 return os;
 }
omanip_long print_hex(long v) {
 return omanip_long(xfield, v);
 }
Chapter 14 Using the Classic iostream Library 14-19

14.8 Strstreams: iostreams for Arrays
See the strstream(3CC4) man page.

14.9 Stdiobufs: iostreams for stdio Files
See the stdiobuf(3CC4) man page.

14.10 Streambufs
iostreams are the formatting part of a two-part (input or output) system. The other
part of the system is made up of streambufs, which deal in input or output of
unformatted streams of characters.

You usually use streambufs through iostreams, so you don’t have to worry
about the details of streambufs. You can use streambufs directly if you choose to,
for example, if you need to improve efficiency or to get around the error handling or
formatting built into iostreams.

14.10.1 Working With Streambufs
A streambuf consists of a stream or sequence of characters and one or two pointers
into that sequence. Each pointer points between two characters. (Pointers cannot
actually point between characters, but it is helpful to think of them that way.) There
are two kinds of streambuf pointers:

■ A put pointer, which points just before the position where the next character will
be stored

■ A get pointer, which points just before the next character to be fetched

A streambuf can have one or both of these pointers.
14-20 C++ User’s Guide • January 2005

14.10.1.1 Position of Pointers

The positions of the pointers and the contents of the sequences can be manipulated
in various ways. Whether or not both pointers move when manipulated depends on
the kind of streambuf used. Generally, with queue-like streambufs, the get and
put pointers move independently; with file-like streambufs the get and put
pointers always move together. A strstream is an example of a queue-like stream;
an fstream is an example of a file-like stream.

14.10.2 Using Streambufs
You never create an actual streambuf object, but only objects of classes derived
from class streambuf. Examples are filebuf and strstreambuf, which are
described in man pages filebuf(3CC4) and ssbuf(3), respectively. Advanced users
may want to derive their own classes from streambuf to provide an interface to a
special device or to provide other than basic buffering. Man pages sbufpub(3CC4)
and sbufprot(3CC4) discuss how to do this.

Apart from creating your own special kind of streambuf, you may want to access
the streambuf associated with an iostream to access the public member
functions, as described in the man pages referenced above. In addition, each
iostream has a defined inserter and extractor which takes a streambuf pointer.
When a streambuf is inserted or extracted, the entire stream is copied.

Here is another way to do the file copy discussed earlier, with the error checking
omitted for clarity:

We open the input and output files as before. Every iostream class has a member
function rdbuf that returns a pointer to the streambuf object associated with it. In
the case of an fstream, the streambuf object is type filebuf. The entire file
associated with fromFile is copied (inserted into) the file associated with toFile.
The last line could also be written like this:

The source file is then extracted into the destination. The two methods are entirely
equivalent.

ifstream fromFile("thisFile");
ofstream toFile ("thatFile");
toFile << fromFile.rdbuf();

fromFile >> toFile.rdbuf();
Chapter 14 Using the Classic iostream Library 14-21

14.11 iostream Man Pages
A number of C++ man pages give details of the iostream library. The following
table gives an overview of what is in each man page.

To access a classic iostream library man page, type:

example% man -s 3CC4 name

TABLE 14-3 iostream Man Pages Overview

Man Page Overview

filebuf Details the public interface for the class filebuf, which is derived from
streambuf and is specialized for use with files. See the sbufpub(3CC4)
and sbufprot(3CC4) man pages for details of features inherited from class
streambuf. Use the filebuf class through class fstream.

fstream Details specialized member functions of classes ifstream, ofstream, and
fstream, which are specialized versions of istream, ostream, and
iostream for use with files.

ios Details parts of class ios, which functions as a base class for iostreams. It
contains state data common to all streams.

ios.intro Gives an introduction to and overview of iostreams.

istream Details the following:
• Member functions for class istream, which supports interpretation of

characters fetched from a streambuf
• Input formatting
• Positioning functions described as part of class ostream.
• Some related functions
• Related manipulators

manip Describes the input and output manipulators defined in the iostream
library.

ostream Details the following:
• Member functions for class ostream, which supports interpretation of

characters written to a streambuf
• Output formatting
• Positioning functions described as part of class ostream
• Some related functions
• Related manipulators
14-22 C++ User’s Guide • January 2005

sbufprot Describes the interface needed by programmers who are coding a class
derived from class streambuf. Also refer to the sbufpub(3CC4) man page
because some public functions are not discussed in the sbufprot(3CC4)
man page.

sbufpub Details the public interface of class streambuf, in particular, the public
member functions of streambuf. This man page contains the information
needed to manipulate a streambuf-type object directly, or to find out
about functions that classes derived from streambuf inherit from it. If you
want to derive a class from streambuf, also see the sbufprot(3CC4) man
page.

ssbuf Details the specialized public interface of class strstreambuf, which is
derived from streambuf and specialized for dealing with arrays of
characters. See the sbufpub(3CC4) man page for details of features
inherited from class streambuf.

stdiobuf Contains a minimal description of class stdiobuf, which is derived from
streambuf and specialized for dealing with stdio FILEs. See the
sbufpub(3CC4) man page for details of features inherited from class
streambuf.

strstream Details the specialized member functions of strstreams, which are
implemented by a set of classes derived from the iostream classes and
specialized for dealing with arrays of characters.

TABLE 14-3 iostream Man Pages Overview (Continued)

Man Page Overview
Chapter 14 Using the Classic iostream Library 14-23

14.12 iostream Terminology
The iostream library descriptions often use terms similar to terms from general
programming, but with specialized meanings. The following table defines these
terms as they are used in discussing the iostream library.

TABLE 14-4 iostream Terminology

iostream Term Definition

Buffer A word with two meanings, one specific to the iostream package and one
more generally applied to input and output.

When referring specifically to the iostream library, a buffer is an object of
the type defined by the class streambuf.

A buffer, generally, is a block of memory used to make efficient transfer of
characters for input of output. With buffered I/O, the actual transfer of
characters is delayed until the buffer is full or forcibly flushed.
An unbuffered buffer refers to a streambuf where there is no buffer in the
general sense defined above. This chapter avoids use of the term buffer to
refer to streambufs. However, the man pages and other C++
documentation do use the term buffer to mean streambufs.

Extraction The process of taking input from an iostream.

Fstream An input or output stream specialized for use with files. Refers specifically
to a class derived from class iostream when printed in courier font.

Insertion The process of sending output into an iostream.

iostream Generally, an input or output stream.

iostream
library

The library implemented by the include files iostream.h, fstream.h,
strstream.h, iomanip.h, and stdiostream.h. Because iostream is
an object-oriented library, you should extend it. So, some of what you can
do with the iostream library is not implemented.

Stream An iostream, fstream, strstream, or user-defined stream in general.

Streambuf A buffer that contains a sequence of characters with a put or get pointer, or
both. When printed in courier font, it means the particular class.
Otherwise, it refers generally to any object of class streambuf or a class
derived from streambuf. Any stream object contains an object, or a
pointer to an object, of a type derived from streambuf.

Strstream An iostream specialized for use with character arrays. It refers to the
specific class when printed in courier font.
14-24 C++ User’s Guide • January 2005

CHAPTER 15

Using the Complex Arithmetic
Library

Complex numbers are numbers made up of a real part and an imaginary part. For
example:

In the degenerate case, 0 + 3i is an entirely imaginary number generally written as
3i, and 5 + 0i is an entirely real number generally written as 5. You can represent
complex numbers using the complex data type.

Note – The complex arithmetic library (libcomplex) is available only for
compatibility mode (-compat[=4]). In standard mode (the default mode), complex
number classes with similar functionality are included with the C++ Standard
Library libCstd.

15.1 The Complex Library
The complex arithmetic library implements a complex number data type as a new
data type and provides:

■ Operators
■ Mathematical functions (defined for the built-in numerical types)
■ Extensions (for iostreams that allow input and output of complex numbers)
■ Error handling mechanisms

3.2 + 4i
1 + 3i
1 + 2.3i
15-1

Complex numbers can also be represented as an absolute value (or magnitude) and an
argument (or angle). The library provides functions to convert between the real and
imaginary (Cartesian) representation and the magnitude and angle (polar)
representation.

The complex conjugate of a number has the opposite sign in its imaginary part.

15.1.1 Using the Complex Library
To use the complex library, include the header file complex.h in your program, and
compile and link with the -library=complex option.

15.2 Type complex
The complex arithmetic library defines one class: class complex. An object of class
complex can hold a single complex number. The complex number is constructed of
two parts:

■ The real part
■ The imaginary part

The value of an object of class complex is a pair of double values. The first value
represents the real part; the second value represents the imaginary part.

15.2.1 Constructors of Class complex
There are two constructors for complex. Their definitions are:

class complex {
 double re, im;
};

complex::complex(){re=0.0; im=0.0;}
complex::complex(double r, double i = 0.0) {re=r; im=i;}
15-2 C++ User’s Guide • January 2005

If you declare a complex variable without specifying parameters, the first
constructor is used and the variable is initialized, so that both parts are 0. The
following example creates a complex variable whose real and imaginary parts are
both 0:

You can give either one or two parameters. In either case, the second constructor is
used. When you give only one parameter, that parameter is taken as the value for
the real part and the imaginary part is set to 0. For example:

creates a complex variable with the following value:

If you give two values, the first value is taken as the value of the real part and the
second as the value of the imaginary part. For example:

creates a complex variable with the following value:

You can also create a complex number using the polar function, which is provided
in the complex arithmetic library (see Section 15.3, “Mathematical Functions” on
page 15-4). The polar function creates a complex value given the polar coordinates
magnitude and angle.

There is no destructor for type complex.

15.2.2 Arithmetic Operators
The complex arithmetic library defines all the basic arithmetic operators. Specifically,
the following operators work in the usual way and with the usual precedence:

+ - / * =

complex aComp;

complex aComp(4.533);

4.533 + 0i

complex aComp(8.999, 2.333);

8.999 + 2.333i
Chapter 15 Using the Complex Arithmetic Library 15-3

The subtraction operator (-) has its usual binary and unary meanings.

In addition, you can use the following operators in the usual way:

■ Addition assign operator (+=)
■ Subtraction assign operator (-=)
■ Multiplication assign operator (*=)
■ Division assign operator (/=)

However, the preceding four operators do not produce values that you can use in
expressions. For example, the following expressions do not work:

You can also use the equality operator (==) and the inequality operator (!=) in their
regular meaning.

When you mix real and complex numbers in an arithmetic expression, C++ uses the
complex operator function and converts the real values to complex values.

15.3 Mathematical Functions
The complex arithmetic library provides a number of mathematical functions. Some
are peculiar to complex numbers; the rest are complex-number versions of functions
in the standard C mathematical library.

All of these functions produce a result for every possible argument. If a function
cannot produce a mathematically acceptable result, it calls complex_error and
returns some suitable value. In particular, the functions try to avoid actual overflow
and call complex_error with a message instead. The following tables describe the
remainder of the complex arithmetic library functions.

Note – The implementation of the sqrt and atan2 functions is aligned with the
C99 csqrt Annex G specification.

complex a, b;
...
if ((a+=2)==0) {...}; // illegal
b = a *= b; // illegal
15-4 C++ User’s Guide • January 2005

TABLE 15-1 Complex Arithmetic Library Functions

Complex Arithmetic Library Function Description

double abs(const complex) Returns the magnitude of a
complex number.

double arg(const complex) Returns the angle of a complex
number.

complex conj(const complex) Returns the complex conjugate of
its argument.

double imag(const complex&) Returns the imaginary part of a
complex number.

double norm(const complex) Returns the square of the
magnitude of its argument. Faster
than abs, but more likely to cause
an overflow. For comparing
magnitudes.

complex polar(double mag, double ang=0.0) Takes a pair of polar coordinates
that represent the magnitude and
angle of a complex number and
returns the corresponding complex
number.

double real(const complex&) Returns the real part of a complex
number.

TABLE 15-2 Complex Mathematical and Trigonometric Functions

Complex Arithmetic Library Function Description

complex acos(const complex) Returns the angle whose cosine is
its argument.

complex asin(const complex) Returns the angle whose sine is its
argument.

complex atan(const complex) Returns the angle whose tangent is
its argument.

complex cos(const complex) Returns the cosine of its argument.

complex cosh(const complex) Returns the hyperbolic cosine of its
argument.

complex exp(const complex) Computes e**x, where e is the
base of the natural logarithms, and
x is the argument given to exp.

complex log(const complex) Returns the natural logarithm of its
argument.
Chapter 15 Using the Complex Arithmetic Library 15-5

15.4 Error Handling
The complex library has these definitions for error handling:

The external variable errno is the global error state from the C library. errno can
take on the values listed in the standard header errno.h (see the man page
perror(3)). No function sets errno to zero, but many functions set it to other
values.

To determine whether a particular operation fails:

1. Set errno to zero before the operation.

complex log10(const complex) Returns the common logarithm of
its argument.

complex pow(double b, const complex exp)

complex pow(const complex b, int exp)

complex pow(const complex b, double exp)

complex pow(const complex b, const

 complex exp)

Takes two arguments: pow(b, exp).
It raises b to the power of exp.

complex sin(const complex) Returns the sine of its argument.

complex sinh(const complex) Returns the hyperbolic sine of its
argument.

complex sqrt(const complex) Returns the square root of its
argument.

complex tan(const complex) Returns the tangent of its argument.

complex tanh(const complex) Returns the hyperbolic tangent of
its argument.

extern int errno;
class c_exception {...};
int complex_error(c_exception&);

TABLE 15-2 Complex Mathematical and Trigonometric Functions (Continued)

Complex Arithmetic Library Function Description
15-6 C++ User’s Guide • January 2005

2. Test the operation.

The function complex_error takes a reference to type c_exception and is called
by the following complex arithmetic library functions:

■ exp
■ log
■ log10
■ sinh
■ cosh

The default version of complex_error returns zero. This return of zero means that
the default error handling takes place. You can provide your own replacement
function complex_error that performs other error handling. Error handling is
described in the man page cplxerr(3CC4).

Default error handling is described in the man pages cplxtrig(3CC4) and
cplxexp(3CC4) It is also summarized in the following table.

15.5 Input and Output
The complex arithmetic library provides default extractors and inserters for complex
numbers, as shown in the following example:

For basic information on extractors and inserters, see Section 14.2, “Basic Structure of
iostream Interaction” on page 14-2 and Section 14.3.1, “Output Using iostream”
on page 14-4.

TABLE 15-3 Complex Arithmetic Library Functions Default Error Handling

Complex Arithmetic
Library Function Default Error Handling Summary

exp If overflow occurs, sets errno to ERANGE and returns a huge complex
number.

log, log10 If the argument is zero, sets errno to EDOM and returns a huge
complex number.

sinh, cosh If the imaginary part of the argument causes overflow, returns a
complex zero. If the real part causes overflow, returns a huge complex
number. In either case, sets errno to ERANGE.

ostream& operator<<(ostream&, const complex&); //inserter
istream& operator>>(istream&, complex&); //extractor
Chapter 15 Using the Complex Arithmetic Library 15-7

For input, the complex extractor >> extracts a pair of numbers (surrounded by
parentheses and separated by a comma) from the input stream and reads them into
a complex object. The first number is taken as the value of the real part; the second
as the value of the imaginary part. For example, given the declaration and input
statement:

and the input (3.45, 5), the value of x is equivalent to 3.45 + 5.0i. The reverse
is true for inserters. Given complex x(3.45, 5), cout<<x prints (3.45, 5).

The input usually consists of a pair of numbers in parentheses separated by a
comma; white space is optional. If you provide a single number, with or without
parentheses and white space, the extractor sets the imaginary part of the number to
zero. Do not include the symbol i in the input text.

The inserter inserts the values of the real and imaginary parts enclosed in
parentheses and separated by a comma. It does not include the symbol i. The two
values are treated as doubles.

15.6 Mixed-Mode Arithmetic
Type complex is designed to fit in with the built-in arithmetic types in mixed-mode
expressions. Arithmetic types are silently converted to type complex, and there are
complex versions of the arithmetic operators and most mathematical functions. For
example:

The expression b+i is mixed-mode. Integer i is converted to type complex via the
constructor complex::complex(double,double=0), the integer first being
converted to type double. The result is to be divided by y, a double, so y is also
converted to complex and the complex divide operation is used. The quotient is
thus type complex, so the complex sine routine is called, yielding another complex
result, and so on.

complex x;
cin >> x;

int i, j;
double x, y;
complex a, b;
a = sin((b+i)/y) + x/j;
15-8 C++ User’s Guide • January 2005

Not all arithmetic operations and conversions are implicit, or even defined, however.
For example, complex numbers are not well-ordered, mathematically speaking, and
complex numbers can be compared for equality only.

Similarly, there is no automatic conversion from type complex to any other type,
because the concept is not well-defined. You can specify whether you want the real
part, imaginary part, or magnitude, for example.

15.7 Efficiency
The design of the complex class addresses efficiency concerns.

The simplest functions are declared inline to eliminate function call overhead.

Several overloaded versions of functions are provided when that makes a difference.
For example, the pow function has versions that take exponents of type double and
int as well as complex, since the computations for the former are much simpler.

The standard C math library header math.h is included automatically when you
include complex.h. The C++ overloading rules then result in efficient evaluation of
expressions like this:

In this example, the standard math function sqrt(double) is called, and the result
is converted to type complex, rather than converting to type complex first and then
calling sqrt(complex). This result falls right out of the overload resolution rules,
and is precisely the result you want.

complex a, b;
a == b; // OK
a != b; // OK
a < b; // error: operator < cannot be applied to type complex
a >= b; // error: operator >= cannot be applied to type complex

complex a;
double f(double);
f(abs(a)); // OK
f(a); // error: no match for f(complex)

double x;
complex x = sqrt(x);
Chapter 15 Using the Complex Arithmetic Library 15-9

15.8 Complex Man Pages
The remaining documentation of the complex arithmetic library consists of the man
pages listed in the following table.

TABLE 15-4 Man Pages for Type complex

Man Page Overview

cplx.intro(3CC4) General introduction to the complex arithmetic library

cartpol(3CC4) Cartesian and polar functions

cplxerr(3CC4) Error-handling functions

cplxexp(3CC4) Exponential, log, and square root functions

cplxops(3CC4) Arithmetic operator functions

cplxtrig(3CC4) Trigonometric functions
15-10 C++ User’s Guide • January 2005

CHAPTER 16

Building Libraries

This chapter explains how to build your own libraries.

16.1 Understanding Libraries
Libraries provide two benefits. First, they provide a way to share code among
several applications. If you have such code, you can create a library with it and link
the library with any application that needs it. Second, libraries provide a way to
reduce the complexity of very large applications. Such applications can build and
maintain relatively independent portions as libraries and so reduce the burden on
programmers working on other portions.

Building a library simply means creating .o files (by compiling your code with the
-c option) and combining the .o files into a library using the CC command. You can
build two kinds of libraries, static (archive) libraries and dynamic (shared) libraries.

With static (archive) libraries, objects within the library are linked into the program’s
executable file at link time. Only those .o files from the library that are needed by
the application are linked into the executable. The name of a static (archive) library
generally ends with a .a suffix.

With dynamic (shared) libraries, objects within the library are not linked into the
program’s executable file, but rather the linker notes in the executable that the
program depends on the library. When the program is executed, the system loads
the dynamic libraries that the program requires. If two programs that use the same
dynamic library execute at the same time, the operating system shares the library
among the programs. The name of a dynamic (shared) library ends with a .so
suffix.

Linking dynamically with shared libraries has several advantages over linking
statically with archive libraries:
16-1

■ The size of the executable is smaller.

■ Significant portions of code can be shared among programs at runtime, reducing
the amount of memory use.

■ The library can be replaced at runtime without relinking with the application.
(This is the primary mechanism that enables programs to take advantage of many
improvements in the Solaris operating system without requiring relinking and
redistribution of programs.)

■ The shared library can be loaded at runtime, using the dlopen() function call.

However, dynamic libraries have some disadvantages:

■ Runtime linking has an execution-time cost.

■ Distributing a program that uses dynamic libraries might require simultaneous
distribution of the libraries it uses.

■ Moving a shared library to a different location can prevent the system from
finding the library and executing the program. (The environment variable
LD_LIBRARY_PATH helps overcome this problem.)

16.2 Building Static (Archive) Libraries
The mechanism for building static (archive) libraries is similar to that of building an
executable. A collection of object (.o) files can be combined into a single library
using the –xar option of CC.

You should build static (archive) libraries using CC -xar instead of using the ar
command directly. The C++ language generally requires that the compiler maintain
more information than can be accommodated with traditional .o files, particularly
template instances. The –xar option ensures that all necessary information,
including template instances, is included in the library. You might not be able to
accomplish this in a normal programming environment since make might not know
which template files are actually created and referenced. Without CC -xar,
referenced template instances might not be included in the library, as required. For
example:

The –xar flag causes CC to create a static (archive) library. The –o directive is
required to name the newly created library. The compiler examines the object files on
the command line, cross-references the object files with those known to the template
repository, and adds those templates required by the user’s object files (along with
the main object files themselves) to the archive.

% CC -c foo.cc # Compile main file, templates objects are created.
% CC -xar -o foo.a foo.o # Gather all objects into a library.
16-2 C++ User’s Guide • January 2005

Note – Use the -xar flag for creating or updating an existing archive only. Do not
use it to maintain an archive. The -xar option is equivalent to ar -cr.

It is a good idea to have only one function in each .o file. If you are linking with an
archive, an entire .o file from the archive is linked into your application when a
symbol is needed from that particular .o file. Having one function in each .o file
ensures that only those symbols needed by the application will be linked from the
archive.

16.3 Building Dynamic (Shared) Libraries
Dynamic (shared) libraries are built the same way as static (archive) libraries, except
that you use –G instead of –xar on the command line.

You should not use ld directly. As with static libraries, the CC command ensures that
all the necessary template instances from the template repository are included in the
library if you are using templates. All static constructors in a dynamic library that is
linked to an application are called before main() is executed and all static
destructors are called after main() exits. If a shared library is opened using
dlopen(), all static constructors are executed at dlopen() and all static destructors
are executed at dlclose().

You should use CC -G to build a dynamic library. When you use ld (the link-editor)
or cc (the C compiler) to build a dynamic library, exceptions might not work and the
global variables that are defined in the library are not initialized.

To build a dynamic (shared) library, you must create relocatable object files by
compiling each object with the –Kpic or –KPIC option of CC. You can then build a
dynamic library with these relocatable object files. If you get any bizarre link
failures, you might have forgotten to compile some objects with –Kpic or –KPIC.

To build a C++ dynamic library named libfoo.so that contains objects from source
files lsrc1.cc and lsrc2.cc, type:

The -G option specifies the construction of a dynamic library. The -o option specifies
the file name for the library. The -h option specifies a name for the shared library.
The -Kpic option specifies that the object files are to be position-independent.

% CC -G -o libfoo.so -h libfoo.so -Kpic lsrc1.cc lsrc2.cc
Chapter 16 Building Libraries 16-3

Note – The CC -G command does not pass any -l options to ld. If you want the
shared library to have a dependency on another shared library, you must pass the
necessary -l option on the command line. For example, if you want the shared
library to be dependent upon libCrun.so, you must pass -lCrun on the command
line.

16.4 Building Shared Libraries That Contain
Exceptions
Never use -Bsymbolic with programs containing C++ code, use linker map files
instead. With -Bsymbolic, references in different modules can bind to different
copies of what is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

When shared libraries are opened using dlopen(), you must use RTLD_GLOBAL
for exceptions to work.

16.5 Building Libraries for Private Use
When an organization builds a library for internal use only, the library can be built
with options that are not advised for more general use. In particular, the library need
not comply with the system’s application binary interface (ABI). For example, the
library can be compiled with the -fast option to improve its performance on a
known architecture. Likewise, it can be compiled with the -xregs=float option to
improve performance.
16-4 C++ User’s Guide • January 2005

16.6 Building Libraries for Public Use
When an organization builds a library for use by other organizations, the
management of the libraries, platform generality, and other issues become
significant. A simple test for whether or not a library is public is to ask if the
application programmer can recompile the library easily. Public libraries should be
built in conformance with the system’s application binary interface (ABI). In general,
this means that any processor-specific options should be avoided. (For example, do
not use –fast or –xtarget.)

The SPARC ABI reserves some registers exclusively for applications. For V7 and V8,
these registers are %g2, %g3, and %g4. For V9, these registers are %g2 and %g3. Since
most compilations are for applications, the C++ compiler, by default, uses these
registers for scratch registers, improving program performance. However, use of
these registers in a public library is generally not compliant with the SPARC ABI.
When building a library for public use, compile all objects with the
-xregs=no%appl option to ensure that the application registers are not used.

16.7 Building a Library That Has a C API
If you want to build a library that is written in C++ but that can be used with a C
program, you must create a C API (application programming interface). To do this,
make all the exported functions extern "C". Note that this can be done only for
global functions and not for member functions.

If a C-interface library needs C++ run-time support and you are linking with cc, then
you must also link your application with either libC (compatibility mode) or
libCrun (standard mode) when you use the C-interface library. (If the C-interface
library does not need C++ run-time support, then you do not have to link with libC
or libCrun.) The steps for linking differ for archived and shared libraries.

When providing an archived C-interface library, you must provide instructions on
how to use the library.

■ If the C-interface library was built with CC in standard mode (the default), add
-lCrun to the cc command line when using the C-interface library.

■ If the C-interface library was built with CC in compatibility mode (-compat), add
-lC to the cc command line when using the C-interface library.
Chapter 16 Building Libraries 16-5

When providing a shared C-interface library you must create a dependency on libC
or libCrun at the time that you build the library. When the shared library has the
correct dependency, you do not need to add -lC or -lCrun to the command line
when you use the library.

■ If you are building the C-interface library in compatibility mode (-compat), add
-lC to the CC command line when you build the library.

■ If you are building the C-interface library in standard mode (the default), add
-lCrun to the CC command line when you build the library.

If you want to remove any dependency on the C++ runtime libraries, you should
enforce the following coding rules in your library sources:

■ Do not use any form of new or delete unless you provide your own
corresponding versions.

■ Do not use exceptions.

■ Do not use runtime type information (RTTI).

16.8 Using dlopen to Access a C++ Library
From a C Program
If you want to use dlopen() to open a C++ shared library from a C program, make
sure that the shared library has a dependency on the appropriate C++ runtime
(libC.so.5 for -compat=4, or libCrun.so.1 for -compat=5).

To do this, add -lC for -compat=4 or add -lCrun for -compat=5 to the command
line when building the shared library. For example:

If the shared library uses exceptions and does not have a dependency on the C++
runtime library, your C program might behave erratically.

Note – When shared libraries are opened with dlopen(), RTLD_GLOBAL must be
used for exceptions to work.

example% CC -G -compat=4... -lC
example% CC -G -compat=5... -lCrun
16-6 C++ User’s Guide • January 2005

PART IV Appendixes

APPENDIX A

C++ Compiler Options

This appendix details the command-line options for the C++ compiler. The features
described apply to all platforms except as noted; features that are unique to the
Solaris OS on SPARC-based systems are identified as SPARC, and the features that
are unique to the Solaris OS on x86-based systems are identified as x86.

The following table shows examples of typical option syntax formats.

The typographical conventions that are listed in “Before You Begin” at the front of
this manual are used in this section of the manual to describe individual options.

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in
the descriptions of the options and are not part of the options themselves.

TABLE A-1 Option Syntax Format Examples

Syntax Format Example

-option –E

–optionvalue –Ipathname

–option=value –xunroll=4

–option value –o filename
A-1

A.1 How Option Information Is Organized
To help you find information, compiler option descriptions are separated into the
following subsections. If the option is one that is replaced by or identical to some
other option, see the description of the other option for full details.

TABLE A-2 Option Subsections

Subsection Contents

Option Definition A short definition immediately follows each option. (There is no
heading for this category.)

Values If the option has one or more values, this section defines each
value.

Defaults If the option has a primary or secondary default value, it is
stated here.
The primary default is the option value in effect if the option is
not specified. For example, if –compat is not specified, the
default is –compat=5.
The secondary default is the option in effect if the option is
specified, but no value is given. For example, if –compat is
specified without a value, the default is -compat=4.

Expansions If the option has a macro expansion, it is shown in this section.

Examples If an example is needed to illustrate the option, it is given here.

Interactions If the option interacts with other options, the relationship is
discussed here.

Warnings If there are cautions regarding use of the option, they are noted
here, as are actions that might cause unexpected behavior.

See also This section contains references to further information in other
options or documents.

“Replace with” “Same as” If an option has become obsolete and has been replaced by
another option, the replacement option is noted here. Options
described this way may not be supported in future releases.
If there are two options with the same general meaning and
purpose, the preferred option is referenced here. For example,
“Same as -xO” indicates that -xO is the preferred option.
A-2 C++ User’s Guide • January 2005

A.2 Option Reference

A.2.1 –386

x86: Same as –xtarget=386. This option is provided for backward compatibility only.

A.2.2 –486

x86: Same as –xtarget=486. This option is provided for backward compatibility only.

A.2.3 –a

 Same as –xa.

A.2.4 –Bbinding
Specifies whether a library binding for linking is symbolic, dynamic (shared), or
static (nonshared).

You can use the –B option several times on a command line. This option is passed to
the linker, ld.

Note – Many system libraries are only available as dynamic libraries in the Solaris
64-bit compilation environment. Therefore, do not use -Bstatic as the last toggle
on the command line.
Appendix A C++ Compiler Options A-3

Values

binding must be one of the following:

(No space is allowed between –B and the binding value.)

Defaults

If –B is not specified, –Bdynamic is assumed.

Interactions

To link the C++ default libraries statically, use the –staticlib option.

The -Bstatic and -Bdynamic options affect the linking of the libraries that are
provided by default. To ensure that the default libraries are linked dynamically, the
last use of –B should be –Bdynamic.

In a 64-bit environment, many system libraries are available only as shared dynamic
libraries. These include libm.so and libc.so (libm.a and libc.a are not
provided). As a result, -Bstatic and -dn may cause linking errors in 64-bit Solaris
operating systems. Applications must link with the dynamic libraries in these cases.

Examples

The following compiler command links libfoo.a even if libfoo.so exists; all other
libraries are linked dynamically:

Value of binding Meaning

dynamic Directs the link editor to look for liblib.so (shared) files, and if
they are not found, to look for liblib.a (static, nonshared) files. Use
this option if you want shared library bindings for linking.

static Directs the link editor to look only for liblib.a (static, nonshared)
files. Use this option if you want nonshared library bindings for
linking.

symbolic Forces symbols to be resolved within a shared library if possible,
even when a symbol is already defined elsewhere.
See the ld(1) man page.

example% CC a.o –Bstatic –lfoo –Bdynamic
A-4 C++ User’s Guide • January 2005

Warnings

Never use -Bsymbolic with programs containing C++ code, use linker map files
instead.

With -Bsymbolic, references in different modules can bind to different copies of what
is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

If you compile and link in separate steps and are using the -Bbinding option, you
must include the option in the link step.

See also

–nolib, –staticlib, ld(1), Section 12.5, “Statically Linking Standard Libraries”
on page 12-10, Linker and Libraries Guide

A.2.5 –c

Compile only; produce object .o files, but suppress linking.

This option directs the CC driver to suppress linking with ld and produce a .o file
for each source file. If you specify only one source file on the command line, then
you can explicitly name the object file with the -o option.

Examples

If you enter CC -c x.cc, the x.o object file is generated.

If you enter CC -c x.cc -o y.o, the y.o object file is generated.

Warnings

When the compiler produces object code for an input file (.c, .i), the compiler
always produces a .o file in the working directory. If you suppress the linking step,
the .o files are not removed.
Appendix A C++ Compiler Options A-5

See also

–o filename, –xe

A.2.6 –cg{89|92}
Same as –xcg{89|92}.

A.2.7 –compat[={4|5}]
Sets the major release compatibility mode of the compiler. This option controls the
__SUNPRO_CC_COMPAT and __cplusplus macros.

The C++ compiler has two principal modes. The compatibility mode accepts ARM
semantics and language defined by the 4.2 compiler. The standard mode accepts
constructs according to the ANSI/ISO standard. These two modes are incompatible
with each other because the ANSI/ISO standard forces significant, incompatible
changes in name mangling, vtable layout, and other ABI details. These two modes
are differentiated by the –compat option as shown in the following values.

Values

The -compat option can have the following values.

Defaults

If the –compat option is not specified, –compat=5 is assumed.

If only –compat is specified, –compat=4 is assumed.

Value Meaning

–compat=4 (Compatibility mode) Set language and binary compatibility to that of the
4.0.1, 4.1, and 4.2 compilers. Set the __cplusplus preprocessor macro to 1
and the __SUNPRO_CC_COMPAT preprocessor macro to 4.

–compat=5 (Standard mode) Set language and binary compatibility to ANSI/ISO
standard mode. Set the __cplusplus preprocessor macro to 199711L and
the __SUNPRO_CC_COMPAT preprocessor macro to 5.
A-6 C++ User’s Guide • January 2005

Interactions

You cannot use the standard libraries in compatibility mode (-compat[=4]).

Use of –compat[=4] with any of the following options is not supported.

■ -Bsymbolic
■ -features=[no%]strictdestrorder
■ -features=[no%]tmplife
■ -library=[no%]iostream
■ -library=[no%]Cstd
■ -library=[no%]Crun
■ -library=[no%]rwtools7_std
■ -xarch=native64, -xarch=generic64, -xarch=v9, -xarch=v9a, or

-xarch=v9b

Use of –compat=5 with any of the following options is not supported.

■ -Bsymbolic
■ +e
■ features=[no%]arraynew
■ features=[no%]explicit
■ features=[no%]namespace
■ features=[no%]rtti
■ library=[no%]complex
■ library=[no%]libC
■ -vdelx

Warnings

When building a shared library do not use -Bsymbolic.

See also

C++ Migration Guide

A.2.8 +d

Does not expand C++ inline functions.

Under the C++ language rules, a C++ inline function is a function for which one of
the following statements is true.

■ The function is defined using the inline keyword,
■ The function is defined (not just declared) inside a class definition
■ The function is a compiler-generated class member function
Appendix A C++ Compiler Options A-7

Under the C++ language rules, the compiler can choose whether actually to inline a
call to an inline function. The C++ compiler inlines calls to an inline function unless:

■ The function is too complex,
■ The +d option is selected, or
■ The -g option is selected

Examples

By default, the compiler may inline the functions f() and memf2() in the following
code example. In addition, the class has a default compiler-generated constructor
and destructor that the compiler may inline. When you use +d, the compiler will not
inline f()and C::mf2(), the constructor, and the destructor.

Interactions

This option is automatically turned on when you specify –g, the debugging option.

The –g0 debugging option does not turn on +d.

The +d option has no effect on the automatic inlining that is performed when you
use -xO4 or -xO5.

See also

–g0, –g

A.2.9 -D[]name[=def]
Defines the macro symbol name to the preprocessor.

Using this option is equivalent to including a #define directive at the beginning of
the source. You can use multiple -D options.

inline int f() {return 0;} // may be inlined
class C {
 int mf1(); // not inlined unless inline definition comes later
 int mf2() {return 0;} // may be inlined
};
A-8 C++ User’s Guide • January 2005

Values

The following table shows the predefined macros. You can use these values in such
preprocessor conditionals as #ifdef.

TABLE A-3 Predefined Macros

Type Macro Name Notes

SPARC and x86 _ _ARRAYNEW _ _ARRAYNEW is defined if the “array”
forms of operators new and delete
are enabled. See
-features=[no%]arraynew for
more information.

_ BOOL _BOOL is defined if type bool is
enabled. See -features=[no%]bool
for more information.

_ _BUILTIN_VA_ARG_INCR For the _ _builtin_alloca,
_ _builtin_va_alist, and
_ _builtin_va_arg_incr keywords
in varargs.h, stdarg.h, and
sys/varargs.h.

_ _cplusplus

_ _DATE_ _

_ _FILE_ _

_ _LINE_ _

_ _STDC_ _ Set to 0 (zero)

_ _sun

sun See Interactions.

_ _SUNPRO_CC=0x560 The value of _ _SUNPRO_CC indicates
the release number of the compiler

_ _SUNPRO_CC_COMPAT=4 or
_ _SUNPRO_CC_COMPAT=5

See Section A.2.7, “–compat[={4|5}]”
on page A-6

(SPARC) __SUN_PREFETCH=1

_ _SVR4

_ _TIME_ _

_ _’uname –s’_’uname –r’ Where uname -s is the output of
uname –s and uname -r is the output
of uname -r with the invalid
characters, such as periods (.), replaced
by underscores, as in -D_ _SunOS_5_7
and -D_ _SunOS_5_8.
Appendix A C++ Compiler Options A-9

If you do not use =def, name is defined as 1.

Interactions

If +p is used, sun, unix, sparc, and i386 are not defined.

See also

–U

A.2.10 –d{y|n}
Allows or disallows dynamic libraries for the entire executable.

This option is passed to ld.

This option can appear only once on the command line.

Values

_ _unix

unix See Interactions.

(SPARC) _ _sparc

sparc See Interactions.

(SPARC) v9 _ _sparcv9 64-bit compilation modes only

x86 _ _i386

i386 See Interactions.

UNIX _WCHAR_T

Value Meaning

-dy Specifies dynamic linking in the link editor.

–dn Specifies static linking in the link editor.

TABLE A-3 Predefined Macros (Continued)

Type Macro Name Notes
A-10 C++ User’s Guide • January 2005

Defaults

If no -d option is specified, –dy is assumed.

