
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 USA
650 960-1300

http://www.sun.com/blueprints

Enterprise
Quality of Service (QoS)
Part II: Enterprise Solution

using SolarisTM Bandwidth

Manager 1.6 Software

By Deepak Kakadia - Enterprise Engineering

Sun BluePrints™ OnLine - March 2002

Part No.: 816-4459-10
Revision 1.0, 03/07/02
Edition: March 2002

Please

Recycle

Copyright 2002 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, JavaServer Pages (JSP) , Enterprise JavaBeans (EJB) , Sun Enterprise, Java, Ultra, and

Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, JavaServer Pages (JSP) , Enterprise JavaBeans (EJB) , Sun Enterprise, Java, Ultra, et Solaris

sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Enterprise Quality of Service (QoS)
Part II: Enterprise Solution using

SolarisTM Bandwidth Manager 1.6

Software

This article is Part II of a two-part series with a focus on Enterprise Networks

detailing what corporations can do to prioritize traffic in an optimal manner to

ensure that certain applications receive priority over less important applications,

starting from the computing server up to the enterprise’s egress point. This article

investigates the effectiveness of SolarisTM Bandwidth Manager 1.6 (Solaris BM 1.6)

software in implementing a Quality of Service (QoS) solution in an enterprise

network. This article also briefly looks at how policy based network and systems

management takes Solaris BM 1.6 software one step further, allowing the QoS

configurations to change dynamically based on certain feedback measurements. It

doesn’t make sense to restrict traffic when there is no congestion, however to

constantly manually perform QoS reconfigurations itself can be a daunting task, this

is where policy controls play a major role.

This article details the following:

■ QoS deployment scenarios

■ Available QoS solutions

Note – Solaris Bandwidth Manager 1.6 software is supported on SolarisTM

Operating Environment version 8 and older.

2 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

QoS Deployment Scenarios

There are several QoS solution approaches from a deployment perspective. Further,

there are two available options from an implementation perspective, hardware and

software. This article focuses on where in the enterprise QoS can be deployed and is

limited to a software implementation.

The end-to-end path from a client to the server is composed of various network

segments, each with different bandwidths and more important, different loads. QoS

deployments are all based on one fundamental principle, restricting the amount of

traffic that is injected into a slower link from a faster link. In this context, the notion

of slower and faster is not necessarily about bandwidth, it is also about

oversubscription of a link. To better understand this concept, let’s step out of the

enterprise environment and into the access network, where a local Internet Service

Provider (ISP), provides Digital Subscriber Line (DSL) service. In order to generate

profits, it is often the case where many DSL lines are aggregated into a DSL Access

multiplier (DSLAM). Aggregate egress traffic is forwarded to an Optical Carrier 3

(OC-3) line. Although the DSL line is much slower in terms of bandwidth, the choke

point is in fact the OC-3 link at 155 mbps, since the service provider may aggregate

thousands of 144 kbs lines, hoping that not all the lines will be in use at the same

time. Back in the enterprise environment, where enterprise networks are usually

over provisioned. Recent trends in enterprise networks have evolved where

centralize web servers often provide services to all employees and partners. This is

often an area of contention and an ideal situation where Solaris BM 1.6 software may

be used to control traffic. There are various deployment options and the following

list describes some QoS deployment possibilities:

1. Outsourcing the ISP to provide QoS Network services, providing enterprise

customers with a web interface provision and their own QoS policies for their

portion of bandwidth.

2. Deploying a QoS Capable Network Switch. This is usually located at a choke

point at a corporate Wide Area Network (WAN) access point.

3. Deploying a Solaris BM 1.6 software server at a choke point, in front of a

centralized network resource such as a consolidated server.

