
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Maximizing Performance of a
Gigabit Ethernet NIC Interface

Francesco DiMambro, Sun Microsystems, Inc.

Sun BluePrints™ OnLine—April 2004

Part No. 817-6925-10
Revision A, 04/12/04
Edition: April 2004



Please
Recycle

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, Sun BluePrints, Sun Trunking, docs.sun.com, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

[IF ENERGY STAR INFORMATION IS REQUIRED FOR YOUR PRODUCT, COPY THE ENERGY STAR GRAPHIC FROM THE REFERENCE
PAGE AND PASTE IT HERE, USING THE “GraphicAnchor” PARAGRAPH TAG. ALSO, COPY THE ENERGY STAR LOGO TRADEMARK
ATTRIBUTION FROM THE REFERENCE PAGE AND PASTE IT ABOVE WHERE THIRD-PARTY TRADEMARKS ARE ATTRIBUTED.
(ENGLISH COPYRIGHT ONLY). DELETE THIS TEXT.]

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2,Sun BluePrints, Sun Trunking, docs.sun.com, et Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.



Maximizing Performance of a Gigabit
Ethernet NIC Interface

This article describes how to get the greatest benefits from your Sun Gigabit Ethernet
network interface card (NIC) interface and a few valuable tools to help you achieve
that.

Gigabit Ethernet connections create the greatest stress by far to Sun systems.
Therefore, to get the maximum benefit from your gigabit Ethernet NIC interface you
need to be aware of the added complications of Auto-negotiation as well as the new
ways to ensure that you get the maximum performance from both the gigabit
Ethernet interface and the system.

There are two parts to getting the maximum performance from your gigabit Ethernet
NIC and the system: first, you need to understand the system itself; second, you
need to know the traffic profile through the gigabit Ethernet NIC.

Two key parameters to Sun systems are important for maximizing gigabit Ethernet
performance: the number of CPUs in the system and the access time for memory.
Establishing the number of CPUs is relatively simple. The memory access time is
often hidden, but a simple rule is the larger the system the longer the memory access
time. These factors become important for tuning transmitting (Tx) DMA thresholds
and deciding how much load balancing of incoming receiving (Rx) traffic is
meaningful.

The traffic profile has many dimensions also, including any one of the following
characteristics or any combination of them: Rx intensive, Tx intensive or Equal, small
packets, large packets, or latency sensitive.

The combination of system parameters and the traffic profile makes it very difficult
to enumerate all the possibilities and provide one set of tuning parameters that will
address every combination equally and fairly.

Therefore, we can only take the alternative approach of listing the readily available
tunable parameters along with an explanation of how and when to use them to get
the best results based on your system and application needs.
1



Each NIC has kernel statistics that provide a means of measuring the traffic profile.
You can use this information to adjust ndd and /etc/system parameters to get the
best performance from the NIC.

For more sophisticated features like CPU load balancing, there are some other tools
that allow you to look at the system behavior and determine if tuning can better
utilize the system as well as the NIC, given the system and the application providing
the traffic profile.

■ “Network Driver Configuration Parameters” on page 2 describes the details of the
three methods you can use for configuring the driver parameters.

■ “Ethernet Physical Layer Troubleshooting” on page 5 discusses the physical layer
because that layer is the most important with respect to creating the link between
two systems.

■ “Ethernet Performance Troubleshooting” on page 11 discusses the data link layer,
where most problems are performance related.

This article assumes you are an experienced systems administrator, accustomed to
working with gigabit Ethernet NIC interfaces.

Network Driver Configuration
Parameters
Since this article discusses the network driver configuration parameters it’s
important to note the details of the network driver configuration methods.

There are three methods you can use for configuring the driver parameters: ndd,
driver.conf, or /etc/system.

The ndd method is a dynamic form of configuration where you simply invoke the
ndd command in a command line

hostname# ndd -set /dev/ge instance 0
hostname# ndd -set /dev/ge adv_autoneg_cap 1
2 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



or through an interactive session.

The ndd method is excellent for adjusting parameters during normal operation, but
the configuration is lost once the system is rebooted. You can avoid this
configuration loss by applying the chosen parameter in the driver.conf file of the
driver you want to configure.

The driver.conf file for the device being configured must reside next to the driver
being configured in the file system. For example, the Gigabit Ethernet driver has the
following path:

The following example shows the path for the GigaSwift driver in two different
platforms:

Modifying the parameters in the driver.conf file can be done with two goals in
mind: configuring parameters in a global manner, were all interface instances in the
machine using the same driver get the same parameter value, or on a per instance
basis, where a parameter value applies to only one instance.

The global configuration method for the ge.conf file will appear as follows,
applying the ndd configuration previously shown:

hostname# ndd /dev/ge
name to get/set ? instance
value ? 0
name to get/set ? adv_autoneg_cap
value ? 1
name to get/set ?

/kernel/drv/ge
/kernel/drv/ge.conf

For Solaris 9 x86
/kernel/drv/ce
/kernel/drv/ce.conf

For Solaris sparc
/platform/sun4u/kernel/drv/ce
/platform/sun4u/kernel/drv/ce.conf

adv_autoneg_cap = 1;
Network Driver Configuration Parameters 3



Note that the previously shown ndd example only applied instance 1, so the global
configuration may be overkill. Determine whether per instance or the global method
is more appropriate for your needs.

The per instance method does require you to get the ‘parent’ and ‘unit-address’
properties associated with the instance your configuring. This can be achieved by
looking at the lines associated with that instance in the path_to_inst file.

