Building OpenSSH—Tools
and Tradeoffs

Jason Reid, Solaris™ System Test

Sun BluePrints™ OnLine—January 2003

D Sun

microsystems

http://www.sun.com/blueprints

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95045 U.S.A.
(650) 960-1300

Part No. 817-1307-11
Revision 08, 5/28/03
Edition: January 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://
www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Fire, JumpStart, Netra, SunScreen, Sun ONE Studio, SunSoft, Solaris Security Toolkit, Sun BluePrints,
and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
a http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Fire, JumpStart, Netra, SunScreen, Sun ONE Studio, SunSoft, Solaris Security Toolkit, Sun BluePrints,
et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

& 9]

Please Adobe PostScript
Recycle

Building OpenSSH—Tools and
Tradeoffs

OpenSSH is a free, BSD style license, implementation of the Secure Shell protocols.
OpenSSH is designed for strong authentication, for improved privacy, for secure X11
sessions, and to not trust the network. OpenSSH is developed on and for the
OpenBSD operating system by the OpenBSD group. The OpenSSH portability team
then transforms the OpenBSD version into the portable version that supports many
UNIX™ derived operating systems including the Solaris™ Operating Environment
(Solaris OE) and the Linux operating system.

This article updates much of the information in “Building and Deploying OpenSSH
for the Solaris Operating Environment,” Sun BluePrints™ Online article, July 2001.
This article contains information about gathering the needed components, deciding
the compile-time configuration decisions, building the components, and finally
assembling OpenSSH. Things change quickly in the open source world, so the
versions mentioned in this article might have changed. Use the latest version, and
test it in your environment. Despite version changes, the basic build process should
remain the same.

Components

OpenSSH requires several components to be present before you can build it. These
components must either be installed individually or as part of the Solaris OE. The
following lists the components that are needed:

= Solaris OE build machine
= Qzip

= ANSI C compiler

= Perl

= Zlib

= Entropy source

= OpenSSL

= OpenSSH

= TCP Wrappers (optional)

See “Resources” on page 24 for information on how to obtain the individual
software components.

The instructions in this article use software package names and filenames that do not
reference the version number of the software packages. Always use the latest
versions. The consequence is that the software build process might change in the
future. The instructions were written using the following specific versions:

= Solaris 9 OE for SPARC™ processors

= gzip 1.3 (included with the Solaris 9 OE)

= Forte Developer 7 C 5.4 (rebranded as Sun™ ONE Studio 7, Complier Collection)
= Perl v5.6.1 (included with the Solaris 9 OE)

= Zlib1.14

= /dev/iurandom (Solaris 9 OE feature and entropy source)

= PRNGD 0.9.26 (entropy source)

= TCP Wrappers 7.6

= OpenSSL 0.9.6g

= OpenSSH 3.5p1

Consult the installation documentation to prevent build problems.

Before Building OpenSSH

Before you build OpenSSH, you must consider the issues discussed in this section.
Compiling code is output intensive. The build and compiler output are not included
in the examples.

Using Static Versus Dynamic Libraries

Zlib, OpenSSL, and TCP Wrappers can be built as either static or dynamic libraries.
The default is static. The advantage of static libraries is performance and integration.
A statically linked binary is faster to start up, and the executable can be installed as
a standalone component. It depends on no supporting libraries (other than the
required system dynamic libraries such as libc.so .) The disadvantage is that
changes to a library require replacing and relinking the executable. Dynamic

2 Building OpenSSH—Tools and Tradeoffs ¢ January 2003

libraries allow just the library to be replaced and the program restarted. The Solaris
OE 8 and 9 versions ship only dynamic libraries for this reason. Unless you foresee
the need to replace libraries frequently, use the default of static libraries. This
simplifies the configuration, build, and deployment processes.

Install Versus Build Location

OpenSSH requires its components to be installed in the /usr/local directory. This
is only for building, not installation of OpenSSH. On the deployed machines,
OpenSSH can be installed in either the /opt/OBSDssh directory, the /usr/local
directory, or some other location. You must chose the location before building
because the location is compiled into the executables.