Interactions

In a 64-bit environment, many system libraries are available only as shared dynamic
libraries. These include libm.so and libc.so (libm.a and libc.a are not
provided). As a result, -Bstatic and -dn may cause linking errors in 64-bit Solaris
operating systems. Applications must link with the dynamic libraries in these cases.

See also

ld(1), Linker and Libraries Guide

A.2.11 –dalign
-dalign is equivalent to -xmemalign=8s. See Section A.2.140, “-xmemalign=ab”
on page A-118 for more information.

Warnings

If you compile one program unit with –dalign, compile all units of a program with
-dalign, or you might get unexpected results.

A.2.12 –dryrun

Shows the subcommands built by driver, but does not compile.

This option directs the CC driver to show, but not execute, the subcommands
constructed by the compilation driver.

A.2.13 –E

Runs the preprocessor on source files; does not compile.
Appendix A C++ Compiler Options A-11

Directs the CC driver to run only the preprocessor on C++ source files, and to send
the result to stdout (standard output). No compilation is done; no .o files are
generated.

This option causes preprocessor-type line number information to be included in the
output.

Examples

This option is useful for determining the changes made by the preprocessor. For
example, the following program, foo.cc, generates the output shown in
CODE EXAMPLE A-2.

Warnings

Output from this option is not supported as input to the C++ compiler when
templates are used.

CODE EXAMPLE A-1 Preprocessor Example Program foo.cc

#if __cplusplus < 199711L
int power(int, int);
#else
template <> int power(int, int);
#endif

int main () {
 int x;
 x=power(2, 10);
}

CODE EXAMPLE A-2 Preprocessor Output of foo.cc Using -E Option

example% CC -E foo.cc
#4 "foo.cc"
template < > int power (int, int);

int main () {
int x;
x = power (2, 10);
}
A-12 C++ User’s Guide • January 2005

See also

–P

A.2.14 +e{0|1}
Controls virtual table generation in compatibility mode (-compat[=4]). Invalid and
ignored when in standard mode (the default mode).

Values

The +e option can have the following values.

Interactions

When you compile with this option, also use the –features=no%except option.
Otherwise, the compiler generates virtual tables for internal types used in exception
handling.

If template classes have virtual functions, ensuring that the compiler generates all
needed virtual tables, but does not duplicate these tables, might not be possible.

See also

C++ Migration Guide

A.2.15 -erroff[=t]
This command suppresses C++ compiler warning messages and has no effect on
error messages.

Value Meaning

0 Suppresses the generation of virtual tables and creates external
references to those that are needed.

1 Creates virtual tables for all defined classes with virtual functions.
Appendix A C++ Compiler Options A-13

Values

t is a comma-separated list that consists of one or more of the following: tag, no%tag,
%all, %none. Order is important; for example, %all,no%tag suppresses all warning
messages except tag. The following table lists the -erroff values:

Defaults

The default is -erroff=%none. Specifying -erroff is equivalent to specifying
-erroff=%all.

Examples

For example, -erroff=tag suppresses the warning message specified by this tag.
On the other hand, -erroff=%all,no%tag suppresses all warning messages except
the messages identified by tag.

You can display the tag for a warning message by using the -errtags=yes option.

Warnings

Only warning messages from the C++ compiler front-end that display a tag when
the -errtags option is used can be suppressed with the -erroff option.

See Also

-errtags, -errwarn

TABLE A-4 The -erroff Values

Value Meaning

tag Suppresses the warning message specified by this tag. You can display
the tag for a message by using the -errtags=yes option.

no%tag Enables the warning message specified by this tag.

%all Suppresses all warning messages.

%none Enables all warning messages (default).
A-14 C++ User’s Guide • January 2005

A.2.16 -errtags[=a]
Displays the message tag for each warning message of the C++ compiler front-end
that can be suppressed with the -erroff option or made a fatal warning with the
-errwarn option.

Values and Defaults

a can be either yes or no. The default is -errtags=no. Specifying -errtags is
equivalent to specifying -errtags=yes.

Warnings

Messages from the C++ compiler driver and other components of the compilation
system do not have error tags, and cannot be suppressed with -erroff or made
fatal with -errwarn.

See Also

-erroff, -errwarn

A.2.17 -errwarn[=t]
Use -errwarn to cause the C++ compiler to exit with a failure status for the given
warning messages.

Values

t is a comma-separated list that consists of one or more of the following: tag, no%tag,
%all, %none. Order is important; for example %all,no%tag causes cc to exit with a
fatal status if any warning except tag is issued.
Appendix A C++ Compiler Options A-15

The following table details the -errwarn values:

Defaults

The default is -errwarn=%none. If you specify -errwarn alone, it is equivalent to
-errwarn=%all.

Warnings

Only warning messages from the C++ compiler front-end that display a tag when
the -errtags option is used can be specified with the -errwarn option to cause
the compiler to exit with a failure status.

The warning messages generated by the C++ compiler change from release to release
as the compiler error checking improves and features are added. Code that compiles
using -errwarn=%all without error may not compile without error in the next
release of the compiler.

See Also

-erroff, -errtags

TABLE A-5 The -errwarn Values

Value Meaning

tag Cause CC to exit with a fatal status if the message specified by this tag is issued
as a warning message. Has no effect if tag is not issued.

no%tag Prevent CC from exiting with a fatal status if the message specified by tag is
issued only as a warning message. Has no effect if the message specified by tag
is not issued. Use this option to revert a warning message that was previously
specified by this option with tag or %all from causing cc to exit with a fatal
status when issued as a warning message.

%all Cause CC to exit with a fatal status if any warning messages are issued. %all
can be followed by no%tag to exempt specific warning messages from this
behavior.

%none Prevents any warning message from causing CC to exit with a fatal status
should any warning message be issued.
A-16 C++ User’s Guide • January 2005

A.2.18 –fast

This option is a macro that can be effectively used as a starting point for tuning an
executable for maximum runtime performance. -fast is a macro that can change
from one release of the compiler to the next and expands to options that are target
platform specific. Use the -# option or -xdryrun to examine the expansion of
-fast, and incorporate the appropriate options of -fast into the ongoing process
of tuning the executable.

This option is a macro that selects a combination of compilation options for
optimum execution speed on the machine upon which the code is compiled.

Expansions

This option provides near maximum performance for many applications by
expanding to the following compilation options.

Interactions

The -fast macro expands into compilation options that may affect other specified
options. For example, in the following command, the expansion of the -fast macro
includes -xtarget=native which reverts -xarch to one of the 32-bit architecture
options.

TABLE A-6 The -fast Expansion

Option SPARC x86

–fns X X

–fsimple=2 X -

–ftrap=%none X X

–nofstore - X

–xlibmil X X

–xlibmopt X X

–xmemalign X -

–xO5 X X

–xtarget=native X X

-xbuiltin=%all X X
Appendix A C++ Compiler Options A-17

Incorrect:

Correct:

See the description for each option to determine possible interactions.

The code generation option, the optimization level, the optimization of built-in
functions, and the use of inline template files can be overridden by subsequent
options (see examples). The optimization level that you specify overrides a
previously set optimization level.

The –fast option includes –fns –ftrap=%none; that is, this option turns off all
trapping.

Examples

The following compiler command results in an optimization level of –xO3.

The following compiler command results in an optimization level of –xO5.

Warnings

If you compile and link in separate steps, the -fast option must appear in both the
compile command and the link command.

Code that is compiled with the -fast option is not portable. For example, using the
following command on an UltraSPARC III system generates a binary that will not
execute on an UltraSPARC II system.

example% CC -xarch=v9 -fast test.cc

example% CC -fast -xarch=v9 test.cc

example% CC –fast –xO3

example% CC -xO3 –fast

example% CC -fast test.cc
A-18 C++ User’s Guide • January 2005

Do not use this option for programs that depend on IEEE standard floating-point
arithmetic; different numerical results, premature program termination, or
unexpected SIGFPE signals can occur.

In previous SPARC releases, the -fast macro expanded to -fsimple=1. Now it
expands to -fsimple=2.

In previous releases, the -fast macro expanded to -xO4. Now it expands to -xO5.

Note – In previous SPARC releases, the –fast macro option included –fnonstd;
now it does not. Nonstandard floating-point mode is not initialized by –fast. See
the Numerical Computation Guide, ieee_sun(3M).

See also

-fns, -fsimple, -ftrap=%none, -xlibmil, -nofstore, -xO5, -xlibmopt,
-xtarget=native

A.2.19 –features=a[,a...]
Enables/disables various C++ language features named in a comma-separated list.

Values

In both compatibility mode (-compat[=4]) and standard mode (the default mode),
a can have the following values.

TABLE A-7 The -features Values for Compatibility Mode and Standard Mode

Value of a Meaning

%all All the -features options that are valid for the specified mode
(compatibility mode or standard mode).

[no%]altspell [Do not] Recognize alternative token spellings (for example,
“and” for “&&”). The default is no%altspell in compatibility
mode and altspell in standard mode.

[no%]anachronisms [Do not] Allow anachronistic constructs. When disabled (that is,
-features=no%anachronisms), no anachronistic constructs are
allowed. The default is anachronisms.
Appendix A C++ Compiler Options A-19

[no%]bool [Do not] Allow the bool type and literals. When enabled, the
macro _BOOL=1. When not enabled, the macro is not defined. The
default is no%bool in compatibility mode and bool
in standard mode.

[no%]conststrings [Do not] Put literal strings in read-only memory. The default is
no%conststrings in compatibility mode and conststrings in
standard mode.

[no%]except [Do not] Allow C++ exceptions. When C++ exceptions are
disabled (that is, -features=no%except), a throw-specification
on a function is accepted but ignored; the compiler does not
generate exception code. Note that the keywords try, throw, and
catch are always reserved. See Section 8.3, “Disabling
Exceptions” on page 8-2. The default is except.

[no%]export [Do not] Recognize the keyword export. The default is
no%export in compatibility mode and export in standard mode.

[no%]extensions [Do not] allow nonstandard code that is commonly accepted by
other C++ compilers. See Chapter 4 for an explanation of the
invalid code that is accepted by the compiler when you use the
-features=extensions option. The default is
no%extensions.

[no%]iddollar [Do not] Allow a $ symbol as a noninitial identifier character. The
default is no%iddollar.

[no%]localfor [Do not] Use new local-scope rules for the for statement. The
default is no%localfor in compatibility mode and localfor in
standard mode.

[no%]mutable [Do not] Recognize the keyword mutable. The default is
no%mutable in compatibility mode and mutable in standard
mode.

TABLE A-7 The -features Values for Compatibility Mode and Standard Mode

Value of a Meaning
A-20 C++ User’s Guide • January 2005

 In standard mode (the default mode), a can have the following additional values.

[no%]split_init [Do not] Put initializers for nonlocal static objects into individual
functions. When you use -features=no%split_init, the
compiler puts all the initializers in one function. Using
-features=no%split_init minimizes code size at the possible
expense of compile time. The default is split_init.

[no%]transitions [Do not] allow ARM language constructs that are problematic in
standard C++ and that may cause the program to behave
differently than expected or that may be rejected by future
compilers. When you use -features=no%transitions, the
compiler treats these as errors. When you use
-features=transitions in standard mode, the compiler issues
warnings about these constructs instead of error messages. When
you use -features=transitions in compatibility mode
(-compat[=4]), the compiler displays the warnings about these
constructs only if +w or +w2 is specified. The following constructs
are considered to be transition errors: redefining a template after it
was used, omitting the typename directive when it is needed in a
template definition, and implicitly declaring type int. The set of
transition errors may change in a future release. The default is
transitions.

%none Turn off all the features that can be turned off for the specified
mode.

TABLE A-8 The -features Values for Standard Mode Only

Value of a Meaning

[no%]strictdestrorder [Do not] Follow the requirements specified by the C++
standard regarding the order of the destruction of objects
with static storage duration. The default is
strictdestrorder.

[no%]tmplife [Do not] Clean up the temporary objects that are created by
an expression at the end of the full expression, as defined in
the ANSI/ISO C++ Standard. (When
-features=no%tmplife is in effect, most temporary
objects are cleaned up at the end of their block.) The default
is no%tmplife.

TABLE A-7 The -features Values for Compatibility Mode and Standard Mode

Value of a Meaning
Appendix A C++ Compiler Options A-21

In compatibility mode (-compat[=4]), a can have the following additional values.

Note – The [no%]castop setting is allowed for compatibility with makefiles
written for the C++ 4.2 compiler, but has no affect on compiler versions 5.0, 5.1, 5.2
and 5.3. The new style casts (const_cast, dynamic_cast, reinterpret_cast,
and static_cast) are always recognized and cannot be disabled.

Defaults

If –features is not specified, the following is assumed:

■ Compatibility mode (-compat[=4])

■ Standard mode (the default mode)

TABLE A-9 The -features Values for Compatibility Mode Only

Value of a Meaning

[no%]arraynew [Do not] Recognize array forms of operator new and
operator delete (for example,
operator new [] (void*)). When enabled, the macro
__ARRAYNEW=1. When not enabled, the macro is not defined.
The default is no%arraynew.

[no%]explicit [Do not] Recognize the keyword explicit. The default is
no%explicit.

[no%]namespace [Do not] Recognize the keywords namespace and using.
The default is no%namespace.
The purpose of -features=namespace is to aid in
converting code to standard mode. By enabling this option,
you get error messages if you use these keywords as
identifiers. The keyword recognition options allow you to
find uses of the added keywords without having to compile
in standard mode.

[no%]rtti [Do not] Allow runtime type information (RTTI). RTTI must
be enabled to use the dynamic_cast<> and typeid
operators. The default is no%rtti.

–features=%none,anachronisms,except,split_init,transitions

–features=%all,no%iddollar,no%extensions,no%tmplife
A-22 C++ User’s Guide • January 2005

Interactions

This option accumulates instead of overrides.

Use of the following in standard mode (the default) is not compatible with the
standard libraries and headers:

■ no%bool
■ no%except
■ no%mutable
■ no%explicit

In compatibility mode (-compat[=4]), the -features=transitions option has no
effect unless you specify the +w option or the +w2 option.

Warnings

Be careful when you specify -features=%all or -features=%none. The set of
features can change with each compiler release and with each patch. Consequently,
you can get unintended behavior.

The behavior of a program might change when you use the -features=tmplife
option. Testing whether the program works both with and without the
-features=tmplife option is one way to test the program’s portability.

The compiler assumes -features=split_init by default in compat mode
(-compt=4). If you use the -features=%none option to turn off other features, you
may find it desirable to turn the splitting of initializers into separate functions back
on by using -features=%none,split_init instead.

See also

Chapter 4 and the C++ Migration Guide

A.2.20 -filt[=filter[,filter...]]
Controls the filtering that the compiler normally applies to linker and compiler error
messages.
Appendix A C++ Compiler Options A-23

Values

filter must be one of the following values.

Defaults

If you do not specify the -filt option, or if you specify -filt without any values,
then the compiler assumes -filt=%all.

TABLE A-10 The -filt Values

Value of filter Meaning

[no%]errors [Do not] Show the C++ explanations of the linker error messages.
The suppression of the explanations is useful when the linker
diagnostics are provided directly to another tool.

[no%]names [Do not] Demangle the C++ mangled linker names.

[no%]returns [Do not] Demangle the return types of functions. Suppression of this
type of demangling helps you to identify function names more
quickly, but note that in the case of co-variant returns some
functions differ only in the return type.

[no%]stdlib [Do not] Simplify names from the standard library in both the linker
and compiler error messages. This makes it easier for you to
recognize the names of standard library template types.

%all Equivalent to -filt=errors,names,returns,stdlib. This is
the default behavior.

%none Equivalent to
-filt=no%errors,no%names,no%returns,no%stdlib.
A-24 C++ User’s Guide • January 2005

Examples

The following examples show the effects of compiling this code with the -filt
option.

When you compile the code without the -filt option, the compiler assumes
-filt=errors,names,returns,stdlib and displays the standard output.

The following command suppresses the demangling of the of the C++ mangled
linker names and suppresses the C++ explanations of linker errors.

// filt_demo.cc
class type {
public:
 virtual ~type(); // no definition provided
};

int main()
{
 type t;
}

example% CC filt_demo.cc
Undefined first referenced
 symbol in file
type::~type() filt_demo.o
type::__vtbl filt_demo.o
[Hint: try checking whether the first non-inlined, non-pure
virtual function of class type is defined]

ld: fatal: Symbol referencing errors. No output written to a.out

example% CC -filt=no%names,no%errors filt_demo.cc
Undefined first referenced
 symbol in file
__1cEtype2T6M_v_ filt_demo.o
__1cEtypeG__vtbl_ filt_demo.o
ld: fatal: Symbol referencing errors. No output written to a.out
Appendix A C++ Compiler Options A-25

Now consider this code:

Here’s the output when you specify -filt=no%stdlib:

Here’s the output when you specify -filt=stdlib:

Interactions

When you specify no%names, neither returns nor no%returns has an effect. That
is, the following options are equivalent:

■ -filt=no%names
■ -filt=no%names,no%returns
■ -filt=no%names,returns

A.2.21 –flags

Same as –xhelp=flags.

#include <string>
#include <list>
int main()
{
 std::list<int> l;
 std::string s(l); // error here
}

Error: Cannot use std::list<int, std::allocator<int>> to
initialize
std::basic_string<char, std::char_traits<char>,
std::allocator<char>>.

Error: Cannot use std::list<int> to initialize std::string .
A-26 C++ User’s Guide • January 2005

A.2.22 –fnonstd

Causes hardware traps to be enabled for floating-point overflow, division by zero,
and invalid operations exceptions. These results are converted into SIGFPE signals;
if the program has no SIGFPE handler, it terminates with a memory dump (unless
you limit the core dump size to 0).

SPARC: In addition, -fnonstd selects SPARC nonstandard floating point.

Defaults

If –fnonstd is not specified, IEEE 754 floating-point arithmetic exceptions do not
abort the program, and underflows are gradual.

Expansions

x86: -fnonstd expands to -ftrap=common.

SPARC: -fnonstd expands to -fns -ftrap=common.

See also

–fns, –ftrap=common, Numerical Computation Guide.

A.2.23 –fns[={yes|no}]
■ SPARC: Enables/disables the SPARC nonstandard floating-point mode.

-fns=yes (or -fns) causes the nonstandard floating point mode to be enabled
when a program begins execution.

This option provides a way of toggling the use of nonstandard or standard
floating-point mode following some other macro option that includes –fns, such
as –fast.

On some SPARC devices, the nonstandard floating-point mode disables “gradual
underflow,” causing tiny results to be flushed to zero rather than to produce
subnormal numbers. It also causes subnormal operands to be silently replaced by
zero.

On those SPARC devices that do not support gradual underflow and subnormal
numbers in hardware, -fns=yes (or -fns) can significantly improve the
performance of some programs.
Appendix A C++ Compiler Options A-27

■ (x86) Selects SSE flush-to-zero mode and, where available, denormals-are-zero
mode.

This option causes subnormal results to be flushed to zero. Where available, this
option also causes subnormal operands to be treated as zero.

This option has no effect on traditional x86 floating-point operations that do
utilize the SSE or SSE2 instruction set.

Values

The -fns option can have the following values.

Defaults

If -fns is not specified, the nonstandard floating point mode is not enabled
automatically. Standard IEEE 754 floating-point computation takes place—that is,
underflows are gradual.

If only –fns is specified, –fns=yes is assumed.

Examples

In the following example, -fast expands to several options, one of which is
-fns=yes which selects nonstandard floating-point mode. The subsequent
-fns=no option overrides the initial setting and selects floating-point mode.

Warnings

When nonstandard mode is enabled, floating-point arithmetic can produce results
that do not conform to the requirements of the IEEE 754 standard.

If you compile one routine with the -fns option, then compile all routines of the
program with the –fns option; otherwise, you might get unexpected results.

TABLE A-11 The -fns Values

Value Meaning

yes Selects nonstandard floating-point mode

no Selects standard floating-point mode

example% CC foo.cc -fast -fns=no
A-28 C++ User’s Guide • January 2005

This option is effective only on SPARC devices, and only if used when compiling the
main program. On x86 devices, the option is ignored.

Use of the –fns=yes (or -fns) option might generate the following message if your
program experiences a floating-point error normally managed by the IEEE
floating-point trap handlers:

See also

Numerical Computation Guide, ieee_sun(3M)

A.2.24 –fprecision=p
x86: Sets the non-default floating-point precision mode.

The –fprecision option sets the rounding precision mode bits in the Floating
Point Control Word. These bits control the precision to which the results of basic
arithmetic operations (add, subtract, multiply, divide, and square root) are rounded.

Values

p must be one of the following values.

If p is single or double, this option causes the rounding precision mode to be set
to single or double precision, respectively, when a program begins execution. If p
is extended or the –fprecision option is not used, the rounding precision mode
remains at the extended precision.

The single precision rounding mode causes results to be rounded to 24 significant
bits, and double precision rounding mode causes results to be rounded to 53
significant bits. In the default extended precision mode, results are rounded to 64
significant bits. This mode controls only the precision to which results in registers
are rounded, and it does not affect the range. All results in register are rounded

TABLE A-12 The -fprecision Values

Value of p Meaning

single Rounds to an IEEE single-precision value.

double Rounds to an IEEE double-precision value.

extended Rounds to the maximum precision available.
Appendix A C++ Compiler Options A-29

using the full range of the extended double format. Results that are stored in
memory are rounded to both the range and precision of the destination format,
however.

The nominal precision of the float type is single. The nominal precision of the
long double type is extended.

Defaults

When the –fprecision option is not specified, the rounding precision mode
defaults to extended.

Warnings

This option is effective only on x86 devices and only if used when compiling the
main program. On SPARC devices, this option is ignored.

A.2.25 –fround=r
Sets the IEEE rounding mode in effect at startup.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions
■ Is established at runtime during the program initialization

The meanings are the same as those for the ieee_flags subroutine, which can be
used to change the mode at runtime.

Values

r must be one of the following values.

TABLE A-13 The -fround Values

Value of r Meaning

nearest Rounds towards the nearest number and breaks ties to even numbers.

tozero Rounds to zero.

negative Rounds to negative infinity.

positive Rounds to positive infinity.
A-30 C++ User’s Guide • January 2005

Defaults

When the –fround option is not specified, the rounding mode defaults to
-fround=nearest.

Warnings

If you compile one routine with –fround=r, compile all routines of the program
with the same –fround=r option; otherwise, you might get unexpected results.

This option is effective only if used when compiling the main program.

A.2.26 –fsimple[=n]
Selects floating-point optimization preferences.

This option allows the optimizer to make simplifying assumptions concerning
floating-point arithmetic.
Appendix A C++ Compiler Options A-31

Values

If n is present, it must be 0, 1, or 2.

Defaults

If –fsimple is not designated, the compiler uses -fsimple=0.

If -fsimple is designated but no value is given for n, the compiler uses
-fsimple=1.

Interactions

-fast implies –fsimple=2.

Warnings

This option can break IEEE 754 conformance.

TABLE A-14 The -fsimple Values

Value of n Meaning

0 Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

1 Allow conservative simplification. The resulting code does not strictly
conform to IEEE 754, but numeric results of most programs are unchanged.
With -fsimple=1, the optimizer can assume the following:
• IEEE754 default rounding/trapping modes do not change after process

initialization.
• Computation producing no visible result other than potential floating-point

exceptions can be deleted.
• Computation with infinities or NaNs as operands needs to propagate NaNs

to their results; that is, x*0 can be replaced by 0.
• Computations do not depend on sign of zero.
With -fsimple=1, the optimizer is not allowed to optimize completely
without regard to roundoff or exceptions. In particular, a floating-point
computation cannot be replaced by one that produces different results when
rounding modes are held constant at runtime.

2 Permit aggressive floating-point optimization that can cause many programs
to produce different numeric results due to changes in rounding. For example,
permit the optimizer to replace all computations of x/y in a given loop with
x*z, where x/y is guaranteed to be evaluated at least once in the loop z=1/y,
and the values of y and z are known to have constant values during execution
of the loop.
A-32 C++ User’s Guide • January 2005

See also

-fast

Techniques for Optimizing Applications: High Performance Computing written by Rajat
Garg and Ilya Sharapov for a more detailed explanation of how optimization can
impact precision.

A.2.27 –fstore

x86: This option causes the compiler to convert the value of a floating-point
expression or function to the type on the left side of an assignment rather than leave
the value in a register when the following is true:

■ The expression or function is assigned to a variable.
■ The expression is cast to a shorter floating-point type.

To turn off this option, use the –nofstore option.

Warnings

Due to roundoffs and truncation, the results can be different from those that are
generated from the register values.

See also

–nofstore

A.2.28 –ftrap=t[,t...]
Sets the IEEE trapping mode in effect at startup but does not install a SIGFPE
handler. You can use ieee_handler(3M) or fex_set_handling(3M) to
simultaneously enable traps and install a SIGFPE handler. If you specify more than
one value, the list is processed sequentially from left to right.
Appendix A C++ Compiler Options A-33

Values

t can be one of the following values.

Note that the [no%] form of the option is used only to modify the meaning of the
%all and common values, and must be used with one of these values, as shown in
the example. The [no%] form of the option by itself does not explicitly cause a
particular trap to be disabled.

Defaults

If you do not specify –ftrap, the compiler assumes –ftrap=%none.

Examples

–ftrap=%all,no%inexact means to set all traps except inexact.

Warnings

If you compile one routine with –ftrap=t, compile all routines of the program with
the same -ftrap=t option; otherwise, you might get unexpected results.

Use the -ftrap=inexact trap with caution. Use of –ftrap=inexact results in the
trap being issued whenever a floating-point value cannot be represented exactly. For
example, the following statement generates this condition:

TABLE A-15 The -ftrap Values

Value of t Meaning

[no%]division [Do not] Trap on division by zero.

[no%]inexact [Do not] Trap on inexact result.

[no%]invalid [Do not] Trap on invalid operation.

[no%]overflow [Do not] Trap on overflow.

[no%]underflow [Do not] Trap on underflow.

%all Trap on all of the above.

%none Trap on none of the above.

common Trap on invalid, division by zero, and overflow.

x = 1.0 / 3.0;
A-34 C++ User’s Guide • January 2005

This option is effective only if used when compiling the main program. Be cautious
when using this option. If you wish to enable the IEEE traps, use –ftrap=common.

See also

ieee_handler(3M), fex_set_handling(3M) man pages.

A.2.29 –G

Build a dynamic shared library instead of an executable file.

All source files specified in the command line are compiled with -xcode=pic13 by
default.

When building a shared library that uses templates, it is necessary in most cases to
include in the shared library those template functions that are instantiated in the
template data base. Using this option automatically adds those templates to the
shared library as needed.

If you are creating a shared object by specifying -G along with other compiler
options that must be specified at both compile time and link time, make sure that
those same options are also specified at both compile time and link time when you
link with the resulting shared object.

When you create a shared object, all the object files compiled with -xarch=v9, must
also be compiled with an explicit -xcode value as recommended in Section A.2.114,
“–xcode=a” on page A-91.

Interactions

The following options are passed to the linker if –c (the compile-only option) is not
specified:

■ –dy
■ –G
■ –R

Warnings

Do not use ld -G to build shared libraries; use CC -G. The CC driver automatically
passes several options to ld that are needed for C++.
Appendix A C++ Compiler Options A-35

When you use the -G option, the compiler does not pass any default -l options to
ld. If you want the shared library to have a dependency on another shared library,
you must pass the necessary -l option on the command line. For example, if you
want the shared library to be dependent upon libCrun, you must pass -lCrun on
the command line.

See also

-dy, -Kpic, -xcode=pic13, -xildoff, –ztext, ld(1) man page, Section 16.3,
“Building Dynamic (Shared) Libraries” on page 16-3.

A.2.30 –g

Produces additional symbol table information for debugging with dbx(1) or the
Debugger and for analysis with the Performance Analyzer analyzer(1).

Instructs both the compiler and the linker to prepare the file or program for
debugging and for performance analysis.

The tasks include:

■ Producing detailed information, known as stabs, in the symbol table of the object
files and the executable

■ Producing some “helper functions,” which the debugger can call to implement
some of its features

■ Disabling the inline generation of functions

■ Disabling certain levels of optimization

Interactions

If you use this option with –xOlevel (or its equivalent options, such as -O), you will
get limited debugging information. For more information, see Section A.2.145,
“-xOlevel” on page A-124.

If you use this option and the optimization level is -xO4 or higher, the compiler
provides best-effort symbolic information with full optimization.

When you specify this option, the +d option is specified automatically.
A-36 C++ User’s Guide • January 2005

Note – In previous releases, this option forced the compiler to use the incremental
linker (ild) by default instead of the linker (ld) for link-only invocations of the
compiler. That is, with -g, the compiler’s default behavior was to automatically
invoke ild in place of ld whenever you used the compiler to link object files, unless
you specified -G or source files on the command line. This is no longer the case and
the compiler uses ild in link-only invocations of the compiler only if you specify
-xildon. For more information, see the ild(1) man page or Section A.2.124,
“–xildon” on page A-103.

To use the full capabilities of the Performance Analyzer, compile with the -g option.
While some performance analysis features do not require -g, you must compile with
-g to view annotated source, some function level information, and compiler
commentary messages. See the analyzer(1) man page and “Compiling Your
Program for Data Collection and Analysis” in Program Performance Analysis Tools for
more information.

The commentary messages that are generated with -g describe the optimizations
and transformations that the compiler made while compiling your program. Use the
er_src(1) command to display the messages, which are interleaved with the source
code.

Warnings

If you compile and link your program in separate steps, then including the -g
option in one step and excluding it from the other step will not affect the correctness
of the program, but it will affect the ability to debug the program. Any module that
is not compiled with -g (or -g0), but is linked with -g (or -g0) will not be prepared
properly for debugging. Note that compiling the module that contains the function
main with the -g option (or the -g0 option) is usually necessary for debugging.

See also

+d, –g0, –xildoff, –xildon, –xs, analyzer(1) man page, er_src(1) man
page, ld(1) man page, Debugging a Program With dbx (for details about stabs),
Program Performance Analysis Tools.

A.2.31 –g0

Compiles and links for debugging, but does not disable inlining.

This option is the same as –g, except that +d is disabled and dbx cannot step into
inlined functions.
Appendix A C++ Compiler Options A-37

If you specify -g0 and the optimization level is -xO3 or lower, the compiler
provides best-effort symbolic information with almost full optimization. Tail-call
optimization and back-end inlining are disabled.

See also

+d, –g, –xildon, Debugging a Program With dbx

A.2.32 –H

Prints path names of included files.

On the standard error output (stderr), this option prints, one per line, the path
name of each #include file contained in the current compilation.

A.2.33 –h[]name
Assigns the name name to the generated dynamic shared library. This is a loader
option, passed to ld. In general, the name after -h should be exactly the same as the
one after –o. A space between the –h and name is optional.

The compile-time loader assigns the specified name to the shared dynamic library
you are creating. It records the name in the library file as the intrinsic name of the
library. If there is no –hname option, then no intrinsic name is recorded in the library
file.

Every executable file has a list of shared library files that are needed. When the
runtime linker links the library into an executable file, the linker copies the intrinsic
name from the library into that list of needed shared library files. If there is no
intrinsic name of a shared library, then the linker copies the path of the shared
library file instead.

Examples

example% CC -G -o libx.so.1 -h libx.so.1 a.o b.o c.o
A-38 C++ User’s Guide • January 2005

A.2.34 –help

Same as -xhelp=flags.

A.2.35 -Ipathname
Add pathname to the #include file search path.

This option adds pathname to the list of directories that are searched for #include
files with relative file names (those that do not begin with a slash).

The compiler searches for quote-included files (of the form #include "foo.h") in
this order.

1. In the directory containing the source

2. In the directories named with -I options, if any

3. In the include directories for compiler-provided C++ header files, ANSI C
header files, and special-purpose files

4. In the /usr/include directory

The compiler searches for bracket-included files (of the form #include <foo.h>) in
this order.

1. In the directories named with -I options, if any

2. In the include directories for compiler-provided C++ header files, ANSI C
header files, and special-purpose files

3. In the /usr/include directory

Note – If the spelling matches the name of a standard header file, also refer to
Section 12.7.5, “Standard Header Implementation” on page 12-14.

Interactions

The -I- option allows you to override the default search rules.

If you specify -library=no%Cstd, then the compiler does not include in its search
path the compiler-provided header files that are associated with the C++ standard
libraries. See Section 12.7, “Replacing the C++ Standard Library” on page 12-13.

If –ptipath is not used, the compiler looks for template files in –Ipathname.
Appendix A C++ Compiler Options A-39

Use –Ipathname instead of –ptipath.

This option accumulates instead of overrides.

See also

-I-

A.2.36 -I-
Change the include-file search rules to the following:

For include files of the form #include "foo.h", search the directories in the
following order.

1. The directories named with -I options (both before and after -I-)

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

3. The /usr/include directory

For include files of the form #include <foo.h>, search the directories in the
following order.

1. The directories named in the -I options that appear after -I-

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

3. The /usr/include directory

Note – If the name of the include file matches the name of a standard header, also
refer to Section 12.7.5, “Standard Header Implementation” on page 12-14.
A-40 C++ User’s Guide • January 2005

Examples

The following example shows the results of using -I- when compiling prog.cc.

The following command shows the default behavior of searching the current
directory (the directory of the including file) for include statements of the form
#include "foo.h". When processing the #include "c.h" statement in inc/a.h,
the compiler includes the c.h header file from the inc subdirectory. When
processing the #include "c.h" statement in prog.cc, the compiler includes the
c.h file from the directory containing prog.cc. Note that the -H option instructs
the compiler to print the paths of the included files.

prog.cc #include "a.h"
#include <b.h>
#include "c.h"

c.h #ifndef _C_H_1
#define _C_H_1
int c1;
#endif

inc/a.h #ifndef _A_H
#define _A_H
#include "c.h"
int a;
#endif

inc/b.h #ifndef _B_H
#define _B_H
#include <c.h>
int b;
#endif

inc/c.h #ifndef _C_H_2
#define _C_H_2
int c2;
#endif

example% CC -c -Iinc -H prog.cc
inc/a.h
 inc/c.h
inc/b.h
 inc/c.h
c.h
Appendix A C++ Compiler Options A-41

The next command shows the effect of the -I- option. The compiler does not look in
the including directory first when it processes statements of the form #include
"foo.h". Instead, it searches the directories named by the -I options in the order
that they appear in the command line. When processing the #include "c.h"
statement in inc/a.h, the compiler includes the ./c.h header file instead of the
inc/c.h header file.

Interactions

When -I- appears in the command line, the compiler never searches the current
directory, unless the directory is listed explicitly in a -I directive. This effect applies
even for include statements of the form #include "foo.h".

Warnings

Only the first -I- in a command line causes the described behavior.

A.2.37 –i

Tells the linker, ld, to ignore any LD_LIBRARY_PATH setting.

A.2.38 -inline

Same as -xinline.

A.2.39 –instances=a
Controls the placement and linkage of template instances.

example% CC -c -I. -I- -Iinc -H prog.cc
inc/a.h
 ./c.h
inc/b.h
 inc/c.h
./c.h
A-42 C++ User’s Guide • January 2005

Values

a must be one of the following values.

Defaults

If –instances is not specified, –instances=global is assumed.

See also

Section 7.2.4, “Template Instance Placement and Linkage” on page 7-3.

TABLE A-16 The -instances Values

Value of a Meaning

extern Places all needed instances into the template repository within comdat
sections and gives them global linkage. (If an instance in the
repository is out of date, it is reinstantiated.)
Note: If you are compiling and linking in separate steps and you
specify -instance=extern for the compilation step, you must also
specify it for the link step.

explicit Places explicitly instantiated instances into the current object file and
gives them global linkage. Does not generate any other needed
instances.

global Places all needed instances into the current object file and gives them
global linkage.

semiexplicit Places explicitly instantiated instances into the current object file and
gives them global linkage. Places all instances needed by the explicit
instances into the current object file and gives them global linkage.
Does not generate any other needed instances.

static Note: -instances=static is deprecated. There is no longer any
reason to use -instances=static, because -instances=global
now gives you all the advantages of static without the disadvantages.
This option was provided in earlier compilers to overcome problems
that do not exist in this version of the compiler.
Places all needed instances into the current object file and gives them
static linkage.
Appendix A C++ Compiler Options A-43

A.2.40 –instlib=filename
Use this option to inhibit the generation of template instances that are duplicated in
a library, either shared or static, and the current object. In general, if your program
shares large numbers of instances with libraries, try -instlib=filename and see
whether compilation time improves.

Values:

Use the filename argument to specify the library that you know contains the existing
template instances. The filename argument must contain a forward slash ’/’
character. For paths relative to the current directory, use dot-slash ’./’.

Defaults:

The -instlib=filename option has no default and is only used if you specify it. This
option can be specified multiple times and accumulates.

Example:

Assume that the libfoo.a and libbar.so libraries instantiate many template
instances that are shared with your source file a.cc. Adding -instlib=filename
and specifying the libraries helps reduce compile time by avoiding the redundancy.

example% CC -c -instlib=./libfoo.a -instlib=./libbar.so a.cc

Interactions:

When you compile with -g, if the library specified with -instlib=file is not
compiled with -g, those template instances will not be debugable. The workaround
is to avoid -instlib=file when you use -g.

Warning

If you specify a library with -instlib, you must link with that library.