The /etc/system configuration method allows you to initialize global variables in
the device driver. It has no direct association with ndd and driver.conf setting
unless explicitly implemented in the driver. In cases where a driver parameter has
been defined for use in either /etc/system or driver.conf, you should choose
to use the preferred driver.conf method instead.

Parameters set in the /etc/system always require a system reboot to take effect,
the following example shows how an /etc/system variable is set up.

The remainder of the document will discuss ndd, so you should assume that any of
the following parameters described as an ndd parameter should only be initialized
using the driver.conf file. Any of following parameters described as
/etc/system parameters get initialized using only modifications to /etc/system
parameters and do require a reboot.

name="ge" parent="/pci@1f,0/pci@1,1"
unit-address = "1" adv_autoneg_cap = 1;

hostname# vi /etc/system
...
set ge:ge_intr_mode = 1
....

"/pci@1f,0/pci@1,1/network@1" 0 "ge"

parent unit-address instance
4 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



Ethernet Physical Layer Troubleshooting
At the physical layer, failures can prevent the link from coming up. Or worse, the
link comes up and the duplex is mismatched, giving rise to less visible problems.
The key tool for looking at the physical layer is the kstat command. Refer to the
kstat man page for more information about this useful tool.

The following table lists the general Ethernet MII/GMII kernel statistics and
describes their meaning.

TABLE 1 Physical Layer Configuration Properties and Kernel Statistics

Statistic Values Description

cap_autoneg

lp_cap_autoneg

adv_cap_autoneg

0-1 Local interface, advertised and link partner
capability.
0 = Forced mode
1 = Auto-negotiation

cap_1000fdx

lp_cap_1000fdx

adv_cap_1000fdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 1000 Mbit/sec full-duplex capable
1 = 1000 Mbit/sec full-duplex capable

cap_1000hdx

lp_cap_1000hdx
adv_cap_1000hdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 1000 Mbit/sec half-duplex capable
1 = 1000 Mbit/sec half-duplex capable

cap_100T4

lp_cap_100T4
adv_cap_100T4

0-1 Local interface, advertised and link partner
capability.
0 = Not 100-T4 capable
1 = 100-T4 capable

cap_100fdx

lp_cap_100fdx
adv_cap_100fdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 100 Mbit/sec full-duplex capable
1 = 100 Mbit/sec full-duplex capable

cap_100hdx

lp_cap_100hdx
adv_cap_100hdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 100 Mbit/sec half-duplex capable
1 = 100 Mbit/sec half-duplex capable

cap_10fdx

lp_cap_10fdx
adv_cap_10fdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 10 Mbit/sec full-duplex capable
1 = 10 Mbit/sec full-duplex capable
Ethernet Physical Layer Troubleshooting 5



cap_10fdx

lp_cap_10fdx
adv_cap_10fdx

0-1 Local interface, advertised and link partner
capability.
0 = Not 10 Mbit/sec half-duplex capable
1 = 10 Mbit/sec half-duplex capable

cap_asmpause

lp_cap_asmpause

adv_cap_asmpause

0-1 Indicates Local interface, advertised and link
partner capability of asymmetric pause
Ethernet flow control

cap_pause

lp_cap_pause

adv_cap_pause

0-1 Indicates Local interface, advertised and link
partner capability of symmetric pause Ethernet
flow control, when set to 1 and
*cap_asmpause is 0.
It also has a different meaning based on when
*cap_asmpause is equal to 1.
*cap_pause = 0 Transmit pauses based on

receive congestion.
*cap_pause = 1 Receive pauses and slow

down transmit to avoid
congestion.

link_asmpause 0-1 Indicates the shared link asymmetric pause
setting the value is based on local resolution
column of Table 37-4 IEEE 802.3 spec.
link_asmpause = 0 Link is symmetric Pause
link_asmpause = 1 Link is asymmetric Pause

link_pause 0-1 Indicates the shared link pause setting. The
value is based on local resolution shown
above.
If link_asmpause = 0

link_pause = 0 The link has no flow
control.

link_pause = 1 The link can flow control
in both directions.

If link_asmpause = 1
link_pause = 0 Local flow control setting

can limit link partner.
link_pause = 1 Link will flow control local

Tx.

TABLE 1 Physical Layer Configuration Properties and Kernel Statistics

Statistic Values Description
6 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



The following example shows a system with ce interfaces present so that some
physical layer troubleshooting capabilities can be demonstrated.

The first step in checking the physical layer is to check if the link is up.

If the link_up variable is set and a physical connection is present, then things are
positive. But also confirm that the speed matches your expectation. For example, if
the interface is 1000BASE-TX and you expect the link to run at 1000 Mbit/sec, then

link_speed state The current speed of the network connection
in megabits per second

link_duplex 0-2 Indicates the link duplex.
link_duplex = 0 Indicates link is down and

duplex will be unknown.
link_duplex = 1 Indicates link is up and in

half duplex mode
link_duplex = 2 Indicates link is up and in

full duplex mode

link_up 0-1 Indicates whether the link is up or down.
link_up = 1 Indicates link is up.
link_up = 0 Indicates link is down.

ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
        inet 127.0.0.1 netmask ff000000
ce0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 67.123.171.236 netmask ffffffe0 broadcast 67.123.171.255
        ether 8:0:20:b1:29:20
ce1: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 67.123.181.236 netmask ffffffe0 broadcast 67.123.181.255
        ether 8:0:20:b1:29:21

kstat ce:0 | grep link_
link_asmpause                   0
link_duplex                     2
link_pause                      0
link_speed                      1000
link_up                         1

TABLE 1 Physical Layer Configuration Properties and Kernel Statistics

Statistic Values Description
Ethernet Physical Layer Troubleshooting 7



the link_speed parameter should indicate 1000. If this is not the case, check the
link partner capabilities to see if that is the limiting factor. The following kstat
command line will show output similar to the following:

If the link partner appears to be capable of all the desired speeds, then the problem
might be local. There are two possibilities: either the NIC itself is not capable of the
desired speed, or the configuration has no shared capabilities that can be agreed on.
In either case, the link will not come up. You can check this using the following
kstat command line.

kstat ce:0 | grep lp_cap
lp_cap_1000fdx                  1
lp_cap_1000hdx                  1
lp_cap_100T4                    1
lp_cap_100fdx                   1
lp_cap_100hdx                   1
lp_cap_10fdx                    1
lp_cap_10hdx                    1
lp_cap_asmpause                 0
lp_cap_autoneg                  1
lp_cap_pause                    0

kstat ce:0 | grep cap_
cap_1000fdx                  1
cap_1000hdx                  1
cap_100T4                    1
cap_100fdx                   1
cap_100hdx                   1
cap_10fdx                    1
cap_10hdx                    1
cap_asmpause                 0
cap_autoneg                  1
cap_pause                    0
.....
8 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



If all the required capabilities are available for the desired speed and duplex, yet
there remains a problem with achieving the desired speed, the only remaining
possibility is an incorrect configuration. You can check this by looking at individual
ndd adv_cap_* parameters, or you can use the kstat command:

Configuration issues are where most problems lie. All the issues of configuration can
be addressed using the kstat command above to establish the local and remote
configuration, and adjusting the adv_cap_* parameters using ndd to correct the
problem.

The most common configuration problem is duplex mismatch, which is induced
when one side of a link is enabled for auto-negotiation and the other is not. This is
known as Forced mode and can only be guaranteed for 10/100 Mode operation. For
1000BASE-T UTP Mode operation, the Forced mode (auto-negotiation disabled)
capability is not guaranteed because not all vendors support it.

If Auto-negotiation is turned off you must ensure that both ends of the connection
are also in Forced mode, and that the speed and duplex are matched perfectly.

If you fail to match Forced mode in gigabit operation, the impact will be that the link
will not come up at all. Note that this result is quite different from the 10/100 Mode
case. While in 10/100 Mode operation, if only one end of the connection is auto-
negotiating (with full capabilities advertised) the link will come up with the correct
speed, but the duplex will always be set to half duplex (creating the potential for a
duplex mismatch if the forced end is set to full duplex).

If both sides are set to Forced mode and you fail to match speeds, the link will never
come up.

If both sides are set to forced mode and you fail to match duplex, the link will come
up, but you will have a duplex mismatch.

Duplex mismatch is a silent failure which manifests itself from an upper layer point
of view as really poor performance as many of the packets get lost because of
collisions and late collisions occurring on the half-duplex end of the connection due
to violations of Ethernet protocol induced by the full-duplex end.

kstat ce:0 | grep adv_cap_
adv_cap_1000fdx                  1
adv_cap_1000hdx                  1
adv_cap_100T4                    1
adv_cap_100fdx                   1
adv_cap_100hdx                   1
adv_cap_10fdx                    1
adv_cap_10hdx                    1
adv_cap_asmpause                 0
adv_cap_autoneg                  1
adv_cap_pause                    0
Ethernet Physical Layer Troubleshooting 9



The half-duplex end experiences collisions and late collisions while the full-duplex
end experiences a whole manner of smashed packets, leading to MIB counters
measuring, crc, runts, giants, alignment errors all being incremented.

If the node experiencing poor performance is the half duplex end of the connection,
you can look at the kstat values for collisions and late_collisions.

If the node experiencing poor performance is the full duplex end of the connection,
you can look at the packet corruption counters, for example, crc_err,
alignment_err.

Depending on the capability of the switch end, or remote end of the connection,
there may be an ability to do similar measurements there.

Forced mode while having the problem of creating a potential duplex mismatch also
has the drawback of isolating the link partner capabilities from the local station. In
Forced mode, you cannot view the lp_cap* values and determine the capabilities of
the remote link partner locally.

Where possible, use the default of Auto-negotiation with all capabilities advertised
and avoid tuning the physical link parameters.

Given the maturity of the Auto-negotiation protocol and its requirement in the
802.3z specification for one gigabit UTP Physical implementations, ensure that Auto-
negotiation to enabled.

Deviation from General Ethernet MII/GMII
Conventions
There remains some deviation from the general Ethernet MII/GMII kernel statistics
which we must address.

kstat ce:0 | grep collisions
collisions 22332
late_collisions 15432

kstat ce:0 | grep crc_err
crc_err 22332

kstat ce:0 | grep alignment_err
alignment_err 224532
10 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



In the case of the ge interface, all of the statistics for getting local capabilities and
link partner capabilities are read-only ndd properties, so they cannot be read using
the kstat command, as described previously, although the debug mechanism is still
valid.

To read the corresponding lp_cap_* using ge, use the following commands:

Or you could use the interactive mode, described previously. The mechanism used
for enabling Ethernet Flow control on the ge interface is also different, using the
parameters in the table below.

