
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Veritas VxVM Storage

Management Software

By Gene Trantham - Enterprise Engineering

Sun BluePrints™ OnLine - May 2000

http://www.sun.com/blueprints

Part No.: 806-5596-10
Revision 01, May 2000

Please

Recycle

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, The Network Is The Computer, Solstice DiskSuite, Jumpstart, Sun BluePrints and Solaris are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks

are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, The Network Is The Computer, Solstice DiskSuite, Jumpstart, Sun BluePrints, et Solaris sont des marques

de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les

marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-

Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Veritas VxVM Storage Management
Software

Abstract

Most mission critical systems can benefit from storage management software which

can mirror, and thereby protect their data against hardware failure. A common

storage management tool used on Sun™ systems is produced by Veritas Software

Corporation and is sold under the names VxVM and SEVM.

VxVM has a reputation among some system administrators for its complexity in

managing storage, and boot devices. The boot disk, and operating system data is

perhaps the most critical data that is required to be kept available on a host system.

This data is often neglected or improperly protected because of the perceived

difficulty involved in the administration process.

This paper explains the underlying actions of VxVM during boot disk encapsulation,

and details the mechanism by which it seizes and manages a boot device. A number

of best practices will be presented to assist system administrators standardize

installations. The direction this paper is focused on availability, serviceability, and

administration of data on a boot disk.

Introduction

Most system managers agree that backing up the server data, and even going to the

lengths of providing off-site media storage, is a necessary requirement. While this

may preserve the data, it does not preserve the availability of the data. A failed disk

can be easily replaced and reloaded with the original data from a back up, however,

what about lost processing time during repair and data recovery? Also, there is the

issue of staleness of the backup and what changes have been made to the dataset

between the time of the last backup and the time of the hardware failure.

2 Veritas VxVM Storage Management Software • May 2000

These issues, among others, led to the development of online data protection

software using various forms of RAID. One of the most popular and effective means

of preventing an outage due to disk failure is mirroring (RAID_1). However, all

mirrors are not created equal. Just providing two copies of the data is not always

enough. In fact, it’s almost never enough. An understanding of the hardware

components necessary to access the underlying disk drive for each copy of the data

is required, and also, an understanding of the possible interaction between the

various components.

Two of the most popular disk management systems available for the Solaris™

Operating Environment are: Solstice DiskSuite™ software (SDS), and Volume

Manager (VxVM).

VxVM, is frequently used on high end systems, but has the reputation of being

difficult to configure when dealing with boot devices.

Difficulties can arise during recovery operations, repairs, or even upgrading to a

newer version of VxVM. However, this needn’t be so. The key to a virtually pain-

free and smoothly operating VxVM system, especially with the boot device, is to

adhere to some guiding principles that need to be effected at the time of install.

These principles can be derived from an understanding of the underlying workings

of VxVM, especially in the way it manages a boot disk.

Disk Management Overview

Storage management software achieves transparent mirroring of data with the use of

virtual devices. This is basically an extra layer of abstraction between the disk media

and the processes above it which need to access and use the devices. These devices

are:

Application vi

FileSystem ufs device driver

Virtual Device vxio device driver

Disk Device sd or ssd device driver

In the case of VxVM, the virtual device is called a volume, with its device driver is

vxio. Volumes are presented to the operating system for use as if they were disks.

These virtual disks are then available for the support of file systems, swap devices,

and raw datafiles.

I/O directed toward the volume is captured by the vxio device driver, which then

re-issues them to the underlying disk devices according to the RAID policy for the

volume being accessed. A mirrored volume, for example, might take all write

requests, then re-issue multiple writes to the various disks which support each pane

of the mirror (usually only two panes, but more may exist).

Veritas VxVM Storage Management Software 3

As VxVM is interposed between the devices and the upper layers, it has a measure

of control over those disks. However, its authority over the disks is not absolute.

Disks are still accessible via their normal device drivers using the conventional

logical path name:

For example, a volume supported by a disk at address c0t0d0 does not preclude the

use of that disk from other processes. Any other process with sufficient file system

permissions may access this disk directly.

All volume managers maintain their own internal database of how the virtual

devices should handle I/Os. The configuration database keeps track of which

volumes are mirrors, which are RAID-5, what stripe interleave to use, and similar

details. This metadata must be stored completely independent from the virtual

devices themselves. Both SDS and VxVM store their metadata in a separate private

region of each managed disk. The format in which this data is stored is specific to

each tool.