About $PATH

The component configure scripts expect the programmer (developer) utilities in the
Jusr/ccs/bin tree to be in the $PATHenvironment variable. If

/usr/ucb/bin is in $PATH it must be after the compilers and the programmer
utilities to prevent the wrong cc command from being called.

v To Add /usr/ccs/bin to the $PATH Variable

1. Check the $PATHvariable.

$ echo $PATH
/usr/bin:/usr/sbin

2. Add /usr/ccs/bin to the $PATHvariable.

$ PATH=/usr/ccs/bin:$PATH
$ echo $PATH
lusr/ccs/bin:/usr/bin:/usr/sbin

Components 3

Checking MD5 Hashes and GNU Privacy Guard
Signatures

Before you build the software packages, verify that they have been downloaded
correctly by either checking their GNU privacy guard (GPG) signature or MD5 hash.
If it differs, do not use the package. You can obtain the MD5 software at:

http://sunsolve.sun.com/md5/md>5.tar.Z

The compressed TAR file contains both SPARC and x86 binaries. Note that the file
permissions on the extracted binaries need to be changed to executable. Consult the
GNU Privacy Guard documentation for building it and checking signatures.

v To Install the MD5 Software
1. Download the software into the /tmp directory.
2. Become the superuser, and change the directory to the /opt directory.

3. Use the zcat (1) command to uncompress the TAR file.

zcat /tmp/md5.tar.Z | tar xvf -

x md5, 0 bytes, 0 tape blocks

x md5/md5-x86, 23452 bytes, 46 tape blocks
x md5/md5-sparc, 23892 bytes, 47 tape blocks

N

. Change the permissions and ownership of the files.

chmod -R 755 /opt/md5
chown -R root:bin /opt/md5
exit

v To Generate an MD5 Hash

1. Generate the software’s hash.

$ /Jopt/md5/md5-sparc prngd-x.x.x.tar.gz
MD5 (prngd-x.x.x.tar.gz) = f63c06d96d9610619f702e234a660544

4 Building OpenSSH—Tools and Tradeoffs ¢ January 2003

2. Use the cat (1) command to inspect the distributed hash.

$ cat prngd-x.x.x.tar.gz.md5
MD5(prngd-x.x.x.tar.gz)= f63c06d96d9610619f702e234a660544

Component Descriptions

This section contains descriptions of the OpenSSH components.

Solaris OE Build Machine

The build machine needs to have the same base architecture as the targeted
deployment machines. The Solaris OE is currently available for two platforms:
SPARC and x86. You can check the architecture using the uname(1) command. If you
deploy both, you will be required to build OpenSSH twice.

The following table will help you determine which build machine architectures are
compatible.

TABLE 1 OpenSSH Compatible Architectures Examples

Build Architecture Target Architecture Comments

Ultra 1 SPARC Netra™ T1 SPARC These architectures are compatible.

Ultra 1 SPARC LX-50 x86 These architectures are not compatible.

LX-50 x86 LX-50 x86 These architectures are compatible.

LX-50 x86 Sun Fire™ 15K These architectures are not compatible.
SPARC

Solaris OE Release

You must build OpenSSH on the oldest Solaris OE release that you plan on
supporting. Newer releases of the Solaris OE are backwards compatible. This might
require that new features not be used to maintain compatibility across releases.
Building a single package reduces build-time costs and prevents a wrong package
from being installed. You can check the release version with the uname(1) command.

Component Descriptions 5

6

Metaclusters

The build machine needs to have one of the following metaclusters installed:

= SUNWCprog(developer metacluster)

= SUNWCall (entire Solaris OE distribution)

= SUNWCXall (entire Solaris OE distribution plus OEM support)

The programmer utilities located in the /usr/ccs/bin directory are required to
build OpenSSH, and /var/sadm/system/admin/CLUSTER contains the metacluster

software installed on the machine. If the metacluster is not one of the above three,
the build machine will need to be reinstalled with the correct metacluster.

To Check the Installed Metacluster

Use the cat (1) machine to check the metacluster software.

$ cat /var/sadm/system/admin/CLUSTER
CLUSTER=SUNWCall

Caution — Do not build on the intended deployment machines. This is particularly
critical for machines installed with a minimized approach. Building the software
requires a compiler and interpreters that could provide leverage for an attacker.
Build the software and package it on the build machine, then deploy it to other
machines.

Gzip

The component source software packages are distributed in the Gzip format (for
example, package_name.tar.gz). This is a Gzip compressed TAR file. The file must
be uncompressed before it can be extracted. Neither uncompress (1) nor unzip (1)
will be able to uncompress the file. Gzip comes with the Solaris 8 and 9 OE releases.
For previous releases, you will have to download the Gzip software and build it
from the source. Alternatively, prebuilt binaries can be downloaded at:

http://www.sunfreeware.com/

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

v To Extract a Gzip Compressed Software Package
In the following example, foo.tar.gz is the name of the software package.

e Use the gzip (1) command to uncompress and the tar (1) command to extract the
file.

