
��������
���
���������

�������� ����

�
������ ����������

����� �������
������
���
 ���� ������
��������

�� ������������ ������
���� � !

���� "�# $%&
�$$$
%
'������� %#
(������) ���� � !

Please

Copyright 2005Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com,Sun Java Desktop and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

[IF ENERGY STAR INFORMATION IS REQUIRED FOR YOUR PRODUCT, COPY THE ENERGY STAR GRAPHIC FROM THE REFERENCE
PAGE AND PASTE IT HERE, USING THE “GraphicAnchor” PARAGRAPH TAG. ALSO, COPY THE ENERGY STAR LOGO TRADEMARK
ATTRIBUTION FROM THE REFERENCE PAGE AND PASTE IT ABOVE WHERE THIRD-PARTY TRADEMARKS ARE ATTRIBUTED.
(ENGLISH COPYRIGHT ONLY). DELETE THIS TEXT.]

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com,Sun Java Workstation et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

1

Creating Self-Balancing Solutions

with Solaris 10 Containers

Transactions of some kind are an integral part of every organization, and must be
completed on time if the business is to operate effectively. Chaos — and damage —
can be caused if critical transactions are not handled efficiently. Billing systems, for
example, are often under heavy time constraints, and are expected to be able to
process the previous day’s transactions in an eight hour period. Imagine arriving at
work, only to discover the billing application is still processing yesterday's
transactions, delaying the sending of invoices to some customers. This behavior
often arises when multiple instances of a business-critical program are running —
one or more always seem to run longer than the rest.

Performance problems such as these are best handled by multiprocessor systems
running multiple instances of the application. Today, IT managers may try to break
workloads into chunks and process each chunk with a separate program instance to
keep up with demand. They hope to distribute the workload across the instances, to
ensure they can keep pace. But what happens when one instance fails to finish in
time? What if the business is growing, and every month the number of lagging
instances increases? How are system administrators supposed to figure out which
instance is going to be late the next time?

Scenarios such as these cause system administrators great pain and give
management great cause for concern. If systems fail to process a day’s transactions
in one day, the business is in trouble. If these transactions are a critical part of the
business, like a billing system, accounts recievable falls further behind each day. No
matter how management allocates the work, some customers account for more
transactions than others, leading to some systems and program instances being
overloaded, and others under utilized. If only the instances could balance
themselves, and share the work equally, the work would be done in time.

System administrators need to find ways to balance workloads across computing
resources. The Solaris™ 10 Operating System includes a new facility, Solaris Zones,
that can be used with resource management techniques to create a Container with

2

Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

which to manage unbalanced load problems. This BluePrint article presents several
techniques for dealing with unexpected workload changes, and provides best
practices for employing Solaris Containers in this effort.

Changing Workloads Are Inevitable

Balancing the work between multiple instances of a program is a common problem
in production data centers, regardless of the platform deployed. In fact, balancing
workloads is really part of a larger problem — dealing with change. The most
common kind of change in a data center is to have more work to do, to provide more
service and better availability while still keeping to cost constraints.

Today, many data centers try to balance workloads much the same way they did
during the mainframe era — by allocating a chunk of work to each instance of the
program, and hoping the chunks are all the same size and will complete in the same
amount of time. Unfortunately, this approach is an invitation to frustration. It rarely
works — the inputs are bound to change, perhaps every day.

Recognizing Imbalance Problems

The first step in creating balanced workloads is recognizing this kind of problem
when they arise. Often, workload conditions are characterized by the presence of
multiple instances, statically allocated work, and dynamic changes to the amount of
work needed to be done. While these characterizations describe the situation, they
do not describe the symptoms present in the environment. In fact, symptoms are
often ambiguous — a program that runs slowly or takes too long to complete — and
describe virtually any performance-related problem.

Perhaps the most critical symptom is easiest to spot: one instance of a program runs
too long, and at least one other instance of the same program finishes early. Several
types of workloads are prone to this behavior, including:

�

Billing systems that explicitly configure ranges based on customer names

�

Stock trading systems that suffer whenever there is increased activity in one
stock, suggesting some form of balancing based on stock ticker symbol

�

Geographically distributed organizations trying out a marketing initiative in a
single region

�

Phone systems that bill based on area code

 Solutions to Imbalance Problems

3

Any one of these scenarios might indicate an imbalance problem. However, it is up
to the system administrator to recognize that multiple instances exist, or that one
instance of a program that seems to be running too slowly is, or is not, fast enough
to meet demand.