The sanctity of the VxVM private regions should not be violated under any

circumstances. The volume manager can become confused if the private region of

any of its disks undergoes unexpected changes.

At startup, the volume manager will read the configuration information contained in

the private regions of any discovered disks. That data is assembled into the

configuration database file located inside the vxio device driver. At this point, the

volumes are activated and made available to the system for I/Os. If the

configuration portion of this process cannot be completed, due to a corrupted

private region, for example, one or more volumes may be inaccessible.

Data Protection For All Volumes

A dataset can be protected from certain kinds of hardware errors by storing the data

on a mirrored volume. However, the protection is not absolute. A basic definition of

mirroring states that there needs to be two or more identical copies of the data.

However, there is no requirement that the two copies exist on separate disk devices.

A volume in which both copies of the dataset are on the same physical spindle is an

example which illustrates that mirrored does not always mean protected.

When configuring mirrored volumes with any storage manager, care must be taken

to ensure complete device independence for copies of the data. Device independence

refers to the individual disk devices, but it can also extend to the series of devices

necessary to support the entire data path to the disk. For example, if the two disks

/dev/dsk/c0t0d0s2

4 Veritas VxVM Storage Management Software • May 2000

supporting a mirror are on the same SCSI bus, the mirror is not device independent,

even though the data is on independent disks. The failure of the common path

element (the bus itself) will prevent either side of the mirror from being available.

In addition to the bus transport components which might include the host adapter

card, SCSI cables and connectors, terminators and the like, the bus also includes a

number of unrelated devices which could seriously impact the ability of the bus to

carry data.

Suppose an unrelated SCSI device (say, a tape drive) on the same SCSI bus suffered

a hardware error which held the bus in reset. This would effectively fail the device

path to both the mirror disks even though there are no failures in the pathing

elements leading to them, or in the disks themselves.

The solution to this problem is not to move the tape drive. A practical solution

would be to move the disk holding a copy of the mirrored dataset to a separate SCSI

bus. In this arrangement, if either bus experienced a problem, the other copy of the

mirrored data would be unaffected. This approach could be taken for any access

element for each copy of the data.

Solaris Operating Environment provides a mechanism to determine the device path

components of a disk (or, for any device). The /devices directory tree is a way to

determine hardware elements leading to a disk:

The convenience handle of /dev/dsk/c0t0d0s2 (often called the logical device

path) is a symbolic link to the physical device path found in /devices . This

physical path shows each of the device drivers used to access that device. Each

subdirectory in the pathname represents a discrete hardware element. The device

driver and address is indicated in the form:

This method of representing the hardware path as a directory tree is convenient for

determining if two devices share a common pathing element in the device tree. In

this arrangement, two devices share a common hardware element if they have a

common parent in the /devices directory tree. The shared parent directory

represents the shared element.

cd /dev/dsk
ls -l c0t0d0s2
lrwxrwxrwx 1 root
root 45 Feb 2 17:12 c0t0d0s2
-> /devices/sbus@54,0/SUNW,socal@0,0/sf@0,0/
ssd@w21000020471cb01a,0:a

driver@address

Veritas VxVM Storage Management Software 5

The following two devices share the common parent sbus@54,0.

If these devices were used in support of the two copies in a mirrored dataset, the

mirror is said to depend on sbus@54,0 .

Errors or failures on this hardware element have the potential to affect both panes of

the mirrored volume. The mean time between failure (MTBF) for this volume is now

a function of its weakest link for this one hardware component.

It should be noted that as hardware is added to a system, the mean time between

component failures will be reduced. However, failures will not necessarily cause the

data to become inaccessible. In essence, the addition of hardware will reduce the

time between hardware component failures. If a mirrored volume is correctly

configured, a component failure will not fail the entire volume. So long as the entire

mirror does not depend on the failed component, one or more copies of the data will

still be available via other independent components. See Figure 1 - “Shared SCSI

Bus vs Split SCSI Bus”

For example, assume that the MTBF for the SCSI card in Figure 1 is 100,000 hours.

Configuration A will experience card failure at an average rate of one for every

100,000 hours of operation. Since the mirror is supported by Disk A and Disk B and

depends on those components, an outage will result from such a failure. Conversely,

Configuration B will suffer a failure of one of its two SCSI cards at an average rate of

only once every 50,000 hours of operation. However, this component failure is not

sufficient to bring down the volume as the mirror does not depend on both cards.

