
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

LDAP Triggers: A
Framework for Sun Java
System Directory Server

By Nicola Venditti, SunPS, Italy

Sun BluePrints™ OnLine—February 2004

Part No. 817-5231-10
Revision 1.0, 2/11/04
Edition: February 2004

Please
Recycle

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/
patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Fire, JumpStart, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the US and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les
autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Sun Fire, JumpStart, Java, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

LDAP Triggers: A Framework for
Sun Java System Directory Server

This article describes how to implement SQL-like triggers in a Sun Java™ System
Directory Server. The example scenario shows how to extend the server using the
Plug-in API. This article is primarily directed at expert developers and architects
who want to understand issues related to developing and deploying the Sun Java
System Directory Server extension, implemented with plug-ins and extended
operations.

This article contains the following topics:

■ “Background” on page 2

■ “Considering Purpose and Design” on page 3

■ “Extended Operations” on page 6

■ “Implementing a Solution” on page 11

■ “Testing the Code” on page 28

■ “Using LDAP Triggers in Production Environments” on page 36

■ “About the Author” on page 38

■ “Related Resources” on page 38

■ “Ordering Sun Documents” on page 39

■ “Accessing Sun Documentation Online” on page 39
1

Background
Employing triggers on database servers is useful when you need to define actions
based on user operations or events. Through triggers, you can enforce rules such as:
“when this table changes, do this,” “before my data is deleted, do this other action,”
“when the user logs in/or updates some special record,” and so on.

For example, the Customer Care System (which only knows of its own database,
most often an Oracle database) deletes a customer record in the database after the
customer unsubscribes from services or terminates a contract. Using triggers, you
can implement an application to remove any trace of customer data from the Sun
Java System Directory Servers. Generally speaking, through triggers you can reflect
modifications on a central database to other data repositories, which have a copy of
the data and must be kept in sync with main database. This is what the Sun Java
System Meta-Directory does to keep track of changes in an ORACLE database; to
capture changes on the Sun Java System Directory Server, however, Sun Java System
Meta-Directory uses a different mechanism called changelog.

Unfortunately, LDAP lacks a standard mechanism to tell the LDAP server to trigger
an action based on a user’s operation. Sun Java System Directory Server 5.x has
features that allow you to trigger an action using pre- and post-operation plug-ins.
However, the server simply calls your plug-in function when a data operation of the
kind you registered your plug-in for either happens or is going to happen. The rest
is your implementation.

The code example presented in this article not only uses pre- and post- operation
plug-ins, but takes it further by showing LDAP administrators how to create and
manipulate triggers in a SQL style, using SQL-like instructions. To implement this
last feature, you need the following, in addition to the pre- and post- plug-ins:

■ Language specification
■ Parser
■ Extended operation

The language specification is required at compilation time for the parser generator to
generate the parser itself. The parser is a module of generated C code that we embed
into the extended operation function. The extended operation is required to allow
users, through a client application, to submit their trigger commands to the Sun Java
System Directory Server.

The code example is based on the Sun Java System Directory Server 5.2 (the newest
release), and is based on UNIX® platforms. (The parser generator is available on
most UNIX platforms.)

For an example of plug-in development, refer to the Sun BluePrints™ OnLine article
titled “Writing an Authentication Plug-in for a Sun ONE Directory Server.”
2 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Considering Purpose and Design
Our purpose is to design a framework for triggers in the Sun Java System Directory
Server using its Plug-in API as a foundation. We might call them LDAP triggers.
With triggers, we mean an abstraction that allows us to define an action that must be
invoked when an event occurs. The action might be simply recording an entry in a
change log, sending a notification to an administrator, or changing an attribute of
another logically associated entry. Computer scientists like to remark that by means
of triggers, a data repository is turned into an active database; that is, the
repository's state transactions are not only a consequence of external actions, but
also the result of internal events.

Overall a framework for triggers does the following:

■ Supports an administrator's manipulation of triggers (creation, deletion,
inactivation, and so on.)

■ Supports predefined actions (for example IGNORE, skip the LDAP operation, LOG
to log the action, and so on)

■ Supports custom actions (for example, the ability to execute user functions loaded
from external libraries)

■ Allows user interaction based on a SQL-like language

In our example, triggers are administrator's objects (replication agreements are an
example of administrator’s objects), and they cannot be instantiated by non-
privileged users. To enable this feature, a non-trivial effort is required to manage
permissions and rights.

To design a trigger framework, initially consider the following requirements:

1. The administrator, through a client console or command line application, can
manipulate triggers through simple commands (create, delete, enable, and so on).

2. The framework asks predefined actions that an administrator can choose from
when creating triggers.
Considering Purpose and Design 3

3. The framework asks for custom actions, possibly implemented by externally, user-
provided libraries.

4. A language for the trigger manipulation, that is, a collection of trigger
instructions (such as CREATE TRIGGER, DELETE TRIGGER, and so on) that
simplify user interaction with trigger objects.

After we are certain that we know what the customer wants, we ask: “Do we have
the right tool or technologies to realize this framework in Sun Java System Directory
Server?” and “Is the solution feasible?”

A UNIX expert would easily figure out which tool is needed to create a small
language in C: YACC. It allows you to specify a grammar for your language, that,
with a lexical analyzer specification provided by you, greatly simplifies the task of
writing a compiler. In fact, the YACC task is to generate a compiler for you; it is the
kind of tool often referred to as the compiler of compilers.

We have the parser that parses the trigger instructions, but we need a client
command-line-based application to accept administrator commands to be parsed. At
first we might be tempted to embed the parser in the client application, but this
approach is not a good solution. Instead, it’s better to run the parsed commands
directly in the server, embedding them into a plug-in. This approach permits third
parties to write their own client applications. The database server follows a similar
architectural solution: third parties embed the SQL parser component in the server
itself, and allow client applications, written in different languages and for various
platforms, to send plain SQL text.

How do you send the commands the administrator enters in the client application to
the LDAP server? Let’s put it into context with an extended operation. We could
pass the trigger statements to the server-side parser through an extended operation
invocation, with the invocation argument being the trigger commands.

In our design, the parser is responsible only for parsing the instructions it turns into
statements, like CREATE TRIGGER, in a data structure for an internal LDAP
operation. That is, if an administrator issues a command such as DELETE TRIGGER
mytrigger, we program the parser to produce a data structure, for example,
ParserOutput, which is passed down to a routine that performs the actual data
operation.

Intuitively, in a directory server we could record the triggers as LDAP entries.
Standard schema, however, does not have an object class suitable for our objects
(triggers), therefore we need to extend it.
4 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

The object class definition chosen for triggers as it might appear in the
99user.ldif user schema file is as follows:

The information we choose to store about triggers is as follows:

Triggers are stored flatly under a specific branch, ou=triggers,o=sunblueprints
in the previous code example.

Of course when a data event occurs, for example, deleting an entry, nothing happens
unless we override the default LDAP operation. That's why we need a pre-operation
(before triggers) and post-operation (after triggers) plug-in, which is merged in a
single plug-in. We address this in the next section. The pre- and post-operation plug-
in is the most important component of the framework, because it is where the trigger
runs.

objectClasses: (trigger-oid NAME 'trigger' SUP top STRUCTURAL
MUST (cn $ enabled)

MAY (action $ actiondn $ before $ explain $ externallib $ on)
X-ORIGIN 'user defined')

TABLE 1 Storing Trigger Information

Item Description

cn Its name, as typed by the user

enabled Flag that indicates if the trigger is active

operation The trigger run on this LDAP operation (ADD, DELETE, etc.)

on The DN of the entry for which the trigger is registered

action Action code that specifies which action to perform

actiondn For some actions, it indicates on which DN the action must be
performed

before 1 if this is before a trigger; 0 is it is after a trigger

externallib When the action is external, this attribute contains the name of the
library to load

explain As the name suggests, it stores the instruction that created this
trigger (it is retrievable by using the explain trigger
<trgname> command
Considering Purpose and Design 5

Now we have all the pieces to start building a solution. First, let’s summarize how
the various components functionally cooperate and concur to serve user requests.
The logical flow is as follows:

■ The administrator enters trigger statements at the client application prompt.

■ The client application issues an extended operation call, passing as argument the
trigger statements verbatim.

■ On the server side, the extended operation routine invokes the parser to parse the
user commands, which turns them into trigger data structures and executes all
the trigger operations.

■ The client application receives a response and reports it to the user.

■ When an event occurs (an LDAP operation is issued by a user), the pre- and post-
operation plug-in searches for triggers registered with the DN of the entry being
affected by the data event. If found, it applies the actions associated with the
triggers.

