
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Customizing JumpStart
Framework for Installation and
Recovery

John S. Howard, Enterprise Engineering

Alex Noordergraaf, Enterprise Server Products

Sun BluePrints™ OnLine—August 2002

Part No. 816-7587-10
Revision 1.0, 10/3/01
Edition: August 2002

Please
Recycle

Copyright 2002 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et ladécompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque enregistreeaux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaîtles
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Customizing JumpStart Framework
for Installation and Recovery

Editor’s Note – This article is the complete ninth chapter of the Sun BluePrintsTM

book, “JumpStart Technology: Effective Use in the SolarisTM Operating
Environment”, by John S. Howard and Alex Noordergraaf (ISBN 0-13-062154-4),
which is available through www.sun.com/books, amazon.com, and Barnes and
Noble bookstores.

The JumpStart system is useful for much more than installing the Solaris OE. This
chapter examines the more powerful, yet often overlooked, aspects of the JumpStart
system. In several ways, the JumpStart system is like a scripting language, the
JumpStart framework provides a toolkit of operators that can be used individually
or combined. These operators function well individually, but their true power is
realized when they are combined.

Note – This chapter provides techniques that can produce configurations that
would not be supported by Sun Enterprise Services. However, that lack of support
should not detract from the value of the techniques presented.

This chapter examines the boot and installation processes, demonstrating how to
adapt these processes for custom system installation and system recovery. This
chapter discusses the following topics:

■ Building and testing a bootable installation CD-ROM
■ Recovering a failed system with JumpStart
■ Altering the boot process
■ Adding utilities and manual pages
■ Meeting challenges unique to the miniroot

2 Customizing JumpStart Framework for Installation and Recovery • month 2002

Building a Bootable Installation from
CD-ROM
There may be some situations when it is not possible to use a JumpStart server, yet it
is necessary to perform an automated (hands-free) installation of the Solaris OE. This
section details a procedure to create a bootable installation CD-ROM, which is
essentially putting a JumpStart server onto a CD. This CD can then be used to effect
a standardized, automated Solaris OE installation from the CD. This technique is
especially useful in environments where disk space limitations or networking
constraints do not allow for a JumpStart server.

This section examines the structure of a bootable Solaris 8 OE (for a SPARC machine)
CD and discusses the appropriate modifications to the default installation scripts
that allow a JumpStart installation to be done from CD. Further, this section
describes how to create a bootable Solaris 8 OE installation CD for the SPARC
platform. Additionally, a Solaris 8 OE system with the CD Read/Write (CDRW)
utilities installed is used to write the Solaris 8 OE bootable installation CD. Although
several different approaches and software applications are available for writing CDs,
this section uses commands available only in the standard Solaris 8 OE to write the
bootable installation CD.

The structure of the bootable installation CD can vary with different versions of the
Solaris OE, partly because of changes required for the support of additional
hardware architectures. Additionally, changes to the Solaris OE from version to
version may necessitate changes in the CD or the number of CDs required to install
the Solaris OE.

Versions of the Solaris OE can vary structurally, but the concepts and procedures
presented here can be adapted or extended to create a bootable installation CD for
any of the current versions of the Solaris OE.

Bootable CD Structure
A bootable Solaris OE CD has several components in common with any other hard
disk. The boot CD is divided into several partitions (or slices), and a Volume Table
Of Contents (VTOC) provides the location and sizes of these slices. In addition to the
VTOC, a typical installation CD has six slices. Although the Solaris OE imposes the
partitioning of the CD into six slices, it is important to note that the CD is written as
one session—this fact is important when the CD is written.

Following is an examination of the VTOC and the six slices of the Solaris 8 OE
installation CD.

Building a Bootable Installation from CD-ROM 3

Volume Table of Contents

The VTOC is located at cylinder 0, sector 0 on the CD. You can examine the VTOC of
any disk device with the prtvtoc command. The VTOC of the Solaris 8 OE
Software CD (the installation CD) is as follows:

Note – You must stop the CD and diskette volume management in order to execute
the prtvtoc command on a CD. Restart volume management after executing
prtvtoc . All filesystems mounted from the CD will be unmounted and become
inaccessible while volume management is stopped.

