Sun™ Grid Engine, Enterprise
Edition—Software
Configuration Guidelines and
Use Cases

Charu Chaubal, Grid Computing
un BluePrints™ OnLine—July 2003

@Sun

http://ww. sun. conl bl ueprints

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95045 U.SA.
650 960-1300

Part No. 817-3179-10
Revision A 6/18/03
Edition: July 2003

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sunandiits licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIXis a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, BluePrints, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and in other countries.

AllI SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. ORACLE is a registered
trademark of Oracle Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS I1S" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés a http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, parquelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, BluePrints et Solaris sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc. ORACLE est une marque déposée registre de Oracle Corporation.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour larecherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une license non exclusive do Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place I'interface d "utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

00 9]

Please Adobe PostScript

Sun™ ONE Grid Engine, Enterprise
Edition—Software Configuration
Guidelines and Use Cases

This article describes a set of use cases for configuration of Sun™ Grid Engine,
Enterprise Edition 5.3 (Sun ONE GEEE) software. It is meant to be a starting point
from which intermediate to advanced Sun One GEEE software administrators can
create a customized configuration for their particular environment. It is important to
realize that each environment has unique requirements.

The greatest benefits of the Sun ONE GEEE software policy module are obtained by
fine-tuning a configuration once the results of the initial configuration have been
assessed. Moreover, as the environment evolves and the needs of the enterprise
change, additional tuning on an ongoing basis will probably be appropriate.

This article assumes the reader has some familiarity with the Sun ONE GEEE
features and parameters. For the details of the policies and the major parameters
used to set up and influence the various policies, consult the Sun ONE Grid Engine,
Enterprise Edition 5.3 Administration and User's Guide, Part 1V, Chapter 9. For a
complete list of parameters, consult the Sun ONE Grid Engine 5.3 and Sun ONE Grid
Engine, Enterprise Edition 5.3 Reference Manual.

Policy Use Cases

This section covers situations in which individual Sun ONE GEEE software policies
are implemented to achieve certain goals. The focus is on cases in which different
policies are combined.

Job Types With Groups

In this scenario, there are two or more enterprise-wide groups (for example,
departments, projects, user groups, and so forth). Each group must receive a
specified share of the resources, averaged over time. In addition, there are two or
more priority types of jobs that must be dispatched in strict priority order. High-
priority jobs are always scheduled ahead of medium-priority jobs, which are
scheduled ahead of low-priority jobs regardless of the group from which they
originate.

For simplicity, this article describes the solutions with only two groups and two job-
types. and assumes that the desired resource allocation ratio between the groups is
75:25, and that the job types can be categorized as either normal or high, indicating
relative priority. It should be straightforward to extend the concept to multiple
groups and job types.

Two approaches can be used to implement this scenario.

Approach Number 1—Projects With Overloading

In this approach, every combination of {gr oup, | ob-type}is assigned a unique
project. For example, with two groups, Group A and Group B, and two types,
normal and high, the projects would be:

= grpAhigh

= grpAnrml

= grpBhigh

= grpBnrml

When submitting a job, the user specifies which combination {gr oup, j ob-type}
they want to assign to it by using the - P option to qsub. Hence, the concept of
project is overloaded with two characteristics: group and job type. Users would need
to be trained to use the appropriate option to the submit command, for example, a
user in Group A would run a high-priority job as follows:

gsub -P grpAhi gh nyjob. sh

To prevent users from accidentally (or deliberately) specifying the wrong group, the
access lists for the projects can be set to explicitly include or exclude certain users or
user groups. See man page access_Ili st (5).

2 Sun ONE GEEE Software Configuration Guidelines and Use Cases * July 2003

Share tree
9,000 tickets

Group B normal
50

Group A high) (€l(el¥]eVNglelipyE!l Group B high
50 50 50

FIGURE1 Share Tree Policy Share Assignments for Approach Number 1

After creating SGEEE software projects as described previously, you must create a
share tree as shown in FIGURE 1. See man page shar e_t r ee(5). The penultimate
nodes in the tree correspond to the enterprise-wide groups and the leaves are the
different projects grouped accordingly. The shares for each node group are set to
match with the desired allocation ratio. The shares assigned to the project leaves can
all be set the same, because you are not interested in tracking the difference in
cumulative utilization between high- and medium-priority jobs. Rather, you want to
ensure that the higher priority jobs are always given greater precedence.