In this article, we implement the framework in our code example to provide an
advanced example of implementing and using extended operations and directory
plug-ins.

Extended Operations
Extended operations are extension mechanisms defined by the LDAP standards
(refer to RFC 2251). They were defined to implement new operations, beyond the
standard ones (ABANDON, SEARCH, MODIFY, MODRDN, DELETE, BIND, UNBIND).

To write your extended operations, use the Sun Java System Directory Server Plug-In
API. Developers who are familiar with the Plug-In API typically find it easy to learn
how to implement extended operations, because they are just special plug-ins. All
the code, makefiles, and utilities you built to simplify your work will probably be
reusable.

The only relevant difference with these plug-ins compared to pre- and post- plug-ins
is that extended operations are explicitly and directly invoked by clients, while pre-
and post- plug-ins act in the middle of LDAP operations. Consequently, the client
must have a mechanism to invoke extended operations. The client C SDK or Java
SDK, now part of the Sun Java System Directory Server Resource Kit, includes the
library calls that allow you to invoke extended operations. Also, there are basic
examples that show you the minimum amount of code to write to make a call and
get a response.
6 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Clients can discover which extended operations are available on a LDAP Server, by
querying the Directory Specific Entry (DSE). Here is the search that retrieves the list
of extended operations available on Sun Java System Directory Server, on which we
installed the extended operation example:

The extension “4.3.2.1” is our implementation. You might have noticed how its
number has a different pattern when compared with the others listed in the output.
In fact it is a number invented for the purpose of our example; instead, it should be
unique and officially registered, to avoid conflict with other registered services.

On the client side, the job is fairly easy, because you only need to invoke a library
call with all its requested parameters, then either process the resulting data or
manage an exception, in case of unexpected error. The difficult job is on the server
side, in the extended operation routine itself, which you have to write. To implement
an extended operation, you need to do the following:

■ Write a C function, using the Plug-In API

■ Register the function in the server (through a standard mechanism)

■ Handle the call when it is invoked by clients

To register your extended operation at runtime, write an initialization routine that
gets called by the server at startup, giving you the opportunity to register and set up
the data structure for your operations.

CODE EXAMPLE 1 Search for List of Extended Operations

<nico ldap-triggers>~$ ldapsearch -p 10389 -D "cd=Directory
Manager" -w manager0 -s base -b "" "objectclass=*"
supportedExtension

supportedExtension: 2.16.840.1.113730.3.5.7
supportedExtension: 2.16.840.1.113730.3.5.8
[...cut...]
supportedExtension: 1.3.6.1.4.1.42.2.27.9.6.22
supportedExtension: 4.3.2.1
supportedExtension: 1.3.6.1.4.1.4203.1.11.3
Extended Operations 7

The following code example illustrates the initialization routine in
triggers_extop.c, one of the source files in our example.

CODE EXAMPLE 2 Initialization Routine in triggers_extop.c

#include <stdio.h> /* Standard C headers */
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <slapi-plugin.h> /* SunONE DS Plugin-API 5.2 */
#include "slapi_utils.h" /* Our logging utilities,
log_info_conn, log_error ... */
#include "triggers_impl.h" /* Triggers data structures */
#include "triggers_extop.h"

char *trgbase;
...

int triggers_extop_init(Slapi_PBlock * pb)
{
...

 trgbase = slapi_ch_strdup(argv[0]);

/* Extended operation plug-ins may handle a range of OIDs. */
oid_list = (char **)slapi_ch_malloc((argc) * sizeof(char *));

 for (i = 1; i < argc; ++i) {
 oid_list[i] = slapi_ch_strdup(argv[i]);
 log_info_conn(pb,
 "triggers_extop_init",
 "Argv[%i]= %s.",
 oid_list[i]
);
 }
 oid_list[argc - 1] = NULL;

rc |= slapi_pblock_set(/* Extended op. handler */
 pb,
 SLAPI_PLUGIN_EXT_OP_FN,
 (void *) trg_service_fn
);

rc |= slapi_pblock_set(/* List of OIDs handled */
 pb,
 SLAPI_PLUGIN_EXT_OP_OIDLIST,
 oid_list
);
8 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Note – To save space in this article, we omit irrelevant code such as the code for log
and error management.

The routines log_info, log_error, log_warning, and so on in slapi_utils.c
source are shorter forms of the widely used slapi_log_info_ex,
slapi_log_warning_ex, and slapi_log_error_ex functions of the Plug-In
API. If you use the official log routines, they have a much longer parameter list and
you need an extra call to retrieve some of them. With slapi_utils.c functions,
you write less lines and the code is a bit more readable.

The initialization code is divided into two parts:

■ Get information: plug-in identity and arguments

■ Set information: version, extended operation routine address, and list of Object
IDentifiers (OIDs) handled by the routine

The code is similar to the code example in testextendedop.c, located in the plug-
in directory of any Sun Java System Directory Server installation. The one notable
difference is that this plug-in requests a plug-in ID, which is necessary if you need to
invoke internal server operations (internal operations are LDAP operations not
initiated by user requests). This plug-in code uses server internal operations,
therefore a plug-in ID is mandatory.

The function trg_service_fn is our extended operation routine. The signature is
simple because the server passes all the information through a SLAPI parameter
block (which is the only routine argument), and you use slapi_pblock_get to
obtain from it the data you need and expect. The plug-in requires an argument list
where the first element is the base DN for its operations (for example,
ou=triggers,o=sunblueprints), and the rest are OIDs of extended operations
implemented in plug-ins. We implement only one extended operation, even though
the code supposes many.

...
}

CODE EXAMPLE 2 Initialization Routine in triggers_extop.c (Continued)

#include <stdio.h> /* Standard C headers */
Extended Operations 9

To register your extended operation plug-in, you need an LDAP Data Interchange
Format (LDIF) file, which defines an add operation under cn=plugins,
cn=config. If you prefer, perform the add directly from the command line, without
storing instructions in a LDIF file. The content of the LDIF file is as follows:

Among other things, we define plug-in name, plug-in ID, where the library
containing the functions is on the file system, what is the initialization function, and
what is the plug-in type. The last two attributes make the plug-in argument list. As
mentioned previously, OID 4.3.2.1 is a unique unregistered OID for our extended
operation. If you want to change the argument list later, after the plug-in
deployment, you can use the Administrator's Console using the “Configuration” tab.
Refer to the Administrator's Console documentation.

Before illustrating what our extended operation routine does, we want to focus on
the purpose and design of our code example.

CODE EXAMPLE 3 LDIF File Contents

dn: cn=Triggers ExtendedOp,cn=plugins,cn=config
changetype: add
cn: TriggersExtendedOp
objectclass: top
objectclass: nsSlapdPlugin
objectclass: extensibleObject
nsslapd-pluginpath: <server_root>/lib/triggers_extop.so.1.0
nsslapd-pluginInitfunc: triggers_extop_init
nsslapd-pluginType: extendedop
nsslapd-plugin-depends-on-type: database
nsslapd-pluginEnabled: on
nsslapd-pluginId: triggers_extop
nsslapd-pluginVersion: 1.0
nsslapd-pluginVendor: Sun Microsystems Italy
nsslapd-pluginDescription: Sun Blueprints Triggers Extended
Operation Plugin
nsslapd-pluginArg0: ou=triggers,o=SunBlueprints
nsslapd-pluginArg1: 4.3.2.1
10 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Implementing a Solution
After determining the purpose and considering design issues, implement your
solution. As mentioned earlier, the main components of a solution are as follows:

■ Client application
■ Parser
■ Extended operation
■ Pre- and post-operation plug-ins

For our example, we write the client application in Java, using the Java™ Netscape
API for the Sun Java System Directory Server. The following is a code excerpt for our
client example:

CODE EXAMPLE 4 Client Application Sample

...
try
{

ld = new LDAPConnection();
// some basic setup and info
miscellaneus(ld);

// connect to the server
System.out.println("Connecting to \'" + host + ":" + port

+"\'");
ld.connect(host, port);

// binds as with admin credentials
// Remember to specify LDAPv3,
// otherwise you will not be able
// to use extended operatins
System.out.println("Binding as \'" + binddn +"\'");
ld.bind(3, binddn, bindpw);

// in loop for user input
String data = getUserInput();
byte[] databytes = data.getBytes("UTF8");

// prepare the extended operation object
LDAPExtendedOperation extop = new

LDAPExtendedOperation(extopOID, databytes);

// invoke the server extended operation
Implementing a Solution 11

When started, the program shows the TRIGGERS>> prompt and waits for your
statements. To execute the program, use the makefile run target, which sets up the
classpath for you and runs the main Java class:

Note – The application manages triggers in Sun Java System Directory Server using
the account cn=Trigger Manager. Create this in the server, and grant it all
permissions for the ou=triggers, o=sunblueprints branch.