server01# /etc/init.d/volmgt stop
server01# prtvtoc /dev/dsk/c0t6d0s0
* /dev/dsk/c0t6d0s0 partition map
*
* Dimensions:
* 512 bytes/sector
* 640 sectors/track
* 1 tracks/cylinder
* 640 sectors/cylinder
* 2048 cylinders
* 2048 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* Unallocated space:
* First Sector Last
* Sector Count Sector
* 1301760 2560 1304319
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory
 0 4 10 0 1128960 1128959
 1 2 10 1128960 172800 1301759
 2 0 00 1301760 2560 1304319
 3 0 00 1304320 2560 1306879
 4 0 00 1306880 2560 1309439
 5 0 00 1309440 2560 1311999
server01# /etc/init.d/volmgt start

4 Customizing JumpStart Framework for Installation and Recovery • month 2002

In contrast to a hard disk, the disk geometry that the Solaris OE uses for a CD
provides no distinction between a cylinder and a track. As the prtvtoc output
illustrates, the disk label used for a CD defines a cylinder as being composed of one
track. Further, the prtvtoc output verifies that each track is defined as having 640
sectors and that one sector is equal to 512 bytes.

Note that the Solaris OE requires that all UFS filesystems align on a cylinder
boundary. For a CD, this means that all UFS filesystems on the CD must begin on a
sector that is a multiple of 640.

Slices

By reading the VTOC, the Solaris OE sees the CD as having six slices. The contents
of those six slices are as follows:

■ Slice 0 contains the Solaris OE packages to be installed and is the High Sierra File
System (HSFS) partition of the CD.

■ Slice 1 contains the generic kernel and the directory that becomes the system’s /
(root) directory after boot.

■ Slice 2 contains the boot block for the sun4c architecture.

■ Slice 3 contains the boot block for the sun4m architecture.

■ Slice 4 contains the boot block for the sun4d architecture.

■ Slice 5 contains the boot block for the sun4u architecture.

Slices 2 through 5 are there only to provide hardware-architecture-specific boot
blocks. As new hardware architectures are added and old architectures reach their
end-of-life, the uses of these slices may change. The file .slicemapfile in the top-
level directory of slice 0 contains the mapping of a slice to the architecture
supported.

As noted earlier, slice 0 is on the HSFS partition and all other slices are on the UFS
partitions. Slice 0 is also the largest of the slices and can incorporate any unused
space on the CD. The procedures detailed in this section augment the installation
procedures in slice 0. However, there is a fixed upper limit in available space for
slice 0 that limits our modifications. The total space available on a standard CD is
640 Mbytes. The distribution media for Solaris 8 OE supports four architectures. If
the bootable installation CD being created needs to support only one architecture,
the space (slices) used by the unneeded architectures can be incorporated into slice
0, enlarging slice 0 but losing the ability to boot other architectures from that CD.

It is also interesting to note that, other than the boot block, the only content of slices
2 through 5 is the file .SUNW-boot-redirect in the top-level directory of each of
those partitions. This file contains the character 1, which redirects the OpenBoot
PROM (OBP) boot loader to load the kernel from partition 1. This mechanism was
added with Solaris 2.5 OE as a means of taking advantage of the hardware-
independent nature of the kernel to optimize the utilization of space on the CD.

Building a Bootable Installation from CD-ROM 5

Procedure Overview
Generally, this procedure extracts the contents of slice 0, then splices the desired
installation behaviors into the contents of slice 0. The modifications made to slice 0
are to configure the bootable installation CD to partition c0t0d0 as the boot device.
The modifications then enable a fully automated installation of the Solaris 8 OE. The
profile specifies that a full Solaris OE is installed (the SUNWCall package cluster)
with the exception of the Power Management facility.

At a high level, the procedure to create a bootable CD is as follows:

1. Create and populate a work area.

2. Modify the installation behaviors of slice 0.

3. Assemble the individual slices into one CD session and write them to the bootable
installation CD.

4. Test the bootable installation CD.

You can also use this procedure to create a bootable CD without the JumpStart
software installation behaviors by omitting step 2.

Procedure Specifics
For this example, server01 is an Ultra Enterprise 420R server running the Solaris 8
OE with the Solaris 8 OE CD creation utilities installed and configured as a
JumpStart server. server01 has a CD-ROM writer connected at c3t2d0 (identified
as cdrom1 by the cdrw -l command).

Creating and Populating a Work Area

Verify the presence of the Solaris OE CD creation utilities. The Solaris 8 OE
installation media is already mounted, and /bicd8 is used as the work area. /
bicd8 is a 2-Gbyte UFS filesystem.

6 Customizing JumpStart Framework for Installation and Recovery • month 2002

1. Create /bicd8 in the following manner:

2. Populate the work area by extracting the partitions from the Solaris 8 OE
software CD.

a. Since the contents of slice 0 will be manipulated, use cpio to copy out
partition 0.

b. Since no changes are made to the contents of slices 1 through 5, use dd to take
those slices off the CD.

c. Before extracting slices 1 through 5, stop CD and diskette volume
management.

