
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Migrating From HP UNIX to the
Solaris™ Operating System

Ken Pepple, Brian Down, David Levy

Sun BluePrints™ OnLine—March 2005

Part No. 819-2275-10
Edition: March 2005

Please
Recycle

Copyright 2003—2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry.
Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement
OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003—2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et
dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, et Solaris sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Migrating From HP UNIX to
the Solaris™ Operating System

Editor’s Note - This Sun BluePrint™ article is the complete eleventh chapter of the Sun
BluePrints™ book, Migrating to the Solaris Operating System: The Discipline of
UNIX-to-UNIX Migrations by Ken Pepple, Brian Down and David Levy (November,
2003, 272 pages, ISBN 0-13-150263-8).

This book presents an established methodology for transitioning the people,
processes, and technologies in IT environments to the Solaris Operating System.
It steps you through the various phases of the migration process, using detailed case
studies to illustrate the benefits, costs, and requirements associated with a migration
project. While this book focuses on UNIX server migrations, the methodology and
best practices presented apply for most migrations to the Solaris environment.
They can be used for projects ranging from the smallest data conversion to the
largest legacy migration.

This Sun BluePrint article contains the following sections:

■ “About the Case Study in this Article” on page 2

■ “Justifying the Migration” on page 3

■ “Architecting the Migration Solution” on page 6

■ “Implementing the Migration to the Solaris Operating System” on page 11

■ “Managing the New Solaris Environment” on page 24

■ “Results” on page 25

■ “Related Resources” on page 25

■ “About the Authors” on page 26

■ “Ordering Sun Documents” on page 27

■ “Accessing Sun Documentation Online” on page 27
 1

http://www.sun.com/books/catalog/pepple_migrating.xml
http://www.sun.com/books/catalog/pepple_migrating.xml

About the Case Study in this Article
The case study presented in this article draws on several cases in which Sun
Professional Services migrated customers from HP/UX platforms to the Solaris
Operating System (Solaris OS).

The most significant of these projects involved the migration of one of the United
Kingdom’s (UK’s) leading personal-line insurance companies. This customer was a
typical UK-based health care insurance provider in that they primarily sold to
corporate benefits managers, but dealt directly with claimants. This organization
deployed a commercial-off-the-shelf (COTS) integrated- accounts solution, and
enhanced it to support their risk-underwriting and claims-processing business
functions.

The primary goals of the project were as follows:

■ To provide a hardware platform that supported business growth over the
proposed lifetime of the platform

■ To support the business functionality inherent within the COTS package

■ To transition to the target production platform without losing time from the
business day

Additionally, the customer was in the middle of a one-year transformation from a
legacy application, driving renewals from the legacy system and renewing the
customers in the system to be migrated. The customer decided to change the
hardware platform to extend the life of the software investment decision.
The migration solution we provided needed to be designed in the light of these
business goals.
2 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

Justifying the Migration
Before authorizing the project, the customer undertook a due diligence phase to
ensure that the company’s business goals could be achieved by moving their
platforms from HP/UX to the Solaris OS. The engagement and justification tasks
required for this migration project were undertaken collaboratively by the customer
and Sun. This joint process enabled the discovery of the customer’s key
requirements and current state, as documented in the following sections.

Business Background
In this case study, the organization’s business strategies involved excellence around
process, people, and business tools. The applications the organization used enabled
it to run business operations and measure their efficiency and profitability.

The primary reasons for pursuing a migration effort involved meeting the system-
capacity forecasts for new business and legacy replacement. The organization was
moving customer data files from a legacy mainframe to its client-server
environment, which created a demand for an additional disk. The IT department
forecasted that they would run out of disk and CPU capacity, and hence the server
environment needed to be upgraded. The Sun solution was selected for a number of
reasons, including the requirement of the two systems and their associated storage
for minimal floor space and the availability of vertical scalability strategies.

The organization expected Sun to migrate the applications and data from the
incumbent HP systems to the new Sun servers. The transition needed to be seamless,
with minimal impact on business operations, application development schedules,
and the legacy migration schedule.

Enabling the legacy migrations became a key design constraint; the customer did not
want to pay for a second migration infrastructure, and the benefits case required the
retirement of the HP systems. The organization had already developed software and
processes to move data from its mainframe to the client-server architecture, and they
required the move from HP to the Solaris OS be undertaken as a deployment. The
company had deployed the enhanced ledger package to meet the CEO’s vision of
employing good people, creating and enabling industry-leading processes, and
supplying clients with the best technology. The COTS package had created an
integrated risks, claims, and ledger solution, and it was in the process of taking on
the current customer base a month at a time from disparate legacy mainframe
systems. The target system had to be configured to act as the target for the legacy
migration software. In addition, it had to seamlessly support a migration of the
underwriting, claims administration, and finance department staff. (The insurance
example presented earlier in this article illustrates how an insurance company can
 Justifying the Migration 3

buy time for migrations by leveraging natural business-processing cycles.) The
migration from the legacy mainframes utilized the annual cycle of insurance
underwriting, but the migration from HP to the Solaris OS was unable to take
advantage of this cycle; it was necessary to switch off the HP system as soon as
possible.

Technology Background
In this case study, the goal was to replace a number of HP/UX server systems with a
lesser number of Solaris Operating Systems. The key services hosted by the HP
systems were database services, print management services, and job management
services. These services served the risk management, claims administration and
reserving systems, and the accounting and ledger systems. In addition, the systems
also acted as hosts for the database client programs that undertook journaling
services and end-user reports. In accounting systems, much of the referential
integrity between ledgers occurs overnight (or on another periodic basis).

The other driver for the migration effort that was contrary to “work load
consolidation” in the source estate design was the need to support different
management environments, including development, training, quality assurance,
production, and management information instances of the organization’s software
solution.