System.out.println("Calling extended operation " +
extopOID);

LDAPExtendedOperation extres =
ld.extendedOperation(extop);

// get results
String id = extres.getID();
String response = new String(extres.getValue(), "UTF8");

System.out.println("Returned OID: " + id);
System.out.println("Returned Data: " + response);

// disconnect
ld.disconnect();

}
...

CODE EXAMPLE 5 Executing the Program

<nico client>~$ make run
/usr/java/bin/java -cp /opt/sunone/ldapjdk41/packages/
ldapjdk.jar:$CLASSPATH TriggersClient

Proprietary protocol: 3.0
LDAP SDK: 4.1
Logging LDAP activity on file +error.log
Connecting to 'localhost:10389'
Binding as "cd=Trigger Manager"
Triggers Client
Insert your commands, a line with '.' terminates input

triggers>>

CODE EXAMPLE 4 Client Application Sample (Continued)
12 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

To terminate a command list, type a line with just a “.”, as shown in the following
example:

The example shows a special feature of our language: the ! escape feature. Issuing a
command escape by using a ! results in the execution of a UNIX command on the
server. In this case, you would see the host database of the LDAP server machine on
your client terminal.

After the “.”, the program runs the extended operation, turns the resulted data into
UTF8 representation, and displays it to the user on the terminal.

The UNIX command is just one possibility of our language. The grammar of the
trigger language is partially shown in the following example:

CODE EXAMPLE 6 Terminating a Command List

...
TRIGGERS>> create or replace trigger BeHappyWithSunBlueprints on
'o=sunblueprints' before ldap_add action ignore;
disable trigger myspecialtrg;
! cat /etc/hosts \;
.
...

CODE EXAMPLE 7 Trigger Language Grammar

cmdlist:
cmd ’;’
|
cmdlist cmd ’;’
;

cmd:
trgcmd
|
cntlcmd
|
unixcmd
;

trgcmd:
CREATE OR REPLACE TRIGGER STRING ON what BEFORE operation

ACTION action
{

CURRENT_STATEMENT.cmdcode = TRIGGER_CREATE;
strcpy(CURRENT_STATEMENT.name, $5);
strcpy(CURRENT_STATEMENT.what, $7);
Implementing a Solution 13

strcpy(CURRENT_STATEMENT.operation, $9);
CURRENT_STATEMENT.before = 1;
sprintf($$, "%s %s %s %s %s %s %s %s %s %s",
$1, $2, $3, $4, $5, $6, $7, $9, $10, $11);

}
|
CREATE OR REPLACE TRIGGER STRING ON what AFTER operation ACTION

action
{

CURRENT_STATEMENT.cmdcode = TRIGGER_CREATE;
strcpy(CURRENT_STATEMENT.name, $5);
strcpy(CURRENT_STATEMENT.what, $7);
strcpy(CURRENT_STATEMENT.operation, $9);
CURRENT_STATEMENT.before = 0;
sprintf($$, "%s %s %s %s %s %s %s %s %s %s",
$1, $2, $3, $4, $5, $6, $7, $9, $10, $11);

}
|
ENABLE TRIGGER STRING
|
DISABLE TRIGGER STRING
|
DELETE TRIGGER STRING
|
LIST ALL TRIGGERS
|
EXPLAIN TRIGGER STRING
;

what:
’”’ QSTRING ’”’
|
ANY ENTRY
;

operation:
LDAP_ADD
|
LDAP_DELETE
|
LDAP_MODIFY
|
LDAP_MODRDN
|

CODE EXAMPLE 7 Trigger Language Grammar (Continued)
14 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

LDAP_BIND
|
LDAP_UNBIND
|
LDAP_ABANDON
;

action:
DELETE ’”’ QSTRING ’”’
|
DELETE ’”’ QSTRING ’”’ ON ERROR CONTINUE
|
LOG
|
IGNORE
|
EXECUTE EXTERNAL LIB STRING
|
EXECUTE EXTERNAL LIB STRING ON ERROR CONTINUE
;

cntlcmd:
SET STRING ’=’ STRING
|
SET STRING ’=’ NUMERIC
|
GET STRING
;

unixcmd:
’!’ STRING
|
’!’ STRING cmdargs
;

cmdargs:
STRING
|
cmdargs STRING
;

%%

CODE EXAMPLE 7 Trigger Language Grammar (Continued)
Implementing a Solution 15

Note – For clarity, the grammar in this code example does not show all actions.

Our language is a list of statements separated by semicolons “;”. Then, each
command can be one of the following:

■ A standard trigger command (for example, CREATE OR REPLACE TRIGGER)

■ A control command (for example, to set the environment with SET var=name)

■ A UNIX command (a command with “!” escape symbol)

The rest of the grammar defines commands and other syntactical components. If you
are interested in complete details, the grammar is in the triggers.y file.

The LEXer specification file tells LEX how to extract tokens from the source text; the
specification file is triggers.l.

Note – Unfortunately YACC and LEX are not designed for a concurrent
environment.

Another limitation is that LEX expects its input to come from yyin global variable,
which is a FILE * object; however, our input is a string passed by the client
application, and we are forced to create a temporary file, write in the text, and assign
the handler to the yyin global variable. A way to work around this is to define your
own input() routine, which LEX uses in place of its default. However, this
extension mechanism greatly depends on the version of LEX. If you want to remove
any nonre-entrant problem from your code, use one of the latest versions of LEX,
which have been redesigned.

Note – The code in {} parenthesis represents the C code that we want the parser to
execute after a command or statement is read.

The extended operation is responsible for the following tasks:

■ Retrieving its argument

■ Passing it to the parser

■ Getting the parser output

■ Calling a coded function for any of the parsed statements
16 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

The following code shows how trg_service_fn, the extended operation routine,
works:

CODE EXAMPLE 8 How trg_service_fn Works

int trg_service_fn(Slapi_PBlock *pb)
{

char * oid = NULL; /*
Client request OID */
 struct berval * client_bval = NULL; /* Value from client
*/
 char * result = NULL; /* Result to send to client
*/
 struct berval * result_bval = NULL;/* Encoded result
*/
 int rc = 0;
 int i;
 int len;
 ParsedStatements stmts;/* Result of the parsing */
 char msgbuf[MAX_MSGBUF];

 /* log */
 log_info_conn(pb,

"trg_service_fn",
"Entering pb=%p", pb);

 /* Get the OID and the value included in the request.
 * The client_bval will contain the sequence of statements
 * submitted by the client
 */
 log_info_conn(pb,

"trg_service_fn",
"Getting ext opt request data...");

 rc |= slapi_pblock_get(pb, SLAPI_EXT_OP_REQ_OID, &oid);
 rc |= slapi_pblock_get(pb, SLAPI_EXT_OP_REQ_VALUE,
&client_bval);
 if (rc != 0)
 {
 snprintf(msgbuf,

MAX_MSGBUF,
"Unable to get client OID/Value data: %d",
rc);

 goto TRIGGERS_ERROR;
 }

log_info_conn(
Implementing a Solution 17

 pb,
 "trg_service_fn",
 "Request with OID: %s Value from client: %s\n",
 oid, client_bval->bv_val);

/* Parsing the client statements
 * We invoke a separate routine to parse the client
 * statements.
 * The statements are stored in the stms structure */
stmts.statements = 0;
rc = trg_parse_client_req(pb, client_bval, &stmts);
if(rc != OK)
{

 snprintf(msgbuf,
MAX_MSGBUF,
"trg_parse_client_req failed(%d)",
rc);
 goto TRIGGERS_ERROR;
}

/* Is at this point, parsing was successful.
 * Now we invoke the routine that creates triggers
 * as LDAP objects
 */
rc = trg_apply_statements(pb, &stmts, &result_bval);
if(rc != OK)
{

 snprintf(msgbuf,
MAX_MSGBUF,
"trg_apply_statements failed(%d)",
rc);
 goto TRIGGERS_ERROR;
}

/* Calculate the amount of text data
 * to be returned to the client */
for(i = 0, len = 0; i < stmts.statements; ++i)
{
len += sprintf(msgbuf, "Statement #%d\n", i) - 1;

len += strlen("Error code: ");
len += sprintf(msgbuf, "%d\n", i) - 1;

len += strlen("Error msg: ");