Unfortunately, recognition alone is not enough — the details of the problem must be
expressed clearly to management. Management, however, is rarely concerned with
underlying technical details. They are concerned with the impact, or cost, of the
problem and its solution, including:

�

The cost of not meeting defined service levels (SLAs)

�

The cost of extra hardware to ensure SLAs are met

�

The cost of making any change to the infrastructure

�

The total cost of creating a solution, including lead time, manpower and testing

Once an imbalance problem is identified, it is important to:

�

Communicate the existence of the workload imbalance

�

Explain it is a type of performance problem with potentially good solutions

�

Stress that good solutions are those which involve reorganization of the work
rather than additional investment.

Your management will prefer solutions which preserve their existing investment,
and don’t require either rewriting the programs or buying large amounts of
additional hardware.

Solutions to Imbalance Problems

Numerous approaches are available to address imbalance problems, some better
than others.

�

Throw hardware at the problem

The simplest solution for an imbalance problem is no solution at all — throw
hardware at the problem. Like many performance issues, imbalance problems can
be solved by providing enough additional resources so that the imbalances do not
slow down the systems and applications enough to hurt or be noticed. It does
cure the imbalance, but it poses a funding problem that management may
consider worse that the disease.

�

Tune software until the system runs fast enough

Another technique often employed involves tuning applications or databases so
the slowest program instance completes in a reasonable time frame. A program
that uses a poor algorithm or a subtly incorrect SQL query can be sped up enough

4

Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

so that most imbalances remain hidden. This approach, however, will fall victim
to a heavy burst of correlated transactions, resulting in an instance that runs
overtime. Furthermore, constantly tuning the environment through source code
changes can be prohibitively expensive.

�

Statically rebalance the load

One possible solution — one that has delivered results — is to rebalance the
program instances. Typically this task is accomplished manually, based on
historical data. For this approach to be effective, it should be performed each
week after looking at the load distribution for the previous few weeks. While
valid, this is only a probabilistic approach, one that will fail if the workloads vary
greatly.

�

Add more program instances

Adding more program instances combines the techniques of adding more
computing resources with statically rebalancing workloads. Adding one or two
program instances reduces the likelihood of an imbalance by a moderate amount,
and at the same time, resulting in the programs consuming more machine
resources. This works only if those needed resources are available when needed,
and are not needed by other programs.

For example, increasing the number of program instances at a customer site by
one or two improved performance overall, while an increase to three program
instances slowed down processing. Adding the third instance starved the
database the programs were using, slowing the entire system down as a result.

�

Add more instances but manage resources

In cases where adding instances starves other programs of resources, we would
need to manage the resources the programs could use. This is done with the
resource management mechanisms of Containers in Solaris 10, or SRM in Solaris
9.

�

Run many instances and manage resources

Building upon the previous solution, system administrators can attempt to run
many instances but limit the resources they can consume. This is a time-tested
practice: many organizations running mainframes used to assign multiple
application instances to a logical partition and managed the number of CPUs in
the partition to ensure each instance had sufficient resources.

For example, a stock trading system could run 26 program instances, one for each
letter in the alphabet, and distribute work according to ticker symbol. This would
spread out the work well, but 26 instances would try to use a large number of
CPUs. This could be done exactly as on the mainframe by creating a domain with
a limited number of CPUs for just this program. However, this prevents other

 Solutions to Imbalance Problems

5

programs from using those CPUs when the billing program is inactive. Using
Solaris Containers instead allows the CPUs to be shared while still limiting the
amount of CPU resources used by the particular program.

�

Dynamically rebalance workloads and manage resources

If it was easy — and cheap — to determine how many transactions exist for each
workload group, an equal number of transactions could be assigned to each
program instance. If the number of transactions cannot be predicted, it may still
be possible to dynamically apportion small chunks of work to several instances of
the program and create a means for them to come back for more work when they
are finished. This dynamic rebalancing of workloads may be accomplished
without modifying applications. Scripts can be written that divide up the work to
be done, or a batch queueing system could feed the list of work to the program
instance.