$ gzip -dc foo.tar.gz | tar xvf -

x foo/bar, 0 bytes, O tape blocks

x foo/bar/ChangelLog, 10963 bytes, 22 tape blocks
x foo/bar/INDEX, 1138 bytes, 3 tape blocks

Compilers

An ANSI C compliant compiler is needed to build the various components. Either
the Forte C or GNU C compiler will work. Forte C has the advantage of being able
to produce more optimized executables, particularly with the relevant flags being
used. The optimization flag usage becomes a factor when building the math-
intensive OpenSSL cryptographic library. The Forte complier has the disadvantage
of being a separate product. Consult your sales representative for more information
on obtaining it. The GNU compiler is available free of charge.

Note — Make sure the build system has the appropriate patches applied, particularly
the necessary patches for the Forte C compiler, if you are using it.

To build gcc, refer to its documentation. To obtain prebuilt versions of gcc, go to:

http://www.sunfreeware.com/

Perl

The Practical Extraction and Reporting Language (Perl) is needed to configure and
install OpenSSL and OpenSSH. Specifically, version five of the language is needed.
Perl version five comes with the Solaris 8 and 9 OE releases. For previous releases,
you must download it and build from source. To obtain prebuilt binaries, go to:

http://www.sunfreeware.com/

Component Descriptions 7

8

Zlib

Zlib is a lossless data-compression library. Optionally, OpenSSH uses it to compress
data as it is transmitted and received to reduce bandwidth consumption. Although
the feature is optionally used, Zlib is needed for compilation of OpenSSH. Zlib
comes with Solaris 8 and 9 OE releases in dynamic library form.

Note — Per Sun Alert 43541, Solaris 8 OE systems should apply the Zlib patch (patch
ID 112611 for SPARC and 112612 for x86). The Zlib patch fixes a security bug detailed
in CERT Vulnerability VU#368819.

For the Solaris 2.6 and 7 OE releases, to statically link OpenSSH or for minimized
machines without the Zlib dynamic libraries, Zlib will need to be built. To build a
dynamic Zlib library, consult the documentation.

Note — Do not use versions previous to zlib-1.1.4 because there is an exploitable
vulnerability.

To Build Zlib

= To configure Zlib to use the Forte C compiler:

. Change directories to the zlib- x.x.x directory.

. Use the env (1) command to set the options and execute the configure script.

$ env CC=cc\
CFLAGS="-x0O5 -xdepend -xprefetch -dalign -xlibmil -xunroll=5 " \
Jconfigure

Note — If the target machines are without an UltraSPARC Il or Il processor, omit the
-xprefetch flag.

3. Use the make(1S) command to build the Zlib software.

$ make

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

4. Use the make(1S) command to test the build.

$ make test

hello world

uncompress(): hello, hello!

gzread(): hello, hello!

gzgets() after gzseek: hello!

inflate(): hello, hello!

large_inflate(): OK

after inflateSync(): hello, hello!

inflate with dictionary: hello, hello!
*** 7lib test OK ***

5. Install the Zlib software by executing the following commands:

$ su

Password: password

PATH=/usr/ccs/bin:$PATH

export PATH

make install

Is -l Jusr/local/lib/libz.a

-rwxr-xr-x 1 root other 104308 Oct 10 14:03 libz.a

= To Configure Zlib to Use the GNU C Compiler:
1. Change the directory to the zlib- x.x.x directory.

2. Execute the configure script.

$./configure

3. Use the make(1S) command to build the Zlib software.

$ make

Component Descriptions

4. Use the make(1S) command to test the build.

$ make test

hello world

uncompress(): hello, hello!

gzread(): hello, hello!

gzgets() after gzseek: hello!

inflate(): hello, hello!

large_inflate(): OK

after inflateSync(): hello, hello!

inflate with dictionary: hello, hello!
*** 7lib test OK ***

5. Install the Zlib software by executing the following commands:

$ su

Password: password

PATH=/usr/ccs/bin:$PATH

export PATH

make install

Is -l Jusr/local/lib/libz.a

-rwxr-xr-x 1 root other 104308 Oct 10 14:03 libz.a

Entropy Sources

Entropy is the measurement of available randomness. A source of randomness is
needed to generate cryptographic keys. The keys cannot be predictable because an
attacker would be able to guess the key and break the encryption. The problem is
that computers are deterministic machines, so they are very unsuited to the task of
random number generation. Computers can only produce pseudo random numbers
that are, at best, very close to random. True random numbers can only be generated
with hardware measuring stochastic natural phenomena, such as radioactive decay.

Hardware-based random number generators are often expensive and have slow bit
rates of entropy production. Instead, software-based pseudo random number
generators are used. Randomness is approximated by measuring a series of partially
random events such as the timing between key strokes, mouse positioning, or arrival
of network packets. All of the entropy is collected into a pool and stirred (a
mathematical process to improve randomness).