The COTS package the customer used was GEAC’s SmartStream, which was written
as a two-task client-server package developed using Powersoft’s PowerBuilder and
Sybase Software’s SQL Server. At the time of the case study, Sybase had completed
its takeover of Powersoft and was the product author and vendor of PowerBuilder.
GEAC SmartStream’s natural architecture consisted of Wintel PCs hosting the client
application and UNIX servers hosting the database.

At the customer organization, a PC file-sharing LAN was implemented. File servers
were used to locate the client binaries, and user PCs acquired client runtime images
with Microsoft’s LAN networking protocols. The Sybase SQL servers were deployed
on HP/UX servers that also acted as job hosts for the accounting overnight-batch
programs. (These were GEAC-provided binaries.) One of the management
environments, known as the Quality Assurance (QA) environment, acted as the
interface between the legacy systems and the current system. Files with the next
renewals were loaded into the QA environment database, transformed with Sybase-
stored procedures, and then copied across to the production environment for
renewal notice production. The customer also had a development environment for
the bespoke risks and claims system, a training environment for training new and
existing staff in new functionality, a production environment, and an MIS
environment that held an image of the production database as of the close of the
previous month. This last environment was used to run reports by the finance
department and corporate management. These reports were of data warehousing or
online analytical processing (OLAP) profiles, with large reads and small outputs. A
4 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

separate instance was configured to reduce database contention between these users
and business processing case workers. The following figure illustrates the client’s
application components model.

FIGURE 1 Target Deployment Platform

The company ported its database and some of the application infrastructure to the
Solaris OS as part of this process, to ensure a degree of confidence that a platform
migration was possible within reasonable budgets and that the proposed Sun
platform would meet business growth and performance expectations.

Client PCs using Powerbuilder
Some PCs require Microsoft Access

Sun Enterprise 4000
Supports training
and development

Sun Enterprise 10000
Supports production,

UAT and MIS

PC LAN server
Supports printing, file

services including
software distribution

Disk arrays
 Justifying the Migration 5

Architecting the Migration Solution
The first task in Sun’s Architect, Implement, and Manage (AIM) methodology is to
determine which of the key migration techniques should be applied to each of the
source components. This determination requires a component model specific to the
purpose of migration planning—a component/technique map. The second output
from such a component model is the definition of the scope of the migration. If a
software component or function is not a member of the agreed-on component model,
it is considered to be out of scope.

The key migration techniques used at the organization in our case study included a
rehosting approach, supplemented by replacement and reverse engineering. The key
rehosting techniques involved reusing GEAC and Sybase’s platform independence
and was supplemented with source code porting techniques or some of Sybase
objects and HP/UX shell scripts. In this case, the component model included the
database servers and their hosted business logic, print management, journaling
services, and job management. The key technique driving the migration project was
rehosting, using a new installation of a Solaris instance of the COTS package and the
runtime software infrastructure. The reason for this is that the independent software
vendors (ISVs) support their applications on multiple operating systems and
basically support a common applications programming interface (API) for their
products. These practices ensure that code or infrastructure changes are minimized.

The boundary of the migration problem is defined by exclusively analyzing
components that are currently located on the platform to be retired. Any components
located on other systems will communicate with the migrated componentry through
the ISV’s API. Some testing or research is required to validate that the ISVs have a
common API across platforms, but this is a smaller task than attempting to migrate
the calling components. The migration process can be focused on the customer’s
data and proprietary code base.

Defining the Scope and Approach
The architectural study’s two outcomes are a definition of scope and a technique/
component map. The definition of scope means that there are two sets of objects for
which no technique will be applied—those determined to be out of scope and those
to which a retirement/replacement technique is to be applied. The development of
the technique/component map is iterative.
6 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

This section describes how to use an architectural approach to define the scope of
the project. This approach involves the discovery of business constraints, the
application of migration technique to identified components and strategies, and the
identification of any external batch or real-time feeds. A version of the component/
technique map is presented in TABLE 1 on page 13.

The following figure illustrates the scope of the project. Components within the
shaded box are in scope for migration and an examination of the arrows crossing the
shaded box show the communication protocols used by the migrated components to
receive their input and output. Transactional Data Stream (TDS) is Sybase’s client-
server protocol, which encapsulates their implementation of SQL, Transact-SQL.
These protocols are all stable UNIX-guaranteed or ISV-guaranteed protocols,
reinforcing the decision to use rehosting as the strategy.

FIGURE 2 Applications Component Model

Connection
parameters

NT execution
environment

File
services

Forms
clients

Job
scheduler

Print jobs

RDBMS

Spooler
interface

Job
scheduler

Legacy
data feedsPrint

spooler

Print job
definitions

Management

Mtgration scope

SQR script

TDS

TDS

FTP
 Architecting the Migration Solution 7

Creating a Transition Plan
The creation and design of the transition plan is a separate task within the migration
project. It requires the application of project planning skills and might involve
prototyping and the application of technical design skills.

Discover Business Constraints

The migration team consulted with the business and IT departments to discover any
business and operational constraints that existed. Fortunately, this was primarily a
front-office system for a call center and it was required only during an extended
working day. The overnight batch process typically took most of the night during the
week, but data load prototyping showed that an overnight run and the copy process
could be undertaken on a weekend without impacting business hours.

Design a Plan

A key feature of the transition plan in this case study was to build in a regression
path and a final user acceptance.

The basic plan was to close the source system at the close of business on Friday, copy
the outstanding data from source to target, and then run the overnight batch on both
systems. This meant that both systems should be at “start of day Monday” state.
This would permit the two systems to be compared and either system to operate as
the production host on Monday morning. The plan met the goals of testing for
success and regression in case final testing exposed catastrophic failure conditions.
It also provided a test that the business logic in the overnight batch run was identical
on both systems. The inputs to both overnight runs would be designed to be
identical, and if the outputs were not the same, the test would fail.

Additional features in the plan included check-pointing the process and inserting
test points so that tasks between test points could be repeated should the
intermediate tests fail or alternative remedial action be undertaken.