For example, a stock trading system might assign all transactions for stock
symbols beginning with the letters A through G to seven instances of the
program, one for each first letter. The first instance to complete would then be
given transactions for symbols beginning with H, the second transactions
beginning with the letter I, and so on. This technique gives system administrators
the ability to increase or decrease the number of program instances and the
amount of CPU assigned to them. It is possible to find, for example, that the best
throughput results when there are twice as many instances as processors, but that
no more than eight CPUs worth of power are used.

�

Make the program divide up the work better

Some workloads, like those experienced in stock trading systems, have
characteristics that make it nearly impossible for all transactions to affect a single
entity, such as a stock symbol. This cannot be guaranteed for other types of
balancing problems. Cases do exist in which the entire workload can land
squarely on a single program instance. When this occurs, the best opportunity for
problem resolution lies in changing the algorithm.

The classical approach is to break the program up into a parent instance that
collects the work to be done and a pool of child processes that are handed work to
be done in reasonably sized chunks. Changes such as these are not small, nor are
they inexpensive. Substantial source code tuning may be required.

It is often better to dynamically rebalance the workload as previously discussed
rather than re-engineer solution unless absolutely needed. If a method can be
found to select small enough chunks, staying with dynamic balancing is a
reasonable solution.

6

Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

Selecting the Best Solution

When looking at the solutions outlined above, a pattern emerges. Good solutions
provide:

�

One mechanism for breaking the work into chunks

�

Another mechanism for managing the resources those chunks use to get the job
done.

In addition, good solutioins also involve reorganizing the queues of work, without
requiring additional hardware or rewriting software. This means that good,
inexpensive solutions do exist. The task is selecting a solution that fits

your

 particular
variant of the problem and minimizes costs, something your management will
appreciate.

Introducing Solaris Containers

Containers are a resource management concept that are implemented with Solaris
Zones, a general mechanism for simplifying system administration. They provide
isolation between software applications or services using flexible, software-defined
boundaries. These applications can then be managed independently of each other,
even while running in the same instance of the Solaris Operating System. Solaris
Containers create an execution environment within a single instance of the Solaris
OS and provide:

�

Full resource containment and control

 for more predictable service levels

�

Fault isolation

 to minimize fault propagation and unplanned downtime

�

Security isolation

 to prevent unauthorized access as well as unintentional
intrusions

Solaris Containers used Solaris Zones to provide a virtual environment that appears
to be a complete, standalone machine or domain with its own hostname, IP address
and users. Since each Container acts like a separate operating environment, it
provides a familiar environment to system administrators that is easy to manage.
Consider the common task of placing two different Web servers on a single server
that each want to run on port 80. By placing each instance in a Container, each Web
server gets its own port 80 to use. Each Container is also isolated from security
problems that may arise in other Containers.

 Selecting the Best Solution

7

FIGURE 1

A container example,

The resource management capabilities inherent in Solaris Containers provide a
unique balance between sharing and resource limitation. It allows a large number of
competing programs to share the free CPUs in a multiprocessor machine. As all
CPUs in the system are available to each Container, CPU time that remains unused
by one Containers is made available to other Containers. Unlike a logical partition or
a domain, assigning a seven processors to a Container does not take them away from
other containers. Whenever a Container is not using all the CPUs, unused power is
shared with the programs in other Containers.

At the same time, each Container is guaranteed a certain share of the total CPU,
memory and network resources. If all programs on the machine demand CPU
power, it is rationed so that each Container gets a share specified by the system
administrator. As a result, system administrators can give programs a guaranteed
minimum amount of CPU resources. However, more CPU resource can be utilized if
no other task is competing for those resources.

It is important to note that unlike some emulated virtual machines, Containers do
not have a performance tax. Adding a Container consumes approximately 60 MB of
disk for per-Container files, and a negligible extra amount of overhead to check
which Container is in use during a system call. This is comparable in performance to
domains, BSD jails, or the IBM mainframe logical partitions.

Finally, the programs used to report the performance on a standalone machine work
just as one would hope in a Container. They report the performance and resource
usage of the programs in the Container, just as if they were on a standalone machine.

Global Container: Water (10.2.0.9.21)

Local Container: Hydrogen (10.2.9.1)

Billing
Application

Local Container: Oxygen (10.2.9.20)

All Other Applications

Operating System

8

Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

Balancing Changing Loads — An Example Script

The second part to our solution is to find a way to break the work down into small
chunks and apply a dynamic balancing algorithm. Consider a program calling

billing

 that accepts one parameter, a range of letters. If the program interprets a
range of

A-A

 as a command to process transactions beginning with just the letter A,
then we can easily break down the work into 26 chunks, one for each letter of the
alphabet, and balance it with a shell script like the following:

In this example script, seven copies of

processQueue

 each run a copy of

billing

.
Each copy processes a letter of the alphabet until the work for that letter id done,
then goes back to get another from getQueueEntry. They each stop

when
getQueueEntry

 returns them a null string.