CODE EXAMPLE 8 How trg_service_fn Works (Continued)
18 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

len += strlen(stmts.opres[i].errmsg);
len += 1; /* \n */

len += strlen(stmts.opres[i].out);
len += 1; /* \n */
len += 1; /* \n */
}

 /*
* Set the value to return to the client, depending on what your
* plug-in function does. Here, we return the value sent by the
* client, prefixed with the string "Value from client: ". */

 result = (char *)slapi_ch_malloc(len + 1);
for(i = 0, result[0] = '\0'; i < stmts.statements; ++i)
{
sprintf(msgbuf, "Statement #%d\n", i);
strcat(result, "Error code: ");

sprintf(msgbuf, "%d\n", i);
strcat(result, msgbuf);

strcat(result, "Error msg: ");
strcat(result, stmts.opres[i].errmsg);
strcat(result, "\n");

strcat(result, stmts.opres[i].out);
strcat(result, "\n");
}

 log_info_conn(pb,
"trg_service_fn",
"Client statements executed");

 result_bval = (struct berval *)slapi_ch_malloc(
sizeof(struct berval));

 result_bval->bv_val = result;
 result_bval->bv_len = strlen(result_bval->bv_val) + 1;

/* Prepare the PBlock to return and OID and value to the client.
* Here, we demonstrate that the plug-in may return a different
* OID than the one sent by the client. You may, for example,

* use the different OID to indicate something to the client. */
rc |= slapi_pblock_set(pb, SLAPI_EXT_OP_RET_OID, "4.3.2.1");

CODE EXAMPLE 8 How trg_service_fn Works (Continued)
Implementing a Solution 19

 rc = slapi_pblock_set(pb, SLAPI_EXT_OP_RET_VALUE,
result_bval);
 if (rc != 0)
 {
 snprintf(msgbuf,

MAX_MSGBUF,
"Unable to set extended operation result value: %p",
result_bval);

 goto TRIGGERS_ERROR;
 }

 /* Log data sent to the client */
 log_info_conn(
 pb,
 "trg_service_fn",
 "OID sent to client: %s \nValue sent to client:\n%s",
 "", result);

 /* Send the result back to the client */
 slapi_send_ldap_result(
 pb,
 LDAP_SUCCESS,
 NULL,
 result,
 0,
 NULL);

 /* Rree memory allocated for return berval */
 if(result) slapi_ch_free_string(&result);
 if(result_bval) slapi_ch_free((void **)&result_bval);

goto TRIGGERS_OK;

TRIGGERS_ERROR:

log_error_conn(pb,
0,
"trg_service_fn",
"Routing failed ",
msgbuf);

/* Sends back an error-result */
slapi_send_ldap_result(
pb,
LDAP_OPERATIONS_ERROR,
NULL,

CODE EXAMPLE 8 How trg_service_fn Works (Continued)
20 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

This example is a lot of code, however, apart from the logging and error
management code, the logical flow is the following:

■ Take the extended operation value – This value contains the user statements, as
typed on the client side).

■ Prepare and invoke the parser through the trg_parse_client_req routine –
This routine parses the user commands, and for any command found, fills a
structure in the ParsedStatements array passed from trg_service_fn.

■ Call the routine trg_apply_statements to apply statements – We have the
binary representation of the user commands in a ParsedStatements structure,
then invoke the routine trg_apply_statements to update the directory.

■ Prepare the result data for the client – The data has the form of sequential file
with records of the following form:

msgbuf,
0,
NULL);

 /* Free memory allocated for return berval */
 if(result) slapi_ch_free_string(&result);
 if(result_bval) slapi_ch_free((void **)&result_bval);

 /* Tell the server that the operation completed */
 return (SLAPI_PLUGIN_EXTENDED_SENT_RESULT);

TRIGGERS_OK:

 /* Tell the server we've sent the result */
 return (SLAPI_PLUGIN_EXTENDED_SENT_RESULT); /* ok! */
}

CODE EXAMPLE 9 Sequential File Records Sample

Statement: 1
Error code: 0
Error msg: “OK!”
<some output>

Statement: 2
Error code: 1
Error message: Trigger already exists
<some output>
...

CODE EXAMPLE 8 How trg_service_fn Works (Continued)
Implementing a Solution 21

■ Send the results back to the client.

■ Free resources.

Notice how we reply back to the client that invoked the extended operation. This
reply is in fact a three-part operation:

1. Set the PBlock using the SLAPI_EXT_OP_RET_OID and
SLAPI_EXT_OP_RET_VALUE (we could return an extend operation OID different
from the client.)

2. Invoke the usual slapi_send_ldap_result(), which sends the result to the
client.

3. Tell the server that we are done, returning
SLAPI_PLUGIN_EXTENDED_SENT_RESULT.

The first routine invoked is trg_parse_client_req and contains the code that
instantiates and runs the parser through the yyparse() routine, which is generated
by YACC as part of the project's building.

The code is a bit tricky because of the nonre-entrant code generated by YACC: we
are forced to use a lock (mutex) and generate a temporary file. The file pointer is
then passed via the global variable yyin. The goal of trg_parse_client_req is
to either fill a ParsedStatements structure with statements sent by the client or to
return an appropriate error if the parser fails. For production, consider embedding a
re-entrant parser in your extended operation plug-in; this approach is more suitable
for a concurrent environment.

The other helper function is the trg_apply_statements routine. By itself,
trg_apply_statements does not contain much logic, it simply runs a list of
statement structures and switches on the value of the operation code associated with
the statement. Based on this code, a routine is called to do the last job, which is
recording the trigger in LDAP.

The following shows an example of trg_execute_create, which creates a trigger
in the server:

CODE EXAMPLE 10 Creating a Trigger in the Server

static int trg_execute_create(Slapi_PBlock *pb, int index,
ParsedStatements *stmts)
{

int rc;
...

char *base = "ou=triggers,o=sunblueprints";
char msgbuf[MAX_MSGBUF];
Slapi_DN *sdn = NULL;
22 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Slapi_Entry *entry = NULL;
Slapi_PBlock *pbop = NULL;
char *entrydn = NULL;
char *entryldif = NULL;
int len;

if(!stmts || index < 0)
return ERR;

name = stmts->output[index].name;
on = stmts->output[index].what;
before = stmts->output[index].before;
action = stmts->output[index].action;
action_dn = stmts->output[index].action_dn;
external_lib = stmts->output[index].external_lib;

if(!name || !on)return ERR;

/* Make a SDN of the string dn */
sdn = slapi_sdn_new_dn_byval(base);
if(sdn == NULL)
{
snprintf(msgbuf,

MAX_MSGBUF,
"Unable to create a SDN from the string %s",
base);

goto CREATE_ERR;
}

...
/* prepare the entry to be added
 * using data provided by user */
entrydn = slapi_ch_malloc(

+ strlen("cn=")
+ strlen(name)
+ 1
+ strlen(base)
+ 1);

sprintf(entrydn, "cn=%s,%s", name, base);
entry = slapi_entry_alloc();
slapi_entry_set_dn(entry, strdup(entrydn));

/* Set entry attributes. Note that slapi_entry_add_string
 * does not consumes the string passed as parameter,

CODE EXAMPLE 10 Creating a Trigger in the Server (Continued)

static int trg_execute_create(Slapi_PBlock *pb, int index,
ParsedStatements *stmts)
Implementing a Solution 23

 * hence we do not need a slapi_ch_strdup call */
slapi_entry_add_string(entry, "objectclass", "trigger");
slapi_entry_add_string(entry, "cn", name);
slapi_entry_add_string(entry, "on", on);
slapi_entry_add_string(entry, "before", before ? "1" : "0");
slapi_entry_add_string(entry, "enabled", "true");

snprintf(msgbuf, MAX_MSGBUF, "%d", action);
slapi_entry_add_string(entry, "action", msgbuf);
slapi_entry_add_string(entry, "actiondn", action_dn);

/* Preparing PBlock for internal add
 * The plugin_id parameter was obtained
 * int the _init function */
pbop = slapi_pblock_new();
slapi_add_entry_internal_set_pb(
pbop,
entry,
NULL,
plugin_id,
SLAPI_OP_FLAG_NEVER_CHAIN);

/* capture the entry's LDIF rapresentation
 * before the internal add, which consumes the entry */
entryldif = slapi_entry2str(entry, &len);

/* Perform the internal add: which consists
 * of calling slapi_add_internal_pb and getting
 * the operation result from the slapi_pblock_get */
log_info_conn(
pb,
"trg_execute_create",
"Adding the entry ...");
rc = slapi_add_internal_pb(pbop);
slapi_pblock_get(pbop, SLAPI_PLUGIN_INTOP_RESULT, &rc);
if(rc)
{
snprintf(msgbuf,

MAX_MSGBUF,
"slapi_pblock_get reported an error(%d) for the previous

internal op",
rc);

goto CREATE_ERR;
}

CODE EXAMPLE 10 Creating a Trigger in the Server (Continued)

static int trg_execute_create(Slapi_PBlock *pb, int index,
ParsedStatements *stmts)
24 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

As we said previously, the trigger is executed before/after a standard LDAP
operation, and it is the responsibility of our pre- and post-operation plug-in to
understand whether a trigger must be activated for an operation on an LDAP entry.