4. Deploying Solaris BM 1.6 software on the consolidated server themselves.

One of the main limitations of a purely network-centric approach, is that the

network is not always the bottleneck. Often the server may be the source of a

bottleneck. For example, web servers or application servers that are generating

dynamic web pages, using JavaServer PagesTM (JSPTM) technology, servlets, and

Enterprise JavaBeansTM (EJBTM) technology can be central processing unit (CPU)

bound, due to a few relatively small-sized Hypertext Transfer Protocol (HTTP)

requests. In this case, having QoS policy enforcement points (PEP) that can only

QoS Deployment Scenarios 3

control the network bandwidth does not contribute to improving overall

performance. However, if there is some feedback from the servers that provides

some indication of load, the QoS device can restrict the incoming requests, aligning

the requests with the server load, letting only the priority requests through. This

article describes QoS from network bandwidth perspective and then describes a

solution that takes server load into consideration of the QoS equation.

In order to understand the effectiveness of the Solaris BM 1.6 software, FIGURE 1

illustrates several representative configurations deployed with heavy loads.

Measurements were taken on the server and the client side for verification. FIGURE 1

illustrates that with the same offered load the following is true:

1. No QoS—all clients receive poor service.

2. QoS on a dedicated server—clients receive good differential services, ensuring

that priority clients receive noticeably better service than non-priority.

3. QoS located on the application server—the amount of load that QoS uses up on

a server to implement differential services. This shows that there is a cost to

implementing QoS, which uses CPU cycles that could be used to service client

requests.

This section discusses a proposed integrated feedback closed loop solution, that

integrates Solaris BM 1.6 software with SunTM Management Center 3.0 (Sun MC 3.0)

software as illustrated in FIGURE 1. This solution takes the server load into

consideration when restricting traffic and providing differentiated services.

In FIGURE 1 configuration A, shows the baseline case, where no QoS was deployed.

In FIGURE 1 configuration B, shows a dedicated server deployed to control

bandwidth allocation. This also illustrates how an integrated Systems and Network

Approach can be used, where the policy decision point (PDP) is monitoring and

controlling both the servers and the network and taking the appropriate action. In

this case, if the servers become overloaded, the PDP can perform several actions to

remedy the situation, depending on the Policy Decision Algorithms. The PDP can

increase the priority of the process involved and can also reduce the number of

requests coming into the server. This provides a closed loop solution. The PDP is

located on the same server as the PEP. As previously mentioned, the PDP makes the

decision about what to do with particular flows, based on console input or other

input. The PDP then instructs the PEPs about what level of QoS to give specific

traffic.

In FIGURE 1 configuration C, shows a deployment where the QoS function is no

longer implemented on a dedicated server, but located on the server labelled Server

Load. This approach describes an architecture where the PDP and policy

management tool (PMT) can be shifted from a dedicated separate box, to the servers

themselves (in this case, the Server Load). This would normally represent a web

server. This solution may make sense for enterprise customers who do not want to

4 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

add new hardware into existing data center deployments and who want to make

better use of current resources that are not fully utilized. The PEP in this case, is

implemented in the network protocol stack.

FIGURE 1 Performance Tests Configurations

Server
load

Client
load

Configuration A Baseline - No QoS, no policies

Server
load

Client
load

Configuration B QoS and policies - Hardware and software solution

Sun MC
software

agent

Sun MC
software

agent

Sun MC software server

PDP

Solaris BM 1.6 software

PEP

Sun MC software server

PDP

Solaris BM 1.6 software

PEP

Server
load

Client
load

Configuration C QoS and policies - Software only solution

QoS Deployment Scenarios 5

Configuration A—Baseline Results with No QoS

FIGURE 2 shows the results of the client average bandwidths for the four classes;

bronze, silver, gold, and platinum. Platinum is referred to the best class of service

and bronze as the worst class of service. Gold and silver are the middle of line

service. Clearly all classes received poor results, ranging from .6 Mbits/sec to 0.1

Mbits/sec. Response times for the platinum class range from 38 seconds to 155

seconds. The bronze class response times range from 64 seconds to 115 seconds.

FIGURE 2 also shows the average load on the client, server, and QoS Solaris BM 1.6

software server. The client and end server CPU utilization is maxed out, yet the

overall throughput is extremely low. The network is saturated. This clearly

demonstrates that in a oversubscribed network, all traffic degrades. If this were an

example of an e-commerce site, QoS would prove to be of extreme value at the time

when business peaks.