Prototyping both timings and the development of metadata discovery tools led to
changes in the strategy/component map. This was reinforced when the downtime
window was finally established. The change was to leverage the installation
processes of GEAC and Sybase. This meant that metadata and configuration data
were prepopulated and other, less-volatile, objects were also precopied. These
included the table definitions, views, triggers, and procedures. The precopying of
the procedures meant that the project team had to amend the development change
control process to ensure that any changes to procedures already copied were
applied to both source and target system.
8 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

This change of approach leveraged the principle of precopying to minimize the work
to be undertaken on the weekend when the transition was to occur. In this case, we
reached a point where only data table contents (and hence their indexes) were to be
transferred on the transition weekend.

Note – Indexes are a key to page map and this must reflect the UNIX volume
implementation and hence the RDBMSs intermediate structures. This generally
mandates the rebuilding of indexes on the target system. Depending on the
implementation details of the RDBMS, this can be done before or after the data copy
transaction.

Design Test Plans

The key benefit from leveraging both rehosting and reverse engineering is that
runtime testing of the new environment is minimized. The underlying assumption
that the ISV implementations have a common and stable API requires testing, and
the testing process needs to be sufficiently broad to ensure that the assumption is
considered safe. This means that testing the input interface for semantic meaning is
not required. The basic purposes of testing in this case study were to prove the
following:

■ The copy process was comprehensive.

■ The target system represented the business accurately (or at least as accurately as
the source system).

■ The required service improvement goals had been met.

A further way of reducing the testing required is to utilize prototyping as a
technique. In this particular case, the less critical systems (in revenue-earning terms)
were migrated before the production systems, and any bugs in the transition process
were discovered and rectified. The copy completion checks were developed and
improved during the prototyping process.

Note – The copy completion checks were based on checking that all rows of a subset
of the tables were copied. Additionally, we ran the check sum script against the
contents of certain columns.

Testing tools consisted of five sets of tests:

■ Copy integrity—Precopy
■ Copy integrity—Transition phase
■ Semantic integrity
■ Business acceptance
■ Performance acceptance
 Architecting the Migration Solution 9

The copy integrity suites both involved writing programs that read the source and
target systems to compare them. These browsed the database catalog tables, and
since the query language used was SQL, only one language was used. In addition,
critical columns were check-summed. These columns were the critical item level
financial columns. One error was discovered at this phase based on a bug in the
application. This error was corrected in the production code lines, and a fix was
applied to erroneous data. This illustrates a principle of fixing a problem at its root
cause, rather than, as in this case, writing a data transformation and fixing the
problem during migration.

Semantic integrity tests were limited in this case study. The key area they were
applied to was the shell-script-based print management solution. The key question
to be answered in this test suite is, does the code behave the same on both systems?

We supplemented semantic tests by co-opting members of the business unit’s
training department and their training scripts to test the unchanged client layer
against a Sun-hosted migrated environment. To conduct these tests, we undertook
the first full-scale migration test on the training instance of the application.

The performance tests had been specified in the contract prenegotiations and
pretests undertaken in Sun’s Global Benchmarking center. These tests were repeated
on site on an appropriately sized instance of the database before the migrated
solution was placed into production.

Specify the Business Acceptance Tests

The business acceptance tests were specified to meet the following goals:

■ To prove the target system accurately represents the business
■ To prove the target system meets the performance-based system improvement

goals

The axiom of the project was no change in business logic, so the basic acceptance test
was running the test chart of accounts, which was a report option within the
package. The view taken was that, if the target system represented the business
accurately, then it was suitable. This view was based on one of the fundamental
theories of software development: the primacy of design is in the data model and if
the data model implementation is accurate, then the process implementations can
change to support changes in process. This view had the advantage that the run
times of the test were low and the verification time was also low. Using this test
mandated constraints on the transition strategy.

It was decided jointly by the customer and the team that the best way to ensure that
the system accurately represented the business was to run a test chart of accounts. To
simplify the comparison between the two reports, we ran both of them at the same
logical time. These activities leveraged the decision to ensure that both the source
and target system were available, because they were at the start-of-day post
transition.
10 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

Given that the business acceptance test involved running a program that relied on
denormalized tables, a risk was identified that the acceptance test be sufficiently
comprehensive to test the data migration, so additional instrumentation of the
migration process was developed. As stated above, not only was a target container
created that held all the non-business/transactional data instances (rows) so that the
migration was constrained to business/volatile data only, test programs were also
written to ensure that source and target container properties were identical. Test
programs were written to ensure that all the contents of business data tables were
copied accurately in terms of both number of entries and summing critical columns.

Implementing the Migration to the
Solaris Operating System
The next phase of a migration project involves implementation tasks. In this section,
we examine the tasks involved with implementing an HP/UX solution to the Solaris
OS.

Applying Migration Techniques
Migration involves the movement of business logic (for example, code), business
data, configuration data, and metadata from the source environment to the target
environment.

In this case study, the various objects to be migrated were categorized and a strategy
for moving them was developed. Because we were certain that the source system
worked satisfactorily, the initial strategy was to copy all the objects from the source
environment to the target environment. However, during prototyping, we
discovered that the database volume map needed to be recreated and that it would
be difficult to port certain configurations and metadata. Because it was going to be
more difficult to adopt a “copy everything” strategy than we’d expected, we decided
to use the installation scripts provided by GEAC and Sybase to create a container in
which the remaining data and executables were installed.

The decision to implement a new disk map was made for the following reasons:

■ The target system had a different disk architecture from that of the source system.

■ The source system disk map had only two virtual disks, which makes
implementing database recovery difficult.
 Implementing the Migration to the Solaris Operating System 11

Note – Database recovery requires that database files, the write-ahead log, and the
offline images of these objects be held on different disks. Databases with split
journals and before-image logs (such as Oracle) might require an additional disk.
Database recovery is designed to protect work against a lost disk, so the write-ahead
log must be on a different disk from the database or it will be unavailable if the
database disks become unavailable. Offline copies should be held on other disks so
that they are available if the write-ahead log becomes unavailable.