The next step is to add override tickets to the projects according to their priority. In
this example, the following assignments would be made:

TABLE1 Assignment of Override Tickets to Projects

Project Name No. of Override Tickets
grpAhigh 10,000

grpBhigh 10,000

grpAnrml 0

grpBnrml 0

Since there are only two job types, it is sufficient to give a certain number to the
highest- priority job, and zero to the lowest. If there were more job types, they would
be allocated tickets such that the difference between the levels is always 10,000, for
example 0, 10000, 20000. Essentially, a priority band is set for each distinct priority;
the number of tickets give the ranking of the bands. The number 10,000 has a
significance that is explained in the following paragraphs.

Policy Use Cases 3

In conjunction with setting the override tickets for each project, the scheduler
parameter SHARE_OVERRI DE_TI CKETS must be set to FALSE under

schedd_par ans. See man page sge_conf (5). This setting ensures that the tickets
do not get divided among the jobs of each project, but rather, each job will get the
full 10,000 project override tickets that are necessary to implement the priority
bands.

The final step is to assign 9,000 tickets to the share tree policy. The reasoning behind
this is as follows. The share tree policy allocates tickets to jobs according to the
cumulative utilization of the individual projects, as compared with their share
assignments. In the extreme case, in which one project's cumulative utilization is
almost zero (and the compensation factor is set to one), a single job submitted into
that project could get allocated all 9,000 tickets. Nevertheless, if another job from a
high-priority job type is submitted, the 10,000 override tickets will be sufficient to
override the 9,000 share policy tickets, and because it has more tickets overall, it
would go ahead in the pending list.

More generally, the number of share policy tickets should always be less than the
“difference” between the numbers of tickets assigned to the levels of priority for the
job types. This is why 10,000 tickets was chosen as the difference between job type
levels, while 9,000 was chosen as the total allotment Of the share policy.

Note that the actual numbers do not have any significance to the Sun Grid Engine
scheduler. The figures 9,000 and 10,000 are simply easy to understand and manage.

Approach Number 2—Projects Map Job Types

An alternative way to configure this scenario is to use projects to map only the job
types, and put all of the group information into the share tree. The first step in this
approach is to create a project for every job priority type. In this example, we would
have two projects, with the number of override tickets again configured to give
priority bands. As with the previous example, set the scheduler parameter
SHARE_OVERRI DE SHARES to FALSE.

TABLE 2 Project and Override Ticket Assignments

Project Name No. of Override Tickets
normal 0
high 10,000

The next step is to create a share tree with the desired groups and share allocation, as
shown in FIGURE 2.

4 Sun ONE GEEE Software Configuration Guidelines and Use Cases « July 2003

Share tree
9,000 tickets

Group B
25

FIGURE2 Share Tree Policy Share Assignments For Approach Number 2

To Add Users

The critical part, and the one that requires most attention, is to explicitly add every
user to the appropriate location in the tree. This is a two-step procedure:

. Create a Sun ONE Grid Engine user object for every user. See man page user (5).
. Assign the Sun ONE Grid Engine user object to the proper place in the tree.

As before, a total of 9,000 tickets are assigned to the share tree policy; in other words,
a number smaller than the difference between the number of override tickets for the
different priority levels.

When submitting a job, users only need to specify the job type by using the - P
option to gqsub. Users do not need to be trained to specify a group, for example, a
user in Group A would run a high-priority job as follows:

gsub -P high nyjob.sh

Since the user was explicitly placed in the share tree under a particular group, the
utilization by jobs from that user are automatically accounted correctly.

Policy Use Cases 5

Comparison of Approaches

The advantage of approach number two is that it is simpler for users, since they only
need to specify the job type when submitting jobs without worrying about
specifying the proper group. The disadvantage is that it is more work for the
administrators to set up, because they must explicitly add every user to the share
tree. For an environment with a large number of users, this is best achieved via
scripting, and integrating with some external user list. For example, there might be a
Lightweight Directory Access Protocol (LDAP) directory that contains users
organized into departments. You could write a script that reads in user's information
from this directory, creates the Sun ONE GEEE user object, and then inserts the user
object into the tree depending upon the department code. An example listing of such
a code is given in CODE EXAMPLE 1. Such a procedure would need to be done any
time a user is added to the environment.

Projects Span Groups

In this scenario, there are two or more enterprise-wide projects, that is, sets of jobs
that are closely related, and two or more groups of people with different privileges,
working on both projects together. These groups could be, for example, from
different departments, or there could be regular and power users, the latter having
greater privileges. The desire is to allocate resources to the projects based on
cumulative utilization, while simultaneously guaranteeing a certain priority or
service level for the different groups. For example, power users' jobs go before other
users or else they receive a greater proportion of available resources.