FIGURE 2 Client Side Measurements of Throughput

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25 30 35 40 45 50

No QoS - Bronze
No QoS - Silver
No QoS - Gold

No QoS - Platinum

M
bi

ts
/s

ec
.

Run

Platinum

Gold
Silver

Bronze

Baseline - No QoS

6 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

Configuration B—QoS Policy on Dedicated Server

TCP Traffic

FIGURE 3 shows the device specific configuration file used to configure the PEP,

which was implemented by Solaris BM 1.6 software. Various filters and classes are

defined.

QoS Deployment Scenarios 7

FIGURE 3 Solaris Bandwidth Manager 1.6 Software Configuration File

Configuration file generated on angeli at 17:03:49 2/27/01#

version 1.5
timeout 30

filter clientplatfilterout
 remote
 type subnet
 address 14.0.0.0
 mask 255.0.0.0

filter clientgoldfilterout
 remote
 type subnet
 address 16.0.0.0
 mask 255.0.0.0

filter clientsilfilterout
 remote
 type subnet
 address 18.0.0.0
 mask 255.0.0.0

filter clientbrzefilterout
 remote
 type subnet
 address 20.0.0.0
 mask 255.0.0.0

filter clientplatfilerin
 local
 type subnet
 address 20.0.0.0
 mask 255.0.0.0

filter clientgoldfilterin
 local
 type subnet
 address 18.0.0.0
 mask 255.0.0.0

filter clientsilfilterin
 local
 type subnet
 address 16.0.0.0
 mask 255.0.0.0

filter clientbrzfilterin
 local
 type subnet
 address 14.0.0.0
 mask 255.0.0.0

interface hme2_in
 rate 100000000
 activate enabled

class bronzeclass
 interface hme2_in
 parent root
 filter clientbrzfilterin
 bandwidth 10
 priority 1
 max_bandwidth 10
 flow_events bronzeflow

class silverclass
 interface hme2_in
 parent root
 filter clientsilfilterin
 bandwidth 15

 priority 1
 max_bandwidth 15
 flow_events silverflow

class goldclass
 interface hme2_in
 parent root
 filter clientgoldfilterin
 bandwidth 25
 priority 1
 max_bandwidth 25
 flow_events goldflow

class platclass
 interface hme2_in
 parent root
 filter clientplatfilerin
 bandwidth 50
 priority 1
 max_bandwidth 50
 flow_events platflow

interface hme2_out
 rate 100000000
 activate enabled

class brzclassout
 interface hme2_out
 parent root
 filter clientbrzefilterout
 bandwidth 10
 priority 1
 max_bandwidth 10
 flow_events brzclassout

class silverclassout
 interface hme2_out
 parent root
 filter clientsilfilterout
 bandwidth 15
 priority 1
 max_bandwidth 15
 flow_events silclassout

class goldclassout
 interface hme2_out
 parent root
 filter clientgoldfilterout
 bandwidth 25
 priority 1
 max_bandwidth 25
 flow_events goldout

class platclassout
 interface hme2_out
 parent root
 filter clientplatfilterout
 bandwidth 50
 priority 1
 max_bandwidth 50
 flow_events platflowout

QoS Settings allocating percentage
of overall available bandwidth to
the various classes of traffic

8 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

FIGURE 4 shows the measurements taken on the client side, clearly showing that the

four classes of traffic are first experiencing throughput ranging from 40 Mbits/sec to

5 Mbits/sec, much better than the results of no QoS.

FIGURE 4 Dedicated Server Case

As a cross check, FIGURE 5 and FIGURE 6 illustrate the measurements taken on the

policy server, showing the bandwidth proportions of all classes of traffic. The

measurements show that for the transmission control protocol (TCP) traffic, all

classes are in fact receiving the proportions of bandwidth of the specified

configuration. Clearly, there is a tremendous improvement in all classes except the

lowest bronze class whose response times have worsened to 352 seconds during

congestion. Platinum class on the other hand is consistently receiving 1.5 seconds

response times and an average bandwidth of 44 Mbits/sec. Gold class is also not

consistently receiving response times of 2.7 seconds with an average bandwidth of

24 Mbits/sec. Silver class is not consistently receiving 4.7 seconds response times

with an average bandwidth of 14.2 Mbits/sec. Bronze class is not as important, its

traffic is dramatically sacrificed for the others, starving out the lowest class queue,

disproportionately. As illustrated, the bandwidth manager proved effective in

allocating TCP traffic.