So far, we have considered the case where only one copy of the data resides on a

single disk, with its mirror being on some other single piece of media. However, in

practice, mirrors are not limited in this way. Each copy of the data may in fact be

another RAID element such as a stripe or concatenation. A common arrangement for

VxVM volumes is to mirror two stripes. Each stripe is a RAID_0 object. The pairing

of two such objects in a mirror is a RAID_1 configuration. This combination is often

referred to as RAID_0+1 (stripe plus mirror).

This complicates the device independence policy somewhat. If a single copy of the

data depends on multiple disks (and their corresponding device paths), there is a

greater possibility for overlap with other copies of the data.

c0t0d0s0 -> /devices/sbus@54,0/SUNW,socal@0,0/sf@0,0/
ssd@w21000020471cb01a,0:a
c1t0d0s0 -> /devices/sbus@54,0/SUNW,socal@1,0/sf@0,0/
ssd@w21000020370b0c1b,0:a

6 Veritas VxVM Storage Management Software • May 2000

Disk A Disk B

 SCSI
Host Adapter

 SCSI
Host Adapter

Disk A

 SCSI
Host Adapter

Disk B

Shared SCSI Bus

Split SCSI Bus

Configuration A

Configuration B

Figure 1 - Shared SCSI Bus vs Split SCSI Bus

Veritas VxVM Storage Management Software 7

Consider the relatively simple mirror illustrated in Figure 2 - “Sample Striped

Mirror”

Each element of a stripe (RAID_0) is critical to the integrity of the address space

mapped by the stripe. If any one of these disks should fail, the entire stripe is

considered unreliable. Therefore, any possible failure that would adversely affect

any one of the disks in STRIPE_A does not affect any of the disks in STRIPE_B.

This device path comparison has illustrated that simple mirrors must be expanded

to account for all possible pairings of disks between stripes. In the sample

configuration, there are 9 such pairings. Any hardware dependency between these

will cause the entire volume to depend on the common elements found between those

two disks.

As the stripes become wider, the number of combinations to be tested grows rapidly.

In general, Cn combinations are possible (where C represents columns in each stripe,

and n represents the number of panes in a mirror). For example, a mirror consisting

of two 5 column stripes, contains 25 potential pairings of disk devices which must be

device independent. Testing all these combinations is a time consuming task.

Fortunately, much of the analysis can be automated.

Volume

c1t0d0

c1t1d0

c1t2d0

STRIPE A

c2t0d0

c2t1d0

c2t2d0

Figure 2 - Sample Striped Mirror
(2 x 3 column stripes)

STRIPE B

8 Veritas VxVM Storage Management Software • May 2000

Boot Disk

Mirrored boot volumes have the potential to be easier or harder to work with than

general volumes. The boot volume (referred to as rootvol) must not be a stripe or

RAID_5 device. It should be composed of simple, one-disk copies. This simplifies the

checks necessary to determine device independence. However, boot devices have

other special requirements, due to the way the operating system deals with this key

device.

Private Regions: The Key To It All

When VxVM assumes ownership of a device, the process is termed initialization.

This process involves fencing off a private region on the disk, thereby reducing the

space available for data. Private regions typically occupy the first cylinder of the

disk, however, this is not a requirement. The remaining cylinders are then available

in the public region of the disk for the creation of volumes.

Initialization is generally not an issue on most disks under management.

Encapsulation, on the other hand, can be difficult. The process of encapsulating a

disk is to preserve data already present, while creating one or more cylinders for the

private region.

The boot device can present special problems to VxVM if it attempts encapsulation.

This is because VxVM is not accustomed to dealing with encapsulation when seizing

management control. For example:

If Block 0 is already in use (the boot block and root file system typically begin in

cylinder 0), the private regions cannot install there without moving the root file

system.

If data is already on the device (which in some cases can consume the entire disk

space).

VxVM has some standard workarounds which will handle the majority of

circumstances arising from the two example conditions. After a boot disk is

encapsulated, remnants of this action may be seen in the rootdisk-Priv and

rootdisk-B0 subdisks.

These two subdisks are created in order to preserve two key regions of the disk from

being overwritten by volume data.

The two key regions are the VTOC (reserved by rootdisk-B0), and the private

region (reserved by rootdisk-Priv). If a system administrator moved or deleted

these two subdisks, their designed protection would be negated.