There’s also a deviation in ge for adjusting ndd parameters. For example, when
modifying ndd parameters like adv_1000fdx_cap, the changes will not take effect
until the adv_autoneg_cap parameter is toggled to change state (from 0-1 or from
1-0). This is a deviation from the General Ethernet MII/GMII convention for the
“take affect immediately rule” of ndd.

Ethernet Performance Troubleshooting
Ethernet performance troubleshooting is device specific because not all devices have
the same architecture capabilities. Therefore, the discussion of troubleshooting
performance issues will have to be tackled on a per-device basis.

The following Solaris™ tools aid in the analysis of performance issues:

■ kstat to view device-specific statistics
■ mpstat to view system utilization information
■ lockstat to show areas of contention

You can use the information from these tools to tune specific parameters. The tuning
examples that follow describe where this information is most useful.

You have two options for tuning: using the /etc/system file or the ndd utility.

hostname# ndd -set /dev/ge instance 0
hostname# ndd -get /dev/ge lp_1000fdx_cap

TABLE 2 Physical Layer Configuration Properties

Statistic Values Description

adv_pauseTX 0-1 Transmit Pause if the Rx buffer is full.

adv_pauseRX 0-1 When you receive a pause slow down Tx.
Ethernet Performance Troubleshooting 11



Using the /etc/system file to modify the initial value of the driver variables
requires a system reboot for the to take effect.

If you use the ndd utility for tuning, the changes take effect immediately. However,
any modifications you make using the ndd utility will be lost when the system goes
down. If you want the ndd tuning properties to persist through a reboot, add these
properties to the respective driver.conf file.

Parameters that have kernel statistics but have no capability to tune for
improvement are omitted from this discussion because no troubleshooting capability
is provided in those cases.

ge Gigabit Ethernet
The ge interface provides the following tuning parameters that assist in performance
troubleshooting.

TABLE 3 ge Performance Tunable Parameters

Parameter Values Description

ge_intr_mode 0-1 Enables the ge driver to send packets directly
to the upper communication layers rather than
queueing them.
0 = Packets are not passed in the interrupt
service routine but are placed in a streams
service queue and passed to the protocol stack
later, when the streams service routine runs.
1 = Packets are passed directly to the protocol
stack in the interrupt context.
Default: 0 (queue packets to upper layers)
12 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



The ge interface provides some statistics you can use to measure the performance
bottlenecks in the driver at the transmit or receive end of the link. The kstats allow
you to decide what corrective tuning can be applied, based on the tuning parameters
previously described. The useful statistics are shown in TABLE 4.

ge_dmaburst_mode 0-1 Enables infinite burst mode for PCI DMA
transactions rather than using cache-line size
PCI DMA transfers. This feature supported
only on Sun platforms with the UltraSparc® III
CPU.
0 = Disabled (default)
1 = Enabled

ge_nos_tmd 32-8192 Number of transmit descriptors used by the
driver.
Default = 512

ge_put_cfg 0-1 An enumerated type that can have a value of 0
or 1.
0 = receive processing occurs in the worker

threads.
1 = receive processing occurs in the streams

service queues routine.
Default = 1

TABLE 4 List of ge Specific Interface Statistics

kstat name Type Description

rx_overflow counter Number of times the hardware is unable to receive a
packet due to the internal FIFOs being full.

no_free_rx_desc counter Number of times the hardware is unable to post a
packet because there are no more Rx descriptors
available.

no_tmds counter Number of times transmit packets are posted on the
driver streams queue for processing later by the
queue’s service routine.

nocanput counter Number of times a packet is simply dropped by the
driver because the module above the driver cannot
accept the packet.

pci_bus_speed value The PCI bus speed that drives the card.

TABLE 3 ge Performance Tunable Parameters

Parameter Values Description
Ethernet Performance Troubleshooting 13



When rx_overflow is incrementing, packet processing is not keeping up with the
packet arrival rate. If it is incrementing and no_free_rx_desc is not, this indicates
that the PCI bus or SBus bus is presenting an issue to the flow of packets through the
device. This could be because the ge card is plugged into a slower I/O bus. You can
confirm the bus speed by looking at the pci_bus_speed statistic. An SBus bus
speed of 40 MHz or a PCI bus speed of 33 MHz might not be sufficient to sustain full
bidirectional one-gigabit Ethernet traffic.

Another scenario that can lead to rx_overflow incrementing on its own is sharing
the I/O bus with another device that has similar bandwidth requirements to those of
the ge card.

These scenarios are hardware limitations. There is no solution for SBus. For PCI bus,
a first step in addressing them is to enable infinite burst capability on the PCI bus.
You can achieve that by using the /etc/system tuning parameter
ge_dmaburst_mode.

Alternatively, you can reorganize the system to give the ge interface a 66-MHz PCI
slot, or separate devices that contend for a shared bus segment by giving each of
them a bus segment.

The probability that rx_overflow incrementing is the only problem is small.
Typically, Sun systems have a fast PCI bus, and memory subsystem, so delays are
seldom induced at that level. It is more likely is that the protocol stack software
might fall behind and lead to the Rx descriptor ring being exhausted of free elements
with which to receive more packets. If this happens, then the kstat
no_free_rx_desc will begin to increment, meaning the CPU cannot absorb the
incoming packet in the case of a single CPU. If more than one CPU is available, it is
still possible to overwhelm a single CPU. But given that the Rx processing can be
split using the alternative Rx data delivery models provided by ge, it might be
possible to distribute the processing of incoming packets to more than one CPU. You
can do this by first ensuring that ge_intr_mode is not set to 1. Also be sure to tune
ge_put_cfg to enable the load-balancing worker thread or streams service routine.