Configuration

This example assumes two projects, Project 1 and Project 2, and two groups,
Department A and Department B. See man page access_| i st (5). The goal is to
give 20 percent of resources to Project 1 and 80 percent to Project 2. In addition,
people in Department A should get 60 percent of the resources, regardless of which
project they submit a job under, while Department B should get 40 percent. (Later,
we will modify this for the case where Department A’s jobs should always go ahead
of Department B’s jobs).

v To Set Up the Share Tree Policy

The procedure is to create the two projects and then set up the share tree with the
desired resource allocation ratio among the projects.

6 Sun ONE GEEE Software Configuration Guidelines and Use Cases * July 2003

Share tree
9,000 tickets

Project 1 Project 2
20 80

FIGURE3 Share Tree Policy Share Assignments for Projects That Span Groups

. Set up two Sun ONE Grid Engine departments (TABLE 3) in the Userset/Userlist
configuration.

TABLE3 Department Setup and Share Assignment

Department Name No. of Functional Shares
Dept A 60
Dept B 40

. In the functional policy configuration, assign shares to the two departments
accordingly.

. Set the number of tickets for the share tree policy to 1,000,000 and the number of
tickets for the functional policy to 1,000

. Set the following parameters in the cluster configuration under schedd_par ans:

POLI CY_HI ERARCHY=FS, SHARE_FUNCTI ONAL_SHARES=TRUE

To submit jobs the users would simply specify the project under which the job's
utilization should be accounted:

gsub -P Projectl nyjob.sh

You can restrict access to projects using project access lists.

This example shows how two policies can be combined to achieve a desired goal,
and also illustrates one use of the POLICY_HIERARCHY parameter. With this setup,
jobs are balanced between projects according to the specified resource allocation
ratio but, within a project, jobs are dispatched according to functional (that is,

Policy Use Cases 7

department) ordering. Because the parameter SHARE_FUNCTI ONAL_SHARES is set to
TRUE, it prevents one department from excluding the other. Instead, jobs are
dispatched in an interleaved fashion among all of the departments.

Most crucially, the share policy is guaranteed to have highest precedence by two
factors:

= The number of share policy tickets greatly exceeds the number of functional
policy tickets

=« The POLI CY_H ERARCHY is set to FS.

Having more share policy tickets than functional tickets means that the tickets
allocated by the share policy will have the greatest impact on the overall number of
tickets assigned to each job, which determines the final dispatch order. The number
of tickets from the functional policy assigned to each job will be so small that, in
most cases, it will be negligible in determining the total number of tickets assigned
to each job.

The functional tickets only have an overriding influence in the extreme case where
there is a very large number of pending jobs, or when the utilization of a project
greatly exceeds the target. In this case, the number of share policy tickets assigned to
a particular job might be very low, lower perhaps than the number of functional
policy tickets assigned to the same job. Additionally, when a large mismatch
between actual and target utilization for a project exits, the compensation factor can
be used to limit the degree to which a project's ticket allocation is diminished to
distribute the share policy tickets more evenly between projects.

Nevertheless, we want to ensure that, even though the number of functional tickets
is small compared with the share policy, the functional policy should still have some
impact. This is where the POLI CY_HI ERARCHY setting comes in. Setting FS instructs
the scheduler to consider the functional tickets first, for sorting within a share tree
node. Thus, instead of first-in first-out (FIFO) ordering, jobs within a share tree node
are ordered according to the functional policy settings.

Configuration Guidelines

The scenarios in the previous section gave examples of how the various parameters
in the Sun ONE GEE are used to effectuate a desired resource allocation scheme.
This section summarizes a few principles to apply when customizing the policies for
an arbitrary scenario.

8 Sun ONE GEEE Software Configuration Guidelines and Use Cases * July 2003

Policy-Setting

This section contains guidelines for:
= Number of Tickets

= Ticket Sharing Settings

= Share Tree Policy

Number of Tickets

The relative number of tickets determines which policy is overarching versus fine
tuning. To make one policy clearly dominate over the other, ensure that the
difference in number of tickets between the two polices is large. If not, then the two
policies could contribute roughly the same number of tickets to jobs, and the final
outcome would be hard to predict. This is particularly relevant when using the
PCOLI CY_HI ERARCHY to specify the precedence of policies. The policy that comes
earlier in the hierarchy should have fewer tickets than the policy that comes later.

Ticket Sharing Settings

Three SHARE_* _* parameters in schedd_par ans influence the overall behavior of
the policies:

= SHARE_FUNCTI ONAL_SHARES determines if you want strict or interleaved
ordering. If set to FALSE, the net effect is that whatever share values are set in the
functional policy will be interpreted as strictly an ordering. A setting of TRUE
causes the share values to be determined as an allocation ratio, with jobs
dispatched in an interleaved fashion to result in the specified ratio.