Veritas VxVM Storage Management Software 9

Formalized management of the private regions is the key to avoiding trouble with

the boot device. A best practice is outlined below, and is aimed specifically toward

locating the private region on the boot disk in a way that can prevent a multitude of

problems which can ensue when dealing with an encapsulated boot device.

VxVM Best Practice For Boot Media

1. Eliminate a separate /usr volume

There is little need for /usr file system to be separate from the root file system in

most environments. Having the /usr file system on a volume separate from

rootvol can complicate service procedures if the primary boot disk needs to be

replaced. It would be better to avoid these issues from the outset. All the support

utilities for VxVM are located in the /usr/vxvm directory. If the system is in the

situation where it needs to perform a VxVM operation, yet cannot mount a /usr
slice or volume, corrective action cannot be taken as a technician will not have access

to the tools required. (They are in the inaccessible /usr directory)

2. Mirror to a clone disk

The goal of this practice is to duplicate exactly the boot disk to an identical disk. For

this to work correctly, the media must be of the same size, performance

characteristics, and internal geometry as the original boot device. Ideally, the boot

disk and its mirror would be from the same vendor, be the same model number, and

be running identical versions of firmware on the internal controller.

Each volume on the boot disk should be supported by identical copies of the data

located in identical places on the two disks (the offset address for the start of

rootvol must be the same on all disks). This will help ensure service and support

under emergency repair conditions can be carried out quickly and efficiently.

3. Attach mirrors in geographical order, not alphabetical order.

A common way that administrators mirror a boot device is with the vxdiskadm
tool. A function within this tool, named "Mirror all volumes on a disk", is a

convenient way to do this. However, the vxdiskadm function generates a list of the

volumes to be mirrored in alphabetical order. Although this achieves the basic goal

of mirroring the data, the mirror does not place the data in the optimum locations.

In a typical boot disk encapsulation, the system volumes are: rootvol , swapvol ,

var , and opt (and are generally written in this order on the disk). The vxdiskadm
function will not mirror these four volumes in the same order in which they appear

on the boot disk. First it will attach the volume opt , followed by swapvol ,

rootvol , and var , which is undesirable.

4. Convert the rootdisk from an encapsulated to an initialized disk.

10 Veritas VxVM Storage Management Software • May 2000

The use of an encapsulated device for the boot disk makes that disk a special case. It

could be the only encapsulated device in an entire system. This one exception should

be removed in order to simplify administration and service procedures. This step is

necessary to help ensure the boot disk and its mirror are exact clones. If one is

encapsulated and one is initialized, the private regions of these disks will have

different addresses. This means that the offsets to the beginning of each volume will

be different. This should be avoided.

In addition, by replacing the encapsulated boot disk with an initialized boot disk,

the remnants of the encapsulation of rootdisk-B0 , and rootdisk-Priv will be

removed from the configuration as they are no longer required.

An effective means of replacing an encapsulated disk with an initialized one is to fail

the encapsulated disk and replace it with itself. This procedure will initialize

(instead of encapsulating) the replacement drive. Commonly, a typical method by

which a disk is failed, and then replaced, is accomplished by using the vxdiskadm
function. However, as previously discussed, this method does not always reattach

the mirrors in an optimum order. An alternate method of replacing an encapsulated

disk with an initialized one without using the vxdiskadm function is discussed in

Appendix A or B.

5. Map volumes to disk slices/partitions for core operating system file systems.

The major file systems necessary to support the fundamentals of an operating

system are root , /var , and /opt . If the /usr file is on a separate volume, it would

also be included in this list. In times of extreme system distress, access to these file

systems, regardless of whether VxVM is functioning, is desirable. To ensure this is

possible, disks must be re-partitioned to match the volume definitions.

The VxVM tool comes with a utility named vxmksdpart , which maps a volume’s

primary subdisk to a low-level disk slice with the same geometry offsets and length.

With the underlying slice available for mount, a technician can use that handle to

access the data in an emergency. Even if VxVM is not available, the vxmksdpart
utility can be found in /etc/vx/bin on any standard VxVM installation. Run the

command with no arguments to get its usage and help information.

6. Increase the number of configuration file copies to "ALL"

To help prevent loss of the configuration database file, configdb, each disk within

the disk group should be forced to carry an active copy of the file. The VxVM tool

places a backup copy of the file within the private regions of many of its managed

disks (but not all). The Volume Manager attempts to distribute this data for

resiliency, however, it does not force a copy to each disk. If each group within the

disk group carried an active copy of the database configuration file, it would ensure

its recovery, even if only one disk survived a major system malfunction.