#!/bin/sh
#
balance-billing -- run 7 instances to do a queue of work
#
ProgName=‘basename $0‘

main() {

loadQueue
for i in 1 2 3 4 5 6 7; do

processQueue $i &
sleep 5

done
wait

}
#
processQueue -- do work as long as getQueueEntry returns
it to us.
#
processQueue() {

myNumber=$1

letter=‘getQueueEntry $myNumber‘
while ["$letter" != ""]; do

billing $letter-$letter
say "Server $myNumber processed $letter"
sleep 5
letter=‘getQueueEntry $myNumber‘

done
say "Server $myNumber done"

}

 Getting from the Problem to the Solution

9

The

getQueueEntry

 function can be as simple as the following.

The above example works well for straightfoward cases. Note that more complex
situations may require additional C or Java code.

Getting from the Problem to the Solution

Converting to the desired solution can be made easier by taking advantage of the
application isolation provided by Solaris Containers. In the example that follows, the
same Solaris Container is used for preparation as well as deployment. Installing a
program, like our billing example, in a Solaris Container is equivalent to setting it up
on another machine — the program in the billing Container cannot interfere with
other Containers on the system. As a result, the Solaris Container provides a safe
(non-interfering) environment in which to install, test and configure a new copy of
the billing program on the target machine, without disrupting the existing billing
program.

Once the new “machine” is set up and the billing program installed, the unmodified
billing program can be run to get a baseline measurement of the resources needed
for successful operation. The

SAR

 and

prstat

 utilities can be used to obtain the
resources used. From this information, system administrators can decide what initial
share of the CPU resources to grant to the Container. For example, if a seven-
instance billing program drives an eight processor system to 80% CPU utilization,
that equates to 6.4 processors running at 100% utilization. This means that the

#
getQueueEntry -- get a single letter from the queue, and blank
if there are none.
#
getQueueEntry() {

myNumber=$1

First, grab the queue (equivalent of locking it)
for tries in 1 2 3 4 5 6 7 8 9 10; do

mv ./TheQueue ./$myNumber 2>/dev/null
if [$? -eq 0]; then
Then get and return a queue element
popQueue $myNumber
return

else
sleep 6
say "Server $myNumber retrying getQueueEntry"

fi
done

}

10

Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

Container should be given a 10 percent share of the resources on a 64 processor
system, and a 27 percent share on a server with 24 processors. Note that the

prctl

command can be used to adjust the CPUs assigned to a given Container.

Implementing the Billing Container

In our scenario, a 24-processor machine runs the Oracle and billing software. We
need to create a separate Container for billing, and put a copy of the billing program
in it, with the load balancing script detailed in the section “Balancing Changing
Loads — An Example Script” on page 8.

Creating SRM Projects

The first step involves creating the projects used by the Solaris 10 Resource Manager
(SRM) component of the Container. We want to create a billing project with 27% of
total CPU resources, on a server with 24 CPUs is in use. Oracle is allocated 40 shares,
and the default projects are assigned another five shares between them. Because we
want a billing project with 27% of total CPU resources, we need (27 * 45) / 73 or 17
shares.

Right now the

/etc/project

 file looks like the following:

prctl -n zone.cpu-shares -r -v $SHARES -i zone $CONTAINER_NAME

cat etc/project

user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
oracle:100:Oracle:oracle:oracle:project.cpu-shares=(privileged,40,none)

 Implementing the Billing Container

11

Because the Solaris 10 Resource Manager is already in use, the Fair Share Scheduler
is probably being used for CPU management. Just in case, set the default scheduler
with the

dispadmin

 command and the current scheduler with the

priocntl
command.