To fulfill this goal, pre- and post-operation plug-ins during initialization need to
register all pre- and post-operation functions.

log_info_conn(
pb,
"trg_execute_create",
"Created entry:\n %s",
entryldif);

/* Setting return data */
stmts->opres[index].errcode = 0;
snprintf(stmts->opres[index].errmsg,
MAX_ERR_MSG,
"Trigger %s successfully added",
stmts->output[index].name) ;
stmts->opres[index].out[0] = '\0';
/* Freeing some allocated memory
 * and jumping to the ok label */
if(sdn) slapi_sdn_free(&sdn);
if(pbop) slapi_pblock_destroy(pbop);

goto CREATE_OK;
...

CODE EXAMPLE 11 Registering Extended Operation Functions

...
/* Register postoperation routines
 * We override all LDAP Operations */
rc = slapi_pblock_set(pb, SLAPI_PLUGIN_PRE_ADD_FN,
(void *)triggers_pre_add_fn);

rc |= slapi_pblock_set(pb, SLAPI_PLUGIN_PRE_MODIFY_FN,
(void *)triggers_pre_modify_fn);

rc |= slapi_pblock_set(pb, SLAPI_PLUGIN_PRE_DELETE_FN,
(void *)triggers_pre_delete_fn);

...

CODE EXAMPLE 10 Creating a Trigger in the Server (Continued)

static int trg_execute_create(Slapi_PBlock *pb, int index,
ParsedStatements *stmts)
Implementing a Solution 25

The registrations of pre- and post-operation functions are placed in two different
routines: triggers_postop_init and triggers_pre_init. This action is
necessary so that we can register two plug-ins: a pre-operation plug-in and a post-
operation plug-in, even though the code is in a single source file and the shared
object is the same.

When a pre-operation function like triggers_pre_add_fn gets called because of
a user LDAP add operation, it calls a helper function called
find_trigger_by_targetdn(), which searches for a trigger associated with the
DN of the entry that the user is trying to add. If there is such a trigger, the routine
executes the action defined by the trigger. The following is an excerpt of the code.

rc |= slapi_pblock_set(pb, SLAPI_PLUGIN_POST_ABANDON_FN,
(void *)triggers_post_abandon_fn);

rc |= slapi_pblock_set(pb, SLAPI_PLUGIN_POST_BIND_FN,
(void *)triggers_post_bind_fn);

rc |= slapi_pblock_set(pb, SLAPI_PLUGIN_POST_UNBIND_FN,
(void *)triggers_post_unbind_fn);

...

CODE EXAMPLE 12 Using Helper Functions

...
if(!find_trigger_by_targetdn(pb, &cb_data, dn,

BEFORE_TRIGGER)
&& cb_data.nentries > 0)

{
/* STEP 2.1. Take the action associated
 * to this trigger */
switch(cb_data.tr.action)
{

case ACTION_DELETE_DN:
/* Deleate some entry logically associated
 * with entry being removed */

/* LEFT TO BE DONE AS AN EXERCISE */
break;

case ACTION_LOG:
/* Get added entry from the operational block */
rc = slapi_pblock_get(pb, SLAPI_ADD_ENTRY, &entry);
if(rc != 0)

CODE EXAMPLE 11 Registering Extended Operation Functions (Continued)

...
26 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

{
sprintf(msgbuf,

"slapi_pblock_get(SLAPI_ADD_ENTRY,..)=%d",
rc);

err = rc;
goto PRE_ADD_ERR;
}

/* Get LDIF representation of the added entry */
ldif = slapi_entry2str(entry, &len);
log_info_conn(pb,

"TRIGGERED ACTION",
"THE FOLLOWING ENTRY HAS BEEN ADDED:\n------ NEW

ENTRY -----\n%s\n",
ldif);

break;

case ACTION_IGNORE:

sprintf(msgbuf, "Trigger %s forbids the creation of
entry %s",

cb_data.tr.name,
dn);

slapi_send_ldap_result(
pb,
LDAP_OPERATIONS_ERROR,
NULL,
msgbuf,
0,
NULL);

return ERR;
break;

case ACTION_EXTERNAL:
/* Load an external library, and execute
 * a named function inside it */

/* LEFT AS AN EXERCISE */
break;

default:
log_warning_conn(pb,

0,
"triggers_pre_add_fn",

CODE EXAMPLE 12 Using Helper Functions (Continued)

...
Implementing a Solution 27

To search the trigger under ou=triggers,o=sunblueprints, we use an internal
search operation (not shown, but in find_trigger_by_targetdn).

A few actions are implemented in our example. In the panel you see, for example,
the LOG action, which consists of writing the entry to be added in LDIF format in the
error log file. Another more interesting action implemented is IGNORE, which allows
you to skip the operation. What this means is that the entry is not added, and the
user receives an error message such as “Trigger stopItTrigger forbids you
to add this entry.”

More advanced action can now be easily added; it is just a matter of adding code in
this routine. The framework does the rest of the work for you.

Testing the Code
Now let's test the code and play with some commands. Before testing the code,
remember to enable the plug-in LOG level in the LDAP server, from the
administrator's console or from the command line as follows:

"Unrecognized action",
"No action taken");

break;

};
}

...

CODE EXAMPLE 13 Enabling the Plug-In Log Level

<sunone slapd-sunblueprints>~$ ldapmodify -p 10389 -D
"cn=Directory Manager" -w manager0
dn: cn=config
changetype: modify
replace: nsslapd-infolog-area
nsslapd-infolog-area: 65536
^D

CODE EXAMPLE 12 Using Helper Functions (Continued)

...
28 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Let’s try a UNIX command. The language is defined to accept UNIX escape
commands such as the following:

Many UNIX programs support this useful feature (for example, mail, vi).

The following example executes two commands. Notice that the ! escape symbol is
expected at beginning of the line and a terminating '\;' sequence is required. Refer
to the triggers.l file and the LEXer specification file for the lexical details of the
language.

! pwd \;

! man cat \;

CODE EXAMPLE 14 Executing Commands

triggers>> !uname -a \;
! man pwd \;
.
Calling extended operation 4.3.2.1
------------- Your input ----------------
!uname -a \;
! man pwd \;

.

------------- Server output ----------------
Statement #0
Error code: 0
Error msg: Unix shell command successfully executed
Linux alfa 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 i686 unknown

Statement #1
Error code: 0
Error msg: Unix shell command successfully executed
PWD(1) PWD(1)

NOME
 pwd - stampa il nome della directory di lavoro corrente

SINTASSI
 pwd
 pwd {--help,--version}

DESCRIZIONE
Testing the Code 29

We executed the commands uname -a and man pwd. Both are executed on the
server, where Sun Java System Directory Server and the extended operation run. You
could use this feature for a minimal remote administration if you like, but our goal
was just to show an advanced use of the extended operation. Consider also that this
kind of feature could introduce serious security concerns, especially if the remote
server runs with root account privileges.

Questa documentazione non ? mantenuta da lungo tempo e
potrebbe essere inaccurata o incompleta. La documentazione

 in Texinfo ? ora la fonte autorevole.

Questa pagina di manuale documenta la versione GNU di pwd.
pwd stampa il nome della directory corrente risolvendolo
completamente. Cio?, tutte le componenti del nome stam-
pato saranno nomi di directory reali -- nessuna sar? un

 link simbolico.

Si noti che molte shell Unix forniscono un proprio comando
pwd interno con funzionalit? simili cosicch? il semplice,
interattivo comando pwd di solito eseguito sar? quello

 della shell e non questo.

 OPZIONI
--help Mostra nello standard output un messaggio d'aiuto

 ed esce con successo.

 --version
Mostra nello standard output informazioni sulla

 versione ed esce con successo.

FSF GNU Shell Utilities PWD(1)

--
Triggers Client
Insert your commands, a line with '.' terminates input

CODE EXAMPLE 14 Executing Commands (Continued)
30 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Now let's review the log error file to determine what happened.