70

60

50

40

30

20

10

0

0 5 10 15 20 25 30 35 40 45

M
bi

ts
/s

ec
.

Run

Dedicated server - QoS - TCP

QoS dedicated server - TCP - Client throughput - Bronze
QoS dedicated server - TCP - Client throughput - Silver
QoS dedicated server - TCP - Client throughput - Gold

QoS dedicated server - TCP - Client throughput - Platinum

Platinum

Gold

Silver

Bronze

QoS Deployment Scenarios 9

FIGURE 5 TCP Traffic Flow Statistics of QoS and Policy on Dedicated Server

10 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

FIGURE 6 TCP Traffic Statistics of QoS and Policy on Dedicated Server

The load statistics in FIGURE 7 show that the client and server are under a full load,

and the policy server under approximately 2/3 capacity. The server is completely

overloaded, because the server feedback was not used. By including feedback and

restricting overall bandwidth, across all classes, it is not expected to dramatically

improve response times by all clients. Better allocation of overall resources is

achieved by keeping the server from reaching its saturation point.

QoS Deployment Scenarios 11

FIGURE 7 MPSTAT-CPU Performance Load Statistics

Two sets of tests were ran, the TCP traffic and the user datagram protocol (UDP)

traffic, using the dedicated server to enforce policies as shown in FIGURE 1,

configuration B. The results show the usefulness of the bandwidth manager product.

Premium customers are getting a larger share of the overall pipe. The TCP traffic is

flow-controlled and the client slows in sending data if the server advertises a small

receive window. This allows packets to be dropped or the ACK Packet returned after

various time-outs. An ACK Packet is a TCP packet that the receiver sends to the

sender acknowledging receipt of certain sequence of bytes of the stream. Using UDP

traffic allows the client to blindly pump data.

Application Server E-250 Load Statistics -
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 42 12 86 2107 106 5659 1723 203 1164 0 8458 10 90 0 0
 1 31 9 57 11808 11690 1354 350 157 1031 0 4540 4 96 0 0

 0 25 7 56 2170 104 5310 1804 210 1072 0 6613 8 92 0 0
 1 23 4 88 11928 11809 2050 349 456 979 0 3595 3 97 0 0

 0 15 5 18 1970 106 5921 1590 345 1291 0 6475 7 93 0 0
 1 6 2 41 11698 11598 1464 430 106 1025 0 3416 2 98 0 0

 0 11 5 51 2074 107 6002 1682 548 1227 0 6799 9 91 0 0
 1 10 3 16 11735 11624 1926 349 532 975 0 4011 3 97 0 0

 Client E-250 Load Statistics -
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 2918 0 459 2729 115 5989 2450 177 1429 0 3016 23 77 0 0
 1 1897 13 236 2763 2616 1728 555 145 1360 0 3818 16 84 0 0

 0 2914 4 446 2963 124 6478 2670 117 1408 0 3065 24 76 0 0
 1 2026 10 108 2700 2592 1238 374 163 1287 0 3692 13 87 0 0

 0 2834 2 464 3097 118 6831 2815 122 1499 0 2928 16 83 0 0
 1 1821 14 170 2922 2823 1217 369 141 1352 0 3405 12 88 0 0

 0 2857 1 502 3137 115 6944 2853 155 1497 0 3223 24 76 0 0
 1 1717 0 193 2727 2619 1236 357 133 1363 0 3497 18 82 0 0