10 Building OpenSSH—Tools and Tradeoffs * January 2003

The standard interface for entropy requests is to provide two sources: random and
urandom . The random source provides processed entropy from the pool. If the pool is
empty or not enough entropy is present to fulfill a request, random source will block
(wait until completion) until enough entropy becomes available. The urandom source
provides processed entropy from the pool if available. If not enough entropy is
available, a cryptographic hash of the available entropy is returned instead. The
urandom source will never block.

The random source always provides the highest quality of entropy with the
performance penalty of requests being nondeterministic. The urandom source avoids
the penalty by providing lower-quality entropy when the pool is low. The interface
can be implemented either by two character pseudo devices, FIFOs, or by UNIX
domain sockets.

The criteria for choosing an entropy source for OpenSSH are:

= That the source supports the intended Solaris OE release (2.6, 7, 8, or 9)

= That the source supports either thirty-two bit or sixty-four bit kernel mode

= That the source supports the SPARC and Intel platforms

= That the source is self-contained

The choices for entropy sources are:

= OpenSSH's internal entropy collection

= Kernel-level random number generator

= Entropy gathering daemon

= ANDIrand

= SUNWSski

= Pseudo random number generator daemon

OpenSSH Internal Entropy Collection

The internal entropy collection is the default when no other option is provided when
OpenSSH is configured. At the invocation of OpenSSH, entropy is gathered by
running user-level commands, such as ps(1). OpenSSH will block until enough
entropy is gathered. This gives the appearance that OpenSSH has hung, particularly
on lightly-loaded systems. Internal entropy gathering is not recommended due to its
performance.

Entropy Sources 11

12

Kernel-Level Random Number Generators

Kernel-level random number generators implement the standard entropy interface
as two character pseudo devices: /devirandom and /dev/iurandom . A kernel
implementation has access to all internal state information such as process context
and device driver intrinsics. This provides a larger quantity of and a finer grained
source of entropy than user-level sources. The Solaris 9 OE and the Linux operating
system provide a kernel-level random number generator. With the Solaris 8 OE, it is
provided in a patch (patch ID 112438 for SPARC and 112439 for Intel). Kernel-level
random number generators are the recommended entropy source.

ANDIrand

ANDIrand is a kernel-level random number generator kernel module developed by
Andreas Maier. It provides the /dev/random and /dev/urandom character pseudo
devices. This module is not supported by Sun, so it is not recommended for systems
requiring Sun support services.

SUNWSsKki

SUNWSsKi is a user-level daemon for the Solaris 2.6 OE. It provides the random
entropy source interface as a FIFO special file. It is not available for other Solaris OE
releases, so it is not recommended.

Entropy Gathering Daemon (EGD)

The entropy gathering daemon (EGD) is a user-level daemon written in Perl by
Brian Warner for GNU Privacy Guard. It provides only the random entropy source
interface through a UNIX domain socket. This source will block, causing
performance problems, so it is not recommended. EGD also requires the installation
of perl (1), which is not recommended for minimized systems.

Pseudo Random Number Generator Daemon

The pseudo random number generator daemon (PRNGD) is a user-level daemon
written in C by Lutz Jaenicke. It provides both the random and urandom entropy
sources through a UNIX domain socket. It conforms to the EGD protocol for entropy
requests. PRNGD is recommended for systems without a kernel-level random
number generator.

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

Recommendations

Whenever possible use a kernel-level random number generator. It provides the
highest quality of pseudo random numbers, has access to the private state
information in the kernel, and is difficult for an attacker to determine the inner state.
If you cannot use a kernel-level random number generator, use the PRNGD daemon.
The following table contains entrophy recommendations based on the operating
environment.

TABLE 2 Entropy Source Recommendations

Solaris OE Release Source

Solaris 9 OE /dev/random

Solaris 8 OE /devirandom (patch 112438 or 112439)

Solaris 2.6 or 7 OE PRNGD

Building PRNGD Software

PRNGD must be configured manually because there is no configure script.
Configuration and building occur at the same time. PRNGD does not need to be
installed on the build machine because it is packaged later for deployment.

v To Build PRNGD Using the Forte C Compiler

= For the Solaris 7, 8, or 9 OEs

1. Change the directory to the prngd- x. x. x directory.

2. Use the make(1S) command to build the software package.

$ make CC=cc CFLAGS="-xO5 -DSOLARIS" SYSLIBS="-Isocket -Insl"

= For the Solaris 2.6 OE

1. Change the directory to the prngd- x. x. x directory.

2. Use the make(1S) command to build the software package.

$ make CC=cc CFLAGS="-xO5 -KPIC -DSOLARIS26 -D__EXTENSIONS__ "\
SYSLIBS="-Isocket -Insl"

Entropy Sources 13

To Build PRNGD Using the GNU C Compiler
= For the Solaris 7, 8, or 9 OEs

. Change directories to the prngd- x. x. x directory.