See Also:

-template, -instances, -pti
A-44 C++ User’s Guide • January 2005

A.2.41 –KPIC

SPARC: Same as –xcode=pic32.

x86: Same as –Kpic.

Use this option to compile source files when building a shared library. Each
reference to a global datum is generated as a dereference of a pointer in the global
offset table. Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

A.2.42 –Kpic

SPARC: Same as –xcode=pic13.

x86: Compiles with position-independent code.

Use this option to compile source files when building a shared library. Each
reference to a global datum is generated as a dereference of a pointer in the global
offset table. Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

A.2.43 –keeptmp

Retains temporary files created during compilation.

Along with –verbose=diags, this option is useful for debugging.

See also

–v, –verbose

A.2.44 –Lpath
Adds path to list of directories to search for libraries.

This option is passed to ld. The directory that is named by path is searched before
compiler-provided directories.
Appendix A C++ Compiler Options A-45

Interactions

This option accumulates instead of overrides.

A.2.45 –llib
Adds library liblib.a or liblib.so to the linker’s list of search libraries.

This option is passed to ld. Normal libraries have names such as liblib.a or
liblib.so, where the lib and .a or .so parts are required. You should specify the
lib part with this option. Put as many libraries as you want on a single command
line; they are searched in the order specified with –Ldir.

Use this option after your object file name.

Interactions

This option accumulates instead of overrides.

It is always safer to put –lx after the list of sources and objects to insure that libraries
are searched in the correct order.

Warnings

To ensure proper library linking order, you must use -mt, rather than -lthread, to
link with libthread.

See also

–Ldir, -mt, Chapter 12, and Tools.h++ Class Library Reference

A.2.46 –libmieee

Same as –xlibmieee.

A.2.47 –libmil

Same as –xlibmil.
A-46 C++ User’s Guide • January 2005

A.2.48 -library=l[,l...]
Incorporates specified CC-provided libraries into compilation and linking.

Values

For compatibility mode (–compat[=4]), l must be one of the following values.

For standard mode (the default mode), l must be one of the following:

TABLE A-17 The -library Values for Compatibility Mode

Value of l Meaning

[no%]f77 Deprecated. Use -xlang=f77 instead.

[no%]f90 Deprecated. Use -xlang=f90 instead.

[no%]f95 Deprecated. Use -xlang=f95 instead.

[no%]rwtools7 [Do not] Use classic-iostreams Tools.h++ version 7.

[no%]rwtools7_dbg [Do not] Use debug-enabled Tools.h++ version 7.

[no%]complex [Do not] Use libcomplex for complex arithmetic.

[no%]interval Deprecated. Do not use. Use -xia.

[no%]libC [Do not] Use libC, the C++ support library.

[no%]gc [Do not] Use libgc, garbage collection.

[no%]sunperf SPARC: [Do not] Use the Sun Performance Library™

%none Use no C++ libraries except for libC.

TABLE A-18 The -library Values for Standard Mode

Value of l Meaning

[no%]f77 Deprecated. Use -xlang=f77 instead.

[no%]f90 Deprecated. Use -xlang=f90 instead.

[no%]f95 Deprecated. Use -xlang=f95 instead.

[no%]rwtools7 [Do not] Use classic-iostreams Tools.h++ version 7.

[no%]rwtools7_dbg [Do not] Use debug-enabled Tools.h++ version 7.

[no%]rwtools7_std [Do not] Use standard-iostreams Tools.h++ version 7.

[no%]rwtools7_std_dbg [Do not] Use debug-enabled standard-iostreams Tools.h++
version 7.

[no%]interval Deprecated. Do not use. Use -xia.
Appendix A C++ Compiler Options A-47

Defaults
■ Compatibility mode (–compat[=4])

■ If –library is not specified, -library=libC is assumed.

■ The libC library is always included unless it is specifically excluded using
-library=no%libC.

■ Standard mode (the default mode)

■ The libCstd library is always included unless it is specifically excluded using
-library=%none or -library=no%Cstd or -library=stlport4.

■ The libCrun library always is included.

Regardless of standard or compat mode, the libm and libc libraries are always
included, even if you specify -library=%none.

Examples

To link in standard mode without any C++ libraries (except libCrun), use:

[no%]iostream [Do not] Use libiostream, the classic iostreams library.

[no%]Cstd [Do not] Use libCstd, the C++ standard library. [Do not]
Include the compiler-provided C++ standard library header
files.

[no%]Crun [Do not] Use libCrun, the C++ runtime library.

[no%]gc [Do not] Use libgc, garbage collection.

[no%]stlport4 [Do not] Use STLport’s Standard Library implementation
version 4.5.3 instead of the default libCstd. For more
information about using STLport’s implementation, see
Section 13.3, “STLport” on page 13-16.

[no%]stlport4_dbg [Do not] Use STLport’s debug-enabled library.

[no%]sunperf SPARC: [Do not] Use the Sun Performance Library™.

%none Use no C++ libraries, except for libCrun.

example% CC -library=%none

TABLE A-18 The -library Values for Standard Mode (Continued)

Value of l Meaning
A-48 C++ User’s Guide • January 2005

To include the classic-iostreams Rogue Wave tools.h++ library in standard mode:

To include the standard-iostreams Rogue Wave tools.h++ library in standard
mode:

To include the classic-iostreams Rogue Wave tools.h++ library in compatibility
mode:

Interactions

If a library is specified with -library, the proper –I paths are set during
compilation. The proper –L,–Y P, –R paths and –l options are set during linking.

This option accumulates instead of overrides.

When you use the interval arithmetic libraries, you must include one of the
following libraries: libC, libCstd, or libiostream.

Use of the -library option ensures that the -l options for the specified libraries
are emitted in the right order. For example, the -l options are passed to ld in the
order -lrwtool -liostream for both -library=rwtools7,iostream and
-library=iostream,rwtools7.

The specified libraries are linked before the system support libraries are linked.

You cannot use -library=sunperf and -xlic_lib=sunperf on the same
command line.

You cannot use -library=stlport4 and -library=Cstd on the same command
line.

Only one Rogue Wave tools library can be used at a time and you cannot use any
Rogue Wave tools library with -library=stlport4.

example% CC –library=rwtools7,iostream

example% CC -library=rwtools7_std

example% CC -compat -library=rwtools7
Appendix A C++ Compiler Options A-49

When you include the classic-iostreams Rogue Wave tools library in standard mode
(the default mode), you must also include libiostream (see the C++ Migration
Guide for additional information). You can use the standard-iostreams Rogue Wave
tools library in standard mode only. The following command examples show both
valid and invalid use of the Rogue Wave tools.h++ library options.

If you include both libCstd and libiostream, you must be careful to not use the
old and new forms of iostreams (for example, cout and std::cout) within a
program to access the same file. Mixing standard iostreams and classic iostreams in
the same program is likely to cause problems if the same file is accessed from both
classic and standard iostream code.

Programs linking neither libC nor libCrun might not use all features of the C++
language.

If -xnolib is specified, -library is ignored.

Warnings

If you compile and link in separate steps, the set of -library options that appear in
the compile command must appear in the link command.

The stlport4, Cstd and iostream libraries provide their own implementation of
I/O streams. Specifying more than one of these with the -library option can result
in undefined program behavior. For more information about using STLport’s
implementation, see Section 13.3, “STLport” on page 13-16.

The set of libraries is not stable and might change from release to release.

See also

–I, –l, –R, –staticlib, -xia, -xlang, –xnolib, Chapter 12, Chapter 13,
Chapter 14, Section 2.7.3.3, “Using make With Standard Library Header Files” on
page 2-16, Tools.h++ User’s Guide, Tools.h++ Class Library Reference, Standard C++ Class
Library Reference, C++ Interval Arithmetic Programming Reference.

% CC -compat -library=rwtools7 foo.cc <-- valid
% CC -compat -library=rwtools7_std foo.cc <-- invalid

% CC -library=rwtools7,iostream foo.cc <-- valid, classic iostreams
% CC -library=rwtools7 foo.cc <-- invalid

% CC -library=rwtools7_std foo.cc <-- valid, standard iostreams
% CC -library=rwtools7_std,iostream foo.cc <-- invalid
A-50 C++ User’s Guide • January 2005

For information on using the -library=no%cstd option to enable use of your own
C++ standard library, see Section 12.7, “Replacing the C++ Standard Library” on
page 12-13.

A.2.49 -mc

Removes duplicate strings from the .comment section of the object file. If the string
contains blanks, the string must be enclosed in quotation marks. When you use the
-mc option, the mcs -c command is invoked.

A.2.50 –migration

Explains where to get information about migrating source code that was built for
earlier versions of the compiler.

Note – This option might cease to exist in the next release.

A.2.51 –misalign

SPARC: Permits misaligned data, which would otherwise generate an error, in
memory. This is shown in the following code:

This option informs the compiler that some data in your program is not properly
aligned. Thus, very conservative loads and stores must be used for any data that
might be misaligned, that is, one byte at a time. Using this option may cause
significant degradation in runtime performance. The amount of degradation is
application dependent.

char b[100];
int f(int * ar) {
return *(int *) (b +2) + *ar;
}

Appendix A C++ Compiler Options A-51

Interactions

When using #pragma pack on a SPARC platform to pack denser than the type’s
default alignment, the -misalign option must be specified for both the compilation
and the linking of the application.

Misaligned data is handled by a trap mechanism that is provided by ld at runtime.
If an optimization flag (-xO{1|2|3|4|5} or an equivalent flag) is used with the
-misalign option, the additional instructions required for alignment of misaligned
data are inserted into the resulting object file and will not generate runtime
misalignment traps.

Warnings

If possible, do not link aligned and misaligned parts of the program.

If compilation and linking are performed in separate steps, the –misalign option
must appear in both the compile and link commands.

A.2.52 -mr[,string]
Removes all strings from the .comment section of the object file and, if string is
supplied, places string in that section. If the string contains blanks, the string must
be enclosed in quotation marks.When you use this option, the command
mcs -d [-a string] is invoked.

Interactions

This option is not valid when either -S, -xsbfast, or -sbfast is specified.

A.2.53 –mt

Compiles and links for multithreaded code.

This option:

■ Passes -D_REENTRANT to the preprocessor

■ Passes -lthread in the correct order to ld

■ Ensures that, for standard mode (the default mode), libthread is linked before
libCrun
A-52 C++ User’s Guide • January 2005

■ Ensures that, for compatibility mode (-compat), libthread is linked before
libC

The -mt option is required if the application or libraries are multithreaded.

Warnings

To ensure proper library linking order, you must use this option, rather than
-lthread, to link with libthread.

If you are using POSIX threads, you must link with the -mt and -lpthread
options. The -mt option is necessary because libCrun (standard mode) and libC
(compatibility mode) need libthread for a multithreaded application.

If you compile and link in separate steps and you compile with -mt, be sure to link
with -mt, as shown in the following example, or you might get unexpected results.

If you are mixing parallel Fortran objects with C++ objects, the link line must specify
the -mt option.

See also

–xnolib, Chapter 11, Multithreaded Programming Guide, Linker and Libraries Guide

A.2.54 –native
Same as –xtarget=native.

A.2.55 –noex

Same as –features=no%except.

A.2.56 –nofstore
x86: Disables forced precision of an expression.

example% CC -c -mt myprog.cc
example% CC -mt myprog.o
Appendix A C++ Compiler Options A-53

This option does not force the value of a floating-point expression or function to the
type on the left side of an assignment, but leaves the value in a register when either
of the following are true:

■ The expression or function is assigned to a variable

or

■ The expression or function is cast to a shorter floating-point type

See also

–fstore

A.2.57 –nolib

Same as –xnolib.

A.2.58 –nolibmil

Same as –xnolibmil.

A.2.59 –noqueue

Disables license queueing.

If no license is available, this option returns without queuing your request and
without compiling. A nonzero status is returned for testing makefiles.

A.2.60 –norunpath

Does not build a runtime search path for shared libraries into the executable.

If an executable file uses shared libraries, then the compiler normally builds in a
path that points the runtime linker to those shared libraries. To do so, the compiler
passes the –R option to ld. The path depends on the directory where you have
installed the compiler.

This option is recommended for building executables that will be shipped to
customers who may have a different path for the shared libraries that are used by
the program.
A-54 C++ User’s Guide • January 2005

Interactions

If you use any shared libraries under the compiler installed area (the default location
is /opt/SUNWspro/lib) and you also use –norunpath, then you should either use
the –R option at link time or set the environment variable LD_LIBRARY_PATH at
runtime to specify the location of the shared libraries. Doing so allows the runtime
linker to find the shared libraries.

A.2.61 –O

The -O macro now expands to -xO3 instead of -xO2.

The change in default yields higher run-time performance. However, -x03 may be
inappropriate for programs that rely on all variables being automatically considered
volatile. Typical programs that might have this assumption are device drivers and
older multi-threaded applications that implement their own synchronization
primitives. The work around is to compile with -xO2 instead of -O.

A.2.62 –Olevel
Same as –xOlevel.

A.2.63 –o filename
Sets the name of the output file or the executable file to filename.

Interactions

When the compiler must store template instances, it stores them in the template
repository in the output file’s directory. For example, the following command writes
the object file to ./sub/a.o and writes template instances into the repository
contained within ./sub/SunWS_cache.

example% CC -o sub/a.o a.cc
Appendix A C++ Compiler Options A-55

The compiler reads from the template repositories corresponding to the object files
that it reads. For example, the following command reads from
./sub1/SunWS_Cache and ./sub2/SunWS_cache, and, if necessary, writes to
./SunWS_cache.

For more information, see Section 7.4, “The Template Repository” on page 7-6.

Warnings

The filename must have the appropriate suffix for the type of file to be produced by
the compilation. It cannot be the same file as the source file, since the CC driver does
not overwrite the source file.

A.2.64 +p

Ignore nonstandard preprocessor asserts.

Defaults

If +p is not present, the compiler recognizes nonstandard preprocessor asserts.

Interactions

If +p is used, the following macros are not defined:

■ sun
■ unix
■ sparc
■ i386

A.2.65 –P

Only preprocesses source; does not compile. (Outputs a file with a .i suffix.)

This option does not include preprocessor-type line number information in the
output.

example% CC sub1/a.o sub2/b.o
A-56 C++ User’s Guide • January 2005

See also

–E

A.2.66 –p

Prepares object code to collect data for profiling with prof.

This option invokes a runtime recording mechanism that produces a mon.out file at
normal termination.

Warnings

If you compile and link in separate steps, the -p option must appear in both the
compile command and the link command. Including -p in one step and excluding it
from the other step will not affect the correctness of the program, but you will not be
able to do profiling.

Do not specify -p to compile multi-threaded programs. The runtime support for
these options is not thread-safe. If you compile a program that uses multiple threads
with -p, invalid results or a segmentation fault can occur at runtime.

See also

–xpg, -xprofile, analyzer(1) man page, Program Performance Analysis Tools.

A.2.67 –pentium

x86: Replace with –xtarget=pentium.

A.2.68 –pg

Same as –xpg.

A.2.69 -PIC

SPARC: Same as –xcode=pic32.
Appendix A C++ Compiler Options A-57

x86: Same as –Kpic.

A.2.70 –pic

SPARC: Same as –xcode=pic13.

x86: Same as -Kpic.

A.2.71 –pta

Same as –template=wholeclass.

A.2.72 –ptipath
Specifies an additional search directory for template source.

This option is an alternative to the normal search path set by –Ipathname. If the
-ptipath option is used, the compiler looks for template definition files on this path
and ignores the –Ipathname option.

Using the –Ipathname option instead of –ptipath produces less confusion.

Interactions

This option accumulates instead of overrides.

See also

–Ipathname

A.2.73 –pto

Same as –instances=static.
A-58 C++ User’s Guide • January 2005

A.2.74 –ptr

This option is obsolete and is ignored by the compiler.

Warnings

Even though the -ptr option is ignored, you should remove -ptr from all
compilation commands because, in a later release, it may be reused with a different
behavior.

See also

For information about repository directories, see Section 7.4, “The Template
Repository” on page 7-6.

A.2.75 –ptv

Same as –verbose=template.

A.2.76 –Qoption phase option[,option…]
Passes option to the compilation phase.

To pass multiple options, specify them in order as a comma-separated list. Options
that are passed to components with -Q can be reordered. Options that the driver
recognizes are kept in the correct order. Do not use -Q for options that the driver
already recognizes. For example, the C++ compiler recognizes the -z option for the
linker (ld). If you issue a command like this

 CC -G -zallextract mylib.a -zdefaultextract ... // correct

the -z options are passed in order to the linker. But if you specify the command like
this

 CC -G -Qoption ld -zallextract mylib.a -Qoption ld
-zdefaultextract ... // error

the -z options can be reordered, giving incorrect results.
Appendix A C++ Compiler Options A-59

Values

phase must have one of the following values.

Examples

In the following command line, when ld is invoked by the CC driver, –Qoption
passes the –i and –m options to ld.

Warnings

Be careful to avoid unintended effects. For example,

is interpreted as

The correct usage is

TABLE A-19 The -Qoption Values

SPARC x86

ccfe ccfe

iropt cg386

cg codegen

CClink CClink

ld ld

example% CC -Qoption ld -i,-m test.c

-Qoption ccfe -features=bool,iddollar

-Qoption ccfe -features=bool -Qoption ccfe iddollar

-Qoption ccfe -features=bool,-features=iddollar
A-60 C++ User’s Guide • January 2005

A.2.77 –qoption phase option
Same as –Qoption.

A.2.78 –qp

Same as –p.

A.2.79 –Qproduce sourcetype
Causes the CC driver to produce output of the type sourcetype.

Sourcetype suffixes are defined below.

A.2.80 –qproduce sourcetype
Same as –Qproduce.

A.2.81 –Rpathname[:pathname…]
Builds dynamic library search paths into the executable file.

This option is passed to ld.

TABLE A-20 The -Qproduce Values

Suffix Meaning

.i Preprocessed C++ source from ccfe

.o Object file the code generator

.s Assembler source from cg
Appendix A C++ Compiler Options A-61

Defaults

If the -R option is not present, the library search path that is recorded in the output
object and passed to the runtime linker depends upon the target architecture
instruction specified by the -xarch option (when -xarch is not present,
-xarch=generic is assumed).

In a default installation, install-directory is /opt.

Interactions

This option accumulates instead of overrides.

If the LD_RUN_PATH environment variable is defined and the –R option is specified,
then the path from –R is scanned and the path from LD_RUN_PATH is ignored.

See also

–norunpath, Linker and Libraries Guide

A.2.82 –readme

Same as -xhelp=readme.

A.2.83 –S

Compiles and generates only assembly code.

This option causes the CC driver to compile the program and output an assembly
source file, without assembling the program. The assembly source file is named with
a .s suffix.

-xarch Value Default Library Search Path

v9, v9a, or v9b install-directory/SUNWspro/lib/v9

All other values install-directory/SUNWspro/lib
A-62 C++ User’s Guide • January 2005

A.2.84 –s

Strips the symbol table from the executable file.

This option removes all symbol information from output executable files. This
option is passed to ld.

A.2.85 –sb

Replace with –xsb.

A.2.86 –sbfast

Same as –xsbfast.

A.2.87 -staticlib=l[,l…]
Indicates which C++ libraries, specified by the -library option (including its
defaults), by the -xlang option, and by the -xia option, are to be linked statically.

Values

l must be one of the following values.

TABLE A-21 The -staticlib Values

Value of l Meaning

[no%]library [Do not] link library statically. The valid values for library are all the valid
values for -library (except %all and %none), all the valid values for
-xlang, and interval (to be used in conjunction with -xia).

%all Statically link all the libraries specified in the -library option, all the
libraries specified in the -xlang option, and, if -xia is specified in the
command line, the interval libraries.

%none Link no libraries specified in the -library option and the -xlang
option statically. If -xia is specified in the command line, link no
interval libraries statically.
Appendix A C++ Compiler Options A-63

Defaults

If –staticlib is not specified, –staticlib=%none is assumed.

Examples

The following command line links libCrun statically because Crun is a default
value for –library:

However, the following command line does not link libgc because libgc is not
linked unless explicitly specified with the -library option:

To link libgc statically, use the following command:

With the following command, the librwtool library is linked dynamically. Because
librwtool is not a default library and is not selected using the -library option,
-staticlib has no effect:

This command links the librwtool library statically:

example% CC –staticlib=Crun (correct)

example% CC –staticlib=gc (incorrect)

example% CC -library=gc -staticlib=gc (correct)

example% CC -lrwtool -library=iostream \
-staticlib=rwtools7 (incorrect)

example% CC -library=rwtools7,iostream -staticlib=rwtools7 (correct)
A-64 C++ User’s Guide • January 2005

This command will link the Sun Performance Libraries dynamically because
-library=sunperf must be used in conjunction with -staticlib=sunperf in
order for the -staticlib option to have an effect on the linking of these libraries:

This command links the Sun Performance Libraries statically:

Interactions

This option accumulates instead of overrides.

The -staticlib option only works for the C++ libraries that are selected explicitly
with the -xia option, the -xlang option, and the -library option, in addition to
the C++ libraries that are selected implicitly by default. In compatibility mode
(-compat=[4]), libC is selected by default. In standard mode (the default mode),
Cstd and Crun are selected by default.

When using -xarch=v9, -xarch=v9a, or -xarch=v9b (or equivalent 64-bit
architecture options), some C++ libraries are not available as static libraries.

Warnings

The set of allowable values for library is not stable and might change from release to
release.

When using -xarch=v9, -xarch=v9a, or -xarch=v9b, (or equivalent 64-bit
architecture options), some libraries are not available as static libraries.

The options -staticlib=Crun and -staticlib=Cstd do not work on 64-bit
Solaris x86 platforms. Sun recommends against linking these libraries statically on
any platform. In some cases, static linking can prevent a program from working.

See also

-library, Section 12.5, “Statically Linking Standard Libraries” on page 12-10

example% CC -xlic_lib=sunperf -staticlib=sunperf (incorrect)

example% CC -library=sunperf -staticlib=sunperf (correct)
Appendix A C++ Compiler Options A-65

A.2.88 -sync_stdio=[yes|no]
Use this option when your run-time performance is degraded due to the
synchronization between C++ iostreams and C stdio. Synchronization is needed only
when you use iostreams to write to cout and stdio to write to stdout in the same
program. The C++ standard requires synchronization so the C++ compiler turns it
on by default. However, application performance is often much better without
synchronization. If your program does not write to both cout and stdout, you can
use the option -sync_stdio=no to turn off synchronization.

Defaults:

If you do not specify -sync_stdio, the compiler sets it to -sync_stdio=yes.

Examples:

Consider the following example:

With synchronization, the program prints on a line by itself:

Without synchronization, the output gets scrambled.

Warnings:

This option is only effective for linking of executables, not for libraries.

#include <stdio.h>
#include <iostream>
int main()
{
 std::cout << "Hello ";
 printf("beautiful ");
 std::cout << "world!";
 printf("\n");
}

Hello beautiful world!
A-66 C++ User’s Guide • January 2005

A.2.89 –temp=path
Defines the directory for temporary files.

This option sets the path name of the directory for storing the temporary files that
are generated during the compilation process.

See also

–keeptmp

A.2.90 –template=opt[,opt…]
Enables/disables various template options.

Values

opt must be one of the following values.

Defaults

If the -template option is not specified, -template=no%wholeclass,extdef is
assumed.

TABLE A-22 The -template Values

Value of opt Meaning

[no%]extdef [Do not] Search for template definitions in separate source files.

[no%]geninlinefuncs [Do not] Generate unreferenced inline member functions for
explicitly instantiated class templates.

[no%]wholeclass [Do not] Instantiate a whole template class, rather than only
those functions that are used. You must reference at least one
member of the class; otherwise, the compiler does not
instantiate any members for the class.
Appendix A C++ Compiler Options A-67

Examples

Consider the following code:

When you specify -template=geninlinefuncs, even though the two member
functions of S are not called in the program, they are generated in the object file.

See also

Section 7.2.2, “Whole-Class Instantiation” on page 7-2, Section 7.5, “Template
Definition Searching” on page 7-8

A.2.91 –time

Same as –xtime.

example% cat Example.cc
 template <class T> struct S {
 void imf() {}
 static void smf() {}
 };

 template class S <int>;

 int main() {
 }
example%

example% CC -c -template=geninlinefuncs Example.cc
example% nm -C Example.o

Example.o:

[Index] Value Size Type Bind Other Shndx Name
[5] 0 0 NOTY GLOB 0 ABS __fsr_init_value
[1] 0 0 FILE LOCL 0 ABS b.c
[4] 16 32 FUNC GLOB 0 2 main
[3] 104 24 FUNC LOCL 0 2 void S<int>::imf()
 [__1cBS4Ci_Dimf6M_v_]
[2] 64 20 FUNC LOCL 0 2 void S<int>::smf()
 [__1cBS4Ci_Dsmf6F_v_]
A-68 C++ User’s Guide • January 2005

A.2.92 –Uname
Deletes initial definition of the preprocessor symbol name.

This option removes any initial definition of the macro symbol name created by -D
on the command line including those implicitly placed there by the CC driver. This
option has no effect on any other predefined macros, nor on macro definitions in
source files.

To see the -D options that are placed on the command line by the CC driver, add the
-dryrun option to your command line.

Examples

The following command undefines the predefined symbol __sun. Preprocessor
statements in foo.cc such as #ifdef(__sun) will sense that the symbol is
undefined.

Interactions

You can specify multiple -U options on the command line.

All -U options are processed after any -D options that are present. That is, if the
same name is specified for both -D and -U on the command line, name is undefined,
regardless of the order the options appear.

See also

-D

A.2.93 –unroll=n
Same as –xunroll=n.

A.2.94 –V

Same as –verbose=version.

example% CC -U__sun foo.cc
Appendix A C++ Compiler Options A-69

A.2.95 –v

Same as –verbose=diags.

A.2.96 –vdelx

Deprecated, do not use.

Compatibility mode only (–compat[=4]):

For expressions using delete[], this option generates a call to the runtime library
function _vector_deletex_ instead of generating a call to _vector_delete_.
The function _vector_delete_ takes two arguments: the pointer to be deleted and
the size of each array element.

The function _vector_deletex_ behaves the same as _vector_delete_ except
that it takes a third argument: the address of the destructor for the class. This third
argument is not used by the function, but is provided to be used by third-party
vendors.

Default

The compiler generates a call to _vector_delete_ for expressions using
delete[].

Warnings

This is an obsolete option that will be removed in future releases. Do not use this
option unless you have bought some software from a third-party vendor and the
vendor recommends using this option.

A.2.97 –verbose=v[,v…]
Controls compiler verbosity.
A-70 C++ User’s Guide • January 2005

Values

v must be one of the following values.

Defaults

If –verbose is not specified, –verbose=%none is assumed.

Interactions

This option accumulates instead of overrides.

A.2.98 +w

Identifies code that might have unintended consequences. The +w option no longer
generates a warning if a function is too large to inline or if a declared program
element is unused. These warnings do not identify real problems in the source, and
were thus inappropriate to some development environments. Removing these
warnings from +w enables more aggressive use of +w in those environments. These
warnings are still available with the +w2 option.

This option generates additional warnings about questionable constructs that are:

■ Nonportable
■ Likely to be mistakes
■ Inefficient

TABLE A-23 The -verbose Values

Value of v Meaning

[no%]diags [Do not] Print the command line for each compilation pass.

[no%]template [Do not] Turn on the template instantiation verbose mode
(sometimes called the “verify” mode). The verbose mode displays
each phase of instantiation as it occurs during compilation.

[no%]version [Do not] Direct the CC driver to print the names and version
numbers of the programs it invokes.

%all Invokes all of the above.

%none -verbose=%none is the same as
-verbose=no%template,no%diags,no%version.
Appendix A C++ Compiler Options A-71

Defaults

If +w is not specified, the compiler warns about constructs that are almost certainly
problems.

Interactions

Some C++ standard headers result in warnings when compiled with +w.

See also

–w, +w2

A.2.99 +w2

Emits all the warnings emitted by +w plus warnings about technical violations that
are probably harmless, but that might reduce the maximum portability of your
program.

The +w2 option no longer warns about the use of implementation-dependent
constructs in the system header files. Because the system header files are the
implementation, the warning was inappropriate. Removing these warnings from
+w2 enables more aggressive use of the option.

Warnings

Some Solaris OS and C++ standard header files result in warnings when compiled
with +w2.

See also

+w

A.2.100 –w

Suppresses most warning messages.
A-72 C++ User’s Guide • January 2005

This option causes the compiler not to print warning messages. However, some
warnings, particularly warnings regarding serious anachronisms, cannot be
suppressed.

See also

+w

A.2.101 –Xm

Same as –features=iddollar.

A.2.102 –xa

Generates code for profiling.

If set at compile time, the TCOVDIR environment variable specifies the directory
where the coverage (.d) files are located. If this variable is not set, then the coverage
(.d) files remain in the same directory as the source files.

Use this option only for backward compatibility with old coverage files.

Interactions

The –xprofile=tcov option and the –xa option are compatible in a single
executable. That is, you can link a program that contains some files that have been
compiled with –xprofile=tcov, and others that have been compiled with –xa.
You cannot compile a single file with both options.

The –xa option is incompatible with –g.

Warnings

If you compile and link in separate steps and you compile with -xa, be sure to link
with –xa, or you might get unexpected results.

See also

–xprofile=tcov, tcov(1) man page, Program Performance Analysis Tools.
Appendix A C++ Compiler Options A-73

A.2.103 -xalias_level[=n]
(SPARC) The C++ compiler can perform type-based alias-analysis and optimizations
when you specify the following command:

■ -xalias_level[=n]

where n is any, simple, or compatible.

■ -xalias_level=any

At this level of analysis, the compiler assumes that any type may alias any other
type. However, despite this assumption, some optimization is possible.

■ -xalias_level=simple

The compiler assumes that simple types are not aliased. Specifically, a storage
object with a dynamic type that is one of the following simple types:

is only accessed through lvalues of the following types:

■ The dynamic type of the object

■ A constant or volatile qualified version of the dynamic type of the object,
a type that is the signed or unsigned type corresponding to the dynamic type
of the object

■ A type that is the signed or unsigned type corresponding to a constant or
volatile qualified version of the dynamic type of the object

■ An aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a subaggregate or
contained union)

■ A char or unsigned char type

■ -xalias_level=compatible

The compiler assumes that layout-incompatible types are not aliased. A storage
object is only accessed through lvalues of the following types:

■ The dynamic type of the object

■ A constant or volatile qualified version of the dynamic type of the object,
a type that is the signed or unsigned type which corresponds to the dynamic
type of the object

char short int long int float

signed char unsigned short int unsigned long int double

unsigned char int long long int long double

wchar_t unsigned int unsigned long long int enumeration types

data pointer types function pointer
types

data member pointer
types

function member
pointer types
A-74 C++ User’s Guide • January 2005

■ A type that is the signed or unsigned type which corresponds to the constant
or volatile qualified version of the dynamic type of the object

■ An aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a subaggregate or
contained union)

■ A type that is (possibly constant or volatile qualified) base class type of
the dynamic type of the object

■ A char or unsigned char type.

The compiler assumes that the types of all references are layout compatible with
the dynamic type of the corresponding storage object. Two types are
layout-compatible under the following conditions:

■ If two types are the same type, then they are layout-compatible types.

■ If two types differ only in constant or volatile qualification, then they are
layout-compatible types.

■ For each of the signed integer types, there exists a corresponding (but
different) unsigned integer type. These corresponding types are layout
compatible.

■ Two enumeration types are layout-compatible if they have the same
underlying type.

■ Two Plain Old Data (POD) struct types are layout compatible if they have the
same number of members, and corresponding members (in order) have layout
compatible types.

■ Two POD union types are layout compatible if they have the same number of
members, and corresponding members (in any order) have layout compatible
types.

References may be non-layout-compatible with the dynamic type of the storage
object under limited circumstances:

■ If a POD union contains two or more POD structs that share a common initial
sequence, and if the POD union object currently contains one of those POD
structs, it is permitted to inspect the common initial part of any of them. Two
POD structs share a common initial sequence if corresponding members have
layout compatible types and, as applicable to bit fields, the same widths, for a
sequence of one or more initial members.

■ A pointer to a POD struct object, suitably converted using a reinterpret_cast,
points to its initial member, or if that member is a bit field, to the unit in which
it resides.
Appendix A C++ Compiler Options A-75

Defaults

If you do not specify -xalias_level, the compiler sets the option to
-xalias_level=any. If you specify -xalias_level but do not provide a value,
the compiler sets the option to -xalias_level=compatible.

Interactions

The compiler does not perform type-based alias analysis at optimization level -xO2
and below.

Warning

If you are using reinterpret_cast or an equivalent old-style cast, the program
may violate the assumptions of the analysis. Also, union type punning, as shown in
the following example, violates the assumptions of the analysis.

A.2.104 –xar

Creates archive libraries.

When building a C++ archive that uses templates, it is necessary in most cases to
include in the archive those template functions that are instantiated in the template
database. Using this option automatically adds those templates to the archive as
needed.

Values

Specify -xar to invokes ar -c-r and create an archive from scratch.

union bitbucket{
 int i;
 float f;
};

int bitsof(float f){
bitbucket var;
var.f=3.6;
return var.i;
}

A-76 C++ User’s Guide • January 2005

Examples

The following command line archives the template functions contained in the library
and object files.

Warnings

Do not add .o files from the template database on the command line.

Do not use the ar command directly for building archives. Use CC –xar to ensure
that template instantiations are automatically included in the archive.

See also

ar(1), Chapter 16

A.2.105 –xarch=isa
Specifies the target instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the
specified instruction set architecture. This option does not guarantee use of any
target–specific instructions. However, use of this option may affect the portability of
a binary program.

example% CC -xar -o libmain.a a.o b.o c.o
Appendix A C++ Compiler Options A-77

SPARC Values

TABLE A-24 gives the details for each of the -xarch keywords on SPARC platforms.

TABLE A-24 The -xarch Values for SPARC Platforms

Value of isa Meaning

generic Produce 32-bit object binaries for good performance on most
systems. This is the default. This option uses the best instruction set for
good performance on most processors without major performance
degradation on any of them. With each new release, the definition of “best”
instruction set may be adjusted, if appropriate. Currently, this is equivalent
to -xarch=v7.

generic64 Produce 64-bit object binaries for good performance on most
64-bit platform architectures. This option uses the best instruction set for
good performance on Solaris operating systems with 64-bit kernels, without
major performance degradation on any of them. With each new release, the
definition of “best” instruction set may be adjusted, if appropriate.
Currently, this is equivalent to -xarch=v9.

native Produce 32-bit object binaries for good performance on this
system. This is the default for the -fast option. The compiler chooses the
appropriate setting for the system on which the processor is running.

native64 Produce 64-bit object binaries for good performance on this
system. The compiler chooses the appropriate setting for producing 64-bit
binaries for the system on which the processor is running.

v7 Compile for the SPARC-V7 ISA. (Obsolete) Current Solaris operating
systems no longer support the SPARC V7 architecture, and programs
compiled with this option run slower on current platforms.

v8a Compile for the V8a version of the SPARC-V8 ISA. By definition,
V8a means the V8 ISA, but without the fsmuld instruction. This option
enables the compiler to generate code for good performance on the V8a ISA.
Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA. Enables the compiler to generate code
for good performance on the V8 architecture.
Example: SPARCstation 10
A-78 C++ User’s Guide • January 2005

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
This is the default. By definition, V8plus means the V9 ISA, but limited to
the 32–bit subset defined by the V8plus ISA specification, without the Visual
Instruction Set (VIS), and without other implementation-specific ISA
extensions.
• This option enables the compiler to generate code for good performance

on the V8plus ISA.
• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual
Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.
• This option enables the compiler to generate code for good performance

on the UltraSPARC architecture, but limited to the 32–bit subset defined
by the V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC III extensions. Enables the compiler to generate object code
for the UltraSPARC architecture, plus the Visual Instruction Set (VIS) version
2.0, and with UltraSPARC III extensions.
• The resulting object code is in SPARC-V8+ ELF32 format and executes

only in a Solaris UltraSPARC III environment.
• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC III architecture.

v9 Compile for the SPARC–V9 ISA. Enables the compiler to generate code
for good performance on the V9 SPARC architecture.
• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating system with the 64–bit kernel.
• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris

system.

TABLE A-24 The -xarch Values for SPARC Platforms (Continued)

Value of isa Meaning
Appendix A C++ Compiler Options A-79

Also note the following:

■ SPARC instruction set architectures V8 and V8a are binary compatible.

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and
can execute together, but only on a SPARC V8plusa compatible platform.

■ Object binary files (.o) compiled with v8plus, v8plusa, and v8plusb can be
linked and can execute together, but only on a SPARC V8plusb compatible
platform.

■ -xarch values v9, v9a, and v9b are only available on UltraSPARC 64-bit Solaris
operating systems.

■ Object binary files (.o) compiled with generic64, native64, v9 and v9a can be
linked and can execute together, but will run only on a SPARC V9a compatible
platform.

■ Object binary files (.o) compiled with generic64, native64, v9, v9a, and v9b
can be linked and can execute together, but will run only on a SPARC V9b
compatible platform.

For any particular choice, the generated executable may run much more slowly on
earlier architectures. Also, although quad-precision (REAL*16 and long double)
floating-point instructions are available in many of these instruction set
architectures, the compiler does not use these instructions in the code it generates.