Veritas VxVM Storage Management Software 11

7. PROM device aliases

Ensure each mirror of the rootvol file is bootable. Also, that a device alias exists at

the open boot prom (OBP). This will help ensure ease of booting from all such

mirrors. The vxeeprom function is a way to do this, however, the user-defined

aliases can also be edited in the following way:

eeprom nvramrc > file

vi file

eeprom "nvramrc=‘cat file‘"

8. Provide a fail-safe boot device with VxVM installed.

The Solaris Operating Environment installation CD-ROM is a boot device that can be

used when all else fails. Unfortunately, it does not have a copy of the VxVM

software. Therefore, it is not possible to boot from the Solaris Operating

Environment CD-ROM and still operate VxVM. This poses a problem in situations

when the system must boot from the CD-ROM to effect a repair, but cannot use the

root volume. There are workarounds for this problem, however, they can be tedious

and error prone, except in the most experienced of hands.

An effective method for helping ensure the ability to operate VxVM when all else

fails, is to provide a fail-safe boot device which has been prepared for VxVM use.

The following lists two ways to do this:

■ Reserve a disk within the system as a snapshot disk. Set aside a conventional disk

which is not under VxVM control. The disk should be updated with system

changes as they occur to the operating system. This snapshot disk will have the

VxVM drivers and utilities, but will not depend upon VxVM to boot.

■ Add VxVM to the JumpStart™ server via MRtools. The JumpStart server provides

a CD-ROM image to any client which attempts to boot from it. This image can be

modified to operate VxVM (and other add-on products). Any client which boots

from the modified image will then have access to the products. In either case, it is

essential to have a boot device not under VxVM control, and yet which loads the

VxVM utilities and drivers. This permits the manipulation and repair of VxVM

devices without having to compromise the configuration just to get the system to

boot.

Appendix A:

Note – See the August 2000 edition for the Sun BluePrints™ article titled “Towards

a Reference Configuration for VxVM Managed Boot Disk” for a detailed explanation

of the procedure listed below.

12 Veritas VxVM Storage Management Software • May 2000

Mirroring boot disk without using vxdiskadm

/etc/vx/bin/vxdisksetup -i c1t1d1
vxdg -g rootdg adddisk rootmirror=c1t1d1
/etc/vx/bin/vxrootmir rootmirror
vxassist -g rootdg mirror swapvol rootmirror
vxassist -g rootdg mirror var rootmirror
vxassist -g rootdg mirror opt rootmirror
vxdisk -g rootdg list

Note – The rest of this exercise assumes the following bindings:

rootdisk=c0t0d0 and rootmirror=c1t1d1. If your device names differ, be sure to

substitute accordingly.

vxplex dis rootvol-01
vxplex dis swapvol-01
vxplex dis var-01
vxplex dis opt-01
vxedit -fr rm rootvol-01 swapvol-01 var-01 opt-01
vxedit rm rootdiskPriv

Note – rootdiskPriv may or may not exist, depending upon how the disk was

encapsulated. Remove it if it does exist. Ignore if it does not.

vxdg -g rootdg rmdisk rootdisk
/etc/vx/bin/vxdisksetup -i c0t0d0
vxdg -g rootdg adddisk rootdisk=c0t0d0
/etc/vx/bin/vxrootmir rootvol rootdisk
vxassist -g rootdg mirror swapvol
vxassist -g rootdg mirror var
vxassist -g rootdg mirror opt

General Procedure

1) Attach mirrors to rootvol , swapvol , var , opt (vxrootmir , ’vxassist
mirror ’)

2) Detach original mirror copies & remove them from configuration (’vxplex dis ’

and ’vxedit rm ’)

3) Re-initialize rootdisk. (’vxdg rmdisk ’ and ’vxdisksetup ’)

4) Re-attach mirrors to initialized rootdisk (vxrootmir, ’vxassist mirror’)

Veritas VxVM Storage Management Software 13

Author’s Bio: Gene Trantham

Gene Trantham is a Staff Engineer for Enterprise Engineering at Sun Microsystems. Prior to joining
Sun, he spent eight years as a UNIX system administrator specializing in storage management and
disaster recovery. While at Sun, Gene has spent most of his time in the field, servicing storage and high-
end servers at some of Sun’s largest accounts.