Another possible scenario is where the ge device is adequately handling the rate of
incoming packets, but the upper layer is unable to deal with the packets at that rate.
In this case, the kstat nocanputs parameter will be incrementing. The tuning that
can be applied to this condition is available in the upper layer protocols, although if
you're running the Solaris 8 operating system or earlier, then upgrading to the
Solaris 9 version will help your application experience fewer nocanputs. The
upgrade might reduce nocanput errors due to improved multithreading and IP
scalability performance improvements in the Solaris 9 operating system.

While the Tx side is also subject to an overwhelmed condition, this is less likely than
any Rx-side condition. If the Tx side is overwhelmed, it will be visible when the
no_tmds parameter begins to increment. If the Tx descriptor ring size can be
increased, the /etc/system tunable parameter ge_nos_tmd provides that
capability.
14 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



ce Gigabit Ethernet
The ce interface provides the following tunable parameters that assist in
performance troubleshooting. Note that these are ndd parameters.

TABLE 5 ce Performance Parameters Tunable Using ndd

Parameter Values Description

tx-dma-weight 0-3 Determines the multiplication factor for
granting credit to the Tx side during a
weighted round robin arbitration.
Values are 0 to 3.
Zero means no extra weighting. The other
values are powers of 2 extra weighting, on that
traffic.
For example, if tx-dma-weight = 0 and
rx-dma-weight = 3, then as long as Rx traffic
is continuously arriving its priority will be
eight times greater than Tx to access the PCI
(Default = 0)

rx-dma-weight 0-3 Determines the multiplication factor for
granting credit to the Rx side during a
weighted round-robin arbitration.
Values are 0 to 3.
(Default = 0)

infinite-burst 0-1 Allows the infinite burst capability to be
utilized. When this is in effect and the system
supports infinite burst, the adapter will not
free the bus until complete packets are
transferred across the bus.
Values are 0 or 1.
(Default = 0)

red-dv4to6k 0 to 255 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 4096 bytes and less than 6144 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bit 0 is
set, the first packet out of every eight will be
dropped in this region.
(Default = 0)
Ethernet Performance Troubleshooting 15



red-dv6to8k 0 to 255 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 6144 bytes and less than 8192 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bit 0 is
set, the first packet out of every eight will be
dropped in this region. (Default = 0)

red-dv8to10k 0 to 255 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 8192 bytes and less than 10,240 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bits 1
and 6 are set, the second and seventh packets
out of every eight will be dropped in this
region. (Default = 0)

red-dv10to12k 0 to 255 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 10,240 bytes and less than 12,288 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. If bits 2, 4, and 6 are
set, then the third, fifth, and seventh packets
out of every eight will be dropped in this
region. (Default = 0)

TABLE 5 ce Performance Parameters Tunable Using ndd

Parameter Values Description
16 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



TABLE 6 lists the /etc/system tunable parameters that assist in performance
troubleshooting.

TABLE 6 ce Performance Parameters Tunable Using /etc/system

Parameter Values Description

ce_ring_size 32-8192 Determines the multiplication factor for
granting credit to the Tx side during a
weighted round robin arbitration.
Values are 0 to 3.
Zero means no extra weighting. The other
values are powers of 2 extra weighting, on that
traffic.
For example, if tx-dma-weight = 0 and
rx-dma-weight = 3, then as long as Rx traffic
is continuously arriving its priority will be
eight times greater than Tx to access the PCI
(Default = 0)

ce_comp_ring_size 0-8192 Determines the multiplication factor for
granting credit to the Rx side during a
weighted round-robin arbitration.
Values are 0 to 3.
(Default = 0)

ce_inst_taskqs 0-64 Allows the infinite burst capability to be
utilized. When this is in effect and the system
supports infinite burst, the adapter will not
free the bus until complete packets are
transferred across the bus.
Values are 0 or 1.
(Default = 0)

ce_srv_fifo_depth 30-100000 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 4096 bytes and less than 6144 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bit 0 is
set, the first packet out of every eight will be
dropped in this region.
(Default = 0)

ce_cpu_threshold 1-1000 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 6144 bytes and less than 8192 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bit 0 is
set, the first packet out of every eight will be
dropped in this region. (Default = 0)
Ethernet Performance Troubleshooting 17



ce_taskq_disable 0-1 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 8192 bytes and less than 10,240 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. For example, if bits 1
and 6 are set, the second and seventh packets
out of every eight will be dropped in this
region. (Default = 0)

ce_start_cfg 0-1 Random early detection and packet drop
vectors for when FIFO threshold is greater
than 10,240 bytes and less than 12,288 bytes.
Probability of drop can be programmed on a
12.5 percent granularity. If bits 2, 4, and 6 are
set, then the third, fifth, and seventh packets
out of every eight will be dropped in this
region. (Default = 0)

ce_tx_ring_size 0-8192 The mblk size threshold used to decide when
to copy a mblk into a pre-mapped buffer, as
opposed to using DMA or other methods.
Default = 256

ce_no_tx_lb 0-1 The mblk size threshold used to decide when
to use the fast path DVMA interface to
transmit mblk.
Default = 1024

ce_bcopy_thresh 0-8192 The mblk size threshold used to decide when
to copy a mblk into a pre-mapped buffer, as
opposed to using DMA or other methods.
Default = 256

ce_dvma_thresh 0-8192 The mblk size threshold used to decide when
to use the fast path DVMA interface to
transmit mblk.
Default = 1024

ce_dma_stream_thresh 0-8192 This global variable splits the ddi_dma
mapping method further by providing
Consistent mapping and Streaming mapping.
In the Tx direction, for larger transmissions,
Streaming is better than Consistent mappings.
If the mblk size is greater than 256 bytes but
less than 1024 bytes, then mblk fragments will
be transmitted using ddi_dma methods.
Default = 512