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions
specific to UltraSPARC processors, and enables the compiler to generate
code for good performance on the V9 SPARC architecture.
• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating system with the 64–bit kernel.
• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris

operating system.

v9b Compile for the SPARC-V9 ISA with UltraSPARC III extensions.
Adds UltraSPARC III extensions and VIS version 2.0 to the V9a version of
the SPARC-V9 ISA. Compiling with this option uses the best instruction set
for good performance in a Solaris UltraSPARC III environment.
• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC III processor

running a 64–bit enabled Solaris operating system with the 64–bit kernel.
• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris

operating system.

TABLE A-24 The -xarch Values for SPARC Platforms (Continued)

Value of isa Meaning
A-80 C++ User’s Guide • January 2005

x86 Values:

Caution – Programs that are compiled with -xarch={sse|sse2} to run on the
Solaris x86 SSE/SSE2 Pentium 4-compatible platforms must be run only on
platforms that are SSE/SSE2 enabled. Running such programs on platforms that are
not SSE/SSE2-enabled could result in segmentation faults or incorrect results
occurring without any explicit warning messages.

Patches to the Solaris OS and compilers to prevent execution of SSE/SSE2-compiled
binaries on platforms not SSE/SSE2-enabled might be made available at a later date.

Solaris OS releases starting with the Solaris 9 4/04 software are SSE/SSE2-enabled
on Pentium 4-compatible platforms. Earlier versions of the Solaris OS are not
SSE/SSE2-enabled. This warning extends also to programs that employ .il inline
assembly language functions or __asm() assembler code that utilize SSE/SSE2
instructions.

If you compile and link in separate steps, always link using the compiler and with
-xarch={sse|sse2} to ensure that the correct startup routine is linked

TABLE A-25 gives the details for each of the -xarch flags on x86 platforms.

TABLE A-25 The -xarch Values for x86 Platforms

Value of isa Meaning

386 generic and 386 are equivalent in this release.

amd64 Compile for 64-bit Solaris x86 platforms.

generic Compile for good performance on most systems. This is the default.
This option uses the best instruction set for good performance on most
processors without major performance degradation on any of them.
With each new release, the definition of “best” instruction set may be
adjusted, if appropriate.

generic64 Product 64-bit object binaries for good performance on most 64-bit
platform architectures.
This option uses the best instruction set for good performance on
Solaris operating systems with 64-bit kernels, without major
performance degradation on any of them. With each new release, the
definition of "best" instruction set may be adjusted, if appropriate.

pentium_pro Limits the instruction set to the pentium_pro architecture.

sse Adds the SSE instruction set to the pentium_pro architecture.

sse2 Adds the SSE2 instruction set to the pentium_pro architecture.
Appendix A C++ Compiler Options A-81

SPARC Defaults

The default architecture for which the C++ compiler produces code is now v8plus
(UltraSPARC). Support for v7 will be dropped in a future release.

The new default yields higher run-time performance for nearly all machines in
current use. However, applications that are intended for deployment on
pre-UltraSPARC computers no longer execute by default on those computers.
Compile with -xarch=v8 to ensure that the applications execute on those
computers.

If you want to deploy on v8 systems, you must specify the option -xarch=v8
explicitly on every compiler command line as well as any link-time commands. The
provided system libraries run on v8 architectures.

If you want to deploy on v7 systems, you must specify the option -xarch=v7
explicitly on every compiler command line as well as any link-time commands. The
provided system libraries use the v8 instruction set. For this release, the only
supported operating system for v7 is the Solaris 8 OS release. When a v8 instruction
is encountered, the Solaris 8 OS interprets the instruction in software. The program
runs, but performance is degraded.

x86 Defaults

For x86, -xarch defaults to generic. Note that -fast on x86 expands to
-xarch=native. This option limits the code generated by the compiler to the
instructions of the specified instruction set architecture. This option does not
guarantee use of any target–specific instructions. However, use of this option may
affect the portability of a binary program.

If you compile and link in separate steps, make sure you specify the same value for
-xarch in both steps.

Interactions

Although this option can be used alone, it is part of the expansion of the -xtarget
option and may be used to override the –xarch value that is set by a specific
-xtarget option. For example, -xtarget=ultra2 expands to -xarch=v8plusa
-xchip=ultra2 -xcache=16/32/1:512/64/1. In the following command
-xarch=v8plusb overrides the -xarch=v8plusa that is set by the expansion of
-xtarget=ultra2.

example% CC -xtarget=ultra2 -xarch=v8plusb foo.cc
A-82 C++ User’s Guide • January 2005

Use of –compat[=4] with -xarch=generic64, -xarch=native64, -xarch=v9,
-xarch=v9a, or -xarch=v9b is not supported.

Warnings

If you use this option with optimization, the appropriate choice can provide good
performance of the executable on the specified architecture. An inappropriate choice,
however, might result in serious degradation of performance or in a binary program
that is not executable on the intended target platform.

If you compile and link in separate steps, make sure you specify the same value for
-xarch in both steps.

A.2.106 -xautopar
(SPARC) Turns on automatic parallelization for multiple processors. Does
dependence analysis (analyze loops for inter-iteration data dependence) and loop
restructuring. If optimization is not at -xO3 or higher, optimization is raised to -xO3
and a warning is emitted.

Avoid -xautopar if you do your own thread management.

To achieve faster execution, this option requires a multiple processor system. On a
single-processor system, the resulting binary usually runs slower.

To determine how many processors you have, use the psrinfo command:

To request a number of processors, set the PARALLEL environment variable. The
default is 1.

■ Do not request more processors than are available.

■ The value for the PARALLEL environment variable should be no greater than the
number of processors on a single-user machine. On a multi-user machine, the
PARALLEL environment variable value should be less than the number of
processors to avoid over-loading the machine.

% psrinfo
0 on-line since 01/12/95 10:41:54
1 on-line since 01/12/95 10:41:54
3 on-line since 01/12/95 10:41:54
4 on-line since 01/12/95 10:41:54
Appendix A C++ Compiler Options A-83

If you use -xautopar and compile and link in one step, then linking automatically
includes the microtasking library and the threads-safe C runtime library. If you use
-xautopar and compile and link in separate steps, then you must also link with
-xautopar.

See Also

“-xopenmp[=i]” on page A 127

A.2.107 -xbuiltin[={%all|%none}]
Enables or disables better optimization of standard library calls.

By default, the functions declared in standard library headers are treated as ordinary
functions by the compiler. However, some of those functions can be recognized as
“intrinsic” or “built-in” by the compiler. When treated as a built-in, the compiler can
generate more efficient code. For example, the compiler can recognize that some
functions have no side effects, and always return the same output given the same
input. Some functions can be generated inline directly by the compiler. See the
er_src(1) man page for an explanation of how to read compiler commentary in
object files to determine for which functions the compiler actually makes a
substitution.

The -xbuiltin=%all option asks the compiler to recognize as many of the built-in
standard functions as possible. The exact list of recognized functions varies with the
version of the compiler code generator.

The -xbuiltin=%none option results in the default compiler behavior, and the
compiler does not do any special optimizations for built-in functions.

Defaults

If the -xbuiltin option is not specified, then the compiler assumes
-xbuiltin=%none.

If only -xbuiltin is specified, then the compiler assumes -xbuiltin=%all.
A-84 C++ User’s Guide • January 2005

Interactions

The expansion of the macro -fast includes -xbuiltin=%all.

Examples

The following compiler command requests special handling of the standard library
calls.

The following compiler command request that there be no special handling of the
standard library calls. Note that the expansion of the macro -fast includes
-xbuiltin=%all.

A.2.108 –xcache=c
SPARC: Defines cache properties for use by the optimizer.

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

Note – Although this option can be used alone, it is part of the expansion of the
-xtarget option; its primary use is to override a value supplied by the -xtarget
option.

example% CC -xbuiltin -c foo.cc

example% CC -fast -xbuiltin=%none -c foo.cc
Appendix A C++ Compiler Options A-85

Values

c must be one of the following values.

The definitions of the cache properties, si/li/ai, are as follows:

For example, i=1 designates level 1 cache properties, s1/l1/a1.

Defaults

If –xcache is not specified, the default –xcache=generic is assumed. This value
directs the compiler to use cache properties for good performance on most SPARC
processors, without major performance degradation on any of them.

TABLE A-26 The -xcache Values

Value of c Meaning

generic This is the default value which directs the compiler to use
cache properties for good performance on most x86 and
SPARC processors, without major performance degradation
on any of them.
With each new release, these best timing properties will be
adjusted, if appropriate.

native Set the parameters for the best performance on the host
environment.

s1/l1/a1 Defines level 1 cache properties

s1/l1/a1:s2/l2/a2 Defines level 1 and 2 cache properties

s1/l1/a1:s2/l2/a2:s3/l3/a3 Defines level 1, 2, and 3 cache properties

Property Definition

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i
A-86 C++ User’s Guide • January 2005

Examples

–xcache=16/32/4:1024/32/1 specifies the following:

See also

–xtarget=t

A.2.109 -xcg89

Same as -xtarget=ss2.

Warnings

If you compile and link in separate steps and you compile with -xcg89, be sure to
link with the same option, or you might get unexpected results.

A.2.110 –xcg92

Same as -xtarget=ss1000.

Warnings

If you compile and link in separate steps and you compile with -xcg92, be sure to
link with the same option, or you might get unexpected results.

Level 1 Cache Has Level 2 Cache Has

16 Kbytes 1024 Kbytes

32 bytes line size 32 bytes line size

4-way associativity Direct mapping associativity
Appendix A C++ Compiler Options A-87

A.2.111 -xchar[=o]
The option is provided solely for the purpose of easing the migration of code from
systems where the char type is defined as unsigned. Unless you are migrating from
such a system, do not use this option. Only code that relies on the sign of a char type
needs to be rewritten to explicitly specify signed or unsigned.

Values

You can substitute one of the following for o:

Defaults

If you do not specify -xchar, the compiler assumes -xchar=s.

If you specify -xchar, but do not specify a value, the compiler assumes -xchar=s.

Interactions

The -xchar option changes the range of values for the type char only for code
compiled with -xchar. This option does not change the range of values for type
char in any system routine or header file. In particular, the value of CHAR_MAX and
CHAR_MIN, as defined by limits.h, do not change when this option is specified.
Therefore, CHAR_MAX and CHAR_MIN no longer represent the range of values
encodable in a plain char.

TABLE A-27 The -xchar Values

Value Meaning

signed Treat character constants and variables declared as char as signed.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

s Equivalent to signed

unsigned Treat character constants and variables declared as char as unsigned.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

u Equivalent to unsigned
A-88 C++ User’s Guide • January 2005

Warnings

If you use -xchar, be particularly careful when you compare a char against a
predefined system macro because the value in the macro may be signed. This is most
common for any routine that returns an error code which is accessed through a
macro. Error codes are typically negative values so when you compare a char against
the value from such a macro, the result is always false. A negative number can never
be equal to any value of an unsigned type.

It is strongly recommended that you never use -xchar to compile routines for any
interface exported through a library. The Solaris ABI specifies type char as signed,
and system libraries behave accordingly. The effect of making char unsigned has not
been extensively tested with system libraries. Instead of using this option, modify
your code so that it does not depend on whether type char is signed or unsigned.
The sign of type char varies among compilers and operating systems.

A.2.112 -xcheck[=i]
SPARC: Compiling with -xcheck=stkovf adds a runtime check for stack overflow
of the main thread in a singly-threaded program as well as slave-thread stacks in a
multithreaded program. If a stack overflow is detected, a SIGSEGV is generated. If
your application needs to handle a SIGSEGV caused by a stack overflow differently
than it handles other address-space violations, see sigaltstack(2).

Values

i must be one of the following:

Defaults

If you do not specify -xcheck, the compiler defaults to -xcheck=%none.

TABLE A-28 The -xcheck Values

Value Meaning

%all Perform all checks.

%none Perform no checks.

stkovf Turns on stack-overflow checking.

no%stkovf Turns off stack-overflow checking.
Appendix A C++ Compiler Options A-89

If you specify -xcheck without any arguments, the compiler defaults to
-xcheck=%none.

The -xcheck option does not accumulate on the command line. The compiler sets
the flag in accordance with the last occurrence of the command.

A.2.113 -xchip=c
 Specifies target processor for use by the optimizer.

The –xchip option specifies timing properties by specifying the target processor.
This option affects:

■ The ordering of instructions—that is, scheduling

■ The way the compiler uses branches

■ The instructions to use in cases where semantically equivalent alternatives are
available

Note – Although this option can be used alone, it is part of the expansion of the
-xtarget option; its primary use is to override a value supplied by the -xtarget
option.

Values

c must be one of the following values.

TABLE A-29 The -xchip Values

Platform Value of c Optimize for Using Timing Properties

SPARC generic For good performance on most SPARC processors

native For good performance on the system on which the compiler is
running

old Of processors earlier than the
SuperSPARC processor

super Of the SuperSPARC processor

super2 Of the SuperSPARC II processor

micro Of the microSPARC processor

micro2 Of the microSPARC II processor

hyper Of the hyperSPARC processor
A-90 C++ User’s Guide • January 2005

Defaults

On most SPARC processors, generic is the default value that directs the compiler
to use the best timing properties for good performance without major performance
degradation on any of the processors.

A.2.114 –xcode=a
SPARC: Specifies the code address space.

Note – You should build shared objects by specifying -xcode=pic13 or
-xcode=pic32. It is possible to build workable shared objects with -xarch=v9
-xcode=abs64 and with -xarch=v8, -xcode=abs32, but these will be inefficient.
Shared objects built with -xarch=v9, -xcode=abs32 or -xarch=v9,
-xcode=abs44 will not work.

hyper2 Of the hyperSPARC II processor

powerup Of the Weitek PowerUp processor

ultra Of the UltraSPARC processor

ultra2 Of the UltraSPARC II processor

ultra2e Of the UltraSPARC IIe processor

ultra2i Of the UltraSPARC IIi processor

ultra3 Of the UltraSPARC III processor

ultra3cu Of the UltraSPARC III Cu processor

ultra3i Of the UltraSparc IIIi processors.

x86 generic Of most x86 processors

386 Of the Intel 386 processor

486 Of the Intel 486 processor

pentium Of the Intel Pentium processor

pentium_pro Of the Intel Pentium Pro processor

pentium3 Of the Intel Pentium 3 style processor

pentium4 Of the Intel Pentium 4 style processor

TABLE A-29 The -xchip Values (Continued)

Platform Value of c Optimize for Using Timing Properties
Appendix A C++ Compiler Options A-91

Values

a must be one of the following values.

To determine whether to use –xcode=pic13 or –xcode=pic32, check the size of
the Global Offset Table (GOT) by using elfdump -c (see the elfdump(1) man page
for more information) and for the section header, sh_name: .got. The sh_size
value is the size of the GOT. If the GOT is less than 8,192 bytes, specify
-xcode=pic13, otherwise specify -xcode=pic32.

In general, use the following guidelines to determine how you should use -xcode:

■ If you are building an executable you should not use –xcode=pic13 or
-xcode=pic32.

■ If you are building an archive library only for linking into executables you should
not use –xcode=pic13 or -xcode=pic32.

■ If you are building a shared library, start with –xcode=pic13 and once the GOT
size exceed 8,192 bytes, use -xcode=pic32.

■ If you are building an archive library for linking into shared libraries you should
just use -xcode=pic32.

TABLE A-30 The -xcode Values

Value of a Meaning

abs32 Generates 32-bit absolute addresses, which are fast, but have limited
range. Code + data + bss size is limited to 2**32 bytes.

abs44 SPARC: Generates 44-bit absolute addresses, which have moderate
speed and moderate range. Code + data + bss size is limited to 2**44
bytes. Available only on 64-bit architectures:
–xarch={v9|v9a|v9b}.Do not use this value with dynamic
(shared) libraries.

abs64 SPARC: Generates 64-bit absolute addresses, which are slow, but
have full range. Available only on 64-bit architectures:
–xarch={v9|v9a|v9|generic64|native64}

pic13 Generates position-independent code (small model), which is fast,
but has limited range. Equivalent to –Kpic. Permits references to at
most 2**11 unique external symbols on 32-bit architectures; 2**10 on
64-bit.

pic32 Generates position-independent code (large model), which is slow,
but has full range. Equivalent to –KPIC. Permits references to at
most 2**30 unique external symbols on 32-bit architectures; 2**29 on
64-bit.
A-92 C++ User’s Guide • January 2005

Defaults

For SPARC V8 and V7 processors, the default is –xcode=abs32.

For SPARC and UltraSPARC processors, when you use
–xarch={v9|v9a|v9b|generic64|native64}, the default is –xcode=abs64.

There are two nominal performance costs with –xcode=pic13 and –xcode=pic32
on SPARC:

■ A routine compiled with either –xcode=pic13 or –xcode=pic32 executes a few
extra instructions upon entry to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library’s global or static
variables.

■ Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE_. If the compile is done with
-xcode=pic32, there are two additional instructions per global and static
memory reference.

When considering the above costs, remember that the use of -xcode=pic13 and
-xcode=pic32 can significantly reduce system memory requirements, due to the
effect of library code sharing. Every page of code in a shared library compiled
-xcode=pic13 or –xcode=pic32 can be shared by every process that uses the
library. If a page of code in a shared library contains even a single non-pic (that is,
absolute) memory reference, the page becomes nonsharable, and a copy of the page
must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with
-xcode=pic13 or –xcode=pic32 is with the nm command:

A .o file containing position-independent code contains an unresolved external
reference to _GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use –xcode=pic13 or –xcode=pic32, use nm to identify
the number of distinct global and static variables used or defined in the library. If the
size of _GLOBAL_OFFSET_TABLE_ is under 8,192 bytes, you can use -Kpic.
Otherwise, you must use –xcode=pic32.

Warnings

When you compile and link in separate steps, you must use the same -xarch option
in the compile step and the link step.

% nm file.o | grep _GLOBAL_OFFSET_TABLE_ U _GLOBAL_OFFSET_TABLE_
Appendix A C++ Compiler Options A-93

A.2.115 -xcrossfile[=n]
SPARC: Enables optimization and inlining across source files. -xcrossfile works
at compile time and involves only the files that appear on the compilation command.
Consider the following command-line example:

Cross-module optimizations occur between files f1.cc and f2.cc, and between
f3.cc and f4.cc. No optimizations occur between f1.cc and f3.cc or f4.cc.

Values

n must be one of the following values.

Normally the scope of the compiler’s analysis is limited to each separate file on the
command line. For example, when the -xO4 option is passed, automatic inlining is
limited to subprograms defined and referenced within the same source file.

With -xcrossfile or -xcrossfile=1, the compiler analyzes all the files named
on the command line as if they had been concatenated into a single source file.

Defaults

If -xcrossfile is not specified, -xcrossfile=0 is assumed and no cross-file
optimizations or inlining are performed.

-xcrossfile is the same as -xcrossfile=1.

Interactions

The -xcrossfile option is effective only when it is used with -xO4 or -xO5.

example% CC -xcrossfile -xO4 -c f1.cc f2.cc
example% CC -xcrossfile -xO4 -c f3.cc f4.cc

TABLE A-31 The -xcrossfile Values

Value of n Meaning

0 Do not perform cross-file optimizations or cross-file inlining.

1 Perform optimization and inlining across source files.
A-94 C++ User’s Guide • January 2005

Warnings

The files produced from this compilation are interdependent due to possible
inlining, and must be used as a unit when they are linked into a program. If any one
routine is changed and the files recompiled, they must all be recompiled. As a result,
using this option affects the construction of makefiles.

See Also

-xldscope

A.2.116 -xdepend=[yes|no]
(SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

Loop restructuring includes loop interchange, loop fusion, scalar replacement, and
elimination of “dead” array assignments. If optimization is not at -xO3 or higher,
the compiler raises optimization to -xO3 and issues a warning.

If you do not specify -xdepend, the default is -xdepend=no which means the
compiler does not analyze loops for data dependencies. If you specify -xdepend,
but do not specify an argument, the compiler sets the option to -xdepend=yes
which means the compiler analyzes loops for data dependencies.

Dependency analysis may help on single-processor systems. However, if you try
-xdepend on single-processor systems, you should not use either -xautopar or
-xexplicitpar. If either of them is on, then the -xdepend optimization is done for
multiple-processor systems.

A.2.117 -xdumpmacros[=value[,value...]]
Use this option when you want to see how macros are behaving in your program.
This option provides information such as macro defines, undefines, and instances of
usage. It prints output to the standard error (stderr), based on the order macros are
processed. The -xdumpmacros option is in effect through the end of the file or until
it is overridden by the dumpmacros or end_dumpmacros pragma. See Section B.2.5,
“#pragma dumpmacros” on page B-6.
Appendix A C++ Compiler Options A-95

Values

You can substitute the following arguments in place of value:

The option values accumulate so specifying -xdumpmacros=sys
-xdumpmacros=undefs has the same effect as -xdumpmacros=undefs,sys.

Note – The sub-options loc, conds, and sys are qualifiers for defs, undefs and
use options. By themselves, loc, conds, and sys have no effect. For example,
-xdumpmacros=loc,conds,sys has no effect.

TABLE A-32 The -xdumpmacros Values

Value Meaning

[no%]defs [Do not] Print all macro defines

[no%]undefs [Do not] Print all macro undefines

[no%]use [Do not] Print information about macros used

[no%]loc [Do not] Print location (path name and line number) also for defs,
undefs, and use

[no%]conds [Do not] Print use information for macros used in conditional
directives

[no%]sys [Do not] Print all macros defines, undefines, and use information for
macros in system header files

%all Sets the option to
-xdumpmacros=defs,undefs,use,loc,conds,sys. A good
way to use this argument is in conjunction with the [no%] form of
the other arguments. For example, -xdumpmacros=%all,no%sys
would exclude system header macros from the output but still
provide information for all other macros.

%none Do not print any macro information
A-96 C++ User’s Guide • January 2005

Defaults

If you specify -xdumpmacros without any arguments, it means
-xdumpmacros=defs,undefs,sys. If you do not specify -xdumpmacros, it
defaults to -xdumpmacros=%none.

Examples

If you use the option -xdumpmacros=use,no%loc, the name of each macro that is
used is printed only once. However, if you want more detail, use the option
-xdumpmacros=use,loc so the location and macro name is printed every time a
macro is used.

Consider the following file t.c:

example% cat t.c
#ifdef FOO
#undef FOO
#define COMPUTE(a, b) a+b
#else
#define COMPUTE(a,b) a-b
#endif
int n = COMPUTE(5,2);
int j = COMPUTE(7,1);
#if COMPUTE(8,3) + NN + MM
int k = 0;
#endif
Appendix A C++ Compiler Options A-97

The following examples show the output for file t.c based on the defs, undefs,
sys, and loc arguments.

example% CC -c -xdumpmacros -DFOO t.c
#define __SunOS_5_7 1
#define __SUNPRO_CC 0x570
#define unix 1
#define sun 1
#define sparc 1
#define __sparc 1
#define __unix 1
#define __sun 1
#define __BUILTIN_VA_ARG_INCR 1
#define __SVR4 1
#define __SUNPRO_CC_COMPAT 5
#define __SUN_PREFETCH 1
#define FOO 1
#undef FOO
#define COMPUTE(a, b) a + b

example% CC -c -xdumpmacros=defs,undefs,loc -DFOO -UBAR t.c
command line: #define __SunOS_5_7 1
command line: #define __SUNPRO_CC 0x570
command line: #define unix 1
command line: #define sun 1
command line: #define sparc 1
command line: #define __sparc 1
command line: #define __unix 1
command line: #define __sun 1
command line: #define __BUILTIN_VA_ARG_INCR 1
command line: #define __SVR4 1
command line: #define __SUNPRO_CC_COMPAT 5
command line: #define __SUN_PREFETCH 1
command line: #define FOO 1
command line: #undef BAR
t.c, line 2: #undef FOO
t.c, line 3: #define COMPUTE(a, b) a + b
A-98 C++ User’s Guide • January 2005

The following examples show how the use, loc, and conds arguments report
macro behavior in file t.c:

Consider the file y.c:

Here is the output from -xdumpmacros=use,loc based on the macros in y.c:

See Also

Use the dumpmacros pragma and the end_dumpmacros pragma when you want to
override the scope of -xdumpmacros.

example% CC -c -xdumpmacros=use t.c
used macro COMPUTE

example% CC -c -xdumpmacros=use,loc t.c
t.c, line 7: used macro COMPUTE
t.c, line 8: used macro COMPUTE

example% CC -c -xdumpmacros=use,conds t.c
used macro FOO
used macro COMPUTE
used macro NN
used macro MM

example% CC -c -xdumpmacros=use,conds,loc t.c
t.c, line 1: used macro FOO
t.c, line 7: used macro COMPUTE
t.c, line 8: used macro COMPUTE
t.c, line 9: used macro COMPUTE
t.c, line 9: used macro NN
t.c, line 9: used macro MM

example% cat y.c
#define X 1
#define Y X
#define Z Y
int a = Z;

example% CC -c -xdumpmacros=use,loc y.c
y.c, line 4: used macro Z
y.c, line 4: used macro Y
y.c, line 4: used macro X
Appendix A C++ Compiler Options A-99

A.2.118 -xe
Checks only for syntax and semantic errors. When you specify -xe, the compiler
does not produce any object code. The output for -xe is directed to stderr.

Use the -xe option if you do not need the object files produced by compilation. For
example, if you are trying to isolate the cause of an error message by deleting
sections of code, you can speed the edit and compile cycle by using -xe.

See Also

–c

A.2.119 –xF[=v[,v...]]
Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions and/or data variables into
separate section fragments, which enables the linker, using directions in a mapfile
specified by the linker’s -M option, to reorder these sections to optimize program
performance. Generally, this optimization is only effective when page fault time
constitutes a significant fraction of program run time.

Reording of variables can help solve the following problems which negatively
impact run-time performance:

■ Cache and page contention caused by unrelated variables that are near each other
in memory.

■ Unnecessarily large work-set size as a result of related variables which are not
near each other in memory.

■ Unnecessarily large work-set size as a result of unused copies of weak variables
that decrease the effective data density.

Reordering variables and functions for optimal performance requires the following
operations:

1. Compiling and linking with -xF.

2. Following the instructions in the "Program Performance Analysis Tools" manual
regarding how to generate a mapfile for functions or following the instructions in
the "Linker and Libraries Guide" regarding how to generate a mapfile for data.

3. Relinking with the new mapfile by using the linker’s -M option.

4. Re-executing under the Analyzer to verify improvement.
A-100 C++ User’s Guide • January 2005

Values

v can be one or more of the following:

Defaults

If you do not specify -xF, the default is -xF=%none. If you specify -xF without any
arguments, the default is -xF=%none,func.

Interactions

Using -xF=lcldata inhibits some address calculation optimizations, so you should
only use this flag when it is experimentally justified.

See also

analyzer(1), debugger(1), ld(1) man pages

A.2.120 –xhelp=flags
Displays a brief description of each compiler option.

A.2.121 –xhelp=readme
Displays contents of the online readme file.

TABLE A-33 The -xF Values

Value Meaning

[no%]func [Do not] fragment functions into separate sections.

[no%]gbldata [Do not] fragment global data (variables with external linkage) into
separate sections.

[no%]lcldata [Do not] fragment local data (variables with internal linkage) into
separate sections.

%all Fragment functions, global data, and local data.

%none Fragment nothing.
Appendix A C++ Compiler Options A-101

The readme file is paged by the command specified in the environment variable,
PAGER. If PAGER is not set, the default paging command is more.

A.2.122 -xia

SPARC: Links the appropriate interval arithmetic libraries and sets a suitable
floating-point environment.

Note – The C++ interval arithmetic library is compatible with interval arithmetic as
implemented in the Fortran compiler.

Expansions

The -xia option is a macro that expands to -fsimple=0 -ftrap=%none -fns=no
-library=interval. If you use intervals and override what is set by -xia by
specifying a different flag for -fsimple, -ftrap, -fns or -library, you may
cause the compiler to exhibit incorrect behavior.

Interactions

To use the interval arithmetic libraries, include <suninterval.h>.

When you use the interval arithmetic libraries, you must include one of the
following libraries: libC, Cstd, or iostreams. See -library for information on
including these libraries.

Warnings

If you use intervals and you specify different values for -fsimple, -ftrap, or
-fns, then your program may have incorrect behavior.

C++ interval arithmetic is experimental and evolving. The specifics may change
from release to release.

See also

C++ Interval Arithmetic Programming Reference, Interval Arithmetic Solves Nonlinear
Problems While Providing Guaranteed Results
(http://www.sun.com/forte/info/features/intervals.html), -library
A-102 C++ User’s Guide • January 2005

http://www.sun.com/forte/info/features/intervals.html

A.2.123 –xildoff
Turns off the incremental linker.

Defaults

This option is assumed if you do not use the –g option. It is also assumed if you do
use the –G option, or name any source file on the command line. Override this
default by using the -xildon option.

See also

–xildon, ild(1) man page, ld(1) man page, “Incremental Link Editor” in the C
User’s Guide

A.2.124 –xildon
Turns on the incremental linker.

This option is assumed if you use –g and not –G, and you do not name any source
file on the command line. Override this default by using the -xildoff option.

See also

–xildoff, ild(1) man page, ld(1) man page, “Incremental Link Editor” in the
C User’s Guide

A.2.125 -xinline[=func_spec[,func_spec...]]
Specifies which user-written routines can be inlined by the optimizer at -xO3 levels
or higher.
Appendix A C++ Compiler Options A-103

Values

func_spec must be one of the following values.

Only routines in the file being compiled are considered for inlining unless you use
-xcrossfile[=1]. The optimizer decides which of these routines are appropriate
for inlining.

Defaults

If the -xinline option is not specified, the compiler assumes -xinline=%auto.

If -xinline= is specified with no arguments, no functions are inlined, regardless of
the optimization level.

Examples

To enable automatic inlining while disabling inlining of the function declared
int foo(), use

TABLE A-34 The -xinline Values

Value of func_spec Meaning

%auto Enable automatic inlining at optimization levels -xO4 or higher. This
argument tells the optimizer that it can inline functions of its
choosing. Note that without the %auto specification, automatic
inlining is normally turned off when explicit inlining is specified on
the command line by -xinline=[no%]func_name...

func_name Strongly request that the optimizer inline the function. If the
function is not declared as extern "C", the value of func_name must
be mangled. You can use the nm command on the executable file to
find the mangled function names. For functions declared as extern
"C", the names are not mangled by the compiler.

no%func_name When you prefix the name of a routine on the list with no%, the
inlining of that routine is inhibited. The rule about mangled names
for func_name applies to no%func_name as well.

example% CC -xO5 -xinline=%auto,no%__1cDfoo6F_i_ -c a.cc
A-104 C++ User’s Guide • January 2005

To strongly request the inlining of the function declared as int foo(), and to make
all other functions as the candidates for inlining, use

To strongly request the inlining of the function declared as int foo(), and to not allow
inlining of any other functions, use

Interactions

The -xinline option has no effect for optimization levels below -xO3. At -xO4 and
higher, the optimizer decides which functions should be inlined, and does so
without the -xinline option being specified. At -xO4 and higher, the compiler also
attempts to determine which functions will improve performance if they are inlined.

A routine is not inlined if any of the following conditions apply. No warnings will be
omitted.

■ Optimization is less than -xO3

■ The routine cannot be found

■ Inlining it is not profitable or safe

■ The source is not in the file being compiled, or, if you use -xcrossfile[=1], the
source is not in the files named on the command line

Warnings

If you force the inlining of a function with -xinline, you might actually diminish
performance.

See Also

-xldscope

A.2.126 -xipo[={0|1|2}]
Performs interprocedural optimizations.

example% CC -xO5 -xinline=%auto,__1cDfoo6F_i_ -c a.cc

example% CC -xO5 -xinline=__1cDfoo6F_i_ -c a.cc
Appendix A C++ Compiler Options A-105

The -xipo option performs whole-program optimizations by invoking an
interprocedural analysis pass. Unlike -xcrossfile, -xipo performs optimizations
across all object files in the link step, and the optimizations are not limited to just the
source files on the compile command. However, just like -xcrossfile,
whole-program optimizations performed with -xipo do not include assembly (.s)
source files.

The -xipo option is particularly useful when compiling and linking large multifile
applications. Object files compiled with this flag have analysis information compiled
within them that enables interprocedural analysis across source and precompiled
program files. However, analysis and optimization is limited to the object files
compiled with -xipo, and does not extend to object files on libraries.

Values

The -xipo option can have the following values.

Defaults

If -xipo is not specified, -xipo=0 is assumed.

If only -xipo is specified, -xipo=1 is assumed.

Examples

The following example compiles and links in the same step.

The optimizer performs crossfile inlining across all three source files. This is done in
the final link step, so the compilation of the source files need not all take place in a
single compilation and could be over a number of separate compilations, each
specifying the -xipo option.

TABLE A-35 The -xipo Values

Value Meaning

0 Do not perform interprocedural optimizations

1 Perform interprocedural optimizations

2 Perform interprocedural aliasing analysis as well as optimizations of
memory allocation and layout to improve cache performance

example% CC -xipo -xO4 -o prog part1.cc part2.cc part3.cc
A-106 C++ User’s Guide • January 2005

The following example compiles and links in separate steps.

The object files created in the compile steps have additional analysis information
compiled within them to permit crossfile optimizations to take place at the link step.

Interactions

The -xipo option requires at least optimization level -xO4.

You cannot use both the -xipo option and the -xcrossfile option in the same
compiler command line.

Warnings

When compiling and linking are performed in separate steps, -xipo must be
specified in both steps to be effective.

Objects that are compiled without -xipo can be linked freely with objects that are
compiled with -xipo.

Libraries do not participate in crossfile interprocedural analysis, even when they are
compiled with -xipo, as shown in this example.

In this example, interprocedural optimizations will be performed between one.cc,
two.cc and three.cc, and between main.cc and four.cc, but not between
main.cc or four.cc and the routines in mylib.a. (The first compilation may
generate warnings about undefined symbols, but the interprocedural optimizations
will be performed because it is a compile and link step.)

The -xipo option generates significantly larger object files due to the additional
information needed to perform optimizations across files. However, this additional
information does not become part of the final executable binary file. Any increase in
the size of the executable program will be due to the additional optimizations
performed.

example% CC -xipo -xO4 -c part1.cc part2.cc
example% CC -xipo -xO4 -c part3.cc
example% CC -xipo -xO4 -o prog part1.o part2.o part3.o

example% CC -xipo -xO4 one.cc two.cc three.cc
example% CC -xar -o mylib.a one.o two.o three.o
...
example% CC -xipo -xO4 -o myprog main.cc four.cc mylib.a
Appendix A C++ Compiler Options A-107

A.2.126.1 When Not To Use -xipo=2 Interprocedural Analysis

The compiler tries to perform whole-program analysis and optimizations as it works
with the set of object files in the link step. The compiler makes the following two
assumptions for any function (or subroutine) foo() defined in this set of object files:

1. foo() is not called explicitly by another routine that is defined outside this set of
object files at runtime.

2. The calls to foo() from any routine in the set of object files are not interposed
upon by a different version of foo() defined outside this set of object files.

Do not compile with -xipo=2, if assumption 1 is not true for the given application

Do not compile with either -xipo=1 or -xipo=2, if assumption 2 is not true.

As an example, consider interposing on the function malloc() with your own
version and compiling with -xipo=2. Consequently, all the functions in any library
that reference malloc() that are linked with your code have to be compiled with
-xipo=2 also and their object files need to participate in the link step. Since this
might not be possible for system libraries, do not compile your version of malloc
with -xipo=2.

As another example, suppose that you build a shared library with two external calls,
foo() and bar() inside two different source files. Furthermore, suppose that bar()
calls foo(). If there is a possibility that foo() could be interposed at runtime, then do
not compile the source file for foo() or for bar() with -xipo=1 or -xipo=2.
Otherwise, foo() could be inlined into bar(), which could cause incorrect results.

See Also

-xjobs

A.2.127 -xjobs=n
Specify the -xjobs option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine.
Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n,
the interprocedural optimizer uses n as the maximum number of code generator
instances it can invoke to compile different files.
A-108 C++ User’s Guide • January 2005

Values

You must always specify -xjobs with a value. Otherwise an error diagnostic is
issued and compilation aborts.

Generally, a safe value for n is 1.5 multiplied by the number of available processors.
Using a value that is many times the number of available processors can degrade
performance because of context switching overheads among spawned jobs. Also,
using a very high number can exhaust the limits of system resources such as swap
space.

Defaults

Multiple instances of -xjobs on the command line override each other until the
right-most instance is reached.

Examples

The following example compiles more quickly on a system with two processors than
the same command without the -xjobs option.

A.2.128 -xlang=language[,language]
Includes the appropriate runtime libraries and ensures the proper runtime
environment for the specified language.

Values

language must be either f77, f90, f95, or c99.

The f90 and f95 arguments are equivalent. The c99 argument invokes ISO
9899:1999 C programming language behavior for objects that were compiled with cc
-xc99=%all and are being linked with \f3CC\f1.

 example% CC -xipo -xO4 -xjobs=3 t1.cc t2.cc t3.cc
Appendix A C++ Compiler Options A-109

Interactions

The -xlang=f90 and -xlang=f95 options imply -library=f90, and the
-xlang=f77 option implies -library=f77. However, the -library=f77 and
-library=f90 options are not sufficient for mixed-language linking because only
the -xlang option ensures the proper runtime environment.

To determine which driver to use for mixed-language linking, use the following
language hierarchy:

1. C++

2. Fortran 95 (or Fortran 90)

3. Fortran 77

4. C or C99

When linking Fortran 95, Fortran 77, and C++ object files together, use the driver of
the highest language. For example, use the following C++ compiler command to link
C++ and Fortran 95 object files.