The target system had significantly more disk volumes than were available on the
source system. The disk map redesign also enabled a simplification of the database’s
internal object placement design.

Both Sun and the customer agreed that the rehosting strategy would be applied to
GEAC, Sybase, and the Sybase Client reporting tool used. The data migration
process would be a logical copy. It was not possible to undertake a physical copy of
the source system—Sybase implements certain features of its system differently on
the Solaris OS and HP/UX. The methods used to extract the data for the
procurement due diligence were based on logical copy technology for this reason.

Note – Print-report logic and the output formats were defined in another third-
party product, originally sold by Sybase, which remained available. The customer
obtained a Solaris license for this product. This product and an ISV portability
guarantee permitted the interface between the Print Job Definitions and Print
Jobs commands to be defined as a third-party protocol and obviated the need to
rewrite the report programs.

Solutions for the individual data item types needed to be developed.

The team undertook a volatility analysis of the data objects. The database schema
definitions were very stable. The majority of the databases were part of the ISV
package (SmartStream); therefore, the schemas were very stable, typically only
changing when software updates were applied. At the other end of the spectrum, the
online transaction processing (OLTP) data changed minute by minute. Between both
ends of this spectrum were the customer proprietary schemas and user identity data.

Sybase data servers organize their catalog tables either in a configuration database
called master or in the application’s databases. master holds server wide data,
whereas the application databases hold database-specific configuration data as
subsets of the data. Each database has its own local catalog tables, including private
lists of user objects such as tables, indexes, views, and users. Each database has its
own write-ahead log and is therefore a unit of recovery. Identifying Sybase RDBMS
metadata is relatively simple. However, GEAC originally architected its distributed-
systems solution to hold significant amounts of metadata either in specific
application databases that were solely responsible for holding this data, or in tables
within application databases that had business-functional purposes.
12 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

An audit of the available technology to copy data from the source to the target was
undertaken. The procurement due diligence resulted in a suite of programs to extract
critical business data and metadata from the customer’s systems. On the general
principal of trying to copy everything, we initially decided to extend the copy and
upload scripts from the initial subset to all data objects. We planned to use Sybase’s
bulk copy program (bcp) to transfer the data (and certain other objects) and to use
Sybase’s defncopy utility program to migrate the triggers, views, and procedures.
We decided to maximize the advantage of using the Sybase and GEAC capability of
running on both the source and target system. A copy strategy also allowed the
migration team to minimize their understanding of the GEAC schemas as if they
were the same on both systems.

However, Sybase’s instance-to-instance copy facilities were limited and needed to be
augmented. Sybase had logical copy tools such as bcp or defncopy that could be
used for tables or procedural objects. The database was the only larger object that
could be made the argument of a copy program: the dump and load commands
could be used on it. However, dump and load activities need certain common
configuration parameters for the source and target servers. The default collating
sequence for a Sybase server is different for HP/UX and Solaris. The team chose to
implement the default on the target (Solaris) system for maintainability reasons, so
the dump and load commands were not available. An object-by-object copy policy
needed to be defined.

The customer had access to two schema extractors. These extractors were part of the
two computer-aided software engineering (CASE) tools and could act as reverse
engineering tools. Despite relying on the rehosting strategy, we realized that
weaknesses in the environment’s capability meant that the rehosting strategy had to
be supplemented. Reverse engineering techniques and source code porting
techniques were used to supplement the strategy.

We chose a schema extractor primarily due to the availability of certain skills and
because of current licensing commitments (the customer had two CASE tools
licensed and preferred one over the other).

The transfer strategies are summarized in the following table.

TABLE 1 Application of Migration Techniques to Objects

Object Type Transfer Tool Transfer Technique

Executables Reinstall Rehost

Table definition Schema extractor Reverse engineer

Table data Sybase BCP utility Rehost

Index definition Schema extractor Reverse engineer

syslogin table
data

Sybase BCP utility Rehost
 Implementing the Migration to the Solaris Operating System 13

Although table definitions and contents are two separate objects in the component
map, an index definition contains a description in SQL that is defined in text and
held in a catalog table. In the case of Sybase, the index definition possesses either a
clustered structure or a B-Tree structure. The definition can be run at any time, but
running it involves building the index contents, which, in the case of a clustered
index, involves sorting the table. For this reason, a create index statement can
have significant runtime implications, but it obviates the need to copy index
contents.

The disk map redesign made obvious the need to copy the sysdevices table that
maps the RDBMS’s name for a disk volume to the OS name. It also revealed the need
to port any named segments. The role of a segment is to provide a location name to
which a table or index can be bound. This allows DBAs to manage the location of
objects, permitting, for example, a B-Tree index or a log object to be located on
specific disks different from their bound table or database. The creation of the
sysdevices table and the minimum necessary segments was undertaken when the
RDBMS and their component databases were installed.

The stored procedures were copied by one of two methods. Procedures that were
also implemented as text objects in the catalog tables were copied with defncopy.
In cases in which there were unresolved external references, the original source code
files for the data definition language (DDL) were inspected and rerun unchanged or
were massaged. The original author was either the COTS vendor or the customer.

The print management solution was the outstanding piece of code that had yet to be
ported. The print queues were reallocated to the file servers, but the print
management component had been implemented in UNIX shell script. There was a
very limited amount of this code, and rather than install Sun’s standard tools and
test harnesses, we ported the code manually by inspection and iterative testing. This
means that the replacement strategy was applied to the queue management function,
and that a source code porting technique was applied to the runtime management
functions.

sysusers table
data

Schema extractor Reverse engineer

User datatypes,
rules and defaults

Schema extractor,
supplemented with bespoke
DDL

Reverse engineer,
supplemented with source
code port

Views Sybase defncopy utility Rehost

Procedures Sybase defncopy utility,
GEAC source files or bespoke
DDL files

Rehost, supplemented with
source code port

Permissions Schema extractor Reverse engineer

TABLE 1 Application of Migration Techniques to Objects (Continued)

Object Type Transfer Tool Transfer Technique
14 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

TABLE 1 on page 13 shows how the basic strategy of utilizing the COTS vendor’s
guarantee of platform independence and a consistent API across platforms was
supplemented. The initial strategy of copying everything was amended for the
following reasons:

■ Manifest quality improvement was achieved by a redesign of the disk map.