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 41 294 125 3563 56 389 456 0 6184 39 4 0 57
 1 0 0 101 3352 3288 1940 59 383 7113 0 2390 21 10 0 69
 2 0 0 135 11974 11887 1266 48 151 6397 0 1277 9 35 0 55
 3 4 0 81 74 0 3655 60 587 342 0 6491 36 9 0 55

 0 0 0 94 397 129 4943 110 963 1121 0 6590 46 10 0 43
 1 0 0 151 4323 4200 3108 111 415 6874 0 2719 23 23 0 54
 2 0 0 209 11882 11785 1558 122 161 6512 0 674 4 13 0 83
 3 0 0 80 152 1 5133 106 1061 1059 0 6873 29 19 0 52

 0 1 0 50 263 130 3265 29 792 422 0 6099 30 8 0 62
 1 0 0 45 3474 3443 1523 38 267 7457 0 2424 20 14 0 66
 2 0 0 61 11671 11638 656 53 109 6736 0 685 5 20 0 75
 3 0 0 13 66 1 4662 57 633 296 0 9942 49 14 0 37

Policy Server Ultra 80 Load Statistics

g (y) y p y

12 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

Configuration B—QoS Policy on Dedicated Server

UDP Traffic

If you use the same architecture as shown in FIGURE 1, configuration C, but change

the traffic from TCP to UDP, some interesting results are revealed. FIGURE 8 and

FIGURE 9 graphically illustrate the measurements captured on the QoS policy server.

The results show a dramatic degradation in performance, for all classes. The

graphical results taken on the bandwidth manager server are consistent with the

class settings. As FIGURE 3 previously illustrated, the configuration file, out of a total

pipe of 100 Mbits/sec, platinum class is 50% of the pipe, gold is 25%, silver is 15%,

and bronze is 10%. Referring to FIGURE 8, you can see that platinum, in general, is

experiencing better bandwidth and response times than gold. In the same matter,

gold is better than silver, and silver is still better than bronze. You can clearly see

that it is much more difficult to implement QoS on UDP traffic than on TCP traffic.

The reason for this is that TCP traffic is flow-controlled. When packets are dropped,

the sender reduces the amount of traffic it injects into the network, thus reducing

congestion. In comparison, UDP traffic is not well-behaved. If packets are dropped,

the sender continues to interject the same amount of traffic, so the congestion on the

client side is not improved.

QoS Deployment Scenarios 13

FIGURE 8 QoS and Policy on Dedicated Server UDP Traffic Statistics

Platinum

Gold

Silver
Bronze

14 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

FIGURE 9 QoS and Policy on Dedicated Server UDP Traffic Flow Statistics

FIGURE 10 shows the performance measurements taken on the client side. By looking

at the client throughput, you can see that the UDP traffic can be controlled by QoS.

It is not controlled as well as the TCP traffic but much better than without using QoS

at all.

QoS Deployment Scenarios 15

FIGURE 10 Dedicated Server, QoS UDP Traffic

Configuration C—QoS Policy Software Only

Solution

FIGURE 11 shows the results of deploying the architecture that is illustrated in

FIGURE 1, where the PDP function is deployed on the server running the network

application. The results show that the CPU availability is required to process all the

packets, classify, queue, and schedule. This is all processed in the kernel mode. The

one issue realized after the experimental results are reviewed, is that the

configuration of the interfaces in creating classes made a big difference. The CPU

performance was much better when only one side of the network was filtered and

classified, either on the ingress or egress, but not both sides.

M
bi

ts
/s

ec
.

Run

Dedicated server - QoS - UDP

QoS dedicated server - UDP - Client throughput - Bronze
QoS dedicated server - UDP - Client throughput - Silver
QoS dedicated server - UDP - Client throughput - Gold

QoS dedicated server - UDP - Client throughput - Platinum

40

35

30

25

20

15

10

5

0
0 5 10 15 20 25 30

16 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

FIGURE 11 QoS and Policy Deployed on the Application Server—TCP Traffic Statistics

Experimental Setup

This section describes an experimental setup. The client and server hosts were

deployed on dual CPU Sun Enterprise 250TM servers and in-between the Sun

Enterprise 250 servers is a 4 CPU UltraTM 80 workstation running Solaris BM 1.6

software. The client side runs an equal number of New Test TCP—TCP Performance

Test Program (NTTCP) sessions per class. Care is taken to ensure a calibrated load

among the classes, in order to achieve correct results. Equal number of platinum,

gold, silver, and bronze NTTCP requests are generated from client to server.