. Use the make(1S) command to build the software package.

$ make CC=gcc CFLAGS="-0O3 -DSOLARIS" SYSLIBS="-Isocket -Insl"

= For the Solaris 2.6 OE

. Change directories to the prngd- Xx. x. x directory.

. Use the make(1S) command to build the software package.

$ make CC=gcc CFLAGS="-03 -DSOLARIS26 -D__ EXTENSIONS__ "\
SYSLIBS="-Isocket -Insl"

14

TCP Wrappers

TCP wrappers provides limited, connection-oriented host-based firewall
functionality with which connections can be denied or accepted based on the
originating host. Connection attempts are logged using syslog (3C). OpenSSH uses
this functionality by linking in the libwrap library. TCP wrappers is dependent on
the name and IP address information returned by the name services, such as DNS. It
cannot stop low-level network-based attacks, such as port scanning, IP spoofing, or
denial of service. For those, a packet-based firewall solution such as SunScreen™
software is necessary. The Solaris 9 OE has TCP wrappers integrated into it, package
SFWtcpd, which is located in the /usr/sfw directory. For the Solaris 8 OE, TCP
wrappers can be found on the Software Companion CD (starting in the Solaris 8 10/
00 release). For the Solaris 2.6 and 7 OE releases, TCP wrappers must be downloaded
and built from the source. TCP wrappers is not required to build OpenSSH.

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

Building TCP Wrappers

This section contains procedures for building the TCP wrappers software.

v To Build TCP Wrappers
= For the Forte C Compiler

1. Change directories to the tcp_wrappers_ X. x directory.

2. Use the following command to build the TCP wrappers software.

$ make REAL_DAEMON_DIR=/usr/shin sunos5 \
STYLE="\"-xO5 -xdepend -xprefetch -dalign -xlibmil -xunroll=5 \""

Note — If the target machines are without an UltraSPARC Il or Il processor, omit the
-xprefetch flag.

= For the GNU C Compiler
1. Change directories to the tcp_wrappers_ X. x directory.

2. Use the following command to build the TCP wrappers software.

$ make REAL_DAEMON_DIR=/ust/shin sunos5

v To Install TCP Wrappers

TCP wrappers does not have an automated install script. OpenSSH requires only
two files from the distribution: libwrap.a and tcpd.h

1. Become the superuser.

2. Copy the libwrap.a file to the /usr/local/lib directory.
3. Copy the tcpd.h file to the /usr/local/include directory.
4. Change the ownership and permissions with the following commands.

chown root:other /usr/local/lib/libwrap.a /usr/local/include/tcpd.h
chmod 755 /usr/local/lib/libwrap.a /usr/local/include/tcpd.h

TCP Wrappers 15

16

OpenSSL

OpenSSL is a general purpose cryptographic library that also implements the Secure
Sockets Layer (SSL) protocols. This is the component that does all the cryptographic
work for OpenSSH.

Note — The OpenSSL library contains patented cryptographic algorithms; however,
OpenSSH does not use them. The READMEHile lists the patents that might apply.
Consult your legal counsel as to whether this is an issue.

The config script attempts to build a library optimized for the specific build
machine. This is not distributable or portable, particularly if the build machine is not
identical to the intended target machines. Instead, use the Configure Perl script to
build a more general library. In selecting the designated support, choose the lowest
common denominator platform.

TABLE 3 OpenSSL Configure Architecture Designations

Supported Architectures Forte C Compiler GNU C Compiler

sun4c , sun4d , sun4m, sundu solaris-sparcv7-cc solaris-sparcv7-gcc

sun4d , sundm, sun4u solaris-sparcv8-cc solaris-sparcv8-gcc
sundu solaris-sparcv9-cc solaris-sparcv9-gcc
i86pc solaris-x86-cc solaris-x86-gcc

Note — Avoid all of the designations in the following list.

= Designations that start with debug, for example debug-solaris-sparcv8-gcc

This will cause performance problems because it is meant only for debugging
problems with the library.

= solaris64-sparcv9-gcc31 or solaris64-sparcv9-cc

These designations will not link with the 32-bit Zlib and OpenSSH components.
= solaris-sparc-sc3

This compiler is not supported on the Solaris 2.6, 7, 8, or 9 OE releases.