■ The cost of isolating the physical changes that were required and applying
separate strategies was too high.

■ The time required to transition with this strategy demonstrated a need for a more
incremental approach.

Let us consider further the ease of undertaking the creation of a component/
technique map. In the real circumstances of the case study, the axiomatic properties
of an RDBMS ease the mapping of object instance to object classes. The descoping of
all the client logic also eased the migration task significantly. In many cases,
allocating an object to a class of data is not easy. This problem is eased by the facts
that a technique can be reused and that object types can have multiple techniques
applied to them, as illustrated TABLE 1 on page 13.

With RDBMS systems, it can be very difficult to define which objects sit in which
category. Note that it should be easier for database objects than where a significant
amount of 3GL code exists, because the types of objects available within 3GLs are far
more restricted, and active dictionaries in which metadata are held are less
frequently implemented. In the RDBMS case above, the metadata and many runtime
objects are held in the data dictionary, alternatively called the database catalog.
3GL systems more frequently build and integrate their metadata within the
executables. In this case study, one of the executable database objects was the Sybase
stored procedures, which were easy to isolate, although some required significant
massage to port because they had unresolved external references. If the stored
procedure used a temporary object, which means one that is created and destroyed
by the procedure itself, despite the fact that the creation commands exist within the
stored procedure, unless the object exists at the time the CREATE PROCEDURE
command is issued, the CREATE PROCEDURE command will fail.
 Implementing the Migration to the Solaris Operating System 15

An example of a tightly integrated business logic and execution logic is described in
the following paragraph. For instance, Cobol 88-level definitions are business logic
objects, and are embedded into an executable, or at least into the source code lines.

In this example, data division entries state that a binary test condition exists (for
example, it can be true or false), and that the variable acts as a flag. The next two
procedural statements evaluate the condition and encapsulate a business rule.
The final statement executes the business transaction logic. To simplify the example,
we’ve used the PERFORM statement to invoke a section that undertakes this work.
The business rules, business logic, and business data types are all distributed
throughout the source code lines. Extracting these three object classes as individual
items from a source code file is hard. There are no clear rules for distinguishing
among these object classes, and identifying the elements is equally difficult.
Fortunately, the richer data types available in an RDBMS solution allow application
designers to isolate business rules and transaction logic from implementation details.

This case study shows how iteration and prototyping were applied to various
objects, object types, and classes. For example, an index can contain both business
logic (a uniqueness constraint) and implementation factors (such as a fill factor).
The value of, or the necessity for, iteration and prototyping might depend on
physical design and implementation details of the RDBMS. Other examples of
implementation details that are encapsulated in the index include the location where
the index was built and the sort order of a clustered index.

In the case study documented here, the RDBMS was implemented with a cost-based
query parser and predated the implementation of query hints. For this reason,
the index is used as an example, but where rule-based analyzers are implemented,
performance-critical transactions need to be tested to ensure that the query plan
resolution remains optimal. Query plans are usually calculated at runtime, so
prototyping and preimplementation testing might be required because rule-based
optimizers can require code changes to permit the analyzer to choose the optimal
query plan. This is particularly important when RDBMS version upgrades are
undertaken.

77 BOOL-TEST-1 PIC(X)VALUE 0.
88 TEST-1-TRUE REDEFINES BOOL-TEST-1 VALUE 1.
88 TEST-1-FALSE REDEFINES BOOL-TEST-1 VALUE 0.

IF < complex condition true>
MOVE 1 TO BOOL-TEST-1.

IF < complex condition false >
MOVE 0 TO BOOL-TEST-1.

IF TEST-1-TRUE
PERFORM TRUE-CONDITIONS

ELSE
PERFORM FALSE-CONDITIONS.
16 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

TABLE 1 on page 13 shows the application of migration strategies and techniques to
specific database and execution objects. These strategies and techniques were
developed during the architecture stage and were refined during the implementation
phase while software to implement the migration was developed.

With an RDBMS, business logic can be held in database objects (such as views,
indexes, constraints, triggers, and procedures) or in client-side objects. The definition
of scope is critical in defining the techniques used to migrate business logic. As
described above, business-object logic can be in scope or out of scope. The scope
status of business logic can depend on several factors. The business logic can be
redundant, as is the case when the retirement/replacement technique is used. It can
be encapsulated in part of the environment that exists in both the source and target
environments. In the case of this study, client-side PowerBuilder procedures were
executed in both the source and target environments; therefore, they remained out of
scope. For this reason, these business-logic entities remained the same in both source
and target environments. Given the techniques applied to the migration, the
business and presentation logic encapsulated in these procedures and objects was
defined as out of scope.

The Print Job component was defined as being within the scope of the project
because print queue management had been undertaken by the HP/UX jobs. Actual
queue management was moved into the LAN, and the organization’s LAN servers
were configured to hold the print queues. If the job were undertaken today, it is
likely that the printers would manage their own queues, depending on the output
management requirements—such as restarting and reprinting. Scheduling print jobs
against the databases was managed by a series of shell scripts that ran the third-
party report generators. The report logic was held in ASCII files holding SQL script
definitions that were invoked by the shell scripts. The following example illustrates
shell syntax that allows the script to run on either an HP/UX system or a Solaris
system, and thus supports backward compatibility. Furthermore, it has the
advantage of indirectly referencing the UNIX utility in the example (for example,
cpio). In this case study, indirection was implemented but backward compatibility
was not.
 Implementing the Migration to the Solaris Operating System 17

Metadata is data that describes data. In the case study, this was absolutely critical
because the key migration object was an RDBMS that possesses an active data
dictionary. Three strategies were applied to the metadata:

■ Utilizing the installation processes provided by the COTS and DBMS vendors

■ Copying metadata objects from the source environment to the target environment
with tools based on the appropriate migration technique

■ Applying reverse engineering techniques

Financial considerations were the primary influence over the decision of which
strategy to apply. There are several factors in calculating strategy costs. These
include the following:

■ The cost of identifying objects. In the case study, a number of objects could not be
identified and the installation processes were utilized.