To link Fortran 95 and Fortran 77 object files, use the Fortran 95 driver, as follows.

You cannot use the -xlang option and the -xlic_lib option in the same compiler
command. If you are using -xlang and you need to link in the Sun Performance
Libraries, use -library=sunperf instead.

Warnings

Do not use -xnolib with -xlang.

If you are mixing parallel Fortran objects with C++ objects, the link line must specify
the -mt flag.

See also

-library, -staticlib

example% CC -xlang=f95...

example% f95 -xlang=f77...
A-110 C++ User’s Guide • January 2005

A.2.129 -xldscope={v}
Specify the -xldscope option to change the default linker scoping for the definition
of extern symbols. Changing the default can result in faster and safer shared
libraries and executables because the implementation are better hidden.

Values

v must be one of the following:

Defaults

If you do not specify -xldscope, the compiler assumes -xldscope=global. If you
specify -xldscope without any values, the compiler issues an error. Multiple
instances of this option on the command line override each other until the right most
instance is reached.

TABLE A-36 The -xldscope Values

Value Meaning

global Global linker scoping is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic
load module that defines the symbol. This linker scoping is the
current linker scoping for extern symbols.

symbolic Symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic load
module being linked bind to the symbol defined within the module.
Outside of the module, the symbol appears as though it is global.
This linker scoping corresponds to the linker option -Bsymbolic.
Although you cannot use -Bsymbolic with C++ libraries, you can
use the -xldscope=symbolic without causing problems. See ld(1)
for more information on the linker.

hidden Hidden linker scoping is more restrictive than symbolic and global
linker scoping. All references within a dynamic load module bind to
a definition within that module. The symbol will not be visible
outside of the module.
Appendix A C++ Compiler Options A-111

Warning

If you intend to allow a client to override a function in a library, you must be sure
that the function is not generated inline during the library build. The compiler
inlines a function if you specify the function name with -xinline, if you compile at
-xO4 or higher in which case inlining can happen automatically, if you use the inline
specifier, or if you are using cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used
by library clients, and is also used internally in the library:

void* ABC_allocator(size_t size) { return malloc(size); }

If you build the library at -xO4 or higher, the compiler inlines calls to
ABC_allocator that occur in library components. If a library client wants to
replace ABC_allocator with a customized version, the replacement will not occur
in library components that called ABC_allocator. The final program will include
different versions of the function.

Library functions declared with the __hidden or __symbolic specifiers can be
generated inline when building the library. They are not supposed to be overridden
by clients. See Section 4.2, “Thread-Local Storage” on page 4-3.

Library functions declared with the __global specifier, should not be declared
inline, and should be protected from inlining by use of the -xinline compiler
option.

See Also

-xinline, -xO, -xcrossfile

A.2.130 –xlibmieee
Causes libm to return IEEE 754 values for math routines in exceptional cases.

The default behavior of libm is XPG-compliant.

See also

Numerical Computation Guide
A-112 C++ User’s Guide • January 2005

A.2.131 –xlibmil
Inlines selected libm library routines for optimization.

Note – This option does not affect C++ inline functions.

There are inline templates for some of the libm library routines. This option selects
those inline templates that produce the fastest executables for the floating-point
option and platform currently being used.

Interactions

This option is implied by the –fast option.

See also

-fast, Numerical Computation Guide

A.2.132 –xlibmopt

Uses library of optimized math routines.

This option uses a math routine library optimized for performance and usually
generates faster code. The results might be slightly different from those produced by
the normal math library; if so, they usually differ in the last bit.

The order on the command line for this library option is not significant.

Interactions

This option is implied by the –fast option.

See also

–fast, –xnolibmopt
Appendix A C++ Compiler Options A-113

A.2.133 –xlic_lib=sunperf

SPARC: Links in the Sun Performance Library™.

This option, like –l, should appear at the end of the command line, after source or
object files.

Note – The -library=sunperf option is recommended for linking the Sun
Performance Library because this option ensures that the libraries are linked in the
correct order. In addition, the -library=sunperf option is not position dependent
(it can appear anywhere on the command line), and it enables you to use
-staticlib to statically link the Sun Performance Library. The -staticlib option
is more convenient to use than the -Bstatic -xlic_lib=sunperf -Bdynamic
combination.

Interactions

You cannot use the -xlang option and the -xlic_lib option in the same compiler
command. If you are using -xlang and you need to link in the Sun Performance
Library, use -library=sunperf instead.

You cannot use -library=sunperf and -xlic_lib=sunperf in the same
compiler command.

The recommended method for statically linking the Sun Performance Library is to
use the -library=sunperf and -staticlib=sunperf options, as in the
following example.

If you choose to use the -xlic_lib=sunperf option instead of
-library=sunperf, then use the -Bstatic option, as shown in the following
example.

See also

-library and the performance_library readme

example% CC -library=sunperf -staticlib=sunperf ... (recommended)

% CC ... -Bstatic -xlic_lib=sunperf -Bdynamic ...
A-114 C++ User’s Guide • January 2005

A.2.134 –xlicinfo

Shows license server information.

This option returns the license-server name and the user ID for each user who has a
license checked out.

A.2.135 -xlinkopt[=level]
Instructs the compiler to perform link-time optimization on the resulting executable
or dynamic library over and above any optimizations in the object files. These
optimizations are performed at link time by analyzing the object binary code. The
object files are not rewritten but the resulting executable code may differ from the
original object codes.

You must use -xlinkopt on at least some of the compilation commands for
-xlinkopt to be useful at link time. The optimizer can still perform some limited
optimizations on object binaries that are not compiled with -xlinkopt.

-xlinkopt optimizes code coming from static libraries that appear on the compiler
command line, but it skips and does not optimize code coming from shared
(dynamic) libraries that appear on the command line. You can also use -xlinkopt
when you build shared libraries (compiling with -G).

Values

level sets the level of optimizations performed, and must be 0, 1, or 2. The
optimization levels are:

If you compile in separate steps, -xlinkopt must appear on both compile and link
steps:

example% cc -c -xlinkopt a.c b.c

example% cc -o myprog -xlinkopt=2 a.o

TABLE A-37 The -xlinkopt Values

Link Optimizer Setting Behavior

0 The link optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including
instruction cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code
elimination and address computation simplification, at link time.
Appendix A C++ Compiler Options A-115

Note that the level parameter is only used when the compiler is linking. In the
example above, the link optimizer level is 2 even though the object binaries are
compiled with an implied level of 1.

Defaults

Specifying -xlinkopt without a level parameter implies -xlinkopt=1.

Interactions

This option is most effective when you use it to compile the whole program, and
with profile feedback. Profiling reveals the most and least used parts of the code and
building directs the optimizer to focus its effort accordingly. This is particularly
important with large applications where optimal placement of code performed at
link time can reduce instruction cache misses. Typically, this compiles as follows:

For details on using profile feedback, see Section A.2.157, “-xprofile=p” on
page A-144.

Warnings

You cannot use the link-time link optimizer with the incremental linker, ild.
-xlinkopt sets the default linker to be ld. If you enable the incremental linker
explicitly with -xildon and also specify -xlinkopt, -xlinkopt is disabled.

Do not use the -zcompreloc linker option when you compile with -xlinkopt.

Note that compiling with this option increases link time slightly. Object file sizes also
increase, but the size of the executable remains the same. Compiling with
-xlinkopt and -g increases the size of the executable by including debugging
information.

A.2.136 –xM

Runs only the preprocessor on the named C++ programs, requesting that it generate
makefile dependencies and send the result to the standard output (see make(1) for
details about make files and dependencies).

example% cc -o progt -xO5 -xprofile=collect:prog file.c
example% progt
example% cc -o prog -xO5 -xprofile=use:prog -xlinkopt file.c
A-116 C++ User’s Guide • January 2005

Examples

For example:

generates this output:

See also

make(1S) (for details about makefiles and dependencies)

A.2.137 -xM1

This option is the same as –xM, except that it does not report dependencies for the
/usr/include header files, and it does not report dependencies for
compiler-supplied header files.

A.2.138 –xMerge

SPARC: Merges the data segment with the text segment.

The data in the object file is read-only and is shared between processes, unless you
link with ld -N.

#include <unistd.h>
void main(void)
{}

e.o: e.c
e.o: /usr/include/unistd.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/machtypes.h
e.o: /usr/include/sys/select.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/unistd.h
Appendix A C++ Compiler Options A-117

See also

ld(1) man page

A.2.139 -xmaxopt[=v]
This command limits the level of pragma opt to the level specified. v is one of off,
1, 2, 3, 4, 5. The default value is -xmaxopt=off which causes pragma opt to be
ignored. If you specify -xmaxopt without supplying an argument, that is the
equivalent of specifying -xmaxopt=5.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not
exceed the -xmaxopt value.

A.2.140 -xmemalign=ab
(SPARC) Use the -xmemalign option to control the assumptions the compiler makes
about the alignment of data. By controlling the code generated for potentially
misaligned memory accesses and by controlling program behavior in the event of a
misaligned access, you can more easily port your code to SPARC.

Specify the maximum assumed memory alignment and behavior of misaligned data
accesses. There must be a value for both a (alignment) and b (behavior). a specifies
the maximum assumed memory alignment and b specifies the behavior for
misaligned memory accesses.

For memory accesses where the alignment is determinable at compile time, the
compiler generates the appropriate load/store instruction sequence for that
alignment of data.

For memory accesses where the alignment cannot be determined at compile time,
the compiler must assume an alignment to generate the needed load/store sequence.

If actual data alignment at runtime is less than the specified alignment, the
misaligned access attempt (a memory read or write) generates a trap. The two
possible responses to the trap are

■ The OS converts the trap to a SIGBUS signal. If the program does not catch the
signal, the program aborts. Even if the program catches the signal, the misaligned
access attempt will not have succeeded.

■ The OS handles the trap by interpreting the misaligned access and returning
control to the program as if the access had succeeded normally.
A-118 C++ User’s Guide • January 2005

Values

The following table lists the alignment and behavior values for -xmemalign

Defaults

The following default values only apply when no -xmemalign option is present:

■ -xmemalgin=8i for all v8 architectures.

■ -xmemalign=8s for all v9 architectures.

Here is the default when the -xmemalign option is present but no value is given:

■ -xmemalign=1i for all -xarch values.

Examples

The following table shows how you can use -xmemalign to handle different
alignment situations.

TABLE A-38 The -xmemalign Alignment and Behavior Values

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.

2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f Raise signal SIGBUS for alignments less
or equal to 4,otherwise interpret access
and continue execution.8 Assume at most 8 byte alignment.

16 Assume at most 16 byte alignment

TABLE A-39 Examples of -xmemalign

Command Situation

-xmemalign=1s There are many misaligned accesses so trap handling is too
slow.

-xmemalign=8i There are occasional, intentional, misaligned accesses in code
that is otherwise correct.

-xmemalign=8s There should be no misaligned accesses in the program.

-xmemalin=2s You want to check for possible odd-byte accesses.

-xmemalign=2i You want to check for possible odd-byte access and you want
the program to work.
Appendix A C++ Compiler Options A-119

A.2.141 -xnativeconnect[=i]
Use the -xnativeconnect option when you want to include interface information
inside object files and subsequent shared libraries so that the shared library can
interface with code written in the Java™ programming language (Java code). You
must also include -xnativeconnect when you build the shared library with -G.

When you compile with -xnativeconnect, you are providing the maximum,
external, visibility of the native code interfaces. The Native Connector Tool (NCT)
enables the automatic generation of Java code and Java Native Interface (JNI) code.
Using -xnativeconnect with NCT can make functions in C++ shared libraries
callable from Java code. For more information on how to use the NCT, see the online
help.

Values

i must be one of the following:

TABLE A-40 The -xnativeconnect Values

Value Meaning

%all Generates all of the different data described under the individual
options of -xnativeconnet.

%none Generates none of the different data described under the individual
options of -xnativeconnet.

[no%]inlines Forces the generation of out-of-line instances of referenced inline
functions. This provides the native connector with an externally
visible way to call the inline functions. The normal inlining of these
functions at call sites is unaffected

[no%]interfaces Forces the generation of Binary Interface Descriptors (BIDS)
A-120 C++ User’s Guide • January 2005

Defaults
■ If you do not specify -xnativeconnect, the compiler sets the option to

-xnativeconnect=%none.

■ If you specify only -xnativeconnect, the compiler sets the option to
-xnativeconnect=inlines,interfaces.

■ This option does not accumulate. The compiler uses the last setting that is
specified. For example, if you specify the following:

the compiler sets the option to -xnativeconnect=no%inlines,interfaces.

Warnings

Do not compile with -compat=4 if you plan to use -xnativeconnect. Remember that
if you specify -compat without any arguments, the compiler sets it to -compat=4.
If you do not specify -compat, the compiler sets it to -compat=5. You can also
explicitly set the compatibility mode by issuing -compat=5.

A.2.142 –xnolib

Disables linking with default system libraries.

Normally (without this option), the C++ compiler links with several system support
libraries to support C++ programs. With this option, the -llib options to link the
default system support libraries are not passed to ld.

Normally, the compiler links with the system support libraries in the following
order:

■ Standard mode (default mode):

■ Compatibility mode (-compat):

The order of the -l options is significant. The -lm option must appear before -lc.

CC -xnativeconnect=inlines first.o -xnativeconnect=interfaces
second.o -O -G -o library.so

-lCstd -lCrun -lm -lc

-lC -lm -lc
Appendix A C++ Compiler Options A-121

Note – If the -mt compiler option is specified, the compiler normally links with
-lthread just before it links with -lm.

To determine which system support libraries will be linked by default, compile with
the -dryrun option. For example, the output from the following command:

Includes the following in the output:

Examples

For minimal compilation to meet the C application binary interface (that is, a C++
program with only C support required), use:

To link libm statically into a single-threaded application with the generic
architecture instruction set, use:

■ Standard mode:

■ Compatibility mode:

example% CC foo.cc -xarch=v9 -dryrun

-lCstd -lCrun -lm -lc

example% CC –xnolib test.cc –lc

example% CC -xnolib test.cc -lCstd -lCrun -Bstatic -lm \
-Bdynamic -lc

example% CC -compat -xnolib test.cc -lC -Bstatic -lm \
-Bdynamic -lc
A-122 C++ User’s Guide • January 2005

Interactions

Some static system libraries, such as libm.a and libc.a, are not available when
linking with -xarch=v9, -xarch=v9a or -xarch=v9b.

If you specify –xnolib, you must manually link all required system support
libraries in the given order. You must link the system support libraries last.

If -xnolib is specified, -library is ignored.

Warnings

Many C++ language features require the use of libC (compatibility mode) or
libCrun (standard mode).

This set of system support libraries is not stable and might change from release to
release.

See also

–library, –staticlib, –l

A.2.143 –xnolibmil
Cancels –xlibmil on the command line.

Use this option with –fast to override linking with the optimized math library.

A.2.144 –xnolibmopt

Does not use the math routine library.

Examples

Use this option after the –fast option on the command line, as in this example:

example% CC –fast –xnolibmopt
Appendix A C++ Compiler Options A-123

A.2.145 -xOlevel
Specifies optimization level; note the uppercase letter O followed by the digit 1, 2, 3,
4, or 5. In general, program execution speed depends on the level of optimization.
The higher the level of optimization, the better the runtime performance. However,
higher optimization levels can result in increased compilation time and larger
executable files.

In a few cases, –xO2 might perform better than the others, and –xO3 might
outperform –xO4. Try compiling with each level to see if you have one of these rare
cases.

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization. The optimizer resumes subsequent
procedures at the original level specified in the –xOlevel option.

There are five levels that you can use with –xO. The following sections describe how
they operate on the SPARC platform and the x86 platform.

Values

On the SPARC Platform:

■ –xO1 does only the minimum amount of optimization (peephole), which is
postpass, assembly-level optimization. Do not use -xO1 unless using -xO2 or
-xO3 results in excessive compilation time, or you are running out of swap space.

■ –xO2 does basic local and global optimization, which includes:

■ Induction-variable elimination
■ Local and global common-subexpression elimination
■ Algebraic simplification
■ Copy propagation
■ Constant propagation
■ Loop-invariant optimization
■ Register allocation
■ Basic block merging
■ Tail recursion elimination
■ Dead-code elimination
■ Tail-call elimination
■ Complicated expression expansion

This level does not optimize references or definitions for external or indirect
variables.

The -O option is equivalent to the -xO2 option.

■ –xO3, in addition to optimizations performed at the –xO2 level, also optimizes
references and definitions for external variables. This level does not trace the
effects of pointer assignments. When compiling either device drivers that are not
A-124 C++ User’s Guide • January 2005

properly protected by volatile or programs that modify external variables from
within signal handlers, use –xO2. In general, this level results in increased code
size unless combined with the -xspace option.

■ –xO4 does automatic inlining of functions contained in the same file in addition
to performing –xO3 optimizations. This automatic inlining usually improves
execution speed but sometimes makes it worse. In general, this level results in
increased code size unless combined with the -xspace option.

■ –xO5 generates the highest level of optimization. It is suitable only for the small
fraction of a program that uses the largest fraction of computer time. This level
uses optimization algorithms that take more compilation time or that do not have
as high a certainty of improving execution time. Optimization at this level is more
likely to improve performance if it is done with profile feedback. See
Section A.2.157, “-xprofile=p” on page A-144.

On the x86 Platform:

■ –xO1 does basic optimization. This includes algebraic simplification, register
allocation, basic block merging, dead code and store elimination, and peephole
optimization.

■ –xO2 performs local common subexpression elimination, local copy and constant
propagation, and tail recursion elimination, as well as the optimization done by
level 1.

■ –xO3 performs global common subexpression elimination, global copy and
constant propagation, loop strength reduction, induction variable elimination,
and loop-variant optimization, as well as the optimization done by level 2.

■ –xO4 does automatic inlining of functions contained in the same file as well as the
optimization done by level 3. This automatic inlining usually improves execution
speed, but sometimes makes it worse. This level also frees the frame pointer
registration (ebp) for general purpose use. In general this level results in
increased code size.

■ –xO5 generates the highest level of optimization. It uses optimization algorithms
that take more compilation time or that do not have as high a certainty of
improving execution time.

Interactions

If you use -g or -g0 and the optimization level is -xO3 or lower, the compiler
provides best-effort symbolic information with almost full optimization. Tail-call
optimization and back-end inlining are disabled.

If you use -g or -g0 and the optimization level is -xO4 or higher, the compiler
provides best-effort symbolic information with full optimization.
Appendix A C++ Compiler Options A-125

Debugging with -g does not suppress –xOlevel, but –xOlevel limits –g in certain
ways. For example, the –xOlevel options reduce the utility of debugging so that you
cannot display variables from dbx, but you can still use the dbx where command to
get a symbolic traceback. For more information, see Debugging a Program With dbx.

The -xcrossfile option is effective only if it is used with -xO4 or -xO5.

The -xinline option has no effect for optimization levels below -xO3. At -xO4, the
optimizer decides which functions should be inlined, and does so regardless of
whether you specify the -xinline option. At -xO4, the compiler also attempts to
determine which functions will improve performance if they are inlined. If you force
the inlining of a function with -xinline, you might actually diminish performance.

Defaults

The default is no optimization. However, this is only possible if you do not specify
an optimization level. If you specify an optimization level, there is no option for
turning optimization off.

If you are trying to avoid setting an optimization level, be sure not to specify any
option that implies an optimization level. For example, -fast is a macro option that
sets optimization at -xO5. All other options that imply an optimization level give a
warning message that optimization has been set. The only way to compile without
any optimization is to delete all options from the command line or make file that
specify an optimization level.

Warnings

If you optimize at –xO3 or –xO4 with very large procedures (thousands of lines of
code in a single procedure), the optimizer might require an unreasonable amount of
memory. In such cases, machine performance can be degraded.

To prevent this degradation from taking place, use the limit command to limit the
amount of virtual memory available to a single process (see the csh(1) man page).
For example, to limit virtual memory to 16 megabytes:

This command causes the optimizer to try to recover if it reaches 16 megabytes of
data space.

The limit cannot be greater than the total available swap space of the machine, and
should be small enough to permit normal use of the machine while a large
compilation is in progress.

example% limit datasize 16M
A-126 C++ User’s Guide • January 2005

The best setting for data size depends on the degree of optimization requested, the
amount of real memory, and virtual memory available.

To find the actual swap space, type: swap –l

To find the actual real memory, type: dmesg | grep mem

See also

-xldscope –fast, -xcrossfile=n, –xprofile=p, csh(1) man page

A.2.146 -xopenmp[=i]
SPARC: Use the -xopenmp option to enable explicit parallelization with OpenMP
directives. The implementation includes a set of source code directives, run-time
library routines, and environment variables.

Values

The following table lists the values for i:

TABLE A-41 The -xopenmp Values

Values of i Meaning

parallel Enables recognition of OpenMP pragmas. The minimum
optimization level under -xopenmp=parallel is -x03. The
compiler changes the optimization from a lower level to -x03 if
necessary and issues a warning.

stubs Disables recognition of OpenMP pragmas, links to stub library
routines and does not change the optimization levels. Use this
option if your application makes explicit calls to the OpenMP
runtime library routines and you want to compile it to execute
serially. The -xopenmp=stubs command also defines the _OPENMP
preprocessor token.

none Disables recognition of OpenMP pragma, does not change the
optimization level of your program, and does not predefine any
preprocessor tokens.
Appendix A C++ Compiler Options A-127

Defaults

If you do not specify -xopenmp, the compiler sets the option to -xopenmp=none.

If you specify -xopenmp, but without an argument, the compiler sets the option to
-xopenmp=parallel.

Warnings

The default for -xopenmp might change in future releases. You can avoid warning
messages by explicitly specifying an appropriate optimization.

If you compile and link in separate steps, also specify -xopenmp on the link step.
This is especially important when you compile libraries that contain OpenMP
directives.

See also

For a complete summary of the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications, see the OpenMP
API User’s Guide.

A.2.147 -xpagesize=n
(SPARC) Sets the preferred page size for the stack and the heap.

Values

The n value must be one of the following: 8K, 64K, 512K, 4M, 32M, 256M, 2G, 16G, or
default.

You must specify a valid page size for the Solaris operating system on the target
platform, as returned by getpagesize(3C). If you do not specify a valid pagesize,
the request is silently ignored at run-time. The Solaris operating system offers no
guarantee that the page size request will be honored.

You can use pmap(1) or meminfo(2) to determine page size of the target platform.

Note – This feature is not available on the Solaris 8 operating system. A program
compiled with this option will not link on the Solaris 8 software.
A-128 C++ User’s Guide • January 2005

Defaults

If you specify -xpagesize=default, the Solaris operating system sets the page
size.

Expansions

This option is a macro for -xpagesize_heap and -xpagesize_stack. These two
options accept the same arguments as -xpagesize: 8K, 64K, 512K, 4M, 32M, 256M,
2G, 16G, or default. You can set them both with the same value by specifying
-xpagesize or you can specify them individually with different values.

Warnings

The -xpagesize option has no effect unless you use it at compile time and at link
time.

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

A.2.148 -xpagesize_heap=n
(SPARC) Set the page size in memory for the heap.

Values

n can be 8K, 64K, 512K, 4M, 32M, 256M, 2G, 16G, or default. You must specify a
valid page size for the Solaris operating system on the target platform, as returned
by getpagesize(3C). If you do not specify a valid page size, the request is silently
ignored at run-time.

You can use pmap(1) or meminfo(2) to determine page size at the target platform.

Note – This feature is not available on the Solaris 8 operating system. A program
compiled with this option will not link on the Solaris 8 software.
Appendix A C++ Compiler Options A-129

Defaults

If you specify -xpagesize_heap=default, the Solaris operating system sets the
page size.

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

A.2.149 -xpagesize_stack=n
(SPARC) Set the page size in memory for the stack.

Values

n can be 8K, 64K, 512K, 4M, 32M, 256M, 2G, 16G, or default. You must specify a
valid page size for the Solaris operating system on the target platform, as returned
by getpagesize(3C). If you do not specify a valid page size, the request is silently
ignored at run-time.

You can use pmap(1) or meminfo(2) to determine page size at the target platform.

Note – This feature is not available on the Solaris 8 operating system. A program
compiled with this option will not link on the Solaris 8 software.

Defaults

If you specify -xpagesize_stack=default, the Solaris operating system sets the
page size.

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.
A-130 C++ User’s Guide • January 2005

A.2.150 -xpch=v
This compiler option activates the precompiled-header feature. The
precompiled-header feature may reduce compile time for applications whose source
files share a common set of include files containing a large amount of source code.
The compiler collects information about a sequence of header files from one source
file, and then uses that information when recompiling that source file, and when
compiling other source files that have the same sequence of headers. The
information that the compiler collects is stored in a precompiled-header file. You can
take advantage of this feature through the -xpch and -xpchstop options in
combination with the #pragma hdrstop directive.

See Also:

■ Section A.2.151, “-xpchstop=file” on page A-134
■ Section B.2.8, “#pragma hdrstop” on page B-9

Creating a Precompiled-Header File

When you specify -xpch=v, v can be collect:pch_filename or use:pch_filename.
The first time you use -xpch, you must specify the collect mode. The compilation
command that specifies -xpch=collect must only specify one source file. In the
following example, the -xpch option creates a precompiled-header file called
myheader.Cpch based on the source file a.cc:

CC -xpch=collect:myheader a.cc

A valid precompiled-header filename always has the suffix .Cpch. When you specify
pch_filename, you can add the suffix or let the compiler add it for you. For example,
if you specify cc -xpch=collect:foo a.cc, the precompiled-header file is
called foo.Cpch.

When you create a precompiled-header file, pick a source file that contains the
common sequence of include files across all the source files with which the
precompiled-header file is to be used. The common sequence of include files must be
identical across these source files. Remember, only one source filename value is legal
in collect mode. For example, CC -xpch=collect:foo bar.cc is valid,
whereas CC -xpch=collect:foo bar.cc foobar.cc is invalid because it
specifies two source files.
Appendix A C++ Compiler Options A-131

Using A Precompiled-Header File

Specify -xpch=use:pch_filename to use a precompiled-header file. You can specify
any number of source files with the same sequence of include files as the source file
that was used to create the precompiled-header file. For example, your command in
use mode could look like this: CC -xpch=use:foo.Cpch foo.c bar.cc
foobar.cc.

You should only use an existing precompiled-header file if the following is true. If
any of the following is not true, you should recreate the precompiled-header file:

■ The compiler that you are using to access the precompiled-header file is the same
as the compiler that created the precompiled-header file. A precompiled-header
file created by one version of the compiler may not be usable by another version
of the compiler, including differences caused by installed patches.

■ Except for the -xpch option, the compiler options you specify with -xpch=use
must match the options that were specified when the precompiled-header file was
created.

■ The set of included headers you specify with -xpch=use is identical to the set of
headers that were specified when the precompile header was created.

■ The contents of the included headers that you specify with -xpch=use is
identical to the contents of the included headers that were specified when the
precompiled header was created.

■ The current directory (that is, the directory in which the compilation is occurring
and attempting to use a given precompiled-header file) is the same as the
directory in which the precompiled-header file was created.

■ The initial sequence of pre-processing directives, including #include directives,
in the file you specified with -xpch=collect are the same as the sequence of
pre-processing directives in the files you specify with -xpch=use.

In order to share a precompiled-header file across multiple source files, those source
files must share a common set of include files as their initial sequence of tokens. This
initial sequence of tokens is known as the viable prefix. The viable prefix must be
interpreted consistently across all the source files that use the same
precompiled-header file.

The viable prefix of a source file can only be comprised of comments and any of the
following pre-processor directives:

#include

#if/ifdef/ifndef/else/elif/endif

#define/undef

#ident (if identical, passed through as is)

#pragma (if identical)
A-132 C++ User’s Guide • January 2005

Any of these may reference macros. The #else, #elif, and #endif directives must
match within the viable prefix.

Within the viable prefix of each file that shares a precompiled-header file, each
corresponding #define and #undef directive must reference the same symbol (in
the case of #define, each one must reference the same value). Their order of
appearance within each viable prefix must be the same as well. Each corresponding
pragma must also be the same and appear in the same order across all the files
sharing a precompiled header.

A header file that is incorporated into a precompiled-header file must not violate the
following. The results of compiling a program that violate any of these constraints is
undefined.

■ The header file must not contain function and variable definitions.

■ The header file must not use __DATE__ and __TIME__. Use of these
pre-processor macros can generate unpredictable results.

■ The header file must not contain #pragma hdrstop.

■ The header file must not use __LINE__ and __FILE__ in the viable prefix. It is
allowed to use __LINE__ and __FILE__ in included headers.

How to Modify make Files

Here are possible approaches to modifying your make files in order to incorporate
-xpch into your builds.

■ You can use the implicit make rules by using an auxiliary CCFLAGS variable and
the KEEP_STATE facility of both make and dmake. The precompiled header is
produced as a separate, independent step.

.KEEP_STATE:
CCFLAGS_AUX = -O etc
CCFLAGS = -xpch=use:shared $(CCFLAGS_AUX)
shared.Cpch: foo.cc
 $(CCC) -xpch=collect:shared $(CCFLAGS_AUX) foo.cc
a.out: foo.o ping.o pong.o
 $(CCC) foo.o ping.o pong.o
Appendix A C++ Compiler Options A-133

You can also define your own compilation rule instead of trying to use an
auxiliary CCFLAGS.

■ You can produce the precompiled header as a side effect of regular compilation,
and without using KEEP_STATE, but this approach requires explicit compilation
commands.

A.2.151 -xpchstop=file
Use the -xpchstop=file option to specify the last include file to be considered in
creating the precompile-header file with the -xpch option. Using -xpchstop on the
command line is equivalent to placing a hdrstop pragma after the first
include-directive that references file in each of the source files that you specify with
the cc command.

.KEEP_STATE:

.SUFFIXES: .o .cc
%.o:%.cc shared.Cpch
 $(CCC) -xpch=use:shared $(CCFLAGS) -c $<
shared.Cpch: foo.cc
 $(CCC) -xpch=collect:shared $(CCFLAGS) foo.cc -xe
a.out: foo.o ping.o pong.o
 $(CCC) foo.o ping.o pong.o

shared.Cpch + foo.o: foo.cc bar.h
 $(CCC) -xpch=collect:shared foo.cc $(CCFLAGS) -c
ping.o: ping.cc shared.Cpch bar.h
 $(CCC) -xpch=use:shared ping.cc $(CCFLAGS) -c
pong.o: pong.cc shared.Cpch bar.h
 $(CCC) -xpch=use:shared pong.cc $(CCFLAGS) -c
a.out: foo.o ping.o pong.o
 $(CCC) foo.o ping.o pong.o
A-134 C++ User’s Guide • January 2005

In the following example, the -xpchstop option specifies that the viable prefix for
the precompiled header file ends with the include of projectheader.h. Therefore,
privateheader.h is not a part of the viable prefix.

See also

-xpch, pragma hdrstop

A.2.152 –xpg

The –xpg option compiles self-profiling code to collect data for profiling with gprof.
This option invokes a runtime recording mechanism that produces a gmon.out file
when the program normally terminates.

Warnings

If you compile and link separately, and you compile with –xpg, be sure to link with
–xpg.

Do not specify -xpg to compile multi-threaded programs. The runtime support for
these options is not thread-safe. If you compile a program that uses multiple threads
with -xpg, invalid results or a segmentation fault can occur at runtime.

See also

–xprofile=p, analyzer(1) man page, Program Performance Analysis Tools.

example% cat a.cc
 #include <stdio.h>
 #include <strings.h>
 #include "projectheader.h"
 #include "privateheader.h"
 .
 .
 .
example% CC -xpch=collect:foo.Cpch a.cc -xpchstop=projectheader.h
-c
Appendix A C++ Compiler Options A-135

A.2.153 -xport64[=(v)]
Use this option to help you debug code you are porting to a 64-bit environment.
Specifically, this option warns against problems such as truncation of types
(including pointers), sign extension, and changes to bit-packing that are common
when code is ported from a 32-bit architecture such as V7 to a 64-bit architecture
such as V9.

Values

The following table lists the valid values for v:

Defaults

If you do not specify -xport64, the default is -xport64=no. If you specify
-xport64, but do not specify a flag, the default is -xport64=full.

Examples

This section provides examples of code that can cause truncation of type, sign
extension and changes to bit-packing.

Checking for the Truncation of 64-bit Values

When you port to a 64-bit architecture such as V9, your data may be truncated. The
truncation could happen implicitly, by assignment, at initialization, or by an explicit
cast. The difference of two pointers is the typedef ptrdiff_t, which is a 32-bit

TABLE A-42 The -xport64 Values

Values of v Meaning

no Generate no warnings related to the porting of code from a 32 bit
environment to a 64 bit environment.

implicit Generate warning only for implicit conversions. Do not generate
warnings when an explicit cast is present.

full Generate all warnings related to the porting of code from a 32 bit
environment to a 64 bit environment. This includes warnings for
truncation of 64-bit values, sign-extension to 64 bits under ISO
value-preserving rules, and changes to packing of bitfields.
A-136 C++ User’s Guide • January 2005

integer type in 32-bit mode, and a 64-bit integer type in 64-bit mode. The truncation
of a long to a smaller size integral type generates a warning as in the following
example.

Use -xport64=implicit to disable truncation warnings in 64bit compilation mode
when an explicit cast is the cause of data truncation.

Another common issue that arises from porting to a 64-bit architecture is the
truncation of a pointer. This is always an error in C++. An operation such as casting
a pointer to an int which causes such a truncation results in an error diagnostic in V9
when you specify -xport64.

example% cat test1.c
int x[10];

int diff = &x[10] - &x[5]; //warn

example% CC -c -xarch=v9 -Qoption ccfe -xport64=full test1.c
"test1.c", line 3: Warning: Conversion of 64-bit type value to
"int" causes truncation.
1 Warning(s) detected.
example%

example% CC -c -xarch=v9 -Qoption ccfe -xport64=implicit test1.c
"test1.c", line 3: Warning: Conversion of 64-bit type value to
"int" causes truncation.
1 Warning(s) detected.
example%

example% cat test2.c
char* p;
int main() {
 p =(char*) (((unsigned int)p) & 0xFF); // -xarch=v9 error
 return 0;
}
example% CC -c -xarch=v9 -Qoption ccfe -xport64=full test2.c
"test2.c", line 3: Error: Cannot cast from char* to unsigned.
1 Error(s) detected.
example%
Appendix A C++ Compiler Options A-137

Checking for Sign Extension

You can also use the -xport64 option to check for situations in which the normal
ISO C value-preserving rules allow for the extension of the sign of a signed-integral
value in an expression of unsigned-integral type. Such sign extensions can cause
subtle run-time bugs.

example% cat test3.c
int i= -1;
void promo(unsigned long l) {}

int main() {
 unsigned long l;
 l = i; // warn
 promo(i); // warn
}
example% CC -c -xarch=v9 -Qoption ccfe -xport64=full test3.c
"test3.c", line 6: Warning: Sign extension from "int" to 64-bit
integer.
"test3.c", line 7: Warning: Sign extension from "int" to 64-bit
integer.
2 Warning(s) detected.
A-138 C++ User’s Guide • January 2005

Checking for Changes to Packing of Bitfields

Use -xport64 to generate warnings against long bitfields. In the presence of such
bitfields, packing of the bitfields might drastically change. Any program which relies
on assumptions regarding the way bitfields are packed needs to be reviewed before
a successful port can take place to a 64-bit architecture.

Output in V9:

Output in V7:

example% cat test4.c
#include <stdio.h>

union U {
 struct S {
 unsigned long b1:20;
 unsigned long b2:20;
 } s;

 long buf[2];
} u;

int main() {
 u.s.b1 = 0XFFFFF;
 u.s.b2 = 0XFFFFF;
 printf(" u.buf[0] = %lx u.buf[1] = %lx\n", u.buf[0], u.buf[1]);
 return 0;
}
example%

example% u.buf[0] = ffffffffff000000 u.buf[1] = 0

example% u.buf[0] = fffff000 u.buf[1] = fffff000
example% CC -c -xarch=v9 -Qoption ccfe -xport64 test4.c
"test4.c", line 5: Warning: 64-bit type bitfield may change
bitfield packing within structure or union.
"test4.c", line 6: Warning: 64-bit type bitfield may change
bitfield packing within structure or union.
2 Warning(s) detected.
example%
Appendix A C++ Compiler Options A-139

Warnings

Note that warnings are generated only when you compile in 64-bit mode by
specifying options such as -arch=generic64, or -xarch=v9.

See Also

Section A.2.105, “–xarch=isa” on page A-77.

A.2.154 -xprefetch[=a[,a...]]
SPARC: Enable prefetch instructions on those architectures that support prefetch,
such as UltraSPARC II (-xarch=v8plus, v8plusa, v9plusb, v9, v9a, or v9b)

a must be one of the following values.

With -xprefetch, -xprefetch=auto, and -xprefetch=yes, the compiler is free
to insert prefetch instructions into the code it generates. This may result in a
performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you
might find it advantageous to use -xprefetch=latx:factor. This option instructs
the code generator to adjust the default latency time between a prefetch and its
associated load or store by the specified factor.