CODE EXAMPLE 15 Reviewing the Log File

[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_service_fn - conn=2 op=1 msgId=1 - Entering pb=0x8354d60
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_service_fn - conn=2 op=1 msgId=1 - Request with OID: 4.3.2.1
Value from client: !uname -a \;
! man pwd \;
.
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_parse_client_req - conn=2 op=1 msgId=1 - Entering with
params(0x8354d60,0x8118348,0x42b796fc)
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_parse_client_req - conn=2 op=1 msgId=1 - Creating the
temporary file for parsing
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_parse_client_req - conn=2 op=1 msgId=1 - Opening the
temporary file for parsing
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_parse_client_req - conn=2 op=1 msgId=1 - <<!uname -a \;
! man pwd \;

.>>
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_parse_client_req - conn=2 op=1 msgId=1 - Now parsing...
[..cut...]
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_apply_statements: - conn=2 op=1 msgId=1 -
trg_apply_statements(0x8354d60,0x42b796fc, 0x43d1191c)
[...cut..]
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_execute_unixcmd - conn=2 op=1 msgId=1 - Entering (index=0)
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_execute_unixcmd - conn=2 op=1 msgId=1 - Returning
[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_execute_unixcmd - conn=2 op=1 msgId=1 - Entering (index=1)
[20/Oct/2003:01:47:59 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_execute_unixcmd - conn=2 op=1 msgId=1 - Returning
[20/Oct/2003:01:47:59 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_apply_statements: - conn=2 op=1 msgId=1 - Returning 0
[20/Oct/2003:01:47:59 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_service_fn - conn=2 op=1 msgId=1 - Client statements executed
[20/Oct/2003:01:47:59 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_service_fn - conn=2 op=1 msgId=1 - OID sent to client:
Value sent to client:
Testing the Code 31

The code traces heavily, and we can see the full stack of calls:

■ trg_service_fn accepts the extended operation invocation and calls

■ trg_parse_client_req to parse the client command list, then calls

■ trg_apply_statements, which in turn, for every user command, issues a call to an

execution routine, in this case

■ trg_execute_unixcmd, which issues popen library call to execute the UNIX

command and returns the output to

■ trg_service_fn, which collects all the output from the execution functions in the

extended operation response and

■ trg_service_fn returns the data to the client

This patterns repeats for any command issued by a user at the client application
prompt; what changes is the actual trg_execute_<command> called.

Now, let's create our first trigger.

Statement #0
Error code: 0
Error msg: Unix shell command successfully executed
Linux alfa 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 i686 unknown

Statement #1
Error code: 0
Error msg: Unix shell command successfully executed
PWD(1) PWD(1)
...

CODE EXAMPLE 16 Creating a Trigger

TRIGGERS>> create or replace trigger
SunBlueprintsBigTrigger on 'ou=testadd,o=sunblueprints'
before ldap_add action ignore;
.
------------- Server output ----------------
Statement #0
Error code: 0
Error msg: Trigger SunBlueprintsBigTrigger successfully added
--
TRIGGERS>> list all triggers;
.
------------- Server output ----------------

CODE EXAMPLE 15 Reviewing the Log File (Continued)

[20/Oct/2003:01:47:58 +0200] - INFORMATION - (PID=3018,ThID=13325)
trg_service_fn - conn=2 op=1 msgId=1 - Entering pb=0x8354d60
32 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

The example defines a trigger called SunBlueprintsBigTrigger on the directory
entry o=testadd, ou=SunBlueprints to be triggered before the entry is added to
the directory information tree (DIT). As the action, we specify IGNORE, which means
do nothing or skip the operation.

The list all triggers instruction shows you all the available triggers under
ou=triggers,o=sunblueprints, which is where we store them. As a proof of
this, perform the following LDAP search:

Statement #0
Error code: 0
Error msg: 1 triggers found
SunBlueprintsBigTrigger
--

CODE EXAMPLE 17 Performing an LDAP Search

<sunone slapd-sunblueprints>~$ ldapsearch -p 10389 -D "cd=Trigger
Manager" -w manager0 -b "ou=triggers,o=sunblueprints"
objectclass=trigger"
dn: cn=SunBlueprintsBigTrigger,ou=triggers,o=sunblueprints
objectClass: trigger
objectClass: top
cn: SunBlueprintsBigTrigger
on: ou=testadd,o=sunblueprints
before: 1
enabled: true
explain: create or replace trigger SunBlueprintsBigTrigger on
ou=testadd,ou=sun
 blueprints add action ignore
action: 2
actiondn:

CODE EXAMPLE 16 Creating a Trigger (Continued)

TRIGGERS>> create or replace trigger
SunBlueprintsBigTrigger on 'ou=testadd,o=sunblueprints'
before ldap_add action ignore;
Testing the Code 33

The search reports exactly one entry, our trigger. Note the explanation attribute,
which stores the whole create instruction, as typed by the administrator. Now create
the entry, and see what happens.

It works; we receive the expected message because of the IGNORE action triggered
by SunBlueprintsBigTrigger. Reviewing the log file shows the following:

CODE EXAMPLE 18 Creating an Entry

<sunone slapd-sunblueprints>~$ ldapmodify -p 10389 -D "cd=Trigger
Manager" -w manager0
dn: ou=testadd, o=sunblueprints
changetype: add
objectclass: organizationalUnit
ou: testadd
description: Ciao mondo! (how Italians say Hello world!)

adding new entry ou=testadd, o=sunblueprints
ldap_add: Operations error
ldap_add: additional info: Trigger SunBlueprintsBigTrigger forbids
the creation of entry ou=testadd,o=sunblueprints

CODE EXAMPLE 19 Verifying the Log File

[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
triggers_pre_add_fn - conn=2 op=1 msgId=30 - Entering
[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
triggers_pre_add_fn - conn=2 op=1 msgId=30 - Looking for
triggers...
[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
find_trigger - conn=2 op=1 msgId=30 - Entering(0x8352190,
0x47312008,
(&(&(on=ou=testadd,o=sunblueprints)(before=1))(enabled=true)))
[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
find_trigger - conn=2 op=1 msgId=30 - Getting results
[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
find_trigger - conn=2 op=1 msgId=30 - Returning
[21/Oct/2003:02:05:57 +0200] - INFORMATION - (PID=4017,ThID=25625)
triggers_pre_add_fn - conn=2 op=1 msgId=30 - Found triggers
ou=testadd,o=sunblueprints
...
34 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

The routine triggers_pre_add_fn is the add pre-operation function of our pre-
operation plug-in. It calls find_trigger to search for triggers. When it finds one, it
executes. As a counter proof, now let's delete the trigger, and re-add the test entry:

Try to add the entry again:

No problem now, because we deleted the trigger on this entry. Our language
provides a construct to temporarily disable a trigger instead of removing it.

CODE EXAMPLE 20 Deleting the Trigger and Reading the Test Entry

TRIGGERS>> delete trigger SunBlueprintsBigTrigger;
.
 ------------- Server output ----------------
Statement #0
Error code: 0
Error msg: Trigger SunBlueprintsBigTrigger successfully deleted
 --
TRIGGERS>> list all triggers;
.
 ------------- Server output ----------------
Statement #0
Error code: 0
Error msg: 1 triggers found
trgme
 --

CODE EXAMPLE 21 Adding a Duplicate Entry

<sunone slapd-sunblueprints>~$ ldapmodify -p 10389 -D
"cn=Directory Manager" -w manager0
dn: ou=testadd, o=sunblueprints
changetype: add
objectclass: organizationalUnit
ou: testadd
description: Ciao mondo! (how Italians say for Hello world!)

adding new entry ou=testadd, o=sunblueprints
Testing the Code 35

To disable a trigger, use the following as an example:

If you repeat the LDAP add of the ou=testadd test entry, it will work. It works
because the triggers_pre_add_fn function that is called before the internal add
calls the find_trigger with a search filter such as the following:

This filter searches expressly for only enabled triggers.

The LDAP triggers language has many other possibilities. Our code example
implements only some of them. We invite you to discover the other features and
functions.

Using LDAP Triggers in Production
Environments
We’ve provided a good sampling of LDAP triggers and code samples for
implementing them, but you might be asking “Are LDAP triggers ready to move
from a developer's bench to a production environment?”

We suggest that you contemplate some preliminary considerations before moving to
a production environment. Directory architects, and in a wider sense all computer
system architects, think somewhat differently from developers. Architects are often
responsible for designing complex architectures, where many components integrate
and concur to provide global services. Therefore, their main focus is the whole
application service offering, not just individual components. Before delivering your
new fully featured component, you might want to make sure that it does not
negatively impact any of the running services in terms of availability, scalability,
service level agreement, recoverability, and so on.