■ The cost of applying the strategies. SQL-BackTrack was rejected because of cost.

■ The runtime cost implications of the strategy.

Not all metadata is held in obvious metadata objects. In the case of the COTS
product under consideration, metadata was held in the RDBMS catalog tables, user
tables defined by the COTS vendor, and index definitions. One additional piece of
metadata included the representation of the system namespace within objects that
are available to the application. GEAC SmartStream used multiple databases within
a database server and used Sybase remote procedure calls to implement inter-
database transactions. This permitted the deployment of a SmartStream
implementation across any number of server instances. One of the advantages of this
implementation feature is that different application components can be deployed in
separate servers on separate hosts. The development of blade technology gives this
architecture a new lease on life. This technology requires each server and stored

#!/bin/ksh
OS=`uname | ${cutpath}/cut -f3 -d' '`
case $OS in
HPUX) OS_PATH_LIST=${HPUX_PATH_LIST};;
SunOS) OS_PATH_LIST=${SOLARIS_PATH_LIST};;
*) exit 1;;
esac
#Original Line
#PATH=${HPUX_PATH_LIST}
PATH=${OS_PATH_LIST}
CPIO=`whence cpio`
.
.
$CPIO ${CPIO_FLAGS}
18 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

procedure to know about the location of the database within a server. Sybase
implements a name service based on flat files, mapping a server name to a TCP/IP
address/port location. In addition, when a remote-stored procedure semantic is
implemented, this name service must be placed within a security model
implemented in the catalog tables. In the case study, most of the COTS metadata was
applied to the target the installation scripts were run.

The examination of security data in the context of application name services brought
us to security data itself. Within Sybase, both authentication and privilege
management functionality is implemented. Privilege management is part of the SQL
standard. The permissions row in TABLE 1 on page 13 represents the implementation
of each object’s execution, read, insert, update, delete, create, and destroy privileges.
The mapping of a user’s identity to a privilege set is a business issue based on roles
within the business. At this customer site, the authentication data was treated as
data, not as metadata; therefore, it was copied across. This is represented by the
syslogins row in TABLE 1 on page 13. Sybase also implements an alias for each
login within each database and, at the time, it presented the team with a referential
integrity issue between the database user alias and login. The aliases were migrated
with reverse engineering techniques, with manual inspection and adjustment as the
remediation techniques used when reverse engineering failed.

Namespace Migration

In the case study, there are three namespace problems as follows:

■ Database object namespace. Objects within the data servers (except databases).
This includes a need to migrate or transition the server names and address maps

■ Applications component namespace.

■ System component namespace.

Different techniques were used to manage the namespace implementations to the
target environments.

We utilize the application’s installation procedures to preserve the database server’s
internal namespace. This meant that the proprietary extensions to GEAC
SmartStream deployed by the customer also needed to be ported and the object
namespace preserved. The mechanism used to preserve the object namespace is
documented below. It utilized the file system by writing the object definitions to files
with the object name in the file system name.

The target data servers were given new names. This was required because the
servers had separate TCP/IP addresses and both needed to be on the network at the
same time. This policy conformed to the strategies adopted and aided transition
because the customer had a good server name management-distribution policy.
The server name and address file, ${SYBASE}/interfaces, was held on a file
server and read by each of the user client’s systems. This system also allowed the
default data server to be configured by the LAN administrator.
 Implementing the Migration to the Solaris Operating System 19

The application’s component namespace was managed as defined by GEAC, and
existing documentation explained how to transition the namespace from HP/UX to
the Solaris OS. This transition involved manually updating rows in three tables.
The customer had previously moved systems and had scripts we could use to
update the system names. Only one of the rows involved specifying the target OS.
The system namespace was implemented in bind.

Data Migration

The use of the supplementary techniques is mainly constrained to nondata objects.
In the case study, data was defined as only the content of database tables that
contained business data. Previous sections discussed the techniques used to identify
metadata, configuration data, and security data; what’s left is the business data. We
had two choices for copying the data:

■ Logical copies
■ Physical copies

The need to apply data transformation to the source data is one of the primary
influences on the decision about which technique to use for copying data. In this
case study, copying data from the legacy mainframe required the application of
transformation techniques. With one exception, moving the business data from the
source environment to the target environment did not require transformational
work. This means that a logical copy was simple and that a physical copy was
possible. At this site, a physical copy was not possible because of implementation
differences in the RDBMS on HP/UX and Solaris systems. Therefore, a logical copy
was the only option. In the case of Sybase, this suggests the bcp program; in the case
of Oracle, it would imply the use of the export and import commands.

In all cases, object namespace preservation and mapping is required. This means
that, because we were using different techniques—in the case of Sybase—to copy the
table definitions and table contents, the planners needed to map the target DDL file,
table name, and table contents file. (This would not be the case with Oracle’s
import/export, but would be if SQL/ODL were used.) This issue was resolved by
use of the UNIX file system to preserve the table namespace between systems, as
shown in the following example.

mkdir ${database_name}; cd ${database_name}
for table_name in ${table_name_list}
do

mkdir ${table_name};cd ${table_name}
extract_ddl ${table_name}> ${table_name}.ddl
bcp ${bcp_flags} out ${table_name} \
> ${table_name}.data

done
20 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

In this case, extract_ddl is a script or function that performs the table DDL
extraction so that ${table_name}.ddl contains the table DDL code. The queried
object might be the database, or it might be a flat file that contains the complete
RDBMS-instance DDL, prepared by the selected schema extractor. The following
example code can also be used to preserve objects transferred by defncopy.

