
BLUEPRINTS

The Sun BluePrints™
Guide to

Solaris™ Containers

Virtualization in the
Solaris Operating System

Harry J. Foxwell
Menno Lageman

Joost Pronk van Hoogeveen
Isaac Rozenfeld
Sreekanth Setty

Jeff Victor

Please
Recycle

© 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this

product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,

including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, Java, UltraSPARC, Sun Fire, and Solaris are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.

Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

AMD and Opteron are trademarks or registered trademarks of Advanced Micro Devices, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the

pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-

exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and

otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-

19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS HELD TO BE

LEGALLY INVALID.

Part No. 820-0001-10
Revision 1.0, 10/11/06

Contents

Chapter 1: Introduction. 1

Solaris Containers Technology. 2

Scope . 2

Chapter 2: Resource Management Concepts. 3

Resource Containment . 3

Workload Classification . 4

Resource Controls . 6

Differentiated Services . 6

Virtualization and Containment . 7

Application Isolation . 8

Chapter 3: An In-Depth Look at Containment and Virtualization. 11

Containing Services . 12

Approaches to Containment . 13

Software-Based Containment . 15

Solaris Containers. 16

Containment and Virtualization Trade-Offs. 18

Guidelines for Deploying Solaris Containers. 20

Chapter 4: Managing Workloads . 23

Projects . 24

Using Projects to Define Workloads . 24

The Project Database . 25

Commands . 26

Extended Accounting . 26

Commands . 27

Contents • October 2006

The Fair Share Scheduler . 27

CPU Shares . 28

CPU Shares Configuration. 29

Resource Controls . 30

Administering Resource Controls . 30

Available Resource Controls . 31

Determining Thresholds. 33

Commands . 33

Managing Workloads — An Example . 33

Requirements . 34

Defining the Projects . 34

Installing Oracle and Creating the Databases . 37

Running Oracle Instances in Different Projects. 38

Controlling CPU Consumption . 40

Using Extended Accounting . 44

Chapter 5: Managing Resources. 49

Processor Sets . 49

Resource Pools . 50

Binding Processes To Pools . 51

Fair Share Scheduler and Processor Sets . 52

Dynamic Resource Pools . 52

Automated Resource Allocation . 53

Configuration Objectives . 54

Monitoring Resource Pools . 55

Commands . 55

Resource Pools — An Example . 55

Creating a Pool . 58

Binding to a Pool . 61

Transferring CPUs . 62

Adapting to Load . 62

Saving the Dynamic Configuration . 64

Chapter 6: Isolating Applications . 65

Zones Overview . 66

Administering Zones . 67

Zone Configuration . 68

Installing Zones . 68

Virtual Platform Management . 69

Zone Login . 69

Commands . 70

Zone Administration . 71

File Systems . 71

Resource Management . 72

Resource Pools . 72

Extended Accounting . 72

Fair Share Scheduler and Zones. 73

Resource Controls . 73

Using Zones — An Example . 73

Requirements . 74

Preparation . 74

Creating the First Zone. 75

Creating the Second Zone . 79

Controlling CPU Consumption of Zones. 83

Controlling CPU Consumption Inside Zones . 85

Halting Zones . 87

Chapter 7: Creating Solaris Containers. 89

Container Construction. 91

Creating the Pools . 91

Binding Zones to Pools . 94

Creating Development Zones. 94

Creating Development Users and Projects. 96

Verifying the Configuration. 97

Chapter 8: Integrating Solaris Containers into the Environment. 101

Storage Configuration . 102

File System Structure . 102

File Systems versus Raw Devices . 103

Selecting Direct Attached Storage, Network Attached Storage, and Storage Area Networks 103

File System Types . 103

General File System Considerations . 109

Ability to Mount Read-Write versus Read-Only . 109

Backup and Restore . 112

Contents • October 2006

Tape Backup. 113

Disk Snapshot. 115

Network Configuration. 115

Dynamic Host Configuration Protocol. 116

Changing the IP Address for a Zone . 116

Routing. 117

Firewalls and Filters . 118

Internet Protocol Multi-Pathing and Sun Trunking . 118

Subnet Masks . 118

Printing . 119

Security Risks. 119

Resource Management . 119

Resource Capping . 120

Resource Management Using Kernel Parameters . 123

Provisioning and Installation . 125

Sparse versus Whole Root Models . 126

Package Management and Solaris Containers Technology . 126

Patch Management and Solaris Containers Technology . 127

Flash Archives . 127

Security. 127

Process Rights Management . 127

Auditing and Access Control . 128

Namespace Isolation and Naming Services . 129

Chapter 9: Managing the Environment . 131

Sun Management Center Software. 131

Solaris Container Manager Software . 131

Consolidation Tool for Sun Fire Servers . 132

Predictive Self-Healing Technology . 132

Solaris Containers and Predictive Self-Healing Technology. 133

Solaris Service Manager Software . 134

Working with SMF . 137

WorkingTogether . 144

Chapter 10: Troubleshooting . 147

Methods to Access a Troubled Zone . 147

Telnet and Shells . 147

User Login with the zlogin Command . 148

Zone Console Login . 149

Safe-Mode Login . 149

Boot Single User. 150

Network Troubleshooting. 150

Chapter 11: Putting It All Together—Deploying Sun Java Enterprise System 2005-Q4

on the Sun Fire T2000 Server Using Solaris Containers . 151

Deploying Java ES 2005-Q4 on a Sun Fire T2000 Server Using Solaris Zones . 152

Configuring Solaris Zones . 154

Monitoring and Managing Zones. 157

Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 158

Deploying Directory Server in Zone-1 . 158

Deploying Access Manager in Zone-2. 160

Deploying Portal Server in Zone-3 . 162

Preparing Directory Server for Messaging and Calendar Server Installations 164

Configuring Delegated Admin and Communications CLI for Creating Users 165

Deploying the Messaging Server in Zone-4. 167

Deploying Calendar Server in Zone-5 . 170

Installing Communications Express and Messenger Express in Zone-6 . 171

Deploying Messenger Express in Zone-6 . 173

Deploying Communications Express in Zone-6 . 175

Configuring Single Sign-On for Communications Services Products . 178

Tuning Sun Java Enterprise System Software for Improved Performance . 180

Tuning the Directory Server. 180

Tuning a Web Container . 181

Tuning Access Manager. 182

Tuning the Portal Server . 184

Tuning the Messaging Server. 185

Tuning the Calendar Server . 186

Tuning Communications Express . 186

Tuning the Solaris Operating System . 186

Sun Java Enterprise System Performance Test Case . 187

Overview of the JESMark Benchmark . 188

Calendar Workload . 188

Logical Architecture. 189

Contents • October 2006

Testing Scenario. 190

Performance Results. 190

Chapter 12: About the Authors. 193

Chapter 13: Glossary . 195

Chapter 14: References . 199

Chapter 15: Index. 203

i

Acknowledgments

A great deal of effort goes into any book. While it is impossible to name everyone who
contributed to, or influenced, the content of this book, it is important to thank those
individuals who most directly impacted this significant body of work. In particular, Glenn
Brunette, James Carlson, David Collier-Brown, David Comay, Mark de Groot, Mark Huff,
Paul Kraus, Holger Leister, John Meyer, Dan Price, and Ray Voight provided keen insight
and careful review of the material presented.

In addition, the authors would like to recognize the several groups at Sun, including the
Performance, Availability, and Architecture Engineering (PAE) group, Portal Server
Performance team, Messaging Server QA team, Java Performance group, Ireland
Performance group, Information Products group (IPG), Communications Marketing team,
and Solutions Deployment Engineering (SDE) group for their contributions to this book.

Lastly, a special thanks is due to Margaret Bierman and Kemer Thomson, for without them,
this book would not exist.

ii

Acknowledgments • October 2006

iii

Preface

How This Book is Organized

�

Chapter 1, “Introduction” describes the challenges organizations are facing as data centers
become critcally important, and introduces Solairs Containers technology as an important
tool that can help increase operational efficiency while reducing costs.

�

Chapter 2, “Resource Management Concepts,” provides an introduction to the resource
management tools provided as part of Solaris Containers technology in the Solaris
Operating System.

�

Chapter 3, “An In-Depth Look at Containment and Virtualization,” provides an overview
of hardware- and software-based containment and technologies, discusses consolidation
and virtualization trade-offs, and presents guidelines for deploying Solaris Containers
technology.

�

Chapter 4, “Managing Workloads,” explains how to use the resource management tools in
the Solaris OS to manage workloads and ensure resource utilization requirements are met.

�

Chapter 5, “Managing Resources,” explains how to partition available resources.

�

Chapter 6, “Isolating Applications,” explains how Solaris Zones technology can be used
to isolate applications from one another.

�

Chapter 7, “Creating Solaris Containers,” puts all the pieces together and explains how
resource management and application isolation techniques can be used in combination to
create Solaris Containers on a system.

�

Chapter 8, “Integrating Solaris Containers into the Environment,” provides guidelines and
suggestions for designing system configurations using Solaris Containers technology.

�

Chapter 9, “Managing the Environment,” identifies several tools that can help ease
management and ensure reliability and availability requirements are met.

�

Chapter 10, “Troubleshooting,” provides an overview of items to consider should a virtual
environment not behave as expected.

iv

Preface • October 2006

�

Chapter 11, “Putting It All Together—Consolidating Enterprise Applications with Solaris
Containers,” discusses how to consolidate enterpise applications onto a single Sun Fire™
T2000 server using Sun Java Enterprise System software and Solaris Containers
technology.

Typographic Conventions

TABLE P-1

 describes the typographic conventions used in this book.

TABLE P-1

Typographic Conventions

Typeface Meaning Examples

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

Use

ls -a

to list all files.

% You have mail

.

AaBbCc123

What you type, when contrasted
with on-screen computer output

%

su

Password:

AaBbCc123

The names of files and
directories

Edit your

 /etc/system

 file.

AaBbCc123

Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the

User’s Guide

.
These are called

class

 options.
You

must

 be superuser to do this.

AaBbCc123

Command-line placeholder text;
replace with a real name or value

To delete a file, type

rm

filename

.

 Typographic Conventions

v

TABLE P-2

 shows the typographic conventions that are used when describing individual
software options and commands.

Shell Prompts

TABLE P-3

 shows the default system prompt and superuser prompt for the C shell, Bourne
shell, and Korn shell.

TABLE P-2

Typographic Notations for Options and Commands

Notation Meaning Example: Text or Instance

 [] Square brackets contain arguments that are
optional.

 –progress[off]
 –progress off, –progress
 help[subcommand]

 { } Curly brackets contain a set of choices for a
required option or command.

 –filter {id| id:id}
 step {major|minor}

 : The colon, like the comma, is sometimes used
to separate arguments or show a range of
arguments.

 –filter [id:id]

 | The “pipe” or “bar” symbol separates
arguments, either of which may be specified.

 –filter {id|id:id}
 autosave {on|off}

 ... The ellipsis indicates omission in a series. –filter id1[,...idn]
 –filter 5000,5005

TABLE P-3 Shell Prompts

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

vi Preface • October 2006

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc.
Readers living in the United States, Canada, Europe, or Japan, can purchase documentation
sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables users to access Sun technical documentation online.
Users can browse the docs.sun.com archive or search for a specific book title or subject.
The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html

 1

1

Introduction

In recent years, the nature of computing has changed in fundamental ways. The explosive
growth of corporate intranets and the Internet has created new and challenging demands. As
the number of users and devices accessing services over the network grows, IT organizations
are being forced to rethink how they create, manage, extend, and ultimately deliver
information technology (IT) services with greater functionality and reduced cost. At the same
time, these advancements create massive opportunities for operational efficiency, cost
reductions, and innovations in service and functionality.

IT organizations are focused on obtaining additional availability or scalability in the most
efficient way possible, with users taking for granted that IT services will deliver the
performance and predictability they need. Traditionally, companies deployed large-scale
information systems consisting of pools of redundant servers in a distributed architecture in
an effort to support rapid growth and adapt to rapidly changing business demands. However,
as systems are replicated throughout IT infrastructures to give them greater resiliency and
throughput, the result is often a complicated network of systems that are often over- or
under-utilized, as well as costly and difficult to manage.

Deployment models requiring each application to run on its own system are costly to build
and maintain—and the escalating costs associated with managing vast networks of servers
and software components are forcing organizations to find new ways to reduce IT
infrastructure costs and better manage end user service levels. To help this effort, many
organizations are beginning to turn to consoliation and virtualization techniques that can help
deploy complex applications while raising resource utilization rates. While server
consolidation and virtualization techniques help by enabling systems within data centers to
be visualized and managed as interconnected computing resources rather than as individual
systems, better ways must be found to provision applications and ensure shared resources are
not compromised. For these resource management techniques to be effective, companies
must be able to manage applications effectively.

2 Introduction • October 2006

Solaris Containers Technology
With the release of the Solaris™ 10 Operating System (OS), Sun has taken a big step
towards delivering functionality that can help address many of the challenges IT
organizations face as they look to consolidate and virtualize the environment. Sun’s next
advancement in server virtualization is a concept called Solaris Containers technology.

Solaris Containers consist of a set of technologies that help system administrators increase
resource utilization by consolidating multiple applications onto a single system. With Solaris
Containers technology, administrators can specify the percentage of physical system
resources each application receives, as well as isolate each application in its own virtual
environment with its own hostname, IP address(es), users, file system, and more. By
providing isolation between software applications or services using flexible, software-defined
boundaries, Solaris Containers create an execution environment within a single instance of
the Solaris OS and provide:

� Full resource containment and control for more predictable service levels

� Software fault isolation to minimize fault propagation and unplanned downtime

� Security isolation to prevent unauthorized access as well as unintentional intrusions

The primary benefits of Solaris Containers are:

� Reduced management costs through server consolidation and a reduced number of
operating system instances

� Increased resource utilization with dynamic resource reallocation among Containers

� Increased service availability by minimizing fault propagation and security violations
between applications

� Increased flexibility because software-based Containers can be dynamically created and
reconfigured

� Increased accuracy and flexibility of accounting based on workloads rather than systems
or processes

Scope
This book provides an overview of the resource management concepts and technologies that
comprise Solaris Containers, and explains how to create, use, and integrate Solaris
Containers within a system and infrastructure. Emphasis is placed on explaining each
concept and providing detailed examples that can be used to create more effective
environments and affect better resource utilization.

 3

2

Resource Management Concepts

While server consolidation provides the opportunity to lower costs by reducing the hardware
and system administration required to run a set of applications, the problem of provisioning
applications with the appropriate resources on a shared system can be a difficult task. The
ability to minimize cross-workload performance compromises, combined with facilities that
monitor resource usage and utilization, are collectively referred to as resource management.
Resource management facilities permit administrators to modify the default behavior of the
system with respect to different workloads.

In a consolidation effort, resource management has three roles:

� A method to classify workloads, ensuring the system knows which processes belong to
which workload

� The ability to measure the workload and quantify how many system resources the
workload is really using

� The ability to control the workload, ensuring it does not interfere with other workloads,
yet gets enough system resources to meet its service level requirements

Resource Containment
No two organizations have the same kind of workload or use system resources in the same
way. Some may utilize batch compute servers and application or database servers, while
others may employ complex timesharing systems. Regardless of environment, a vast amount
of potential computing capacity often remains untapped. Users are continually searching for
more computing resources to help solve problems, resulting in systems that are alternately
over-loaded or under-utilized. At the same time, a lack of trust hinders the sharing of
computing resources—users are afraid their computing resources will be overtaken by other
applications. System administrators must find ways to gain control and establish isolation
mechanisms in order to improve resource utilization. With a finer granularity of control,
administrators can ensure all workloads have access to an appropriate amount of resources,
and that no workload consumes the entire system.

4 Resource Management Concepts • October 2006

To address these issues, administrators need to prioritize application services and control
their resource usage. Today, system administrators can affect how applications impact the
system, including defining memory usage and determining disk storage location. CPUs, on
the other hand, remain the most sought after, and the least controlled, resource.

Resource containment enables administrators to establish resource boundaries and create
isolated computing environments. In the Solaris OS, administrators can control system
resources through the creation of a resource pool, a collection of resources, known as
resource sets, such as CPUs, physical memory, or network I/O bandwidth, that are reserved
for exclusive use by an application or set of applications. Resource pools enable system
administrators to partition a system into a set of smaller virtual environments, each providing
resources for a fixed workload consisting of one or more applications. These partitions
provide fixed boundaries between workloads, ensuring each has access to a consistent set of
resources regardless of resource usage on the rest of the machine. As a result, administrators
can separate workloads to eliminate the competition for resources, helping achieve
predictable application and system performance, as well as user trust.

Resource pools have the following characteristics:

� A resource pool consists of one or more physical resource sets. For example, a CPU
resource set consists of one or more CPUs that will execute processes assigned to the
resource pool. A physical memory set consists of a specific amount of physical memory
reserved for the process(es) bound to the set.

� A resource pool may include different types of resource sets, such as CPU and memory.
Only one set of each resource type is permitted in a given resource pool.

� Multiple resource pools can share resources, enabling the system to be partitioned among
applications.

� If a process is bound to a resource pool that includes only a CPU resource set, the process
runs within the confines of the specified CPUs, but utilizes a general pool of physical
memory that is assigned to all processes not assigned to a specific memory set. Similarly,
if a process is bound to a pool that includes only a memory resource set, the process runs
within the confines of the specified memory, but utilizes a general pool of CPUs set aside
for processes not assigned to a specific CPU set.

Workload Classification
System administrators are often challenged to consolidate systems, classify application
services, and track resource usage in an effort to better utilize resources. To optimize
workload response, system administrators must be able to classify the workloads running on
the consolidated system, information which historically has been difficult to obtain.
Workload classification enables administrators to identify application services based on
business rules—and the Solaris OS incorporates two facilities to help separate and identify
workloads and track resource usage: projects and tasks.

 Workload Classification 5

Projects are used to label workloads, or services, and distinguish them from one another. A
project is a workload tag that is used to classify a service, such as a database instance, and
indicate which users or groups are allowed to join it. A task may be a specific job within a
project, or a collection of processes performing a single job. A task enables users to identify
a specific job within a project, such as a query to a specific database instance. Administrators
can place related processes in a task, enabling the generation of detailed accounting records
for the resources consumed to perform the task. Each process is a member of a task, and each
task is associated with one project. A project may consist of one or more tasks.

Figure 2-1 illustrates the relationship between processes, tasks and projects. The Database
resource pool contains two projects, named Oracle and Engineering. The Oracle project is an
instance of an Oracle database. Two tasks are running in the project for the database: Task 1
is a database query, while Task 2 is writing new information into the database. The
Engineering project is a CAD program, and Task 3 is rendering a new image of a circuit
design.

FIGURE 2- 1 Each project contains one or more tasks, each of which contains one or more
processes

A user, or a group of users, can be a member of multiple projects. While a user must have a
default project assigned, the processes launched by the user can be associated with any of the
projects in which that user is a member.

Resource allocation policies are stored in a project database in the form of a local file, or in
a Network Information Server (NIS) or Lightweight Directory Access Protocol (LDAP)
database on a central server. As a result, the resource consumption of related workloads
tagged under the same project ID that run on multiple machines can ultimately be analyzed
across all machines. This ability to centrally manage distributed systems results in reduced
administrative costs.

6 Resource Management Concepts • October 2006

Resource Controls
System administrators need to be able to allocate and control resource usage for applications
and users. The Solaris OS has long had the ability to establish limits on a per-process basis
(rlimits), including the CPU time used, per-process core file size, and per-process maximum
heap size. This concept has been extended to support tasks and projects. Now, the Solaris OS
provides a comprehensive resource control facility that gives administrators the ability to
place bounds on resource usage and prevent workloads from over-consuming resources.

A basic building block, resource controls enable administrators to establish resource limits
on a per-process, per-task, and per-project basis, and change resource limits on a running
process. In response, the system can perform the following actions on behalf of
administrators:

� Send a signal when a threshold is reached
� Deny a resource request when a threshold is exceeded

Resource controls are configured through the project database. Process controls affect each
process in a project, while task controls affect each task within a given project. Project
controls affect all processes associated with a given project.

Differentiated Services
While resource pools provide the ability to partition a system, they do not specify how
resources are to be shared by applications and services. Indeed, without an allocation
scheme, resource contention may result. System administrators need a fine-grained method
for controlling resource usage between different services within a resource pool. The Solaris
OS incorporates an enhanced Fair Share Scheduler (FSS) that gives administrators the ability
to specify that certain processes be given more resources than others. Now integrated into the
Solaris kernel, the FSS software can be used on individual resources, or those within a
resource pool, enabling administrators to modify the allocation policy for CPU resources to
ensure important applications obtain more resources and affect better utilization.

With the FSS software, CPU resources are allocated on a per-project basis using project
resource controls. Administrators control the allocation of available CPU resources among
projects based on their importance. The relative importance of applications is expressed by
allocating CPU resources based on shares—a portion of the system’s CPU resources
assigned to a project. The larger the number of shares assigned to a project, the more CPU
resources it receives from the FSS software relative to other projects. The number of shares
a project receives is not absolute—what is important is how many shares it has relative to
other projects, and whether those projects will compete with it for CPU resources.

 Virtualization and Containment 7

The FSS software guarantees the fair dispersion of CPU resources among projects based on
allocated shares, independent of the number of processes attached to a project. Fairness is
achieved by reducing a project’s entitlement for heavy CPU usage and increasing its
entitlement for light usage with respect to other projects. As a result, administrators ensure
resources are not allocated to users and applications that are not entitled to them. As users
and applications log in or out, the FSS software automatically recalculates the proportion of
resources allocated to each active user. Resources can be varied based on previous usage.

With the FSS software, administrators can keep rogue processes from consuming all
available processing power. Because CPU time is allocated based on an assigned number of
shares rather than on a flat percentage basis, users can take advantage of additional
processing power when applications are idle or are consuming less than their designated CPU
allotment. As a result, administrators can protect key applications and ensure resources are
fully utilized.

Virtualization and Containment
Part of an emerging family of containment technologies, server virtualization is designed to
help reduce server sprawl—the proliferation of individual hardware servers and
accompanying management and resource allocation problems. Server virtualization allows
large servers to be flexibly partitioned into independent execution environments that provide
total isolation within the same server. As a result, data centers can be visualized and managed
as a fabric of interconnected computing resources rather than as a room filled with individual
systems. To effectively implement server virtualization, organizations must be able to
manage applications independently, control resource utilization, isolate faults, and ensure
security between multiple applications.

Sun’s approach to server virtualization centers on a concept called Solaris Containers
technology. Conceptually, a Solaris Container is like a box. Each wall of the box provides an
aspect of resource management, including:

� Resource containment and control, enabling fine-grained control of system resources
through multiple, virtual environments that all share a common operating system kernel.
For example, since virtual environments do not require assignment to physical processors,
a minimum percentage of CPU resources can be assigned.

� Virtualization, providing a virtualized environment that hides hardware details from
applications, such as physical device names, the primary IP address of the system, and the
host name. In addition to providing security and application isolation, virtualization can
be used to accelerate application provisioning.

� Application isolation, ensuring applications in one area cannot interact with applications
in other areas. Application interaction is permitted for network Internet protocol (IP)
communication, or when granted specifically by the administrator.

8 Resource Management Concepts • October 2006

� Security isolation, ensuring that if intruders break into one area they do not have access to
other areas on the system.

Because Solaris Containers are independent from the underlying hardware environment,
application services can be re-created on other systems as needed. Each application runs in
its own private environment—without dedicating new systems—and many application
resources can be tested and deployed on a single server without fear that they will impact one
another. System and network resources can be allocated and controlled on a fine-grained
basis, helping simplify computing infrastructures and improving resource utilization. As a
result, companies can better consolidate applications onto fewer servers without concern for
resource constraints, fault propagation, or security breaches, simplifying service
provisioning.

Solaris Containers are designed to be transparent—they do not present a new application
programming interface (API) or application binary interface (ABI) to which applications
must be ported. Standard Solaris OS interfaces and application environments are provided.
Some restrictions are imposed, and primarily affect applications attempting to perform
privileged operations. These restrictions are part of the security model implementation.

Application Isolation
A key inhibitor to consolidating applications is the lack of logical isolation between
applications. Solaris Containers technology allows many private execution environments to
be created within a single instance of the Solaris OS. Each virtualized environment, called a
Solaris Zone, has its own identity that is separate from the underlying hardware. These
virtual environments appear to be a separate system to applications and users. However,
every zone has its own namespace, and therefore has its own users, root user, files, IP
addresses, IP ports, hostname, and much more. It has everything it needs to act like an
independent system from the application perspective (Figure 2-2). As a result, each zone
behaves as if it is running on its own system, making consolidation simple, safe, and secure.

 Application Isolation 9

FIGURE 2-2 Solaris Zones effectively create separate environments on one physical system

The underlying original operating system, called the global zone, remains, and has its own
namespace. The global zone is the place where the kernel runs, and from where the system is
controlled and configured, and where the other non-global zones are created. Non-global
zones (sometimes referred to as local zones) are isolated from each other. Not only do they
have a separate namespace, non-global zones cannot see one another, their processes, or their
attributes, such as IP addresses. Non-global zones also cannot share memory through
mechanisms like IPC, and even have their own user level operating system services, such as
inetd, telnetd, sshd, and so on. Because every zone is isolated in this way, zones can be
independently booted and rebooted at will in order to start and stop a set of constrained
processes without disturbing the other environments on the system. Figure 2-3 illustrates the
relationships between the global zone and non-global zones, as well as the underlying
resource management facilities used to control resource allocation and utilization.

10 Resource Management Concepts • October 2006

FIGURE 2-3 A system with several projects running in Solaris Zones that are assigned to
resource pools.

 11

3

An In-Depth Look at Containment and
Virtualization

Deploying applications, selecting appropriate server resources to support them, and
managing the resulting environment is a complex problem. Many IT managers take a simple
approach—assign each application its own server. Why? They do not want applications to
interfere with each other in any way, and perceive this can only be accomplished through
dedicated, application-specific hardware servers. This belief may be motivated by mistrust of
the application, mistrust of other users or applications that could potentially share the same
server, not wanting to put too many eggs in one basket, or other technical and organizational
reasons.

Figure 3-1 depicts a typical non-virtualized server. A single operating system per server
directly initializes and controls all hardware. This simplistic approach often results in a large
number of servers that are typically under-utilized, are difficult to manage effectively, and
increase requirements for data center floor space, cooling, and power. Server utilization
problems are common when expected application demand and peak loads placed on the
server are variable and uncertain. As a result, organizations tend to over compensate. Most
servers are considerably oversized—and are therefore significantly under-utilized, with
utilization rates as low as five to 15 percent—for much of their deployment life. In addition,
if a server is overcommitted, spare resources from other systems cannot be easily transferred
to ease the problem. Complicating this situation are additional requirements for data backup,
high availability, and keeping both applications and operating systems up to date.

12 An In-Depth Look at Containment and Virtualization • October 2006

FIGURE 3-1 A non-virtualized environment

A variety of hardware and software technologies has evolved to help address these problems.
Nearly all solutions involve some form of containment, techniques that help prevent the
spreading of material or effects beyond a barrier or boundary. A container is a specific
implementation of the containment concept. For example, a bottle is a container for liquid; it
prevents liquid from spreading into places in which it is not wanted, and at the same time
protects the liquid from contaminants. When applied to computing environments, a server
can be thought of as one type of container for an application environment. The boundaries of
the server prevent the application from affecting other systems, and protect the applications
running on it from most external effects. These boundaries may be physical (hardware-based)
or implemented in software. Examples of containment technologies include physical server
partitioning, such as Sun's Dynamic System Domains, and software-based solutions such as
Solaris Containers technology.

Containing Services
In computing environments, it may be important to contain applications, processes, groups of
users, and possibly complete operating systems. Each of these categories can be thought of as
a service, a long-lived set of software objects with well-defined states, error boundaries, start
and stop mechanisms, and dependency relationships to other services. A service must be
viewed and managed— that is, contained—as a single entity. A container is therefore a
bounded environment for a service; such environments can be implemented and managed
using a wide variety of hardware and software technologies.

 Approaches to Containment 13

Ideally, container solutions should provide:

� Resource containment, the ability to allocate and manage resources assigned to the
container, such as CPUs, memory, network and I/O bandwidth

� Security containment, the bounding of user, namespace, and process visibility, hiding
activity in each container from other containers, limiting unwanted process interaction,
and limiting access to other containers

� Fault containment, hardware errors (failed components) and software errors (such as
memory leaks) in one container should not affect other containers

� Scalability, the ability to exploit enterprise class systems by creating and managing a
potentially large number of containers without significant performance overhead

� Flexible resource allocation, the ability to share resources from a common pool or to
dedicate resources to specific containers

� Workload visibility, the ability to view system activity both from within the container and
from a global system perspective

� Management framework, tools and procedures to create, start, stop, re-create, restart,
reboot, move, and monitor containers, as well as provisioning and versioning

� Hardware independence, where possible, containment technologies should not require
special hardware

� Native operating system support, solutions should not require a custom or ported kernel,
as this has an impact on ISV supportability

Approaches to Containment
The first general purpose mainframe computers were very large, extremely expensive, and
relatively few in number. As a result, utilization and efficiency were critical. These systems
were designed to run many tasks simultaneously using more than one operating system at
very high (over 90 percent) utilization rates. To provide multiple independent and contained
execution environments, mainframes used hardware configuration managers (HCM) or
virtual machine monitors (VMM), also called hypervisors. These programs interact directly
with the system hardware, and sometimes run on a dedicated component known as a service
processor (SP).

The HCM and VMM software enable system hardware to be partitioned into multiple
containers. The term virtual is used to indicate that access to the physical hardware is
abstracted to hide implementation details. For example, a VMM-controlled container
accesses system resources, such as disks and network cards, through interfaces presented by
the VMM rather than direct communication with the device. When running on specialized
hardware, these containers can be fully isolated and independent environments capable of
being separately powered, configured, booted, and administered. Figure 3-2 illustrates the
different approaches taken by HCM- and VMM-based techniques.

14 An In-Depth Look at Containment and Virtualization • October 2006

FIGURE 3-2 Hardware configuration managers and virtual machine monitors take different
approaches to controlling hardware resources

Many vendors utilize a similar approach, including Sun's Dynamic System Domains.
Containers constructed in this manner are called hardware domains or partitions, and may
support different operating systems, or different releases of the same operating system, in
each partition. Creating these partitions typically requires specialized hardware, and the
number and size of partitions supported on a given server may be limited. For example, the
Sun Fire™ E25K Server supports a maximum of 18 domains; the smallest domain must use
at least a system board with two or four processors, and each domain requires its own boot
device and network connection.

The purpose of this and other containment techniques is to enable safe and efficient workload
management on a single, physically shared resource. Safe—because any solution should, by
definition, have the means of being secure. Efficient —because sufficient tools and
technologies that aid in the effort already exist. Technologies like Sun's Dynamic System
Domains are designed to work in conjunction with resource management and partition
reconfiguration services. These services permit the reallocation of CPU and other resources
from one partition to another in order to balance loads and improve utilization. Reallocation
is dynamic, meaning the reassignment of a resource from one partition to another partition
typically does not require shutting down the operating system or applications running in the
partitions. Operating systems and applications are fully contained within their respective
partitions, and effectively run on separate hardware servers, albeit within the same physical
system enclosure. What happens within one partition—resource consumption, application
misbehavior, security issues, and hardware faults—generally has no effect on other
partitions. When deploying multiple containers on a shared resource, any single point of
failure must be recognized and addressed with redundant hardware and software components,
such as clustering or other high availability solutions.

 Software-Based Containment 15

The popular blade server architecture can be viewed as a kind of hardware partitioning for
large numbers of similar or identical applications, such as Web servers. Each blade is an
individual hardware server running a complete operating system and application set. While
blade servers can address a variety of scalability and redundancy issues, individual blades are
constrained by their size, typically one or two processors with limited memory. These
constraints can reduce the flexibility needed to allocate sufficient CPU and memory
resources for demanding applications.

Software-Based Containment
Hardware containment methods originated the 1960s and 1970s on early mainframe systems
and continue today on modern, enterprise-class servers. However, they almost always require
specialized systems capable of hardware partitioning, like the Sun Fire E25K server. In
recent years, however, several commercial and open source software-based containment
solutions have emerged. These solutions generally do not require specialized hardware, and
can run on a wide range of systems, from laptops and desktop workstations, to mid-range and
enterprise-class servers. Some of these software-based containment solutions operate as
shown in Figure 3-2 but do not require special hardware to run the VMM.

Figure 3-3 describes the general architecture of software-based containment solutions that
use a hosted VMM. In these solutions, a primary operating system runs directly on the
system hardware, and a VMM runs as an application under the host operating system. The
hosted VMM permits multiple guest operating systems, such as Linux or the Solaris OS,
along with their applications, to run simultaneously in a contained manner on the host
system. Administrative tools are provided to allocate and change resources among the guest
operating systems. Additionally, applications can be run directly on the primary operating
system, ignoring the VMM entirely.

Not all server containment technologies require a VMM. In fact, VMMs can consume
significant CPU resources as they rewrite or redirect guest operating system code, especially
when they need to intercept and redirect privileged guest operating system instructions.

16 An In-Depth Look at Containment and Virtualization • October 2006

FIGURE 3-3 Software partitioning using a hosted VMM

Solaris Containers
An operating system's primary task is the efficient management of processes. The operating
system allocates shares of system resources, such as CPUs, memory, and I/O, and sets
minimum guaranteed boundaries for the execution of the processes that use them. If a
collection of processes and resources can be defined and bounded to match the requirements
of a contained server environment, server virtualization can be accomplished efficiently
without the use of a separate VMM. This approach to containment, often described as
operating system virtualization, is the approach taken with Solaris Containers technology. In
the Solaris OS, virtual server environments are implemented using a type of container called
a Solaris Zone. Other types of containers exist in the Solaris OS, such as projects and limit
nodes. Much of the current discussion and literature about Solaris Zones treats a Zone and
Container as if they were equivalent. To be clear, a Zone is one type of container, one that
encapsulates a server environment, limits the effects of that environment on other system
activities (including other active zones), and protects the environment from outside influence.

 Solaris Containers 17

Since a container is defined as a bounded environment for a service, and a service is a group
of processes managed as a whole, then a zone is a container for the service or group of
processes that implements a virtual server.

Figure 3-4 illustrates the concept of Solaris Containers technology. The Solaris OS runs
directly on the hardware, manages the boot process, and initializes interfaces to the CPUs,
memory, host bus adapters, network interface cards (NICs), storage, and device drivers in the
system. Only one instance of the Solaris OS runs on the hardware, and it is referred to as the
global zone. The administrator defines one or more non-global zones that contain virtual
server environments. A non-global zone appears to all users—end users, applications,
developers, and the zone administrator—as a fully realized server with its own host name, IP
address, process and name space, root and user names and passwords, and network devices
and file systems.

FIGURE 3-4 Solaris Containers and the Global Zone

Note that Solaris applications are not required to be contained in zones. Similar to a
traditional approach, applications can run directly in the global process and name space of a
single operating system instance. In such a scheme, however, the benefits of being able to
contain the application in a non-global zone cannot be realized.

As multiple non-global zones are defined and implemented on a system running the Solaris
OS, workload management of the non-global zones must also be considered in order to
achieve the goal of secure and efficient resource allocation among multiple active zones.
When defining a non-global zone, it is important to determine how resources should be
allocated. Resources may be simply shared with the global zone, or dedicated to a specific
zone. For example, a server with multiple network interfaces can be configured so that one
non-global zone is assigned exclusive access to one interface, while all other zones share

18 An In-Depth Look at Containment and Virtualization • October 2006

access to the remaining interfaces. The resource management facilities incorporated into the
Solaris OS permit these resource assignments and Quality of Service (QoS) parameters to be
defined for CPU, memory, and network usage so that application demands in one zone do not
affect the performance of other zones. For example, resource management tools may be used
to guarantee that database queries are assigned at least 50 percent of available system
resources, or to limit compiler tasks to no more than 10 percent of available resources.

The Solaris 10 OS contributes to secure architectures by providing secure execution
containers for applications. Solaris Containers run with reduced privileges within the global
zone. Non-global zone processes cannot modify these privileges, load kernel modules, or
alter shared read-only file systems provided by the global zone. Processes in non-global
zones are fully observable and can be audited from the global zone. As a result, Solaris
Containers technology provides an important building block for creating a secure IT
infrastructure. This can be accomplished through the use of standardized operating
environment configurations, which can help promote more consistent security and
predictability while aiding organization compliance efforts.

Containment and Virtualization Trade-Offs
It is important to contain application environments in some way to ensure security and
stability. Virtualization technologies can help:

� Manage the task of resource allocation among these environments
� Enable consolidation of server workloads
� Allow for hosting of untrusted or hostile applications,
� Provide flexible development, testing, and production environments.

Additionally, some virtualization technologies provide a repeatable way to troubleshoot a
contained application service from a global view of the operating system, without affecting
other application services. For example, the Solaris Dynamic Tracing (DTrace) facility
available in the Solaris 10 OS provides built-in instrumentation and observability of the
kernel and applications, reducing the time it takes to identify and correct performance and
stability problems.

The following questions may prove helpful when considering virtualization solutions:

� Are existing servers over-provisioned and under-utilized?

� How long does it take the organization to install, configure, and deploy a new server or
application environment?

� Does the number and variety of hardware servers in use make it difficult to manage them
all effectively?

� Is there a need to run a variety of operating systems?

� Is there a need to run different versions or patch levels of one operating system family?

 Containment and Virtualization Trade-Offs 19

� Is there a need run multiple instances of the same operating system?

� Is there a need to quickly create and reconfigure server environments for testing,
development, and production?

� Is the expertise and staff available to support multiple, virtualized instances of several
operating systems?

� Are in-house and commercial applications supported in a virtualized environment? What
are the licensing costs and pitfalls?

� Do the virtualization solutions include tools for monitoring and managing contained
applications and operating systems?

� What is the cost of the virtualization solution?

� What is the performance impact or overhead of the solution?

� How can virtualized systems be backed up?

� How are redundant or highly available configurations using virtualized systems created?