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

v To Build and Test OpenSSL

1. Change directories to the openssl- x. x. x directory.

2. Run the Configure script with the appropriate designation.

$./Configure designation

3. Use the make(1S) command to build and test the OpenSSL software.

$ make
$ make test

v To Install OpenSSL

1. Become the superuser.

2. Add /usr/ccs/bin to the $PATHvariable, and export the variable.

PATH=/usr/ccs/bin:$PATH
export PATH

3. Use the make(1S) command to install the software.

make install

OpenSSH

OpenSSH is the OpenBSD group’s implementation of the Secure Shell protocols: one
and two. It is based on Tatu Yldnen’s original Secure Shell implementation. Before
building OpenSSH, all of the required and optional components must be built and
installed on the build machine.

OpenSSH 17

18

Configuring OpenSSH

The configure script includes many arguments that influence the compilation and
installation process. OpenSSH needs to be configured based on the installation
targets, compiler choice, and entropy source usage.

v To Obtain the List of Arguments in the Configure Script

1. Change directories to the openssh- x. xpx directory.

2. Execute the configure script with the -help option to obtain the argument list.

$./configure -help

As a best practice, you should build OpenSSH with the following arguments:

--with-pam

This argument enables the use of pluggable authentication modules (PAM).
--disable-suid-ssh

Do not install OpenSSH with the setuid bit. This prevents a local root
compromise if a vulnerability is found with the ssh command. The setuid bit is

only needed for regression to the rsh protocol, which is disabled by the following
option.

--without-rsh

Do not regress to the insecure rsh protocol if you are unable to connect by using
the Secure Shell protocol.

--with-lastlog=/var/adm/lastlog

Defines the lastlog file location for the Solaris OE.
--sysconfdir=/etc/openssh
This argument establishes the location for the OpenSSH configuration files. Make

it a standard location, but avoid /etc/ssh to prevent a collision with the Solaris
Secure Shell software. The location can also be: /etc or /usr/locall/etc

--prefix=/opt/OBSDssh
This argument establishes the top-level installation directory. The /opt/OBSDssh
directory is for package generation. You can also use the /usr/local directory.

The top-level installation directory is where OpenSSH looks for its various
components.

--without-privsep-user

This argument disables privilege separation due to PAM interactions.

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

Caution — If you receive a Privilege separation user does not exist error ,
add the UsePrivilegeSeparation no entry to the sshd_config file. You can
prevent this error from occurring by adding the entry to the sshd_config.out file
before you generate the package.

= --without-privsep-path

This argument also disables privilege separation due to PAM interactions.

= --with-prngd-socket=/var/run/egd-pool
For systems using PRNGD, add this argument. It is the location of the entropy
pool socket.

= --without-prngd
For systems using /dev/random , without PRNGD, add this argument. Do not use
PRNGD.

= --without-rand-helper

For systems using /dev/random , add this argument. Do not use the subprocess
entropy gatherer.

Note — The configure script will report Random number source: OpenSSL
internal ONLY ; disregard this message.

= --with-tcp-wrappers=/ustr/local

For TCP wrappers support, add this argument. If you are using the integrated
Solaris 9 OE version, use the /usr/sfw directory instead of the /usr/local
directory.

= --with-cflags="-x05 -xdepend -dalign -xlibmil -xunroll=5
-xprefetch "

For the Forte C compiler, add this argument.

Note — If the target machines are without an UltraSPARC Il or Il processor, omit the
-xprefetch flag.

OpenSSH 19

v To Configure OpenSSH

= For package creation, /dev/random usage, and the Forte C compiler

e Execute the following command with the appropriate flags.

$./configure --with-pam --disable-suid-ssh --without-rsh \
--with-lastlog=/var/adm/lastlog --sysconfdir=/etc/openssh \
--prefix=/opt/OBSDssh --without-privsep-user --without-privsep-path \
--without-prngd --without-rand-helper \

--with-cflags="-xO5 -xdepend -dalign -xlibmil -xunroll=5 -xprefetch "

= For package creation, /dev/irandom usage, and the GNU C Compiler

e Execute the following command with the appropriate flags.

$./configure --with-pam --disable-suid-ssh --without-rsh \
--with-lastlog=/var/adm/lastlog --sysconfdir=/etc/openssh \
--prefix=/opt/OBSDssh --without-privsep-user --without-privsep-path \
--without-prngd --without-rand-helper

= For package creation, PRNGD usage, and the Forte C Compiler

e Execute the following command with the appropriate flags.

$./configure --with-pam --disable-suid-ssh --without-rsh \
--with-lastlog=/var/adm/lastlog --sysconfdir=/etc/openssh \
--prefix=/opt/OBSDssh --without-privsep-user --without-privsep-path \
--with-prngd-socket=/var/run/egd-pool \

--with-cflags="-xO5 -xdepend -dalign -xlibmil -xunroll=5 -xprefetch "

= For /usr/local installation, PRNGD Usage, and the GNU C Compiler

e Execute the following command with the appropriate flags.