Next, add a billing group and project, and set the CPU shares for the project:

To automatically assign the billing user to this project, edit the /etc/user_attr file
and add a line for billing:

This means that all processes started by the billing user are assigned to the
billing project. This can be tested by becoming the billing user and running a
load.

dispadmin -d FSS
priocntl -s -c FSS -i class TS
priocntl -s -c FSS -i pid 1

groupadd billing
projadd -c ‘Billing processes’ -U billing -G billing billing
projmod -sK “project.cpu-shares=([priveleged,17,none)” billing

cat /etc/user_attr
Copyright (c) 2003 by Sun Microsystems, Inc. All rights reserved.
#
/etc/user_attr
#
user attributes. see user_attr(4)
#
#pragma ident "@(#)user_attr 1.103/07/09 SMI"
#
adm::::profiles=Log Management
lp::::profiles=Printer Management
root::::auths=solaris.*,solaris.grant;profiles=Web Console Management,All;lock!
oracle::::project=oracle
billing::::project=billing

12 Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

If a load generating program is now run, it is possible to see if the CPU usage is
assigned to the billing project. In our example, the load generator is yes, which
writes a steady stream of ’y’ and newline characters to stdout. The yes program
happily uses as much CPU resources as it can get. With yes running, we can see
what project it is in and how much CPU resources it uses with the prstat -J
command:

su - billing
project.cpu-shares resource control assignment failed for project "billing"
su: unable to set credentials
Whoops, there’s a spelling error in our /etc/projects line, “priveleged” instead of
“privileged”. We fix that and su secedes.

su - billing
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
$ yes >/dev/null &
1238
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 1238 billing 1120K 816K run 22 0 0:01:51 29% sh/1
 1228 oracle 1120K 816K run 22 0 0:02:20 28% oracle/1
 1247 oracle 1120K 816K run 31 0 0:00:09 25% oracle/1
 1248 oracle 1120K 816K run 31 0 0:00:03 13% oracle/1
 646 davecb 14M 10M sleep 49 0 0:00:25 1.3% gnome-terminal/1
 371 root 43M 33M sleep 49 0 0:02:10 1.2% Xsun/1
 638 davecb 9856K 7248K sleep 59 0 0:00:28 0.4% metacity/1
 1249 oracle 5848K 4896K cpu0 59 0 0:00:00 0.3% prstat/1
 642 davecb 15M 11M sleep 59 0 0:00:29 0.2% gnome-panel/1
 748 davecb 19M 17M sleep 59 0 0:00:57 0.2% maker5X.exe/1
 675 davecb 6040K 5096K sleep 49 0 0:00:14 0.1% wish8.3/2
 670 davecb 7936K 5248K sleep 59 0 0:00:02 0.1% galf-server/1
 644 davecb 13M 9096K sleep 49 0 0:00:06 0.0% gnome-perfmeter/1
 640 davecb 29M 26M sleep 59 0 0:00:05 0.0% nautilus/6
 636 davecb 3808K 2344K sleep 59 0 0:00:01 0.0% gnome-smproxy/1
PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 101 3 3360K 2448K 0.5% 0:02:32 66% oracle
 100 1 1120K 816K 0.2% 0:01:51 29% billing
 10 33 379M 259M 53% 0:05:17 3.5% group.staff
 3 7 388M 70M 14% 0:00:17 0.3% default
 0 34 82M 47M 9.7% 0:00:01 0.0% system
Total: 78 processes, 176 lwps, load averages: 2.58, 1.67, 1.08

 Implementing the Billing Container 13

From this output we can identify three oracle processes currently using 66% of
available CPU resources. The fake billing process trying to use everything it can get,
but is limited to 29% of CPU resources. The remaining 5% is used by other processes,
such as gnome-terminal.

As mentioned earlier, billing can use more than 27% of CPU resources if the other
processes on the machine do not need them. However, when those other processes
do need access to those CPU resources, billing will be restricted to 27%.

Creating the Container
Next the Container is created, starting with its directory under /export/zone/
billing. This must reside in a filesystem with enough space for local files, plus the
minimum zone size of 60 MB. Once the directory is created, the Container is created
with the zonecfg command.