� How can multiple virtual operating systems and applications be updated and maintained?

Virtualization technologies are maturing, enabling them to provide contained environments
for quickly creating and testing applications and operating systems, guarantee application
quality of service (QoS), and increase overall system utilization and return on investment
(ROI). At the same time, some virtualization technologies can add complexity to the overall
IT infrastructure, increase licensing and administration costs, potentially add system
overhead, and make diagnosis of system problems more difficult.

Solaris Containers technology addresses many, but not all, of these questions and issues. The
Solaris OS includes Containers at no additional cost, as well as resource allocation and
management tools.With the Solaris OS, there is only one operating system image to update
and maintain. All application processes in non-global zones can be observed, controlled, and
audited, and secure workload management capabilities are built in to the operating system.
Moreover, exploiting Solaris Containers on Sun hardware that supports Dynamic System
Domains can provide even greater flexibility in deploying fully contained and manageable
application environments while getting maximum utilization from hardware investments.
Additional tools, such as the Solaris Container Manager 1.1 software, can help system
managers deploy Solaris Containers technology with greater effectiveness.

20 An In-Depth Look at Containment and Virtualization • October 2006

Guidelines for Deploying Solaris Containers
Solaris Containers technology provides the foundation for the consolidation
recommendations presented. Several rules should be considered, including those common to
any consolidation plan utilizing Solaris Container technology.

� Start with simple, low risk consolidations. Doing so decreases the impact of unplanned
downtime, and enables staff to get through the rather shallow learning curve of this new
technology.

� Start with systems that are early in the software life cycle, as such systems tend to be
simpler and the user base is usually more tolerant of change. In addition, this results in a
simple mapping of software revision and operating system version as changes move
downstream. These first two rules justify beginning consolidation efforts with sandbox
and development environments.

� Many instances of a software package are easier to consolidate than different applications.
Different applications can potentially require multiple operating system patch levels.
While this can be accommodated, it decreases the benefits of reduced administration
typically achieved by consolidation.

� Develop naming conventions and standards for Solaris Containers, network addresses, and
file systems. Solaris Containers permit flexibility in each of these areas. Local
conventions make it easier to deploy and administer Solaris Containers and the
applications they contain, and may help to reduce human error.

� Consolidating multiple tiers of an application benefits from better network latency and
bandwidth. Network traffic between Solaris Containers does not leave the system—only
memory transfers are involved. This can also be used to provide secure network
communication without encrypted network connections, providing security without the
cost of CPU cycles or special network offload devices.

� Consolidating backup servers should involve careful analysis of the data traffic to avoid
creating an unacceptable bottleneck, such as PCI channel bandwidth congestion.

� Look for opportunities to combine lightly loaded systems, applications with different load
types (such as one using I/O but few CPU resources, and one using CPU and few I/O
resources), or applications with peak loads that occur at different times. Note that
consolidating systems increases CPU, memory, and I/O utilization. Each resource should
be sized appropriately, and the side effects of a shortfall should be considered. For
example, two identical systems which use 75 percent of CPU and memory capacity could
be consolidated. However, the performance impact of insufficient memory will dwarf the
impact of insufficient CPU power.

� Look for opportunities to consolidate software licenses from lightly loaded systems.
Software that is priced based on the number of CPUs and runs on many low utilization
CPUs can represent a significant software expense that can be reduced by minimizing
licensed CPU counts.

 Guidelines for Deploying Solaris Containers 21

� Maintenance windows should be taken into account when consolidating. Consolidating
multiple systems with non-overlapping maintenance windows may lead to the inability to
perform system maintenance.

� Take special care with security boundaries. Although the security isolation of Containers
enables a system to include both external and internal zones, the increased risk
(probability of downtime) of an external zone may make consolidation with an internal
mission-critical server inappropriate.

� Servers that provide static content, such as static Web servers, are excellent candidates for
consolidation. Content can be contained in the global zone and mounted read-only by Web
servers located in Containers. If a Web server is compromised, the Web content cannot be
modified.

� Avoid consolidating systems with different availability requirements. For example, do not
consolidate servers used to test software with 7x24 production servers. However,
exceptions may exist that permit such a consolidation.

� Systems which occasionally require different versions of the operating system should not
be consolidated.

� High availability solutions should be architected and implemented to eliminate single
points of failure.

22 An In-Depth Look at Containment and Virtualization • October 2006

 23

4

Managing Workloads

Running multiple applications on a single computer system without a means to control how
applications use system resources can lead to unpredictable service levels. By default, the
Solaris OS treats every resource request with equal priority. If there is enough of the resource
available the request is granted. If the demand for the resource exceeds the total capacity
available, the Solaris OS adapts by restricting access to the resource. The action taken to
restrict access depends on the type of resource. For example, should demand for CPU time
exceed the CPU time available, the scheduler reacts by adjusting the priorities of processes in
order to change the distribution of the CPU time. The scheduler operates on threads and has
no concept of applications, let alone their relative importance from a business perspective.
An unimportant CPU-bound application can victimize other, more important applications by
placing high demand for CPU resources on the system.

Other resources, such as the total number of processes on the system, have a fixed upper
bound. Once the limit is reached, no more of this resource can be used. A runaway process
that keeps creating new processes can prevent new useful work from being started. Other
than specifying the system-wide upper limit, there is no way to limit the number of processes
that may be created by an application or a set of applications.

What is needed is a way to control resource usage based on workloads. A workload is an
aggregation of all processes of an application, or group of applications, that makes sense
from a business perspective. Instead of managing resource usage at the process level, it
should be possible to manage resource usage at the workload level. This allows the
implementation of policies such as “the Sales application shall be granted at least 30% of
CPU resources” as part of a service level agreement. The Solaris OS resource management
features make it possible to treat workloads in this way by:

� Restricting access to specific resources

� Offering resources to workloads on a preferential basis

� Isolating workloads from each other

24 Managing Workloads • October 2006

The first step in managing resource usage by workloads is identifying or classifying the
components, such as processes, that make up the workload. The next step is measuring the
resource consumption of these workloads. Finally, by applying constraints on the use of
resources the workloads can be controlled. The constraints applied follow from the policies
defined for the workloads based on business requirements.

A possible policy could be that an important workload should always be granted a minimum
amount of CPU time even on an overloaded system. Another policy could be that a workload
is only granted access to the CPU if there are no other workloads requiring CPU resources.

Projects
The first step in managing resource usage involves identifying the workloads running on the
system. Possible approaches include identifying workloads by user name or process name.
While simple, this poses a challenge when multiple instances of the same application are
running on the system for different workloads, such as a sales application database and a
marketing application database. Unless the database application provides a way to run the
instances as different users, it is imposible to attribute resource usage to a specific workload
based solely on userid. In addition, aggregation of multiple related applications, such as
database servers, application servers and Web servers for a business application on one
system is not possible.

The Solaris OS provides a facility called projects to identify workloads. The project serves as
an administrative tag used to group related work in a manner deemed useful by the system
administrator. System administrators can, for example, create one project for the sales
application and another project for the marketing application. By placing all processes
related to the sales application in the sales project and the processes for the marketing
application in the marketing project, the administrator can separate, and ultimately control,
the workloads in a way that makes sense to the business.

A user that is a member of more than one project can run processes in multiple projects at the
same time, making it possible for users to participate in several workloads simultaneously.
All processes started by a process inherit the project of the parent process. As a result,
switching to a new project in a startup script runs all child processes in the new project.

Using Projects to Define Workloads

In the example of the sales and marketing applications, the system administrator can create
two new projects, one for the sales application and one for the marketing application. The
application startup scripts must be modified to switch to the desired project as part of the
application startup. The sales application startup script switches to the sales project, and the
marketing application switches to the marketing project. This results in both applications

 Projects 25

running in different projects while still using the same userid. Adding another application,
such as a Web server, to the sales application workload requires adding the Web server user
to the sales project and modifying the Web server startup script to switch to the sales project.
With the introduction of the Service Management Facility (SMF) in the Solaris 10 OS,
administrators can assign the project in which to run the application or service through
service properties in the SMF repository.

The Project Database

Projects are defined in the project database. The project database can be a local file or in a
name service such as NIS or LDAP. By putting the project database in NIS or LDAP, the
project definition can be shared across multiple systems. Each entry in the project database
consists of the following fields:

� name, the name of the project

� id, the project’s unique numerical ID

� comment, the description of the project

� user list, a list of users allowed in the project

� group list, a list of groups allowed in the project

� attributes, a list of project attributes, such as resource controls

A freshly installed system always contains a local project database /etc/project containing
five standard projects:

� system, used for all system processes and daemons

� user.root, used for all processes run by root

� noproject, for processes specific to IP quality of service (IPQoS)

� default, for users not matching any other project (a catch-all project)

� group.staff, for all users in the group staff

A user or group can be a member of one or more projects. The user and group lists in the
project database determine in what projects a user or group of users can execute processes.
These lists can contain wildcards to allow for flexible definitions, such as ’all members of
group staff excluding user bob’. Users can switch to any project of which they are a member.
Until the user changes the project in which to execute a process, all processes run in the
user’s default project. The user and group lists only define the project(s) in which a user or
group is allowed to execute processes. It does not define a default project for the user or
group. The default project for a user is determined by the system at login time. See the man
page for getprojent(3C) for the exact algorithm used.

26 Managing Workloads • October 2006

Commands

The following commands are available to administer projects:

Several standard Solaris OS commands include project related options, and can be used to
view or manipulate processes based on their project membership:

For example, the prstat -J command lists all processes and projects on the system and
displays a per project total. See the man pages for more information on these commands and
the options related to projects.

Extended Accounting
Once workloads are identified and labeled using projects, the next step in managing resource
usage involves measuring workload resource consumption. While current consumption can
be measured using the prstat(1M) command to obtain real-time snapshot of resource usage,
it does not provide the capability to look at historical data.

Command Description

projadd(1M) Adds a new project to the local project database

projmod(1M) Modifies a project entry in the local project database

projdel(1M) Deletes a project entry from the local project database

projects(1) Displays project membership for a user

newtask(1) Switches to a project

Command Option

id(1M) -p

ipcs(1) -J

pgrep(1) -J -T

pkill(1) -J -T

poolbind(1M) -i project

prctl(1) -i project

priocntl(1M) -i project

prstat(1M) -j -J -k -T

ps(1) -o projid project taskid

useradd(1M) -p

 The Fair Share Scheduler 27

The traditional accounting mechanism is process based and predates the introduction of
projects. It is therefore unable to provide resource usage statistics based on workloads. The
extended accounting facility allows collection of statistics at the process level, the task level
or both. Accounting at the task level aggregates the resource usage of its member processes,
thereby reducing the required disk space for accounting data. A task is a group of related
processes executing in the same project as a result of a newtask(1) command. An
accounting record is written at the completion of a process or task. Interim accounting
records can be written for tasks, and can be used to provide accurate daily accounting for
long running jobs that span multiple days.

Every process that runs in the system is associated with a project and a task. By labeling all
resource usage records with the project for which the work was done, the extended
accounting facility can provide data on the resource consumption of workloads. This data can
be used for reporting, capacity planning or charge back schemes.

Unlike the traditional System V accounting mechanism that is based on fixed size, fixed
semantic records, the extended accounting facility uses a flexible and extensible file format
for accounting data. Files in this format can be read or written using the C language API
provided by libexacct(3LIB). This API abstracts the accounting file and offers functions
to read and write records and fields in the file without the need for knowledge of the physical
layout. This makes it possible to add new record or field types to the file between releases,
even during system operation, without impacting existing applications that use extended
accounting files. A Perl interface for libexacct is available to ease the creation of custom
reporting tools.

Commands

The following commands are available to administer the extended accounting facility.

The Fair Share Scheduler
Running multiple workloads on the same system can lead to a situation where one workload
monopolizes CPU resources and impacts other workloads. This may result in important
workloads not receiving sufficient CPU resources to complete their work. It is desirable to
have a mechanism by which system administrators can prioritize access to CPU resources
based on the importance of the workload.

The policy of the default scheduler in the Solaris OS is to give every process relatively equal
access to CPU resources. Since it has no knowledge of workloads, the default scheduler
cannot prioritize CPU allocation based on workload importance. The Solaris OS offers an

Command Description

acctadm(1M) Configure extended accounting

wracct(1M) Write extended accounting records for active processes and tasks

28 Managing Workloads • October 2006

alternative scheduler that is aware of workloads and can prioritize CPU allocation with
respect to workload importance.

CPU Shares
The Fair Share Scheduler (FSS) controls allocation of CPU resources using CPU shares. The
importance of a workload is expressed by the number of shares the system administrator
allocates to the project representing the workload. The Fair Share Scheduler ensures that
CPU resources are distributed among active projects based on the number of shares assigned
to each project (Figure 3-1).

A CPU share defines a relative entitlement of the CPU resources available to a project on the
system. It is important to note that CPU shares are not the same as CPU percentages. Shares
define the relative importance of projects with respect to other projects. If project A is
deemed twice as important as project B, project A should be assigned twice as many shares
as project B. The actual number of shares assigned is largely irrelevant — two shares for
project A versus one share for project B yields the same results as 18 shares for project A
versus nine shares for project B. In both cases, Project A is entitled to twice the amount of
CPU resources as project B. The importance of project A relative to project B can be
increased by assigning more shares to project A while retaining the same number of shares
for project B.

FIGURE 4-1 The Fair Share Scheduler ensures applications get the CPU resources to which they
are entitled.

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n

100%

Database 2

Database 2

Without Fair Share Scheduler

Time

C
P

U
 U

til
iz

at
io

n
100%

Database 1

Database 2

With Fair Share Scheduler

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

 The Fair Share Scheduler 29

The Fair Share Scheduler calculates the proportion of CPU resources allocated to a project
by dividing the shares for the project by the total number of shares of active projects. An
active project is a project with at least one process using CPU resources. Shares for idle
projects, such as those without active processes, are not used in the calculations. For
example, consider projects A, B and C with two, one and four shares respectively. If projects
A, B and C are active, then project A is entitled to , project B is entitled to , and project
C is entitled to of CPU resources. If project A is idle, project B is entitled to of CPU
resources, and project C is entitled to of CPU resources (Figure 3-2). Note that even
though the actual CPU entitlement for project B and C increases, the proportion between
project B and C stays the same (1:4).

It is important to note that the Fair Share Scheduler only limits CPU usage if there is
competition for CPU resources. If there is only one active project on the system, it can use
100% of CPU resources, regardless of the number of shares it holds. CPU cycles are never
wasted. If a project does not use all the CPU resources it is entitled to because it has no work
to do, the remaining CPU resources are distributed between other active projects.

FIGURE 4-2 The Fair Share Scheduler distributes CPU resources among active projects based on
the number of CPU shares

CPU Shares Configuration

CPU shares are configured through the project.cpu-shares resource control in the
project database. Every project can be assigned a project.cpu-shares resource control.
Projects without this resource control are assigned one share by the system. The system
project is used for all system processes and daemons, and is special in that it has unlimited
shares. Projects with zero shares assigned are only allowed to run when no other projects
with non-zero shares are active.

2
7

1
7

4
7

1
5

4
5

30 Managing Workloads • October 2006

Users can be a member of multiple projects and CPU usage is controlled by the number of
shares of the project in which the user executes. As a result, a user can be entitled to different
amounts of CPU resources at the same time. Note that a process can only be in one project at
a time, so having different amounts of CPU resources at the same time means that processes
owned by this user reside in different projects.

To place a CPU usage limit on a single user, create a project with the appropriate number of
shares that contains only that user. This project should be the default project for this user, and
the user should not be a member of any other projects to prevent the user from switching to
another project.

The CPU shares can be adjusted dynamically using the prctl(1M) command. These changes
are valid until the next system boot. To make the changes permanent, update the
project.cpu-shares resource control in the project database.

Resource Controls
Resource usage of workloads can be controlled by placing bounds on resource usage. These
bounds can be used to prevent a workload from over-consuming a particular resource and
interfering with other workloads. The Solaris OS provides a resource controls facility to
implement constraints on resource consumption. This facility is an extension of the
traditional UNIX resource limit facility (rlimit). The rlimit facility can be used to set limits
on the resource usage of processes, such as the maximum CPU time used, the maximum file
size, the maximum core file size, and more. However, as the rlimit facility is process-based,
its use for constraining workloads is rather limited. The resource controls facility in the
Solaris OS extends process-based limits by adding resource limits at the task and project
level. The number of resource limits that can be set is also expanded to give system
administrators more control over resource consumption by processes, tasks and projects on
the system.

Administering Resource Controls

Resource controls are configured through the project database. The last field of the project
entry is used to set resource controls. A resource control in the project entry is a name-value
pair. The name denotes the type of limit, while the value is a list of attributes for the control.
Multiple resource controls can be added to a single project entry by separating the resource
controls with a semicolon. The list of attributes for a resource control consists of a privilege
level, a threshold, and an action.

 Resource Controls 31

The privilege level determines which users can modify the threshold value. Three privilege
levels are provided:

n basic, the owner of the calling process can change the threshold

� privileged, only privileged (superuser) users can change the threshold

� system, the threshold is fixed for the lifetime of the operating system instance

Every resource control has at least a system value, which represents how much of the
resource the current implementation of the operating system is able to provide. A resource
control can have at most one basic value and any number of privileged values.

The action defines the steps to be taken when the threshold is exceeded. Three actions are
possible:

� deny, deny resource requests for an amount that is greater than the threshold

� signal, send the specified signal to the process exceeding the threshold value

� none, perform no action when the threshold is exceeded

Note – Changes made in the project database are only applied when a new process, task or
project starts. Existing processes, tasks and projects do not see these changes. The
prctl(1M) and rctladm(1M)commands can be used to change resource controls on active
entities.

Available Resource Controls

The following table identifies the resource controls available in the Solaris 10 OS.

32 Managing Workloads • October 2006

Resource Control Description

process.max-port-events Maximum allowable number of events per event port

process.max-msg-messages Maximum number of messages on a message queue

process.max-msg-qbytes Maximum number of bytes of messages on a message queue

process.max-sem-ops Maximum number of semaphore operations allowed per semop call

process.max-sem-nsems Maximum number of semaphores allowed per semaphore set

process.max-address-space Maximum amount of address space available to this process

process.max-file-descriptor Maximum file descriptor index available to this process

process.max-core-size Maximum size of a core file created by this process

process.max-stack-size Maximum stack memory segment available to this process

process.max-data-size Maximum heap memory available to this process

process.max-file-size Maximum file offset available for writing by this process

process.max-cpu-time Maximum CPU time available to this process

task.max-cpu-time Maximum CPU time available to this task’s processes

task.max-lwps Maximum number of LWPs simultaneously available to tasks’s processes

project.max-contracts Maximum number of contracts allowed in a project

project.max-device-locked-memory Total amount of locked memory allowed in a project

project.max-port-ids Maximum allowable number of event ports

project.max-shm-memory Total amount of shared memory allowed for a project

project.max-shm-ids Maximum number of shared memory IDs allowed for a project

project.max-msg-ids Maximum number of message queue IDs allowed for a project

project.max-sem-ids Maximum number of semaphore IDs allowed for a project

project.max-crypto-memory
Total amount of kernel memory that can be used by libpkcs11 for hardware
crypto acceleration

project.max-tasks Maximum number of tasks allowable in a project

project.max-lwps Maximum number of LWPs simultaneously available to a project

project.cpu-shares Number of CPU shares granted to a project for use with the FSS

zone.max-lwps Maximum number of LWPs simultaneously available to zone’s processes

zone.cpu-shares Number of CPU shares granted to a zone for use with the FSS

 Managing Workloads — An Example 33

Determining Thresholds

The resource consumption of processes is often unknown, so choosing a useful and safe
threshold for a resource control can be a difficult task. Selecting an arbitrary threshold can
lead to unexpected application failure modes. While some required information could be
extracted from extended accounting information, there is a simpler way. The resource
controls facility provides a global log action that sends a message to syslog when a threshold
is exceeded.

First, a resource control with the threshold value to be verified must be set. The action should
be set to ‘none’ to ensure the resource is not denied if the threshold is exceeded. This allows
the process to run unconstrained. Next, the global syslog action for the resource control must
be enabled. When the application exceeds the threshold for that resource control, a message
that the resource control threshold has been exceeded is logged to syslog. By changing the
threshold until the warning no longer appears during normal use of the application, a
reasonable setting for the resource control can be determined. After determining the value for
the resource control, the action should be changed to ‘deny’, to ensure the threshold is
enforced by the system.

Commands

The following commands are available for administering resource controls. More information
can be found in the man pages for each command.

Managing Workloads — An Example
To demonstrate the concepts explained in this chapter, this example uses the Solaris OS
resource management facilities to manage workloads on an example system. The system is
shared by several business units and is running two workloads: two database instances, one
for a marketing application and one for a sales application.

Command Description

prctl(1M) Get or set resource controls on a running process, task or project

rctladm(1M) Display or modify global state of system resource controls

34 Managing Workloads • October 2006

A project is defined for each workload, enabling the Fair Share Scheduler to be used to
manage CPU allocation between the workloads. A resource control is added to limit the
amount of shared memory for each workload. To account for all activity of the oracle user
that is not related to either of these workloads, a third project is created. This project is the
default project for the oracle user.

Requirements

The following minimum requirements are needed to run this example:

� Oracle 9i media (version 9.2.0.1.0)
� 6 GB disk space for the Oracle binaries and databases

Defining the Projects

To keep things simple, a local /etc/project database is used. The project entry in the
/etc/nsswitch.conf file should be defined as follows:

By convention, Oracle instances are run as the user oracle in group dba. As a result, the
group dba and user oracle are created:

A project named group.dba is created to serve as the default project for the user oracle.
The system uses the rules described in the getprojent(3C) man page to determine the
default project when a user logs in. Since the default group of user oracle is the dba group,
the group.<groupname> rule matches and the group.dba project is set as the default
project for user oracle. A comment describing the project is added using the -c option:

cat /etc/nsswitch
...
project: files
...

groupadd dba
mkdir -p /export/home
useradd -g dba -d /export/home/oracle -m -s /bin/bash oracle

projadd -c “Oracle default project” group.dba

 Managing Workloads — An Example 35

The id(1M) command can be used to verify the default project for the oracle user:

To manage each Oracle instance as a separate workload, a project is created for each Oracle
instance to run in: project ora_mkt for the marketing Oracle instance, and project ora_sales
for the sales Oracle instance.

The -U oracle option specifies that the oracle user is allowed to run processes in these
projects. Once these steps are complete, the /etc/project file contains the following
information:

The first five projects are projects that are created during system installation. Note that the
system assigned project IDs for the last three projects since they were not explicitly specified
on the projadd command.

System V IPC Resource Controls

The System V IPC resource limits in the Solaris 10 OS, such as the maximum shared
memory size, are no longer set in the /etc/system file, but instead are project resource
controls. As a result, a system reboot is not longer required to put changes to these
parameters in effect. This also allows system administrators to set different values for
different projects. A number of System V IPC parameters are obsolete with the Solaris 10
OS, simply because they are no longer necessary. The remaining parameters have more

su - oracle
$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ exit

projadd -c “Oracle Marketing” -U oracle ora_mkt
projadd -c “Oracle Sales” -U oracle ora_sales

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle default project:::
ora_mkt:101:Oracle Marketing:oracle::
ora_sales:102:oracle Sales:oracle::

36 Managing Workloads • October 2006

reasonable defaults to enable more applications to work out-of-the-box, without requiring
these parameters to be set. The following table identifies the values recommended by the
Oracle Installation Guide and the corresponding Solaris OS resource controls.

Since the default values are higher than Oracle recommended values, the only resource
control that must be set is project.max-shm-memory. To set the maximum shared memory
size to 2 GB, add the project.max-shm-memory=(privileged,2147483648,deny)
resource control to the last field of the project entries for the three Oracle projects.

Once these steps are complete, the /etc/project file should contain the following. Note that
changes are shown in italics.

Parameter Oracle
Recommendation

Resource Control Default Value

SEMMNI (semsys:seminfo_semmni) 100 project.max-sem-ids 128

SEMMNS (semsys:seminfo_semmns) 1024 obsolete

SEMMSL (semsys:seminfo_semmsl) 256 project.max-sem-nsems 512

SHMMAX (shmsys:shminfo_shmmax) project.max-shm-memory 1/4 physical memory

SHMMIN (shmsys:shminfo_shmmin) 1 obsolete

SHMMNI (shmsys:shminfo_shmmni) 100 project.max-shm-ids 128

SHMSEG (shmsys:shminfo_shmseg) 10 obsolete

projmod -sK “project.max-shm-memory=(privileged,2G,deny)” group.dba
projmod -sK “project.max-shm-memory=(privileged,2G,deny)” ora_mkt
projmod -sK “project.max-shm-memory=(privileged,2G,deny)” ora_sales

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle default project:::project.max-shm-
memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.max-shm-memory=(privileged,2147483648,deny)
ora_sales:102:oracle Sales:oracle::project.max-shm-memory=(privileged,2147483648,deny)

 Managing Workloads — An Example 37

To verify that the resource control is active, the id(1M) and prctl(1) commands can be
used.

Logging in as the oracle user creates a new task in the group.dba project, causing the entry
in the project database to be read and the resource control to be set. As can be seen in the
fifth line of output from the prtcl command, a resource control limiting the maximum
shared memory size for the project to 2 GB is present.

Installing Oracle and Creating the Databases

Oracle installation consists of a series of steps, including software installation and the
creation of smf(5) services for the Oracle instances. In this example, a directory /u01 with at
least 6 GB of free space is required for the Oracle software and databases. A simple database
is created for each workload. Use the database identifiers listed in the table below.

su - oracle
$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ prctl -n project.max-shm-memory -i process $$
process: 5754: -bash
NAME PRIVILEGE VALUE FLAG ACTION
RECIPIENT
project.max-shm-memory
 privileged 2.00GB - deny

Database Database Identifier (ORACLE_SID)

Marketing MKT

Sales SALES

38 Managing Workloads • October 2006

Running Oracle Instances in Different Projects

The Oracle instances must run in separate projects in order to control them as separate
entities using the Solaris Resource Manager. The processes of the marketing database
instance should run in project ora_mkt, and the processes of the sales database instance
should run in the ora_sales project. Since the Oracle provided start scripts are not project-
aware, the processes of both instances run in the default project of the Oracle user
group.dba. To run the instances in different projects, the Oracle start scripts must be made
project-aware by issuing /usr/bin/newtask -p ora_sales as part of the startup of the sales
database instance. This moves the current process and its childeren to the ora_sales project.

The Service Management Facility (SMF) in the Solaris 10 OS replaces the traditional way of
managing application startup and shutdown through run control scripts. SMF uses a concept
called services to accomplish this task. An SMF service consists of a set of methods and
properties that describe service behavior. Examples of methods include the start and stop
methods that smf(5) calls to start or stop the service. Properties are used to describe the
service, such as dependencies on other required services, the user to run the service as, and
the project in which to run the service. Through a set of smf(5) commands, services can be
managed in a consistent manner. See the System Administration Guide: Basic Administration
for more information on the Service Management Facility.

To run the example Oracle database instances in separate projects, two simple SMF services
must be created: a salesdb service and mktdb service.

The service for the sales database is created by importing the manifest for the service into the
SMF repository. By convention, manifests for site-specific services are placed in the
/var/svc/manifest/site directory. A manifest is an XML file that defines service properties and
methods. One of the properties of an SMF service is the user under which the service should
run. In this example, the user is oracle. The project in which the service should run is also
a service property. In this example, the project is ora_sales. The relevant part of the
manifest is shown below.

cd /var/svc/manifest/site
cat salesdb.xml
[...]
 <exec_method
 type='method'
 name='start'
 exec='/u01/app/method/ora start SALES'
 timeout_seconds='0'>
 <method_context
 project='ora_sales'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>
[...]

 Managing Workloads — An Example 39

The project attribute of the method_context element determines the project in which the
service runs. The user attibute of the method_credential element determines the user under
which the service runs. The manifest for the marketing database service is equivalent except
that its project attibute is set to ora_mkt.

The start and stop methods for both services are implemented in a single shell script
(/u01/app/method/ora). The start method calls the script with start as the first argument,
while the stop method calls the script with stop as the first argument. The Oracle database
identifier is passed as the second argument.

The services are created by importing the manifest and subsequently enabling the services.
Note that enabling a service implies a start of the service. The ps(1) command can be used
to verify the intances are running in different projects.

cat /u01/app/method/ora
#!/bin/sh
#
Usage: ora ‘start’ | ‘stop’ db_id
#
ORACLE_SID=$2
ORACLE_HOME=/u01/app/oracle/product/9.2.0.1.0
export ORACLE_SID ORACLE_HOME

case “$1” in
'start')

 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<START_EOF
startup
START_EOF
 ;;

'stop')
 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<STOP_EOF
shutdown immediate
STOP_EOF
 ;;
esac
exit 0

40 Managing Workloads • October 2006

The processes for the marketing database instance run in the ora_mkt project, the processes
for the Sales database instance run in the ora_sales project.

Controlling CPU Consumption

Now that the Oracle instances are running in different projects, the Fair Share Scheduler can
be used to control CPU consumption by the instances. Because the Fair Share Scheduler is
not the default scheduler, it must be enabled using the dispadmin(1M) command:

The dispadmin command configures the Fair Share Scheduler (FSS) as the default scheduler
to be enabled on the next reboot. It is possible to change to the Fair Share Scheduler without
a reboot by moving all processes in the TS scheduler class and the init(1M) process to the
FSS scheduler class using the prioctl(1M) command. This change persists only until the
next reboot, and the dispadmin -d FSS command is required to make the change
permanent.

svccfg import salesdb.xml
svccfg import mktdb.xml
svcadm enable salesdb
svcadm enable mktdb
ps -u oracle -o user,project,comm
 USER PROJECT COMMAND
 oracle ora_sales ora_lgwr_SALES
 oracle ora_sales ora_smon_SALES
 oracle ora_mkt ora_smon_MKT
 oracle ora_sales ora_pmon_SALES
 oracle ora_sales ora_dbw0_SALES
 oracle ora_mkt ora_ckpt_MKT
 oracle ora_sales ora_ckpt_SALES
 oracle ora_mkt ora_lgwr_MKT
 oracle ora_mkt ora_pmon_MKT
 oracle ora_mkt ora_dbw0_MKT
 oracle ora_sales ora_reco_SALES
 oracle ora_mkt ora_reco_MKT

dispadmin -d FSS

priocntl -s -c FSS -i class TS
priocntl -s -c FSS -i pid 1

 Managing Workloads — An Example 41

The change of the scheduler class can be verified using the ps(1) command with the -cafe
options. In the output below, the fourth column (marked CLS) shows that the Fair Share
Scheduler (FSS) is now the scheduler for the processes:

The final step involves assigning CPU shares to the projects to control CPU consumption.
Assuming that the sales database is twice as important as the marketing database, and should
therefore be entitled to twice the amount of CPU resources, the number of CPU shares for
the ora_sales project is set to twice the number of shares for the ora_mkt project. The other
projects are assumed to be less important, and their shares remain at system assigned default
values. To give the ora_sales and ora_mkt projects a higher proportion of CPU resources
with respect to these projects, the CPU shares are chosen to be much larger than those for the
other projects. These values entitle the ora_sales project to twenty times more CPU
resources than the group.dba project, and twice as many as the ora_mkt project.

ps -cafe
 UID PID PPID CLS PRI STIME TTY TIME CMD
 root 0 0 SYS 96 Dec 01 ? 0:01 sched
 root 1 0 FSS 29 Dec 01 ? 0:00 /etc/init -
 root 2 0 SYS 98 Dec 01 ? 0:00 pageout
 root 3 0 SYS 60 Dec 01 ? 9:45 fsflush
 root 556 1 FSS 29 Dec 01 ? 0:00 /usr/lib/saf/sac -t 300
...
 oracle 1967 1 FSS 29 11:03:35 ? 0:00 ora_dbw0_MKT
 oracle 1971 1 FSS 29 11:03:36 ? 0:00 ora_ckpt_MKT
 oracle 2002 1 FSS 29 11:03:47 ? 0:01 ora_smon_SALES
 oracle 1973 1 FSS 29 11:03:36 ? 0:01 ora_smon_MKT
 oracle 1965 1 FSS 29 11:03:35 ? 0:00 ora_pmon_MKT
 oracle 1996 1 FSS 29 11:03:46 ? 0:00 ora_dbw0_SALES
 oracle 1975 1 FSS 29 11:03:36 ? 0:00 ora_reco_MKT
 oracle 1998 1 FSS 29 11:03:47 ? 0:00 ora_lgwr_SALES
 oracle 1969 1 FSS 29 11:03:36 ? 0:00 ora_lgwr_MKT
 oracle 2000 1 FSS 29 11:03:47 ? 0:00 ora_ckpt_SALES
 oracle 1994 1 FSS 29 11:03:46 ? 0:00 ora_pmon_SALES
 oracle 2004 1 FSS 29 11:03:47 ? 0:00 ora_reco_SALES
....

42 Managing Workloads • October 2006

The CPU shares are set using the prctl(1M) command:

The current value of the project.cpu-shares resource control for a project can be checked
as follows:

To make these values persistent, the project.cpu-shares resource controls must be added
to the project database.

Project CPU Shares

ora_sales 20

ora_mkt 10

group.dba 1 (default)

system Unlimited

user.root 1 (default)

default 1 (default)

group.staff 1 (default)

prctl -n project.cpu-shares -r -v 10 -i project ora_mkt
prctl -n project.cpu-shares -r -v 20 -i project ora_sales

prctl -n project.cpu-shares -i project ora_mkt
project: 101: ora_mkt
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.cpu-shares
 privileged 10 - none -
 system 65.5K max none -
prctl -n project.cpu-shares -i project ora_sales
project: 102: ora_sales
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.cpu-shares
 privileged 20 - none -
 system 65.5K max none -

projmod -sK “project.cpu-shares=(privileged,10,none)” ora_mkt
projmod -sK “project.cpu-shares=(privileged,20,none)” ora_sales

 Managing Workloads — An Example 43

Note – A project entry must be on one line. The above lines are wrapped for readability.
They should be on one line.

For demonstration purposes, the nspin utility is used to create enough CPU demand to show
the Fair Share Scheduler in action1. The nspin utility is part of the Solaris Resource
Manager 1.x software, and is available for download at http://www.sun.com/bigadmin/
software/nspin/nspin.tar.gz. To create more demand for CPU resources than are available on
the 4 CPU machine used here, four copies of nspin are run in both the ora_mkt and
ora_sales projects.

The newtask(1) command is used to switch from the default group.dba project to the
ora_mkt and ora_sales projects to run nspin. The prstat(1M) command can be used to
show CPU utilization per project and verify that the Fair Share Scheduler is distributing CPU
resources to the projects according to their CPU shares.

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle DBA:::project.max-shm-memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.cpu-
shares=(privileged,10,none);project.max-shm-memory=(privileged,2147483648,deny)
ora_sales:102:Oracle Sales:oracle::project.cpu-
shares=(privileged,20,none);project.max-shm-memory=(privileged,2147483648,deny)

1. Any application that consumes large quantities of CPU resources can be used.

$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ newtask -p ora_mkt
$ nspin -n 4 &
[1] 2059
$ newtask -p ora_sales
$ id -p
uid=100(oracle) gid=100(dba) projid=102(ora_sales)
$ nspin -n 4 &
[1] 2066

44 Managing Workloads • October 2006

The top portion of the prstat display shows active processes sorted by CPU utilization. The
bottom portion shows the statistics aggregated by project. The ora_sales project is
receiving 66% of CPU resources, and the ora_mkt project is receiving 33%, even though
both projects requested the same amount of CPU (four runnable nspin processes in each
project). The Fair Share Scheduler allocates CPU resources according to the proportion of
CPU shares of the active projects (using CPU time). The only active projects at the time are
ora_mkt and ora_sales. As a result, the CPU entitlement for the ora_sales project equals
(20/(20 + 10)) * 100 = 67%, while ora_mkt is entitled to (10/(20 + 10)) * 100 = 33%. This
matches the actual CPU usage observed using prstat(1M).

Using Extended Accounting

Resource usage per project can be obtained using the Extended Accounting facility of the
Solaris OS. Accounting records can be written per process, per task or both. To obtain
resource usage per project, task accounting is sufficient. Rather than summarizing all process
termination records from the process accounting file, task accounting files can be used
instead. This involves substantially fewer records since the task accounting files consolidate
multiple process records into one task record. Because tasks usually have a long life span and
task accounting records are only written at the end of a task, interval records can be used to
obtain accurate daily accounting. An interval record writes the current task usage to the

$ prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 2069 oracle 1064K 592K run 1 0 0:01:57 25% nspin/1
 2066 oracle 1072K 664K run 18 0 0:01:31 17% nspin/1
 2067 oracle 1072K 600K cpu1 30 0 0:01:05 12% nspin/1
 2068 oracle 1072K 600K run 28 0 0:01:06 12% nspin/1
 2061 oracle 1072K 600K run 17 0 0:01:31 8.7% nspin/1
 2059 oracle 1072K 664K run 17 0 0:01:07 8.3% nspin/1
 2060 oracle 1072K 600K cpu0 24 0 0:01:06 8.2% nspin/1
 2062 oracle 1064K 592K cpu3 18 0 0:01:13 7.9% nspin/1
 2058 root 6056K 5040K cpu2 59 0 0:00:00 0.0% prstat/1

PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 102 11 1011M 712M 36% 0:05:40 66% ora_sales
 101 11 1011M 703M 36% 0:04:58 33% ora_mkt
 1 5 14M 9064K 0.4% 0:00:01 0.0% user.root
 100 1 2760K 1952K 0.1% 0:00:00 0.0% group.dba
 0 28 84M 23M 1.1% 0:00:23 0.0% system

Total: 56 processes, 196 lwps, load averages: 7.30, 3.09, 1.21

 Managing Workloads — An Example 45

accounting file and resets the task usage to zero. The total task usage is the sum of all
interval records plus the termination record. Examples of common long running tasks include
HPC jobs and database processes.