In both cases, input scripts can be driven by parsing the directories for *.ddl files.

In the case study site, migration harnesses were built to parse the database catalogs
to extract the ddl and data files, and the input scripts parsed the UNIX file system to
drive the database inputs. The input scripts also used symmetrization techniques to
leverage the power of the SMP platforms proposed for the target implementation.
Each job stream uploaded a quarter of the database bound to a single CPU, and the
jobs ran concurrently.

Specify the Implementation Platform

The procurement due diligence exercise led Sun and the customer to specify the
hardware platforms. It was proposed that a system with three domains would
support the production, QA, and MIS environments, and a second system would
support development and training and act as a business continuity system if the
production machine became unavailable. This meant that the customer wanted both
a physical consolidation and workload sharing consolidation benefits. These
decisions allowed the customer to recover significant floor space through the
consolidation of three environments onto a single system. The shared solution also
delivered significant floorspace savings.

One of the aims of this project was to reduce the number of system hosts at the
customer site. The current estate consisted of five HP/UX systems, and the goal was
to reduce this number to two Sun systems. However, because the number of
management environments was five, separate instances of the OS were required to
allow differing and separate management policies to be implemented and enforced.
At the time, an instance of the OS could have only one security model and the
business necessity of ring fencing nonoperational users from production systems
was—and still is—almost universal. The target platform design established during
the customer’s due diligence phase consisted of two Sun servers, with only one
being capable of hosting multiple OS instances. Both systems were SMP systems,

mkdir ${database_name}; cd ${database_name}
mkdir views ;cd views
for view_name in ${view_name_list}
do

defncopy ${defncopy_flags} ${view_name} \
> ${view_name}.ddl

done
 Implementing the Migration to the Solaris Operating System 21

and the smaller was designated to become the development and training system
host. This involved the implementation of two application instances within a single
instance of the Solaris OS and used an aggregation design pattern. The remaining
instances of the application (production, QA, and MIS) were planned to be hosted
within a domain in a multidomain system.

Specify the OE Tune State

We initiated a requirements-capture exercise. This exercise primarily involved
collecting the constraints that the superstructure products such as the RDBMS placed
on the /etc/system file tunables. The following were the two key tunables for the
RDBMS:

■ SHMMAX. Maximum size of a contiguous shared memory segment. With the
versions of Sybase proposed, a limit of 2 gigabytes was the maximum. More
recent and current versions support Very Large Memory (VLM) addressing, so a
more appropriate setting is to set SHMMAX to high values.

If explicit values are set for SHMMAX, the system will require rebooting if the
database administrator decides to increase the database buffer cache beyond the
SHMMAX limit. Restarting the database server process will cause a service outage
to their users. In a shared infrastructure solution, rebooting a system is
undesirable because other customers might take a service outage for no benefit.

■ ISM. The Solaris default is intimate shared memory on which is the advantageous
performance configuration. This configuration option had implications for
defining the swap partition size.

Prototyping during the test loads of the development and training instances was
undertaken to determine whether the available processor-management tools were
necessary or desirable to manage service level provisioning for the multiple
communities proposed to use the shared second system. These management tools
allowed the system administrator to provide rules to the dispatcher. It was
discovered that the Solaris affinity algorithms did not need the help of the process
management tools, and so the final production configuration for this system did not
use them.

Build a Migration Harness

The copy programs were encapsulated into a harness so that the migration team
could undertake relevant jobs of work. These included “extract an instance,” “load
an index,” and “rebuild indexes.” These were supplemented by jobs to copy various
objects that were planned to be precopied. These latter programs could take an
instance, database, or object as arguments so that they could be copied
incrementally. They were all driven by lists that were created by the developer team
or developed by browsing the database catalogs. By creating programs to undertake
22 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

this work, not only was human productivity enhanced, but the programs could be
tested and trusted. This minimized the requirement for testing the processes activity;
if the jobs reported success, then the prior testing of the programs enhanced the
confidence that the job had been performed accurately. It made the process testable.

The transition process was principally tested by migrating the training and QA
instances before the production instance of the application. This permitted both real
timings for the data extraction and target index builds to occur. It also meant that the
user training began on the target Solaris system several weeks before the migrated
solution was to be placed into production. This allowed the training team, as well as
the trainees, to comprehensively test the migrated application. This was
advantageous because it ensured that trainees were introduced to every aspect of the
system, and it had the added benefit of thoroughly testing the client-server
interfaces.

Utilize Management Environments to Enhance Testing

The transition plan for this project included testing plans for testing outputs and
regression testing. The migration process was pretested, and checkpoint tests were
inserted. In addition, checkpoints were designed into the plan to use backup
solutions.

The migration team utilized nonproduction environments as part of the enterprise
transition plan. The training and QA environments were ported in advance of the
production instance, which improved the confidence the team had in the transition
harness and the application of basic strategies. The migration of the training
department allowed enhanced, comprehensive testing of the client APIs. The
migration of the QA instance delivered confidence that the production performance
tests would be achieved.

The development and MIS environments were ported after the production transition.
The development environment was created by copying the training environment
and then applying the developers’ subsequent changes to the new development
environment. This is a process that the customer had frequently undertaken and was
satisfied with.

The MIS environment was created with the production mechanism, which was to
use Sybase’s block-level online dump and load. This gave us the advantage of
testing that this process/program worked in the new environment. (The technology
had been tested before the production transition).
 Implementing the Migration to the Solaris Operating System 23

Managing the New Solaris Environment
The case study described in this article was a project that was identified to end when
the final user acceptance test was successfully completed. Both backup and job
management tasks are discussed in this section of the case study, but the key work
performed by the migration team was the design and implementation of the
solution.

Operations management remained the responsibility of the customer’s computer
operations department. One of the reasons for this was that, while the HP/UX
systems were to be retired, the PC LAN and legacy mainframe remained part of the
production environment. Therefore, the management problem was a heterogeneous
one.