CODE EXAMPLE 22 Disabling a Trigger

TRIGGERS>> disable trigger SunBlueprintsBigTrigger;
.
 ------------- Server output ----------------
Statement #0
Error code: 0
Error msg: Trigger SunBlueprintsBigTrigger successfully disabled
 --

(&(&(on=ou=testadd,o=sunblueprints)(before=0))(enabled=true)))
36 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

To meet architects needs, we must in turn ask if our code will negatively impact Sun
Java System Directory Server, the container in which the framework runs, and the
directory architecture layout that it is plugged into. Consider the following:

■ Do your plug-ins impact write-performance? Do they add extra time to normal
write operations?

■ Can you measure the impact?

■ Is your solution scalable?

■ Are your LDAP triggers suitable for a replication environment? If not, what
countermeasures must be taken to make it work?

■ Are your triggers secure?

During the delivery phase, these and other concerns could arise.

Our code example, as it is, is not scalable. It could impact the normal service level at
more than a tolerable level. A refactoring is necessary. For example, we use a fixed-
length array for storing the result of user statement parsing. We suppose that the
user will not submit more than a certain number of commands; this can be recovered
using lists instead of arrays. Another weakness is in the mechanism used to
effectively trigger the action; a search is always implied, and this is not good.

Simple deployments, made of a single instance are fairly uncommon. Most often,
you have at least a replication architecture, with one or more suppliers and many
consumers (and hubs). There could even be more complex setups like eLDAP, where
some instances are tricked to work as multiplexors (MUXs) so that operations are
dispatched following a specified logic. In such environments, it is especially
important that the trigger framework has some level of awareness of the underlying
complexities. For example, in a MMR environment, the trigger must be aware of
conflict resolution issues on update operations. Also, it must be made clear by the
trigger framework designer what components of the architecture setups (supplier,
consumer, hub, mux) the triggers should activate.

Despite these weakness, which can be corrected with not much work, LDAP triggers
are overall a good thing. Their primary strength is their standard grammar. To add
new features, you simply extend the language, add an action to the parser
specification file, and implement the feature on the server side. With this process you
can add more complex rules, beyond the basic ones introduced in the code example.
For example, through extended trigger language, you can specify new instructions
as follows:

■ “Change the attribute AAA of entry X when the attribute BBB
of entry Y is changed”

■ “Do this when the server starts /stop”

■ “Replicate this change to my ORACLE when the this entry
changes”
Using LDAP Triggers in Production Environments 37

About the Author
Nicola Venditti works at Sun Microsystems Italy as project engineer and is
specialized on Sun ONE Directory Server. Before joining Sun in March, 2002 he spent
four years at Informix where he worked as a middleware expert and database
specialist.

Related Resources

Publications

Note – The following publications reference the Sun ONE products, which were
recently renamed Sun Java System products. At this time, the previous titles are
accurate. Newer publications will reflect the new naming.

■ Sun ONE Directory Server 5.2 Administration Guide.
http://docs.sun.com/db/doc/816-6698-10

■ Sun ONE Directory Server 5.2 Plug-In API Programming Guide
http://docs.sun.com/db/doc/816-6702-10

■ Sun ONE Directory Server 5.2 Plug-In API Reference
http://docs.sun.com/db/doc/816-6701-10

■ Sun ONE Server Console 5.2 Server Management Guide, Sun Microsystems, Inc., June
2003, 816-6704-10.

■ Venditti, Nicola. “Writing an Authentication Plug-in for a Sun ONE Directory
Server,” Sun BluePrints OnLine, March 2003.
http://www.sun.com/solutions/blueprints

Web Sites
■ Enhanced LDAP (eLDAP): http://webhome.central/eLDAP.

■ Sun Java System (formerly Sun ONE) product documentation:
http://www.sun.com/documentation.

■ Sun BluePrints OnLine: http://www.sun.com/blueprints.
38 LDAP Triggers: A Framework for Sun Java System Directory Server • February 2004

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html
Ordering Sun Documents 39

	LDAP Triggers: A Framework for Sun Java System Directory Server
	By Nicola Venditti, SunPS, Italy
	Sun BluePrints™ OnLine—February 2004
	LDAP Triggers: A Framework for Sun Java System Directory Server

	This article describes how to implement SQL-like triggers in a Sun Java™ System Directory Server....
	This article contains the following topics:
	“Background” on page�2
	“Considering Purpose and Design” on page�3
	“Extended Operations” on page�6
	“Implementing a Solution” on page�11
	“Testing the Code” on page�28
	“Using LDAP Triggers in Production Environments” on page�36
	“About the Author” on page�38
	“Related Resources” on page�38
	“Ordering Sun Documents” on page�39
	“Accessing Sun Documentation Online” on page�39

	Background
	Employing triggers on database servers is useful when you need to define actions based on user op...
	For example, the Customer Care System (which only knows of its own database, most often an Oracle...
	Unfortunately, LDAP lacks a standard mechanism to tell the LDAP server to trigger an action based...
	The code example presented in this article not only uses pre- and post- operation plug-ins, but t...
	Language specification

	The language specification is required at compilation time for the parser generator to generate t...
	The code example is based on the Sun Java System Directory Server 5.2 (the newest release), and i...
	For an example of plug-in development, refer to the Sun BluePrints™ OnLine article titled “Writin...

	Considering Purpose and Design
	Our purpose is to design a framework for triggers in the Sun Java System Directory Server using i...
	Overall a framework for triggers does the following:
	Supports an administrator's manipulation of triggers (creation, deletion, inactivation, and so on.)
	Supports predefined actions (for example IGNORE, skip the LDAP operation, LOG to log the action, ...
	Supports custom actions (for example, the ability to execute user functions loaded from external ...
	Allows user interaction based on a SQL-like language

	In our example, triggers are administrator's objects (replication agreements are an example of ad...
	To design a trigger framework, initially consider the following requirements:
	1. The administrator, through a client console or command line application, can manipulate trigge...

	2. The framework asks predefined actions that an administrator can choose from when creating trig...
	3. The framework asks for custom actions, possibly implemented by externally, user- provided libr...
	4. A language for the trigger manipulation, that is, a collection of trigger instructions (such a...
	After we are certain that we know what the customer wants, we ask: “Do we have the right tool or ...
	A UNIX expert would easily figure out which tool is needed to create a small language in C: YACC....
	We have the parser that parses the trigger instructions, but we need a client command-line-based ...
	How do you send the commands the administrator enters in the client application to the LDAP serve...
	In our design, the parser is responsible only for parsing the instructions it turns into statemen...
	Intuitively, in a directory server we could record the triggers as LDAP entries. Standard schema,...
	The object class definition chosen for triggers as it might appear in the 99user.ldif user schema...
	The information we choose to store about triggers is as follows:
	TABLE�1 Storing Trigger Information�

	Triggers are stored flatly under a specific branch, ou=triggers,o=sunblueprints in the previous c...
	Of course when a data event occurs, for example, deleting an entry, nothing happens unless we ove...
	Now we have all the pieces to start building a solution. First, let’s summarize how the various c...
	The administrator enters trigger statements at the client application prompt.
	The client application issues an extended operation call, passing as argument the trigger stateme...
	On the server side, the extended operation routine invokes the parser to parse the user commands,...
	The client application receives a response and reports it to the user.
	When an event occurs (an LDAP operation is issued by a user), the pre- and post- operation plug-i...

	In this article, we implement the framework in our code example to provide an advanced example of...

	Extended Operations
	Extended operations are extension mechanisms defined by the LDAP standards (refer to RFC 2251). T...
	To write your extended operations, use the Sun Java System Directory Server Plug-In API. Develope...
	The only relevant difference with these plug-ins compared to pre- and post- plug-ins is that exte...
	Clients can discover which extended operations are available on a LDAP Server, by querying the Di...
	CODE�EXAMPLE�1 Search for List of Extended Operations

	The extension “4.3.2.1” is our implementation. You might have noticed how its number has a differ...
	On the client side, the job is fairly easy, because you only need to invoke a library call with a...
	Write a C function, using the Plug-In API
	Register the function in the server (through a standard mechanism)
	Handle the call when it is invoked by clients

	To register your extended operation at runtime, write an initialization routine that gets called ...
	The following code example illustrates the initialization routine in triggers_extop.c, one of the...
	CODE�EXAMPLE�2 Initialization Routine in triggers_extop.c�

	The routines log_info, log_error, log_warning, and so on in slapi_utils.c source are shorter form...
	The initialization code is divided into two parts:
	Get information: plug-in identity and arguments
	Set information: version, extended operation routine address, and list of Object IDentifiers (OID...