Extended Accounting is turned off by default, and must be turned on using the acctadm(1M)
command. In this example, the accounting files are named taskyyymmdd. A cron(1M) job is
used to switch files every night at midnight. To start the extended accounting facility at
system boot time, a link to /etc/init.d/acctadm must be created in /etc/rc2.d:

The following script writes interval records for all tasks and then switches to a new
accounting file:

Add the following line to the crontab of the root user to execute the switchexacct script at
00:00:

The following script uses the Perl interface to libexacct to extract resource usage
information from the extended accounting files. More information on the Perl interface to
libexacct can be found in the Solaris 10 Resource Manager Developer’s Guide.

The script processes the file(s) given on the command line and summarizes the CPU usage
per project by selecting all task and task interval records in the file(s). Assuming that the
extended accounting files conform to the /var/adm/exacct/task<yymmdd> naming
convention, a monthly report for February 2005 can be generated by running the following
script.

acctadm -e extended task
acctadm -f /var/adm/exacct/task`date '+%y%m%d'` task
ln -s /etc/init.d/acctadm /etc/rc2.d/S01acctadm

cat /opt/local/bin/switchexacct
#!/bin/sh
#
Write interval record for all active tasks and switch accounting file
#
PATH=/usr/bin:/usr/sbin
wracct -i "`ps -efo taskid= | sort -u`" -t interval task
acctadm -f /var/adm/exacct/task`date '+%y%m%d'` task

0 0 * * * /opt/local/bin/switchexacct > /dev/null 2>&1

46 Managing Workloads • October 2006

cpureport.pl /var/adm/exacct/task0502*
PROJECT USR+SYS
default 0
group.dba 0
ora_mkt 76945
ora_sales 116620
system 342
user.root 59

cat cpureport.pl
#!/usr/perl5/5.6.1/bin/perl
cpureport.pl - extract CPU usage per project from extended
accounting files (CPU time in seconds)
use strict;
use warnings;
use Sun::Solaris::Exacct qw(:EXACCT_ALL);
use Sun::Solaris::Project qw(:ALL);

my %proj = ();

die("Usage: $0 file [file ...]\n") unless ($#ARGV >= 0);

Process all files given on the commandline
foreach my $arg (0 .. $#ARGV) {

 my $ef = ea_new_file($ARGV[$arg], &O_RDONLY) || die(ea_error_str());

 while (my $obj = $ef->get()) {
 if ($obj->catalog()->id() == &EXD_GROUP_TASK ||
 $obj->catalog()->id() == &EXD_GROUP_TASK_INTERVAL) {

 my $h = $obj->as_hash(); # returns all items in this group

 my $projid = $h->{EXD_TASK_PROJID};
 $proj{$projid}{CPU_SEC} += $h->{EXD_TASK_CPU_SYS_SEC};
 $proj{$projid}{CPU_NSEC} += $h->{EXD_TASK_CPU_SYS_NSEC};
 $proj{$projid}{CPU_SEC} += $h->{EXD_TASK_CPU_USER_SEC};
 $proj{$projid}{CPU_NSEC} += $h->{EXD_TASK_CPU_USER_NSEC};
 }
 }

 if (ea_error() != EXR_OK && ea_error() != EXR_EOF) {
 printf("\nERROR: %s\n", ea_error_str());
 exit(1);
 }
}

 Managing Workloads — An Example 47

Calculate total CPU time (usr + sys) and round to whole seconds
and lookup project names (invent name if lookup fails).
for my $key (keys %proj) {
 my $one_second = 10 ** 9; # ns per second

 if ($proj{$key}{CPU_NSEC} >= $one_second) {
 my $seconds = $proj{$key}{CPU_NSEC} / $one_second;
 $proj{$key}{CPU_SEC} += $seconds;

 if ($proj{$key}{CPU_NSEC} % $one_second >= ($one_second / 2)) {
 $proj{$key}{CPU_SEC}++;
 }
 }

 my $name = getprojbyid($key);
 if (defined($name)) {
 $proj{$key}{PROJECT} = $name;
 }
 else {
 $proj{$key}{PROJECT} = "<" . $key . ">";
 }
}

Print the CPU usage for the projects sorted by project name
printf("PROJECT USR+SYS\n");
for my $key (sort { $proj{$a}{PROJECT} cmp $proj{$b}{PROJECT} } keys
%proj) {
 printf("%-16s %8d\n", $proj{$key}{PROJECT}, $proj{$key}{CPU_SEC});
}

exit(0);

48 Managing Workloads • October 2006

 49

5

Managing Resources

Some situations may be best served by partitioning available system resources, such as
processors, into a number of discrete resource partitions. There are several reasons why such
partitioning may be useful:

� Enforcing hard limits on the use of a resource. For instance, by creating a processor set
and binding a process, project or zone to it, the CPU usage of the bound processes is
effectively limited to the CPUs in the processor set. These processes cannot use
processors outside of their set.

� Providing a guaranteed quantity of a resource. If an application requires a certain amount
of CPU resources at all times, a processor set can be created for use by the application,
thereby reserving the CPUs for application processes. Processes not bound to the set are
unable to run on the processors in that set.

� Setting expectations. When deploying applications on a large server in phases, users may
become accustomed to having fast response times as all resources are available to the
application. As more applications are deployed, users may perceive a performance
degradation. By partitioning the system so that the application received only the resources
it needs, expectations can be set correctly from the start

� Partitioning by function, such as creating a partition for interactive users and a partition
for batch jobs.

Processor Sets
Every system has at least one processor set, the system or default processor set that contains
all of the processors in the system. Additional processor sets can be dynamically created and
removed on a running system using the psrset(1M) command, provided that at least one
CPU remains for the system processor set. Processes are bound to the default processor set
by default, and can be bound to other processor sets on-the-fly. It is important to note that
partitioning a system using processor sets may lead to under utilization of the server since

50 Managing Resources • October 2006

only processes bound to the processor set may use the processors in the set. If these
processes do not use all of available CPU resources, the remaining CPU capacity in the set
remains unused.

While processor sets are very useful, managing them can be a little cumbersome. System
administrators must specify the physical CPU ID of the processor to add to a processor set.
Since the physical ID of a CPU is hardware dependent, it varies between different hardware
platforms, creating a close coupling between the processor set definition and the underlying
hardware. Also, on systems that support Dynamic Reconfiguration, processors can be added
and removed while the system is on-line. If a processor to be removed is used in a processor
set, the system administrator must manually remove that processor from the set before the
processor can be removed from the system. This requires the system administrator to have
intimate knowledge of the configured processor sets and the hardware. Processor sets are
referenced by a system generated ID, making it hard to remember what a specific set is used
for, especially when multiple processor sets are present.

Resource Pools
The introduction of resource pools significantly enhances the ability to partition the system.
Resource pools provide a mechanism to create a persistent configuration of resource sets
such as processor sets. The resource pools framework removes the link between the intention
of the system administrator and the underlying hardware. Instead of creating a processor set
by specifying physical CPU IDs, system administrators can now create a processor set with a
chosen name by specifying the number of processors required, rather than their physical IDs.
As a result, the definition of the processor set is no longer tied to a particular type of
hardware.

System administrators can also specify a minimum and maximum number of processors for a
set. The system assigns a number of processors between these values when creating the
processor set on a specific system. This allows for more generic definitions that can be
shared between systems. A configuration defining a set with at least one CPU and a
maximum of three CPUs could be instantiated on a two-way system as well as on a larger
server with more processors. Moving the definition to the larger server does not require any
adjustment by the system administrator. The number of processors in the set on the larger
server could be higher, depending on other processor sets defined in the system. The resource
pools framework balances the number of processors in the set within the constraints set by
the administrator.

On systems that support Dynamic Reconfiguration, the framework ensures that constraints
are still met when removing processors from the system. If the total number of processors
drops below the minimum number required for the active configuration, the Dynamic
Reconfiguration operation is denied. If one of the processors being removed is part of a

 Resource Pools 51

processor set, the system reconfigures all processor sets in the system so that the processor is
no longer in a set. Adding CPUs to a running system also causes a reconfiguration of
processor sets, depending on the constraints set by the administrator.

Multiple configurations can be defined to adapt to changing resource requirements such as
seasonal workloads or different daily and nightly workloads. The appropriate configuration
can be instantiated by invoking the pooladm(1M) command manually or from a cron(1M)
job.

Binding Processes To Pools

Instead of binding a process to a processor set directly, a process is bound to a resource pool
using the 2poolbind(1M) command. A resource pool (or pool) is a logical collection of
resource sets such as processor sets. While the processor set is the only type of resource set
available in the Solaris OS, the resource pool abstraction allows other types of resource sets,
such as memory sets, to be added in later Solaris OS versions.

A pool can optionally be associated with a scheduling class such as the Fair Share Scheduler
(FSS) or the Real Time (RT) scheduling class. Processes bound to the pool are subject to that
pool’s scheduler, allowing the system to use different schedulers for different types of
workloads. A server can be partitioned into two pools, one pool using the Fair Share
Scheduler for applications, and a second pool using the Time Share scheduler (TS) for
interactive users.

Multiple pools can be linked to the same resource set. As a result, it is possible to have a
system with one processor set and several pools associated with the same processor set. This
may not seem useful in a world with only processor sets. However, when other types of
resource sets become available, it will be possible to let pools share a common processor set
while giving each pool its own memory set, for instance.

The poolbind(1M) command allows administrators to bind processes, tasks, projects and
zones to pools. A default pool binding for projects can be established by adding the
project.pool attribute to the project entry in the project database. All processes started in
the project are bound to the pool automatically. While the project.pool attribute
designates only the default pool to bind to, specific processes in a project can still be bound
to other pools if desired.

2.

52 Managing Resources • October 2006

Fair Share Scheduler and Processor Sets

When processor sets are present, the Fair Share Scheduler treats every processor set as a
separate partition. CPU entitlement for a project is based on CPU usage in that processor set
only. The CPU usage of a project in a processor set does not influence its entitlement in a
different processor set. The Fair Share Scheduler calculates the proportion of CPU resources
allocated to a project in a processor set by dividing the shares of the project by the number
of shares of active projects in the processor set.

For example, consider a system with two processor sets, each containing one processor.
Project A has two shares, and project B has one share. Both projects have enough processes
to use all available CPU resources. Project B is the only one running in the first processor
set. Since it is the only project in this set, project B is entitled to all CPU resources in the set.
Both projects run in the second processor set. The number of active shares in this processor
set is three (two from project A and one from project B). As a result, project A is entitled to

 of the processor set and project B is entitled to . Project B’s CPU use in the first
processor set does not influence its entitlement in the second processor set.

Dynamic Resource Pools
In the Solaris 10 OS the resource pools facility is further extended to provide automated
resource allocation based on resource demands in the system and usage objectives set by the
system administrator. This relieves system administrators from deciding how to optimally
partition available resources for the current workload. Previously system administrators had
to manually reassign resources to adapt to changing workloads. While fairly easy for
relatively static workloads, this task may be challenging in an environment with highly
variable resource demands.

2
3

1
3

 Dynamic Resource Pools 53

FIGURE 5-1 Dynamic resource pools let the system adapt to changing workloads

Automated Resource Allocation

The dynamic resource pools resource controller daemon poold(1M) is responsible for
maintaining the resource allocation objectives set by system administrators. Toward this end,
it creates an inventory of all available resources in the system. It continually monitors the
active workloads in the system to determine if usage objectives can be met. If the resource
controller detects that an objective is no longer being met, it evaluates possible alternative
resource configurations to see if they can meet the objectives. If a viable alternative
configuration exists, the resource controller reconfigures the resources accordingly. For
processor sets, this is accomplished by moving processors between processor sets. If no
alternative configuration exists that can meet objectives, no reconfiguration occurs. An
appropriate message is logged, and the resource controller resumes workload monitoring.

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Database 2

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n
100%

Database 2

Database 1

Database 2Database 2

54 Managing Resources • October 2006

Adding or removing resources using Dynamic Reconfiguration can also trigger a
reconfiguration by the resource controller as the amount of available resource changes.
Adding CPU capacity to a constrained system may create the opportunity for the resource
controller to create a configuration that can meet objectives. Likewise, removing CPU
capacity from the system may lead to the objectives no longer being met by the
configuration.

Changes made to the objectives themselves by system administrators can also cause the
resource controller to re-evaluate the configuration. The resource controller keeps a history
of decisions made in the past, enabling it to rule out configuration changes that did not lead
to improvement.

Even if the process of reconfiguration is automatic, system administrators can still directly
manipulate the active configuration by transferring processors from one set to another. Note
that doing so may or may not trigger actions by the resource controller.

Configuration Objectives

The resource controller offers several configuration objectives to influence decisions
regarding possible resource configurations. These objectives can be combined and objectives
can be assigned a precedence over each other. System administrators can choose from a
number of different configuration objectives:

� wt-load
This objective favors configurations that match resource allocations to resource demands.
When this objective is in effect, a resource set that uses more resources is given more
resources (within the minimum and maximum properties for the set).

� locality
This objective is used to instruct the resource controller to take resource locality into
consideration when allocating resources. On large servers such as the Sun Fire™ 15K
server, the latency between resources on the same board and on a different board can vary.
Depending on the application, latency may or may not be important. The locality
objective allows the administrator to express the need for resource locality.

� utilization
This objective favors configurations that allocate resources to partitions that are not
meeting their utilization objective. System administrators can set target utilizations on the
set using “less than”, “greater than” and “about” operators. The “less than” and “greater
than” objectives can be combined to specify a target utilization range, such as between
50% and 80% utilization.

The configuration objectives are detailed in the libpool(3LIB) manual page.

 Resource Pools — An Example 55

Monitoring Resource Pools

System resource utilization can be monitored using the poolstat(1M) utility. This utility
shows statistical data for every pool in the system. Data displayed includes the minimum,
maximum and current size of the resource set, a measure of how much of the resource set is
currently in use, as well as the load on the resource set.

The decisions made by the resource controller can be observed by consulting the
/var/log/pool/poold log file .

Commands

The following commands are available to administer resource pools:

Resource Pools — An Example
This section presents an example of using resource pools to partition the available CPU
resources on a system. Partitioning enables minimum and maximum amounts of CPU
resources to be guaranteed to applications. Continuing with the sales and marketing database
example presented earlier, assume the following policies. The sales database instance should
always have at least 2 CPUs available to ensure a minimum level of service. Extra CPU
capacity could increase service levels and the sales business unit is willing to pay extra for
increased service levels. The marketing database requires at least one CPU, and a maximum
of two CPUs, to achieve business objectives. The marketing business unit is not willing to be
charged for more than two CPUs. These policies should require no manual intervention by
the system administrator to adjust the number of CPUs in the processor sets.

Command Description

pooladm(1M) Activate and deactivate the pools facility

poolcfg(1M) Create and modify resource pool configuration files

poold(1M) Monitors resource usage and adjusts resource allocation

poolbind(1M) Bind processes, tasks, projects and zones to a pool

poolstat(1M) Report active pool statistics

56 Managing Resources • October 2006

Dynamic resource pools can be used to implement these requirements by creating a large
processor set with at least two CPUs for the sales database, and a small processor set with at
least one CPU and at most two CPUs for the marketing database. All remaining CPUs remain
in the default processor set present on every system and which contains at least one CPU.
When implemented on a system with six CPUs, the following configurations are possible:

The number of CPUs in each processor set can be dynamically adjusted to current system
load according to allocation objectives set by the system administrator. For example, if high
demand is experienced for CPU resources in the large processor set, the system might move
processors from the small or default processor sets to the large processor set. When demand
in the large processor set decreases, the system may move processors to the small or default
processor sets.

Because the pools facility is disabled by default, pools must first be enabled using the -e
(enable) option of the pooladm(1M) command. This creates a configuration with a
processor set with all processors in the system and a default pool. The following output
illustrates the configuration of a system with 6 CPUs after the pooladm -e command is run,
and shows the default pool named pool_default and the default processor set
pset_default.

Default Processor Set Small Processor Set Large Processor Set

2 2 2

1 2 3

1 1 4

2 1 3

3 1 2

 Resource Pools — An Example 57

While the set currently contains six CPUs, the minimum (one) and maximum (65,536)
number of CPUs are also set. Note the system.bind-default, pool.default and
pset.default properties. These properties ensure that processes that do not bind to a
specific pool are bound to the pool.default pool.

pooladm -e
pooladm
system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 611

 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 int pool.importance 1
 string pool.comment
 pset pset_default

 pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 447
 uint pset.size 6
 string pset.comment

 cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

58 Managing Resources • October 2006

Creating a Pool

For the sales database, a processor set named large with at least two CPUs, and no upper
bound on the number of CPUs, is created. Next, a processor set named small with at least
one CPU and a maximum of two CPUs is created. A pool named sales is created and
associated with the large processor set. A second pool named marketing is created and
associated with the small processor set. Changes to the pools configuration can be made in
two ways: to the active in-kernel configuration or to the /etc/pooladm.conf configuration file.
The configuration contained in the /etc/pooladm.conf file can be instantiated by running the
pooladm -c command. If desired, an alternate filename can be specified using the -f
option. To save the currently active in-kernel configuration to a file, the pooladm -s
command can be used. In this example, changes are made to the /etc/pooladm.conf
configuration file, ensuring the changes persist across system reboots.

The initial configuration file is created from the running configuration, after which the
processor sets and pools are added.

These commands update the configuration contained in the /etc/pooladm.conf file, and have
no effect on the active in-kernel configuration. This can be verified by displaying the active
in-kernel configuration using the poolcfg(1M) command with the -d option.

Next, the configuration file is instantiated on the system. The processor set and the pool are
created, and the system moves processors into the created processor set according to the
available processors on the system and the pset.min and pset.max attributes of the
configured processor sets. The in-kernel configuration now contains the following.

poolcfg -c ’create pset large (uint pset.min=2;uint pset.max=65536)’
poolcfg -c ’create pset small (uint pset.min=1;uint pset.max=2)’
poolcfg -c ’create pool sales’
poolcfg -c ’create pool marketing’
poolcfg -c ’associate pool sales (pset large)’
poolcfg -c ’associate pool marketing (pset small)’

 Resource Pools — An Example 59

pooladm -c
poolcfg -dc info
system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 611

 pool marketing
 int pool.sys_id 1
 boolean pool.active true
 boolean pool.default false
 int pool.importance 1
 string pool.comment
 pset small
 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 int pool.importance 1
 string pool.comment
 pset pset_default
 pool sales
 int pool.sys_id 2
 boolean pool.active true
 boolean pool.default false
 int pool.importance 1
 string pool.comment
 pset large
 pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment
 cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line
 cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

60 Managing Resources • October 2006

 pset small
 int pset.sys_id 2
 boolean pset.default false
 uint pset.min 1
 uint pset.max 2
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 4
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

 Resource Pools — An Example 61

Binding to a Pool

The sales database project is bound to the sales pool by adding the project.pool attribute
to the project entry for the ora_sales project. Every new process started in this project is
bound to the sales pool by default.

Existing processes in the project are still bound to the default pool; they can be moved to the
sales pool using the poolbind(1M) command. The following command binds all processes
currently running in the project ora_sales to the sales pool. Start a new process in the
ora_sales project to verify the pool binding.

projmod -sK “project.pool=sales” ora_sales
projmod -sK “project.pool=marketing” ora_mkt
cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle DBA:::project.max-shm-memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.cpu-
shares=(privileged,10,none);project.max-shm-
memory=(privileged,2147483648,deny);project.pool=marketing
ora_sales:102:Oracle Sales:oracle::project.cpu-
shares=(privileged,20,none);project.max-shm-
memory=(privileged,2147483648,deny);project.pool=sales

poolbind -p sales -i project ora_sales
su - oracle
$ newtask -p ora_sales
$ id -p
uid=100(oracle) gid=100(dba) projid=100(ora_sales)
bash-2.05b
$ poolbind -q $$
1520 sales

62 Managing Resources • October 2006

Transferring CPUs

The system creates processor sets on a particular system based on the pool configuration and
the number of CPUs in the system. In this example using a six CPU system, all three
processor sets are created with two CPUs. The system administrator can manually move
processors from one processor set to another to shrink or enlarge a processor set depending
on the CPU requirements of applications. For example, end of month processing may require
the large pool to contain four CPUs. The extra CPUs can be moved from the small and
default processors sets using the poolcfg(1M) command:

Adapting to Load

So far, the pool configuration is static. Changes in system load do not lead to configuration
changes. The system administrator must manually move processors between sets to react to
changes in utilization. By setting an objective, the system administrator tells the system to
adapt the number of processors in a set to system demand. In this example, the utilization
objective is used to ensure utilization of the large and small processor sets is kept below
75 percent to allow for spikes in the load.

poolcfg -dc ‘transfer 1 from pset pset_default to large’
poolcfg -dc ‘transfer 1 from pset small to large’

poolcfg -dc ’modify pset large (string pset.poold.objectives="utilization<75")’
poolcfg -dc ’modify pset small (string pset.poold.objectives=”utilization<75”)’’
poolcfg -dc info
[...]
 pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 182
 uint pset.size 2
 string pset.comment
 string pset.poold.objectives utilization<75
[...]

 Resource Pools — An Example 63

Note – Until a patch for bug 6232648 is available, a workaround is needed for utilization
objectives. Each processor set should have at least one 'pinned' CPU to prevent the issue
described in the bug from occuring. The following command can be used to pin a CPU in a
processor set. (Replace ID with the appropriate CPU ID.)

poolcfg -dc ‘modify cpu ID (boolean cpu.pinned=true)’

To see how the system adapts to varying demand for CPU resources, load is generated in the
small processor set. It currently contains only one CPU since the second CPU was moved
by the administrator in Transferring CPUs earlier. When the load exceeds the 75 percent
utilization objective, the system attempts to move a processor from another processor set into
the small processor set.

The /var/log/pool/poold file can be observed to see the actions taken by the resource
controller, such as moving a processor from one processor set to another:

As shown the above output, the system decides to move processor 1 from the large
processor set to the small processor set to satisfy utilization objectives. Stopping the load in
the small processor set and adding load in the large processor set causes another
reconfiguration after some time to satisfy the utilization objective on the large processor
set.

$ id -p
uid=100(oracle) gid=100(dba) projid=101(ora_mkt)
$ /usr/sbin/poolbind -q $$
666 marketing
$ nspin -n 4

Mar 22 15:28:33 Monitoring INFO: all evaluated objectives satisfied
Mar 22 15:28:48 Monitoring INFO: all evaluated objectives satisfied
Mar 22 15:29:03 Monitoring INFO: pset small utilization objective not satisfied (1,
utilization, '<', 75) with utilization 85.99 (control zone bounds exceeded)
Mar 22 15:29:03 Monitoring INFO: reconfiguration required
Mar 22 15:29:03 Optimization INFO: from pset large to pset small components [cpu 2]
not applied due to poor past results
Mar 22 15:29:03 Optimization INFO: applying move from pset large to pset small
components [cpu 1]
Mar 22 15:29:03 Configuration INFO: reconfiguring...
Mar 22 15:29:03 Configuration INFO: configuration complete

64 Managing Resources • October 2006

This example only shows a tiny fraction of the possibilities enabled by dynamic resource
pools. More complex objectives can be created, such as combining different types of
objectives and setting the importance of these objectives in relation to each other. See the
libpool(3LIB) man page for more information on setting objectives.

Saving the Dynamic Configuration

The last few changes have been made to the in-kernel configuration. To keep these changes
across reboots, the in-kernel configuration must be saved to a file using the pooladm -s
command. This command saves the configuration to the /etc/pooladm.conf file. The system
automatically instantiates the configuration from this file at boot time.

 65

6

Isolating Applications

Solaris Zones provide a means to create one or more virtual environments on a single
operating system instance, shielding applications from details of the underlying hardware.
Applications in a zone run in isolation from applications in other zones. They cannot see,
monitor or affect processes running in another zone. Zones provide the following features:

� Security

Network services can be run in a zone, limiting the damage that can be done to the system
and other zones in case of a security violation. An intruder that is able to exploit a security
hole in an application running in a zone can only do limited damage. The actions possible
in a zone are restricted to subset of what is allowed in a normal system. For instance, it is
not possible to load custom kernel modules, access kernel memory or create device nodes
inside a zone.

� Isolation

Applications requiring exclusive access to global resources, such as specific usernames or
network ports, can run on the same machine using zones. Each zone has its own
namespace, completely separate from other zones. Users in a zone are unable to monitor
other zones, such as viewing network traffic or the activity of processes.

� Virtualization

Zones present a virtualized environment to applications, removing the physical details of
the hardware from view. This eases redeployment of applications on a different physical
machine.

� Granularity

Since zones are implemented in software, zones are not limited to granularity defined by
hardware boundaries. Instead, zones offer sub-CPU granularity. Zones do not require
dedicated CPU resources, dedicated I/O devices such as HBAs and NICs, or dedicated
physical memory. As a result, even a system with a single processor can be used to host
several zones.

66 Isolating Applications • October 2006

� Transparency

The environment presented to the application in a zone is nearly identical to the standard
Solaris OS environment. There are no new, zone-specific APIs or ABIs to which
applications must be ported. Some restrictions do exist due to security and isolation
requirements. These restrictions mainly affect applications that perform privileged
operations or need access to physical devices.

Zones Overview
The global zone encompasses the entire system and is comparable to a normal Solaris OS
instance. It has access to the physical hardware and can see and control all processes. The
administrator of the global zone can control the system as a whole. The global zone always
exists, even when no other zones are configured. Inside the global zone are non-global zones.
These zones are isolated from the physical hardware characteristics of the machine by the
virtual platform layer. This layer provides the zones with a virtual network interface, one or
more file systems and a virtual console.

Even though the virtual network interfaces may map to the same physical network interface,
applications in different zones are prevented from seeing traffic from applications in other
zones. Every zone has its own process environment and runs its own set of core Solaris OS
services, including inetd(1M), syslogd(1M), rpcbind(1M), and more. Applications
running in a zone are unable to see applications running in other zones because of this
private process environment. Zones are confined to their own subtree in the file system
hierarchy and cannot access file systems of other zones or the global zone. All zones share
the same operating system instance and therefore run the same Solaris OS version.

The virtual platform layer is not an emulation layer that translates requests from a zone into
some other form or executes them on the zone’s behalf. The role of the virtual platform layer
is to instantiate and to connect virtualized resources to a zone. For instance, in the case of a
virtual network interface, the virtual platform layer creates a logical interface on top of the
physical network interface specified in the zone configuration. The IP address from the zone
configuration is configured on the logical interface and it is made available to the zone.

One of the attributes of the logical interface is the zone in which it is configured. The kernel
uses this attribute to virtualize the network interface by passing packets to the appropriate
zone based on this attribute. A zone only sees packets that are destined for its own logical
interfaces. Broadcast or multicast packets are replicated and sent to all zones as appropriate.

Virtualization of file systems in a zone is achieved via a restricted root similar to
chroot(2). A process in a zone is limited to files and file systems that can be accessed from
the restricted root. Unlike chroot, a zone is not escapable. The virtual platform layer is
responsible for creating the restricted root and mounting the file systems defined in the zone
configuration on it.

 Administering Zones 67

Process isolation is accomplished by adding a reference to the zone to the process
credentials. The kernel has been extended to use the zone ID as a means to restrict visibility
of other processes. Only processes with the same zone ID are visible to a process in a zone.
This selection is made inside the kernel and not available in utilities such as ps(1) or
kill(1), as that would make it possible to subvert the isolation by writing a ps(1)
replacement.

As the zone ID is part of the credentials, the user ID namespace is also virtualized in zones.
Every zone has its own user ID namespace. As a result, users in different zones with the
same uid are in fact distinct users, even though they share the same numerical id. The
virtualized user ID namespace also implies that passwords are unique to the zone.

The introduction of Least Privilege in the Solaris OS provides a set of fine-grained privileges
to replace the concept of the omnipotent root user. Instead of performing checks against uid
0 to allow privileged operations, the kernel now checks for specific privileges required to
perform privileged operations. In the past, it was sufficient to be the superuser to perform
mount operations. Now, even the root user must have a specific privilege to perform mount
operations. By restricting the privileges of root in the local zone to a set of privileges that are
safe in a zone, the root user in a local zone can be given enough power to manage the zone
without the ability to affect the system as a whole, such as rebooting the system. Restricting
privileges by itself is not sufficient for isolation. Privileges only restrict the operations that
can be performed, not the objects on which they are performed. This is accomplished by the
isolation that zones provide.

It is therefore possible to delegate local zone administration to users by giving them access to
the root account in a local zone. Since a user with uid 0 in one zone is different from a user
with uid 0 in another zone, a local zone root user cannot compromise any other zone.
However, the global zone root user should still be closely guarded as it has control over the
system as a whole, and as such has access to all zones.

Administering Zones
Zone administration tasks can be divided into two parts, global zone administration tasks
such as creating a zone, and non-global zone administration tasks such as performing
configuration within a zone. The four primary global zone administration tasks are:

� Configuration — the global administrator defines the virtual platform properties, such as
the required file systems and network interfaces

� Installation — the global administrator creates the zone on the system by creating and
populating the part of the file system hierarchy reserved for the zone

� Virtual Platform Management — the global administrator uses zone tools to boot, halt or
reboot the zone

68 Isolating Applications • October 2006

� Zone Login — the global administrator can move in and out of the local zone from the
global zone to assume the role of the non-global zone administrator

Zone Configuration

The first step of creating a zone on a system is defining its configuration using the
zonecfg(1M) command. The configuration describes resources and properties that are
required for the zone to operate, including:

� Zone name — A unique name for the zone. This name is only of interest in the global
zone, it is distinct from the nodename of the zone. The name global and names starting
with SUNW are reserved.

� Zone path — Every zone has a path to its root relative to the global zone’s root directory.
The zone’s root path will be one level deeper; the root directory under the zone path. To
prevent unprivileged users in the global zone from traversing into the file system
hierarchy of the zone, the zone path must be owned by root with mode 700. The zone
root directory should be owned by root and have mode 755 like a regular root directory.

� File systems — a zone may have file systems that should be mounted when the zone is
booted

� Network interfaces — a zone may have one or more virtual network interfaces. The
configuration specifies the IP address and the physical interface in the global zone on
which it is to be created.

� Devices — a zone may require devices that need to be configured when the zone is
booted. A default set of devices required in every zone is provided and can be imported
into the configuration

� Resource controls — a zone may have resource controls that should be enabled when the
zone is booted.

� Properties — a zone can have properties that control some aspect of the zone, such as the
autoboot property. The autoboot property is comparable to the auto-boot? OBP
parameter and determines if the zone is to be booted automatically when the global zone
is booted.

Installing Zones

The zone configuration process is only concerned with the syntactic correctness of the
configuration: it determines if the configuration could be created on some system, not
necessarily this particular system. This is verified when the zone is installed on a system
using the zoneadm(1M) install command. This command checks to see if all resources,
such as the physical network interface specified in the configuration, are available. It then
installs the files needed for the zone’s root file system in the correct location under the zone

 Administering Zones 69

path, and creates the mount points for additional file systems specified in the configuration.
When the installation is complete, the zone is ready to be booted. The root file system of a
typical zone requires approximately 100 MB of disk space.

Virtual Platform Management

The virtual platform layer is implemented by the zoneadmd(1M) daemon. When the global
administrator boots a zone using the zoneadm boot command, an instance of zoneadmd is
created for that zone. The zoneadmd instance for the zone consults the zone configuration
and creates a new zone. It then creates the virtual network interfaces, mounts the file
systems, and creates the zone virtual console. Finally it starts an instance of init(1M) in
the zone to further bringup the zone using SMF.

The global zone administrator can halt the zone using zoneadm halt and reboot the zone
using zoneadm reboot. These commands do not perform an orderly shutdown when
bringing down the zone. These operations can be considered the equivalent of the
setkeyswitch operations on the system controller of larger Sun Fire systems. If an orderly
shutdown of the zone is required, an init 0 command should be done from inside the zone
to ensure the stop methods of smf(5) services are executed, just like a domain on a Sun Fire
server would be shutdown prior to running the setkeyswitch off command.

The svc:/system/zones smf(5) service in the global zone is used for zone startup and
shutdown. All zones with the autoboot property set are started automatically when the global
zone boots. When the global zone is stopped, the zones service performs an init 0 in each
running zone to do an orderly shutdown of services in the zone.

Zone Login

Since zones are implemented in software and require no dedicated hardware, the virtual
platform provides a virtual console for each zone. The virtual console can be accessed from
the global zone using the zlogin(1M) command with the -C option. The console for a zone
cannot be shared by multiple users at the same time. The first user to connect to the console
of a zone has exclusive access until disconnecting from the console. Access to the consoles
of other zones is still possible.

When using the zlogin command in interactive, non-console mode an arbitrary number of
zlogin sessions to the same zone may be open concurrently. Non-interactive zlogin is also
possible, for example to allow the global administrator to perform scripted administration in
zones. The use of zlogin requires a specific privilege.

Traditional remote login facilities such as telnet(1), rlogin(1) and ssh(1) can still be
used, provided they have not been disabled by the local zone administrator.

70 Isolating Applications • October 2006

Commands

The following commands were added to the Solaris OS for zones:

Several existing Solaris OS commands are enhanced to support zones:

Command Description

zonecfg(1M) Create, update and view zone configuration

zoneadm(1M) Administer zones

zlogin(1) Login to a zone from the global zone

zonename(1) Print the name of the current zone

zoneadmd(1M) Zones administration daemon

Command Description

prstat(1M) -Z, -z options added

ps(1) -o zone, -o zoneid options added

pgrep(1) -z option added

pkill(1) -z option added

priocntl(1) -i option added

renice(1) -i option added

ipcs(1) -Z, -z option added

ipcrm(1) -z option added

ppriv(1) -z option added

ifconfig(1M) -Z option added

poolbind(1M) -i option added

df(1) -Z option added

coreadm(1M) %z token added

 File Systems 71

Zone Administration

Administering zones is largely the same as administering a normal Solaris-based system.
Some of the administrative facilities are not available in a zone because they do not apply to
zones, such as device configuration.

After the initial install of the zone by the global administrator, the system is in an
unconfigured state. The normal sysid tools are run on the first zone boot to finish zone
configuration. The prompts from these tools can be bypassed completely by creating a
/etc/sysidcfg onfiguration file with all required parameters in the zone. Each zone runs its
own core Solaris OS services, and therefore has its own name service. Consequently, one
zone can use NIS, while another zone can use LDAP, DNS, or local files for the name
service.

File Systems
A number of file systems are mounted in the zone by the virtual platform layer when the
zone is booted. In the default configuration, the following file systems are mounted in a
zone:

� /, the zone root file system is mounted on <zonepath>/root in the global zone

� /sbin, /usr, /lib and /platform file systems are read-only loopback mounts from the global
zone to enable text page sharing to reduce memory requirements. This also reduces the
required disk footprint of the zone.

� /dev for the zone is mounted on <zonepath>/dev in the global zone

� /proc, /dev/fd, /system/contract, /etc/svc/volatile, /etc/mnttab, /var/run and /tmp

Additional file systems can be mounted in a zone if required, either by adding these file
systems to the zone configuration using the zonecfg(1M) command, mounting them from
within the zone through the local zone’s /etc/vfstab file, mounting them by hand, or triggered
by autofs.

UFS file systems to be mounted in the zone are configured using the zonecfg(1M)
command by adding file system resources of type ufs. When the zone is booted, the system
automatically mounts these file systems in the zone. This is the recommended and safest way
to add UFS file systems to a zone.

Mounting UFS file systems from within the zone requires that the character and block device
for the file system be explicitly exported to the zone by the global administrator. The file
system can then be created by the local zone administrator. It is important to note that this
may expose the system as a whole to the risk of failure as the local administrator has access
to the raw device and can possibly induce a panic by corrupting the UFS metadata on the
disk. It is, therefore, not recommended to mount file systems in this manner.

72 Isolating Applications • October 2006

Alternatively, the global administrator can create a UFS file system somewhere in the global
zone and export this file system as a lofs mount to the zone. This prevents the local
administrator from exposing the system to the risk described above.

NFS file systems can be mounted in the local zone, provided that they do not originate from
the global zone, since it is not possible for a NFS server to mount its own file systems. See
the mount_nfs(1M) manpage for more information. Therefore, zones can be NFS clients of
any server except the global zone. Currently zones cannot be NFS servers.

Resource Management
The regular resource management facilities such as resource controls, projects, and more are
available inside zones. Because projects are also virtualized inside a zone, each zone has its
own project database. This allows a local zone administrator to configure projects and
resource controls local to that zone.

Resource Pools

A zone can be bound to a resource pool through the pool property of the zone configuration.
The zone is bound to the specified pool upon creation of the zone. The pool configuration
can only be changed from the global zone. A zone cannot change the pool to which it is
bound. Zones cannot span multiple pools, therefore, all processes in a zone run in the same
pool. It is however possible to bind multiple zones to the same resource pool.

Extended Accounting

The Extended Accounting framework has been extended for Zones. Each zone has its own
extended accounting files for task- and process-based accounting that contain accounting
records exclusively for the zone. The extended accounting files in the global zone contain
accounting records for the global zone and all local zones. Since the Extended Accounting
framework uses a flexible and extensible format, the accounting records are now tagged with
the zone name to which they apply. This allows the global zone administrator to extract per
zone accounting data from the accounting files in the global zone.

 Using Zones — An Example 73

Fair Share Scheduler and Zones

To prevent a local zone from monopolizing the system, the global zone administrator can set
zone-wide resource controls. The zone.cpu-shares resource control limits the amount of
CPU resources a zone is entitled to in the same way that the Fair Share Scheduler does this
for projects. A zone with a higher number of zone.cpu-shares is allowed to use more CPU
resources than a zone with a low number of shares. The zone.cpu-shares resource control
is configured using the zonecfg(1M) command. Note that this requires the Fair Share
Scheduler to be the default scheduler for the system, or that the zones be bound to a pool
with a processor set with FSS as the scheduler.

Combined with the regular Fair Share Scheduler inside a zone, this leads to a two-level
distribution of CPU resources. First, the zone.cpu-shares configured by the global zone
administrator determine the amount of CPU resources to which a zone is entitled. The
amount of CPU resources available to the zone is then further distributed across the active
projects in the zone according to the project.cpu-shares defined by the local zone
administrator.