As FIGURE 12 illustrates, the client and server are attached via an 100 Mbyte/sec FDX

Netgear switch. The client side continuously runs NTTCP in a loop, ensuring that

each class runs the same number of NTTCP requests, thus calibrating the load

equally across all the four classes of traffic (platinum, gold, silver, and bronze). Each

class is mapped directly to one logical interface, thus simplifying the filters and class

configurations on the Solaris BM 1.6 software.

Platinum

Gold

Silver

Bronze

Products 17

FIGURE 12 Example of an Experimental Setup

Products

There are several QoS Solutions available in the market place that can be applied to

different Network Segments and Systems. Network QoS capable switches, such as

those offered by Extreme Networks, Foundry, Cisco, and others provide multiple

services, switching, and routing along with QoS and QoS rules capability. These are

vendor-specific solutions that require significant knowledge of Network

Management and specific understanding of the switch vendor’s Command Line

Interface or Simple Network Management Protocol (SNMP) Management

Information Base (MIB) definition for QoS provisioning, but provides a better

solution in the long run. If however, a fast and simple solution is required, the

software based QoS solution can be a worthwhile alternative. If existing routers are

not QoS capable, upgrading routers in existing infrastructures requires a significant

investment of time and effort. Products that can be installed next to routers, such as

Allot and Packeteer, provide hardware solutions that provide QoS and limited policy

capabilities on a few devices. Load balancers simply make an estimate of the

response times of servers among a server farm but does not incorporate QoS in

concise manner.

Monitor and
keyboard for
3D graphics

Hub/switch
(100 mbps)

Management LAN

Sun MC
software

agent

Server (Ex500) Client (Ex500)

Solaris 8
Operating Environment

01/01

Solaris 8
Operating Environment

01/01

Solaris 8
Operating Environment

01/01

Ultra 80 workstation, Tx
Solaris bandwidth manager

policy server

nttcp nttcp

Sun MC
software

Solaris
BM 1.6

software

Sun MC
software

Policy
server

100 fdx
back

to back

100 fdx
back

to back

hme1:1
hme1:2
hme1:3
hme1:4

hme1:1 14.6.49.71
hme1:2 16.6.49.71
hme1:3 18.6.49.71
hme1:4 20.6.49.71

hme2:1
hme2:2
hme2:3
hme2:4

hme1:1 13.6.49.73
hme1:2 15.6.49.73
hme1:3 17.6.49.73
hme1:4 19.6.49.73

18 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

The main limitation of these products are that the server load is sometimes the

bottleneck, with the network being uncongested and impacting the effectiveness of

differentiated services. Solaris BM 1.6 software and the Sun MC 3.0 software solution

exposes a set of API’s where the server load can be monitored and dynamic

reconfiguration is possible on both the Server and Network Resource. Section ,

“Appendix A” provides some code skeletons that show how such a solution can be

implemented using Sun MC 3.0 software and the Solaris BM 1.6 software API’s.

Summary

The results showed that the Solaris BM 1.6 software performed well, providing users

true differentiated services. TCP traffic is much more predictable and controlled than

UDP traffic, but the Solaris BM 1.6 software still proved to do a fairly reasonable job

in segregating traffic classes proportionately. Deploying the PDP and PEP on a

dedicated server offered the best results. Deploying the PDP and PEP on the

application server, as a software-only solution, was the least intrusive solution.

However, sufficient CPU resources must be available for best results. Finally, an

architecture was proposed, with some code skeletons in Section , “Appendix A” that

offer an integrated QoS Policy Based System and Network Management System.