TABLE A-43 The -xprefetch Values

Value Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit (SPARC) Enable explicit prefetch macros

no%explicit (SPARC) Disable explicit prefetch macros

latx:factor Adjust the compiler’s assumed prefetch-to-load and
prefetch-to-store latencies by the specified factor. You can only
combine this flag with -xprefetch=auto. The factor must be a
positive floating-point or integer number.

yes Obsolete, do not use. Use -xprefetch=auto,explicit instead.

no Obsolete, do not use. Use -xprefetch=no%auto,no%explicit
instead.
A-140 C++ User’s Guide • January 2005

The prefetch latency is the hardware delay between the execution of a prefetch
instruction and the time the data being prefetched is available in the cache. The
compiler assumes a prefetch latency value when determining how far apart to place
a prefetch instruction and the load or store instruction that uses the prefetched data.

Note – The assumed latency between a prefetch and a load may not be the same as
the assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications. This tuning may not always be optimal. For
memory-intensive applications, especially applications intended to run on large
multiprocessors, you may be able to obtain better performance by increasing the
prefetch latency values. To increase the values, use a factor that is greater than 1
(one). A value between .5 and 2.0 will most likely provide the maximum
performance.

For applications with datasets that reside entirely within the external cache, you may
be able to obtain better performance by decreasing the prefetch latency values. To
decrease the values, use a factor that is less than 1 (one).

To use the -xprefetch=latx:factor option, start with a factor value near 1.0 and
run performance tests against the application. Then increase or decrease the factor,
as appropriate, and run the performance tests again. Continue adjusting the factor
and running the performance tests until you achieve optimum performance. When
you increase or decrease the factor in small steps, you will see no performance
difference for a few steps, then a sudden difference, then it will level off again.

Defaults

If -xprefetch is not specified, -xprefetch=no%auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

The default of no%auto is assumed unless explicitly overridden with the use of
-xprefetch without any arguments or with an argument of auto or yes. For
example, -xprefetch=explicit is the same as
-xprefetch=explicit,no%auto.

The default of explicit is assumed unless explicitly overridden with an argument
of no%explicit or an argument of no. For example, -xprefetch=auto is the
same as -xprefetch=auto,explicit.

If automatic prefetching is enabled, such as with -xprefetch or -xprefetch=yes,
but a latency factor is not specified, then -xprefetch=latx:1.0 is assumed.
Appendix A C++ Compiler Options A-141

Interactions

This option accumulates instead of overrides.

The sun_prefetch.h header file provides the macros for specifying explicit
prefetch instructions. The prefetches will be approximately at the place in the
executable that corresponds to where the macros appear.

To use the explicit prefetch instructions, you must be on the correct architecture,
include sun_prefetch.h, and either exclude -xprefetch from the compiler
command or use -xprefetch, -xprefetch=auto,explicit,
-xprefetch=explicit or -xprefetch=yes.

If you call the macros and include the sun_prefetch.h header file, but pass
-xprefetch=no%explicit or -xprefetch=no, the explicit prefetches will not
appear in your executable.

The use of latx:factor is valid only when automatic prefetching is enabled. That is,
latx:factor is ignored unless you use it in conjunction with yes or auto, as in
-xprefetch=yes,latx:factor.

Warnings

Explicit prefetching should only be used under special circumstances that are
supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across
a wide range of machines and applications, you should only use
-xprefetch=latx:factor when the performance tests indicate there is a clear
benefit. The assumed prefetch latencies may change from release to release.
Therefore, retesting the effect of the latency factor on performance whenever
switching to a different release is highly recommended.

A.2.155 -xprefetch_auto_type=a
(SPARC) Where a is [no%]indirect_array_access.

Use this option to determine whether or not the compiler generates indirect
prefetches for the loops indicated by the option -xprefetch_level in the same
fashion the prefetches for direct memory accesses are generated.

If you do not specify a setting for -xprefetch_auto_type, the compiler sets it to
-xprefetch_auto_type=no%indirect_array_access.
A-142 C++ User’s Guide • January 2005

Options such as -xdepend, -xrestrict, and -xalias_level can affect the
aggressiveness of computing the indirect prefetch candidates and therefore the
aggressiveness of the automatic indirect prefetch insertion due to better memory
alias disambiguation information.

A.2.156 -xprefetch_level[=i]
Use the new -xprefetch_level=i option to control the aggressiveness of the
automatic insertion of prefetch instructions as determined with -xprefetch=auto.
The compiler becomes more aggressive, or in other words, introduces more
prefetches, with each higher, level of -xprefetch_level.

The appropriate value for -xprefetch_level depends on the number of cache
misses your application has. Higher -xprefetch_level values have the potential
to improve the performance of applications with a high number of cache misses.

Values

i must be one of 1, 2, or 3.

Defaults

The default is -xprefetch_level=1 when you specify -xprefetch=auto.

TABLE A-44 The -xprefecth_level Values

Value Meaning

1 Enables automatic generation of prefetch instructions.

2 Targets additional loops, beyond those targeted at
-xprefetch_level=1, for prefetch insertion. Additional
prefetches may be inserted beyond those that were inserted at
-xprefetch_level=1.

3 Targets additional loops, beyond those targeted at
-xprefetch_level=2, for prefetch insertion. Additional
prefetches may be inserted beyond those that were inserted at
-xprefetch_level=2.
Appendix A C++ Compiler Options A-143

Interactions

This option is effective only when it is compiled with -xprefetch=auto, with
optimization level 3 or greater (-xO3), and on a platform that supports prefetch
(v8plus, v8plusa, v9, v9a, v9b, generic64, native64).

A.2.157 -xprofile=p
Use this option to first collect and save execution-frequency data so that you can
then use the data in subsequent runs to improve performance. This option is only
valid when you specify optimization at level -xO2 or above.

Compiling with high optimization levels (for example -xO5) is enhanced by
providing the compiler with runtime-performance feedback. In order to produce
runtime-performance feedback, you must compile with -xprofile=collect, run
the executable against a typical data set, and then recompile at the highest
optimization level and with -xprofile=use.

Profile collection is safe for multithreaded applications. That is, profiling a program
that does its own multitasking (-mt) produces accurate results. This option is only
valid when you specify optimization at level -xO2 or above.

Values

p must be one of the following values.

■ collect[:name]

Collects and saves execution frequency for later use by the optimizer with
–xprofile=use. The compiler generates code to measure statement execution
frequency.

The name is the name of the program that is being analyzed. The name is optional
and, if not specified, is assumed to be a.out.

At runtime, a program compiled with –xprofile=collect:name creates the
subdirectory name.profile to hold the runtime feedback information. Data is
written to the file feedback in this subdirectory. You can use the
$SUN_PROFDATA and $SUN_PROFDATA_DIR environment variables to change the
location of the feedback information. See the Interactions section for more
information.

If you run the program several times, the execution frequency data accumulates
in the feedback file; that is, output from prior runs is not lost.

If you are compiling and linking in separate steps, make sure that any object files
compiled with -xprofile=collect are also linked with -xprofile=collect.
A-144 C++ User’s Guide • January 2005

■ use[:name]

The program is optimized by using the executions-frequency data generated and
saved in the feedback files from a previous execution of the program that was
compiled with –xprofile=collect.

The name is the name of the executable that is being analyzed. The name is
optional and, if not specified, is assumed to be a.out.

Except for the -xprofile option which changes from -xprofile=collect to
-xprofile=use, the source files and other compiler options must be exactly the
same as those used for the compilation that created the compiled program which
in turn generated the feedback file. The same version of the compiler must be
used for both the collect build and the use build as well. If compiled with
-xprofile=collect:name, the same program name name must appear in the
optimizing compilation: -xprofile=use:name.

The association between an object file and its profile data is based on the UNIX
pathname of the object file when it is compiled with -xprofile=collect. In
some circumstances, the compiler will not associate an object file with its profile
data: the object file has no profile data because it was not previously compiled
with -xprofile=collect, the object file is not linked in a program with
-xprofile=collect, the program has never been executed.

The compiler can also become confused if an object file was previously compiled
in a different directory with -xprofile=collect and this object file shares a
common basename with other object files compiled with -xprofile=collect
but they cannot be uniquely identified by the names of their containing
directories. In this case, even if the object file has profile data, the compiler will
not be able to find it in the feedback directory when the object file is recompiled
with -xprofile=use.

All of these situations cause the compiler to loose the association between an
object file and its profile data. Therefor, if an object file has profile data but the
compiler is unable to associate it with the object file’s pathname when you specify
-xprofile=use, use the -xprofile_pathmap option to identify correct
directory. See Section A.2.159, “-xprofile_pathmap” on page A-147

■ tcov

Basic block coverage analysis using the new style tcov.

This option is the new style of basic block profiling for tcov. It has similar
functionality to the –xa option, but correctly collects data for programs that have
source code in header files or make use of C++ templates. Code instrumentation
is similar to that of the -xa option, but.d files are no longer generated. Instead,
a single file is generated, the name of which is based on the final executable. For
example, if the program is run out of /foo/bar/myprog.profile, then the
data file is stored in /foo/bar/myprog.profile/myprog.tcovd.
Appendix A C++ Compiler Options A-145

When running tcov, you must pass it the –x option to force it to use the new
style of data. If you do not pass -x, tcov uses the old .d files by default, and
produces unexpected output.

Unlike the –xa option, the TCOVDIR environment variable has no effect at
compile time. However, its value is used at program runtime.

Interactions

The –xprofile=tcov and the -xa options are compatible in a single executable.
That is, you can link a program that contains some files that have been compiled
with -xprofile=tcov and other files compiled with -xa. You cannot compile a
single file with both options.

The code coverage report produced by -xprofile=tcov can be unreliable if there
is inlining of functions due to the use of -xinline or -xO4.

You can set the environment variables $SUN_PROFDATA and $SUN_PROFDATA_DIR
to control where a program that is compiled with -xprofile=collect puts the
profile data. If these variables are not set, the profile data is written to
name.profile/feedback in the current directory (name is the name of the
executable or the name specified in the -xprofile=collect:name flag). If these
variables are set, the -xprofile=collect data is written to
$SUN_PROFDATA_DIR/$SUN_PROFDATA.

The $SUN_PROFDATA and $SUN_PROFDATA_DIR environment variables similarly
control the path and names of the profile data files written by tcov. See the tcov(1)
man page for more information.

Warnings

If you compile and link in separate steps, the same -xprofile option must appear
in both the compile command and the link command. Including -xprofile in one
step and excluding it from the other step will not affect the correctness of the
program, but you will not be able to do profiling.

See also

-xa, tcov(1) man page, Program Performance Analysis Tools.
A-146 C++ User’s Guide • January 2005

A.2.158 -xprofile_ircache[=path]
(SPARC) Use -xprofile_ircache[=path] with -xprofile=collect|use to
improve compilation time during the use phase by reusing compilation data saved
from the collect phase.

With large programs, compilation time in the use phase can improve significantly
because the intermediate data is saved. Note that the saved data could increase disk
space requirements considerably.

When you use -xprofile_ircache[=path], path overrides the location where the
cached files are saved. By default, these files are saved in the same directory as the
object file. Specifying a path is useful when the collect and use phases happen in
two different directories. Here’s a typical sequence of commands:

A.2.159 -xprofile_pathmap

(SPARC) Use the -xprofile_pathmap=collect_prefix:use_prefix option when you are
also specifying the -xprofile=use command. Use -xprofile_pathmap when
both of the following are true and the compiler is unable to find profile data for an
object file that is compiled with -xprofile=use.

■ You are compiling the object file with -xprofile=use in a directory that is
different from the directory in which the object file was previously compiled with
-xprofile=collect.

■ Your object files share a common basename in the profile but are distinguished
from each other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which
object files were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object
files are to be compiled using -xprofile=use.

If you specify multiple instances of -xprofile_pathmap, the compiler processes
them in the order of their occurrence. Each use-prefix specified by an instance of
-xprofile_pathmap is compared with the object file pathname until either a
matching use-prefix is identified or the last specified use-prefix is found not to match
the object file pathname.

example% CC -xO5 -xprofile=collect -xprofile_ircache t1.cc t2.cc
example% a.out // run collects feedback data
example% CC -xO5 -xprofile=use -xprofile_ircache t1.cc t2.cc
Appendix A C++ Compiler Options A-147

A.2.160 –xregs=r[,r...]
Controls scratch register usage.

The compiler can generate faster code if it has more registers available for temporary
storage (scratch registers). This option makes available additional scratch registers
that might not always be appropriate.

Values

r must be one of the following values. The meaning of each value depends upon the
-xarch setting.

TABLE A-45 The -xregs Values

Value of r Meaning

[no%]appl (SPARC) [Does not] Allow the compiler to generate code using the
application registers as scratch registers. The application registers
are:
g2, g3, g4 (v8a, v8, v8plus, v8plusa, v8plusb)
g2, g3 (v9, v9a, v9b)
It is strongly recommended that all system software and libraries be
compiled using -xreg=no%appl. System software (including
shared libraries) must preserve these registers’ values for the
application. Their use is intended to be controlled by the compilation
system and must be consistent throughout the application.
or more information on SPARC instruction sets, see Section A.2.105,
“–xarch=isa” on page A-77.
In the SPARC ABI, these registers are described as application
registers. Using these registers can increase performance because
fewer load and store instructions are needed. However, such use
can conflict with programs that use the registers for other purposes.

[no%]float (SPARC)[Does not] Allow the compiler to generate code by using the
floating-point registers as scratch registers for integer values. Use of
floating-point values may use these registers regardless of this
option. If you want your code to be free of all references to floating
point registers, you need to use -xregs=no%float and also make
sure your code does not use floating point types in any way.
A-148 C++ User’s Guide • January 2005

Defaults

If –xregs is not specified, –xregs=appl,float,no%frameptr is assumed.

Examples

To compile an application program using all available scratch registers, use
-xregs=appl,float.

To compile non-floating-point code that is sensitive to context switch, use
-xregs=no%appl,no%float.

[no%]frameptr (x86) [Does not] Allow the compiler to use the frame-pointer register
(%ebp on IA32, %rbp on AMD64) as an unallocated callee-saves
register.
Using this register as an unallocated callee-saves register may
improve program run time. However, it also reduces the capacity of
some tools to inspect and follow the stack. This stack inspection
capability is important for system performance measurement and
tuning. Therefor, using this optimization may improve local
program performance at the expense of global system performance.
• Tools, such as the Performance Analyzer, that dump the stack for

postmortem diagnosis will not work.
• Debuggers (e.g adb, mdb, dbx) will not be able to dump the stack

or directly pop stack frames.
• The dtrace performance analysis facility will be unable to collect

information on any frames on the stack before the most recent
frame missing the frame pointer.

• Posix pthread_cancel will fail trying to find cleanup handlers.
• C++ exceptions cannot propagate through C functions.
The failures in C++ exceptions occur when a C function that has lost
its frame pointer calls a C++ function that throws an exception
through the C function. Such calls typically occur when a function
accepts a function pointer (for example, qsort) or when a global
function, such as malloc, is interposed upon.
The last two affects listed above may impact the correct operation of
applications. Most application code will not encounter these
problems. Libraries that are developed by using -xO4, however,
need documentation that details the restrictions of their usage by
their clients.

TABLE A-45 The -xregs Values (Continued)

Value of r Meaning
Appendix A C++ Compiler Options A-149

See also

SPARC V7/V8 ABI, SPARC V9 ABI

A.2.161 -xrestrict[=f]
(SPARC) Treats pointer-valued function parameters as restricted pointers . f must be
one of the following values:

This command-line option can be used on its own, but it is best used with
optimization. For example, the command:

treats all pointer parameters in the file prog.c as restricted pointers. The command:

treats all pointer parameters in the function agc in the file prog.c as restricted
pointers.

The default is %none; specifying -xrestrict is equivalent to specifying
-xrestrict=%source.

TABLE A-46 The -xrestrict Values

Value Meaning

%all All pointer parameters in the entire file are treated as restricted.

%none No pointer parameters in the file are treated as restricted.

%source Only functions defined within the main source file are restricted.
Functions defined within included files are not restricted.

fn[,fn...] A comma-separated list of one or more function names. If you
specify a function list, the compiler treats pointer parameters in the
specified functions as restricted; Refer to the following section,
Section A.2.161.1, “Restricted Pointers” on page A-151, for more
information.

%CC -xO3 -xrestrict=%all prog.cc

%CC -xO3 -xrestrict=agc prog.cc
A-150 C++ User’s Guide • January 2005

A.2.161.1 Restricted Pointers

In order for a compiler to effectively perform parallel execution of a loop, it needs to
determine if certain lvalues designate distinct regions of storage. Aliases are lvalues
whose regions of storage are not distinct. Determining if two pointers to objects are
aliases is a difficult and time consuming process because it could require analysis of
the entire program. Consider function vsq() below:

The compiler can parallelize the execution of the different iterations of the loops if it
knows that pointers a and b access different objects. If there is an overlap in objects
accessed through pointers a and b then it would be unsafe for the compiler to
execute the loops in parallel. At compile time, the compiler does not know if the
objects accessed by a and b overlap by simply analyzing the function vsq(); the
compiler may need to analyze the whole program to get this information.

Restricted pointers are used to specify pointers which designate distinct objects so
that the compiler can perform pointer alias analysis. The following is an example of
function vsq() in which function parameters are declared as restricted pointers:

Pointers a and b are declared as restricted pointers, so the compiler knows that a
and b point to distinct regions of storage. With this alias information, the compiler is
able to parallelize the loop.

The keyword restrict is a type-qualifier, like volatile, and it shall only qualify
pointer types. restrict is recognized as a keyword when you use -xc99=all
(except with -Xs). There are situations in which you may not want to change the
source code. You can specify that pointer-valued function-parameters be treated as
restricted pointers by using the following command line option:

If a function list is specified, then pointer parameters in the specified functions are
treated as restricted; otherwise, all pointer parameters in the entire C file are treated
as restricted. For example, -xrestrict=vsq, qualifies the pointers a and b given in
the first example of the function vsq() with the keyword restrict.

CODE EXAMPLE 0-1 A Loop With Two Pointers

void vsq(int n, double * a, double * b) {
int i;
for (i=0; i<n; i++) {

b[i] = a[i] * a[i];
}

}

void vsq(int n, double * restrict a, double * restrict b)

-xrestrict=[func1,…,funcn]
Appendix A C++ Compiler Options A-151

It is critical that you use restrict correctly. If pointers qualified as restricted
pointers point to objects which are not distinct, the compiler can incorrectly
parallelize loops resulting in undefined behavior. For example, assume that pointers
a and b of function vsq() point to objects which overlap, such that b[i] and
a[i+1] are the same object. If a and b are not declared as restricted pointers the
loops will be executed serially. If a and b are incorrectly qualified as restricted
pointers the compiler may parallelize the execution of the loops, which is not safe,
because b[i+1] should only be computed after b[i] is computed.

A.2.162 –xs

Allows debugging by dbx without object (.o) files.

This option causes all the debug information to be copied into the executable. This
has little impact on dbx performance or the run-time performance of the program,
but it does take more disk space.

A.2.163 –xsafe=mem

SPARC: Allows the compiler to assume that no memory protection violations occur.

This option allows the compiler to use the nonfaulting load instruction in the SPARC
V9 architecture.

Interactions

This option is effective only when it is used with –xO5 optimization and
-xarch=v8plus, v8plusa, v8plusb, v9, v9a, or v9b is specified.

Warnings

Because nonfaulting loads do not cause a trap when a fault such as address
misalignment or segmentation violation occurs, you should use this option only for
programs in which such faults cannot occur. Because few programs incur
memory-based traps, you can safely use this option for most programs. Do not use
this option for programs that explicitly depend on memory-based traps to handle
exceptional conditions.
A-152 C++ User’s Guide • January 2005

A.2.164 –xsb

This option causes the CC driver to generate extra symbol table information in the
SunWS_cache subdirectory for the source browser.

See also

–xsbfast

A.2.165 –xsbfast

Produces only source browser information, no compilation.

This option runs only the ccfe phase to generate extra symbol table information in
the SunWS_cache subdirectory for the source browser. No object file is generated.

See also

–xsb

A.2.166 –xspace

SPARC: Does not allow optimizations that increase code size.

A.2.167 –xtarget=t
Specifies the target platform for instruction set and optimization.

The performance of some programs can benefit by providing the compiler with an
accurate description of the target computer hardware. When program performance
is critical, the proper specification of the target hardware could be very important.
This is especially true when running on the newer SPARC processors. However, for
most programs and older SPARC processors, the performance gain is negligible and
a generic specification is sufficient.

Each specific value for -xtarget expands into a specific set of values for the
-xarch, -xchip, and -xcache options. Use the -xdryrun option to determine the
expansion of -xtarget=native on a running system. See TABLE A-47 for the values.
Appendix A C++ Compiler Options A-153

For example, -xtarget=sun4/15 is equivalent to: -xarch=v8a -xchip=micro
-xcache=2/16/1.

Note – The expansion of -xtarget for a specific host platform might not expand to
the same -xarch, -xchip, or -xcache settings as -xtarget=native when
compiling on that platform.

Values

For SPARC platforms:

On SPARC platforms, t must be one of the following values.

TABLE A-47 -xtarget Values for SPARC Platforms

Value of t Meaning

native Gets the best performance on the host system. The compiler
generates code optimized for the host system. It determines the
available architecture, chip, and cache properties of the machine on
which the compiler is running.

native64 Gets the best performance for 64-bit object binaries on the host
system. The compiler generates 64-bit object binaries optimized for
the host system. It determines the available 64-bit architecture, chip,
and cache properties of the machine on which the compiler is
running.

generic Gets the best performance for generic architecture, chip, and cache.
The compiler expands –xtarget=generic to:
–xarch=generic –xchip=generic –xcache=generic.

This is the default value.

generic64 Sets the parameters for the best performance of 64-bit object binaries
over most 64-bit platform architectures.

platform-name Gets the best performance for the specified platform. Select a SPARC
platform name from TABLE A-48.
A-154 C++ User’s Guide • January 2005

The following table details the -xtarget SPARC platform names and their
expansions.

TABLE A-48 SPARC Platform Names for -xtarget

-xtarget= -xarch -xchip -xcache

generic generic generic generic

cs6400 v8plusa super 16/32/4:2048/64/1

entr150 v8plusa ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

sc2000 v8plusa super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1
Appendix A C++ Compiler Options A-155

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

TABLE A-48 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
A-156 C++ User’s Guide • January 2005

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

TABLE A-48 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
Appendix A C++ Compiler Options A-157

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1

ultra3cu v8plusa ultra3cu 64/32/4:8192/512/2

ultra3i v8plusa ultra3i 64/32/4:1024/64/4

TABLE A-48 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
A-158 C++ User’s Guide • January 2005

The following table lists the –xtarget values for the Intel Architecture:

* Obsolete. Use -xtarget=generic instead. For a complete list of obsolete options, see Section 3.3.8, “Obsolete Options” on page 3-8.

Note – The new -xtarget=opteron option does not automatically generate 64-bit
code. It expands to -xarch=sse2, -xchip=opteron, and
-xcache=64/64/2:1024/64/16 which results in 32-bit code. You must specify
-xarch=amd64 after (to the right of) -xtarget to compile 64-bit code.

Defaults

On both SPARC and x86 devices, if –xtarget is not specified, –xtarget=generic
is assumed.

Expansions

The –xtarget option is a macro that permits a quick and easy specification of the
-xarch, –xchip, and –xcache combinations that occur on commercially purchased
platforms. The only meaning of –xtarget is in its expansion.

Examples

-xtarget=sun4/15 means -xarch=v8a -xchip=micro -xcache=2/16/1.

TABLE A-49 -xtarget Expansions on Intel Architecture

-xtarget= -xarch -xchip -xcache

generic generic generic generic

386*

486*

opteron sse2 opteron 64/64/2:1024/64/16

pentium 386 pentium generic

pentium_pro pentium_pro pentium_pro generic

pentium3 sse pentium3 16/32/4:256/32/4

pentium4 sse2 pentium4 8/64/4:256/128/8
Appendix A C++ Compiler Options A-159

Interactions

Compilation for SPARC V9 architecture indicated by the -xarch=v9|v9a|v9b
option. Setting –xtarget=ultra or ultra2 is not necessary or sufficient. If
-xtarget is specified, the –xarch=v9, v9a, or v9b option must appear after the
-xtarget. For example:

expands to the following and reverts the -xarch value to v8.

The correct method is to specify -xarch after -xtarget. For example:

Warnings

When you compile and link in separate steps, you must use the same -xtarget
settings in the compile step and the link step.

A.2.168 -xthreadvar[=o]
(SPARC) Specify -xthreadvar to control the implementation of thread local
variables. Use this option in conjunction with the __thread declaration specifier to
take advantage of the compiler’s thread-local storage facility. After you declare the
thread variables with the __thread specifier, specify -xthreadvar to enable the use
of thread-local storage with position dependent code (non-PIC code) in dynamic
(shared) libraries. For more information on how to use __thread, see Section 4.2,
“Thread-Local Storage” on page 4-3.

-xarch=v9 -xtarget=ultra

-xarch=v9 -xarch=v8 -xchip=ultra -xcache=16/32/1:512/64/1

–xtarget=ultra –xarch=v9
A-160 C++ User’s Guide • January 2005

Values

o must be one of the following:

Defaults

If you do not specify -xthreadvar, the default used by the compiler depends upon
whether or not position-independent code is enabled. If position-independent code
is enabled, the option is set to -xthreadvar=dynamic. If position-independent
code is disabled, the option is set to -xthreadvar=no%dynamic.

If you specify -xthreadvar but do not specify any arguments, the option is set to
-xthreadvar=dynamic.

Interactions

Using thread variables on different versions of Solaris software requires different
options on the command line.

■ On Solaris 8 software, objects that use __thread must be compiled with -mt and
must be linked with -mt -L/usr/lib/lwp -R/usr/lib/lwp.

■ On Solaris 9 software, objects that use __thread must be compiled and linked
with -mt.

Warnings

If there is non-position-independent code within a dynamic library, you must specify
-xthreadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in
dynamic libraries. Non-PIC thread variables are significantly faster, and hence
should be the default for executables.

TABLE A-50 The -xthreadvar Values

Value of r Meaning

[no%]dynamic [Do not] Compile variables for dynamic loading. Access to thread
variables is significantly faster when -xthreadvar=no%dynamic
but you cannot use the object file within a dynamic library. That is,
you can only use the object file in an executable file.
Appendix A C++ Compiler Options A-161

See Also

-xcode, -KPIC, -Kpic

A.2.169 –xtime

Causes the CC driver to report execution time for the various compilation passes.

A.2.170 -xtrigraphs[={yes|no}]
Enables or disables recognition of trigraph sequences as defined by the ISO/ANSI C
standard.

If your source code has a literal string containing question marks (?) that the
compiler is interpreting as a trigraph sequence, you can use the -xtrigraph=no
suboption to turn off the recognition of trigraph sequences.

Values

You can specify one of the following two values for -xtrigraphs:

Defaults

When you do not include the -xtrigraphs option on the command line, the
compiler assumes -xtrigraphs=yes.

If only -xtrigraphs is specified, the compiler assumes -xtrigraphs=yes.

TABLE A-51 The -xtrigraphs Values

Value Meaning

yes Enables recognition of trigraph sequences throughout the compilation unit

no Disables recognition of trigraph sequences throughout the compilation unit
A-162 C++ User’s Guide • January 2005

Examples

Consider the following example source file named trigraphs_demo.cc.

Here is the output if you compile this code with -xtrigraphs=yes.

Here is the output if you compile this code with -xtrigraphs=no.

See also

For information on trigraphs, see the C User’s Guide chapter about transitioning to
ANSI/ISO C.

A.2.171 –xunroll=n
Enables unrolling of loops where possible.

This option specifies whether or not the compiler optimizes (unrolls) loops.

Values

When n is 1, it is a suggestion to the compiler to not unroll loops.

#include <stdio.h>

int main ()
{
 (void) printf("(\?\?) in a string appears as (??)\n");
 return 0;
}

example% CC -xtrigraphs=yes trigraphs_demo.cc
example% a.out
(??) in a string appears as (]

example% CC -xtrigraphs=no trigraphs_demo.cc
example% a.out
(??) in a string appears as (??)
Appendix A C++ Compiler Options A-163

When n is an integer greater than 1, –unroll=n causes the compiler to unroll loops
n times.

A.2.172 -xustr={ascii_utf16_ushort|no}
Use this option if your code contains string literals that you want the compiler to
convert to UTF-16 strings in the object file. Without this option, the compiler neither
produces nor recognizes sixteen-bit character string literals. This option enables
recognition of the U"ASCII_string" string literals as an array of unsigned short int.
Since such strings are not yet part of any standard, this option enables recognition of
non-standard C++.

Not all files have to be compiled with this option.

Values

Specify -xustr=ascii_utf16_ushort if you need to support an internationalized
application that uses ISO10646 UTF-16 string literals. You can turn off compiler
recognition of U"ASCII_string" string literals by specifying -xustr=no. The
right-most instance of this option on the command line overrides all previous
instances.

You can specify -xustr=ascii_ustf16_ushort without also specifying a
U"ASCII_string" string literal. It is not an error to do so.

Defaults

The default is -xustr=no. If you specify -xustr without an argument, the
compiler won’t accept it and instead issues a warning. The default can change if the
C or C++ standards define a meaning for the syntax.

Example

The following example shows a string literal in quotes that is prepended by U. It
also shows a command line that specifies -xustr

example% cat file.cc
const unsigned short *foo = U"foo";
const unsigned short bar[] = U"bar";
const unsigned short *fun() {return U"fun"};
example% CC -xustr=ascii_utf16_ushort file.cc -c
A-164 C++ User’s Guide • January 2005

Warnings

Sixteen-bit character-literals are not supported.

A.2.173 -xvector[={yes|no}]
(SPARC) Enable automatic generation of calls to the vector library functions. You
must use default rounding mode by specifying -fround=nearest when you use
this option.

-xvector=yes permits the compiler to transform math library calls within loops
into single calls to the equivalent vector math routines when such transformations
are possible. Such transformations could result in a performance improvement for
loops with large loop counts.

If you do not specify -xvector, the default is -xvector=no. -xvector=no undoes
a previously specified -xvector=yes. If you specify -xvector but do not supply a
value, the default is -xvector=yes.

If you use -xvector on the command line without previously specifying
-xdepend, -xvector triggers -xdepend. The -xvector option also raises the
optimization level to -x03 if optimization is not specified or optimization is set
lower than -x03.

The compiler includes the libmvec libraries in the load step.

If you compile and link with separate commands, be sure to use -xvector in the
linking cc command.

A.2.174 -xvis[={yes|no}]
(SPARC) Use the -xvis=[yes|no] command when you are using the
assembly-language templates defined in the VIS™ instruction-set Software
Developers Kit (VSDK).

The VIS instruction set is an extension to the SPARC v9 instruction set. Even though
the UltraSPARC processors are 64-bit, there are many cases, especially in multimedia
applications, when the data are limited to eight or 16 bits in size. The VIS
instructions can process four 16-bit data with one instruction so they greatly
improve the performance of applications that handle new media such as imaging,
linear algebra, signal processing, audio, video and networking.
Appendix A C++ Compiler Options A-165

Defaults

The default is -xvis=no. Specifying -xvis is equivalent to specifying -xvis=yes.

See Also

For more information on the VSDK, see
http://www.sun.com/processors/vis/.

A.2.175 –xwe

Converts all warnings to errors by returning nonzero exit status.

A.2.176 -Yc,path
Specifies a new path for the location of component c.

If the location of a component is specified, then the new path name for the
component is path/component_name. This option is passed to ld.

Values

c must be one of the following values:

TABLE A-52 The -Y Flags

Value Meaning

P Changes the default directory for cpp.

0 Changes the default directory for ccfe.

a Changes the default directory for fbe.

2 (SPARC) Changes the default directory for iropt.

c (SPARC) Changes the default directory for cg.

O (SPARC) Changes the default directory for ipo.

k Changes the default directory for CClink.

l Changes the default directory for ld and ild.

f Changes the default directory for c++filt.
A-166 C++ User’s Guide • January 2005

Interactions

You can have multiple -Y options on a command line. If more than one -Y option is
applied to any one component, then the last occurrence holds.

See also

Solaris Linker and Libraries Guide

A.2.177 -z[]arg
Link editor option. For more information, see the ld(1) man page and the Solaris
Linker and Libraries Guide.

m Changes the default directory for mcs.

u (x86) Changes the default directory for ube.

i (x86) Changes the default directory for ube_ipa.

h (x86) Changes the default directory for ir2hf.

A Specifies a directory to search for all compiler components. If a
component is not found in path, the search reverts to the directory
where the compiler is installed.

P Adds path to the default library search path. This path will be
searched before the default library search paths.

S Changes the default directory for startup object files

TABLE A-52 The -Y Flags (Continued)

Value Meaning
Appendix A C++ Compiler Options A-167

A-168 C++ User’s Guide • January 2005

APPENDIX B

Pragmas

This appendix describes the C++ compiler pragmas. A pragma is a compiler directive
that allows you to provide additional information to the compiler. This information
can change compilation details that are not otherwise under your control. For
example, the pack pragma affects the layout of data within a structure. Compiler
pragmas are also called directives.

The preprocessor keyword pragma is part of the C++ standard, but the form,
content, and meaning of pragmas is different for every compiler. No pragmas are
defined by the C++ standard.

Note – Code that depends on pragmas is not portable.

B.1 Pragma Forms
The various forms of a C++ compiler pragma are:

The variable keyword identifies the specific directive; a indicates an argument.

#pragma keyword
#pragma keyword (a [, a] ...) [, keyword (a [, a] ...)] ,...
#pragma sun keyword
B-1

B.1.1 Overloaded Functions as Pragma Arguments
Several pragmas listed in this appendix take function names as arguments. In the
event that the function is overloaded, the pragma uses the function declaration
immediately preceding the pragma as its argument. Consider the following example:

In this example, foo means foo(double), the declaration of foo immediately
preceding the pragma, and bar means bar(int), the only declared bar. Now,
consider this following example in which foo is again overloaded:

In this example, bar means bar(int), the only declared bar.However, the pragma
will not know which version of foo to use. To correct this problem, you must place
the pragma immediately following the definition of foo that you want the pragma
to use.

The following pragmas use the selection method described in this section:

■ does_not_read_global_data
■ does_not_return
■ does_not_write_global_data
■ no_side_effect
■ opt
■ rarely_called
■ returns_new_memory

B.2 Pragma Reference
This section describes the pragma keywords that are recognized by the C++
compiler.

int bar(int);
int foo(int);
int foo(double);
#pragma does_not_read_global_data(foo, bar)

int foo(int);
int foo(double);
int bar(int);
#pragma does_not_read_global_data(foo, bar)
B-2 C++ User’s Guide • January 2005

■ align

Makes the parameter variables memory-aligned to a specified number of bytes,
overriding the default.

■ does_not_read_global_data

Asserts that the specified list of functions do not read global data directly or
indirectly.

■ does_not_return

Asserts to the compiler that the calls to the specified functions will not return.

■ does_not_write_global_data

Asserts that the specified list of functions do not write global data directly or
indirectly.

■ dump_macros

Provides information regarding the use of macros in code.

■ end_dumpmacros

Marks the end of a dump_macros pragma.

■ fini

Marks a specified function as a finalization function.

■ hdrstop

Identifies the end of the viable source prefix for precompiled headers.

■ ident

Places a specified string in the .comment section of the executable.

■ init

Marks a specified function as an initialization function.

■ no_side_effect

Indicates that a function does not change any persistent state.

■ pack (n)

Controls the layout of structure offsets. The value of n is a number—0, 1, 2, 4, or
8—that specifies the worst-case alignment desired for any structure member.

■ rarely_called

Indicates to the compiler that the specified functions are rarely called.

■ returns_new_memory

Asserts that each named function returns the address of newly allocated memory
and that the pointer does not alias with any other pointer.
Appendix B Pragmas B-3

■ unknown_control_flow

Specifies a list of routines that violate the usual control flow properties of
procedure calls.

■ weak

Defines weak symbol bindings.

B.2.1 #pragma align

Use align to make the listed variables memory-aligned to integer bytes, overriding
the default. The following limitations apply:

■ integer must be a power of 2 between 1 and 128; valid values are 1, 2, 4, 8, 16, 32,
64, and 128.

■ variable is a global or static variable; it cannot be a local variable or a class
member variable.

■ If the specified alignment is smaller than the default, the default is used.

■ The pragma line must appear before the declaration of the variables that it
mentions; otherwise, it is ignored.

■ Any variable mentioned on the pragma line but not declared in the code
following the pragma line is ignored. Variables in the following example are
properly declared.

#pragma align integer(variable [,variable...])

#pragma align 64 (aninteger, astring, astruct)
int aninteger;
static char astring[256];
struct S {int a; char *b;} astruct;
B-4 C++ User’s Guide • January 2005

When #pragma align is used inside a namespace, mangled names must be used.
For example, in the following code, the #pragma align statement will have no
effect. To correct the problem, replace a, b, and c in the #pragma align statement
with their mangled names.

B.2.2 #pragma does_not_read_global_data

This pragma asserts that the specified routines do not read global data directly or
indirectly. This allows for better optimization of code around calls to such routines.
In particular, assignment statements or stores could be moved around such calls.

This pragma is permitted only after the prototype for the specified functions are
declared. If the assertion about global access is not true, then the behavior of the
program is undefined.

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.3 #pragma does_not_return

This pragma is an assertion to the compiler that the calls to the specified routines
will not return. This allows the compiler to perform optimizations consistent with
that assumption. For example, register life-times terminate at the call sites which in
turn allows more optimizations.