Resource Controls

All standard resource controls are available inside the local zone and can be used by the local
zone administrator to perform resource management in the zone. The global zone
administrator can limit the number of lightweight processes (LWPs) created by a zone by
setting the zone.max-lwps resource control on a zone.

Using Zones — An Example
The following example demonstrates the features provided by zones that facilitate
consolidation. It shows how to run the two Oracle workloads from the Managing Workloads
example in a Solaris Container using zones. In that example, both workloads shared the same
physical system as well as the file system namespace, name service, network port
namespace, user and group namespaces, and more. The sharing of these namespaces can lead
to undesirable and sometimes difficult to manage situations, such as when the databases are
managed by two different DBA groups. The fact that there is only one oracle user requires
close coordination between the DBA groups, since changes made to that user’s environment
by one DBA group may impact the other database instance. The same holds true for the
sharing of the file system namespace, where a single /var/opt/oratab file is used by multiple
Oracle instances.

74 Isolating Applications • October 2006

Sharing namespaces can also inhibit the consolidation from a large number of servers onto
fewer systems. Existing procedures and scripts may, for example, assume the system is
dedicated to the application. Making changes to these procedures and scripts may be
difficult, costly or even impossible.

Solaris Zones help resolve these issues because each zone is a virtualized environment with
its own private namespaces that can be managed independently of other zones on the system.
For instance, the oracle user in one zone is a completely different user from the oracle
user in another zone — they can have different uids, passwords, login shells, home
directories, etc. By running each Oracle instance in its own zone, the instances can be
completely isolated from each other, simplifying their management. As far as the Oracle
instance is concerned, it still runs on a dedicated system.

Requirements

Two zones each running their own Oracle instance are created. The zones require
approximately 100 MB of disk space, and the Oracle software and a database each require
about 4 GB of disk space.

Note – In this chapter, the prompt is set to the zone name to distinguish between the
different zones.

Preparation

The Oracle instances for the sales and marketing databases are recreated in Zones in this
example. Consequently, the instances previously created should be stopped and the
associated user, projects, and file system should be deleted. The pool configuration
previously built should be disabled.

global # svcadm disable salesdb
global # svcadm disable mktdb
global # svccfg delete salesdb
global # svccfg delete mktdb
global # userdel -r oracle
global # projdel ora_sales
global # projdel ora_mkt
global # projdel group.dba
global # pooladm -x
global # pooladm -d

 Using Zones — An Example 75

Creating the First Zone

The zone used for the marketing database is named mkt. To show how a file system is added
to a zone, a separate file system is created on a SVM soft partition (d200). The file system
may, of course, also be created on a standard disk slice. The virtual network interface for the
zone with IP address 192.168.1.14 is configured on the physical interface hme0 of the
system. The directory for the zone is created in the global zone by the global zone
administrator. The directory used for the zone must be owned by root and have mode 700 to
prevent normal users in the global zone from accessing the zone’s file system.

Configuring the Zone

The zone is created based on the default template that defines resources used in a typical
zone.

The virtual network interface with IP address 192.168.1.14 is configured on the hme0
interface of the global zone.

global # mkdir -p /export/zones/mkt
global # chmod 700 /export/zones/mkt
global # newfs /dev/md/rdsk/d200

global # zonecfg -z mkt
mkt: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:mkt> create
zonecfg:mkt> set zonepath=/export/zones/mkt
zonecfg:mkt> set autoboot=true

zonecfg:mkt> add net
zonecfg:mkt:net> set address=192.168.1.14/24
zonecfg:mkt:net> set physical=hme0
zonecfg:mkt:net> end

76 Isolating Applications • October 2006

The file system for the Oracle binaries and datafiles in the mkt zone is created on a soft
partion named d200 in the global zone. Add the following statements to the zone
configuration to have the file system mounted in the zone automatically when the zone boots:

The zone configuration is now complete. The verify command verifies that the current
configuration is syntactically correct. The commit command writes the in-memory
configuration to stable storage.

Installing the Zone

The zone is now ready to be installed on the system.

Booting the Zone

The zone can be booted with the zoneadm boot command. Since this is the first time the
zone is booted after installation, the standard system identification questions must be
answered, and are displayed on the zone’s console. The console can be accessed from the
global zone using the zlogin(1M) command.

zonecfg:mkt> add fs
zonecfg:mkt:fs> type=ufs
zonecfg:mkt:fs> set type=ufs
zonecfg:mkt:fs> set special=/dev/md/dsk/d200
zonecfg:mkt:fs> set raw=/dev/md/rdsk/d200
zonecfg:mkt:fs> set dir=/u01
zonecfg:mkt:fs> end
zonecfg:mkt> verify
zonecfg:mkt> commit
zonecfg:mkt> exit

global # zoneadm -z mkt install
Preparing to install zone <mkt>.
Checking <ufs> file system on device </dev/md/rdsk/d200> to be mounted
at </export/zones/mkt/root>
Creating list of files to copy from the global zone.
Copying <2584> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <916> packages on the zone.
Initialized <916> packages on zone.
Zone <mkt> is initialized.
The file </export/zones/mkt/root/var/sadm/system/logs/install_log>
contains a log of the zone installation.

 Using Zones — An Example 77

At this point, the normal system identification process for a freshly installed Solaris OS
instance is started. The output of this process is omitted here for brevity, and the
configuration questions concerning the name service, time zone, etc., should be answered as
appropriate for the site. After system identification is complete and the root password is set,
the zone is ready for use.

To disconnect from the console use ~. (tilde dot) just like in tip(1). The zone can now be
accessed over the network using the telnet(1), rlogin(1) or ssh(1) commands, just like
a standard Solaris OS system. (Note that root can only login at the console unless the
/etc/default/login file is updated).

global # zoneadm -z mkt boot
global # zlogin -C mkt
[Connected to zone 'mkt' console]

SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: mkt
Loading smf(5) service descriptions: 100/100

SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: mkt

mkt console login:

78 Isolating Applications • October 2006

The /lib, /platform, /sbin, and /usr file systems are read-only loopback mounts from the
global zone. This reduces the required disk space for the zone considerably, and allows the
sharing of text pages, leading to more efficient use of memory. These file systems appear in
the zone because they are defined in the default template used to create this zone. All other
file systems are private to the zone. The /u01 file system is mounted in the zone during zone
boot by zoneadmd. It is not mounted by the zone itself. Also note that the zone is unaware
that the file system is in fact residing on /dev/md/dsk/d200.

Installing Oracle

The group dba and the user oracle are required to run the Oracle software. Since the Oracle
software uses shared memory, and the maximum amount of shared memory is now a project
resource control, a project is needed in which to run Oracle. The project ora_mkt project is
created in the zone and the project.max-shm-memory is set to the required value (in this
case 2 GB). Since the System V IPC parameters are resource controls in Solaris 10 OS, there
is no need to update the /etc/system file and reboot.

Note that the zone has its own namespace and that the user, group and project just created are
therefore only visible inside the mkt zone.

mkt console login: root
Password:
Last login: Tue Mar 22 21:55:00 on console
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
df -h
Filesystem size used avail capacity Mounted on
/ 7.9G 4.6G 3.2G 60% /
/dev 7.9G 4.6G 3.2G 60% /dev
/lib 7.9G 4.6G 3.2G 60% /lib
/platform 7.9G 4.6G 3.2G 60% /platform
/sbin 7.9G 4.6G 3.2G 60% /sbin
/u01 7.9G 8.0M 7.8G 1% /u01
/usr 7.9G 4.6G 3.2G 60% /usr
proc 0K 0K 0K 0% /proc
ctfs 0K 0K 0K 0% /system/contract
swap 15G 272K 15G 1% /etc/svc/volatile
mnttab 0K 0K 0K 0% /etc/mnttab
fd 0K 0K 0K 0% /dev/fd
swap 15G 0K 15G 0% /tmp
swap 15G 24K 15G 1% /var/run

 Using Zones — An Example 79

The Oracle software and database are installed in /u01. In this example, the Oracle software
is installed in the zone itself to create an Oracle installation independent from other Oracle
installations. The software could be installed in the global zone and then loopback mounted
in the local zones. Doing so allows sharing of the binaries by multiple zones, but also creates
a coupling between Oracle installations with regards to patch levels and more. This example
shows how to use zones to consolidate Oracle instances with maximum isolation from each
other, so the software is not shared. The installation can now be performed. Since /usr is
mounted read-only in the zone, the default location /usr/local/bin suggested by the Oracle
Installer should be changed to a writable directory in the zone, such as /opt/local/bin. The
marketing database can be created using the procedure used earlier. Using the smf service for
the marketing database from the Managing Workloads example, the database instance can be
started by importing the manifest and enabling the mktdb service in the zone.

Creating the Second Zone
The first zone used a directory in /export/zones in the global zone. Since this does not limit
the size of the root file system of the local zone it could fill up the file system in the global
zone, where /export/zones is located. To prevent a local zone from creating this problem, the
zone root file system is created on a separate file system. The second zone is for the sales
database and requires the following resources.

� A 100 MB file system for the zone root file system mounted in the global zone on
/export/zones/sales. This file system is created on a Solaris Volume Manager soft partition
(/dev/md/dsk/d100). A normal slice could also be used but would be quite wasteful given
the limited number of slices available on a disk.

� To show how devices can be used in a zone, the disk slice c1t1d0s3 is exported to the
zone by the global zone administrator. A UFS file system is created on this slice inside the
zone. This requires that both the block and character devices for the slice be exported to
the zone. Note that this is for demonstration purposes only and is not the recommended
way to use UFS file systems in a zone.

mkt # mkdir -p /export/home
mkt # groupadd dba
mkt # useradd -g dba -d /export/home/oracle -m -s /bin/bash oracle
mkt # passwd oracle
mkt # projadd -c “Oracle” user.oracle
mkt # projadd -c "Oracle" -U oracle ora_mkt
mkt # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_mkt
mkt # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_mkt:101:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)
user.oracle:100:Oracle:::project.max-shm-memory=(privileged,2147483648,deny)

80 Isolating Applications • October 2006

� A virtual network interface with IP address 192.168.1.15 on the hme0 interface of the
global zone is also needed.

Configuring and Installing the Second Zone

The steps required to configure and install this zone are the same as for the first zone, with
the exception that two devices are added to the zone configuration.

global # newfs /dev/md/rdsk/d100
global # mkdir -p /export/zones/sales
global # mount /dev/md/dsk/d100 /export/zones/sales
global # chmod 700 /export/zones/sales

global # zonecfg -z sales
sales: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:sales> create
zonecfg:sales> set zonepath=/export/zones/sales
zonecfg:sales> set autoboot=true
zonecfg:sales> add net
zonecfg:sales:net> set physical=hme0
zonecfg:sales:net> set address=192.168.1.15/24
zonecfg:sales:net> end
zonecfg:sales> add device
zonecfg:sales:device> set match=/dev/rdsk/c1t1d0s3
zonecfg:sales:device> end
zonecfg:sales> add device
zonecfg:sales:device> set match=/dev/dsk/c1t1d0s3
zonecfg:sales:device> end
zonecfg:sales> verify
zonecfg:sales> commit
zonecfg:sales> exit
global # zoneadm -z sales install
Preparing to install zone <sales>.
Creating list of files to copy from the global zone.
Copying <2584> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <916> packages on the zone.
Initialized <916> packages on zone.
Zone <sales> is initialized.
The file </export/zones/sales/root/var/sadm/system/logs/install_log>
contains a log of the zone installation.

 Using Zones — An Example 81

Booting the Zone

The first time a zone is booted after installation, the system identification process is
performed. It is possible to skip the system identification questions during the first boot of
the zone by creating a sysidcfg file in the zone prior to the first boot. The location of the
sysidcfg file from the global zone is /export/zone/sales/root/etc/sysidcfg. A sample
sysidcfg file is shown below, and can be customized to fit the situation.

To suppress the question about the NFS version 4 domain, set the NFSMAPID_DOMAIN line in
the /export/zones/sales/root/etc/nfs/default file to the appropriate value for the site and create
the /export/zones/sales/root/etc/.NFS4inst_state.domain file.

The /dev/dsk/c1t1d0s3 and /dev/rdsk/c1t1d0s3 devices are added to the zone configuration to
show how devices can be imported into a zone. Note that the only devices present in the
/dev/dsk and /dev/rdsk directories are the devices that were explicitly added to the zone
configuration.

global # cat /export/zone/sales/root/etc/sysidcfg
system_locale=C
timezone=US/Pacific
network_interface=primary {
 hostname=hostname

terminal=xterm
security_policy=NONE
name_service=NIS {
 domain_name=yourdomain.com

}
root_password=sS3G0h84sqwJA

global # zoneadm -z sales boot
global # zlogin sales
sales # ls -l /dev/dsk
total 0
brw-r----- 1 root sys 32, 3 Mar 24 11:44 c1t1d0s3
sales # ls -l /dev/rdsk
total 0
crw-r----- 1 root sys 32, 3 Mar 24 11:44 c1t1d0s3

82 Isolating Applications • October 2006

A new file system is created and added to the zone’s /etc/vfstab file.

Notice the difference beteen the /u01 file system in this zone and the /u01 file system in the
mkt zone. In this zone the physical device is visible while in the mkt zone it is not visible.

Installing Oracle

The installation of the Oracle software is the same as that for the mkt zone. Since the zones
have completely separate namespaces, the user, group and project for Oracle must be created
in this zone also. The project user.oracle should have the resource control project.max-
shm-memory added to it to allow Oracle access to the required shared memory.

sales # newfs /dev/rdsk/c1t1d0s3
sales # mkdir /u01
sales # mount /dev/dsk/c1t1d0s3 /u01
sales # cat /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/proc - /proc proc - no -
ctfs - /system/contract ctfs - no -
objfs - /system/object objfs - no -
fd - /dev/fd fd - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c1t1d0s3 /dev/rdsk/c1t1d0s3 /u01 ufs 2 yes nologging

sales # df -h
Filesystem size used avail capacity Mounted on
/ 94M 70M 14M 83% /
/dev 94M 70M 14M 83% /dev
/lib 7.9G 4.6G 3.2G 60% /lib
/platform 7.9G 4.6G 3.2G 60% /platform
/sbin 7.9G 4.6G 3.2G 60% /sbin
/usr 7.9G 4.6G 3.2G 60% /usr
proc 0K 0K 0K 0% /proc
ctfs 0K 0K 0K 0% /system/contract
swap 15G 272K 15G 1% /etc/svc/volatile
mnttab 0K 0K 0K 0% /etc/mnttab
fd 0K 0K 0K 0% /dev/fd
swap 15G 0K 15G 0% /tmp
swap 15G 24K 15G 1% /var/run
/dev/dsk/c1t1d0s3 4.9G 5.0M 4.9G 1% /u01

 Using Zones — An Example 83

The Oracle installation can now be performed. Since /usr is mounted read-only from the
global zone, the default location /usr/local/bin suggested by the Oracle Installer should be
changed to a writable directory such as /opt/local/bin. The sales database can be created
using the procedure on page 93. Using the smf service for the sales database the Managing
Workloads example, the database instance can be started by importing the manifest and
enabling the salesdb service in the zone.

Controlling CPU Consumption of Zones

The zone.cpu-shares resource control can be used to limit the CPU usage of zones with
respect to other zones. This resource control is set through the zonecfg(1M) command. To
give the sales zone twice the amount of CPU resources as the mkt zone, the number of
zone.cpu-shares of the sales zone is set to twice the number of zone.cpu-shares of
the mkt zone:

sales # mkdir -p /export/home/oracle
sales # groupadd dba
sales # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
sales # passwd oracle
sales # projadd -c "Oracle" -U oracle ora_sales
sales # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_sales
sales # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_sales:100:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)

global # zonecfg -z sales
zonecfg:sales> add rctl
zonecfg:sales:rctl> set name=zone.cpu-shares
zonecfg:sales:rctl> add value (priv=privileged,limit=20,action=none)
zonecfg:sales:rctl> end
zonecfg:sales> exit
global # zonecfg -z mkt
zonecfg:mkt> add rctl
zonecfg:mkt:rctl> set name=zone.cpu-shares
zonecfg:mkt:rctl> add value (priv=privileged,limit=10,action=none)
zonecfg:mkt:rctl> end
zonecfg:mkt> exit

84 Isolating Applications • October 2006

The resource control is made active at the next zone boot. To set the zone.cpu-shares
resource control on a running zone the prctl(1) command can be used.

To observe processes, the prstat(1M) command has been enhanced for zones with the -Z
and -z options. The following prstat -Z output from the global zone shows processes
running in the global and local zones. The bottom of the output shows a summary line for
every running zone. Both zones are running eight instances of the nspin utility to show how
CPU usage is controlled by the zone.cpu-shares resource control when contention arises
for CPU resources. As can be seen from the output, the sales zone is given twice the amount
of CPU resources, even while both zones are requesting the same amount of CPU resources
from the system.

To observe processes in one or more specific zones, the prstat command can be given a list
of zones to observe with the -z option. The following output was taken while both zones
were executing eight instances of the nspin command. Only eight of the sixteen nspin
processes are shown here (those in the sales zone).

global # prctl -n zone.cpu-shares -r -v 20 -i zone sales
global # prctl -n zone.cpu-shares -r -v 10 -i zone mkt

global # prstat -Z
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 28848 root 1144K 680K cpu10 12 0 0:00:34 8.2% nspin/1
 28844 root 1144K 680K cpu2 13 0 0:00:33 8.0% nspin/1
 28845 root 1144K 680K run 9 0 0:00:33 8.0% nspin/1
 28846 root 1144K 680K cpu3 8 0 0:00:33 8.0% nspin/1
 28843 root 1144K 816K run 11 0 0:00:33 7.8% nspin/1
 28849 root 1144K 680K cpu0 13 0 0:00:32 7.7% nspin/1
 28847 root 1144K 680K run 12 0 0:00:32 7.6% nspin/1
 28850 root 1136K 672K cpu1 14 0 0:00:32 7.5% nspin/1
 28772 root 1144K 680K run 8 0 0:00:18 4.1% nspin/1
 28771 root 1144K 680K run 3 0 0:00:19 4.1% nspin/1
 28775 root 1136K 672K run 10 0 0:00:19 4.1% nspin/1
 28774 root 1144K 680K run 9 0 0:00:19 4.1% nspin/1
 28769 root 1144K 680K run 1 0 0:00:19 4.0% nspin/1
 28768 root 1144K 816K run 12 0 0:00:17 4.0% nspin/1
 28770 root 1144K 680K run 13 0 0:00:17 3.9% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 9 17 43M 30M 0.4% 0:04:30 63% sales
 10 35 105M 69M 0.8% 0:02:37 32% mkt
 0 50 219M 127M 1.5% 0:01:24 0.1% global

Total: 102 processes, 331 lwps, load averages: 10.89, 5.64, 3.09

 Using Zones — An Example 85

Controlling CPU Consumption Inside Zones

The zone.cpu-shares resource control determines the CPU consumption of the zone as a
whole in relation to other active zones. CPU consumption inside a zone is controlled by the
project.cpu-shares resource control. Since zones have their own project database, the
CPU consumption inside the zone can be controlled by the local zone administrator. To
demonstrate this capability, two projects are added to the project database in the sales zone.
The CPU shares of the projects are set to 40 and 10, giving the first project four times more
CPU resources than the second project. Each project runs four instances of the nspin utility.

global # prstat -z sales -a
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 28845 root 1144K 680K run 7 0 0:01:39 8.5% nspin/1
 28850 root 1136K 672K run 12 0 0:01:38 8.3% nspin/1
 28846 root 1144K 680K run 7 0 0:01:38 8.3% nspin/1
 28849 root 1144K 680K run 14 0 0:01:38 8.2% nspin/1
 28844 root 1144K 680K cpu0 18 0 0:01:39 8.2% nspin/1
 28843 root 1144K 816K run 11 0 0:01:38 8.1% nspin/1
 28847 root 1144K 680K cpu3 18 0 0:01:37 8.0% nspin/1
 28848 root 1144K 680K cpu10 23 0 0:01:39 7.8% nspin/1
 28401 root 11M 8584K sleep 59 0 0:00:02 0.0% svc.startd/11
 28399 root 2200K 1456K sleep 59 0 0:00:00 0.0% init/1
 28496 root 1280K 1032K sleep 59 0 0:00:00 0.0% sh/1
 28507 root 3544K 2608K sleep 59 0 0:00:00 0.0% nscd/23
 28516 root 1248K 920K sleep 59 0 0:00:00 0.0% utmpd/1
 28388 root 0K 0K sleep 60 - 0:00:00 0.0% zsched/1
 28517 root 2072K 1344K sleep 59 0 0:00:00 0.0% ttymon/1
 NPROC USERNAME SIZE RSS MEMORY TIME CPU
 16 root 39M 29M 0.3% 0:13:14 65%
 1 daemon 3528K 1312K 0.0% 0:00:00 0.0%

Total: 17 processes, 60 lwps, load averages: 15.47, 9.33, 4.85

86 Isolating Applications • October 2006

sales # projadd -K "project.cpu-shares=(privileged,40,none)" -U root abc
sales # projadd -K "project.cpu-shares=(privileged,10,none)" -U root xyz
sales # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_sales:100:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)
abc:101::root::project.cpu-shares=(privileged,40,none)
xyz:102::root::project.cpu-shares=(privileged,10,none)

sales # newtask -p abc
sales # id -p
uid=0(root) gid=1(other) projid=(abc)
sales # nspin -n 4 &
29004
sales # newtask -p xyz
sales # id -p
uid = 0(root) gid=1(other) projid=(xyz)
sales # nspin -n 4 &
29008

sales # prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 29009 root 1144K 680K cpu11 17 0 0:02:19 13% nspin/1
 29008 root 1144K 680K run 22 0 0:02:16 13% nspin/1
...
 28507 root 3680K 2888K sleep 59 0 0:00:00 0.0% nscd/24
 28997 root 1280K 1032K sleep 59 0 0:00:00 0.0% sh/1
PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 101 5 5808K 3832K 0.0% 0:09:09 52% abc
 102 5 5808K 3832K 0.0% 0:02:40 14% xyz
 1 5 13M 10M 0.1% 0:00:00 0.0% user.root
 0 8 33M 24M 0.3% 0:00:08 0.0% system
Total: 23 processes, 67 lwps, load averages: 15.89, 13.20, 11.70

global # prstat -Z
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 29009 root 1144K 680K cpu11 28 0 0:03:35 13% nspin/1
...
 29004 root 1144K 680K run 24 0 0:01:01 3.5% nspin/1
 29006 root 1136K 672K run 27 0 0:01:01 3.4% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 9 21 49M 36M 0.4% 0:18:17 65% sales
 10 35 105M 70M 0.8% 1:35:49 34% mkt
 0 54 244M 138M 1.7% 0:01:25 0.0% global

Total: 110 processes, 340 lwps, load averages: 15.98, 13.96, 12.13

 Using Zones — An Example 87

In this case, with only the sales and the mkt zones active, the sales zone is entitled to the
following percentage of available CPU resources, as calculated by:

This 66 percent is then distributed among the projects in the zone. The project abc is entitled
to the following percentage of available CPU resources:

The xyz project is entitled to 13 percent of total CPU resources (as calculated by
10 / (40 + 10) * 66% = 13%). The output from the prstat -J command in the sales zone
confirms that this is the case. Note that the global zone has been omitted from the
calculations for simplicity. It does, however, use some CPU resources so the numbers
calculated may differ slightly from observed behavior.

Halting Zones

There are two methods for stopping a zone. The first, and graceful, method instructs a zone
to terminate running processes and run any legacy .rc scripts.

While faster, the second method does not warn zone users that the zone is shutting down, and
does not allow the zone to gracefully terminate services. It forcefully stops all processes
running in the zone and changes the zone’s state to installed.

global# zlogin zonename /usr/bin/shutdown -g 10 -y -i 0

global# zoneadm -z zonename halt

zones.cpu-sharessales

zone.cpu-sharessales zone.cpu-sharesmkt+()
-- 100× 20

20 10+()
----------------------- 100× 66%= =

project.cpu-sharesabc

project.cpu-sharesabc project.cpu-sharesxyz+()
--- 66%× 40

40 10+()
----------------------- 66%× 53%= =

88 Isolating Applications • October 2006

 89

7

Creating Solaris Containers

Combining the resource management and Solaris Zones features available in the Solaris 10
OS, system administrators can create Solaris Containers tailored for a specific use. Building
on the examples in the previous chapters, assume an administrator wants to run the following
workloads on a single SMP system:

� The production sales database
� The production marketing database
� A development environment for the marketing database with multiple developers working

on application development
� A development environment for the sales database
� System management

The following issues prevent successful consolidation onto a single system:

� The databases are managed by two different DBA organizations that each have their own
(conflicting) standards

� The database systems use different naming services

� The development systems use the same usernames, file system paths and Oracle SIDs as
the production environment

� The database instances should be guarateed a certain minimum and maximum amount of
CPU capacity at all times

� The production systems should get preferential treatment over the development systems

� The sales database is the most important workload

� Developers should not be able to monopolize the CPU resources on the development
systems

� The marketing department is willing to pay for a maximum of two CPUs

The problem is that the sales and marketing databases cannot co-exist on a single system
because of different database administration standards and the use of different naming
services. This can be overcome by using a separate zone for each workload. The issue of the
development environments sharing naming with production can also be overcome with
zones. Each zone has its own namespace for users, file systems, network ports and naming
services.

90 Creating Solaris Containers • October 2006

The guarantee for minimum and maximum CPU capacity can be ensured by using Dynamic
Resource Pools and the Fair Share Scheduler. Resource Pools provide hard upper and lower
bounds at the granularity of a CPU. By creating a pool for the sales production database, a
pool for the marketing database, and a pool for all other workloads, the production databases
can be given guaranteed CPU capacity.

The demand for preferential treatment of the production systems can be implemented using
the Fair Share Scheduler by assigning the production zones more zone.cpu-shares than
development zones. When contention for CPU resources arises, the production zones are
given more CPU resources than the other zones.

To prevent a developer from monopolizing the CPU resources in a development zone, each
developer is assigned to a project with a certain amount of project.cpu-shares. The Fair
Share Scheduler is used inside the development zones to distribute CPU resources according
to the shares.

FIGURE 9-1 Solaris Zones and the resource management features of the Solaris 10 OS work
together to enable applications to co-exist on systems

This leads to the following design:

� The resouce pool sales with processor set large with at least two CPUs and no upper
bound on CPUs.

� Bound to this pool is a single zone sales, allowing exclusive access to CPUs in the
large processor set for the sales production database only.

� Inside the zone, a single project ora_sales, used to limit the amount of shared memory.

� The pool uses the default Time Sharing (TS) scheduler since there is no need to arbitrate
between zones in the pool or between projects in the zone.

� A marketing resource pool with processor set small with one to two CPUs.

 Container Construction 91

� Bound to this pool are two zones, mkt for the marketing production database and
mkt_dev for the development database.

� The pool uses the Fair Share Scheduler (FSS) to arbitrate between the two zones bound to
the pool and between projects in those zones.

� Inside each zone is one project ora_mkt to limit shared memory for the Oracle instance.

� Each developer is assigned a unique project in the development zone with a suitable
amount of CPU shares.

� The default resource pool pool_default with a processor set with at least one CPU.

� The global zone and sales_dev zone for sales developers are bound to the pool.

� This pool uses the FSS scheduler to arbitrate between the two zones bound to the pool,
and between projects in those zones.

� Developers receive unique projects in the development zone with sufficient CPU shares.

Container Construction
Creating the Pools

The pool configuration built ealier almost matches the design, and could be used as a basis to
create the required pools. However, the pools are created from scratch in order to show all
relevant steps in a single location.

1. Enable the resource pools facility and save the default configuration to the
/etc/pooladm.conf file. The default configuration constists of a processor set
pset_default with all CPUs and a single pool pool_default.

2. Create the sales resource pool with TS as the scheduler and the large processor set with
at least two CPUs.

3. Create the marketing resource pool with FSS as the scheduler and the small processor
set with one or two CPUs.

global # pooladm -e
global # pooladm -s

global # poolcfg -c ‘create pset large (uint pset.min=2; uint pset.max=65536)’
global # poolcfg -c ‘create pool sales (string pool.scheduler=”TS”)’
global # poolcfg -c ‘associate pool sales (pset large)’

global # poolcfg -c ‘create pset small (uint pset.min=1; uint pset.max=2)’
global # poolcfg -c ‘create pool marketing (string pool.scheduler=”FSS”)’
global # poolcfg -c ‘associate pool marketing (pset small)’

92 Creating Solaris Containers • October 2006

4. Set the scheduler for the default pool to the Fair Share Scheduler and instantiate the pool
configuration just created:

global # poolcfg -c 'modify pool pool_default (string pool.scheduler="FSS")'
global # pooladm -c
global # poolcfg -dc info

system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 29072

 pool marketing
 int pool.sys_id 5
 boolean pool.active true
 boolean pool.default false
 string pool.scheduler FSS
 int pool.importance 1
 string pool.comment
 pset small
 pool sales
 int pool.sys_id 6
 boolean pool.active true
 boolean pool.default false
 string pool.scheduler TS
 int pool.importance 1
 string pool.comment
 pset large
 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 string pool.scheduler FSS
 int pool.importance 1
 string pool.comment
 pset pset_default

pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

 Container Construction 93

cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line

cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

pset small
 int pset.sys_id 2
 boolean pset.default false
 uint pset.min 1
 uint pset.max 2
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line
 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

 pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 17
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

94 Creating Solaris Containers • October 2006

Binding Zones to Pools

Currently all zones are bound to the default pool because the pool property of the created
zones has not been set, resulting in the zones being bound to the pool with the
pool.default attribute set to true. Setting the zone's pool property to the name of a
resource pool binds that zone and all of its processes to that pool when the zone is booted.
Note that since the sales zone is bound to a resource pool with the normal TS scheduler, the
zone.cpu-shares resource control is no longer applicable and is therefore removed from
the zone configuration.

To bind a running zone to a pool without rebooting the zone, the poolbind(1M) command
can be used. This dynamically rebinds the zone and its processes to a pool until the next zone
boot. To have this change persist accross zone reboots, the zone's property should be set as
shown above.

The poolbind -q `pgrep -z sales -x init` command is used to ascertain to which
zone the current pool is bound by querying the binding of the init(1M) process of that
zone. As can been seen, the sales zone was bound to the pool pool_default and is now
bound to the sales pool.

Creating Development Zones

The development environments for both databases get their own zones, enabing them to use
the same user names, projects and file system paths as the production environments. The
development zone for the sales database, sales_dev, is bound to the default pool and shares
the pool with all processes of the global zone. To prevent the sales_dev zone from
monopolizing CPU resources, its zone.cpu-shares is set to the same value as that of the

global # zonecfg -z sales set pool=sales
global # zonecfg -z sales remove rctl name=zone.cpu-shares
global # zonecfg -z mkt set pool=marketing

global # poolbind -q `pgrep -z sales -x init`
28399 pool_default
global # poolbind -p sales -i zoneid sales
global # poolbind -q `pgrep -z sales -x init`
28399 sales
global # poolbind -p marketing -i zoneid mkt
global # poolbind -q `pgrep -z mkt -x init`
28545 marketing

 Container Construction 95

global zone. This gives both zones equal access to CPU resources. When the Fair Share
Scheduler is active in a resource pool, it only looks at processes in that pool. The amount of
shares for the sales_dev zone is only relevant in relation to those of the global zone.

The development environment of the marketing database uses the same pool as the zone for
the marketing production database. The Fair Share Scheduler is used to give preferential
access to the production zone. By setting the zone.cpu-shares of the mkt zone to 50, and
the zone.cpu-shares of the mkt_dev zone to 10, the production database is granted five
times as much CPU resources as the development database.

global # zonecfg -z sales_dev
sales_dev: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:sales_dev> create
zonecfg:sales_dev> set zonepath=/export/zones/sales_dev
zonecfg:sales_dev> set autoboot=true
zonecfg:sales_dev> set pool=pool_default
zonecfg:sales_dev> add rctl
zonecfg:sales_dev:rctl> set name=zone.cpu-shares
zonecfg:sales_dev:rctl> add value (priv=privileged,limit=1,action=none)
zonecfg:sales_dev:rctl> end
[...]
global # chmod 700 /export/zones/sales_dev
global # zoneadm -z sales_dev install
[...]
global # zoneadm -z sales_dev boot

global # zonecfg -z mkt 'select rctl name=zone.cpu-shares; set
value=(priv=privileged,limit=50,action=none);end'

global # zonecfg -z mkt_dev
mkt_dev: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:mkt_dev> create
zonecfg:mkt_dev> set zonepath=/export/zones/mkt_dev
zonecfg:mkt_dev> set autoboot=true
zonecfg:mkt_dev> set pool=marketing
zonecfg:mkt_dev> add rctl
zonecfg:mkt_dev:rctl> set name=zone.cpu-shares
zonecfg:mkt_dev:rctl> add value (priv=privileged,limit=10,action=none)
zonecfg:mkt_dev:rctl> end
[...]
global # chmod 700 /export/zones/mkt_dev
global # zoneadm -z mkt_dev install
[...]
global # zoneadm -z mkt_dev boot

96 Creating Solaris Containers • October 2006

The pool bindings for the zones can be verified using the poolbind -q pid command on
every zone's init(1M) process.

Creating Development Users and Projects

Once all zones are created, it is time to create users and projects inside the development
zones and set the appropriate resource controls to implement the design. The Fair Share
Scheduler is used to prevent the developers from consuming the CPU resources. In both
zones three users and three projects are created.

global # poolbind -q `pgrep -z sales_dev -x init`
6718 pool_default
global # poolbind -q `pgrep -z sales -x init`
28399 sales
global # poolbind -q `pgrep -z mkt -x init`
28545 marketing
global # poolbind -q `pgrep -z mkt_dev -x init`
6579 marketing
global # poolbind -q `pgrep -z global -x init`
1 pool_default

User Project Resource Controls Value

oracle ora_mkt project.max-shm-memory 2 GB

project.cpu-shares 100

oracle ora_sales project.max-shm-memory 2 GB

project.cpu-shares 100

dev1 user.dev1 project.cpu-shares 10

dev2 user.dev2 project.cpu-shares 10

 Container Construction 97

Verifying the Configuration

The configuration just built can be verified using the following steps:

1. Start the prstat -Z command in the global zone to observe the CPU utilization of the
zones.

2. Start the poolstat -r pset 5 command in the global zone to observe utlization in the
resource pools.

global # zlogin mkt_dev
mkt_dev # mkdir -p /export/home
mkt_dev # groupadd dba
mkt_dev # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
mkt_dev # projadd -U oracle ora_mkt
mkt_dev # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_mkt
mkt_dev # projmod -sK "project.cpu-shares=(privileged,100,none)" ora_mkt
mkt_dev # useradd -m -d /export/home/dev1 -s /bin/bash dev1
mkt_dev # useradd -m -d /export/home/dev2 -s /bin/bash dev2
mkt_dev # projadd user.dev1
mkt_dev # projadd user.dev2
mkt_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev1
mkt_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev2
[Oracle installation omitted for brevity...]

global # zlogin sales_dev
sales_dev # mkdir -p /export/home
sales_dev # groupadd dba
sales_dev # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
sales_dev # projadd -U oracle ora_sales
sales_dev # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_sales
sales_dev # projmod -sK "project.cpu-shares=(privileged,100,none)" ora_sales
sales_dev # useradd -m -d /export/home/dev1 -s /bin/bash dev1
sales_dev # useradd -m -d /export/home/dev2 -s /bin/bash dev2
sales_dev # projadd user.dev1
sales_dev # projadd user.dev2
sales_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev1
sales_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev2
[Oracle installation omitted for brevity...]

98 Creating Solaris Containers • October 2006

3. Create load using the nspin -n 4 command in the mkt zone as the user oracle in the
ora_mkt project. Note the CPU consumption of the mkt zone peaks around 33% since the
marketing resource pool to which the zone is bound consists of two CPUs. The other
CPUs are idle.

4. Add the same load in the mkt_dev zone. The combined CPU usage of the mkt and
mkt_dev zones is approximately 33% since they share the same resource pool. The mkt
zone receives approximately 27% and the mkt_dev zone about 6% because the mkt zone
has five times more zone.cpu-shares than the mkt_dev zone.

5. Add the same load in the sales zone. The sales zone receives 33% since it is bound to
the sales pool, which also has two CPUs. The CPU consumption of the mkt and
mkt_dev zones is not impacted by the CPU usage of the sales zone.

6. Add load in the sales_dev zone. This zone is bound to the default pool. As a result, it is
able to use all of the remaining CPU capacity since it is the only zone in that pool using
CPU resources.