$./configure --with-pam --disable-suid-ssh --without-rsh \
--with-lastlog=/var/adm/lastlog --sysconfdir=/etc/openssh \
--prefix=/usr/local --without-privsep-user --without-privsep-path \
--with-prngd-socket=/var/run/egd-pool

20 Building OpenSSH—Tools and Tradeoffs * January 2003

Building OpenSSH

Build OpenSSH by executing the make(1S) command, as in the following procedure.
Installation is not needed because OpenSSH is packaged later for deployment.

v To Build OpenSSH

1. Change the directory to the openssh- x. xpx directory.

2. Execute the make(1S) command.

$ make

Deploying OpenSSH

Efficient distribution requires that all of the OpenSSH components (client, server,
configuration files, and documentation) be combined into a single entity, either a
TAR file or preferably a System V package. TAR files are easy to create and transfer,
but they require manual installation. System V packages are the standardized
process for installing, updating, and removing software on the Solaris OE.

The components of the Solaris OE are installed using packages. A package enables
automated installation of OpenSSH, as needed or at install time, using the
JumpStart™ software technology. The binaries, configuration files, and
documentation are copied to their respective locations, and any needed symbolic
links are created.

For more information on packages, refer to the Application Packaging Developer's
Guide at http://docs.sun.com and the following manual pages:
= pkgadd (1M)

= pkginfo (1)

= pkgmk(1)

= pkgparam (1)

= pkgproto (1)

= pkgtrans (1)

= installf am)

= pkgask (1M)

= pkgrm (1M)

= removef (1M)

Deploying OpenSSH 21

22

Packaging OpenSSH

The makeOpenSSHPackage.ksh script creates a Solaris OE package. It takes the
OpenSSH executables, configuration files, documentation, and optionally, PRNGD’s
executables and configuration files, and creates the OBSDsshpackage. The script will
need some editing based on your local environment. The makeOpenSSHPackage.ksh
script configures openssh.server (the provided init script) based on the
configuration of makeOpenSSHPackage.ksh . The init script is included in the
generated package. The OpenSSH Tools TAR file containing an init script and a
packaging script is available from Sun BluePrints Online, Scripts and Tools page at:

http://www.sun.com/solutions/blueprints/tools/index.html

ThemakeOpenSSHPackage.ksh scriptusessshd_config.out andssh_config.out
as the default configuration files for the OpenSSH installation. Place your local
configuration into these files before generating the package.

The OBSDsshpackage does not generate host keys at install-time. Keys are generated
at first boot. This is to prevent WebStart Flash installed hosts from having duplicate
host keys.

To Generate the OBSDssh Package

. Use the cp (1) command to copy the makeOpenSSHPackage.ksh script to the

openssh-x.xpx directory.

$ cp makeOpenSSHPackage.ksh openssh- X. XpX

. Copy openssh.server to the parent directory of openssh- x. xpx.

$ cp openssh.server .

3. Change the directory to the openssh-x.xpx directory.

$ cd openssh-x.xpx

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

4. Use the ksh (1) command to make the package.

$ ksh ./makeOpenSSHPackage.ksh

5. Verify the presence of the package.

$ Is *pkg
OBSDssh.pkg

MD5 Hashes

For packages that are distributed for downloading, generate and distribute the MD5
hashes.

v To Generate the OpenSSH package MD5 Hash

e Generate the MD5 hash with the following command.

$ /opt/md5/md5-sparc ./OBSDssh.pkg
MD5 (./OBSDssh.pkg) = f63c06d96dcefd919f702e234a660544

Solaris Security Toolkit

To facilitate the deployment of OpenSSH, the Solaris™ Security Toolkit software
includes a finish script, Finish/install-openssh.fin , to automate the
installation of the OBSDsshpackage. The finish script needs to be edited to include
the version of OpenSSH, the package location, and the package name. The script will
not install OpenSSH onto a Solaris 9 OE system because the Solaris Secure Shell
software is provided. The script must be altered to force the installation onto a
Solaris OE 9 system.

= For more information, refer to the following Sun BluePrints OnLine articles:
« “The Solaris™ Security Toolkit — Quick Start: Updated for Toolkit Version 0.3”
« “The Solaris™ Security Toolkit — Release Notes: Updated for Toolkit Version 0.3”

MD5 Hashes 23

« “The Solaris™ Security Toolkit — Installation, Configuration, and Usage Guide:
Updated for Toolkit Version 0.3”

“The Solaris™ Security Toolkit — Internals: Updated for Toolkit Version 0.3”

Note — For minimized installations of the Solaris OE, the SUNWcsl package is
required for OpenSSH. The SUNW?zlib package is also required if the dynamic Zlib
library is used to build OpenSSH.