TABLE 6 ce Performance Parameters Tunable Using /etc/system

Parameter Values Description
18 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



The ce interface provides a far more extensive list of kstats that can be used to
measure the performance bottlenecks in the driver in the Tx or the Rx. The kstats
allow you to decide what corrective tuning can be applied, based on the tuning
parameters described previously. The useful statistics are shown in TABLE 7.

TABLE 7 List of ce Specific Interface Statistics

kstat name Type Description

rx_ov_flow counter Number of times the hardware is unable to receive a
packet due to the internal FIFOs being full.

rx_no_buf counter Number of times the hardware is unable to receive a
packet due to Rx buffers being unavailable.

rx_no_comp_wb counter Number of times the hardware is unable to receive a
packet due to no space in the completion ring to post
Received packet descriptor.

ipackets_cpuXX counter Number of packets being directed to load-balancing
thread XX.

mdt_pkts counter Number of packets sent using multidata interface.

rx_hdr_pkts counter Number of packets arriving which are less than 252
bytes in length.

rx_mtu_pkts counter Number of packets arriving which are greater than
252 bytes in length.

rx_jumbo_pkts counter Number of packets arriving which are greater than
1522 bytes in length.

rx_ov_flow counter Number of times a packet is simply dropped by the
driver because the module above the driver cannot
accept the packet.

rx_nocanput counter Number of times a packet is simply dropped by the
driver because the module above the driver cannot
accept the packet.

rx_pkts_dropped counter Number of packets dropped due to Service FIFO
queue being full.

tx_hdr_pkts counter Number of packets hitting the small packet
transmission method, copy packet into a pre-mapped
DMA buffer.

tx_ddi_pkts counter Number of packets hitting the mid range DDI DMA
transmission method.

tx_dvma_pkts counter Number of packets hitting the top range DVMA fast
path DMA transmission method.

tx_jumbo_pkts counter Number of packets being sent which are greater than
1522 bytes in length.
Ethernet Performance Troubleshooting 19



When rx_ov_flow is incrementing, packet processing is not keeping up with the
packet arrival rate. If rx_ov_flow is incrementing while rx_no_buf or
rx_no_comp_wb is not, this indicates that the PCI bus is presenting an issue to the
flow of packets through the device. This could be because the ce card is plugged
into a slower PCI bus. You can confirm the bus speed by looking at the
pci_bus_speed statistic. A bus speed of 33 MHz, might not be sufficient to sustain
full bidirectional one gigabit Ethernet traffic.

Another scenario that can lead to rx_ov_flow incrementing on its own is sharing
the PCI bus with another device that has bandwidth requirements similar to those of
the ce card.

These scenarios are hardware limitations. A first step in addressing them is to enable
the infinite burst capability on the PCI bus. Use the ndd tuning parameter
infinite-burst to achieve that.

Infinite burst will help give ce more bandwidth, but the Tx and Rx of the ce device
will still be competing for that PCI bandwidth. Therefore, if the traffic profile shows
a bias toward Rx traffic and this condition is leading to rx_ov_flow, you can adjust
the bias of PCI transactions in favor of the Rx DMA channel relative to the Tx DMA
channel, using ndd parameters rx-dma-weight and tx-dma-weight

Alternatively, you can reorganize the system by giving the ce interface a 66-MHz
PCI slot, or separate devices that contend for a shared bus segment by giving each of
them a bus segment.

If this doesn’t contribute much to reducing the problem, then you should consider
using Random Early Detection (RED) to ensure that the impact of dropping packets
is minimized with respect to keeping connections alive which would be normally
terminated due to regular overflow. The following parameters that allow enabling
RED are configurable using ndd: red-dv4to6k, red-dv6to8k, red-dv8to10k,
and red-dv10to12k.

tx_max_pend counter Measure of the maximum number of packets which
was ever queued on a Tx ring.

tx_no_desc counter Number of times a packet transmit was attempted
and Tx descriptor elements were not available. The
packet is postponed until later.

tx_queueX counter Number of packets transmitted on a particular
queue.

mac_mtu value The maximum packet allowed past the MAC.

pci_bus_speed value The PCI bus speed that is driving the card.

TABLE 7 List of ce Specific Interface Statistics (Continued)

kstat name Type Description
20 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



The probability that rx_overflow incrementing is the only problem is small.
Typically Sun systems have a fast PCI bus and memory subsystem, so delays are
seldom induced at that level. It is more likely that the protocol stack software might
fall behind and lead to the Rx buffers or completion descriptor ring being exhausted
of free elements with which to receive more packets. If this happens, then the
kstats parameters rx_no_buf and rx_no_comp_wb will begin to increment. This
can mean that there’s not enough CPU power to absorb the packets but it can also be
due to a bad balance of the buffer ring size versus the completion ring size, leading to

the rx_no_comp_wb incrementing without the rx_no_buf incrementing. The default

configuration is one buffer to four completion elements. This works great provided that the

packets arriving are larger than 256 bytes. If they are not and that traffic dominates, then 32

packets will be packed into a buffer leading to a greater probability that configuration

imbalance will occur. For that case, more completion elements need to be made available.