7. Add the same load in the global zone. The global zone is also bound to the default pool,
and has the same amount of zone.cpu-shares as the sales_dev zone. The CPU usage
of both zones is therefore equal, and approximately 16 percent. The resulting prstat -Z
command output looks as follows:

8. Add load in the sales_dev zone in the user.dev1 and user.dev2 projects. The total
CPU usage of the sales_dev zone remains the same. However, in the zone the CPU
should now be divided across the three projects according to the project.cpu-shares
in the zone. Notice that a zone bound to a resource pool is only aware of the CPUs in the
associated processor set. As a result, the sales_dev zone only knows about two CPUs,
and the usage shown in the output of the prstat command is therefore based on two
CPUs. That is why inside the zone the three projects seem to use 50 percent. (The other
50 percent is used by the global zone that is also bound to the same pool.) The
user.dev1 and user.dev2 projects receive 10/120ths each of that 50 percent since they
each have 10 project.cpu-shares and ora_sales has 100 project.cpu-shares.

global # prstat -Z
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 1987 100 1144K 672K cpu3 20 0 0:04:17 8.4% nspin/1
[...]
 2031 root 1144K 808K run 7 0 0:00:49 4.1% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 2 15 42M 30M 0.4% 0:17:17 33% sales
 1 33 104M 69M 0.8% 0:23:00 27% mkt
 0 65 388M 179M 2.2% 0:03:36 17% global
 3 33 105M 71M 0.8% 0:06:27 16% sales_dev
 4 33 103M 69M 0.8% 0:03:53 5.7% mkt_dev

Total: 179 processes, 586 lwps, load averages: 19.81, 14.84, 8.04

 Container Construction 99

This example illustrates some of the ways that Solaris Containers technologies can be used to
facilitate consolidation. It should be noted that not all features must be used at the same time.
Depending on the circumstances some Solaris Container technologies, such as resource
management, resource pools and Solais Zones, can be mixed and matched to meet the
specific needs for a consolidation project. In some cases, just using the Fair Share Scheduler
may be sufficient to meet requirements, while in other cases Solaris Zones can be the key
technology to a succesful consolidation.

sales_dev # prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 2016 oracle 1144K 672K run 35 0 0:24:48 10% nspin/1
 2088 dev1 1136K 704K run 1 0 0:00:03 1.4% nspin/1
[...]
 2113 dev2 1144K 848K run 27 0 0:00:02 1.2% nspin/1
PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 100 5 7456K 4864K 0.1% 1:39:06 40% ora_sales
 101 5 7464K 5072K 0.1% 0:00:12 5.3% user.dev1
 102 5 7464K 5072K 0.1% 0:00:08 5.0% user.dev2
 1 5 11M 9336K 0.1% 0:00:00 0.2% user.root
 0 26 93M 63M 0.8% 0:00:14 0.0% system
 3 1 2904K 2064K 0.0% 0:00:00 0.0% default
Total: 47 processes, 132 lwps, load averages: 14.43, 10.28, 8.84

100 Creating Solaris Containers • October 2006

 101

8

Integrating Solaris Containers into the
Environment

Solaris Containers technology provides extensive flexibility, and selecting an appropriate set
of these features for a given environment can be challenging. This chapter provides
guidelines and suggestions for designing system configurations using these powerful tools.
More detailed documents are available that provide the commands needed to implement
these guidelines, and can be found in the references listed at the end of this document.

When designing system configurations, Solaris Containers technology can help with:

� Storage configuration — Solaris Containers support the use of multiple storage types,
including direct attached storage (DAS), network attached storage (NAS) and storage area
networks (SAN), as well as multiple file system types, and flexible layouts.

� Flexible network configurations — Solaris Containers can be used in conjunction with
Internet Protocol Multi-Pathing (IPMP), trunking, quality of service (QoS), virtual LANS
(VLANs), and network address translation (NAT).

� Resource management controls — Solaris Containers utilize processor sets, pools,
projects, and other resource management facilities in the Solaris OS to gain control over
computing resources and affect better utilization.

Solaris Containers provide a wide variety of configuration options. While default parameters
ensure the creation of highly secure zones, global zone administrators can change these
defaults and add more functionality to the environment. Many of these choices are discussed
below, along with potential pitfalls. Additional topics can be found in the Zones and
Containers FAQ located at http://www.opensolaris.org/os/community/zones/faq/ on the
OpenSolaris Web site.

102 Integrating Solaris Containers into the Environment • October 2006

Storage Configuration
Several factors related to storage and data systems should be considered when deploying
Solaris Containers technology.

File System Structure

Two models can be used for the operating system file layout for a Solaris non-global zone.

� Whole root
A whole root zone includes a complete copy of the operating system on disk. A process
running in a whole root zone can only see the files in this copy, as well as files created by
users in this zone. This model offers flexibility—the root user can install new versions of
the system and user libraries. However, the whole root model also requires more
administration, such as keeping track of different library versions and patching each one
appropriately.

� Sparse root
A sparse root zone does not include its own private copy of the operating system binaries
and libraries. Indeed, it does not have copies of the /usr, /sbin, /platform, or /lib
directories. Instead, programs in the non-global zone use the files that reside in the global
zone via a loopback file system (LOFS) mount point to each aforementioned directory. It
is important to note that the default model for a zone is the sparse root model, as it saves
physical memory and disk space, and simplifies administration. When a sparse root zone
is installed, it is aware of the same packages the global zone knows about at the time of
zone installation, including non-Solaris packages. The only exceptions are packages
installed in the global zone with the package parameter SUNW_PKG_THISZONE set to TRUE.

Whole root zones use more physical memory and storage resources than sparse root zones. In
shared library environments like the Solaris OS, all users share in-memory copies of system
libraries to reduce memory use. Because sparse root zones share the /lib directory, all users
in all sparse root zones share the same in-memory copy of these libraries, along with the
global zone. Users in whole root zones access separate copies of these libraries, increasing
system memory use.

Recall that the global zone is the place where the operating system kernel runs, and from
where the system is controlled and configured, and where the other non-global zones are
created. In addition to the fact that the global zone and non-global zones have differences in
directory structure and layout, non-global zones do not contain the following directories:

� /boot, files used for hardware booting that are not needed in non-global zones
� /devices, device files that are not allowed in non-global zones
� /vol, device entries for removable hardware

 Storage Configuration 103

File Systems versus Raw Devices

Access to a raw device, such as /dev/rdsk/c1t0d0s0, can be assigned to a Container through
the use of the add device subcommand of the zonecfg(1m) command. Raw device access
should be used with caution as it may enable Container users with sufficient privileges to
bypass the security boundary built into each Container. For example, providing direct access
to a raw disk partition enables the root user of a non-global zone to create a file system and
write garbage to its superblock, which will cause the system to panic. Whenever possible,
avoid giving Containers access to devices.

Selecting Direct Attached Storage, Network Attached
Storage, and Storage Area Networks

A Container can access direct attached storage, storage area networks, and network attached
storage file systems when properly configured. Consider the following when choosing an
access method:

� Direct attached storage
Direct attached storage (DAS) is defined by storage devices that reside in, or are directly
connected to, a computer system. While direct attached storage provides the simplest
access method, it limits flexibility when moving a Container or its workload to a different
system.

� Network attached storage
Network attached storage (NAS) is characterized by the ability to provide data access
over the network. Currently, the root directory of a Container cannot be stored on network
attached storage (NAS). However, NAS systems can be used to centralize zone and
application storage, helping to simplify storage management and disaster recovery
methods.

� Storage area networks
Storage area networks (SANs) are networks of storage devices that provide data access to
servers. Storage area networks can be used to centralize zone and application storage,
helping to simplify storage management and disaster recovery methods.

File System Types

Storage can be assigned to zones via several methods. This section briefly describes some of
these methods, and compares their use. Each method can be achieved manually from the
global zone, or automatically through proper configuration with the zonecfg(1M) command.

104 Integrating Solaris Containers into the Environment • October 2006

Loopback File System (LOFS)

Use of the loopback file system takes an arbitrary directory in the global zone's file tree and
makes it available within a zone. This can be specified in the zone's configuration.

This can also be accomplished manually from the global zone. This can prove useful if the
zone is already running.

File systems mounted in this manner can be mounted simultaneously in different zones,
providing a shared file system that is accessible to both zones at the same time.

LOFS mounts are particularly useful for making CD-ROMs available to a zone in a safe
manner. If it is desired to have the mount occur automatically each time the zone boots, use
the zonecfg command to make the file system mount point available to the zone.

global# newfs /dev/rdsk/c1t0d0s6

global# mount /dev/dsk/c1t0d0s6 /export/opt/local

global# zonecfg -z zone1

add fs

set dir=/opt/local

set special=/export/opt/local

set type=lofs

end

exit

global# zoneadm -z zone1 boot

global# mount -F lofs /export/opt/local zonepath/root/opt/local

global# mkdir zonepath/root/cdrom

global# mount -F lofs /cdrom zonepath/root/cdrom

global# zonecfg

add fs

set dir=/cdrom

set special=/cdrom

set type=lofs

end

exit

 Storage Configuration 105

Solaris ZFS File System

Introduced in Solaris 10 6/06, Solaris ZFS (ZFS) is a new file system that includes three
different ZFS objects which can be used within a Solaris Container: a file system, dataset,
and ZFS device. A ZFS file system is analogous to a UFS file system—files can be stored in
a hierarchical arrangement. A ZFS dataset is a subset of a ZFS pool, and can be a file system,
snapshot, or volume.3 A ZFS device is handled just like any other device, and is explained
below in the direct device section.

A ZFS file system can be made available to a Container using the following zonecfg
commands.

A ZFS file system can also be made available to a running Container. For example, an
existing ZFS file system called zonepool/zone1 can be made accessible from with a
command using the following command.

In either case, the global zone administrator manages the properties of the file system,
including its maximum size, or quota.

A ZFS dataset can be delegated to a non-global zone, and is managed by the zone
administrator. Doing so allows the zone administrator to create and otherwise manage file
systems in that dataset. There is one exception: the quota for the dataset can only be modified
by the global zone administrator. Using a dataset is the recommended method for allowing a
zone to manage its own file systems.

Adding a dataset to a zone is accomplished from within the zonecfg command.

3. A ZFS volume cannot be made available to a Container.

global# zfs create zonepool/zone1-usr-local

global# zonecfg -z zone1

add fs

set dir=/usr/local

set special=/zonepool/zone1-usr-local

set type=zfs

end

exit

global# zoneadm -z zone1 boot

global# zfs set mountpoint=zonepath/root/usr/local zonepool/zone1

106 Integrating Solaris Containers into the Environment • October 2006

At this point, the zone administrator can create file systems for the zone. For example:

The global zone administrator can constrain the amount of space the dataset can use, as
follows.

However, the non-global zone administrator can manage the settings of any file systems that
are children of the dataset, including quotas, provided the sum of those quotas does not
exceed the quota for the dataset.

global# zonecfg -z zone1

add dataset

set name=zonepool/zone1

end

exit

global# zoneadm -z zone1 boot

zone1# zfs create zonepool/zone1/fs-one

zone1# zfs list

NAME USED AVAIL REFER MOUNTPOINT

zonepool 75.1M 99.9M 11.5K /zonepool

zonepool/zone1 18.5K 99.9M 9.50K /zonepool/zone1

zonepool/zone1/fs-one 9K 99.9M 9K /zonepool/zone1/fs-one

global# zfs set quota=10m zonepool/zone1

zone1# zfs list

NAME USED AVAIL REFER MOUNTPOINT

zonepool 75.1M 99.9M 11.5K /zonepool

zonepool/zone1 18.5K 9.98M 9.50K /zonepool/zone1

zonepool/zone1/fs-one 9K 9.98M 9K /zonepool/zone1/fs-one

 Storage Configuration 107

UNIX File System

When using the UNIX file system (UFS), a block device is mounted. The file system on the
block device is mounted on a directory in the Container. Note that while the local zone does
not have access to devices, the configuration must include both the block and raw devices. A
sample configuration follows.

Directories and files available to the non-global zone can be managed from the global zone
with this method. If the zone is already running, the global administrator can accomplish this
manually with the following command. Note the commands shown above must be used in
order for the mount to occur the next time the zone boots.

zone1# zfs set quota=1m zonepool/zone1/fs-one

zone1# zfs list

NAME USED AVAIL REFER MOUNTPOINT

zonepool 75.1M 99.9M 11.5K /zonepool

zonepool/zone1 18.5K 9.98M 9.50K /zonepool/zone1

zonepool/zone1/fs-one 9K 1015K 9K /zonepool/zone1/fs-one

global# newfs /dev/dsk/c1t0d0s6

global# zonecfg -z zone1

add fs

set dir=/opt/local

set special=/dev/dsk/c1t0d0s6

set raw=/dev/rdsk/c1t0d0s6

set type=ufs

add options [ro,nodevices]

end

exit

global# zoneadm -z zone1 boot

global# mount /dev/dsk/c1t0d0s6 zonepath/root/opt/local

108 Integrating Solaris Containers into the Environment • October 2006

Direct Device

The direct device method gives zone administrators direct control over a file system's
devices, and enables direct management of the file system. However, zone administrators
gain greater control over the system components which can affect other zones. For example,
just as the root user in a non-zoned system can use device access to panic a UNIX system,
assigning direct device access to a zone may give the zone administrator the ability to panic
the system, including all zones.

Alternatively, the file system can be mounted from the global zone with the following
command. By specifying the mount command in this way, the mount point can still be
managed from within the zone.

Network File System

Non-global zones can mount Network File System (NFS) shares into their directory
structure, just like non-zoned systems. For manual mounts:

The Solaris OS automatically mounts the NFS file system at boot time, if the following line
is added to the non-global zone's /etc/vfstab file:

global# zonecfg -z zone1

add device

set match=/dev/rdsk/c1t0d0s6

end

add device

set match=/dev/dsk/c1t0d0s6

end

global# zoneadm -z zone1 boot

zone1# newfs /dev/rdsk/c1t0d0s6

zone1# mount /dev/dsk/c1t0d0s6 /opt/local

global# mount zonepath/root/dev/dsk/c1t0d0s6 zonepath/root/opt/local

zone1# mount -F nfs nfs-server:/export/zone1 /opt/myfiles

 Storage Configuration 109

Each Container can mount the same remote NFS share into its own directory structure.
However, a Container cannot mount an NFS share from its own global zone. Instead, a global
zone which shares a file system with other computers via NFS can also create an LOFS
mount into the Container. Furthermore, global zone users cannot see into a non-global zone's
NFS-mounted file system. As of this writing, it is not possible to LOFS-mount a directory in
the global zone which is an NFS mount point.

A global zone root user can mount and unmount NFS shares into a Container by using the
zlogin command. For example:

General File System Considerations

The methods discussed thus far have several attributes that must be considered.
Straightforward deployments rarely require consideration of these topics. Indeed, the UFS
and LOFS methods are simple and safe to use in most cases. However, the following factors
should be considered in more demanding situations.

Ability to Mount Read-Write versus Read-Only

Some situations mandate the use of read-only mounts, such as sparse root zones and any
directories specified with the inherit-pkg-dir attribute. Other situations which may
benefit from read-only mounts in zones include NFS mounts (including static files, such as
binaries and libraries), and static repositories, such as operating system patches. Other read-
only mounts can be configured from the global zone, or from within the non-global zone
with NFS and direct device mounts.

Shareable File Systems

Several situations benefit from the use of shared file systems. However, care must be taken
when sharing a file system between the global zone and non-global zones. A global zone
process should not trust the data or programs that can be accessed by non-global zones. A
non-global zone administrator, or an intruder, could replace a common program with a
malicious program. When sharing a system, the following guidelines may prove helpful:

nfs-server:/export/zone1 - /opt/myfiles nfs – yes -

global# zlogin twilight mount -F nfs nfs-server:/directory/mnt

110 Integrating Solaris Containers into the Environment • October 2006

� Data files modified by a process in one zone should not be modified by processes in
another zone

For example, Web servers can be defaced by intruders who take advantage of weaknesses
in Web server software to gain system access and then modify Web page content. This
type of attack relies on a read/write mounted file system containing the Web pages to
support legitimate users (Figure 8-1).

FIGURE 8-1 A typical Web server that is prone to attack

This type of attack can be prevented by ensuring the environment in which the Web server
software is running does not have write access to Web page data. This can be achieved by
creating a Container for the Web server software, and another Container for users. Users
reside on a separate network that is not accessible from the Internet (Figure 8-2).

With this model, Web page content can be created by a system in a demilitarized zone and
transferred to a process in Zone 1 of a Web server. This process writes the data into a file
system mounted read-only in Zone 2. Web server software in Zone 2 is able to read the
data. However, the content is protected from alteration—even if an intruder breaks into
the Web server zone and gains root access. Security can be improved by restricting most
types of access in Zone 1.

 Storage Configuration 111

FIGURE 8-2 The use of Solaris Containers technology can help prevent attacks

� Implementing inter-zone inter-process communication with a shared file system

By default, processes in different zones cannot communicate except via an IP network
connection. A primitive inter-process communication (IPC) mechanism can be created via
a shared file system. By using LOFS, global-zone administrators can provide shared read-
write access to a file system from two different zones.

Using shared file systems creates new possibilities as well as new challenges. With
appropriate file access permissions, processes in different zones can use one or more files
in the shared file system to synchronize activities (such as locking database tables) or
send data to each other. Since the two zones do not normally share a user name space,
methods to achieve shared file access are similar to methods used for NFS, such a
common user directory service like the lightweight directory access protocol (LDAP) or
access control lists (ACLs).

Use of shared file systems also creates new possibilities for intruders. A person who gains
access to one zone may be able to use the shared file system to gain access to, or
otherwise affect, the other zone. In addition, synchronization and data transfer can usually
be achieved via the network. Since network transfers between zones typically involve
simple in-memory copy activities, there is rarely a benefit to using a shared file system.
However, shared file systems can be helpful for applications previously written to use a
shared file space, and which cannot be modified to use the network. Note that a shareable,
read-write file system can only be mounted into two containers concurrently using LOFS.

112 Integrating Solaris Containers into the Environment • October 2006

� Ability to mount file systems in the global zone when the zone is not running

In general, this is useful if the global zone must create or modify files that normally reside
in a zone's directory structure. While this is possible using most methods, the file system
typically must be unmounted before booting the zone.

� Manage the file system from within the zone

Some situations require file system creation and management from within the non-global
zone. This can be accomplished using direct device assignment into the non-global zone.
Currently it is not possible to assign a Veritas Volume Manager (VxVM) volume into a
non-global zone.

� Use volume management

A file system that uses UFS and the Solaris Volume Manager (SVM) may be mounted
into a zone. In fact, the root directory of a zone may be a SVM soft partition, which offers
several benefits. First, this technique enables hundreds or thousands of zones to each have
a file system. This is typically impossible on non-zoned systems due to the limit of eight
slices per non-SAN disk. In addition, a separate file system per zone can help simplify file
backup and restoration, and prevent a process in one zone from filling up a shared file
system. When this is a concern, each zone should be installed in its own file system.

� Use file systems such as NFS, UFS, QFS, or VxFS whenever possible, instead of directly
assigning devices

Use of these file systems improves security and increases service or zone portability.
Direct device assignment increases complexity when attempting to replicate a zone on a
different system due to hardware configuration differences.

� From the global zone, unmount a file system is mounted into a non-global zone

This is possible using the UFS method described above. If a file in the file system is in
use, the unmount command fails with an appropriate error message. In this case, use the
umount -f command to forcibly unmount the file system.

Backup and Restore

Many methods and technologies replicate data at a certain point in time. This section
discusses two such methods—one that uses a traditional tape backup software package, and
one that uses Solaris OS features to make a disk copy of the data which can be transferred to
long term storage, such as tape or optical media.

There are basic issues common to both methods. Since zones share most of the Solaris OS
file space with the global zone by default, there is no need to backup these shared areas at the
zone level. The only file systems that should be backed up are those needing restoration
when rebuilding a system, including application data files. Because zone configuration
information belongs to the global zone, organizations can consider only backing up
application data from the zone. Zone specific operating system files, such as those in the
zone’s /etc directory, should be backed up directly from the global zone.

 Storage Configuration 113

Tape Backup

Symantec Veritas NetBackup is a popular software package which enables enterprise-wide
coordination of tape backup. NetBackup version 6.0, version 5.0 (with MP 4), and version
5.1 (with MP 2) provide support for Solaris Zones. At the time of this writing, only the
NetBackup client software is supported by Symantec within a non-global zone. The Master
Server and Media Server software is supported in a global zone or in a non-zoned system.
Existing NetBackup architectures do not need modification when applied to zoned systems.
Simply treat each non-global zone as if it were a standalone server running the NetBackup
client software. Figure 8-3 depicts a simple diagram of a common NetBackup architecture.

FIGURE 8-3 A typical NetBackup architecture

Figure 8-4 illustrates an architecture with NetBackup client software in non-global zones,
each of which sends its data stream to a media server via a local area network (LAN). Note
that in one case the LAN connection must have sufficient bandwidth for two backup streams.

FIGURE 8-4 A backup architecture that uses Solaris Zones technology and a separate media server

114 Integrating Solaris Containers into the Environment • October 2006

To further consolidate servers, or take advantage of the higher network bandwidth and lower
latency between zones residing on the same system, co-locate a media server on the same
system (Figure 8-5). Note that the connection between the server and the tape library must
have sufficient bandwidth for all three backup streams if concurrent backups are desired.

FIGURE 8-5 A backup architecture that places the media server in the global zone

In all cases, knowledge of the data transmission rates along the backup stream can prove
helpful. Table 8-1 lists well-known data rates, along with inter-zone network transmission
rates measured on some systems.
TABLE 8-1 Sample data rates and inter-zone network transmission rates

Transfer Type Theoretical Maximum Data Rate Practical Data Rates

(MB/Second) (GB/Hour) (MB/Second)

Fast Ethernet 12.5 45 ~ 9

Gigabit Ethernet 125 450 ~ 90

Ultra Wide SCSI 40 144 ~ 35

Ultra160 SCSI 160 576 ~ 150

Fibre Channel (1 Gbit) 125 450 ~ 100

Fibre Channel (2 Gbit) 250 900 ~ 200

Inter-Zone (1.7 GHz Pentium M) 50 to 1,200

Inter-Zone (2.0 GHz Athlon) 100 to 1,400

Inter-Zone (2x 300 MHz
Sun Enterprise™ E250 Server)

10 to 90

 Network Configuration 115

Using this model requires coordination between the global and non-global zones. The media
server must backup a zone only after the zone and its applications have quiesced the data to
be backed up.

Disk Snapshot

In order to shorten the window of quiesced data, the global zone can use the fssnap(1M)
command to take a snapshot of the file system in the zone. Using the model in Figure 8-4,
the NetBackup client software can reside in the global zone of the application zones, and
access the snapshot directly for transfer to the master server. If the model depicted in Figure
8-5 is used, the client software can run in either the global or non-global zone. However, the
initial release of the Solaris 10 OS does not permit a non-global zone to use the fssnap
command to create the snapshot. As a result, there is limited value in placing the client
software in the zone, unless the workload can be quiesced for the duration of the backup.
Alternatively, synchronize the fssnap taking place in the global zone with a short time
period when the application is quiesced.

Network Configuration
All network management of a system, including its zones, is performed from the global zone.
A zone's network configuration is usually specified before the zone is installed, and may be
changed once it is booted. The global zone administrator can even change a zone's network
configuration while the zone is running using the ifconfig command.

While a zone can view much of its network configuration information, it cannot modify the
configuration. For example, a zone can use the ifconfig(1M) command to view its IP
address(es):

global# ifconfig hme0 addif 192.168.1.3/24 zone mercury

global# ifconfig hme0:3 up

mercury# ifconfig -a

lo0:1:
flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL>

 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000

e1000g0:1: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu
1500

 index 2 inet 192.168.0.71 netmask ffffff00 broadcast

 192.168.0.255

116 Integrating Solaris Containers into the Environment • October 2006

To prevent a zone from changing basic configuration parameters, such as network interface
status, a zone cannot use the ifconfig command to set parameters.

Note – Limiting the ability of a zone to modify the network configuration is implemented
in the Solaris OS kernel through the absence of the SYS_NET_CONFIG privilege in a non-
global zone.

Dynamic Host Configuration Protocol

The Solaris 10 OS 3/05 does not permit a zone to obtain its IP address from a server using
the Dynamic Host Configuration Protocol (DHCP). Furthermore, a zone cannot act as a
DHCP server. The global zone is free from both of these restrictions.

Changing the IP Address for a Zone

A global zone administrator can change the IP address of a zone's logical interface. To
change a zone's IP address, use the zonecfg command to change the IP address in the zone
configuration. Next, modify the naming service to reflect this change.These steps should be
done while the zone is down to eliminate the possibility of applications and network devices
becoming confused.

The procedure to update the hostname-to-IP address mapping depends on the naming service
being used by the zone. If the naming service uses local files, the /etc/inet/hosts and /etc/inet/
ipnodes files should be updated manually. If a naming service such as LDAP is used, follow
the steps described by the software.

� If a zone has multiple IP addresses, each address can be changed using the method
described above.

� IP addresses can be added to a running zone with the ifconfig(1M) command and the
zone parameter.

mercury# ifconfig e1000g0:1 down

ifconfig: setifflags: SIOCSLIFFLAGS: e1000g0:1: permission denied

global# zonecfg -z mercury

zonecfg:mercury> select net physical=bge0

zonecfg:mercury:net> set address=192.168.2.2

zonecfg:mercury:net> end

zonecfg:mercury> exit

 Network Configuration 117

� The IP address can be changed with the ifconfig command while the zone is running.
The zonecfg command must be used as shown above if the new IP address are to be used
the next time the zone boots.

Routing

The following examples discuss routing and zones. These examples assume the route for
zone1 is 192.168.1.1/24, and the route for zone2 is 192.168.2.2/24.

� No routes configured

If routes are not configured, zones on the same subnet can communicate with each other.
However, zones on different subnets, including the global zone, cannot communicate with
one another.

� Enabling zone communication

Consider two zones on the same system that are located on different subnets. In order for
these zones to communicate with each other, the system must be able to identify a
communication route. The route can be either a host route, such as 192.168.2.2/32, a net
route, such as 192.168.2.0/24, or a default route. Creating a default route that enables
zone communication requires creating a default route for the subnet. Note the command
identified below can be used before or after the zone is booted.

� Blocking zone communication

Communication between zones can be blocked using the -reject or -blackhole
options to the route command. For example, to prevent zone1 from sending packets to
zone2, create -reject or -blackhole routes between each zone pair. The -reject
option indicates that packets sent to the specified address should receive a negative
acknowledgement. The -blackhole option indicates no response should be sent.

global# grep zone1 /etc/hosts

192.168.2.2 zone1

global# ping zone1

no answer from zone1

global# route add default 192.168.2.1

add net default: gateway 192.168.2.1

global# ping zone1

zone1 is alive

global# route add 192.168.1.2 192.168.1.3 -interface -blackhole

global# route add 192.168.1.3 192.168.1.2 -interface -blackhole

118 Integrating Solaris Containers into the Environment • October 2006

� Passing traffic through a network device

Passing all traffic between two zones through a network device, such as a router, is not
supported at this time since inter-zone traffic never reaches a network interface card.

Firewalls and Filters

The Solaris OS includes IP filters that filter network traffic from the network into a zone, or
from the zone out to the network. IP filters cannot be used to filter traffic passing between
zones on the same system, as inter-zone traffic remains inside the system and never reaches
firewalls and filters.

Internet Protocol Multi-Pathing and Sun Trunking

Internet Protocol Multi-Pathing (IPMP) and Sun Trunking can be used to improve network
bandwidth and availability. These techniques differ in several important characteristics,
including failover time, bandwidth characteristics, and requirements.

Sun Trunking enables network interface ports to be grouped together to improve availability
and performance. Once the trunking is complete, a zone assigned to a network port in a trunk
automatically uses another port of the trunk if its port or link fails. Port failover happens
quickly and is transparent to the zone and its processes.

A network address in a zone can be assigned to an IPMP group to enable it to failover. All
interfaces that comprise the group must reside in the same broadcast domain. When an
interface fails, its IP address(es) move to the failover interface. Once the failover completes,
the zone communicates using an interface for which it was not originally configured. While
this does not cause any functional problems, it may confuse users who expect the zone to
only use a single interface.

If VLANs are also being used with IPMP, all of the interfaces in a group must also be part of
the same VLAN. These configuration tasks must be performed by the global zone and
network administrators.

Subnet Masks

Because a zone's network interfaces are configured by the global zone, netmask information
must be stored in the global zone. If default subnet masks are used, the zone's subnet mask is
configured correctly by default. If non-default subnet masks are used, be sure to store the
mask information in the global zone's /etc/netmasks file. Subnet masks may also be specified
on the zonecfg command line using / notation, such as 192.168.3.46/24.

 Printing 119

Printing
Little additional information is required to properly configure printing from within a zone.
Non-global zone administrators configure printers within the zone as if the zone were a
separate system, enabling network printer configuration without assistance. Configuring a
direct attached printer requires assistance. The global zone administrator must use the add
device subcommand of the zonecfg(1M) command to add the printer's device entry to the
zone.

Security Risks
Before assigning direct device access to a Container, consider the following factors:

� How trustworthy and experienced are the people who will have privileged access to the
Container?

Keep in mind people with privileged access to a Container have the same ability to cause
problems with devices as privileged users of the global zone.

� What type of users will be able to login to the Container?

Any user who can run programs has the potential to cause performance problems for the
Container and, possibly, other Containers. The resource management features of the
Solaris OS can be used to mitigate this problem.

� What are the availability goals for the Container and other services provided by the
system?

In a system without Containers, it is possible for a malicious user to impact the
availability of a Unix system. This is still true for a user in a Container. However, global
zone users with privileged access have the potential to impact the availability of multiple
Containers. As a result, applications with different availability goals should reside on
different systems.

Resource Management
Several system resources and kernel parameters can be configured to create optimal system
configurations.

120 Integrating Solaris Containers into the Environment • October 2006

Resource Capping

The physical memory used by a group of processes can be constrained through the resource
capping features of the Solaris OS. The resource capping daemon occasionally calculates the
amount of physical memory used by these processes. If the value exceeds a specified limit,
the kernel pages out some of the pages owned by the processes. These actions occur
independently of the kernel and other resource management controls.

Resource capping can be combined with zones to constrain the amount of physical memory
used by processes in zones, or by entire zones. To configure physical memory constraints:

� Create a project for each set of processes of the zone to manage
� Specify a maximum physical memory amount for the project
� Enable resource capping

1. Create a project in LDAP, NIS, or the zone's /etc/project file. Use the following entry
format to cap physical memory in the /etc/project file.

2. If Web server software is installed and configured to run as the user username, the entry
might look like the following:

3. By default, the /etc/nsswitch.conf file specifies that the /etc/project file is the repository
for project information. As a result, that entry does not need modification.

4. Turn on resource capping using the svcadm command. Enabling resource capping also
sets the /etc/rcap.conf file with default values.

It is important to profile the memory used by an application prior to choosing a memory cap.
Most applications need a certain amount of memory at all times, called the resident set size
(RSS). If the resource capping daemon, rcapd, forces the application to run with less
memory than its working set size, paging activity results, reducing overall system
performance. Once a program’s memory usage behavior is understood, choose a memory cap
for the application that is larger than its working set size but small enough to allow other
applications to run well.

projectname:projIDnum:comment:usernames:groupnames:rcap.max-
rss=bytes

user.username:101:A web server zone:username::rcap.max-
rss=1073741824

svcadm enable rcap

 Resource Management 121

To find the working set size for a process, create a project for the application, choose a very
large value for rcap.max-rss, and measure the project's memory usage with the rcapstat
command. The following example displays the usage for a project named user.jvictor.

This small example shows that the project user.jvictor, the default project for the user
jvictor, should be able to function well with a 3 MB memory cap. When memory caps are
enforced, the at column shows an integer that represents the amount of memory the rcapd
daemon marked for page out during the sample. The pg column shows the actual amount of
memory paged out during the sample. Note that a process may also request new pages of
memory during the time period. If the rcapd daemon is always forcing a process to page out
memory, the memory cap is probably set too low.

Resource Capping Guidelines

Several resource capping guidelines may prove useful, including:

� To change the memory cap for a project, change the rcap.max-rss value for the project
and then use the svcadm restart rcap command to instruct the rcapd daemon to obtain
the new value.

rcapstat 5

id project nproc vm rss cap at avgat pg avgpg

100 user.jvictor 0 0K 0K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1804K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1804K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1828K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1828K 1024M 0K 0K 0K 0K

100 user.jvictor 3 3736K 2720K 1024M 0K 0K 0K 0K

100 user.jvictor 3 3736K 2720K 1024M 0K 0K 0K 0K

100 user.jvictor 3 3736K 2732K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1828K 1024M 0K 0K 0K 0K

100 user.jvictor 2 2568K 1828K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

100 user.jvictor 1 1288K 908K 1024M 0K 0K 0K 0K

122 Integrating Solaris Containers into the Environment • October 2006

� When choosing a memory cap for a project, consider the total amount of memory in the
system, the needs of all processes in the project, and the needs of all applications which
will run on the system, in all zones. A project's processes are not allowed to use more than
the memory allotted, even if free memory is available in the system. On the other hand, if
all physical memory is allotted and another application is added to the system, at least one
application will suffer from insufficient memory.

� It is very important to profile the memory usage of applications that use a lot of shared
memory, such as databases. The resource capping daemon cannot distinguish between
shared and non-shared pages. This leads to a larger total RSS for all database processes in
a project than the actual amount of memory used by those processes.

� Set a memory cap enforcement threshold greater than zero to ensure paging does not
occur when RAM is available.

� The use of resource capping can impact performance. If enough physical memory is
available for the combination of applications, and if the rcapd daemon rarely needs to
take action, the impact on performance should be negligible. Applications whose memory
usage is reduced by the rcapd daemon suffer more, as each process is suspended while its
pages are being marked for page-out.

� Do not kill the rcapd daemon. If the rcapd daemon is marking pages for page-out when
it is killed, the process remains suspended until a user with sufficient privileges resumes
operation of that process.

Resource Capping and Solaris Containers Technology

Solaris resource capping is not specifically zone-aware. Running the rcapd daemon in the
global zone only enforces memory caps on global zone processes. To cap memory usage in
non-global zones, enable the rcap service in each zone in which memory should be capped.
Keep in mind the rcapd daemon only acts on processes in the zone in which it is running.
Resource capping management may be simplified by using LDAP or NIS as the project
database. In that case, each zone only needs to modify the /etc/nsswitch.conf file and enable
the rcap service. In this scenario, a new network naming service should be used for users to
reduce the confusion caused by different users in different zones that happen to share a user
ID.

When choosing memory caps for applications in different zones, consider the amount of
physical memory that will be shared by multiple zones. Some memory is shared among
sparse root zones because they use shared libraries. For example, programs in different
sparse root zones share the physical memory space used by the libc library. There is one
exception: per-zone services. Per-zone SMF services consume memory, and must be
considered when determining the amount of physical memory for a system, as well as
memory caps.

 Resource Management 123

Resource Management Using Kernel Parameters

The Solaris OS uses many kernel data structures that describe entities like processes and
devices. Some of these data types are limited in quantity, although most quantities can be
changed by users with sufficient privileges. Because the exhaustion of limited resources
could negatively impact applications running on the system, the Solaris OS includes resource
controls for many of these data types. Fortunately, most Solaris OS kernel data structures are
dynamic, reducing the need to actively tune these parameters.

The following sections identify the kernel parameters which can be used to alter the behavior
of Solaris Containers. All Solaris OS tunable parameters are described in the Solaris Tunable
Parameters Reference Manual available at http://docs.sun.com.

Processes

The consolidation of multiple systems into multiple Containers on a single system does not
significantly reduce the number of total processes, and increases the number of processes one
system must contain and manage. Sometimes systems need assistance understanding what
limits to place on the usage of processes. With multiple Containers and workloads on a single
system, the need for controls increases. The following controls are available to limit the
ability of a Container or a process to create more processes or process threads.

� pidmax

The kernel parameter pidmax sets the largest value for a process ID (PID). This value is
also the maximum number of simultaneous processes. The default is 30,000 processes,
and the maximum value is 999,999. The pidmax parameter value needs to be adjusted
from the default value if more than 30,000 processes are running on all Containers in the
system.

� max_nprocs

The max_nprocs kernel parameter also controls the maximum number of simultaneous
processes in the system. However, it is also used to determine the size of other system
data structures, such as the size of the directory name lookup cache and the number of
disk quota structures. For systems with 2 GB of RAM or more, the default max_nprocs
value is 32,778. If the system is expected to handle more than 30,000 simultaneous
processes, set this value to the same value as pidmax.

� maxuprc

The maxuprc parameter specifies the maximum number of processes available to a single
user. If there is concern that a user or application might consume all the PIDs in the
system, and prevent other users and Containers from completing their tasks, change this
from its default value (typically approximately 30,000) to a smaller value.

� zone.max-lwps

The zone.max-lwps parameter is a zone attribute that caps the number of process
threads that can exist simultaneously in a given Container. To allow a large number of
Containers to co-exist, it may be necessary to increase both the pidmax and max_nprocs

124 Integrating Solaris Containers into the Environment • October 2006

parameters. To constrain the number of threads and processes that any one Container is
running, use the maxuprc and zone.max-lwps parameters. The DTrace utility can also
be used to limit the number of processes. Appendix B includes an example DTrace script
to accomplish this task.

Virtual Memory Parameters

The Solaris 10 OS release 3/05 does not include virtual memory parameters that impact
Containers. If virtual memory tuning is required, treat the workloads in multiple Containers
as if the workloads co-existed in a system without Containers.

File System Parameters

Because a system that employs Containers is likely to have more workloads running
simultaneously than typical systems that do not use Container technology, file system
parameters may need to be tuned. Information on tuning file systems parameters for large,
diverse workloads can be found in the Solaris Tunable Parameters Reference Manual located
at http://docs.sun.com

Pseudo Terminal Parameters

Pseudo terminal parameters (ptys) are allocated dynamically. As a result, it is not necessary
to tune pty related variables to handle Containers.

STREAMS Parameters

There are no STREAMS parameters that need tuning to accommodate the use of Containers.

System V IPC

Message queue, semaphore, and shared memory parameters are now project attributes. As a
result, a Container can be assigned to a project, and different message queue, semaphore, and
shared memory parameter values can be used in each Container. For more information, see
Chapter 6: Resource Controls of the System Administration Guide: Solaris Containers-
Resource Management and Solaris Zones: Resource Management located at http://
docs.sun.com/app/docs/doc/819-2450.

 Provisioning and Installation 125

Scheduling and Other Parameters

The Fair Share Scheduler enables users to achieve most scheduling goals, and is described
elsewhere in this document. In addition, the global zone root user can use the Real Time
scheduler for a zone’s processes. Other scheduling solutions are beyond the scope of this
document.

IP Quality of Service

Network quality of service features can be applied to non-global zones, and must be managed
from the global zone.

Resource Usage Billing with Extended Accounting

The extended accounting features in the Solaris OS provide an extensible facility for
recording information about system activity on a per-process or per-task basis. Now, the
extended accounting system provides additional information regarding zones. The zonename
field is now included in records when requested. If accounting is enabled from the global
zone, accounting records can be collected for all zones. Information collected is tagged with
the zone name, providing greater security of accounting records if consolidation information
is desired.