= SHARE_OVERRI DE_TI CKETS and SHARE_DEADLI NE_TI CKETS prevent these
respective policies from “taking over” the scheduling system. If these are set to
FALSE, the number of override or deadline tickets in the system increases with
the number of jobs submitted. If these jobs are important, this is the desired
behavior. However, if these parameters are set to TRUE, the number of tickets is
fixed, and submitting more jobs dilutes the number of tickets per job assigned by
these two policies. This can, for example, help prevent “abuse” by users who are
granted deadline or override privileges. The choice depends on the amount of
authority the users should have.

Share Tree Policy

If the share-tree policy is to be used and you wish to allocate and track usage on a
per-user basis, every user must have a user object in the Sun ONE GEEE software. The
reason is that the Sun ONE GEEE software must create a data structure in which to

Configuration Guidelines 9

10

track and store the resource allocation usage for each user. The exception to this is if
you set up the default user under each project. This action lets you set the resource
allocation for generic users; you then only need to add users whose resource
allocation differs from the default.

If, however, you want to allocate and track usage on a per-project basis only, there is
no need to add every user as a Sun ONE GEEE user object. Users simply submit jobs
using the

- P project flag. Privileged projects can be restricted using project access lists.

To simplify the management of users within Sun ONE GEEE software, the
configuration command qconf has a rich set of options that allow every operation
in Sun ONE GEEE software to be scripted. The following script (CODE EXAMPLE 1) is
an example of how you might use scripting to populate a share tree based upon an
LDAP directory. For complete list of possibilities, consult the man page and - hel p
option of gconf .

CODE EXAMPLE 1 Sample Share Tree Updating Automation Script

#!7bi n/ksh

exanpl e script to add users to an al ready-existing
SCGEEE share tree based on the enterprise's

LDAP directory entries

nf: a comrand whi ch displays information from

an LDAP directory

NOTE: use an equival ent comand for your site

usage () {
echo "Usage: $0 <dept_code> <sharetree_nodenane>"
}

add_sgeee_user () {
TMP=/t np/ sgeee. 3
sgeuser =$1
echo "nanme $sgeuser” > $TMP
echo "oticket 0" >> $TMP
echo "fshare 0" >> $TMP
echo "default_project NONE' >> $TMP
gconf -Auser $TMP

HHHHHHR

rm $TMP

}

if [$# -ne 2] ; then
usage;
exit 1;

fi

DEPT=%$1

NODE=$2

below is a conmand which extract usernanmes from
the LDAP directory based upon departnment codes

NOTE: strip the line which sinply tells

Sun ONE GEEE Software Configuration Guidelines and Use Cases « July 2003

CODE EXAMPLE 1 Sample Share Tree Updating Automation Script (Continued)

#!/ bi n/ ksh
the nunber of entries found
USERS="nf -D $DEPT -c u | grep -v "entries found"’
for user in $USERS; do
add_sgeee_user $user
gconf -astnode /$NODE/ $user =50

done

Prototyping a Scenario

Configuring Sun ONE GEEE software is an iterative process. By this we mean that
you should not try to achieve a given final result immediately (unless it is relatively
simple). Instead, the approach should be to implement a trial configuration and,
after testing it, refine it further and repeat this procedure as needed. The best way to
start this iterative process is to create a prototype of your actual environment. This
process would involve measures such as:

= Dedicating a small number of systems for the prototype (three or four systems are
sufficient)

= Creating dummy jobs that emulate how the actual production jobs would behave
(unless you can actually use your production applications for the prototyping)

= Creating dummy users, projects, departments, and so forth

After configuring a Sun ONE GEEE setup candidate, a quick way to see if it is
behaving as expected is to suspend or disable all queues, and then submit jobs
according to the expected usage pattern. Using the gst at - ext command, you can
inspect the number of tickets assigned to each job and the contribution to the total
that is coming from the individual policies. Since the overall total number of tickets
determines the final job dispatch order, you can see, for example, if a certain policy
is contributing too many or too few tickets to this total, and readjust the policy
parameters accordingly.

Other Configuration Policies

You should keep in mind the fact that the Sun ONE GEEE software has other
capabilities beyond the policy module which can help to create the configuration
that suits a given scenario.

= User lists and departments can be used to control access rights to queues, hosts,
and projects; for example, permit only certain jobs or users to utilize certain
systems.

Configuration Guidelines 11

Preemption using subordinate queues can provide the ability to run jobs that have
immediate priority; for example, very important jobs or interactive jobs.

Calendars for suspend or di sabl e can be used to disable some queues
selectively, while leaving others enabled; for example, low-priority projects can
run at night, while higher priority projects can run any time.