This can be addressed using the /etc/system tunables ce_ring_size to adjust the

number of available Rx buffers and ce_comp_ring_size to adjust the number of Rx

packet completion elements. To understand the traffic profile of the Rx so you can tune these

parameters, use kstat to look at the distribution of Rx packets across the rx_hdr_pkts and

rx_mtu_pkts.

If ce is being run on a single CPU system and rx_no_buf and rx_no_comp_wb are
incrementing, you will have to resort again to RED, or enable Ethernet flow control.

If more than one CPU is available, it is still possible to overwhelm a single CPU.
Given that the Rx processing can be split using the alternative Rx data delivery
models provided by ce, it might be possible to distribute the processing of
incoming packets to more than one CPU, described earlier as Rx load balancing. This
will happen by default if the system has four or more CPUs, and it will enable four
load-balancing worker threads. The threshold of CPUs in the system and the number
of load-balancing worker threads enabled can be managed using the /etc/system
tunables ce_cpu_threshold and ce_inst_taskqs.

The number of load balancing worker threads, and how evenly the Rx load is being
distributed to each worker thread can be viewed with the ipacket_cpuxx kstats
the highest number of xx tells you how many load balancing worker threads are
running while value of these parameters give you the spread of the work across the
instantiated load balancing worker threads. This, in turn, gives an indication if the
load balancing is yielding a benefit. For example, if all ipacket_cpuxx have an
approximately even number of packets counted on each then the load balancing is
optimal. On the other hand, if only one is incrementing and the others are not, then
the benefit of Rx load balancing is nullified.

It is also possible to measure whether the system is experiencing a even spread of
CPU activity using mpstat. In the ideal case, if you experience good load balancing
as shown in the kstats ipackets_cpuxx, it should also be visible in mpstat that
the workload is evenly distributed to multiple CPUs.

If none of this benefit is visible, then disable the load balancing capability
completely, using the /etc/system variable ce_taskq_disable.
Ethernet Performance Troubleshooting 21



The Rx load balancing provides packet queues, also known as service FIFOs,
between the interrupt threads which fan out the workload and the service FIFO
worker threads which drain the service FIFO and complete the workload. These
service FIFOs are of fixed size, controlled by the /etc/system variable
ce_srv_fifo_depth. It is possible that the service FIFOs can also overflow, and
drop packets as the rate of packet arrival exceeds the rate with which the service
FIFO draining thread can complete the post processing. These dropped packets can
be measured using the rx_pkts_dropped kstat. If this is measured as occurring,
you can increase the size of the service FIFO, or you can increase the number of
service FIFOs allowing more Rx load balancing. In some cases, it may be possible to
eliminate increments in rx_pkts_dropped, but the problem may move to
rx_nocanputs, which is generally only addressable by tuning that can be applied
by upper layer protocols, although if you're running the Solaris 8 operating system
or earlier, then upgrading to the Solaris 9 version will help your application
experience fewer nocanputs. The upgrade might reduce nocanput errors due to
improved multithreading and IP scalability performance improvements in the
Solaris 9 operating system.

There is a difficulty is maximizing the Rx load balancing, and that’s contingent on
the Tx ring processing. This is measurable using the lockstat command and will
show contention on the ce_start routine at the top as the most contended driver
function. This contention cannot be eliminated, but it is possible to employ a new Tx
method known as Transmit serialization, which keeps contention to a minimum
while forcing the Tx processes on a fixed set of CPUs. Keeping the Tx process on a
fixed CPU reduces the risk of CPUs spinning waiting for other CPUs to complete
their Tx activity, ensuring CPUs are always kept busy doing useful work. This
transmission method can be enabled using the /etc/system variable
ce_start_cfg, setting it to 1. When you enable Transmit serialization, you will be
trading off Transmit latency for avoiding mutex spins induced by contention.

The Tx side is also subject to an overwhelmed condition, which occurs when the
CPU speed exceeds the Ethernet line rate, although this is less likely than any Rx
side condition. When the Tx side becomes overwhelmed, tx_max_pending value
matches the size of the /etc/system variable ce_tx_ring_size. If this occurs,
you know that packets are being postponed because Tx descriptors are being
exhausted. Therefore the size of the ce_tx_ring_size should be increased.

The tx_hdr_pkts, tx_ddi_pkts, and tx_dvma_pkts are useful for establishing
the traffic profile of an application and matching that profile with the capabilities of
a system. The parameters ce_bcopy_thresh, ce_dvma_thresh, and
ce_dma_stream_thresh are used for adjusting the transmission method applied
22 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



to an outgoing packet. These parameters are described in TABLE 7 in terms of mblks,
which is the mechanism used to transmit packets in the Solaris operating system.
The following output shows how these parameters relate to each other:

How to set these parameters is again system dependant and application dependant.
The system dependency is associated with memory latency. The rule of thumb to
apply here is if the system has a large number of CPUs the memory latency will tend
to be larger.

Considering larger memory latency systems it’s best to avoid moving data from one
memory location to another, so using the premapped buffer for DMA will be more
expensive than setting up and tearing down DMA mapping on a per-packet basis.