Oracle Software

Several constraints exist when running Oracle software in a zone. While using Solaris
Intimate Shared Memory (ISM) in a zone works fine with Oracle software, the use of
Dynamic Shared Memory (DISM) does not work, as a zone does not have sufficient
privileges. In addition, the resource capping enforcement daemon, rcapd, does not
understand that multiple processes can share memory, including shared memory features and
common text pages. This complicates the estimation of memory needed by an application. If
administrators calculate the appropriate amount of memory needed, the rcapd daemon
functions correctly. Furthermore, Oracle Real Application Clusters (Oracle RAC) does not
work in a zone. Finally, either the Fair Share Scheduler or Oracle Database Resource
Manager can be used with the Oracle Database 10g software in a zone, but not both.

Provisioning and Installation
The following sections provide an overview of provisioning and installation considerations.

126 Integrating Solaris Containers into the Environment • October 2006

Sparse versus Whole Root Models

To create a whole root zone, use the create subcommand of the zonecfg command and
delete the default inherit-pkg-dir settings. Note that zonecfg -b creates an empty root,
not a whole root zone. The -b flag is useful when designing very specific customizations to
zone configurations.

Package Management and Solaris Containers
Technology

Packages are the software delivery mechanism used in the Solaris OS. In an effort to
minimize the management burden, packages installed in the global zone are automatically
installed in each Container. However, Containers can be configured to include or exclude
specific packages. In addition, package creators can specify that a package be installed on all
zones in the system.

� Solaris OS packages

A system running the Solaris 10 OS should include all of the packages used by
applications running on the system. In general, all Solaris OS packages installed in the
global zone and applicable to zones are available to all zones and must remain at the same
patch level.

� Other packages

When deciding which non-Solaris OS packages to install, consider the following.

� If the system only includes sparse root zones, and provides one type of service or only
a few types of services, install all packages in all zones. This model simplifies
administration, as there is no need to keep track of the mapping between packages and
zones.

� If the system provides many different types of services, such as Web development and
database testing environments, greater control over the existence of applications within
zones can provide benefits. In this scenario, install packages directly into the zones
which need them. Be sure to use the pkgadd(1M) command in the non-global zones
and track the package installations performed.

More information on package installation can be found in Chapter 23: About Packages and
Patches on a Solaris System with Zones Installed (Overview) of the System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones located at http://
docs.sun.com/app/docs/doc/819-2450.

 Security 127

Patch Management and Solaris Containers Technology

Decisions regarding patch installation follow directly from the decisions made when
installing packages. If a package is installed directly into a non-global zone, it must be
patched using the same model.

Flash Archives

Flash archives can be used to provision a large number of potentially usable zones. Simply
enable the ones to be used. A flash archive can be made of a zoned system using the
following guidelines:

� All zones must be stopped when the flash archive is made.

� Unless the source and target systems use identical hardware configurations, device
assignments must be changed after the flash archive is installed. This usually requires
changing the network port assignment. All other device-specific information, such as
disks, processor sets and more, must be analyzed carefully, and perhaps changed with the
zonecfg(1M) command once the server is provisioned.

� Soft partitions created with the Solaris Volume Manager cannot be flash archived yet as
the Solaris OS installer is not aware of these features.

Note – Flash archives are not zone-aware.

Security
The following sections provide an overview of security considerations. Additional
information can be found in Practical Security Using Solaris Containers in the Solaris 10 OS
available at http://www.sun.com/bigadmin/features/articles/container_security.html

Process Rights Management

The zones security model requires several Solaris privileges not be made available to any
process or user in a non-global zone. Table 8-2 lists the privileges that are not available.

128 Integrating Solaris Containers into the Environment • October 2006

TABLE 8-2 Privileges not available to zones in the Solaris 10 OS

The absence of these privileges means that a process in a non-global zone cannot:

� Use the Dynamic Tracing Facility (DTrace)
� Use high resolution real-time timers
� Lock memory pages into physical memory
� Trace or send signals to processes in other zones
� Access the network layer directly
� Configure network devices or routing
� Perform system configuration tasks
� Install, modify, or remove device drivers
� Increase the size of a System V IPC message queue buffer
� Link and unlink directories
� Configure resource pools
� Take CPUs online and offline
� Call a third-party loadable module that calls the suser() kernel function to check for

allowed access
� Change the system clock
� Elevate the zone’s priority above its current level
� Elevate the zone’s real-time scheduling class, although a user with sufficient privileges in

the global zone can place a real-time process in a non-global zone

Auditing and Access Control

The Basic Security Model (BSM) and Role-Based Access Controls (RBAC) should be
considered when using Solaris Containers technology.

� Basic Security Model

While syslog responds to application requests, the Basic Security Module (BSM) is a
kernel-based mechanism that provides kernel auditing and device allocation. Available
since the release of the Solaris OS 2.3, these features enable the Solaris OS to meet C2-
level criteria. It is important to recognize that enabling C2 auditing impacts performance,
with estimates ranging from five to ten percent overhead per system call. In addition,
audit trails can use large amounts of disk space. Basic BSM commands include
bsmconv() and bsmunconv(), and must be used in the global zone. More information

dtrace_kernel proc_priocntl sys_linkdir

dtrace_proc proc_zone sys_net_config

dtrace_user sys_config sys_res_config

net_rawaccess sys_devices sys_time

proc_clock_highres sys_ipc_config sys_user_compat

proc_lock_memory

 Namespace Isolation and Naming Services 129

can be found in the audit(1M) man page, as well as Part VII, Solaris Auditing of the
System Administration Guide: Security Services manual located at http://docs.sun.com/
apps/docs/doc/816-4557.

� Role-Based Access Controls

Role-based access controls (RBAC) enable system administrators to enforce the security
principles of least privilege, ensuring no user is given more privilege than is necessary to
perform a job. With RBAC, administrators can create user accounts, or roles, for specific
individuals, enabling a variety of security policies. Role-based access controls (RBAC)
can be used in a zone just as if the zone were a separate system. Keep in mind that some
of the privileges necessary for roles are not available in a zone.

� Intruder traps

Traps used to catch system intruders, also called honeypots, can be implemented by
creating a non-global zone with a publicly available network interface. In the unlikely
event an intruder breaks into a non-global zone, the intruder is unable to detect intrusion
detection tools running in the global zone.

Namespace Isolation and Naming Services
Each zone can choose its own name service. If a zone chooses to use local files as the
repository for user information, then that zone only considers that information. As a result,
there may be some confusion regarding file ownership. The username of a file owner may be
different when the owner’s name is viewed from the zone or the global zone, which
maintains its own user repository.

Generally, if the computing environment includes a network-based naming service supported
by the Solaris OS, it is easier to manage zone users if information is stored in the naming
service. In addition, network-based naming services make it easier to handle multiple zones
that share a set of users.

130 Integrating Solaris Containers into the Environment • October 2006

 131

9

Managing the Environment

No environment is complete without management tools. The Solaris OS provides or supports
a variety of tools aimed at easing the construction and maintenance of deployment
environments that utilize Solaris Containers technology on Sun systems.

Sun Management Center Software
Sun™ Management Center software offers a single point of management for all Sun systems
and the Solaris OS. It provides a platform upon which enterprises can base administrative
and management operations, helping make the systems and the services they provide highly
available. A powerful and flexible tool for managing networks, Sun Management Center
software enables system administrators to easily perform remote system configuration,
monitor performance, and detect and isolate hardware and software faults all through an
intuitive graphical or command line interface.

Solaris Container Manager Software
An add-on to the Sun Management Center software, the Solaris Container Manager software
helps maximize resource utilization and increase data center productivity by providing a
central browser-based console for creating and managing Solaris Containers. The software
enables administrators to easily partition a single instance of the Solaris OS into multiple
containers that can each run an application, fostering improved resource utilization. With the
Solaris Container Manager software,administrators can name a Container, specify its
workload and accessible compute resources, and indicate how many resources are allocated
to individual applications.

132 Managing the Environment • October 2006

The Solaris Container Manager software provides several features that can help provide
visibility into resource utilization, and ease the management process.

� Centralized management, making it easy to see how Solaris Containers are configured, as
well as what resources are currently available.

� Container replication, enabling the same Container definition to be deployed and tracked
across multiple systems—useful when applications scale horizontally across systems or
when workloads on different systems require similar settings.

� Container and process monitoring, enabling administrators to zoom into a Container and
view detailed information at any time.

� Automatic change jobs capabilities, enabling Container resource allocation to be
scheduled on a daily, weekly, or monthly basis.

� Usage graphs, helping adminsitrators understand how applications and systems are
behaving.

� Alarm management, providing the ability to set alarms for each Container so that resource
contention problems can be handled proactively.

Consolidation Tool for Sun Fire Servers
The Consolidation Tool for Sun Fire Servers helps speed the deployment of Solaris
Containers technology. With a wizard-based GUI, this tool simplifies and automates the
installation of consolidated applications, helping administrators create fully virtualized and
consolidated environments using Solaris Containers technology. In particular, the tool eases
the definition and creation of Solaris Containers by deploying processor sets in a way that
optimizes performance, taking advantage of Solaris Containers technology—including
Solaris Zones, resource pools, processor sets, and more—and making intelligent choices
between full root and sparse root systems.

Predictive Self-Healing Technology
The reliability of the system, or virtual environment, is becoming critical. Reliability has
many aspects—resiliency against hardware faults, understanding what needs to be running on
a system for applications to work, and making sure these system services are available to
applications. In addition, ensuring the system is not running so many services that it is
rendered vulnerable to intrusion or faults is a key concern. Introduced in the Solaris 10 OS,
Predictive Self-Healing technology enables Sun systems to accurately predict component
failures and mitigate many serious problems before they actually occur. It is designed to
maximize the availability of the system and application services by automatically diagnosing,

 Predictive Self-Healing Technology 133

isolating, and recovering from faults. This helps to not only reduce hardware failures but also
to reduce the impact of application failures, leading to increased system and application
availability.

The ability to be proactive requires two major technologies: one that enables the system to
look for faults, and preferably catch them before they occur or cause data loss, and another
that knows what kernel and application services are running on the system, and their
dependencies, and knows how to restart them if and when those actions are needed. Toward
this end, Predictive Self-Healing technology consists of two components: the Solaris Fault
Manager and Solaris Service Manager software.

The Solaris Fault Manager receives data relating to hardware and software errors and
automatically diagnoses the underlying problem. Once diagnosed, the Solaris Fault Manager
automatically responds by offlining faulty components. The Solaris Service Manager ensures
application service level availability is maintained at the operating system level. From the
perspective of the operating system, applications become services that are managed and
monitored as first-class citizens, enabling automatic service recovery even in the face of a
catastrophic failure. Services included in the Solaris OS are pre-defined within the service
management framework, including full dependency information, and third-party and user-
developed applications can be added easily to the framework without source code
modification.

Solaris Containers and Predictive Self-Healing
Technology

The combination of virtualization and reliability is especially important when consolidating
applications. This section describes how Solaris Containers and Solaris Predictive Self
Healing features work together to address these needs, and provides some ideas on how to
get started and put these new technologies to work. Emphasis is placed on illustrating how
this functionality can be used to create isolated environments customized for specific
applications.

Solaris Containers and Predictive Self-Healing technologies work together by creating
separate execution environments, each with their own namespace and assigned resources.
Each environment can have its own self-healing personalities—personalities that can be
changed, copied, and reloaded as needed. In addition, these technologies enable
administrators to determine the current state of the environment, making it easier to use the
Solaris OS for consolidation efforts.

134 Managing the Environment • October 2006

Solaris Service Manager Software

On a system, the Solaris Service Manager software is represented by the Service
Management Facility smf(5). The Service Management Facility is an infrastructure that
provides several functions:

1. Definition of services for the Solaris OS, which can be the state of a device, a running
application, or a set of other services. Each service is referred to by a unique identifier.

2. A formal relationship between services, with explicit dependencies.

3. Automatic starting and restarting of services.

4. A repository for storing service state and configuration properties, eliminating the need
for dozens of configuration files scattered throughout the system.

At a high level, the system is managed by a master restarter named svc.startd. This
daemon enforces dependencies, starts and stops services, and basically keeps an eye on how
the machine is running. All related configuration information is stored in a repository on the
system, and is managed by the svc.configd daemon. One or more delegated restarters are
given a subset of services to manage, and are written specifically to deal with this subset. For
example, the inetd daemon manages most networking services as a delegated restarter.

Services

A service is the fundamental unit of the Service Management Facility. Each service can have
one or more instances, specific configurations of a service. For example, an Apache daemon
configured to serve www.sun.com on port 80 is an instance of the Apache service. The
Apache software may have several instances, each with a different configuration. The service
holds basic configuration properties that are inherited by each of its instances. However, each
instance can override configuration properties as needed. Special services, called milestones,
correspond to a specific system state, such as basic networking or local file systems
available. Milestones are essentially a list of other services, and are considered to be online
when each of their component parts is online.

Each service is identified with a Fault Management Resource Identifier (FMRI), an unique
identifier representing a service or instance. For example, the telnet service is represented by
svc:/network/telnet:default, where svc:/network/telnet describes the service,
and default describes a specific instance. FMRIs can be a bit of a handful to type. As a
result, most SMF commands accept shortened versions of a service's FMRI, given that it only
has one instance. For example, most utilities accept network/telnet as the FMRI for
telnet, since it comes installed with only one instance.

Note that telnet is preceded with the word network. The Service Management Facility
contains several categories for services to provide naming organization and uniqueness. This
categorization enables administrators to quickly determine where a services lives, and to
what it is related. Standard categories include:

 Predictive Self-Healing Technology 135

� application
� device
� milestone
� network
� platform
� site
� system

States

Each service on a machine is always in one of seven discrete states that are observable by the
Service Management Facility CLI tools. These states include:

� degraded, while the service is running, something is wrong or its capacities are limited
in some way

� disabled, the service has been disabled and is not running

� legacy_run, a legacy rc*.d script has been started by the system and is running

� maintenance, the instance encountered an error and needs to be repaired by an
administrator

� offline, the service is enabled but not running usually because a service it depends on is
not online

� online, the service is both enabled and running successfully

� uninitialized, the svc.startd daemon has not yet read the service configuration

Manifests

One of the powerful features of the Service Management Facility is that it knows the
relationships between different services on the system and how they are related. Manifests
are the mechanism that enable the system to learn about these relationships. An SMF
manifest is an XML file describing a service. All the manifests in the system are stored in
/var/svc/manifest under categorical subdirectories. If custom services are not intended to be
converted to the SMF model, these files do not need to be edited. However, these files can
provide a helpful reference.

During the boot process, the svc.configd SMF daemon looks in the manifest directory. If
new manifests exist, the daemon imports them into the repository. This can also be done
manually by administrators. The entire system is run using information in the repository, not
the manifests—manifests are simply a delivery mechanism for service descriptions. An active
system is administered using the SMF command line tools.

136 Managing the Environment • October 2006

Compatibility

These technological advancements came with an important design goal—ensure all of the
layered software installed and functioned just as it did in previous Solaris OS versions. Many
Solaris OS users rely on scripts and services they have carefully honed over time. While
there are advantages to converting these services to take advantage of the benefits of SMF, it
is not required. Custom scripts located in /etc/rc*.d continue to execute on run-level
transitions. However, some Solaris OS kernel scripts are already converted and no longer
need to be used.

The service states include the legacy_run state, which is used to identify services started
through the old /etc/rc*.d mechanism. The SMF observational tools use this state to identify
legacy services. When a service is labeled with the legacy_run state, it means the script
was located in a /etc/rc*.d directory that was run upon successful transition to a run level.

Many standard Solaris OS services are already converted to SMF. As a result, there are fewer
scripts in the /etc/init.d and /etc/rc*.d directories than in previous operating system releases.

Starting and Restarting Services

When the system understands how to start and stop services, as well as dependencies
between services, a dependency tree can be built. This dependency tree is not new—in many
ways, the /etc/rc*.d scripts are another expression of this tree. However, the dependency tree
and the state of all services is now maintained in the kernel. For the first time, the kernel
knows the direct relationship between the service and process namespaces.

The implications are far reaching. For example, when a process exits for any reason,
including the accidental or intentional killing of the process, it is terminated by the kernel.
Since the kernel now knows whether or not the process represents a service instance that
needs to continue, it can immediately intervene and restart the service instance as another
process, if needed. Additionally, the kernel understands the relationship of this process to
other services on the system, including how they may or may not be impacted by the change.
As a result, systems are less likely to run unintentionally in a degraded state when services
are signed up for SMF. Systems can now essentially self-heal, or inform administrators
through SMF interfaces in the event they cannot do so.

In addition, it is possible to turn enable (turn on) and disable (turn off) services, and
understand the repercussions these actions will have on the other services running on the
system. For example, the system can be told to enable a specific service, and in the same
action enable and start all the services upon which it depends. Similarly, if a service is
running and its configuration file is changed, the system can refresh the service and ensure it
runs with the new values. If a service is disabled, generally it is for a good reason. For
example, administrators may disable the telnet service in order to keep individuals from
logging into the system remotely using the telnet command. The dependency tree enables
administrators to identify the other services affected and mitigate the impact.

 Predictive Self-Healing Technology 137

Service Profiles

SMF also includes the ability to save a service profile. Recall that SMF maintains a list of all
services and their instances on the system, including whether or not those services are
enabled or disabled. In essence, this list, or service profile, defines the personality of the
system. SMF gives administrators the ability to capture the current service profile, load a
new profile, or revert to an old profile. Whenever a system with a particular set of behaviors
(or personality) needs to be created, it can be done so by replicating this list.

Working with SMF

The best way to understand how SMF works is to walk through some examples. This section
provides an overview of the main SMF commands, or administrative interfaces, and shows
some of them in action.

Administrative Interfaces

A lot of time and effort was put into making the administration of a system running the
Solaris OS with SMF as painless as possible. Users no longer need to run the grep command
and search for processes in output listings, or wonder if those processes are running, or hunt
for configuration files. Now, SMF service administration is performed through a central
interface, enabling administrators to observe the state of services and their dependencies and
properties, and make changes to services.

TABLE 9-1 The smf(5) command line interface tools.

Command Description

svcs(1) Enables administrators to observe the state of all service instances on the system,
and provides detailed views of service dependencies, processes, and more

svcadm(1M) Provides service administration, including the ability to enable, disable, and
restart services

inetadm(1M) Enables administrators to observe and configure services that are controlled by
the inetd daemon

svccfg(1M) Enables administrators to manipulate the contents of a repository, usually
properties in a service

svcprop(1) Enables property values to be observed in a read-only manner; outputs are
formalized for easy use in shell scripts

138 Managing the Environment • October 2006

The Basics

To understand the nature of SMF, start with the svcs(1) command. A versatile command,
svcs(1) is likely to be used in day-to-day administrative work. The basic output is a list of
all services on the system that should be running, including the service state, the time the
instance started, and the full FMRI.

The svcs -a command produces a similar but longer list—it now details all the services that
could be running, including those that are not enabled. Output from this command include
lines like the following:

An In-Depth Look

Let’s take a look at the ssh service. The implications of the state of the ssh service help
illustrate SMF concepts—either the ssh service exists and it is possible to log into the
system, or the service is not present.

1. Check the status of the ssh service. Because the ssh service is unique, it is not necessary
to use the full FMRI.

svcs

STATE STIME FMRI

legacy_run 22:36:00 lrc:/etc/rc2_d/S20sysetup

...

legacy_run 22:36:02 lrc:/etc/rc3_d/S90samba

online 22:35:55 svc:/system/svc/restarter:default

...

online 22:36:01 svc:/milestone/multi-user:default

online 22:36:02 svc:/milestone/multi-user-server:d efault

offline 22:35:56 svc:/application/print/ipp-listene
r:default

offline 22:35:59 svc:/application/print/rfc1179:def ault

#

disabled 22:35:56 svc:/network/nfs/cbd:default

svcs ssh

STATE STIME FMRI

online 22:36:00 svc:/network/ssh:default

 Predictive Self-Healing Technology 139

2. Obtain the full listing for the ssh service using the -l option of the svcs command. The
output shows more information on the current state of the ssh service, as well as the
services upon which it depends, the type of dependency, and the status of those services.

3. Alternatively, obtains the status of the ssh service and lists all the processes representing
the service instance using the ssh command. Note the number 874 is the process ID (PID)
of the sshd daemon.

svcs -l ssh

fmri svc:/network/ssh:default

name SSH server

enabled true

state online

next_state none

state_time Sun Feb 03 22:44:10 2006

logfile /var/svc/log/network-ssh:default.log

restarter svc:/system/svc/restarter:default

contract_id 153

dependency require_all/none svc:/system/filesyst em/local
(online)

dependency optional_all/none svc:/system/filesys tem/autofs
(online)

dependency require_all/none svc:/network/loopbac k (online)

dependency require_all/none svc:/network/physica l (online)

dependency require_all/none svc:/system/cryptosv c (online)

dependency require_all/none svc:/system/utmp (onl ine)

dependency require_all/restart file://localhost/e tc/ssh/
sshd_config (online)

ssh -p ssh

STATE STIME FMRI

online 22:36:00 svc:/network/ssh:default

 22:36:00 874 sshd

140 Managing the Environment • October 2006

4. Verify that a user can connect to the system from a different machine with the ssh
command. If the login is successful, everything is working fine.

5. Disable the ssh service using the svcadm(1M) command.

6. Attempt to log into to system from another machine. If the ssh service is disabled the
action should fail.

7. Enable the ssh service using the svcadm(1M) command, and verify the service is
running. Note the offline state indicates the ssh service is enabled but is waiting for
another service to go online.

[other_system #] ssh zone1

Password:

Last login: Sun Feb 3 22:37:10 2006

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

#

svcadm disable ssh

svcs -p ssh

STATE STIME FMRI

disabled 22:42:33 svc:/network/ssh:default

[other_system #] ssh zone1

ssh: connect to host zone1 port 22: Connection refused

[other_system #]

svcadm enable ssh

svcs -p

STATE STIME FMRI

offline 22:43:40 svc:/network/ssh:default

 Predictive Self-Healing Technology 141

8. Identify the list of services upon which the ssh service depends using the svcs command.
The sample output indicates the ssh service depends on the cryptographic services (with
a require_all dependency). This service is disabled here to illustrate svcs
functionality.

9. Enable the ssh service as well as all the services upon which it depends using the -r
option of the svcadm command. Note the -v option enables verbose mode.

svcs -d ssh

STATE STIME FMRI

disabled 22:43:27 svc:/system/cryptosvc:default

online 22:35:57 svc:/network/physical:default

online 22:35:57 svc:/network/loopback:default

online 22:35:58 svc:/system/filesystem/local:default

online 22:35:59 svc:/system/utmp:default

online 22:36:00 svc:/system/filesystem/autofs:default

svcadm -v enable -r ssh

svc:/network/ssh:default enabled.

svc:/system/filesystem/local enabled.

svc:/milestone/single-user enabled.

svc:/system/identity:node enabled.

svc:/network/loopback enabled.

svc:/system/filesystem/minimal enabled.

svc:/system/filesystem/usr enabled.

svc:/system/filesystem/root enabled.

svc:/system/device/local enabled.

svc:/milestone/devices enabled.

svc:/system/manifest-import enabled.

svc:/network/physical enabled.

svc:/system/cryptosvc enabled.

svc:/system/filesystem/minimal:default enabled.

svc:/system/utmp enabled.

svc:/milestone/sysconfig enabled.

svcs -p ssh

STATE STIME FMRI

online 22:44:10 svc:/network/ssh:default

 22:44:10 1148 sshd

142 Managing the Environment • October 2006

10. Log into the system from another machine to verify the ssh service is running.

Note that using the -D flag identifies which services are directly dependent on a service.

Using Service Profiles

At its simplest, a service profile is a list of enabled services. Because services influence the
way a system reacts to events, a service profile describes the system personality. Among
other things, the svccfg(1M) command enables administrators to export this list so it can be
saved, or load a previously saved list so the system can adopt that personality. Exported lists
are formatted in XML.

[other_system #] ssh zone1

Password:

Last login: Sun Feb 3 22:42:07 2006 from 10.9.2.100

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

#

svccfg extract

<?xml version='1.0'?>

<!DOCTYPE service_bundle SYSTEM '/usr/share/lib/xml/dtd/
service_bundle.dtd.1'>

<service_bundle type='profile' name='extract'>

 <service name='system/console-login' type='servi ce'
version='0'>

 <instance name='default' enabled='true'/>

 </service>

...

</service_bundle>

 Predictive Self-Healing Technology 143

Ideally, a service profile should be saved in a file in the /var/svc/profiles directory, where the
system houses several profiles. This listing with pre-configured profiles enables
administrators to get quickly to a particular system state. For example, the
generic_limited_net.xml profile configures the system with a basic network state, turns
off all services that transmit passwords in clear text, and more.

Use the svccfg command to load a service profile. Use the -v option to list all the services
this action enables, disables, or updates. Using this tool, administrators can bring systems to
a known state. This can be helpful when attempting to move a system to a secure state, or
enabling a server to diagnose another system.

Restarters

Predictive Self-Healing does as its name implies—it enables systems to be regenerated
automatically after a fault occurs. A portion of this functionality is handled by the Fault
Manager, with the remainder handled by the Service Manager. Consider the following self-
healing example.

1. Identify a process that can be made to fail, such as the sendmail process.

svccfg extract > /var/svc/profile/myprofile.xml

ls /var/svc/profile

generic.xml ns_ldap.xml

generic_limited_net.xml ns_nis.xml

generic_open.xml ns_nisplus.xml

inetd_generic.xml ns_none.xml

inetd_services.xml platform.xml

inetd_upgrade.xml platform_i86pc.xml

myprofile.xml platform_none.xml

name_service.xml prophist.SUNWcsr

ns_dns.xml ns_files.xml

svccfg apply /var/svc/profile/myprofile.xml

svcs -p sendmail

STATE STIME FMRI

online 22:36:00 svc:/network/smtp:sendmail

 22:36:01 913 sendmail

 22:36:01 914 sendmail

144 Managing the Environment • October 2006

2. Inject a fault by killing the process. In this example, the sendmail process abruptly
terminated, perhaps as a result of running on a failing hardware component, such as a
DIMM.

3. Check to see how the service is functioning. Note the process IDs (PIDs) have changed,
and the service is running once again.

While short, this example illustrates the power of this tool—the fault was identified and
corrected very quickly. Keep in mind the fault did not lie within the operating system or a
zone or require a system or zone reboot. It was located on a small boundary, the process that
could be controlled by the restarter for the service.

Working Together

How do Solaris Containers and Predictive Self-Healing technologies work together?

� Every zone has its own Service Manager. As a result, every zone can have its own service
profile. Consider a zone that is running a service that needs the telnetd daemon, and
another zone needs to turn the telnetd daemon and other service off for security reasons.
This is easily accomplished by both global and local administrators.

� System administrators can create a development Container for determining which services
are needed for an application to run. A service profile can then be created for the
Container. When moving to a production system, administrators simply need to install the
Container—both the zone and resource management components—and apply the service
profile. These steps can be reproduced many times, and assure the system is in a known
state. When in doubt, administrators can reapply the service profile and revert to this
known state, or a debug state with different services enabled or disabled.

� The Service Manager aims to contain faults at the service level. Every zone has his own
Service Manager, and so has its own restarters. However, administrators can always
choose to reboot the zone, or go to a different init level, if needed.

� Zones also have their own repositories. As a result, administrators can add own unique
manifests to the environment. Every time the zone reboots, it checks for new manifests
and loads them into the repository.

pkill -9 sendmail

svcs -p sendmail

STATE STIME FMRI

online 22:48:04 svc:/network/smtp:sendmail

 22:48:04 1188 sendmail

 22:48:04 1189 sendmail

 Predictive Self-Healing Technology 145

� If it is important to give services within a particular Container a specific resource
guarantee, or limit, services can also be assigned to a project. Consequently, when the
Container boots, the service automatically starts in the right project and receives the
correct resources, such as CPU fair shares.

146 Managing the Environment • October 2006

 147

10

Troubleshooting

If a zone is not behaving as expected, investigate the cause of the behavior. While most
popular tools are available for use in a zone, there are some important differences.

Methods to Access a Troubled Zone
The first step in troubleshooting a zone involves accessing the system and the troubled zone.
Several troubleshooting tools are available, including graphical user interfaces (GUIs) like
the Sun Management Center software and the Solaris Container Manager software, as well as
command line methods for zone access. Note the command line methods require the zone to
run telnet, a user login, and a console login.

Telnet and Shells
Users can telnet into a zone from another zone. This includes the ability to telnet into a
zone from the global zone, or from another system. Under normal conditions, users can also
use the ssh, rsh, rlogin, and ftp commands to access a zone as if it were a separate
system. However, some situations prevent these methods from working properly.

148 Troubleshooting • October 2006

User Login with the zlogin Command
Users can login to a zone from the global zone on the same system if appropriate privileges
are granted.

Logging in as a specific user is also supported. The user must be defined in the zone, or a
directory service that defines the user must be available to the zone.

It is possible to run a command in a running zone from the global zone. Privileges must be
granted to the user to allow this capability. For example, running the ls -l command in the
zone mercury as the user username behaves as if the user was logged into the system. The
files in the user’s home directory are listed. For user logins to work, the zone must be
running and capable of accepting user logins. If user logins fail to work, the login service is
experiencing a problem. Other methods, described below, can be useful in this situation.

global# zlogin mercury

[Connected to zone 'mercury' pts/5]

Last login: Thu Sep 8 06:04:42 on pts/5

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

#

global# zlogin -l username mercury

[Connected to zone 'mercury' pts/5]

Last login: Thu Sep 8 06:15:34 on pts/5

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

global# zlogin -l username mercury /bin/ls -l

total 16

drwxr-xr-x 2 username 1001 70 Sep 8 06:29 Documents

drwxr-xr-x 2 username 1001 70 Sep 8 06:35 Sources

#

 Zone Console Login 149

Zone Console Login
Unix systems have long supported consoles via direct attached serial lines or virtual consoles
accessed via the network. Each zone has a virtual console. If a zone is running and traditional
login methods fail, it may be possible to access the zone via its virtual console using the
zlogin -C command.

Only one virtual console exists per zone. Users can exit the zlogin session without logging
out of the console, leaving the currently running program or shell available for later use via
another zlogin -C session. Exiting a zlogin session is similar to exiting a tip session.
Simply type ~. and press the Enter key on a new line.

Safe-Mode Login
Users that cannot login to the console of a running zone can try using a safe-mode login.
This creates a shell which exists in the zone, but does not go through the login process. Safe-
mode login is achieved with the zlogin -S command.

global# zlogin -C mercury

[Connected to zone 'mercury' console]

<at this point you must press 'return' to get a login prompt>

mercury console login:

global# zlogin -S mercury

[Connected to zone 'mercury' pts/5]

150 Troubleshooting • October 2006

Boot Single User
If there is a problem in the boot sequence for a zone, boot the zone in single user mode using
the zoneadm command. The zone will have running status. Use the zlogin -C command
to log into the zone console. When a zone is running in single user mode, users can use the
zlogin -l command to login as any user.

Network Troubleshooting
Common troubleshooting can be used with zones. However, a non-global zone cannot use
snoop to view network traffic, and snoop cannot be used to view inter-zone network traffic,
even from the global zone.

global# zoneadm -z mercury boot -s

global#

 151

11

Putting It All Together—Consolidating
Enterprise Applications with Solaris
Containers

Improving the manageability and efficiency of enterprise infrastructure services poses a
significant challenge to many organizations. The problem is compounded by the proliferation
of individual servers used to run key enterprise applications including directory, portal,
identity, mail, and calendar services. A recent Gartner report1 indicates that the power, space,
and heat requirements of rackmounted servers are limiting growth and cost efficiency among
80 percent of enterprise data centers. Consolidating enterprise infrastructure services that run
on multiple servers onto the Sun Fire T2000 platform using the Sun Java™ Enterprise
System (Java ES) software and Solaris Containers technology can simplify management,
improve performance, and increase the efficiency of delivering enterprise infrastructure
services.

About the Sun Fire T2000 Server

The Sun Fire T2000 server is a high-density compute server platform based on the
UltraSPARC T1 processor. The major benefits of this platform are high aggregate throughput
performance with very efficient power, cooling, and space consumption. At the center of this
new platform is the UltraSPARC T1 processor, which combines chip multiprocessing and
hardware multithreading to provide a thread-rich environment for improved scalability for
many applications. This new processor hardware architecture provides the following features
in a single-chip package:

� Eight cores or individual execution pipelines
� Four threads per core providing a total of 32 active thread contexts
� Each core has separate level 1 Instruction and data caches shared by the four threads
� All eight cores share a unified level 2 cache on chip
� Memory is unified to provide low latency to all cores
� The processor is fully SPARC V7, V8, and V9 binary compatible

1. Gartner 12-04-2005 Report, http://www.gartner.com

152 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

In addition to the UltraSPARC T1 processor, the Sun Fire T2000 platform supports up to 32
GB of DDR2 SDRAM memory, four 1000 Base-T on-board network interfaces, and up to
four 73 GB SAS disk drives. In a rack-optimized 2RU enclosure that typically draws 325
watts of power, the Sun Fire T2000 provides a high-performance, low-power alternative to
many x64-based systems.

About Sun Java Enterprise System Software

Many enterprise computing environments utilize a variety of products from a number of
vendors to deliver infrastructure services such as directory, email, calendar, identity, and
portal services. This can result in a host of potential problems, including high acquisition
costs, unnecessary deployment delays, compatibility and interoperability issues,
unpredictable schedules, expensive licensing agreements, complicated version control and
release schedules, and more.

Sun has taken a radical new approach to software infrastructure to help reduce costs
throughout the IT project life cycle from acquisition, through deployment, and on to
operation and maintenance. The Sun Java Enterprise System (Java ES) offers a single,
comprehensive software system containing all of the critical enterprise infrastructure
components every business needs to build applications and services. Java ES is an open,
integrated, enterprise infrastructure software suite that offers customers unique advantages,
including:

� Seamless integration of many important infrastructure software components, resulting in
substantial time savings from evaluation, integration, and configuration issues, and
enabling better focus on business problems.

� Open standards-based software components.
� A common installer, which makes it easy to install and configure the software

components.
� An attractive price point for all software components.

Deploying Java ES 2005-Q4 on a Sun Fire
T2000 Server Using Solaris Zones
When used together, the UltraSPARC T1 processor, Solaris Containers, and Sun Java
Enterprise System technologies can greatly improve the management, performance, and
efficiency of an enterprise infrastructure. This section describes a particular methodology for
using Java ES and Solaris Containers to consolidate key enterprise applications onto a single
Sun Fire T2000 server.

 Deploying Java ES 2005-Q4 on a Sun Fire T2000 Server Using Solaris Zones 153

Several Java ES servers are essentially Web applications that need an underlying Web
container. Deploying these applications on a single Web container is not a scalable solution.
Testing clearly shows that such deployment cannot make full use of the vast compute and
memory resources offered by the Sun Fire T2000 platform. Solaris Zones offer an easy way
to deploy these applications on different Web containers, each Web container, in turn, hosted
on a different zone. In other words, each of the Java ES applications that needs an underlying
Web container is deployed on a different instance of a Web container. When deployed in
different Web containers, Java ES applications do not contend with each other for heap
space. This deployment allows good utilization of the compute and memory resources
offered by the Sun Fire T2000 server. Testing shows that such a deployment can support
nearly three times as many users compared to the number of users supported on a
deployment with a single Web container.

The consolidation examples discussed below uses six unique zones, with each zone
configured to host a Java ES component. In this example, Java ES components are assigned
to the following zones:

� Zone 1: Directory server
� Zone 2: Access Manager
� Zone 3: Portal server
� Zone 4: Messaging server, including the message transfer agent (MTA)
� Zone 5: Calendar server
� Zone 6: Communications Express

Figure 11-1 shows the architecture of the Java ES deployment using Solaris Zones
technology. Arrows indicate the flow of requests among the Java ES components. Dotted line
arrows indicate LDAP requests.

FIGURE 11-1 Java ES deployment on Solaris Zones

154 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

While Solaris Zones provide a virtual environment to shield each of the Java ES components,
by default all zones have access to the full set of logical CPUs enabled in the system. To
ensure that no single zone utilizes excessive CPU cycles, the Solaris OS provides the
capability to create and bind resource pools to each zone. Testing showed the default
configuration to be adequate for this Java ES deployment.

Configuring Solaris Zones

The following steps illustrate how to configure the zones used in this deployment. For more
detailed information on configuring zones, see the System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

1. Create a zone for each Java ES component using the zonecfg command. This example
creates a zone named jes_zone1.

global # zonecfg -z jes_zone1
jes_zone1: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:jes_zone1> create
zonecfg:jes_zone1> set zonepath=/export/home/zones/jes_zone1
zonecfg:jes_zone1> set autoboot=true
zonecfg:jes_zone1> add fs
zonecfg:jes_zone1:fs> set dir=/export/home/public
zonecfg:jes_zone1:fs> set special=/export/home/public
zonecfg:jes_zone1:fs> set type=lofs
zonecfg:jes_zone1:fs> end
zonecfg:jes_zone1> add fs
zonecfg:jes_zone1:fs> set dir=/data
zonecfg:jes_zone1:fs> set special=/data
zonecfg:jes_zone1:fs> set type=lofs
zonecfg:jes_zone1:fs> end
zonecfg:jes_zone1> add net
zonecfg:jes_zone1:net> set address=10.6.221.115
zonecfg:jes_zone1:net> set physical=ipge0
zonecfg:jes_zone1:net> end
zonecfg:jes_zone1> add attr
zonecfg:jes_zone1:attr> set name=comment
zonecfg:jes_zone1:attr> set type=string
zonecfg:jes_zone1:attr> set value="JES Zone 1"
zonecfg:jes_zone1:attr> end
zonecfg:jes_zone1> remove inherit-pkg-dir dir=/lib
zonecfg:jes_zone1> remove inherit-pkg-dir dir=/platform
zonecfg:jes_zone1> remove inherit-pkg-dir dir=/sbin
zonecfg:jes_zone1> remove inherit-pkg-dir dir=/usr
zonecfg:jes_zone1> verify
zonecfg:jes_zone1> commit
zonecfg:jes_zone1> exit

 Deploying Java ES 2005-Q4 on a Sun Fire T2000 Server Using Solaris Zones 155

The zonepath parameter specifies where the local zone root file system is created.
Although sparse zones are used by default, it is necessary to use whole root zones to
install and configure Java ES 2005-Q4 on zones. A whole root zone takes up much more
space than a sparse zone, but it provides a great deal of flexibility. Inside whole root
zones files and packages can be removed easily, which is not always possible within
sparse zones.