	The code is similar to the code example in testextendedop.c, located in the plug- in directory of...
	The function trg_service_fn is our extended operation routine. The signature is simple because th...
	To register your extended operation plug-in, you need an LDAP Data Interchange Format (LDIF) file...
	CODE�EXAMPLE�3 LDIF File Contents�

	Among other things, we define plug-in name, plug-in ID, where the library containing the function...
	Before illustrating what our extended operation routine does, we want to focus on the purpose and...

	Implementing a Solution
	After determining the purpose and considering design issues, implement your solution. As mentione...
	Client application

	For our example, we write the client application in Java, using the Java™ Netscape API for the Su...
	CODE�EXAMPLE�4 Client Application Sample�

	When started, the program shows the TRIGGERS>> prompt and waits for your statements. To execute t...
	CODE�EXAMPLE�5 Executing the Program�

	To terminate a command list, type a line with just a “.”, as shown in the following example:
	CODE�EXAMPLE�6 Terminating a Command List

	The example shows a special feature of our language: the ! escape feature. Issuing a command esca...
	After the “.”, the program runs the extended operation, turns the resulted data into UTF8 represe...
	The UNIX command is just one possibility of our language. The grammar of the trigger language is ...
	CODE�EXAMPLE�7 Trigger Language Grammar�

	Our language is a list of statements separated by semicolons “;”. Then, each command can be one o...
	A standard trigger command (for example, CREATE OR REPLACE TRIGGER)
	A control command (for example, to set the environment with SET var=name)
	A UNIX command (a command with “!” escape symbol)

	The rest of the grammar defines commands and other syntactical components. If you are interested ...
	The LEXer specification file tells LEX how to extract tokens from the source text; the specificat...
	Another limitation is that LEX expects its input to come from yyin global variable, which is a FI...
	The extended operation is responsible for the following tasks:
	Retrieving its argument
	Passing it to the parser
	Getting the parser output
	Calling a coded function for any of the parsed statements

	The following code shows how trg_service_fn, the extended operation routine, works:
	CODE�EXAMPLE�8 How trg_service_fn Works�

	This example is a lot of code, however, apart from the logging and error management code, the log...
	Take the extended operation value – This value contains the user statements, as typed on the clie...
	Prepare and invoke the parser through the trg_parse_client_req routine – This routine parses the ...
	Call the routine trg_apply_statements to apply statements – We have the binary representation of ...
	Prepare the result data for the client – The data has the form of sequential file with records of...
	CODE�EXAMPLE�9 Sequential File Records Sample

	Send the results back to the client.
	Free resources.

	Notice how we reply back to the client that invoked the extended operation. This reply is in fact...
	1. Set the PBlock using the SLAPI_EXT_OP_RET_OID and SLAPI_EXT_OP_RET_VALUE (we could return an e...

	2. Invoke the usual slapi_send_ldap_result(), which sends the result to the client.
	3. Tell the server that we are done, returning SLAPI_PLUGIN_EXTENDED_SENT_RESULT.
	The first routine invoked is trg_parse_client_req and contains the code that instantiates and run...
	The code is a bit tricky because of the nonre-entrant code generated by YACC: we are forced to us...
	The other helper function is the trg_apply_statements routine. By itself, trg_apply_statements do...
	The following shows an example of trg_execute_create, which creates a trigger in the server:
	CODE�EXAMPLE�10 Creating a Trigger in the Server�

	As we said previously, the trigger is executed before/after a standard LDAP operation, and it is ...
	To fulfill this goal, pre- and post-operation plug-ins during initialization need to register all...
	CODE�EXAMPLE�11 Registering Extended Operation Functions�

	The registrations of pre- and post-operation functions are placed in two different routines: trig...
	When a pre-operation function like triggers_pre_add_fn gets called because of a user LDAP add ope...
	CODE�EXAMPLE�12 Using Helper Functions�

	To search the trigger under ou=triggers,o=sunblueprints, we use an internal search operation (not...
	A few actions are implemented in our example. In the panel you see, for example, the LOG action, ...
	More advanced action can now be easily added; it is just a matter of adding code in this routine....

	Testing the Code
	Now let's test the code and play with some commands. Before testing the code, remember to enable ...
	CODE�EXAMPLE�13 Enabling the Plug-In Log Level�

	Let’s try a UNIX command. The language is defined to accept UNIX escape commands such as the foll...
	Many UNIX programs support this useful feature (for example, mail, vi).
	The following example executes two commands. Notice that the ! escape symbol is expected at begin...
	CODE�EXAMPLE�14 Executing Commands�

	We executed the commands uname -a and man pwd. Both are executed on the server, where Sun Java Sy...
	Now let's review the log error file to determine what happened.
	CODE�EXAMPLE�15 Reviewing the Log File�

	The code traces heavily, and we can see the full stack of calls:
	trg_service_fn accepts the extended operation invocation and calls
	trg_parse_client_req to parse the client command list, then calls
	trg_apply_statements, which in turn, for every user command, issues a call to an execution routin...
	trg_execute_unixcmd, which issues popen library call to execute the UNIX command and returns the ...
	trg_service_fn, which collects all the output from the execution functions in the extended operat...
	trg_service_fn returns the data to the client

	This patterns repeats for any command issued by a user at the client application prompt; what cha...
	Now, let's create our first trigger.
	CODE�EXAMPLE�16 Creating a Trigger�

	The example defines a trigger called SunBlueprintsBigTrigger on the directory entry o=testadd, ou...
	The list all triggers instruction shows you all the available triggers under ou=triggers,o=sunblu...
	CODE�EXAMPLE�17 Performing an LDAP Search�

	The search reports exactly one entry, our trigger. Note the explanation attribute, which stores t...
	CODE�EXAMPLE�18 Creating an Entry

	It works; we receive the expected message because of the IGNORE action triggered by SunBlueprints...
	CODE�EXAMPLE�19 Verifying the Log File

	The routine triggers_pre_add_fn is the add pre-operation function of our pre- operation plug-in. ...
	CODE�EXAMPLE�20 Deleting the Trigger and Reading the Test Entry�

	Try to add the entry again:
	CODE�EXAMPLE�21 Adding a Duplicate Entry

	No problem now, because we deleted the trigger on this entry. Our language provides a construct t...
	To disable a trigger, use the following as an example:
	CODE�EXAMPLE�22 Disabling a Trigger

	If you repeat the LDAP add of the ou=testadd test entry, it will work. It works because the trigg...
	This filter searches expressly for only enabled triggers.
	The LDAP triggers language has many other possibilities. Our code example implements only some of...

	Using LDAP Triggers in Production Environments
	We’ve provided a good sampling of LDAP triggers and code samples for implementing them, but you m...
	We suggest that you contemplate some preliminary considerations before moving to a production env...
	To meet architects needs, we must in turn ask if our code will negatively impact Sun Java System ...
	Do your plug-ins impact write-performance? Do they add extra time to normal write operations?
	Can you measure the impact?
	Is your solution scalable?
	Are your LDAP triggers suitable for a replication environment? If not, what countermeasures must ...
	Are your triggers secure?

	During the delivery phase, these and other concerns could arise.
	Our code example, as it is, is not scalable. It could impact the normal service level at more tha...
	Simple deployments, made of a single instance are fairly uncommon. Most often, you have at least ...
	Despite these weakness, which can be corrected with not much work, LDAP triggers are overall a go...
	“Change the attribute AAA of entry X when the attribute BBB of entry Y is changed”
	“Do this when the server starts /stop”
	“Replicate this change to my ORACLE when the this entry changes”

	About the Author
	Nicola Venditti works at Sun Microsystems Italy as project engineer and is specialized on Sun ONE...

	Related Resources
	Publications
	Sun ONE Directory Server 5.2 Administration Guide. http://docs.sun.com/db/doc/816-6698-10
	Sun ONE Directory Server 5.2 Plug-In API Programming Guide http://docs.sun.com/db/doc/816-6702-10
	Sun ONE Directory Server 5.2 Plug-In API Reference http://docs.sun.com/db/doc/816-6701-10
	Sun ONE Server Console 5.2 Server Management Guide, Sun Microsystems, Inc., June 2003, 816-6704-10.
	Venditti, Nicola. “Writing an Authentication Plug-in for a Sun ONE Directory Server,” Sun BluePri...
	Web Sites

	Enhanced LDAP (eLDAP): http://webhome.central/eLDAP.
	Sun Java System (formerly Sun ONE) product documentation: http://www.sun.com/documentation.
	Sun BluePrints OnLine: http://www.sun.com/blueprints.

	Ordering Sun Documents
	The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in t...

	Accessing Sun Documentation Online
	The docs.sun.com web site enables you to access Sun technical documentation online. You can brows...
	To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at: http://...