Furthermore, if the tx_hdr_pkts appears to be incrementing at a higher rate than
tx_dvma_pkts, you have an application with a traffic profile that uses a lot of
small packets. Therefore, you should adjust the ce_dvma_thresh and
ce_bcopy_thresh so that most of the packets hit the tx_dvma_pkts path in the
driver and avoid copies. The following may be reasonable parameters, for such a
system:

Alternatively, in low memory latency systems, the inverse is true and you would
need to adjust ce_dvma_thresh and ce_bcopy_thresh so that most packets take
the bcopy route.

mblk size < ce_bcopy_thresh: driver will copy into pre-mapped
 buffer

mblk size > ce_dvma_thresh: driver uses fast path DVMA
interface

ce_dma_stream_thresh < mblk size < ce_dvma_thresh:
driver uses streaming DMA method

Otherwise: driver uses consistent DMA method.

ce_bcopy_thresh = 97
ce_dvma_thresh = 96
ce_dma_stream_thresh = <don’t care>

ce_bcopy_thresh = 256
ce_dvma_thresh = 255
ce_dma_stream_thresh = <don’t care>
Ethernet Performance Troubleshooting 23



The Streaming DMA and Consistent DMA methods are provided as the fall back
path, and tend to provide little improvement over the Fast DVMA method or the
copy into premapped buffer method. This can be tuned out most of the time, as
shown in the previous examples, since it seldom gives improvement over the Fast
DVMA method.

You can adjust the DMA thresholds of ce_bcopy_thresh, ce_dvma_thresh,
and ce_dma_stream_thresh, using the /etc/system file to push more packets
into the preprogrammed DMA versus the per-packet programming. Once the tuning
is complete, the statistics can be viewed again to see if the tuning took effect.

The tx_queueX parameter gives a good indication of whether Tx load balancing is
happening. Like the Rx side, if no load balancing is visible, meaning all the packets
appear to be getting counted by only one tx_queue, then you should switch this
feature off and use the ce_no_tx_lb variable.

The mac_mtu gives an indication of the maximum size of packet that will make it
through the ce device. It is useful to know if jumbo frames is enabled at the DLPI
layer below TCP/IP. If jumbo frames is enabled, then the MTU indicated by
mac_mtu will be 9216.

This is helpful as it will show that if there’s a mismatch between the DLPI layer
MTU and the IP layer MTU, allowing troubleshooting to occur in a layered manner.

Once jumbo frames is successfully configured at the driver layer and the TCP/IP
layer, then use the rx_jumbo_pkts and tx_jumbo_pkts, to ensure Transmits and
Receives of jumbo frame packets respectively is happening correctly.

Conclusion
Ethernet NIC configuration has become more than simply enabling the interface
below TCP/IP or any other Layer 3 and above protocol stacks. The two layers
provided by the existing DLPI device driver and hardware need some special
understanding to ensure that packets flow, in the first place. Once packet flow is
established, you must ensure that packets flow quickly and smoothly to those upper
layer protocol stacks.

What defines “quickly and smoothly” is very system specific, in conjunction with
being networking application specific. This makes the one-driver-fits-all expectation
difficult to achieve, but not impossible, provided the tuning capability is available.

The tuning capability provided lets the driver stretch to fit, and the measurement
tools kstat, mpstat, and lockstat help to give a measure of how to mold and
shape the driver to achieve the best fit.
24 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004



Ultimately, the best fit will be set by the customer’s expectations of their application
and the Sun system that hosts it. We hope this BluePrint article will help customers
measure the performance of their drivers, and use those measurements to set the
tunable parameters of the gigabit Ethernet drivers to maximize their performance.

About the Author
Francesco DiMambro (frank.dimambro@sun.com), has a Bachelor of Engineering
degree with Honors in Information Engineering from Strathclyde University,
Scotland and a Master of Engineering degree in Digital Systems Engineering from
Heriot-Watt University, Scotland. The first company to utilize his talent beginning
1991 was National Semiconductor, in their Local Area Network division. There he
developed NDIS 2 Ethernet network device drivers, which were used in MS-DOS,
OS/2 (LAN Manager products) and Windows operating systems. In 1995, he moved
from Scotland to California and started NDIS 4 device driver development for Infra
Red wireless communication devices operating primarily on Windows 95, 98, and
NT.

In 1996, he joined Sun Microsystems, Network Products Group and began
supporting the Solaris Ethernet device drivers for Sun. He quickly moved to
understanding the Sun Ethernet controllers and the performance factors associated
their network device driver implementation. That experience prepared him for the
task of developing the next-generation gigabit Ethernet device driver for the
GigaSwift Ethernet product line.

Sun Ethernet driver performance has been his primary goal, while also increasing
device driver quality and usability. With those areas in mind, he has filed eight
patents, and with this first article, marks a new adventure in helping users maximize
performance of an Ethernet NIC interface.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.
About the Author 25



Accessing Sun Documentation Online
The docs.sun.comSM web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com/

To reference Sun BluePrints™ OnLine articles, visit the Sun BluePrints OnLine web
site at: http://www.sun.com/blueprints/online.html
26 Maximizing Performance of a Gigabit Ethernet NIC Interface • April 2004


	Maximizing Performance of a Gigabit Ethernet NIC Interface
	Network Driver Configuration Parameters
	Ethernet Physical Layer Troubleshooting
	Deviation from General Ethernet MII/GMII Conventions

	Ethernet Performance Troubleshooting
	ge Gigabit Ethernet
	ce Gigabit Ethernet

	Conclusion
	About the Author