Next, try to make the Container runable.

mkdir /export/zone/billing
zonecfg -z billing
billing: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:billing> create
zonecfg:billing> set zonepath=/export/zone/billing
zonecfg:billing> add net
zonecfg:billing:net> set address=10.9.129.221
zonecfg:billing:net> set physical=dfme0
zonecfg:billing:net> end
zonecfg:billing> add rctl
zonecfg:billing:rctl> set name=zone.cpu-shares
zonecfg:billing:rctl> add value (priv=privileged,17,none)
zonecfg:billing:rctl> end
zonecfg:billing> verify
zonecfg:billing> commit
zonecfg:billing> exit

zoneadm -z billing install
/export/zone/billing must not be group readable.
/export/zone/billing must not be group executable.
/export/zone/billing must not be world readable.
/export/zone/billing must not be world executable.
could not verify zonepath /export/zone/billing because of the above errors.
zoneadm: zone billing failed to verify

14 Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

While we set the permissions of the /export/zone/billing directory to 755, it could
be a possible security risk. For safety, permissions for the zone path must be set to
0700. Make that change and try again to make the Container runable.

Before booting the billing container with its 17 shares, first set the global container to
the same 45 shares tested using /etc/projects.

Once booted, the billing container is assigned17 shares, and the global Container 45,
shares. As a result, the billing process will not be able to starve the Oracle software
of CPU resources.

The normal way one use containers is to put each of the applications in a container,
keeping the global container for root logins. In this example, however, the global
container is used to run Oracle. Therefore, the rcntl command must be added to the
/etc/rc2.d file to ensure it runs every time the system is booted.

Taking the Next Step
Now that one problem of unmanaged change has been solved, it is possible to take
advantage of the resource management lessons learned and apply them to other
change management problems that arise in the business.

Nearly every organization experiences two particular types of change — seasonal
rushes and an increase in load due to business growth. Both are very good things for
the business, but place great demands on the IT department. To address these
challenges organizations can:

� Put each major application in its own Container to gain visibility into the
resources each application utilizes. Use the prstat -Z command to obtain
resource utilization statistics.

zoneadm -z billing install
Preparing to install zone <billing>.
Creating list of files to copy from the global zone.
Copying <2523> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <897> packages on the zone.
Percent complete: 6% Initializing
zoneadm -z billing boot

prctl -n zone.cpu-shares -r -v 45 1

 About the Author 15

� Identify the most important programs during busy periods and give them a larger
share of CPU resources with the prctl command.

� If it is possible to determine how much extra load is likely to be experienced
during the annual rush, compute the appropriate balance of resource beforehand
so that they can be allocated quickly when needed.

� If insufficient resources are available, plan ahead and obtain pricing for the
additional resources needed to handle any expected increased load conditions.
Give management an estimate of the cost of potentially lost business, as well as
the cost of hardware to keep that business.

� If resources are available but not distributed correctly for an impending rush, take
a Solaris Container with a less important program and move it from the machine
with critical programs to another machine. Because the Container has its own
name and IP address, it can be moved as a unit without breaking other programs
with which it communicates.

Remember that management keeps its eye focused on costs more than any other
factor. They are constantly struggling to provide more services and better availability
while keeping their costs constant.

This means that you can contribute by finding ways to use their resources more
effectively, and use an architecture that is flexible enough to handle changes. With
Containers, Sun provides you another technology designed with your management’s
investment protection in mind.

Each of the solutions presented addresses problems which cost management money,
including the cost of:

� Not meeting defined service levels during a rush
� Additional hardware to meet demand
� Having programs on the wrong hardware
� Moving the programs to the right place

Helping solve each of these problems provides a monetary advantage to
management, one that will be remembered come annual review time.

About the Author
Dave is an currently an engineer in ASE, on the Managed Storage project. At the
time he wrote this he was performance engineer at Data Center Works in Toronto,
“The Organization Formerly Known as ACE”, finishing up a large performance
project from which the scenarios were adapted.

In his copious spare time he writes about Samba and Unix, and in the two weeks of
Canadian summer, repairs the cottage.

16 Creating Self-Balancing Solutions with Solaris 10 Containers • June 2005

Acknowledgements
The author would like to recognize the following individuals for their contributions to this
article:

� Menno Lageman, a Containers expert, for his help with the solution and its
presentation.

� Ron Lipsius and George Fytikas, for encouraging me to write about the lessons
learned and reviewed the resulting paper.

References
More information on Solaris Containers can be found at
http://www.sun.com/bigadmin/content/zones/

More information on Solaris 10 Resource Manager can be found at
http://docs.sun.com/app/docs/doc/817-1592

A Blastwave tutorial is available at
http://www.blastwave.org/docs/Solaris-10-b51/DMC-0002/dmc-0002.html

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

 References 17

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site
at: http://www.sun.com/blueprints/online.html