This is where the server is also monitored and reconfigured based on policies. This

solution is a closed loop feedback architecture that offers promising performance

results.

Author’s Bio

Deepak Kakadia is a Staff Engineer, Network Architect in the Enterprise Engineering Group,
at Sun Microsystems Inc. located in Menlo Park, California. Deepak has been with Sun for
seven years. He previously worked for various companies including Corona Networks as a
Principal Engineer; Network Management Systems, as a team leader for the QoS Policy
Based NMS subsystem; Digital Equipment Corp, where he worked on DEC OSF/1; Nortel
Networks (Bell Northern Research) in Ottawa as member of the technical staff. Deepak
received his B.Eng in Computer Systems, MSc Computer Science in addition to completing
Ph.D qualifying exams and course work. Deepak has filed 2 patents: 1) Event Correlation
and 2) QoS in the area of Network Management.

Appendix A 19

Appendix A

This appendix presents some code skeletons that show how you could possibly

implement a QoS solution with Sun MC 3.0 and Solaris Bandwidth Manager 1.6

software.

Pseudo Code

The following code boxes illustrate a pseudo code for a QoS solution.

/*
__

 QoSSBM : Quality Of Service Policy Based Network and Systems Management
 Policy Decision Point - PDP

 DESC: This Skeleton Prototype, polls for agent stats from the Sun Server
 which is running a Java Agent using the Sun MCI 3.0 API Libaries.
 The user is expected to enter a policy, which is composed of
 a Condition, the condition for this skeleton code, is that
 cpu utilization exceeds 90%. Once this condition evaluates to
 TRUE, this Policy Decision Point, creates a class object for
 each of the following classes:

 Platinum - 50%
 Gold - 25%
 Silver - 15%
 Bronze -10%

 and replaces this with lower bandwidth percentages. An alternative
 simply retrieves the QInterface object and lowers the entire
 interface bandwidth, thereby controlling the PEP’s input rate,
 thereby controlling the amount of traffic sent to the servers.

__
*/

continued

20 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

*/

import Java.util.*;
import Java.net.*;
import Java.lang.reflect.*;
import Java.io.*;
import com.sun.jaw.reference.query.*;
import com.sun.jaw.reference.client.adaptor.*;
import com.sun.jaw.reference.client.mo.*;
import com.sun.jaw.impl.adaptor.security.*;
import com.sun.jaw.impl.adaptor.http.*;

import Java.util.Vector;
import Java.io.PrintWriter;

import com.sun.jaw.reference.common.*;
import com.sun.ba.common.*;
import com.sun.ba.mo.*;
import com.sun.ba.events.*;
import com.sun.ba.config.*;

public class QoSSBM implements QConstants
{

 private static void usage() {
 System.err.println("Usage: Java QoSSBM [PEP]");
 }

 public void reconfigurePEP(QDynamicConfMO runningConf)

 throws InstanceAlreadyExistException, InstanceNotFoundException
 {

 try{
 ServerSocket PEPsock = new ServerSocket(3001);

 Loop: while (true) {

 Socket pepsocket=PEPsock.accept();

 BufferedReader pepin = new BufferedReader(new InputStreamReader(pep-
socket.getInputStream()));

 System.out.println("--------------------- data from agent -----------------
-");
System.out.println(pepin.readLine());

 if Agent cpu utilization data < threshold{
 continue Loop:
 }

 /*

continued

Appendix A 21

Create the new lower b/w classes that will replace existing classes definitions
 Note these class names must match the class definitions in
file:deepak.ba.conf-2.27.5pm
 */

 System.out.println("creating modified classes for PEP reconfigura-
tion...\n");
 try {

 /* Platinum Class reconfiguration */

 QIfName hmein = new QIfName("hme2_in");
 System.out.println("QIfName hmein = " + hmein);

 QClassName pn = new QClassName(hmein, "platclass");
 System.out.println("QClassName pn =" + pn);

 QClass platcl = runningConf.performGetClass(pn);
 System.out.println("QClass platcl="+platcl);

 platcl.setName("platclass");
 platcl.setBandwidth(40);
 platcl.setPriority((byte) 1);

System.out.println(" Downloading Reprovisioned Class information to
PEP");
 pn = runningConf.performModifyClass(pn,platcl);
 System.out.println(" Modified pn=" + pn);

 /* Gold Class reconfiguration */

 QClassName gn = new QClassName(hmein, "goldclass");

 QClass goldcl = new QClass();

22 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

PEP Agent Pseudo Code

This is the feedback of a server load to the Policy server via socket connection.