About the Author

Jason Reid (jason.m.reid@sun.com) isin the Solaris System Test group. Prior to his
present position, he was an SQA engineer in the Developer Tools Group. Before
joining Sun, Jason worked at the Purdue University Computing Center as an UNIX
systems administrator, while obtaining his B.S. in Computer Science.

24

Resources

This section contains lists of references you can use to obtain more information about
the OpenSSH components.

= Prebuilt versions of the software (except for the Sun™ ONE Studio software):
http://www.sunfreeware.com/

= GNU compiler collection:
http://www.fsf.org/software/gcc/gcc.html

= GNU privacy guard: http://www.gnupg.org/
= Gzip: http://www.gzip.org/

= OpenSSL: http://www.openssl.org/

= OpenSSH: http://www.openssh.com/

= Perl: http://www.perl.com/

= PRNGD:
http://ftp.aet. TU-Cottbus.DE/personen/jaenicke/postfix_tls/
prngd.html

= Sun ONE Studio Compiler Collection (formerly the Forte Compiler Collection):
http://forte.sun.com/s1scc/index.html

= Solaris Security Toolkit: http://www.sun.com/security/jass/

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

= TCP Wrappers: ftp:/ftp.porcupine.org/pub/security/index.html
= Zlib: http://www.gzip.org/zlib/

References

Computer Systems, Solaris Productization and Marketing, “Building Longevity into
Solaris Operating Environment Applications,” Sun BluePrints OnLine, April 2000, at:
http://www.sun.com/blueprints/0400/s8long.pdf

Dasan, Vasanthan, Alex Noordergraaf, and Lou Ordorica, “The Solaris Fingerprint
Database — A Security Tool for Solaris Operating Environment Files,” Sun BluePrints
OnLine, May 2001, at:

http://www.sun.com/blueprints/0501/Fingerprint.pdf

Elling, Richard, “Static Performance Tuning,” Sun BluePrints OnLine, May 2000,
http://www.sun.com/blueprints/0500/sysperfnc.pdf

Englund, Martin, “Securing Systems With Host-Based Firewalls,” Sun BluePrints
OnLine, September 2001, at:
http://www.sun.com/blueprints/0901/sunscreenlite.pdf

Lindh, Borje, “Application Performance Optimization,” Sun BluePrints OnLine,
March 2002, at:
http://www.sun.com/blueprints/0302/optimize.pdf

Howard, John and Alex Noordergraaf, JumpStart Technology Effective Use in the Solaris
Operating Environment, Sun Microsystems Press, Palo Alto, 2002

Howard, John and Alex Noordergraaf, “WebStart Flash,” Sun BluePrints OnLine,
November 2001, at:
http://www.sun.com/blueprints/1101/webstart.pdf

McGraw, Gary and John Viega, “Make Your Software Behave: Playing the
Numbers,” IBM DeveloperWorks, April 2000, at:
http://www.ibm.com/software/developer/library/playing/index.html

McGraw, Gary and John Viega “Make Your Software Behave: Beating the Bias”, IBM
DeveloperWorks, April 2000, at:
http://www.ibm.com/software/developer/library/beating.html

McGraw, Gary and John Viega, “Make your software behave: Software Strategies,”
IBM DeveloperWorks, April 2000, at:
http://www.ibm.com/software/developer/library/beating.html

References 25

OpenBSD Group, “OpenSSH Frequently Asked Questions,” OpenBSD Group, April
2002, at:
http://www.openssh.com/faq.html

Reid, Jason and Keith Watson, “Building and Deploying OpenSSH for the Solaris
Operating Environment,” Sun BluePrints OnLine, July 2001, at:
http://www.sun.com/blueprints/0701/openSSH.pdf

Schneier, Bruce, Applied Cryptography Protocols, Algorithms, and Source Code in C, 1994,
New York, John Wiley & Sons

Solaris Security Toolkit software web site at:
http://www.sun.com/security/jass/

SunSoft™ Developer Engineering, Solaris Porting Guide: Second Edition, SunSoft
Press, Mountain View, 1995.

Watson, Keith, “The Solaris Operating Environment, OpenSSH, and PRNGs,” Sun
Microsystems, Usenix BOF presentation, 2001

Ordering Sun Documents

The SunDocs®™ program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

26

Accessing Sun Documentation Online

The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site
at: http://www.sun.com/blueprints/online.html

Building OpenSSH—Tools and Tradeoffs ¢ January 2003