The two key management requirements were to provide off-line recovery capability
and to allow business superusers to start and manage application jobs. Both of these
functional areas were subjected to a business requirements capture, design, and test
life cycle before handover.

Backup
The move to the Solaris OS gave the customer the opportunity to take advantage of
the predecessor product, Sun StorEdge™ Enterprise NetBackup. The source system
was also bundled with a backup solution, and the Sun team captured the policies for
occurrence, strategy, and tape maintenance and reimplemented them in the new
technology. This involved implementing the “No worse than before” strategy. One of
the solution-design constraints was the customer’s tape pool size policy.
The company also dumped the production database directly to tape, using Sybase’s
online backup utility.

The change in technology mandated a change in the backup technology. Fact-finding
was undertaken, user policy constraints discovered, and a suitable backup solution
implemented. This involved configuring a small robotic tape device on the
production domain of the multidomain system and the second system. Network
backups were used for the QA domain. Note that the MIS environment was not
backed up because it changed only once a month.
24 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

Job Management
The key problem introduced by the proposed platform architecture was related to
job management. The COTS solution had an integrated job manager for which
certain jobs (for example, accounts journaling jobs) had to be organized. System
tasks could be organized by traditional Solaris/UNIX solutions, but application-
related tasks had to be organized by the application’s encapsulated job manager.
In addition, a solution to the consolidation/workload sharing design needed to be
found.

Another problem was that the software had not been designed to run in a work-
sharing environment. It was network aware—for example, it used TCP/IP for its
interprocess communication—but two instances of the job scheduler could not be
distinguished in the UNIX process table. System managers could not distinguish
between the development and training instances of the job management daemon
when using the UNIX utilities. While these daemons were correctly manipulated by
an applications component running on remote PC systems, the system’s managers
felt uneasy about this new feature. A feature in the software was discovered that
permitted this problem to be overcome.

Results
The migration was successfully undertaken. Sun used its architecture methodology
for migration to move the customer’s business-critical financial and insurance
applications from HP/UX to the Solaris OS using a rehosting strategy supplemented
by reverse engineering, source code porting, and retirement/replacement
techniques. This was undertaken within an acceptable system down-time window
with zero business downtime.

The project life cycle articulated in Sun’s AIM methodology was a key enabler to the
success of the project. The case study presented in this article show how the
application of methodology makes migration projects simpler and less risky.

Related Resources
This article is an excerpt from the Sun BluePrints book Migrating to the Solaris
Operating System. Refer to the book for more information about the topics presented
in this article.
 Results 25

http://www.sun.com/books/catalog/pepple_migrating.xml
http://www.sun.com/books/catalog/pepple_migrating.xml

About the Authors

Ken Pepple

At the time of creation of this article, Ken Pepple was an IT Architect in the Sun
Professional Services (SunPS) Asia Pacific practice. In this role, he assisted clients
with enterprise computing architectures, concentrating on advanced data center
projects. Ken is now currently the Chief Technology Officer (CTO) of Sun's Desktop
and Mobility Client Solutions Practice. In addition to these activities, Ken recently
co-authored, with David Hornby, the Sun BluePrints™ book, Consolidation in the
Data Center: Simplifying IT Environments to Reduce Total Cost of Ownership.

Before moving to his current position, Ken managed the SunPS high-end platform
services program, and focused on complex performance issues for the IT Consulting
and Operations practice. While there, he co-authored and taught the Sun Education
seminar “Solaris Performance and Tuning Secrets.”

Brian Down

Brian Down is the Chief Technology Officer (CTO) of the Enterprise Migration and
Applications team within Sun's Data Center Client Solutions Practice. Prior to this
role, Brian was a Senior Staff Engineer, most recently in SunPS, where he held the
position of Chief Architect for Enterprise Migration for the Americas. For several
years, Brian has focused on developing Sun’s migration methodology and solution
strategy, helping to develop and identify the methodologies associated with such
implementations. Prior to joining SunPS, Brian focused on performance and custom
engineering initiatives related to strategic server installations for the GSO.

With over 25 years of industry experience, Brian has held various engineering
positions, ranging from senior engineer with a computer security company to
Research Associate for the Department of Computer Science at the University of
Toronto, where he worked for over 10 years.

David Levy

David Levy is a Principal Engineer in the Sun Data Center Practice United Kingdom
(UK) organization. He is currently leading the program for the UK’s Consolidation
and Migration team, concentrating on data center architectures and economics. Prior
to this role, Dave led the UK’s financial services consulting team based in London.
Dave has successfully completed numerous consolidation and migration projects for
banking and media customers.
26 Migrating From HP UNIX to the Solaris™ Operating System • March 2005

http://www.sun.com/books/catalog/hornby_pepple.xml
http://www.sun.com/books/catalog/hornby_pepple.xml

Before working for Sun, Dave worked for a number of financial services, IT
manufacturing, and government organizations, primarily as a database architect and
engineer. Dave has authored presentations for the Oracle and Sybase user groups,
and is a member of the British Computer Society and Chartered Institute of
Management. Dave is an Honors graduate of the University of Exeter, where he
majored in Economics.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site
at: http://www.sun.com/blueprints/online.html
 Ordering Sun Documents 27

http://docs.sun.com/
http://www.sun.com/blueprints/online.html

	About the Case Study in this Article
	Justifying the Migration
	Business Background
	Technology Background

	Architecting the Migration Solution
	Defining the Scope and Approach
	Creating a Transition Plan
	Discover Business Constraints
	Design a Plan
	Design Test Plans
	Specify the Business Acceptance Tests

	Implementing the Migration to the Solaris Operating System
	Applying Migration Techniques
	Namespace Migration
	Data Migration
	Specify the Implementation Platform
	Specify the OE Tune State
	Build a Migration Harness
	Utilize Management Environments to Enhance Testing

	Managing the New Solaris Environment
	Backup
	Job Management

	Results
	Related Resources
	About the Authors
	Ordering Sun Documents
	Accessing Sun Documentation Online