If the specified function does return, then the behavior of the program is undefined.

namespace foo {
 #pragma align 8 (a, b, c)
 static char a;
 static char b;
 static char c;
}

#pragma does_not_read_global_data(funcname [, funcname])

#pragma does_not_return(funcname [, funcname])
Appendix B Pragmas B-5

This pragma is permitted only after the prototype for the specified functions are
declared as the following example shows:

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.4 #pragma does_not_write_global_data

This pragma asserts that the specified list of routines do not write global data
directly or indirectly. This allows for better optimization of code around calls to such
routines. In particular, assignment statements or stores could be moved around such
calls.

This pragma is permitted only after the prototype for the specified functions are
declared. If the assertion about global access is not true, then the behavior of the
program is undefined.

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.5 #pragma dumpmacros

Use this pragma when you want to see how macros are behaving in your program.
This pragma provides information such as macro defines, undefines, and instances
of usage. It prints output to the standard error (stderr) based on the order macros
are processed. The dumpmacros pragma is in effect through the end of the file or

extern void exit(int);
#pragma does_not_return(exit)

extern void __assert(int);
#pragma does_not_return(__assert)

#pragma does_not_write_global_data(funcname [, funcname])

#pragma dumpmacros (value[,value...])
B-6 C++ User’s Guide • January 2005

until it reaches a #pragma end_dumpmacro. See Section B.2.6, “#pragma
end_dumpmacros” on page B-8. You can substitute the following arguments in
place of value:

Note – The sub-options loc, conds, and sys are qualifiers for defs, undefs and
use options. By themselves,loc, conds, and sys have no effect. For example,
#pragma dumpmacros=loc,conds,sys has no effect.

The dumpmacros pragma has the same effect as the command line option, however,
the pragma overrides the command line option. See Section A.2.117,
“-xdumpmacros[=value[,value...]]” on page A-95.

The dumpmacros pragma does not nest so the following lines of code stop printing
macro information when the #pragma end_dumpmacros is processed:

The effect of the dumpmacros pragma is cumulative. The following lines

have the same effect as

Value Meaning

defs Print all macro defines

undefs Print all macro undefines

use Print information about the macros used

loc Print location (path name and line number) also for defs, undefs,
and use

conds Print use information for macros used in conditional directives

sys Print all macros defines, undefines, and use information for macros
in system header files

#pragma dumpmacros (defs, undefs)
#pragma dumpmacros (defs, undefs)
...
#pragma end_dumpmacros

#pragma dumpmacros(defs, undefs)
#pragma dumpmacros(loc)

#pragma dumpmacros(defs, undefs, loc)
Appendix B Pragmas B-7

If you use the option #pragma dumpmacros=use,no%loc, the name of each macro
that is used is printed only once. If you use the option #pragma
dumpmacros=use,loc the location and macro name is printed every time a macro
is used.

B.2.6 #pragma end_dumpmacros

This pragma marks the end of a dumpmacros pragma and stops printing
information about macros. If you do not use an end_dumpmacros pragma after a
dumpmacros pragma, the dumpmacros pragma continues to generate output
through the end of the file.

B.2.7 #pragma fini

Use fini to mark identifier as a finalization function. Such functions are expected to
be of type void, to accept no arguments, and to be called either when a program
terminates under program control or when the containing shared object is removed
from memory. As with initialization functions, finalization functions are executed in
the order processed by the link editor.

In a source file, the functions specified in #pragma fini are executed after the
static destructors in that file. You must declare the identifiers before using them in
the pragma.

#pragma end_dumpmacros

#pragma fini (identifier[,identifier...])
B-8 C++ User’s Guide • January 2005

B.2.8 #pragma hdrstop
Embed the hdrstop pragma in your source-file headers to identify the end of the
viable source prefix. For example, consider the following files:

The viable source prefix ends at c.h so you would insert a #pragma hdrstop after
c.h in each file.

#pragma hdrstop must only appear at the end of the viable prefix of a source file
that is specified with the CC command. Do not specify #pragma hdrstop in any
include file.

See Section A.2.150, “-xpch=v” on page A-131 and Section A.2.151,
“-xpchstop=file” on page A-134.

B.2.9 #pragma ident

Use ident to place string in the .comment section of the executable.

B.2.10 #pragma init

example% cat a.cc
#include "a.h"
#include "b.h"
#include "c.h"
#include <stdio.h>
#include "d.h"
.
.
.
example% cat b.cc
#include "a.h"
#include "b.h"
#include "c.h"

#pragma ident string

#pragma init(identifier[,identifier...])
Appendix B Pragmas B-9

Use init to mark identifier as an initialization function. Such functions are expected
to be of type void, to accept no arguments, and to be called while constructing the
memory image of the program at the start of execution. Initializers in a shared object
are executed during the operation that brings the shared object into memory, either
at program start up or during some dynamic loading operation, such as dlopen().
The only ordering of calls to initialization functions is the order in which they are
processed by the link editors, both static and dynamic.

Within a source file, the functions specified in #pragma init are executed after the
static constructors in that file. You must declare the identifiers before using them in
the pragma.

B.2.11 #pragma no_side_effect

Use no_side_effect to indicate that a function does not change any persistent
state. The pragma declares that the named functions have no side effects of any kind.
This means that the functions return result values that depend on the passed
arguments only. In addition, the functions and their called descendants:

■ Do not access for reading or writing any part of the program state visible in the
caller at the point of the call.

■ Do not perform I/O.

■ Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations.

If the function does have side effects, the results of executing a program which calls
this function are undefined.

The name argument specifies the name of a function within the current translation
unit. The pragma must be in the same scope as the function and must appear after
the function declaration. The pragma must be before the function definition.

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

#pragma no_side_effect(name[,name...])
B-10 C++ User’s Guide • January 2005

B.2.12 #pragma opt

funcname specifies the name of a function defined within the current translation unit.
The value of level specifies the optimization level for the named function. You can
assign optimization levels 0, 1, 2, 3, 4, 5. You can turn off optimization by setting
level to 0. The functions must be declared with a prototype or empty parameter list
prior to the pragma. The pragma must proceed the definitions of the functions to be
optimized.

The level of optimization for any function listed in the pragma is reduced to the
value of -xmaxopt. The pragma is ignored when -xmaxopt=off.

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.13 #pragma pack(n)

Use pack to affect the packing of structure members.

If present, n must be 0 or a power of 2. A value of other than 0 instructs the compiler
to use the smaller of n-byte alignment and the platform’s natural alignment for the
data type. For example, the following directive causes the members of all structures
defined after the directive (and before subsequent pack directives) to be aligned no
more strictly than on 2-byte boundaries, even if the normal alignment would be on
4- or 8-byte boundaries.

When n is 0 or omitted, the member alignment reverts to the natural alignment
values.

#pragma opt level (funcname[, funcname])

#pragma pack([n])

#pragma pack(2)
Appendix B Pragmas B-11

If the value of n is the same as or greater than the strictest alignment on the
platform, the directive has the effect of natural alignment. The following table shows
the strictest alignment for each platform.

A pack directive applies to all structure definitions which follow it, until the next
pack directive. If the same structure is defined in different translation units with
different packing, your program may fail in unpredictable ways. In particular, you
should not use a pack directive prior to including a header defining the interface of
a precompiled library. The recommended usage is to place the pack directive in
your program code, immediately before the structure to be packed, and to place
#pragma pack() immediately after the structure.

When using #pragma pack on a SPARC platform to pack denser than the type’s
default alignment, the -misalign option must be specified for both the compilation
and the linking of the application. The following table shows the storage sizes and
default alignments of the integral data types.

TABLE B-1 Strictest Alignment by Platform

Platform Strictest Alignment

x86 4

SPARC generic, V7, V8, V8a, V8plus, V8plusa, V8plusb 8

SPARC V9, V9a, V9b 16

TABLE B-2 Storage Sizes and Default Alignments in Bytes

Type
SPARC V8
Size, Alignment

SPARC V9
Size, Alignment

x86
Size, Alignment

bool 1, 1 1, 1 1, 1

char 1, 1 1, 1 1, 1

short 2, 2 2, 2 2, 2

wchar_t 4, 4 4, 4 4, 4

int 4, 4 4, 4 4, 4

long 4, 4 8, 8 4, 4

float 4, 4 4, 4 4, 4

double 8, 8 8, 8 8, 4

long double 16, 8 16, 16 12, 4

pointer to data 4, 4 8, 8 4, 4
B-12 C++ User’s Guide • January 2005

B.2.14 #pragma rarely_called

This pragma provides a hint to the compiler that the specified functions are called
infrequently. This allows the compiler to perform profile-feedback style
optimizations on the call-sites of such routines without the overhead of a
profile-collections phase. Since this pragma is a suggestion, the compiler may not
perform any optimizations based on this pragma.

The #pragma rarely_called preprocessor directive is only permitted after the
prototype for the specified functions are declares. The following is an example of
#pragma rarely_called:

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.15 #pragma returns_new_memory

This pragma asserts that each named function returns the address of newly allocated
memory and that the pointer does not alias with any other pointer. This information
allows the optimizer to better track pointer values and to clarify memory location.
This results in improved scheduling and pipelining.

pointer to function 4, 4 8, 8 4, 4

pointer to member data 4, 4 8, 8 4, 4

pointer to member function 8, 4 16, 8 8, 4

#pragms rarely_called(funcname[, funcname])

extern void error (char *message);
#pragma rarely_called(error)

#pragma returns_new_memory(name[,name...])

TABLE B-2 Storage Sizes and Default Alignments in Bytes (Continued)

Type
SPARC V8
Size, Alignment

SPARC V9
Size, Alignment

x86
Size, Alignment
Appendix B Pragmas B-13

If the assertion is false, the results of executing a program which calls this function
are undefined.

The name argument specifies the name of a function within the current translation
unit. The pragma must be in the same scope as the function and must appear after
the function declaration. The pragma must be before the function definition.

For a more detailed explanation of how the pragma treats overloaded function
names as arguments, see Section B.1.1, “Overloaded Functions as Pragma
Arguments” on page B-2.

B.2.16 #pragma unknown_control_flow

Use unknown_control_flow to specify a list of routines that violate the usual
control flow properties of procedure calls. For example, the statement following a
call to setjmp() can be reached from an arbitrary call to any other routine. The
statement is reached by a call to longjmp().

Because such routines render standard flowgraph analysis invalid, routines that call
them cannot be safely optimized; hence, they are compiled with the optimizer
disabled.

If the function name is overloaded, the most recently declared function is chosen.

B.2.17 #pragma weak

Use weak to define a weak global symbol. This pragma is used mainly in source files
for building libraries. The linker does not warn you if it cannot resolve a weak
symbol.

The weak pragma can specify symbols in one of two forms:

■ String form. The string must be the mangled name for a C++ variable or function.
The behavior for an invalid mangled name reference is unpredictable. The back
end may or may not produce an error for invalid mangled name references.
Regardless of whether it produces an error, the behavior of the back end when
invalid mangled names are used is unpredictable.

#pragma unknown_control_flow(name[,name...])

#pragma weak name1 [= name2]
B-14 C++ User’s Guide • January 2005

■ Identifier form. The identifier must be an unambiguous identifier for a C++
function that was previously declared in the compilation unit. The identifier form
cannot be used for variables. The front end (ccfe) will produce an error message
if it encounters an invalid identifier reference.

#pragma weak name

In the form #pragma weak name, the directive makes name a weak symbol. The
linker will not complain if it does not find a symbol definition for name. It also does
not complain about multiple weak definitions of the symbol. The linker simply takes
the first one it encounters.

If another compilation unit has a strong definition for the function or variable, name
will be linked to that. If there is no strong definition for name, the linker symbol will
have a value of 0.

The following directive defines ping to be a weak symbol. No error messages are
generated if the linker cannot find a definition for a symbol named ping.

#pragma weak name1 = name2

In the form #pragma weak name1 = name2, the symbol name1 becomes a weak
reference to name2. If name1 is not defined elsewhere, name1 will have the value
name2. If name1 is defined elsewhere, the linker uses that definition and ignores the
weak reference to name2. The following directive instructs the linker to resolve any
references to bar if it is defined anywhere in the program, and to foo otherwise.

In the identifier form, name2 must be declared and defined within the current
compilation unit. For example:

#pragma weak ping

#pragma weak bar = foo

extern void bar(int) {...}
extern void _bar(int);
#pragma weak _bar=bar
Appendix B Pragmas B-15

When you use the string form, the symbol does not need to be previously declared.
If both _bar and bar in the following example are extern "C", the functions do
not need to be declared. However, bar must be defined in the same object.

Overloading Functions

When you use the identifier form, there must be exactly one function with the
specified name in scope at the pragma location. Attempting to use the identifier
form of #pragma weak with an overloaded function is an error. For example:

To avoid the error, use the string form, as shown in the following example.

See the Solaris Linker and Libraries Guide for more information.

extern "C" void bar(int) {...}
#pragma weak "_bar" = "bar"

int bar(int);
float bar(float);
#pragma weak bar // error, ambiguous function name

int bar(int);
float bar(float);
#pragma weak "__1cDbar6Fi_i_" // make float bar(int) weak
B-16 C++ User’s Guide • January 2005

Glossary

ABI See application binary interface.

abstract class A class that contains one or more abstract methods, and therefore can never be
instantiated. Abstract classes are defined so that other classes can extend them
and make them concrete by implementing the abstract methods.

abstract method A method that has no implementation.

ANSI C American National Standards Institute’s definition of the C programming
language. It is the same as the ISO definition. See ISO.

ANSI/ISO C++ The American National Standards Institute and the ISO standard for the C++
programming language. See ISO.

application binary
interface The binary system interface between compiled applications and the operating

system on which they run.

array A data structure that stores a collection of values of a single data type
consecutively in memory. Each value is accessed by its position in the array.

base class See inheritance.

binary compatibility The ability to link object files that are compiled by one release while using a
compiler of a different release.

binding Associating a function call with a specific function definition. More generally,
associating a name with a particular entity.

cfront A C++ to C compiler program that translates C++ to C source code, which in
turn can be compiled by a standard C compiler.

class A user-defined data type consisting of named data elements (which may be of
different types), and a set of operations that can be performed with the data.

class template A template that describes a set of classes or related data types.
Glossary-1

class variable A data item associated with a particular class as a whole, not with particular
instances of the class. Class variables are defined in class definitions. Also
called static field. See also instance variable.

compiler option An instruction to the compiler that changes its behavior. For example, the -g
option tells the compiler to generate data for the debugger. Synonyms: flag,
switch.

constructor A special class member function that is automatically called by the compiler
whenever a class object is created to ensure the initialization of that object’s
instance variables. The constructor must always have the same name as the
class to which it belongs. See destructor.

data member An element of a class that is data, as opposed to a function or type definition.

data type The mechanism that allows the representation of, for example, characters,
integers, or floating-point numbers. The type determines the storage that is
allocated to a variable and the operations that can be performed on the
variable.

derived class See inheritance.

destructor A special class member function that is automatically called by the compiler
whenever a class object is destroyed or the operator delete is applied to a
class pointer. The destructor must always have the same name as the class to
which it belongs, preceded by a tilde (~). See constructor.

dynamic binding Connection of the function call to the function body at runtime. Occurs only
with virtual functions. Also called late binding, runtime binding.

dynamic cast A safe method of converting a pointer or reference from its declared type to
any type that is consistent with the dynamic type to which it refers.

dynamic type The actual type of an object that is accessed by a pointer or reference that
might have a different declared type.

early binding See static binding.

ELF file Executable and Linking Format file, which is produced by the compiler.

exception An error occurring in the normal flow of a program that prevents the program
from continuing. Some reasons for errors include memory exhaustion or
division by zero.

exception handler Code specifically written to deal with errors, and that is invoked automatically
when an exception occurs for which the handler has been registered.

exception handling An error recovery process that is designed to intercept and prevent errors.
During the execution of a program, if a synchronous error is detected, control
of the program returns to an exception handler that was registered at an earlier
point in the execution, and the code containing the error is bypassed.

flag See compiler option.
Glossary-2 C++ User’s Guide • January 2005

function overloading Giving the same name, but different argument types and numbers, to different
functions. Also called functional polymorphism.

functional
polymorphism See function overloading.

function prototype A declaration that describes the function’s interface with the rest of the
program.

function template A mechanism that allows you to write a single function that you can then use
as a model, or pattern, for writing related functions.

idempotent The property of a header file that including it many times in one translation
unit has the same effect as including it once.

incremental linker A linker that creates a new executable file by linking only the changed .o files
to the previous executable.

inheritance A feature of object-oriented programming that allows the programmer to
derive new classes (derived classes) from existing ones (base classes). There are
three kinds of inheritance: public, protected, and private.

inline function A function that replaces the function call with the actual function code.

instantiation The process by which a C++ compiler creates a usable function or object
(instance) from a template.

instance variable Any item of data that is associated with a particular object. Each instance of a
class has its own copy of the instance variables defined in the class. Also called
field. See also class variable.

ISO International Organization for Standardization.

K&R C The de facto C programming language standard that was developed by Brian
Kernighan and Dennis Ritchie before ANSI C.

keyword A word that has unique meaning in a programming language, and that can be
used only in a specialized context in that language.

late binding See dynamic binding.

linker The tool that connects object code and libraries to form a complete, executable
program.

local variable A data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

locale A set of conventions that are unique to a geographical area and/or language,
such as date, time, and monetary format.
Glossary-3

lvalue An expression that designates a location in memory at which a variable’s data
value is stored. Also, the instance of a variable that appears to the left of the
assignment operator.

mangle See name mangling.

member function An element of a class that is a function, as opposed to a data definition or type
definition.

method In some object-oriented languages, another name for a member function.

multiple inheritance Inheritance of a derived class directly from more than one base class.

multithreading The software technology that enables the development of parallel applications,
whether on single- or multiple-processor systems.

name mangling In C++, many functions can share the same name, so name alone is not
sufficient to distinguish different functions. The compiler solves this problem
by name mangling—creating a unique name for the function that consists of
some combination of the function name and its parameters—to enable type-
safe linkage. Also called name decoration.

namespace A mechanism that controls the scope of global names by allowing the global
space to be divided into uniquely named scopes.

operator overloading The ability to use the same operator notation to produce different outcomes. A
special form of function overloading.

optimization The process of improving the efficiency of the object code that is generated by
the compiler.

option See compiler option.

overloading To give the same name to more than one function or operator.

polymorphism The ability of a pointer or reference to refer to objects whose dynamic type is
different from the declared pointer or reference type.

pragma A compiler preprocessor directive, or special comment, that instructs the
compiler to take a specific action.

runtime binding See dynamic binding.

runtime type
identification (RTTI) A mechanism that provides a standard method for a program to determine an

object type during runtime.

rvalue The variable that is located to the right of an assignment operator. The rvalue
can be read but not altered.

scope The range over which an action or definition applies.

stab A symbol table entry that is generated in the object code. The same format is
used in both a.out files and ELF files to contain debugging information.
Glossary-4 C++ User’s Guide • January 2005

stack A data storage method by which data can be added to or removed from only
the top of the stack, using a last-in, first-out strategy.

static binding Connection of a function call to a function body at compile time. Also called
early binding.

subroutine A function. In Fortran, a function that does not return a value.

switch See compiler option.

symbol A name or label that denotes some program entity.

symbol table A list of all identifiers that are present when a program is compiled, their
locations in the program, and their attributes. The compiler uses this table to
interpret uses of identifiers.

template database A directory containing all configuration files that are needed to handle and
instantiate the templates that are required by a program.

template options file A user-provided file containing options for the compilation of templates, as
well as source location and other information. The template options file is
deprecated and should not be used.

template
specialization A specialized instance of a class template member function that overrides the

default instantiation when the default cannot handle a given type adequately.

trapping Interception of an action, such as program execution, in order to take other
action. The interception causes the temporary suspension of microprocessor
operations and transfers program control to another source.

type A description of the ways in which a symbol can be used. The basic types are
integer and float. All other types are constructed from these basic types by
collecting them into arrays or structures, or by adding modifiers such as
pointer-to or constant attributes.

variable An item of data named by an identifier. Each variable has a type, such as int
or void, and a scope. See also class variable, instance variable, local variable.

VTABLE A table that is created by the compiler for each class that contains virtual
functions.
Glossary-5

Glossary-6 C++ User’s Guide • January 2005

Index
Symbols
! NOT operator, iostream, 14-6, 14-10
$ identifier, allowing as noninitial, A-20
<< insertion operator

complex, 15-7
iostream, 14-4, 14-5

>> extraction operator
complex, 15-7
iostream, 14-7

__global, 4-2
__hidden, 4-2
__SUNPRO_CC, A-9
__symbolic, 4-2
__thread, 4-3
_OPENMP preprocessor token, A-127

Numerics
-386, compiler option, A-3
-486, compiler option, A-3

A
-a, compiler option, A-3
.a, file name suffix, 16-1, 2-4
absolute value, complex numbers, 15-2
accessible documentation, -xxxiii
aliases, simplifying commands with, 2-14
alignments

default, B-12
strictest, B-12

anachronisms, disallowing, A-19
angle, complex numbers, 15-2

anonymous class instance, passing, 4-7
applications

linking multithreaded, 11-1, 11-9
MT-safe, 11-6
using MT-safe iostream objects, 11-20 to 11-22

applicator, parameterized manipulators, 14-19
arithmetic library, complex, 15-1 to 15-10
__ARRAYNEW, predefined macro, A-9
assembler, compilation component, 2-10
assembly language templates, A-165
assignment, iostream, 14-15

B
-Bbinding, compiler option, 8-5, A-3 to A-5
binary input, reading, 14-9
bool type and literals, allowing, A-20
_BOOL, predefined macro, A-9
buffer

defined, 14-24
flushing output, 14-6

__BUILTIN_VA_ARG_INCR, predefined macro, A-
9

C
C API (application programming interface)

creating libraries, 16-5
removing dependency on C++ runtime

libraries, 16-5
C standard library header files, replacing, 12-16
C++ man pages, accessing, -xxxv, 12-4, 12-5
 Index-1

C++ standard library, 12-2 to 12-3
components, 13-1 to 13-16
man pages, 12-4, 13-3 to 13-16
replacing, 12-13 to 12-17
RogueWave version, 13-1

.c++, file name suffixes, 2-4
-c, compiler option, 2-6, A-5
.C, file name suffixes, 2-4
.c, file name suffixes, 2-4
c_exception, complex class, 15-6
C99 support, A-109
cache

directory, template, 2-5
used by optimizer, A-85

cast
const and volatile, 9-2
dynamic, 9-4

casting down, 9-5
casting to void*, 9-5
casting up, 9-5

reinterpret_cast, 9-2
static_cast, 9-4

CC pragma directives, B-2
.cc, file name suffixes, 2-4
CC_tmpl_opt, options file, 7-10
CCadmin command, 7-1
CCFLAGS, environment variable, 2-14
cerr standard stream, 11-15, 14-1
-cg, compiler option, A-6
char* extractor, 14-8 to 14-9
char, signedness of, A-88
characters, reading single, 14-9
cin standard stream, 11-15, 14-1
class declaration specifier, 4-2
class instance, anonymous, 4-7
class libraries, using, 12-7 to 12-10
class templates, 6-3 to 6-6

See also templates
declaration, 6-3
definition, 6-3, 6-4
incomplete, 6-3
member, definition, 6-4
parameter, default, 6-9
static data members, 6-5
using, 6-5

classes
passing directly, 10-5
passing indirectly, 10-4

clog standard stream, 11-15, 14-1
code generation

inliner and assembler, compilation
component, 2-10

options, 3-3
code optimization

by using -fast, A-17
code optimizer, compilation component, 2-9
command line

options, unrecognized, 2-8
recognized file suffixes, 2-4

-compat
compiler option, A-6
default linked libraries, affect on, 12-5
-features option, value restrictions, A-19
libraries, available modes for, 12-2
-library option, value restrictions, A-47
linking C++ libraries, modes for, 12-10

compatibility mode
See also -compat
iostream, 14-1
libC, 14-1, 14-3
libcomplex, 15-1
Tools.h++, 12-3

compilation, memory requirements, 2-12 to 2-14
compiler

component invocation order, 2-9
diagnosing, 2-8 to 2-9
versions, incompatibility, 2-5

compiler commentary in object file, reading with
er_src utility, A-84

compilers, accessing, -xxix
compiling and linking, 2-6 to 2-7
complex

compatibility mode, 15-1
constructors, 15-2 to 15-3
efficiency, 15-9
error handling, 15-6 to 15-7
header file, 15-2
input/output, 15-7 to 15-8
library, 12-2 to 12-3, 12-8 to 12-10, 15-1 to 15-10
library, linking, 15-2
man pages, 15-10
mathematical functions, 15-4 to 15-6
Index-2 C++ User’s Guide • January 2005

mixed-mode, 15-8 to 15-9
operators, 15-3 to 15-4
standard mode and libCstd, 15-1
trigonometric functions, 15-5 to 15-6

complex number data type, 15-1
complex_error

definition, 15-6
message, 15-4

configuration macro, 12-2
conjugate of a number, 15-2
const_cast operator, 9-2
constant strings in read-only memory, A-20
constructors

complex class, 15-2
iostream, 14-2
static, 16-3

copying
files, 14-21
stream objects, 14-15

cout, standard stream, 11-15, 14-1
__cplusplus, predefined macro, 5-1, A-6, A-9
.cpp, file name suffixes, 2-4
.cxx, file name suffixes, 2-4

D
-D, compiler option, 3-2, A-8 to A-10
+d, compiler option, A-7
-d, compiler option, A-10
-D_REENTRANT, 11-9
-dalign, compiler option, A-11
data type, complex number, 15-1
__DATE__, predefined macro, A-9
-DDEBUG, 7-8
debugging

options, 3-4
preparing programs for, 2-7, A-37

dec, iostream manipulator, 14-16
declaration specifiers

__global, 4-2
__hidden, 4-2
__symbolic, 4-2
__thread, 4-3

default libraries, static linking, 12-10
default operators, using, 10-3
definition included model, 5-3

definition keyword, template options file, 7-11
definition separate model, 5-4
definitions, searching template, 7-8
delete array forms, recognizing, A-22
dependency

on C++ runtime libraries, removing, 16-6
shared library, 16-4

destructors, static, 16-3
dlclose(), function call, 16-3
dlopen(), function call, 16-2, 16-4, 16-6
dmesg, actual real memory, 2-14
documentation index, -xxxii
documentation, accessing, -xxxii to -xxxiv
double, complex value, 15-2
-dryrun, compiler option, 2-9, A-11
dynamic (shared) libraries, 12-11, 16-3, A-3, A-38
dynamic_cast operator, 9-4

E
-E compiler option, A-11 to A-13
+e(0|1), compiler option, A-13
EDOM, errno setting, 15-7
elfdump, A-92
endl, iostream manipulator, 14-16
ends, iostream manipulator, 14-16
enum

forward declarations, 4-4
incomplete, using, 4-5
scope qualifier, using name as, 4-5

environment variables
CCFLAGS, 2-14
LD_LIBRARY_PATH, 12-12, 16-2
PARALLEL, A-83
RTLD_GLOBAL, 12-12
SUN_PROFDATA, A-144
SUN_PROFDATA_DIR, A-144
SUNWS_CACHE_NAME, 7-7

er_src utility, A-84
ERANGE, errno setting, 15-7
errno, definition, 15-6 to 15-7
-erroff compiler option, A-13
error

bits, 14-6
checking, MT-safety, 11-9
state, iostreams, 14-5
Index-3

error function, 14-6
error handling

complex, 15-6 to 15-7
input, 14-10 to 14-11

error messages
compiler version incompatibility, 2-5
complex_error, 15-4
linker, 2-7, 2-8

-errtags compiler option, A-15
-errwarn compiler option, A-15
exceptions

and multithreading, 11-3
building shared libraries that have, 8-5
disabling, 8-2
disallowing, A-20
functions, in overriding, 4-3
longjmp and, 8-4
predefined, 8-3
setjmp and, 8-4
shared libraries, 16-4
signal handlers and, 8-4
standard class, 8-3
standard header, 8-3
trapping, A-33

explicit instances, 7-3 to 7-6
explicit keyword, recognizing, A-22
export keyword, recognizing, A-20
extension features, 4-1 to 4-9

allowing nonstandard code, A-20
defined, 1-11

external
instances, 7-3
linkage, 7-3

extraction
char*, 14-8 to 14-9
defined, 14-24
operators, 14-7
user-defined iostream, 14-7 to 14-8
whitespace, 14-10

F
-fast, compiler option, A-17 to A-19
-features, compiler option, 4-1 to 4-9, 8-2, 9-4, 11-

3, A-19 to A-23
file descriptors, using, 14-13 to 14-14
file names

.SUNWCCh file name suffix, 12-15 to 12-16

suffixes, 2-4
template definition files, 7-9

__FILE__, predefined macro, A-9
files

See also source files
C standard header files, 12-15
copying, 14-12, 14-21
executable program, 2-6
multiple source, using, 2-4
object, 2-6, 3-2, 16-3
opening and closing, 14-13
repositioning, 14-14
standard library, 12-15
template options, 7-10
using fstreams with, 14-11

-filt, compiler option, A-23
finalization functions, B-8
-flags, compiler option, A-26
float inserter, iostream output, 14-4
floating point

invalid, A-33
options, 3-5

flush, iostream manipulator, 14-6, 14-16
-fnonstd, compiler option, A-27
-fns, compiler option, A-27
format control, iostreams, 14-15
Fortran runtime libraries, linking, A-109
-fprecision=p, compiler option, A-29 to A-30
front end, compilation component, 2-9
-fround=r, compiler option, A-30 to A-31
-fsimple=n, compiler option, A-31 to A-33
-fstore, compiler option, A-33
fstream, defined, 14-2, 14-24
fstream.h

iostream header file, 14-3
using, 14-12

-ftrap, compiler option, A-33
__func__, identifier, 4-8
function

declaration specifier, 4-1
function templates, 6-1 to 6-7

See also templates
declaration, 6-1
definition, 6-2
using, 6-2

function-level reordering, A-100
Index-4 C++ User’s Guide • January 2005

functions
in dynamic (shared) libraries, 16-3
inlining by optimizer, A-103
MT-safe public, 11-8
overriding, 4-3
static, as class friend, 4-8
streambuf public virtual, 11-19

functions, name in __func__, 4-8

G
-G

dynamic library command, 16-3
option description, A-35 to A-36

-g
option description, A-36
compiling templates using, 7-8

garbage collection
libraries, 12-4, 12-10

get pointer, streambuf, 14-20
get, char extractor, 14-9
global

data, in a multithreaded application, 11-15 to 11-
16

instances, 7-3 to 7-5
linkage, 7-3 to 7-6
shared objects in MT application, 11-15

-gO option description, A-37
gprof, C++ utilities, 1-12

H
-H, compiler option, A-38
-h, compiler option, A-38
hardware architecture, A-153
header files

C standard, 12-15
complex, 15-9
creating, 5-1
idempotency, 5-3
iostream, 11-15, 14-3, 14-16
language-adaptable, 5-1
standard library, 12-13, 13-2 to 13-3

heap, setting page size for, A-128
-help, compiler option, A-39
hex, iostream manipulator, 14-16

I
-I, compiler option, 7-9, A-39
-I-, compiler option, A-40
-i, compiler option, A-42
.i, file name suffixes, 2-4
I/O library, 14-1
__i386, predefined macro, A-10
i386, predefined macro, A-10
idempotency, 5-1
ifstream, defined, 14-2
.il, file name suffixes, 2-4
include directories, template definition files, 7-9
include files, search order, A-39, A-40
include keyword, template options file, 7-10
incompatibility, compiler versions, 2-5
incremental link editor, compilation component, 2-

10
initialization function, B-10
inline expansion, assembly language templates, 2-9
inline functions

by optimizer, A-103
C++, when to use, 10-2

-inline, See -xinline
input

binary, 14-9
error handling, 14-10 to 14-11
iostream, 14-7
peeking at, 14-9

input/output, complex, 14-1, 15-7 to 15-8
insertion

defined, 14-24
operator, 14-4 to 14-5

instance methods
explicit, 7-6
global, 7-6
semi-explicit, 7-6
static, 7-5
template, 7-3

instance states, consistent, 7-8
-instances=a, compiler option, 7-3 to 7-6, A-42
instantiation

options, 7-3 to 7-6
template class static data members, 6-8
template classes, 6-7
template function members, 6-7
Index-5

template functions, 6-7
-instlib, compiler option, A-44
intermediate language translator, compilation

component, 2-9
internationalization, implementation, 1-13
interprocedural analyzer, 2-10
interprocedural optimizations, A-105
interval arithmetic libraries, linking, A-102
iomanip.h, iostream header files, 14-3, 14-16
iostream

classic iostreams, 12-3, 12-7, A-50
compatibility mode, 14-1
constructors, 14-2
copying, 14-15
creating, 14-11 to 14-15
defined, 14-24
error bits, 14-6
error handling, 14-10
extending functionality, MT considerations, 11-

18
flushing, 14-6
formats, 14-15
header files, 14-3
input, 14-7
library, 12-2, 12-7 to 12-8, 12-10
using make with, 2-16
man pages, 14-1, 14-22
manipulators, 14-15
mixing old and new forms, A-50
MT-safe interface changes, 11-12
MT-safe reentrant functions, 11-8
MT-safe restrictions, 11-9
new class hierarchy for MT, 11-13
new MT interface functions, 11-14 to 11-15
output errors, 14-5 to 14-6
output to, 14-4
predefined, 14-1 to 14-2
single-threaded applications, 11-9
standard iostreams, 12-3, 12-7, A-50
standard mode, 14-1, 14-3, A-50
stdio, 14-11, 14-20
stream assignment, 14-15
structure, 14-2 to 14-3
terminology, 14-24
using, 14-3

iostream.h, iostream header file, 11-15, 14-3

ISO C++ standard
conformance, 1-11
one-definition rule, 6-17, 7-7

ISO10646 UTF-16 string literal, A-164
istream class, defined, 14-2
istrstream class, defined, 14-2

J
Java Native Interface, A-120
JNI, A-120

K
.KEEP_STATE, using with standard library header

files, 2-16
-keeptmp, compiler option, A-45
-KPIC, compiler option, 16-3, A-45
-Kpic, compiler option, 16-3, A-45

L
-L, compiler option, 12-5, A-45
-l, compiler option, 3-2, 12-1, 12-5, A-46
languages

C99 support, A-109
options, 3-6
support for native, 1-13

LD_LIBRARY_PATH environment variable, 12-12,
16-2

ldd command, 12-12
left-shift operator

complex, 15-7
iostream, 14-4

lex, C++ utilities, 1-12
libC

compatibility mode, 14-1, 14-3
compiling and linking MT-safety, 11-9
library, 12-2 to 12-3
MT environment, using in, 11-6
new MT classes, 11-13

libc library, 12-1
libcomplex, See complex
libCrun library, 11-1, 11-2, 12-2, 12-5, 16-4
libCstd library, See C++ standard library
libcsunimath

library, 12-2
libdemangle library, 12-2 to 12-4
Index-6 C++ User’s Guide • January 2005

libgc library, 12-2
libiostream, See iostream
libm

inline templates, A-113
library, 12-1
optimized version, A-113

-libmieee, compiler option, A-46
-libmil, compiler option, A-46
libraries

building shared libraries, A-92
C interface, 12-1
C++ compiler, provided with, 12-2
C++ standard, 13-1 to 13-16
class, using, 12-7
classic iostream, 14-1 to 14-24
configuration macro, 12-2
dynamically linked, 12-12
interval arithmetic, A-102
linking options, 3-6, 12-10
linking order, 3-2
linking with -mt, 12-1
naming a shared library, A-38
optimized math, A-113
replacing, C++ standard library, 12-13 to 12-17
shared, 12-11 to 12-12, A-10
suffixes, 16-1
Sun Performance Library, linking, A-47, A-114
understanding, 16-1 to 16-2
using, 12-1 to 12-12

libraries, building
dynamic (shared), 16-1 to 16-4
for private use, 16-4
for public use, 16-5
linking options, A-35
shared with exceptions, 16-4
static (archive), 16-1 to 16-3
with C API, 16-5

-library, compiler option, 12-5 to 12-6, 12-10, A-
47 to A-51

librwtool, See Tools.h++
libthread library, 12-1
licensing

information, A-115
options, 3-7

limit, command, 2-13
__LINE__, predefined macro, A-9

linking
complex library, 12-8 to 12-10
consistent with compilation, 2-7 to 2-8
disabling system libraries, A-121
dynamic (shared) libraries, 12-12, 16-2, A-3
iostream library, 12-8
libraries, 12-1, 12-5, 12-10
library options, 3-6
-mt option, 11-9
MT-safe libC library, 11-9
separate from compilation, 2-6
static (archive) libraries, 12-6, 12-10, 16-1, A-3, A-

63 to A-65
symbolic, 12-15
template instance methods, 7-3

link-time optimization, A-115
literal strings in read-only memory, A-20
local-scope rules, enabling and disabling, A-20
locking