The remove commands used in the preceding example enable the configuration of whole
root zones. Note that the physical devices specified for each net resource configured for
the new local zone were already configured in the global zone with a separate IP address.
When the zone is booted, the ifconfig utility reports the new interface as ipge0:1. In
the global zone, both interfaces ipge0 and ipge0:1 are reported, however, only ipge0:1
is visible in the local zone. The /data file system can be used for storage purposes such as
Java ES configuration data and user calendar and mail data.

2. Install and boot the zone by using the zoneadm utility as follows:

3. Log in to the new zone using the console option and configure the name and password
information for this zone. Use the DNS service when configuring the zones for Java ES
instead of NIS. In the following example, the host name is set to jes-zone1.

4. Repeat Steps 1 through 3 to create the zones jes_zone2, jes_zone3, jes_zone4,
jes_zone5, and jes_zone6. (Note the parameters for the net resource must be changed
for each zone.). The Sun Fire T2000 server is configured with four onboard controllers
named ipge0 through ipge3. This deployment uses only one network interface. However,
based on the deployment requirement, all network interfaces can be used. For instance,

global # zoneadm -z jes_zone1 install

Preparing to install zone <jes_zone1>.

Creating list of files to copy from the global zone.

...

global # zoneadm -z jes_zone1 ready

global # zoneadm -z jes_zone1 boot

global # zlogin -C jes_zone1

SunOS Release 5.10 Version Generic_118822-22 64-bit

Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

Hostname: jes-zone1

jes-zone1 console login:

156 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

the interface ipge0 could be used for portal server traffic, and interface ipge1 for
messaging server traffic. Doing this fosters better network throughput and improves
overall performance. (One gigabit network interface was adequate for this deployment.)

5. Verify that the zones are ready for Java ES deployment by using the zoneadm utility as
shown in the following example.

6. Log in to any of the newly created zones and verify that each has a network interface and
that the mount points /export/home/public and /data are visible. This deployment stores all
the configuration and user data including user mail files in the /data directory.

global # zoneadm list -cv

 ID NAME STATUS PATH

 0 global running /

 1 jes_zone3 running /export/home/zones/jes_zone3

 2 jes_zone2 running /export/home/zones/jes_zone2

 3 jes_zone6 running /export/home/zones/jes_zone6

 4 jes_zone1 running /export/home/zones/jes_zone1

 5 jes_zone5 running /export/home/zones/jes_zone5

 6 jes_zone4 running /export/home/zones/jes_zone4

global # zlogin jes_zone1
[Connected to zone 'jes_zone1' pts/2]

Last login: Sun Nov 6 09:23:20 on pts/3

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

zonename
jes_zone1

ifconfig -a
lo0:1: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1

 inet 127.0.0.1 netmask ff000000

ipge0:1: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

 inet 10.6.221.115 netmask ffffff00 broadcast 10.6.221.255

df -kl
Filesystem kbytes used avail capacity Mounted on

/ 42342570 20667793 21251352 50% /

/dev 42342570 20667793 21251352 50% /dev

/export/home/public 42342570 20667793 21251352 50% /export/home/public

/data 206448473 98558248 105825741 49% /data

proc 0 0 0 0% /proc

ctfs 0 0 0 0% /system/contract

swap 18027624 272 18027352 1% /etc/svc/volatile

mnttab 0 0 0 0% /etc/mnttab

fd 0 0 0 0% /dev/fd

swap 18027424 72 18027352 1% /tmp

swap 18027376 24 18027352 1% /var/run

 Deploying Java ES 2005-Q4 on a Sun Fire T2000 Server Using Solaris Zones 157

Monitoring and Managing Zones

The Solaris OS contains a number of utilities that are zone aware, enabling the efficient
monitoring and management of CPU resources. Use the prstat and mpstat facilities to
report the CPU utilization for each zone. For example:

global # prstat -Z
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 29096 root 3525M 2293M cpu24 49 0 2:01:09 27% webservd/958
 29007 root 279M 229M cpu26 53 0 2:28:44 23% ns-slapd/54
 29251 root 3507M 1559M run 49 0 0:44:06 7.4% webservd/500
 29046 root 3177M 1937M cpu7 54 0 0:39:18 5.3% webservd/598
 29101 bs202758 192M 100M cpu7 59 0 0:12:16 2.5% imapd/9
 29098 bs202758 184M 92M run 40 0 0:11:55 2.5% imapd/6
 29099 bs202758 187M 95M run 40 0 0:11:50 2.5% imapd/6
 29102 bs202758 187M 95M cpu22 40 0 0:11:47 2.2% imapd/6
 29095 bs202758 186M 90M cpu10 40 0 0:11:50 2.1% imapd/6
 29100 bs202758 186M 96M sleep 55 0 0:11:40 1.9% imapd/6
 29132 bs202758 172M 141M cpu3 52 0 0:08:45 1.6% cshttpd/34
 29133 bs202758 176M 145M cpu4 59 0 0:08:38 1.2% cshttpd/38
 29130 bs202758 176M 145M cpu1 59 0 0:08:50 1.1% cshttpd/41
 29131 bs202758 180M 149M sleep 59 0 0:08:55 0.9% cshttpd/40
 29126 bs202758 172M 142M run 41 0 0:08:46 0.9% cshttpd/38
 29134 bs202758 172M 141M sleep 59 0 0:08:18 0.7% cshttpd/36
 29111 bs202758 59M 29M sleep 59 0 0:02:05 0.4% csadmind/9
 29116 bs202758 233M 140M cpu5 59 0 0:01:57 0.3% mshttpd/8
 29114 bs202758 234M 139M cpu25 60 0 0:01:51 0.3% mshttpd/11
 29107 bs202758 212M 115M sleep 59 0 0:01:43 0.2% mshttpd/8
 29115 bs202758 242M 143M sleep 59 0 0:01:54 0.2% mshttpd/8
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 2 38 4312M 2466M 7.6% 2:04:11 27% jes_zone3
 1 34 1019M 372M 1.1% 2:30:25 23% jes_zone1
 6 92 5673M 2928M 9.0% 1:47:09 15% jes_zone4
 3 41 4591M 1817M 5.6% 0:48:46 7.5% jes_zone6
 5 41 1889M 1074M 3.3% 0:56:03 6.7% jes_zone5
 4 34 3939M 2105M 6.5% 0:41:12 5.4% jes_zone2
 0 48 206M 58M 0.1% 0:01:02 0.0% global
Total: 328 processes, 3988 lwps, load averages: 44.00, 38.04, 25.79

158 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Overview of Deploying Sun Java Enterprise
System 2005-Q4 on Solaris Zones
The instructions in this section are not intended to act as a replacement for the individual
component documentation, or the Java ES documentation, but merely to serve as a guide. For
more detailed instructions or information on different deployment scenarios refer to the Sun
Java Enterprise System Documentation.

This deployment uses Java Enterprise System 2005-Q4. Performance testing was done on
the following Java ES components:

� Sun Java System Messaging Server 6 2005-Q4
� Sun Java System Calendar Server 6 2005-Q4
� Sun Java System Portal Server 6 2005-Q4
� Sun Java System Communications Express 6 2005-Q4
� Sun Java System Directory Preparation Tool
� Communication Services Delegated Administrator 6 2005-Q4
� Sun Java System Web Server 6.1 SP5 2005-Q4
� Sun Java Access Manager 7 2005-Q4
� Sun Java System Directory Server 5 2005-Q4
� Sun Java System Administration Server 5 2005-Q4

The following sections serve as a guide for the various stages involved in Java ES
deployment. The example installation described below uses the following example data that
must be changed for each individual installation:

� Domain name: map.beta.com
� Zone host name(s): jes-zone1, jes-zone2, .. through jes-zone6
� Password: password used for all passwords except the amldapuser password

Deploying Directory Server in Zone-1

1. Log in to zone-1 as root and start the Java ES installer as follows:

2. Select the following products to install: Sun Java System Directory Preparation Tool, and
Sun Java System Directory Server 5 2005-Q4.

jes-zone1# installer

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 159

3. Select the common server settings as shown in the following table during the installation.

4. Select the directory server settings shown in the following table during the installation.

Option [Default Value] Enter

Installation type Custom installation accept default

Common server settings

Host name jes-zone1 accept default

DNS domain name map.beta.com accept default

Host IP address Machine IP address Verify correct
address

Admin user ID admin accept default

Admin passwd -- password

System user root root

System group other root

Option [Default Value] Enter

Admin user ID admin accept default

Password -- password

Directory manager DN [cn=Directory Manager] accept default

Directory manager password -- password

Directory server root [/var/opt/mps/serverroot] accept default

Server identifier [jes-zone1] accept default

Server port [389] accept default

Suffix [dc=map,dc=beta,dc=com] accept default

Administration domain [map.beta.com] accept default

System user [root] root

System group [root] root

Directory to store config data [Store Config Data on this server] accept default

Directory to store user and
group info

[Store user data and group data on
this server]

accept default

Populate suffix [Populate with Sample Data] accept default.

160 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

5. Start the directory server as follows and ensure that it starts successfully.

Deploying Access Manager in Zone-2

1. Log in to zone-2 as root and start the Java ES installer as follows.

2. Select the following products to install:

� Sun Java System Web Server 6.1 SP5 2005-Q4
� Sun Java Access Manager 7 2005-Q4 and all supporting software
� Communication Services Delegated Administrator 2005-Q4
� Deselect Sun Java System Directory Server 5 2005-Q4 (Use the remote directory

server installed on jes-zone1.)

3. Select common server settings. Refer to the steps described in “Deploying Directory
Server in Zone-1” on page 158.

4. Select the Web server settings shown in the following table during the installation.

Note – Changing the Web server's runtime userID and groupID was necessary in order to
run Access Manager using this same instance of the Web server.

jes-zone1# cd /var/opt/mps/serverroot/slapd-jes-zone1

jes-zone1# ./start-slapd

jes-zone2# installer

Option [Default Value] Enter

Admin user ID admin accept default

Admin passwd -- password

Web server host jes-zone2.map.beta.com accept default

Admin port 8888 accept default

Admin runtime user ID root accept default

Web server runtime user ID webservd root

Web server runtime group ID webservd root

HTTP port 80 accept default

Document root directory [/opt/SUNWwbsvr/docs] accept default

Web server start on boot [yes] no

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 161

5. Select the Access Manger settings shown in the following table during the installation.

Option [Default Value] Enter

Admin user ID amadmin accept default

Password -- password

LDAP user ID amldapuser accept default

LDAP password -- password1

Password encryption key 87dfjkauefjkdafdadf... password

Install type Legacy Mode (version 6.x style) accept default

Access Manager web
container options

-- Choose Sun Java System Web Server

Hostname [jes-zone2.map.beta.com] jes-zone2.map.beta.com

Web server port [80] accept default

Web server instance directory [/opt/SUNWwbsvr/https-jes-
zone2.map.beta.com]

/opt/SUNWwbsvr/https-jes-
zone2.map.beta.com

Web server document
directory

[/opt/SUNWwbsvr/docs] /opt/SUNWwbsvr/docs

Is server instance port secure [No] accept default

Web container host [jes-zone2.map.beta.com] accept default

Services deployment URI [amserver] accept default

Common domain deployment
URI

[amcommon] accept default

Cookie domain [.beta.com] .map.beta.com

Administration console Deploy new console accept default

Console deployment URI [amconsole] accept default

Password deployment URI [ampassword] accept default

Console host name [jes-zone2.map.beta.com] jes-zone2.map.beta.com

Console port [80] accept default

Directory server host jes-zone1.map.beta.com

Port 389

Access Manager directory
root suffix

[dc=map,dc=beta,dc=com] dc=map,dc=beta,dc=com

Directory manager [cn=Directory Manager] accept default

Password -- password

Directory server provisioned
with user data?

[No] No

162 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

6. Start the Web server as follows and verify that it starts successfully.

Note – Verify that the Access Manager Web modules, including amserver and amconsole,
are loaded during Web server startup.

Deploying Portal Server in Zone-3

1. Log in to zone-3 as root and start the Java ES installer as follows:

2. Select the following products to install:

� Sun Java System Web Server 6.1 SP5 2005-Q4
� Sun Java System Portal Server 6 2005-Q4
� Sun Java Access Manager 7 2005-Q4 (Select only the Access Manager SDK, deselect

the other Access Manager components.)
� Deselect Sun Java System Directory Server 5 2005-Q4 (Use the remote directory

server installed on jes-zone1.)

3. Select common server settings. Refer to the steps described in “Deploying Directory
Server in Zone-1” on page 158.

4. Select the Web server settings as shown in the following table during the installation.

jes-zone2# cd /opt/SUNWwbsvr/https-jes-zone2.map.beta.com

jes-zone2# ./start

jes-zone3# installer

Option [Default Value] Enter

Admin user ID admin accept default

Admin passwd -- password

Web server host jes-zone3.map.beta.com accept default

Admin port 8888 accept default

Admin runtime user ID root accept default

Web server runtime user ID webservd root

Web server runtime group ID webservd root

HTTP port 80 accept default

Document root directory [/opt/SUNWwbsvr/docs] accept default

Web server start on boot [yes] no

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 163

5. Select the Access Manger settings as shown in the following table during the installation.

6. Select the Portal Server: Web Container settings shown in the following table during the
installation.

Option [Default Value] Enter

Admin user ID amadmin accept default

Password -- password

LDAP user ID amldapuser accept default

LDAP password -- password1

Password encryption key 87dfjkauefjkdafdadf... password

Install type Legacy Mode (version 6.x style) accept default

Access Manager: Directory Server Settings

Directory server host jes-zone1.map.beta.com

Port 389

Access Manager directory
root suffix

[dc=map,dc=beta,dc=com] dc=map,dc=beta,dc=com

Directory manager [cn=Directory Manager] accept default

Password -- password

Directory server provisioned
with user data?

[Yes] Yes

Access Manager: Web Container for Running Access Manager Services

Host jes-zone2.map.beta.com

Services deployment URI [amserver] accept default

Cookie domain [.beta.com] .map.beta.com

Services port [80] accept default

Server protocol [HTTP] accept default

Option [Default Value] Enter

Web container Sun Java System Web Server Sun Java System
Web Server

Installation directory [/opt/SUNWwbsvr] accept default

Server instance [jes-zone3.map.beta.com] accept default

Server instance port [80] accept default

Server document root [/opt/SUNWwbsvr/docs] accept default

Secure server instance port [No] accept default

164 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

7. Start the Web server and verify that it starts successfully.

Note – Check that the PS Web modules, including portal, are loaded during the Web server
startup.

Preparing Directory Server for Messaging and
Calendar Server Installations

1. Log in to zone1, change to the directory where the comm_dssetup script is stored, and
run the script as follows:

Load balancer controlling
multiple portal servers

[No] accept default

Load balancer protocol accept default

Load balancer host accept default

Load balancer port accept default

Deployment URI [/portal] accept default

Install sample portal -- Install the
sample portal

jes-zone3# cd /opt/SUNWwbsvr/https-jes-zone3.map.beta.com

jes-zone3# ./start

jes-zone1# cd /opt/SUNWcomds/sbin

jes-zone1# /var/opt/mps/serverroot/bin/slapd/admin/bin/perl comm_dssetup.pl

Option [Default Value] Enter

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 165

The Perl script prompts for a series of options. The following table shows how to respond
to the prompts.

2. Confirm the choices and comm_dssetup proceeds. Continue with the next step after
comm_dssetup completes.

Configuring Delegated Admin and Communications
CLI for Creating Users

1. Log in to zone-2 as root, change to the directory where the configuration script was
installed, and execute the configuration script as shown below.

The script prompts for a series of options. The following table shows how to respond to
the prompts.

Option [Default Value] Enter

Directory server root [/var/opt/mps/serverroot] accept default

Directory server instance slapd-jes-zone1 accept default

Directory manager DN [cn=Directory Manager] accept default

Directory manager password -- password

Use directory server for
users/groups

[Yes] accept default.

Users/groups base suffix [dc=map,dc=beta,dc=com] accept default.

Schema type? [2] accept default

Update the schema files? [yes] accept default

Configure new indexes? [yes] accept default.

Reindex new indexes? [yes] accept default.

jes-zone2# cd /opt/SUNWcomm/sbin

jes-zone2# ./config-commda

Option [Default Value] Enter

Directory to store user mgt data files [/var/opt/SUNWcomm] accept default

Install delegated admin utility, console
and server

Select all

AM hostname [jes-zone2.map.beta.com] accept default

AM port [8080] 80

166 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Default domain [map.beta.com] map.beta.com

Default SSL port [443] accept default

Web container [Web Server] Web Server

Web server root directory [/opt/SUNWwbsvr] accept default

Web server instance identifier [jes-zone2.map.beta.com] accept default

Web virtual server identifier [https-jes-
zone2.map.beta.com]

accept default

Web server HTTP port [80] 80

Default domain separator [@] accept default

Access Manager base directory [/opt/SUNWam] accept default

Web server root directory [/opt/SUNWwbsvr] accept default

Web server instance identifier [jes-zone2.map.beta.com] accept default

Web virtual server identifier [https-jes-
zone2.map.beta.com]

accept default

Web server HTTP port [80] 80

URL of directory server [ldap://jes-
zone2.map.beta.com:389/]

ldap://jes-
zone1.map.beta.com:389/

Bind as [cn=Directory Manager] accept default.

Password -- password

AM top level admin [amadmin] accept default

AM admin passwd -- password

Access Manager internal LDAP auth
username

amldapuser accept default

AM internal LDAP auth passwd for
amldapuser

-- password1

Organization DN [o=map.beta.com,dc=map,dc
=beta,dc=com]

o=map.beta.com,dc=map,dc
=beta,dc=com

Top level admin for default
organization

[admin] accept default

Password -- password

Load sample service packages -- Yes (Checked)

Load sample organizations -- Yes (Checked)

Preferred mailhost for sample [jes-zone2.map.beta.com] jes-zone4.map.beta.com

Option [Default Value] Enter

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 167

2. Restart the Web server as follows.

3. Modify the domains and create sample users as shown in the following example.

Deploying the Messaging Server in Zone-4

1. Log in to zone-4 as root.

2. Stop the sendmail daemon as follows:

3. Start the Java ES installer as follows:

4. Select the following products to install:

� Sun Java System Messaging Server 6 2005-Q4
� Sun Java Access Manager 7 2005-Q4 (Select only the Access Manager SDK, deselect

the other Access Manager components.)
� Deselect Sun Java System Directory Server 5 2005-Q4 (Use the remote directory

server installed on jes-zone1.)

jes-zone2# cd /opt/SUNWwbsvr/https-jes-zone2.map.beta.com

jes-zone2# ./stop

jes-zone2# ./start

jes-zone2# cd /opt/SUNWcomm/bin

jes-zone2# /opt/SUNWcomm/bin/commadmin domain modify -D admin -w password -X jes-
zone2.map.beta.com -n map.beta.com -p 80 -d map.beta.com -S mail,cal -H jes-
zone4.map.beta.com

jes-zone2# /opt/SUNWcomm/bin/commadmin user create -D admin -F John -l jdoe -L Doe -n
map.beta.com -p 80 -w password -W password -X jes-zone2.map.beta.com -S mail,cal -E
jdoe@map.beta.com -H jes-zone4.map.beta.com -k legacy

jes-zone2# /opt/SUNWcomm/bin/commadmin user create -D admin -F Calendar -l calmaster -
L Master -n map.beta.com -p 80 -w password -W password -X jes-zone2.map.beta.com -S
mail,cal -E calmaster@map.beta.com -H jes-zone4.map.beta.com -k legacy

jes-zone4# /etc/init.d/sendmail stop

jes-zone4# installer

168 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

5. Select Common Server Settings. Refer to the steps described in “Deploying Directory
Server in Zone-1” on page 158.

6. Select the administration server and Access Manager settings.

Option [Default Value] Enter

Server Root [/var/opt/mps/serverroot] accept default

Admin Port 390 accept default

Admin Domain map.beta.com accept default

System User [root] root

System Group [root] root

Administration Server: Configuration Directory Server Settings

Admin User ID admin accept default

Admin Password -- password

Directory Server Host [jes-zone4.map.beta.com] jes-zone1.map.beta.com

Directory Server Port 389 accept default

Access Manager: Administration Settings

Admin User ID amadmin accept default

Password -- password

LDAP User ID amldapuser accept default

LDAP Password -- password1

Password Encryption Key 87dfjkauefjkdafdadf... password

Install type Legacy Mode (version 6.x style) accept default

Access Manager: Directory Server Settings

Directory Server Host jes-zone1.map.beta.com

Port 389

Access Manager directory
root suffix

[dc=map,dc=beta,dc=com] dc=map,dc=beta,dc=com

Directory Manager DN [cn=Directory Manager] accept default

Password -- password

Directory server provisioned
with user data?

[Yes] Yes

Access Manager: Web Container for Running Access Manager Services

Host jes-zone2.map.beta.com

Services deployment URI [amserver] accept default

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 169

7. Configure the messaging server as follows:

8. Specify the fully qualified host name of the messaging server, FQHN:
[jes-zone4.map.beta.com].

9. Define the directory to store configuration and data files [/var/opt/SUNWmsgsr].

10. Install MTA, MS store, and Messenger Express. There is no need to install multiplexor.

11. Provide the name of the mail server user and group: UNIX username [mailsrv], UNIX
group [mail].

The installation script prompts for a series of options. The following table shows how to
respond to the configuration options.

12. Start the messaging server as follows:

Cookie domain [.beta.com] .map.beta.com

Services port [80] accept default

Server protocol [HTTP] accept default

jes-zone4# cd /opt/SUNWmsgsr/sbin

jes-zone4# ./configure

Option [Default Value] Enter

URL of directory server [ldap://jes-zone1.map.beta.com:389] accept default.

Bind as [cn=Directory Manager] accept default.

Password -- password

User/group server LDAP [ldap://jes-zone1.map.beta.com:389] accept default.

Bind as [cn=Directory Manager] accept default.

Password -- password

Postmaster email address -- foo@jes-zone4.map.beta.com

Password for messaging
server accounts

-- password

Default email domain [map.beta.com] map.beta.com

Organization DN [o=map.beta.com,dc=map,dc=beta,dc=com] o=map.beta.com,
dc=map,dc=beta,dc=com

jes-zone4# /opt/SUNWmsgsr/sbin/start-msg

Option [Default Value] Enter

170 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Deploying Calendar Server in Zone-5

1. Log in to zone-5 as root and start the Java ES installer as follows:

2. Start the Java ES installer and select the following products to install:

� Sun Java System Calendar Server 6 2005-Q4
� Sun Java Access Manager 7 2005-Q4 (Select only the Access Manager SDK, deselect

the other Access Manager components.)
� Deselect Sun Java System Directory Server 5 2005-Q4 (Use the remote directory

server installed on jes-zone1).

3. Select the common server settings. Refer to the steps described in “Deploying Directory
Server in Zone-1” on page 158.

4. Select the administration server and Access Manager settings shown below.

jes-zone5# installer

Option [Default Value] Enter

Access Manager: Administration Settings

Admin user ID amadmin accept default

Password -- password

LDAP user ID amldapuser accept default

LDAP password -- password1

Password encryption key 87dfjkauefjkdafdadf... password

Install type Legacy Mode (version 6.x style) accept default

Access Manager: Directory Server Settings

Directory server host jes-zone1.map.beta.com

Port 389

Access Manager directory
root suffix

[dc=map,dc=beta,dc=com] dc=map,dc=beta,dc=com

Directory manager DN [cn=Directory Manager] accept default

Password -- password

Directory server provisioned
with user data?

[Yes] Yes

Access Manager: Web Container for Running Access Manager Services

Host jes-zone2.map.beta.com

Services deployment URI [amserver] accept default

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 171

5. Configure the calendar server as follows:

� Enter the LDAP server host name jes-zone1.map.beta.com.
� Enter the LDAP server port as 389.
� Enter the Directory Manager DN as cn=Directory Manager and the password as
password.

� The Base DN should be o=map.beta.com,dc=map,dc=beta,dc=com. This may
require editing.

� Enter the Calendar Server Administrator User ID as calmaster, password as
password.

� Enable email alarms.
� Set the administrator email address to root@jes-zone4.map.beta.com.
� Set the SMTP Host Name to jes-zone4.map.beta.com.
� Choose the runtime configuration. Choose the default values of Service Port, Runtime

User ID, and Runtime Group ID. Change Max Sessions to 10000, Max Threads to
64, and Max Processes to 4.

� Choose the default values for the rest of the settings.

6. Start the calendar server as follows:

Installing Communications Express and Messenger
Express in Zone-6

1. Log in to zone-6 as root and start the Java ES installer as follows:

2. Select the following products to install:

� Sun Java System Web Server 6.1 SP5 2005-Q4
� Sun Java System Communications Express 6 2005-Q4

Cookie domain [.beta.com] .map.beta.com

Services port [80] accept default

Server protocol [HTTP] accept default

jes-zone5# cd /opt/SUNWics5/cal/sbin

jes-zone5# ./csconfigurator.sh

jes-zone5# /opt/SUNWics5/cal/sbin/start-cal

jes-zone6# installer

Option [Default Value] Enter

172 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

� Sun Java System Messaging Server 6 2005-Q4
� Sun Java Access Manager 7 2005-Q4 (Select only the Access Manager SDK, deselect

the other Access Manager components.)
� Deselect Sun Java System Directory Server 5 2005-Q4 (Use the remote directory

server installed on jes-zone1.)

3. Select the common server settings. Refer to the steps described in “Deploying Directory
Server in Zone-1” on page 158.

4. Select the administration server settings shown in the following table.

5. Select the Web server settings shown in the following table.

Option [Default Value] Enter

Server Root [/var/opt/mps/serverroot] accept default

Admin Port 390 accept default

Admin Domain map.beta.com accept default

System User [root] root

System Group [root] root

Administration Server: Configuration Directory Server Settings

Admin User ID admin accept default

Admin Password -- password

Directory Server Host [jes-zone6.map.beta.com] jes-zone1.map.beta.com

Directory Server Port 389 accept default

Option [Default Value] Enter:

Admin user ID admin accept default

Admin passwd -- password

Web server host jes-zone6.map.beta.com accept default

Admin port 8888 accept default

Admin runtime user ID root accept default

Web server runtime user ID webservd root

Web server runtime group ID webservd root

HTTP Port 80 accept default

Document root directory [/opt/SUNWwbsvr/docs] accept default

Web server start on boot [yes] no

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 173

6. Select the administration server and Access Manager settings as shown below.

Deploying Messenger Express in Zone-6

Communications Express requires that Messenger Express multiplexor (MEM) component be
configured on the same zone. Perform the following tasks to configure and deploy MEM on
zone-6.

1. Stop the sendmail daemon as follows.

Option [Default Value] Enter

Access Manager: Administration Settings

Admin user ID amadmin accept default

Password -- password

LDAP user ID amldapuser accept default

LDAP password -- password1

Password encryption key 87dfjkauefjkdafdadf... password

Install type Legacy Mode (version 6.x style) accept default

Access Manager: Directory Server Settings

Directory server host jes-zone1.map.beta.com

Port 389

Access Manager directory
root suffix

[dc=map,dc=beta,dc=com] dc=map,dc=beta,dc=com

Directory manager DN [cn=Directory Manager] accept default

Password -- password

Directory server
provisioned with user data?

[Yes] Yes

Access Manager: Web Container for Running Access Manager Services

Host jes-zone2.map.beta.com

Services deployment URI [amserver] accept default

Cookie domain [.beta.com] .map.beta.com

Services port [80] accept default

Server protocol [HTTP] accept default

jes-zone6# /etc/init.d/sendmail stop

174 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

2. Configure MEM as follows:

3. Specify the fully qualified host name of the messaging server, FQHN:
[jes-zone6.map.beta.com]

� Define the directory to store configuration and data files [/var/opt/SUNWmsgsr].
� Select only Messenger Express. There is no need to install MTA, MS store, and

multiplexor.
� Provide the name of the mail server user and group: UNIX username [mailsrv],

UNIX group [mail].

The installation script prompts for a series of options. The following table shows how to
respond to the configuration options:

jes-zone6# cd /opt/SUNWmsgsr/sbin

jes-zone6# ./configure

Option [Default Value] Enter

URL of directory server [ldap://jes-
zone1.map.beta.com:389]

accept default

Bind as [cn=Directory Manager] accept default

Password -- password

User/group server LDAP [ldap://jes-
zone1.map.beta.com:389]

accept default

Bind as [cn=Directory Manager] accept default

Password -- password

Postmaster email address -- foo@jes-
zone4.map.beta.com

Password for messaging
server accounts

-- password

Default email domain [map.beta.com] map.beta.com

Organization DN [o=map.beta.com,dc=map,d
c=beta,dc=com]

o=map.beta.com,
dc=map,dc=beta,dc=com

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 175

4. Configure the MEM in proxy mode and start the MEM. Note that the MEM will be
running on port 2080, so UWC can use port 80.

5. Configure the back-end messaging server to allow proxy logins. To do so, log in to
zone-4, where the back-end messaging server is deployed. Execute the following
commands, and restart the back-end messaging server.

Deploying Communications Express in Zone-6

After the Messenger Express multiplexor (MEM) is configured, follow the steps in this
section to configure and deploy UWC on zone-6.

1. Start the Web server container as follows.

2. Configure the Access Manager SDK as outlined in the following steps.

jes-zone6# cd /opt/SUNWmsgsr/sbin

jes-zone6# ./configutil -o local.service.http.proxy -v 1

jes-zone6# ./configutil -o local.service.http.proxy.admin -v admin

jes-zone6# ./configutil -o local.service.http.proxy.admin.jes-zone4 -v admin

jes-zone6# ./configutil -o local.service.http.proxy.adminpass -v password

jes-zone6# ./configutil -o local.service.http.proxy.adminpass.jes-zone4 -v password

jes-zone6# ./configutil -o local.service.http.proxy.port.jes-zone4.map.beta.com -v 80

jes-zone6# ./configutil -o service.http.allowadminproxy -v no

jes-zone6# ./configutil -o service.http.ipsecurity -v no

jes-zone6# ./configutil -o service.http.port -v 2080

jes-zone6# /opt/SUNWmsgsr/sbin/start-msg

jes-zone4# cd /opt/SUNWmsgsr/sbin

jes-zone4# ./configutil -o service.http.allowadminproxy -v 1

jes-zone4# /opt/SUNWmsgsr/sbin/stop-msg

jes-zone4# /opt/SUNWmsgsr/sbin/start-msg

jes-zone6# cd /opt/SUNWwbsvr/https-jes-zone6.map.beta.com

jes-zone6# ./start

176 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

� Change to the directory that contains the amconfig input file template,
amsamplesilent.. Copy the input template file to a new file.

� Edit the amsamplesilent.uwc file to set the Access Manager SDK configuration
parameters as shown below.

� Run the amconfig command using the edited file.

jes-zone6# cd /opt/SUNWam/bin

jes-zone6# cp amsamplesilent amsamplesilent.uwc

DEPLOY_LEVEL=4

SERVER_NAME=jes-zone2

SERVER_HOST=jes-zone2.map.beta.com

SERVER_PORT=80

ADMIN_PORT=8888

DS_HOST=jes-zone1.map.beta.com

DS_DIRMGRPASSWD=password

ROOT_SUFFIX="dc=map,dc=beta,dc=com"

ADMINPASSWD=password

AMLDAPUSERPASSWD=password1

COOKIE_DOMAIN=.map.beta.com

AM_ENC_PWD="password"

NEW_OWNER=root

NEW_GROUP=root

PAM_SERVICE_NAME=other

WEB_CONTAINER=WS6

DIRECTORY_MODE=4

AM_REALM=disabled

WS61_INSTANCE=https-jes-zone6.map.beta.com

WS61_HOST=jes-zone6

jes-zone6# ./amconfig -s amsamplesilent.uwc

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 177

� Restart the Web server.

3. Configure Communications Express.

The installation script prompts for a series of options. The following table shows how to
respond to the configuration options.

jes-zone6# cd /opt/SUNWwbsvr/https-jes-zone6.map.beta.com

jes-zone6# ./stop

jes-zone6# ./start

jes-zone6# cd /opt/SUNWuwc/sbin

jes-zone6# ./config-uwc

Option [Default Value] Enter

Directory to store config and
data files

[/var/opt/SUNWuwc] accept default

Install mail and calendar
components

select both

Hostname [jes-zone6] accept default

DNS domain [map.beta.com] accept default

Web container [Web Server] accept default

Web server root directory [/opt/SUNWwbsvr] accept default

Web server instance identifier [jes-zone6.map.beta.com] accept default

Virtual server identifier [https-jes-
zone6.map.beta.com]

accept default

HTTP port [80] accept default

Web container user ID [webservd] root

Web container group IP [webservd] root

URI path [/uwc] accept default

Hosted domain support [No] accept default

URL of directory server [ldap://jes-
zone6.map.beta.com:389/]

[ldap://jes-
zone1.map.beta.com:389/]

Bind DN [cn=Directory Manager] accept default.

Password -- password

DC tree suffix [dc=map,dc=betat,dc=com] accept default.

Default domain [map.beta.com] accept default

178 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

4. Restart the Web server container as follows.

Configuring Single Sign-On for Communications
Services Products

Setting up single sign-on for Communications Express, Access Manager, the messaging
server, and the calendar server, takes the following steps.

1. Specify the Communications Express settings on zone-6 by verifying the following
settings in the /var/opt/SUNWuwc/WEB-INF/config/uwcauth.properties file.

� Set uwcauth.identity.enabled to true
� Set uwcauth.identity.login.url to http://jes-zone2.map.beta.com:80/
amserver/UI/Login

� Set uwcauth.identity.cookiename to iPlanetDirectoryPro
� Set uwcauth.identity.binddn to
uid=amadmin,ou=people,dc=map,dc=beta,dc=com

IS login URL [http://jes-
zone6.map.beta.com:80/
amserver/UI/Login]

[http://jes-
zone2.map.beta.com:80/
amserver/UI/Login]

IS administrator DN -- uid=amadmin,ou=people,dc
=map,dc=beta,dc=com

IS administrator password -- password

Messenger Express port [80] 2080

Calendar server hostname [jes-zone6.map.beta.com] jes-zone5.map.beta.com

Calendar server port [9004] 80

Calendar admin user ID [calmaster] accept default

Calendar administrator user
password

-- password

URL of PAB directory derver [ldap://jes-
zone1.map.beta.com:389]

accept default

Bind as [cn=Directory Manager] accept default

Password -- password

jes-zone6# cd /opt/SUNWwbsvr/https-jes-zone6.map.beta.com

jes-zone6# ./stop

jes-zone6# ./start

Option [Default Value] Enter

 Overview of Deploying Sun Java Enterprise System 2005-Q4 on Solaris Zones 179

� Set uwcauth.identity.bindcred to password
� Set uwcauth.http.port to 80
� Set uwcauth.https.port to 443

Note – Restart the Web server if any of the preceding settings are changed.

2. Specify the messaging server settings on zone-4 and zone-6.

To enable Communications Express users to access Messenger Express using the Access
Manager session, run the configutil commands as shown in the following example on
zone-4 (where the back-end messaging server is deployed) and zone-6 (where MEM is
deployed), and restart the servers.

3. Specify the calendar server settings on zone-5. To set up single sign-on for the calendar
server, follow these steps:

� Stop the calendar server on zone-5.
� Open the /opt/SUNWics5/cal/config/ics.conf file in an editor, such as vi.
� Set service.http.allowadminproxy to yes.
� Set local.calendar.sso.amnamingurl to http://jes-
zone2.map.beta.com:80/amserver/namingservice.

� Set local.calendar.sso.singlesignoff to yes.
� Set local.calendar.sso.amcookiename to iPlanetDirectoryPro.
� Set local.calendar.sso.logname to am_sso.log.
� Set service.calendarsearch.ldap to no.
� Set service.http.ipsecurity to no.
� Start the calendar server.

cd /opt/SUNWmsgsr/sbin

./configutil -o local.webmail.sso.amnamingurl -v http://jes-zone2.map.beta.com:80/
amserver/namingservice

./configutil -o local.webmail.sso.uwcenabled -v 1

./configutil -o local.webmail.sso.uwclogouturl -v http://jes-zone6.map.beta.com:80/uwc/
base/UWCMain\?op=logout

./configutil -o local.webmail.sso.uwcport -v 80

./configutil -o local.webmail.sso.uwccontexturi -v "uwc"

./configutil -o local.webmail.sso.amcookiename -v iPlanetDirectoryPro

./configutil -o local.webmail.sso.uwchome -v http://jes-zone6.map.beta.com/uwc

./configutil -o local.webmail.sso.enable -v 0

180 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Tuning Sun Java Enterprise System Software
for Improved Performance
The default out-of-box Java ES configuration does not effectively utilize the compute and
memory resources of the Sun Fire T2000 platform. The following sections focus on some
minimal tunings that enable performance on the Sun Fire T2000 platform to be improved.
Note that this is by no means an exhaustive list. For the most optimal settings, refer to the
individual product reference and performance guides.

Tuning the Directory Server

1. Increase the directory server database cache size.

Each directory server uses a database cache that holds pages from the database containing
indexes and entries. The database cache size (nsslapd-dbcachesize) is specified in
bytes, and the cache space is allocated at server startup.

2. Increase the directory server entry cache size.

The entry cache holds recently accessed entries, formatted for delivery to client
applications. The entry cache size for a suffix (nsslapd-cachememsize) is specified in
bytes, and the entry cache is allocated as needed.

The following example illustrates the preceding recommendations. The values that are
edited are highlighted. Be sure to shut down the directory server before making these
changes.