/*
__

 PEP: Policy Enforcement Point Server Agent

 DESC: This Java client code, runs on the server as an
 PEP agent. This agent continually sends feedback
 peformance data to the Policy Server, which then
 decides what action to take. This is a skeleton
 code, that still needs to have code written to
 open another socket that accepts reconfiguration
 commands from the PDP. Some of this code was borrowed
 from the Sun MC 3.0 examples.
 Reconfiguration of this pep is currently via rsh system calls.

 AUTHOR: Deepak Kakadia, Staff Engineer, Enterprise Services, Sun Microsystems

 DATE: March 2 2001

__

 */
import Java.net.*;
import Java.io.*;

import com.sun.symon.base.client.*;
import Java.util.Vector;

public class PEP extends SMRawDataResponseAdapter {

 Socket pdpsock = null;
 InputStream pdpin =null;
 PrintStream pdpout =null;

 public PEP(String server_name, int server_port,
 int agent_port, String user, String password) throws Exception
 {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +
 "470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println(" Connecting to local Sun MC 3.0 Agent....");
 SMLogin obj = new SMLogin();

 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated");

continued

Appendix A 23

 System.out.println(" connecting to pdp server - angeli ...");
 pdpsock = new Socket("angeli",3001);

pdpin = pdpsock.getInputStream(); /* future to process reconfiguration
commands from PDP */
 pdpout =new PrintStream(pdpsock.getOutputStream()); /* polling server
resource utilization data to PDP */

 SMRawDataRequest req = obj.getRawDataRequest();

 while(true) {

 String[] urlarr = new String[2];

 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable" +
 "/cpuUtilEntry/cpu_idle";

 urlarr[1] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable/" +
 "cpuUtilEntry/cpu_user";

 Vector urlvect = new Vector();
 urlvect.addElement(urlarr[0]);
 urlvect.addElement(urlarr[1]);

 req.getURLValue(urlvect, "2", this, this);

 System.out.println("sleeping...");
 Thread.sleep(2000);

 }

 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public void getURLResponse(SMRequestStatus status, Vector dat,
 Object identifier)
{
 int error = status.getReturnCode();
 if (error == SMErrorCode.SUCCESS) {
 if (dat.size() != 2)
 {
 System.out.println("Incorrect data returned. size =" +
 dat.size());
 }
 else {

 for (int i = 0; i < dat.size(); i++) {

continued

24 Enterprise Quality of Service (QoS) Part II: Enterprise Solution using SolarisTM Bandwidth Manager 1.6

Vector row = (Vector) dat.elementAt(i);
 pdpout.println(row.elementAt(0));
 for (int j = 0; j < row.size() ; j++)
 {
 if (i == 0) {

System.out.println("Sending Feedback to PDP -% CPU Idle
time for cpu(s): "
 + row.elementAt(j));
 pdpout.println(row.elementAt(j));
 } else{
 System.out.println("% CPU User time for cpu(s): "
 + row.elementAt(j));
 }
 }
 }
 }
 }
 else { // Failure
 // The various error codes as in SMErrorCode may be reported here
 System.out.println("Error code = " + error + " " +
 "Msg Text = " + status.getMessageText() +
 " " + "Exception = " + (status.getException()).getMessage());
 }
 }

 private static void usage()
 {
 System.out.println(
 "usage: Java PEP " +
 "server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);
 }
 else {
 try{
 new PEP (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);

 } catch(Exception e){
 e.printStackTrace();
 }
 }
 }
}