See also stream_locker
mutex, 11-12, 11-18
object, 11-16 to 11-18
streambuf, 11-7

loops, A-95
-lthread

suppressed by -xnolib, 12-11
using -mt in place of, 11-1, 11-9

M
macros

See also individual macros under alphabetical listings
predefined, A-9

magnitude, complex numbers, 15-2
make command, 2-15 to 2-16
man pages

accessing, 1-12, 12-4
C++ standard library, 13-3 to 13-16
complex, 15-10
iostream, 14-1, 14-12, 14-15, 14-19

man pages, accessing, -xxix
manipulators

iostreams, 14-15 to 14-19
plain, 14-17
predefined, 14-16

MANPATH environment variable, setting, -xxxi
math library, optimized version, A-113
math.h, complex header files, 15-9
Index-7

mathematical functions, complex arithmetic
library, 15-4 to 15-6

-mc, compiler option, A-51
member variables, caching, 10-5
memory requirements, 2-12 to 2-13
-migration, compiler option, A-51
-misalign, compiler option, A-51 to A-52
mixed-language linking, A-109
mixed-mode, complex arithmetic library, 15-8 to 15-

9
-mr, compiler option, A-52
-mt compiler option

and libthread, 11-9
linking libraries, 12-1
option description, A-52

MT-safe
applications, 11-6
classes, considerations for deriving, 11-18
library, 11-6
object, 11-6
performance overhead, 11-11, 11-12
public functions, 11-8

multimedia types, handling of, A-165
multiple source files, using, 2-4
multithreaded

application, 11-2
compilation, 11-2
exception-handling, 11-3

mutable keyword, recognizing, A-20
mutex locks, MT-safe classes, 11-12, 11-18
mutual exclusion region, defining a, 11-18

N
namespace keyword, recognizing, A-22
Native Connector Tool (NCT), A-120
-native, compiler option, A-53
native-language support, application

development, 1-13
NCT, A-120
new array forms, recognizing, A-22
nocheck, flag, 7-13
-noex, compiler option, 11-3, A-53
-nofstore, compiler option, A-53 to A-54
-nolib, compiler option, 12-6, A-54
-nolibmil, compiler option, A-54

nonincremental link editor, compilation
component, 2-10

nonstandard features, 4-1 to 4-9
allowing nonstandard code, A-20
defined, 1-11

-noqueue, compiler option, A-54
-norunpath, compiler option, 12-6, A-54
numbers, complex, 15-1 to 15-4

O
.o files

option suffixes, 2-4
preserving, 2-6

-O, compiler option, A-55
-o, compiler option, A-55
object files

linking order, 3-2
reading compiler commentary with er_src, A-

84
relocatable, 16-3

object thread, private, 11-17
objects

destruction of shared, 11-19
destruction order, A-21
global shared, 11-15
strategies for dealing with shared, 11-16
stream_locker, 11-18
temporary, 10-1
temporary, lifetime of, A-21
within library, when linked, 16-1

oct, iostream manipulator, 14-16
ofstream class, 14-11
-Olevel, compiler option, A-55
operators

basic arithmetic, 15-3 to 15-4
complex, 15-7
iostream, 14-4, 14-5, 14-7 to 14-8
scope resolution, 11-11

optimization
at link time, A-115
levels, A-124
math library, A-113
options for, 3-10
target hardware, A-153
with -fast, A-17
with pragma opt, B-11
with -xmaxopt, A-118
Index-8 C++ User’s Guide • January 2005

optimizer out of memory, 2-14
options

See also individual options under alphabetical listings
code generation, 3-3
debugging, 3-4
description subsections, A-2
expansion compilation, A-17
floating point, 3-5
language, 3-6
library, 12-5 to 12-6
library linking, 3-6
licensing, 3-7
obsolete, 3-8, A-59
optimization, 3-10
output, 3-8, 3-9
performance, 3-10
preprocessor, 3-11
processing order, 2-3, 3-2
profiling, 3-12
reference, 3-12
source, 3-12
subprogram compilation, 2-7 to 2-8
syntax format, 3-1, A-1
template, 3-13, 7-10
template compilation, 7-4
thread, 3-13
unrecognized, 2-8

ostream class, defined, 14-2
ostrstream class, defined, 14-2
output, 14-1

binary, 14-7
buffer flushing, 14-6
cout, 14-4
flushing, 14-6
handling errors, 14-5
options, 3-8

overflow function, streambuf, 11-19
overhead, MT-safe class performance, 11-11, 11-12

P
-P, compiler option, A-56
-p, compiler option, A-57
+p, compiler option, A-56
page size, setting for stack or heap, A-128
PARALLEL, A-83
parallelization

turning on with -xautopar for multiple

processors, A-83
parameterized manipulators, iostreams, 14-18 to

14-19
PATH environment variable, setting, -xxx
peeking at input, 14-9
Pentium, A-159
-pentium, compiler option, A-57
performance

optimizing with -fast, A-17
options, 3-10
overhead of MT-safe classes, 11-11, 11-12

-pg, compiler option, A-57
-PIC, compiler option, A-57
-pic, compiler option, A-58
placement, template instances, 7-3
plain manipulators, iostreams, 14-17 to 14-18
polar, complex number, 15-2
#pragma align, B-4
#pragma does_not_read_global_data, B-5
#pragma does_not_return, B-5
#pragma does_not_write_global_data, B-6
#pragma dumpmacros, B-6
#pragma end_dumpmacros, B-8
#pragma fini, B-8
#pragma ident, B-9
#pragma init, B-10
#pragma no_side_effect, B-10, B-11
#pragma opt, B-11
#pragma pack, B-11
#pragma rarely_called, B-13
#pragma returns_new_memory, B-13
#pragma unknown_control_flow, B-14
#pragma weak, B-14
#pragma keywords, B-2 to B-16
precedence, avoiding problems of, 14-4
precompiled-header file, A-131
predefined macros, A-9
predefined manipulators, iomanip.h, 14-16
prefetch instructions, enabling, A-140
preprocessor

defining macro to, A-8
options, 3-11

preserving signedness of chars, A-88
private, object thread, 11-17
Index-9

processing order, options, 2-3
processor, specifying target, A-153
prof, C++ utilities, 1-12
profiling options, 3-12, A-144
Programming Language–C++, standards

conformance, 1-11
programs

basic building steps, 2-1 to 2-2
building multithreaded, 11-1

-pta, compiler option, A-58
ptclean command, 7-1
pthread_cancel() function, 11-3
-pti, compiler option, 7-9, A-58
-pto, compiler option, A-58
-ptr, compiler option, A-59
-ptv, compiler option, A-59
public functions, MT-safe, 11-8
put pointer, streambuf, 14-20

Q
-Qoption, compiler option, A-59
-qoption, compiler option, A-61
-qp, compiler option, A-61
-Qproduce, compiler option, A-61
-qproduce, compiler option, A-61

R
-R, compiler option, 12-6, A-61 to A-62
readme file, 1-11
-readme, compiler option, A-62
real memory, display, 2-14
real numbers, complex, 15-1, 15-4
reference options, 3-12
reinterpret_cast operator, 9-2, A-76
reorder functions, A-100
repositioning within a file, fstream, 14-14
resetiosflags, iostream manipulator, 14-16
restrict keyword

as recognized by -Xs, A-151
as type qualifier in parallelized code, A-151

restricted pointers, A-151
restrictions, MT-safe iostream, 11-9
right-shift operator

complex, 15-7

iostream, 14-7
RogueWave

See also Tools.h++
C++ standard library, 13-1

RTLD_GLOBAL, environment variable, 12-12
rtti keyword, recognizing, A-22
runtime error messages, 8-2
runtime libraries readme, 13-17

S
-S, compiler option, A-62
-s, compiler option, A-63
.S, file name suffixes, 2-4
.s, file name suffixes, 2-4
-sb, compiler option, A-63
-sbfast, compiler option, A-63
sbufpub, man pages, 14-12
scope resolution operator, unsafe_ classes, 11-11
search path

definitions, 7-9
dynamic library, 12-6
include files, defined, A-39
source options, 3-12
standard header implementation, 12-15 to 12-16
template options, 3-12

searching
template definition files, 7-8

semi-explicit instances, 7-3, 7-6
sequences, MT-safe execution of I/O operations, 11-

16
set_terminate() function, 11-3
set_unexpected() function, 11-3
setbase, iostream manipulator, 14-16
setfill, iostream manipulator, 14-16
setioflags, iostream manipulator, 14-16
setprecision, iostream manipulator, 14-16
setw, iostream manipulator, 14-16
shared libraries

accessing from a C program, 16-6
building, 16-3, A-35
building, with exceptions, 8-5
containing exceptions, 16-4
disallowing linking of, A-10
naming, A-38

shared objects, 11-16, 11-19
Index-10 C++ User’s Guide • January 2005

shell prompts, -xxix
shell, limiting virtual memory in, 2-13
shift operators, iostreams, 14-17
signal handlers

and exceptions, 8-1
and multithreading, 11-2

signedness of chars, A-88
sizes, storage, B-12
skip flag, iostream, 14-10
.so, file name suffix, 2-4, 16-1
.so.n, file name suffix, 2-4
Solaris operating environment libraries, 12-1
source compiler options, 3-12
source files

linking order, 3-2
location conventions, 7-9
location definition, 7-11 to 7-13
template definition, 7-11

__sparc, predefined macro, A-10
sparc, predefined macro, A-10
__sparcv9, predefined macro, A-10
special, template compilation option, 7-14 to 7-15
stack

setting page size for, A-128
Standard C++ Class Library Reference, 13-2
Standard C++ Library User’s Guide, 13-2
standard error, iostreams, 14-1
standard headers

implementing, 12-14
replacing, 12-16

standard input, iostreams, 14-1
standard iostream classes, 14-1
standard mode

See also -compat
iostream, 14-1, 14-3
libCstd, 15-1
Tools.h++, 12-3

standard output, iostreams, 14-1
standard streams, iostream.h, 11-15
Standard Template Library (STL), 13-1
standards, conformance, 1-11
static

functions, referencing, 6-17
objects, initializers for nonlocal, A-21
variables, referencing, 6-17

static (archive) libraries, 16-1
static data, in a multithreaded application, 11-15 to

11-16
static instances, 7-3 to 7-5
static linking

compiler provided libraries, 12-6, A-63 to A-65
default libraries, 12-10
library binding, A-3
template instances, 7-5

static template class member, 7-15
static_cast operator, 9-4
-staticlib, compiler option, 12-6, 12-10, A-63 to

A-65
__STDC__, predefined macro, 5-1, A-9
stdio

stdiobuf man pages, 14-20
with iostreams, 14-11

stdiostream.h, iostream header file, 14-3
STL (Standard Template Library), components, 13-1
STLport, 13-16
storage sizes, B-12
stream, defined, 14-24
stream.h, iostream header file, 14-3
stream_locker

man pages, 11-18
synchronization with MT-safe objects, 11-12

streambuf
defined, 14-20, 14-24
get pointer, 14-20
locking, 11-7
man pages, 14-21
new functions, 11-14
public virtual functions, 11-19
put pointer, 14-20
queue-like versus file-like, 14-21
using, 14-21

streampos, 14-14
string literal of U"..." form, A-164
strstream, defined, 14-2, 14-24
strstream.h, iostream header file, 14-3
struct, anonymous declarations, 4-5
structure declaration specifier, 4-2
subprograms, compilation options, 2-7 to 2-8
suffixes

.SUNWCCh, 12-15 to 12-16
command line file name, 2-4
Index-11

files without, 12-15
library, 16-1
makefiles, 2-15 to 2-16
template definition files, 7-11

__SUNPRO_CC_COMPAT=(4|5), predefined
macro, A-6, A-9

__sun, predefined macro, A-9
sun, predefined macro, A-9
__SUNPRO_CC, predefined macro, A-9
.SUNWCCh file name suffix, 12-15 to 12-16
SunWS_cache, 7-7
SunWS_cache directory, 7-10
__SVR4, predefined macro, A-9
swap -s, command, 2-12
swap space, 2-12 to 2-13
symbol declaration specifier, 4-1
symbol tables, executable file, A-63
symbols, See macros
-sync_stdio, compiler option, A-66
syntax

CC commands, 2-3
options, 3-1, A-1

T
tcov, C++ utilities, 1-12
-temp=dir, compiler option, A-67
template definition

included, 5-3
search path, 7-9
separate, 5-4
separate, file, 7-9
troubleshooting a search for definitions, 7-9

template instantiation, 6-6
explicit, 6-6
function, 6-6
implicit, 6-6
whole-class, 7-2

template pre-linker, compilation component, 2-10
template problems, 6-11

friend declarations of template functions, 6-14
local types as arguments, 6-13
non-local name resolution and instantiation, 6-

11
static objects, referencing, 6-17
troubleshooting a search for definitions, 7-9

using qualified names in template definitions, 6-
16

-template, compiler option, 7-2, 7-8, A-67
templates

cache directory, 2-5
commands, 7-1
compilation, 7-4
definitions-separate vs. definitions-included

organization, 7-8
inline, A-113
instance methods, 7-3, 7-8
linking, 2-8
nested, 6-8
options, 3-13
partial specialization, 6-10
repositories, 7-6
sharing options files, 7-10
source files, 7-9, 7-11 to 7-13
specialization, 6-9
specialization entries, 7-14 to 7-15
Standard Template Library (STL), 13-1
static objects, referencing, 6-17
troubleshooting a search for definitions, 7-9
verbose compilation, 7-1

terminate() function, 11-3
thr_exit() function, 11-3
thr_keycreate, man pages, 11-16
thread local storage of variables, 4-3
thread options, 3-13
-time, compiler option, A-68
__TIME__, predefined macro, A-9
token spellings, alternative, A-19
Tools.h++

classic and standard iostreams, 12-3
compiler options, 12-10
debug library, 12-2
documentation, 12-3
standard and compatibility mode, 12-3

trapping mode, A-33
trigonometric functions, complex arithmetic

library, 15-5 to 15-6
trigraph sequences, recognizing, A-162
typographic conventions, -xxviii

U
-U, compiler option, 3-2, A-69
Index-12 C++ User’s Guide • January 2005

ulimit, command, 2-13
__’uname-s’_’uname-r’, predefined macro, A-9
unexpected() function, 11-3
union declaration specifier, 4-2
UNIX tools, 1-12
__unix, predefined macro, A-10
unix, predefined macro, A-10
-unroll=n, compiler option, A-69
user-defined types

iostream, 14-4
MT-safe, 11-10 to 11-11

V
-V, compiler option, A-69
-v, compiler option, 2-9, A-70
__VA_ARGS__ identifier, 2-10
value classes, using, 10-3
values

double, 15-2
float, 14-4
flush, 14-6
inserting on cout, 14-4
long, 14-19
manipulator, 14-3, 14-19

variable argument lists, 2-10
variable declaration specifier, 4-1
variable, thread-local storage specifier, 4-3
-vdelx, compiler option, A-70
-verbose, compiler option, 2-8, 7-1, A-70 to A-71
viable prefix, A-132
virtual memory, limits, 2-13
VIS Software Developers Kit, A-165

W
+w, compiler option, 7-1, A-71
+w2, compiler option, A-72
-w, compiler option, A-72
warnings

anachronisms, A-73
C header replacement, 12-17
inefficient code, A-71
nonportable code, A-71
problematic ARM language constructs, A-21
suppressing, A-72
technical violations reducing portability, A-72

unrecognized arguments, 2-8
_WCHAR_T, predefined UNIX symbol, A-10
What’s new in this release, 1-1
whitespace

extractors, 14-10
leading, 14-9
skipping, 14-10, 14-18

workstations, memory requirements, 2-14
ws, iostream manipulator, 14-10, 14-16

X
X inserter, iostream, 14-4
-xa, compiler option, A-73
-xalias_level, compiler option, A-74
-xar, compiler option, 7-4, 16-2 to 16-3, A-76
-xarch=isa, compiler option, A-77 to A-83
-xautopar, compiler option, A-83
-xbuiltin, compiler option, A-84
-xcache=c, compiler option, A-85 to A-87
-xcg89, compiler option, A-87
-xcg92, compiler option, A-87
-xchar, compiler option, A-88
-xcheck, compiler option, A-89
-xchip=c, compiler option, A-90 to A-91
-xcode=a, compiler option, A-91 to A-93
-xcrossfile, compiler option, A-94
-xdepend, compiler option, A-95
-xdumpmacros, compiler option, A-95
-xe, compiler option, A-100
-xF, compiler option, A-100 to A-101
-xhelp=flags, compiler option, A-101
-xhelp=readme, compiler option, A-101
-xia, compiler option, A-102
-xildoff, compiler option, A-103
-xildon, compiler option, A-103
-xinline, compiler option, A-103
-xipo, compiler option, A-105
-xjobs, compiler option, A-108
-xlang, compiler option, A-109
-xldscope, compiler option, 4-2, A-111
-xlibmieee, compiler option, A-112
-xlibmil, compiler option, A-113
-xlibmopt, compiler option, A-113
-xlic_lib, compiler option, A-114
Index-13

-xlicinfo, compiler option, A-115
-xlinkopt, compiler option, A-115
-Xm, compiler option, A-73
-xM, compiler option, A-116 to A-117
-xM1, compiler option, A-117
-xmaxopt, A-118
-xmaxopt, compiler option, A-118
-xmemalign, compiler option, A-118
-xMerge, compiler option, A-117
-xnativeconnet, compiler option, A-120
-xnolib, compiler option, 12-6, 12-11, A-121 to A-

123
-xnolibmil, compiler option, A-123
-xnolibmopt, compiler option, A-123
-xOlevel, compiler option, A-124 to A-127
-xopenmp, compiler option, A-127
-xpagesize, compiler option, A-128
-xpagesize_heap, compiler option, A-129
-xpagesize_stack, compiler option, A-130
-xpg, compiler option, A-135
-xport64, compiler option, A-136
-xprefetch, compiler option, A-140
-xprefetch_auto_type, compiler option, A-142
-xprefetch_level, compiler option, A-143
-xprofile, compiler option, A-144 to A-146
-xprofile_ircache, compiler option, A-147
-xprofile_pathmap, compiler option, A-147
-xregs, compiler option, 16-5, A-148
-xrestrict, compiler option, A-150
-xs, compiler option, A-152
-xsafe=mem, compiler option, A-152
-xsb, compiler option, A-153
-xsbfast, compiler option, A-153
-xspace, compiler option, A-153
-xtarget=t, compiler option, A-153 to A-160
-xhreadvar, compiler option, A-160
-xtime, compiler option, A-162
-xtrigraphs, compiler option, A-162
-xunroll=n, compiler option, A-163
-xustr, compiler option, A-164
-xvector, compiler option, A-165
-xvis, compiler option, A-165
-xwe, compiler option, A-166

Y
yacc, C++ utilities, 1-12

Z
-z arg, compiler option, A-167
Index-14 C++ User’s Guide • January 2005

	C++ User’s Guide
	Contents
	Tables
	Code Samples
	Before You Begin
	I C++ Compiler
	The C++ Compiler
	1.1 New Features and Functionality of the Sun Studio 10 C++ 5.7 Compiler
	1.2 New Features and Functionality of the Sun Studio 9 C++ 5.6 Compiler
	1.2.1 Changes to Defaults That Impact Common SPARC Processors
	1.2.2 Expanded Options For New SPARC Processors
	1.2.3 Expanded Options for New Intel Processors
	1.2.4 New Default Optimization For SPARC and x86
	1.2.5 New Options for Generating Faster Code
	1.2.6 New Options for Higher Library Performance
	1.2.7 Expanded Options For Faster Compilation
	1.2.8 Language Enhancements

	1.3 Standards Conformance
	1.4 C++ Readme File
	1.5 Man Pages
	1.6 C++ Utilities
	1.7 Native-Language Support

	Using the C++ Compiler
	2.1 Getting Started
	2.2 Invoking the Compiler
	2.2.1 Command Syntax
	2.2.2 File Name Conventions
	2.2.3 Using Multiple Source Files

	2.3 Compiling With Different Compiler Versions
	2.4 Compiling and Linking
	2.4.1 Compile-Link Sequence
	2.4.2 Separate Compiling and Linking
	2.4.3 Consistent Compiling and Linking
	2.4.4 Compiling for SPARC V9
	2.4.5 Diagnosing the Compiler
	2.4.6 Understanding the Compiler Organization

	2.5 Preprocessing Directives and Names
	2.5.1 Pragmas
	2.5.2 Macros With a Variable Number of Arguments
	2.5.3 Predefined Names
	2.5.4 #error

	2.6 Memory Requirements
	2.6.1 Swap Space Size
	2.6.2 Increasing Swap Space
	2.6.3 Control of Virtual Memory
	2.6.4 Memory Requirements

	2.7 Simplifying Commands
	2.7.1 Using Aliases Within the C Shell
	2.7.2 Using CCFLAGS to Specify Compile Options
	2.7.3 Using make
	2.7.3.1 Using CCFLAGS Within make
	2.7.3.2 Adding a Suffix to Your Makefile
	2.7.3.3 Using make With Standard Library Header Files

	Using the C++ Compiler Options
	3.1 Syntax
	3.2 General Guidelines
	3.3 Options Summarized by Function
	3.3.1 Code Generation Options
	3.3.2 Compile-Time Performance Options
	3.3.3 Debugging Options
	3.3.4 Floating-Point Options
	3.3.5 Language Options
	3.3.6 Library Options
	3.3.7 Licensing Options
	3.3.8 Obsolete Options
	3.3.9 Output Options
	3.3.10 Run-Time Performance Options
	3.3.11 Preprocessor Options
	3.3.12 Profiling Options
	3.3.13 Reference Options
	3.3.14 Source Options
	3.3.15 Template Options
	3.3.16 Thread Options

	II Writing C++ Programs
	Language Extensions
	4.1 Linker Scoping
	4.2 Thread-Local Storage
	4.3 Overriding With Less Restrictive Virtual Functions
	4.4 Making Forward Declarations of enum Types and Variables
	4.5 Using Incomplete enum Types
	4.6 Using an enum Name as a Scope Qualifier
	4.7 Using Anonymous struct Declarations
	4.8 Passing the Address of an Anonymous Class Instance
	4.9 Declaring a Static Namespace-Scope Function as a Class Friend
	4.10 Using the Predefined __func__ Symbol for Function Name

	Program Organization
	5.1 Header Files
	5.1.1 Language-Adaptable Header Files
	5.1.2 Idempotent Header Files

	5.2 Template Definitions
	5.2.1 Template Definitions Included
	5.2.2 Template Definitions Separate

	Creating and Using Templates
	6.1 Function Templates
	6.1.1 Function Template Declaration
	6.1.2 Function Template Definition
	6.1.3 Function Template Use

	6.2 Class Templates
	6.2.1 Class Template Declaration
	6.2.2 Class Template Definition
	6.2.3 Class Template Member Definitions
	6.2.3.1 Function Member Definitions
	6.2.3.2 Static Data Member Definitions

	6.2.4 Class Template Use

	6.3 Template Instantiation
	6.3.1 Implicit Template Instantiation
	6.3.2 Explicit Template Instantiation
	6.3.2.1 Explicit Instantiation of Template Functions
	6.3.2.2 Explicit Instantiation of Template Classes
	6.3.2.3 Explicit Instantiation of Template Class Function Members
	6.3.2.4 Explicit Instantiation of Template Class Static Data Members

	6.4 Template Composition
	6.5 Default Template Parameters
	6.6 Template Specialization
	6.6.1 Template Specialization Declaration
	6.6.2 Template Specialization Definition
	6.6.3 Template Specialization Use and Instantiation
	6.6.4 Partial Specialization

	6.7 Template Problem Areas
	6.7.1 Nonlocal Name Resolution and Instantiation
	6.7.2 Local Types as Template Arguments
	6.7.3 Friend Declarations of Template Functions
	6.7.4 Using Qualified Names Within Template Definitions
	6.7.5 Nesting Template Names
	6.7.6 Referencing Static Variables and Static Functions
	6.7.7 Building Multiple Programs Using Templates in the Same Directory

	Compiling Templates
	7.1 Verbose Compilation
	7.2 Repository Administration
	7.2.1 Generated Instances
	7.2.2 Whole-Class Instantiation
	7.2.3 Compile-Time Instantiation
	7.2.4 Template Instance Placement and Linkage

	7.3 External Instances
	7.3.0.1 Possible Cache Conflicts
	7.3.1 Static Instances
	7.3.2 Global Instances
	7.3.3 Explicit Instances
	7.3.4 Semi-Explicit Instances

	7.4 The Template Repository
	7.4.1 Repository Structure
	7.4.2 Writing to the Template Repository
	7.4.3 Reading From Multiple Template Repositories
	7.4.4 Sharing Template Repositories
	7.4.5 Template Instance Automatic Consistency With -instances=extern

	7.5 Template Definition Searching
	7.5.1 Source File Location Conventions
	7.5.2 Definitions Search Path
	7.5.3 Troubleshooting a Problematic Search

	7.6 Template Options File
	7.6.1 Comments
	7.6.2 Includes
	7.6.3 Source File Extensions
	7.6.4 Definition Source Locations
	7.6.5 Template Specialization Entries

	Exception Handling
	8.1 Synchronous and Asynchronous Exceptions
	8.2 Specifying Runtime Errors
	8.3 Disabling Exceptions
	8.4 Using Runtime Functions and Predefined Exceptions
	8.5 Mixing Exceptions With Signals and Setjmp/Longjmp
	8.6 Building Shared Libraries That Have Exceptions

	Cast Operations
	9.1 const_cast
	9.2 reinterpret_cast
	9.3 static_cast
	9.4 Dynamic Casts
	9.4.1 Casting Up the Hierarchy
	9.4.2 Casting to void*
	9.4.3 Casting Down or Across the Hierarchy

	Improving Program Performance
	10.1 Avoiding Temporary Objects
	10.2 Using Inline Functions
	10.3 Using Default Operators
	10.4 Using Value Classes
	10.4.1 Choosing to Pass Classes Directly
	10.4.2 Passing Classes Directly on Various Processors

	10.5 Cache Member Variables

	Building Multithreaded Programs
	11.1 Building Multithreaded Programs
	11.1.1 Indicating Multithreaded Compilation
	11.1.2 Using C++ Support Libraries With Threads and Signals

	11.2 Using Exceptions in a Multithreaded Program
	11.2.1 Thread Cancellation

	11.3 Sharing C++ Standard Library Objects Between Threads
	11.4 Using Classic Iostreams in a Multithreading Environment
	11.4.1 Organization of the MT-Safe iostream Library
	11.4.1.1 Public Conversion Routines
	11.4.1.2 Compiling and Linking With the MT-Safe libC Library
	11.4.1.3 MT-Safe iostream Restrictions
	11.4.1.4 Reducing Performance Overhead of MT-Safe Classes

	11.4.2 Interface Changes to the iostream Library
	11.4.2.1 The New Classes
	11.4.2.2 The New Class Hierarchy
	11.4.2.3 The New Functions

	11.4.3 Global and Static Data
	11.4.4 Sequence Execution
	11.4.5 Object Locks
	11.4.5.1 Class stream_locker

	11.4.6 MT-Safe Classes
	11.4.7 Object Destruction
	11.4.8 An Example Application

	III Libraries
	Using Libraries
	12.1 The C Libraries
	12.2 Libraries Provided With the C++ Compiler
	12.2.1 C++ Library Descriptions
	12.2.2 Accessing the C++ Library Man Pages
	12.2.3 Default C++ Libraries

	12.3 Related Library Options
	12.4 Using Class Libraries
	12.4.1 The iostream Library
	12.4.2 The complex Library
	12.4.3 Linking C++ Libraries

	12.5 Statically Linking Standard Libraries
	12.6 Using Shared Libraries
	12.7 Replacing the C++ Standard Library
	12.7.1 What Can Be Replaced
	12.7.2 What Cannot Be Replaced
	12.7.3 Installing the Replacement Library
	12.7.4 Using the Replacement Library
	12.7.5 Standard Header Implementation
	12.7.5.1 Replacing Standard C++ Headers
	12.7.5.2 Replacing Standard C Headers

	Using The C++ Standard Library
	13.1 C++ Standard Library Header Files
	13.2 C++ Standard Library Man Pages
	13.3 STLport
	13.3.1 Redistribution and Supported STLport Libraries

	Using the Classic iostream Library
	14.1 Predefined iostreams
	14.2 Basic Structure of iostream Interaction
	14.3 Using the Classic iostream Library
	14.3.1 Output Using iostream
	14.3.1.1 Defining Your Own Insertion Operator
	14.3.1.2 Handling Output Errors
	14.3.1.3 Flushing
	14.3.1.4 Binary Output

	14.3.2 Input Using iostream
	14.3.3 Defining Your Own Extraction Operators
	14.3.4 Using the char* Extractor
	14.3.5 Reading Any Single Character
	14.3.6 Binary Input
	14.3.7 Peeking at Input
	14.3.8 Extracting Whitespace
	14.3.9 Handling Input Errors
	14.3.10 Using iostreams With stdio

	14.4 Creating iostreams
	14.4.1 Dealing With Files Using Class fstream
	14.4.1.1 Open Mode
	14.4.1.2 Declaring an fstream Without Specifying a File
	14.4.1.3 Opening and Closing Files
	14.4.1.4 Opening a File Using a File Descriptor
	14.4.1.5 Repositioning Within a File

	14.5 Assignment of iostreams
	14.6 Format Control
	14.7 Manipulators
	14.7.1 Using Plain Manipulators
	14.7.2 Parameterized Manipulators

	14.8 Strstreams: iostreams for Arrays
	14.9 Stdiobufs: iostreams for stdio Files
	14.10 Streambufs
	14.10.1 Working With Streambufs
	14.10.1.1 Position of Pointers

	14.10.2 Using Streambufs

	14.11 iostream Man Pages
	14.12 iostream Terminology

	Using the Complex Arithmetic Library
	15.1 The Complex Library
	15.1.1 Using the Complex Library

	15.2 Type complex
	15.2.1 Constructors of Class complex
	15.2.2 Arithmetic Operators

	15.3 Mathematical Functions
	15.4 Error Handling
	15.5 Input and Output
	15.6 Mixed-Mode Arithmetic
	15.7 Efficiency
	15.8 Complex Man Pages

	Building Libraries
	16.1 Understanding Libraries
	16.2 Building Static (Archive) Libraries
	16.3 Building Dynamic (Shared) Libraries
	16.4 Building Shared Libraries That Contain Exceptions
	16.5 Building Libraries for Private Use
	16.6 Building Libraries for Public Use
	16.7 Building a Library That Has a C API
	16.8 Using dlopen to Access a C++ Library From a C Program

	IV Appendixes
	C++ Compiler Options
	A.1 How Option Information Is Organized
	A.2 Option Reference
	A.2.1 -386
	A.2.2 -486
	A.2.3 -a
	A.2.4 -Bbinding
	A.2.5 -c
	A.2.6 -cg{89|92}
	A.2.7 -compat[={4|5}]
	A.2.8 +d
	A.2.9 -D[]name[=def]
	A.2.10 -d{y|n}
	A.2.11 -dalign
	A.2.12 -dryrun
	A.2.13 -E
	A.2.14 +e{0|1}
	A.2.15 -erroff[=t]
	A.2.16 -errtags[=a]
	A.2.17 -errwarn[=t]
	A.2.18 -fast
	A.2.19 -features=a[,a...]
	A.2.20 -filt[=filter[,filter...]]
	A.2.21 -flags
	A.2.22 -fnonstd
	A.2.23 -fns[={yes|no}]
	A.2.24 -fprecision=p
	A.2.25 -fround=r
	A.2.26 -fsimple[=n]
	A.2.27 -fstore
	A.2.28 -ftrap=t[,t...]
	A.2.29 -G
	A.2.30 -g
	A.2.31 -g0
	A.2.32 -H
	A.2.33 -h[]name
	A.2.34 -help
	A.2.35 -Ipathname
	A.2.36 -I-
	A.2.37 -i
	A.2.38 -inline
	A.2.39 -instances=a
	A.2.40 -instlib=filename
	A.2.41 -KPIC
	A.2.42 -Kpic
	A.2.43 -keeptmp
	A.2.44 -Lpath
	A.2.45 -llib
	A.2.46 -libmieee
	A.2.47 -libmil
	A.2.48 -library=l[,l...]
	A.2.49 -mc
	A.2.50 -migration
	A.2.51 -misalign
	A.2.52 -mr[,string]
	A.2.53 -mt
	A.2.54 -native
	A.2.55 -noex
	A.2.56 -nofstore
	A.2.57 -nolib
	A.2.58 -nolibmil
	A.2.59 -noqueue
	A.2.60 -norunpath
	A.2.61 -O
	A.2.62 -Olevel
	A.2.63 -o filename
	A.2.64 +p
	A.2.65 -P
	A.2.66 -p
	A.2.67 -pentium
	A.2.68 -pg
	A.2.69 -PIC
	A.2.70 -pic
	A.2.71 -pta
	A.2.72 -ptipath
	A.2.73 -pto
	A.2.74 -ptr
	A.2.75 -ptv
	A.2.76 -Qoption phase option[,option…]
	A.2.77 -qoption phase option
	A.2.78 -qp
	A.2.79 -Qproduce sourcetype
	A.2.80 -qproduce sourcetype
	A.2.81 -Rpathname[:pathname…]
	A.2.82 -readme
	A.2.83 -S
	A.2.84 -s
	A.2.85 -sb
	A.2.86 -sbfast
	A.2.87 -staticlib=l[,l…]
	A.2.88 -sync_stdio=[yes|no]
	A.2.89 -temp=path
	A.2.90 -template=opt[,opt…]
	A.2.91 -time
	A.2.92 -Uname
	A.2.93 -unroll=n
	A.2.94 -V
	A.2.95 -v
	A.2.96 -vdelx
	A.2.97 -verbose=v[,v…]
	A.2.98 +w
	A.2.99 +w2
	A.2.100 -w
	A.2.101 -Xm
	A.2.102 -xa
	A.2.103 -xalias_level[=n]
	A.2.104 -xar
	A.2.105 -xarch=isa
	A.2.106 -xautopar
	A.2.107 -xbuiltin[={%all|%none}]
	A.2.108 -xcache=c
	A.2.109 -xcg89
	A.2.110 -xcg92
	A.2.111 -xchar[=o]
	A.2.112 -xcheck[=i]
	A.2.113 -xchip=c
	A.2.114 -xcode=a
	A.2.115 -xcrossfile[=n]
	A.2.116 -xdepend=[yes|no]
	A.2.117 -xdumpmacros[=value[,value...]]
	A.2.118 -xe
	A.2.119 -xF[=v[,v...]]
	A.2.120 -xhelp=flags
	A.2.121 -xhelp=readme
	A.2.122 -xia
	A.2.123 -xildoff
	A.2.124 -xildon
	A.2.125 -xinline[=func_spec[,func_spec...]]
	A.2.126 -xipo[={0|1|2}]
	A.2.126.1 When Not To Use -xipo=2 Interprocedural Analysis

	A.2.127 -xjobs=n
	A.2.128 -xlang=language[,language]
	A.2.129 -xldscope={v}
	A.2.130 -xlibmieee
	A.2.131 -xlibmil
	A.2.132 -xlibmopt
	A.2.133 -xlic_lib=sunperf
	A.2.134 -xlicinfo
	A.2.135 -xlinkopt[=level]
	A.2.136 -xM
	A.2.137 -xM1
	A.2.138 -xMerge
	A.2.139 -xmaxopt[=v]
	A.2.140 -xmemalign=ab
	A.2.141 -xnativeconnect[=i]
	A.2.142 -xnolib
	A.2.143 -xnolibmil
	A.2.144 -xnolibmopt
	A.2.145 -xOlevel
	A.2.146 -xopenmp[=i]
	A.2.147 -xpagesize=n
	A.2.148 -xpagesize_heap=n
	A.2.149 -xpagesize_stack=n
	A.2.150 -xpch=v
	A.2.151 -xpchstop=file
	A.2.152 -xpg
	A.2.153 -xport64[=(v)]
	A.2.154 -xprefetch[=a[,a...]]
	A.2.155 -xprefetch_auto_type=a
	A.2.156 -xprefetch_level[=i]
	A.2.157 -xprofile=p
	A.2.158 -xprofile_ircache[=path]
	A.2.159 -xprofile_pathmap
	A.2.160 -xregs=r[,r...]
	A.2.161 -xrestrict[=f]
	A.2.161.1 Restricted Pointers

	A.2.162 -xs
	A.2.163 -xsafe=mem
	A.2.164 -xsb
	A.2.165 -xsbfast
	A.2.166 -xspace
	A.2.167 -xtarget=t
	A.2.168 -xthreadvar[=o]
	A.2.169 -xtime
	A.2.170 -xtrigraphs[={yes|no}]
	A.2.171 -xunroll=n
	A.2.172 -xustr={ascii_utf16_ushort|no}
	A.2.173 -xvector[={yes|no}]
	A.2.174 -xvis[={yes|no}]
	A.2.175 -xwe
	A.2.176 -Yc,path
	A.2.177 -z[]arg

	Pragmas
	B.1 Pragma Forms
	B.1.1 Overloaded Functions as Pragma Arguments

	B.2 Pragma Reference
	B.2.1 #pragma align
	B.2.2 #pragma does_not_read_global_data
	B.2.3 #pragma does_not_return
	B.2.4 #pragma does_not_write_global_data
	B.2.5 #pragma dumpmacros
	B.2.6 #pragma end_dumpmacros
	B.2.7 #pragma fini
	B.2.8 #pragma hdrstop
	B.2.9 #pragma ident
	B.2.10 #pragma init
	B.2.11 #pragma no_side_effect
	B.2.12 #pragma opt
	B.2.13 #pragma pack(n)
	B.2.14 #pragma rarely_called
	B.2.15 #pragma returns_new_memory
	B.2.16 #pragma unknown_control_flow
	B.2.17 #pragma weak

	Glossary
	Index