Note – All filesystems mounted from the CD will be unmounted while volume
management is stopped.

server01# pkginfo SUNWmkcd SUNWcdrw
system SUNWcdrw CD read and write utility for Solaris
system SUNWmkcd CD creation utilities
server01# newfs -m 1 /dev/rdsk/c0t1d0s0
newfs: construct a new filesystem /dev/rdsk/c0t1d0s0: (y/n)? y
/dev/rdsk/c0t1d0s0: 4194828 sectors in 1452 cylinders of 27
tracks, 107 sectors
 2048.3MB in 46 cyl groups (32 c/g, 45.14MB/g, 7488 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 92592, 185152, 277712, 370272, 462832, 555392, 647952, 740512,

833072, 925632, 1018192, 1110752, 1203312, 1295872, 1388432,
1480992, 1573552, 1666112, 1758672, 1851232, 1943792, 2036352,
2128912, 2221472, 2314032, 2406592, 2499152, 2591712, 2684272,
2776832, 2869392, 2958368, 3050928, 3143488, 3236048, 3328608,
3421168, 3513728, 3606288, 3698848, 3791408, 3883968, 3976528,
4069088, 4161648,
server01# mkdir /bicd8
server01# mount /dev/dsk/c0t1d0s0 /bicd8

Building a Bootable Installation from CD-ROM 7

Additionally, since the slice layout of the bootable installation CD being created
will not vary from the slice layout of the Solaris 8 OE Software CD, the VTOC
from the Software CD can be used later for the bootable installation CD.

3. Use dd to take the VTOC from the CD, and at this point, restart volume
management.

Several choices are available if the slice layout of the CD being created needs to
vary from that of the Software CD (for example, if the VTOC needs to be
changed). Use CD creation software—such as the toolkit for building bootable
CDs, available from Sun Professional Services, Gear Pro for UNIX, or Young
Minds—to generate a correct and valid VTOC. Or create a new VTOC and disk
label programmatically by creating and writing the dkl_vtoc and dk_label
structures, respectively. See the Solaris system file /usr/include/sys/
dklabel.h for more information on these structures.

server01# cd /cdrom/sol_8_401_sparc/s0
server01# mkdir /bicd8/s0
server01# find . -print |cpio -pudm /bicd8/s0
server01# cd /bicd8
server01# /etc/init.d/volmgt stop
server01# for i in 1 2 3 4 5
> do
> dd if=/dev/dsk/c0t6d0s${i} of=sol8.s${i} bs=512
> done
172800+0 records in
172800+0 records out
2560+0 records in
2560+0 records out
2560+0 records in
2560+0 records out
2560+0 records in
2560+0 records out
2560+0 records in
2560+0 records out

server01# dd if=/dev/dsk/c0t6d0s0 of=/bicd8/sol8.cdrom.vtoc \
> bs=512 count=1
1+0 records in
1+0 records out
server01# /etc/init.d/volmgt start

8 Customizing JumpStart Framework for Installation and Recovery • month 2002

Modifying Installation Behaviors of Slice 0

Modify the default installation behaviors in slice 0 by deleting the contents of the
.install_config directory and adding the desired JumpStart rules and profile to
this directory. Note that the parsed rules.ok file (the output from the check
script), not the rules file, must be placed in the .install_config directory. If any
begin or finish scripts are being used, place them in the .install_config
directory as well.

1. Modify slice 0 as follows.

The setup of the installation profile directory is controlled by the profind script.
You must modify this script to redirect the configuration directory environment
variable (${SI_CONFIG_DIR}) used by the JumpStart software to the
.install_config directory on the bootable installation CD.

server01# cd /jumpstart
server01# rm /bicd8/s0/.install_config/*
server01# cat /jumpstart/Profiles/S8-Server.profile
install_type initial_install
system_type standalone
partitioning explicit
root_device c0t0d0s0
#
1.5GB / and 512MB swap on a 2GB disk
#
filesys rootdisk.s0 691:2040 /
filesys rootdisk.s1 1:690 swap
cluster SUNWCall
package SUNWpmowm delete
package SUNWpmowr delete
package SUNWpmowu delete
package SUNWpmr delete
package SUNWpmu delete
package SUNWpmux delete
server01# cp /jumpstart/Profiles/S8-server.profile \
> /bicd8/s0/.install_config
server01# cat rules
any - - S8-server.profile -
server01# ./check
Validating rules...
Validating profile S8-server.profile...
The custom JumpStart configuration is ok.
server01# cp rules.ok /bicd8/s0/.install_config

Building a Bootable Installation from CD-ROM 9

2. Edit the bicd8/s0/Solaris _8/Tools/Boot/usr/sbin/install .d/profind
shell script and replace the cdrom() function with the following function:

This modification instructs the installation process to use the .install_config
directory that was populated with the desired JumpStart software profiles and
rules file.