Queue sort method (load formula or sequence number) can be used to sort among
eligible queues to determine the order in which resources (queues) are selected for jobs.

Administrator-defined complexes and resources provide the ability to manage
jobs based upon practically any characteristic or metric. Load sensors complete
the picture by providing a way to input the current value of a metric into the
system.

These features are present in the basic Sun ONE Grid Engine software, but taken
together with the policies of Sun ONE Grid Engine, Enterprise Edition, the
possibilities for adapting the software to suit a given environment's needs are indeed
great.

Extended Use Case

The use case described in this section shows how you can combine the Sun ONE
GEEE allocation policies with other management features to satisfy a more
complicated scenario.

The following is an overview of the scenario:

Two kinds of jobs, ranked by priority

A large number of single-CPU systems, ranked by CPU speed, for example, host
A: 900MHz, host B: 750MHz, host C: 464MHz,..., host H: 250MHz

High-priority jobs are to go to the fastest system and low-priority jobs go to the
slowest system.

High-priority jobs should have greater percentage of resources allocated to them.
However, a job should always run if a system is available, even if it means that a
high- priority job goes to a slow system because all fast systems are occupied.

Multiple teams (departments), and each team has a different share of the two job
types; for example, team 1 equals 75 percent high, 50 percent low, team 2 equals
25 percent high, 50 percent low, and so forth.

12 Sun ONE GEEE Software Configuration Guidelines and Use Cases ¢ July 2003

Sample Outcome

If a user submits five high-priority jobs and one low-priority job, and host E is
already occupied, the following dispatch order is seen:

TABLE 4 Dispatch Order

Job Host

high:job 1 host A
high:job 2 host B
high:job 3 host C
high:job 4 host D
occupied host E
high:job5 host F

low:job 1 host H

Configuration

For simplicity, assume that:
= Four Sun ONE GEEE projects (high_1, high_2, low_1, low_2) are set up.
= Two Sun ONE GEEE departments (Deptl, Dept2) are set up.

To Configure the Extended Use Case

. Set up the share tree configuration as shown in FIGURE 4.

The distinction between high and low is not made here, but in the override policy in
the next step.

Extended Use Case 13

FIGURE4 Share Tree Policy Assignments for Extended Use Case

2. In the override policy, set the following:

TABLES5 Override Policy

Project Override Tickets
high_1 200,000

high_2 200,000

low_1 100,000

low_2 100,000

3. In the cluster configuration, set the following for schedd_par ans:

= SHARE_OVERRI DE_TI CKETS=FALSE (This will cause all high jobs to go ahead of
low jobs) or SHARE_OVERRI DE_TI CKETS=TRUE (This will cause high and low jobs
to dispatch in a 2:1 ratio.)

= POLI CY_H ERARCHY=SO

4. Define two queues per host, each with a single slot; for example, hostname.x and
hostname.y.

14 Sun ONE GEEE Software Configuration Guidelines and Use Cases « July 2003

. Set the queue number as follows:

TABLE6 Queue Number Setup

Hostname A B (3 D E F G H
hostname.x queue No. 1 2 3 4 5 6 7
hostname.y queue No. 8 7 6 5 4 3 2 1

. For every host, set the host-level sl ot s parameter to 1 to ensure that only one slot

in total is ever occupied on a single host. See man page conpl ex(5).

. Grant the access rights as follows:
= hostname.x queues are only accessible to high_1, high_2.
= hostname.y queues are only accessible to low_1, low_2.

. Set scheduler configuration to “sort by queue number” See man page
sched_conf (5).

. Grant access for the departments in the Project Configuration as follows:
= Deptl can submit to high_1 and low_1
= Dept2 can submit to high_2 and low_2

User Instructions

To Issue User Instructions

Submit job using the - P flag to indicate the priority.

For example, members of Dept 1 can do: gsub -P hi gh_1 nyj ob. sh for high
priority jobs and qsub -P | ow_1 nyj ob. sh for low priority jobs.

Extended Use Case

15

16 Sun ONE GEEE Software Configuration Guidelines and Use Cases ¢ July 2003

	Policy Use Cases
	Job Types With Groups
	Approach Number 1—Projects With Overloading
	Approach Number 2—Projects Map Job Types

	Comparison of Approaches
	Projects Span Groups
	Configuration

	Configuration Guidelines
	Policy-Setting
	Number of Tickets
	Ticket Sharing Settings
	Share Tree Policy

	Prototyping a Scenario
	Other Configuration Policies

	Extended Use Case
	Sample Outcome
	Configuration
	User Instructions