In the dse.ldif file located in the config directory of the directory server:

3. Isolate databases and logs, including the transaction log and access log, on different disks.

dn: cn=config,cn=ldbm database,cn=plugins,cn=config

nsslapd-dbcachesize: 54580838

n: cn=userRoot,cn=ldbm database,cn=plugins,cn=config

nsslapd-cachememsize: 126292787

 Tuning Sun Java Enterprise System Software for Improved Performance 181

Tuning a Web Container

Tune the Sun™ Open Net Environment (Sun™ ONE) Web Server (Web container) in all the
zones, including zone-2 (where Access Manager is deployed), zone-3 (where the portal
server is deployed), and zone-6 (where Communications Express is deployed). Edit the
magnus.conf and server.xml files in the Web server config directory using the following
settings.

1. Increase the Sun ONE Web Server ListenQ size.

This parameter and the related Solaris tcp_conn_req_max_q and
tcp_conn_req_max_q0 settings should match the throughput of the Sun One Web Server
HTTP server. These queues act as a buffer to manage the irregular rate of connections
coming from web users.

2. Improve the server thread concurrency.

Increasing the number of active HTTP threads that handle the incoming HTTP requests
can increase the concurrency and thereby improve the performance of the web server. The
'RQThrottle' setting in the magnus.conf file specifies the maximum number of request
processing threads in the Web server.

3. Increase the number of acceptor threads and connection queue size.

Acceptor threads are threads that wait for connections. These threads accept connections
and put them in a connection queue where they are then picked up by request processing
threads.

4. Tune the Java VM.

Increase the Java VM heap size from the default 256 MB to make best use of the memory
resources available on the Sun Fire T2000 platform. Also, apply the GC (garbage
collection) tunings.

The following examples summarize these tuning changes. The values that are added or
changed are highlighted.

In the magnus.conf file:

RqThrottle 512

RqThrottleMin 128

ThreadIncrement 64

ConnQueueSize 8192

ListenQ 8192

182 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

In the server.xml file:

Note – Restart the Web server after applying the preceding recommendations.

Tuning Access Manager

1. Apply all the tuning recommendations in “Tuning a Web Container” on page 181.

2. Apply patch 120954-02 as follows to fix bugs and improve the performance of the Access
Manager server.

Note – After adding the patch, do not forget to follow the post-patch instructions, which
primarily involve running the amconfig command.

3. Increase the sizes of the notification thread pool and the task queue length.

<SERVER qosactive=”false”>

<LS id="ls1" port="80" servername=”jes-zone2.sfbay.sun.com”
defaultvs="https-jes-zone2.sfbay.sun.com" ip="any" security="off"
blocking="no" acceptorthreads="4"

</SERVER>

 <JAVA javahome="....>

< JVMOPTIONS>-Xms3136M -Xmx3136M</JVMOPTIONS>

<JVMOPTIONS>-server</JVMOPTIONS>

<JVMOPTIONS>-XX:+DisableExplicitGC</JVMOPTIONS>

<JVMOPTIONS>-XX:+UseMPSS</JVMOPTIONS>

<JVMOPTIONS>-XX:+UseParallelOldGC</JVMOPTIONS>

<JVMOPTIONS>-XX:+UseParallelGC</JVMOPTIONS>

<JVMOPTIONS>-XX:ParallelGCThreads=8</JVMOPTIONS>

<JVMOPTIONS>-XX:+PrintGCTimeStamps</JVMOPTIONS>

<JVMOPTIONS>-XX:+PrintGCDetails</JVMOPTIONS>

</JAVA>

jes-zone2# patchadd -G 120954-02

 Tuning Sun Java Enterprise System Software for Improved Performance 183

The parameter threadpool.size specifies the size of the notification thread pool (total
number of threads), and the threadpool.threshold parameter specifies the maximum
task queue length. If the task queue reaches the maximum length, further incoming
requests are rejected along with a ThreadPoolException until the queue has vacancy.
These errors are logged in the amSession file in the Access Manager debug (/var/opt/
SUNWam/debug) directory.

4. Consider increasing the number of allowed sessions and the size of the SDK cache.

Monitor the stats directory (/var/opt/SUNWam/stats) to find information on the Max
sessions in session table and SDK cache hits. Consider increasing the values of both
parameters.

5. Increase the size of the LDAP connection pool.

The following examples illustrate these tuning changes. The values that are added or changed
are highlighted.

Make the following changed in the AMConfig.properties file located in the /etc/opt/
SUNWam/config directory.

Specify the following values in the serverconfig.xml file located in the /etc/opt/SUNWam/
config directory.

In the Access Manager console, perform the following tasks:

1. Log in to the Access Manager console as amadmin.

2. Select the Service Configuration tab.

3. Click Core under Authentication Modules.

4. Edit the Default LDAP Connection Pool Size to be 130:130.

5. Click Save.

Note – Restart the Web server after applying the above recommendations.

com.iplanet.am.notification.threadpool.size=32

com.iplanet.am.notification.threadpool.threshold=50000

com.iplanet.am.sdk.cache.maxSize=100000

com.iplanet.am.session.maxSessions=25000

<ServerGroup name="default" minConnPool="130" maxConnPool="130">

184 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Tuning the Portal Server

1. Apply all the tuning recommendations in “Tuning a Web Container” on page 181.

2. Apply the Access Manager patch 120954-02 as follows:

3. Tune the AM SDK. Edit the AMConfig.properties and serverconfig.xml files as described
in “Tuning Access Manager”. The files can be found in the /etc/opt/SUNWam/config
directory.

4. Tune the caller pool and template scan interval. The default caller pool settings force the
portal server to create a new thread for every channel rendered rather than using a thread
pool. Also consider adjusting the template scan interval time. Edit the following properties
in the file /etc/opt/SUNWps/desktop/desktopconfig.properties file.

5. Tune the portal channels and containers by removing the channels and containers that are
not needed for better performance.

Perform the following tasks on the Access Manager console:

� Log in to the Access Manager console as amadmin.
� Select the Identity Management tab.
� Select View->Services.
� Click Portal Desktop (under Portal Server Config).
� Click Manage Channels and Containers.
� Click JSPTabContainer (the master container) to view all the containers that are

visible on the portal desktop. Remove the unused containers. This deployment used
only MyFrontPagetabPanelContainer. If containers are removed, click Save under
Channel Management.

� Click MyFrontPageTabPanelContainer to view all the channels visible on the portal
desktop. Remove any unneeded channels, such as SampleXML. This deployment used
five channels including UserInfo, App, BookMark, BookMark2, and SampleJSP. If
any channels are removed, click Save under Channel Management.

Note – Restart the Web server after applying any of the preceding recommendations.

jes-zone3# patchadd -G 120954-02

callerPoolMinSize=128

callerPoolMaxSize=256

callerPoolPartitionSize=32

templateScanInterval=3600

 Tuning Sun Java Enterprise System Software for Improved Performance 185

Tuning the Messaging Server

1. Increase the default number of the IMAP, HTTP, and POP processes as shown in the
following example:

2. Increase the number of dispatcher processes and the size of the job queue as shown in the
following examples. The values that are to be edited are highlighted.

Specify the following values in the job_controller.cnf file located in the config directory
of the messaging server.

Specify the following values in the dispatcher.cnf file located in the config directory of
the messaging server.

Note – Restart the messaging server once these changes are complete.

3. Use RAID technology for the Message Store.

If the message store requires multiple disks, use redundant array of independent disks
(RAID) technology to simplify the management of multiple disks. With RAID technology,
data can be spread across a series of disks, while the disks appear as one logical disk
volume to simpligy disk management. This deployment used a Sun StorageTek™ 3510
FC Array with twelve 36 GB 15K rpm disk drives, and the Solaris Volume Manager
software to create the RAID-0 volume.

4. Apply Access Manager patch 120954-02 as follows.

jes-zone4# cd /opt/SUNWmsgsr/sbin

jes-zone4# ./configutil -o service.pop.numprocesses -v 8

jes-zone4# ./configutil -o service.imap.numprocesses -v 8

jes-zone4# ./configutil -o service.http.numprocesses -v 8

[POOL=DEFAULT]

job_limit=10

MIN_PROCS=8

MAX_PROCS=32

jes-zone4# patchadd -G 120954-02

186 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Tuning the Calendar Server

1. Tune the number of calendar server processes and increase the maximum calendar
sessions. Restart the calendar server after the changes are complete.

Specify the following values in the ics.conf file located in the config directory of the
calendar server.

2. Apply Access Manager patch 120954-02.

Tuning Communications Express

1. Apply all the tuning recommendations in “Tuning a Web Container” on page 181.

2. Tune the AM SDK. Edit the AMConfig.properties and serverconfig.xml files as described
in “Tuning Access Manager” on page 182. The files can be found in the /etc/opt/
SUNWam/config directory.

3. Restart the Web server after the changes are complete.

4. Apply Access Manager patch 120954-02 as follows.

Tuning the Solaris Operating System

1. Increase the file descriptor limits. Increase the values of rlim_fd_max and rlim_fd_cur
in the /etc/system file to increase the number of file descriptors for all Java ES
components.

service.http.maxsessions = "10000"

service.http.numprocesses = "6"

service.http.maxthreads = "64"

jes-zone5# patchadd -G 120954-02

jes-zone6# patchadd -G 120954-02

set rlim_fd_max=65536

set rlim_fd_cur=65536

 Sun Java Enterprise System Performance Test Case 187

Note – Reboot the system after editing the /etc/system file.

2. Increase the settings for Solaris OS TCP/IP listen queues. The tcp_conn_req_max_q
queue determines the number of completed connections waiting to return from an
accept() call, and the tcp_conn_req_max_q0 queue determines the maximum number
of connections with the handshake incomplete.

Note – To automatically have these ndd commands executed after each system reboot, place
them in a file, such as /etc/rc2.d/network-tuning.

Sun Java Enterprise System Performance
Test Case
The performance of the Java Enterprise System with the suggested tuning parameters was
tested on a test Sun Fire T2000 platform. The JESMark benchmark was used as the
workload. JESMark is a Sun internal benchmark designed to test the performance of the Java
Enterprise System as a whole. The Java Enterprise System offers virtually endless
deployment scenarios. It is impractical to test all the facets of the Java ES software suite with
a single benchmark. JESMark attempts to stress commonly used features and integration
scenarios which cover the majority of customer deployments.

The core components of the Java ES tested include:

� Sun Java System Directory Server
� Sun Java System Access Manager
� Sun Java System Portal Server
� Sun Java System Messaging Server
� Sun Java System Calendar Server
� Sun Java Communications Express

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 8192

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 8192

188 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Overview of the JESMark Benchmark

The JESMark benchmark models an employee portal of a large corporation. The portal
serves as a launching pad for all employee services, such as email and calendar services.
Once launched, the e-mail and calendar services run as separate applications in a browser
window. Accordingly, the JESMark benchmark comprises different sub-benchmarks that test
mail, calendar, and portal services. The following sections briefly describe the various sub-
benchmarks.

Portal Workload

The portal is the central point of access. Employees log in to the portal to find information
and use links in the portal to access various other services. The authentication is then
propagated to the other services invoked or launched by the portal. The portal sub-
benchmark attempts to test the page-rendering performance and resource handling of the
portal server. The sub-benchmark also tests how well several standard portal channels are
integrated with other services.

The main Java ES components that are stressed include the portal server, Access Manager,
and the directory server. The interactions between the portal server and messaging and
calendar servers are also tested.

Calendar Workload

Employees have a calendar channel on their portal, which allows them to see new calendar
events. However, employees still use either a separate Web browser window
(Communications Express client) or a separate calendar client (Outlook Express) to manage
calendars.

This sub-benchmark emulates both Outlook Express clients and Communications Express
clients that access the calendar server. The transactions include common operations such as
creating, reading and deleting calendar events, and accessing the month/day/week view of all
calendar events.

This sub-benchmark primarily stresses the functionalities of the calendar server,
Communications Express, and their interactions with back-end servers, Access Manager, and
the directory server.

 Sun Java Enterprise System Performance Test Case 189

Email Workload

Employees commonly have an email channel on their portal, which allows them to see new
messages and their headers. However, employees still use their favorite mail client (using
protocols such as POP or IMAP) or a separate Web browser window (HTTP) to manage
email.

This sub- benchmark emulates all email clients, including POP3, IMAP, and Webmail clients.
The transactions include common operations such as reading, deleting, saving, and sending
email. It primarily stresses the functionalities of the messaging server, Communications
Express, and their interactions with back-end servers, Access Manager, and the directory
server.

Logical Architecture

Figure 11-2 shows the various client drivers that comprise the JESMark and Java Enterprise
System components that they stress. It also shows the interactions among the Java ES
components. Arrows indicate the flow of requests.

FIGURE 11-2 Client drivers comprising JESMark and Java ES

190 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

Testing Scenario

The Sun Fire T2000 server used in the performance tests featured an eight-core UltraSPARC
T1 processor, 32 GB of main memory, four 1000 Base-T onboard network interfaces, one
Sun StorageTek 3510 FC array with twelve 36 GB 15K rpm disk drives, and one 73 GB SAS
disk drive. This system was installed with the Solaris 10 OS (1/06) .

Java ES deployment scenarios were tested with and without using Solaris Zones software. In
the first test scenario, all components of the Java Enterprise System 2005-Q4 were deployed
in the default global zone. In the second test scenario, the system was configured with six
local Solaris Zones using Solaris Containers technology. Each of the six zones hosted a
component of the Java Enterprise System 2005-Q4. The Java ES components are assigned to
zones as follows:

� Zone1: Directory server
� Zone2: Access Manager (Identity Server)
� Zone3: Portal server
� Zone4: Messaging server (including MTA)
� Zone5: Calendar server
� Zone6: Communications Express and Messenger Express Multiplexor

The test setup described in this chapter used eight Sun Fire 280R servers, configured with
two UltraSPARC-III+ processors and 8 GB of memory, as the client systems for running all
client drivers.

Performance Results

The following table shows the results of the JESMark tests evaluating the performance of
Java Enterprise System on a Sun Fire T2000 server.

In the first test configuration, the Java ES deployment could not make use of the vast
compute and memory resources offered by the Sun Fire T2000 platform. The system could
only sustain the load of 1000 users despite the fact that 80 percent of CPU resources were
available. This performance limitation was a result of scalability issues with the Web
container. There was severe contention from the portal server, Access Manager, and
Communications Express applications, all of which competed for the heap and memory
resources of a single Web container instance.

In the second test configuration, there was no such contention because each of the Java ES
components was deployed in different Web container instances, each of which was hosted on
a different Solaris Zone. This deployment makes good use of the memory and compute

System Users JESMark op/s CPU Utilization Free Memory

Sun Fire T2000 1000 71 20.00% 25 GB

Sun Fire T2000 /Solaris Zones 2500 208 85.00% 20 GB

 Sun Java Enterprise System Performance Test Case 191

resources offered by the Sun Fire T2000 platform. As shown in the preceding table, the Java
ES deployment that uses Solaris Container technology is capable of supporting nearly three
times the number of users supported by the first configuration, which did not use Solaris
Containers.

192 Putting It All Together—Consolidating Enterprise Applications with Solaris Containers • October 2006

 193

12

About the Authors

Harry Foxwell is a Senior Technical Specialist for the Government division of Sun
Microsystems in the Washington, D.C. area, where he is responsible for solutions consulting
and customer education on the Solaris OS, Linux operating system, and grid technologies.
Prior to joining Sun in 1995, Harry worked as a UNIX and Internet specialist for Digital
Equipment Corporation, and has worked with UNIX systems since 1979. He also maintains
one of Sun's internal web sites devoted to Linux technical information, and has been
influential in developing and promoting Sun's Linux operating system and x86 hardware
strategy. Harry received his doctorate in Information Technology from George Mason
University in May, 2003, and has since taught graduate level courses at George Mason
University in operating systems and electronic commerce.

Menno Lageman is consultant in Sun’s Professional Services organization in the Netherlands,
where he assists Sun customers in implementing and optimizing their systems. His
specialities include the Solaris OS, high end servers, and resource mangement. Prior to
joining Sun in 1999, Menno held several technical positions in mainframe and UNIX
environments.

Isaac Rozenfeld is an IT Architect in Sun’s Advanced Datacenter Practice group, focusing on
the adoption of the Solaris 10 OS. Based in the New York area, Isaac participates in advisory,
architecture and delivery of technical solutions at several financial services organizations.
Since joining Sun in 1998, Isaac has focused on platform and resource management in the
Solaris OS. Isaac received a Bachelor of Science degree in computer science from Queens
College, City University of New York. Isaac can be reached at isaac@sun.com. He also
maintains a blog at http://blogs.sun.com/unixman.

Sreekanth Setty is a member of the Performance, Availability, and Architecture Engineering
(PAE) group at Sun Microsystems. During his 10 years at Sun, Sreekanth has focused on
performance analysis, tuning, prototyping, benchmarking, and sizing in various tiers of
enterprise infrastructure, with an emphasis on web (SSL) servers, middleware servers,
database servers, and messaging servers. Sreekanth holds M.S in Computer Science from the
University of Texas at Austin.

194 About the Authors • October 2006

Jeff Victor has worked in the computer industry since 1987, and has held software design and
development, network and telecommunications management, and pre-sales technical roles.
Since joining Sun in 1997, he has held various Systems Engineering roles, focusing on data
center architectures and virtualization. He also maintains the Solaris Zones and Containers
FAQ. Jeff holds a B.S. in Computer Science from Rensselaer Polytechnic Institute in Troy,
New York.

 195

13

Glossary

ACL Access control list.

API Application programming interface.

ABI Application binary interface.

batch job A workload typically thought of as a single transaction with a single purpose. Batch
jobs are often assumed to proceed without the need for human intervention, performing
some form of data transformation.

DAS Direct attached storage.

Direct attached storage Storage that resides in, or is directly connected to, a computer system.

DNS Domain Name Service.

DSD Dynamic System Domain.

dynamic
reconfiguration A set of enhancements to the Solaris OS that provides the capability of dynamically

attaching/detaching system boards in a live system without halting the operating
system or any user programs.

dynamic system
domain A single instance of the Solaris OS running on a collection of system resources,

including processors, memory, networking i/o and storage.

extended accounting A feature of the Solaris OS that provides an extensible facility for recording
information about system activity on a per-process or per-task basis.

Fair Share Scheduler Software that gives administrators the ability to specify that certain processes be
given more resources than others. Should an analysis of workload data indicate
that CPU resources are being monopolized by a particular workload, or are being
under-utilized, administrators can modify the allocation policy for CPU resources
to effect better utilization.

FSS Fair Share Scheduler.

GUI Graphical User Interface.

196 Glossary • October 2006

heap size The amount of memory allocated for the process data segment.

high availability An approach to achieving high information resource availability that leverages
recovery between nodes.

horizontal scaling The ability to use multiple servers within a single tier.

HPC High Performance Computing.

IPMP Internet Protocol Multi-Pathing.

IPQoS IP Quality of Service. IPQoS enables bandwidth to be controlled throughout the
network.

job See batch job.

LAN Local area network.

LDAP Lightweight Directory Access Protocol.

LOFS Loopback file system.

NAS Network attached storage.

NAT Network address translation.

Network attached
storage Storage that provides data access over a network.

NFS Network File System.

NIS Network Information Server.

project A workload that can indicate which user or group is allowed to participate in it.

physical memory
control The ability to manage the physical memory usage of an application, including the

number of physical memory pages to be reserved for use by a set of processes.

QoS Quality of Service.

Quality of Service The overall quality delivered by a networked service.

resource controls A mechanism for placing bounds on resource usage to prevent workloads from over-
consuming resources.

resource management The act of managing the access to, and use of, system resources by a set of services or
service components.

resource pools An association of resources, such as a set of processors or pool of memory, which are
reserved for exclusive use by a workload.

 197

role based access control
(RBAC) A feature of the Solaris OS that enables system administrators to enforce the

security principle of least privilege, ensuring no user is given more privilege than
is necessary to perform a job. With RBAC, administrators can create user
accounts, or roles, for specific individuals, enabling a variety of security policies.

SAN Storage area network.

server consolidation The migration of applications from multiple servers onto a single system.

server sprawl The proliferation of individual hardware servers and accompanying management and
resource allocation problems.

server virtualization An abstraction of one or more servers that provides a consistent and/or aggregated
view of their external interfaces and externally visible functions.

service A set of actions that satisfy a request.

service level agreement A guarantee of the service level a computing environment will provide to a user.

service points Points of access into a Service Point Architecture.

SLA Service Level Agreement.

SMP Symmetric Multiprocessing.

Solaris Container A view of the environment within which a Solaris service or collection of Solaris
service components execute and are managed.

Solaris Zone A virtualized environment within an instance of the Solaris OS.

statistical tools Software built into the Solaris OS that provides a flexible way to record resource
consumption on a task or process basis.

Storage area network A network of storage devices that provide data access to servers.

Sun Cluster Software that enables systems to be grouped together to deliver high availability to
mission-critical environments.

Sun Management
Center Software that provides a powerful, easy-to-use platform for administrative and

management operations. Providing a single point of management for all Sun systems,
Sun Management Center enables system administrators to perform remote system
configuration, monitor performance, and isolate hardware and software faults.

Sun Grid Engine Sophisticated software that aggregates available computing resources and delivers
compute power as a network service. Users can treat a collection of distributed
computing systems as a single, large computational resource and balance the workload
across the systems.

Sun Trunking Technology that enables network interface ports to be grouped together to improve
availability and performance.

198 Glossary • October 2006

Swap sets A mechanism for managing swap space usage on a per-application basis, without
changing the application itself.

task A specific job within a project, or a collection of processes performing a single job.

tier A functionally separated hardware and software component that performs
a specific function.

TS Time Sharing scheduler.

vertical scaling The ability to scale services within a system.

virtualization The act of adding a layer of abstraction to an entity, or collection of entities, which
maintains the interfaces and external properties of the entity, yet enables the original
entity to change.

VLAN Virtual LAN, or virtual local area network.

workload An aggregation of all processes belonging to an application, or a group of applications,
that are related from a business perspective.

 199

14

References

Articles, Books, Papers, and Guides

Title URL

Administration
and
Management

System Administration Guide:
Basic Administration

http://docs.sun.com/app/docs/doc/817-1985

System Administration Guide:
Network Services

http://docs.sun.com/app/docs/doc/816-4555

System Administration Guide:
Solaris Containers-Resource
Management and Solaris Zones

http://docs.sun.com/app/docs/doc/819-2450

System Administration Guide:
Security Services

http://docs.sun.com/app/docs/doc/816-4557

Service Management Facility
(SMF) in the Solaris 10 OS

http://sun.com/blueprints/0206/819-5150.pdf

Consolidation Consolidating Applications with
Solaris Containers

http://sun.com/datacenter/consolidation/
solaris10_whitepaper.pdf

Consolidation through
Virtualization with Sun’s x64
Servers

http://sun.com/amd/briefs/consolidation-sol-bf.pdf

J2EE Containers http://docs.sun.com/source/819-0215/containers.html

Grid
Computing

Enterprise Grid Computing, ACM
Queue, July/August 2005

http://acmqueue.com

Resource
Management

Solaris 10 Resource Manager
Developer’s Guide

http://docs.sun.com/app/docs/doc/817-1975

Security

BigAdmin Feature Article:
Practical Security Using Solaris

http://sun/com/bigadmin/features/articles/
container_security.html

200 References • October 2006

Jails: Confining the Omnipotent
Root

http://docs.freebsd.org/44doc/papers/jail/jail.html

Practical Security Using Solaris
Containers in the Solaris 10 OS

http://sun.com/bigadmin/features/articles/
container_security.html

Secure Virtual Machine
Architecture Reference Manual

http://enterprise.amd.com/downloadables/Pacifica_Spec.pdf

Toward Systemically Secure IT
Architectures

http://sun.com/software/security/docs/systemic-security-
wp-1.pdf

Solaris
Containers

Best Practices for Running Oracle
Databases in Solaris Containers

http://sun.com/bigadmin/features/articles/
db_in_containers.html

Solaris Containers: Server
Virtualization and Manageability

http://sun.com/software/solaris/whitepapers.xml

Solaris Containers—What They
Are and How to Use Them

http://sun.com/blueprints/0505/819-2679.pdf

Zones and Containers FAQ http://opensolaris.org/os/community/zones/faq

Sun Java
Enterprise
System

Sun Java Enterprise System
software and documentation

http://docs.sun.com/app/docs/coll/1286.1

Workload
Management

Creating Self-Balancing Solutions
with Solaris Containers

http://sun.com/blueprints/0605/819-2888.pdf

Web Search for a Planet: The
Google Cluster Architecture

IEEE Computer Society, IEEE Micro, March-April, 2003.
:Luiz Andre Barroso, Jeffery Dean, Urs Holzle

Virtualization IEEE Computer, May 2005,
Resource Virtualization
Renaissance special issue

http://computer.org/computer/homepage/0505/GEI/

ACM/Usenix Conference on
Virtual Execution Environments,
June 2005

http://veeconference.org

Operating System Virtualization,
Ideas International, Inc., July 13,
2005

http://ideasinternational.com/TTM_Sept_05.pdf

Title URL

 201

Web Sites of Interest

Description URL

Blogs Sun blogs

http://blogs.sun.com/roller/page/Gregp/20050224
http://blogs.sun.com/dp
http://blogs.sun.com/sch
http://blogs.sun.com/lianep
http://blogs.sun.com/tobin
http://blogs.sun.com/darren

Consolidation
Consolidation Tool for Sun Fire
Servers

http://cooltools.sourcenet.net/consolidation

Sun and Oracle Consolidation
http://sun.com/third-party/global/oracle/
consolidation/solaris10.html

Sun Mainframe Rehosting http://sun.com/datacenter/mainframe

Management Sun Management Center
http://sun.com/software/products/
sunmanagementcenter

Solaris Container Manager sun.com/software/products/container_mgr

OpenSolaris OpenSolaris Project http://opensolaris.org

Processors Throughput Computing http://sun.com/processors/throughput

Servers Sun Servers http://sun.com/servers

Sun Fire E6900 Server http://sun.com/servers/midrange/sunfire_e6900

Software
Sun Java System Application
Server

http://sun.com/software/products/appsrvr

Solaris Zones OpenSolaris Community: Zones http://opensolaris.org/community/zones

Workload Management

BigAdmin System
Administration Portal: DTrace

http://sun.com/bigadmin/content/dtrace

BigAdmin System
Administration Portal: Predictive
Self-Healing

http://sun.com/bigadmin/content/selfheal

BigAdmin System
Administration Portal: Solaris
Zones

http://sun.com/bigadmin/content/zones

Dynamic Reconfiguration and
Dynamic System Domains

http://sun.com/servers/highend/dr_sunfire

202 References • October 2006

 203

15

Index

A
Access Manager

deployment example 160
acctadm 27
Application isolation

definition 7
overview 8
relationship to Solaris Containers 8
relationship to Solaris Zones 8

Applications
isolating 65

B
Backup 112

disk snapshot 115
tape 113

Backup and restore 112
C
Calendar server

deployment example 170
Commands

acctadm 27
id 26
ipcs 26
libpool 54
newtask 26, 27, 43
pgrep 26
pkill 26

pooladm 55
poolbind 26, 55, 94
poolcfg 55, 58
poold 55
poolstat 55
prctl 26, 30, 33
priocntl 26
projadd 26
projdel 26
projects 26
projmod 26
prstat 26, 43
ps 26
psrset 49
rctladm 33
useradd 26
wracct 27
zlogin 69, 70
zoneadm 68, 70
zoneadmd 69, 70
zonecfg 68, 70
zonename 70

Communications Express
deployment example 175

Consolidation
example 151

Consolidation Tool for Sun Fire Servers 132

204 Index • October 2006

Container
definition 12

Containment
approaches 13
definition 12
fault 13
overview 7, 11
security 13
services 12
software-based 15
trade-offs 18

CPU
consumption

controlling 40, 41, 83
transferring 62

CPU share
definition 28

CPU shares
assigning

to projects 41
configuration 29
overview 28

D
Differentiated services

overview 6
Direct device 107
Directory server

deployment example 158
Disk snapshot 115
domains 14
Dynamic Reconfiguration 50, 54

and resource pools 50
Dynamic resource pools 52, 56

poold 53
Dynamic System Domains

approach to containment 12, 14
combining with Solaris Containers 19

E
Examples

Access Manager deployment in zones
160

Calendar server deployment in zones
170

Communications Express deployment in
zones 175

Directory server deployment in zones
158

Messaging server deployment in zones
167

Messenger Express deployment in zones
173

Portal server deployment in zones 162
Extended accounting 26

commands
acctadm 27
wracct 27

prstat 26
using 44
zones 72

F
Fair Share Scheduler

and pools 51
and processor sets 52
CPU shares 28
enabling

dispadmin 40
overview 6, 27
Zones 73

File system
sparse root 102
whole root 102

File Systems
loopback 104
Solaris ZFS 104
UFS 107

 205

File systems
direct device 107
Network File System 108
NFS 108
shareable 109

considerations 109
Flash archives 127
G
Global zone

definition 9, 17, 66
overview 17, 66
relationship to the Solaris OS 17

H
Hardware configuration managers 13
hardware domains 14
I
id 26
IP multi-pathing 118
ipcs 26
Isolating applications 65
Isolation

process 67
zones 65

K
Kernel parameters 123

extended accounting 125
file system 124
IPQoS 125
processes 123

max_nprocs 123
maxuprc 123
pidmax 123
zone.max-lwps 123

pseudo terminal 124
scheduling 125
STREAMS 124
System V IPC 124
virtual memory 124

L
libpool 54
Load

adapting 62
Loopback file system 104
M
Messaging server

deployment example 167
Messenger Express

deployment example 173
N
Namespace

isolation 129
naming services 129

Network
configuration 115

DHCP 116
IP address 116
IP multi-pathing 118
routing 117

firewalls and filters 118
Network File System 108
newtask 26, 27, 43
Non-global zone

definition 9, 17, 66
overview 17, 66
relationship to the Solaris OS 17

O
OpenSolaris 101
Oracle

running in projects 38
P
Packages 126

management 126
partitions 14
Patches

management 126
pgrep 26

206 Index • October 2006

pkill 26
Pool

creating 58
pooladm 55
poolbind 26, 55, 94
poolcfg 55, 58
poold 55
Pools

binding 61
Solaris Containers 94
Solaris Zones 94

commands
libpool 54
pooladm 55
poolbind 55, 94
poolcfg 55, 58
poold 55
poolstat 55

monitoring 55
poolstat 55
Portal server

deployment example 162
prctl 26, 30, 33
Predictive Self-Healing 132

and Solaris Containers 133, 144
Printing 119
priocntl 26
Process

isolation 67
relationship to tasks and projects 5

Process Rights Management 127
Solaris privileges 127

Processes
binding to pools 51

Processor sets 49
and Fair Share Scheduler 52
commands

psrset 49

creating 49
overview 49

Processors
UltraSPARC T1 151

projadd 26
projdel 26
Project

definition 5
relationship to processes and tasks 5

Projects
attributes

project.pool 51
classifying workloads with 24
commands

id 26
ipcs 26
newtask 26, 27, 43
pgrep 26
pkill 26
poolbind 26
prctl 26, 30, 33
priocntl 26
projadd 26
projdel 26
projects 26
projmod 26
prstat 26, 43
ps 26
rctladm 33
useradd 26

database 25
defining

example 34
defining workloads 24
definition 24
overview 24

projects 26
projmod 26

 207

prstat 26, 43
Extended accounting 26

ps 26
psrset 49
R
rctladm 33
Resource allocation

definition 13
Resource capping 120, 122

guidelines 121
Resource containment 3

definition 7, 13
relationship to Solaris Containers 7

Resource control
actions

deny 31
none 31
signal 31

privilege level
basic 31
privileged 31
system 31

Resource Controls 30
Resource controls

administering 30
overview 6
process.max-address-space 32
process.max-core-size 32
process.max-cpu-time 32
process.max-data-size 32
process.max-file-descriptor 32
process.max-file-size 32
process.max-msg-messages 32
process.max-msg-qbytes 32
process.max-port-events 32
process.max-sem-nsems 32
process.max-sem-ops 32
process.max-stack-size 32

project. max-contracts 32
project. max-sem-ids 36
project. max-sem-nsems 36
project. max-shm-ids 36
project. max-shm-memory 36
project.cpu-shares 29, 30, 32
project.max-crypto-memory 32
project.max-device-locked-memory 32
project.max-lwps 32
project.max-msg-ids 32
project.max-port-ids 32
project.max-sem-ids 32
project.max-shm-ids 32
project.max-shm-memory 32
project.max-tasks 32
System V IPC 35

SEMMNI (semsys
seminfo_semmni) 36

SEMMNS (semsys
seminfo_semmns) 36

SEMMSL (semsys
seminfo_semmsl) 36

SHMMAX (shmsys
shminfo_shmmax) 36

SHMMIN (shmsys
shminfo_shmmin) 36

SHMMNI (shmsys
shminfo_shmmni) 36

SHMSEG (shmsys
shminfo_shmseg) 36

task.max-cpu-time 32
task.max-lwps 32
zone.cpu-shares 32
zone.max-lwps 32

Resource management
concepts 3
kernel parameters 123

extended accounting 125

208 Index • October 2006

file system 124
IPQoS 125
processes 123

max_nprocs 123
maxuprc 123
pidmax 123
zone.max-lwps 123

pseudo terminal 124
scheduling 125
STREAMS 124
System V IPC 124
virtual memory 124

resource capping 120, 122
guidelines 121

Solaris Containers 101
zones 72

Resource pool
creating 58
definition 4

Resource Pools
monitoring 55
overview 50

Resource pools
binding 61
creating

example 55
dynamic 52, 56

poold 53
in Containers 91
zones 72

Resource sets
definition 4

Resources
managing 49

rlimit 30
S
Scalability

definition 13

Security 127
Access control 128

Basic Security Model 128
intruder traps 129
role-based access control 128

Auditing 128
Basic Security Model 128
intruder traps 129
role-based access control 128

Process Rights Management 127
Solaris privileges 127

risks 119
Solaris Containers

Solaris Containers
security

risks 119
zones 65

Security isolation
definition 8
relationship to Solaris Containers 8

server virtualization
overview 7

Servers
Sun Fire T2000 151

Service
definition 5, 12

Service Management Facility
commands

inetadm 137
svcadm 137
svccfg 137
svcprop 137
svcs 137

compatibility 136
manifests 135
services 134

profiles 137, 142
starting 136

 209

stopping 136
states 135

Solaris Container Manager 131
Solaris Containers

and Predictive Self-Healing 144
approach to containment 12
backup

disk snapshot 115
tape 113

backup and restore 112
consolidation

example 151
construction 91
creating 89

sparse root
Solaris Containers

creating
whole root 125

definition 7
disk snapshot 115
file system

direct device 107
file systems 102

loopback 104
Network File System 108
NFS 108
UFS 107

guidelines for deployment 20
integration 101
network 101

firewalls and filters 118
network configuration 115

DHCP 116
IP address 116
IP multi-pathing 118
routing 117

overview 2, 16
package management 126

patches 126
pools

binding 94
creating 91

printing 119
provisioning

Solaris Containers
installation 125

resource capping 120, 122
guidelines 121

resource management 101
security 119
storage 101

configuration 102
file system 102

direct attached 103
network attached 103
storage area network 103

tape backup 113
Solaris Dynamic Tracing

overview 18
Solaris Service Manager 134
Solaris ZFS 104
Solaris Zones 65

administering 67
backup

disk snapshot 115
tape 113

backup and restore 112
booting 76
commands

zlogin 69, 70
zoneadm 68, 70
zoneadmd 69, 70
zonecfg 68, 70
zonename 70

configuration 68, 154
verification 97

210 Index • October 2006

configuring 75
CPU consumption 83
creating 75

sparse root 125
whole root 125

definition 8
deployment

example 152
devices 68
disk snapshot 115
extended accounting 72
Fair Share Scheduler 73
file systems 68, 71
installation 125
installing 68, 76
login 69
managing 157
monitoring 157
network

firewalls and filters 118
network configuration 115

DHCP 116
IP address 116
IP multi-pathing 118
routing 117

network interface 68
overview 65, 66
pools

binding 94
printing 119
properties 68
provisioning 125
relationship to Solaris Containers 8
resource capping 120, 122

guidelines 121
resource controls 68
resource pools 72
tape backup 113

Using
example 73

zone name 68
zone path 68

Solaris zones
resource management 72

Sparse root 102
creating 125

Storage
configuration 102

file system 102
direct attached 103
file system

direct device 107
file systems

Solaris ZFS 104
UFS 107

network attached 103
Solaris Containers

direct attached 103
network attached 103
storage area network 103

storage area network 103
Sun Fire T2000 Server 151
Sun Java Enterprise System 152

deployment
example 152

performance tuning 180
Sun Management Center 131
Sun Trunking 118
System V

IPC resource controls 35
SEMMNI (semsys

seminfo_semmni) 36
SEMMNS (semsys

seminfo_semmns) 36
SEMMSL (semsys

seminfo_semmsl) 36

 211

SHMMAX (shmsys
shminfo_shmmax) 36

SHMMIN (shmsys
shminfo_shmmin) 36

SHMMNI (shmsys
shminfo_shmmni) 36

SHMSEG (shmsys
shminfo_shmseg) 36

T
Tape backup 113
Task

definition 5
relationship to processes and projects 5

Thresholds
determining 33

Time Share scheduler 51
Troubleshooting 147

Networks 150
Zone access 147
Zones

boot single user 150
with console login 149
with safe-mode login 149
with Telnet and shells 147
with zlogin 148

U
UFS 107
UltraSPARC T1 processor 151
UNIX File System 107
useradd 26
V
Virtual machine monitor

hosted 15
Virtualization

definition 7
of file systems 66
overview 7, 11
relationship to Solaris Containers 7

trade-offs 18
zones 65

Virutal machine monitors 13
W
Whole root 102

creating 125
Workload

definition 5, 23
management 23
visibility 13

Workload classification
overview 4

Workloads
definining 24
managing

example 33
wracct 27
Z
zlogin 69, 70
zoneadm 68, 70
zoneadmd 69, 70
zonecfg 68, 70
zonename 70

sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