Assembling and Writing Slices to Bootable Installation CD

At this point, the VTOC, the modified slice 0, and the unmodified slices 1 through 5
are written to the bootable installation CD being created. The individual slices are
combined into one image to be written to a blank CD.

It is important to keep in mind that slice 0 of the Solaris 8 OE CD is at almost 100
percent utilization of the total available space of slice 0. Further, the Solaris 8 OE
product is on two CDs because all of the software package will not fit on one CD. If
the modified slice 0 exceeds the size of the original slice 0, you must either create a
new VTOC or remove unneeded files from slice 0. Also keep in mind that the
iso9660 filesystem has some overhead, which increases the image (created by
mkisofs) as well.

1. Create an automated install CD (without having to swap CDs during the
installation), by removing from slice 0 those software packages that will not be
installed or are not needed by the installation client.

cdrom()
{
 #
 # stub images, indicated by the file /tmp/.preinstall
 #
 if [-f /tmp/.preinstall]; then
 mount -o ro -F lofs ${CD_CONFIG_DIR} ${SI_CONFIG_DIR} >/
dev/null 2>&1

 if [$? -eq 0]; then
 verify_config "defaults" "CDROM"
 fi
 fi
 gettext " <<< using CD default >>>"; echo # added bicd8
 rmdir ${SI_CONFIG_DIR} # added bicd8
 ln -s /cdrom/.install_config ${SI_CONFIG_DIR} # added bicd8
 exit 0 # added bicd8
}

10 Customizing JumpStart Framework for Installation and Recovery • month 2002

Additionally, removing unneeded files from slice 0 is much simpler than
handcrafting a VTOC. A good place to start removing unneeded files is the
Product subdirectory. Rarely does a Solaris OE installation require all the
packages from the Product directory. For example, most servers do not (and
should not) have the power management packages installed. Removing the
power management packages before executing the mkisofs command helps
minimize the size of the created iso9660 HSFS image.

Remember that the profile you are using should reflect these changes to the
Product directory; that is, don’t try to install the removed packages. The
removed packages should also be removed from the software package cluster
definition file, /bicd8/s0/Solaris_8/Product/.clustertoc .

2. Before combining and writing the CD, execute the mkisofs command to
convert the modified slice 0 in the /bicd8/s0 work area into an HSFS
filesystem.

3. Since no changes to the miniroot or supported architectures are required,
extract slices 1 through 5 from the Solaris 8 OE software CD and write them,
unchanged, to the bootable installation CD being created.

4. It is important to note that mkisofs creates a VTOC at offset 0 within this image.

Use dd to remove this invalid VTOC from the HSFS image by skipping the first
512-byte block. For this example, the unneeded power management packages are
removed from the Product directory before the iso9660 filesystem is created
from /bicd/s0 .

server01# cd /bicd8/s0/Solaris_8/Product
server01# rm -rf SUNWpmowr/* SUNWpmowu/* SUNWpmr/* SUNWpmux/*
server01# cd /bicd8
server01# mkisofs -R -d -L -l -o /bicd8/sol8.S0 /bicd8/s0
 .
 .
 .
Total extents actually written = 282170
Total translation table size: 0
Total rockridge attributes bytes: 4246465
Total directory bytes: 24463360
Path table size(bytes): 175770
Max brk space used 167a000
282170 extents written (551 Mb)
server01# dd if=/bicd8/sol8.S0 of=/bicd8/new.sol8.s0 bs=512 skip=1
1128679+0 records in
1128679+0 records out
server01# rm /bicd8/sol8.S0

Building a Bootable Installation from CD-ROM 11

5. The VTOC specifies a size for slice 0, so slice 0 must be padded to maintain the
validity of the VTOC and maintain the correct cylinder boundaries. The size of
the pad is computed by adding 1 to the number of sectors in the HSFS slice 0
image (this accounts for the VTOC) then subtracting that sum from the number of
sectors (reported by prtvtoc) in the unmodified slice 0 on the CD.

Create the pad by using dd to read the appropriate number of zeros from /dev/
zero .

6. As with any automated installation, sysidtool needs all installation client
identification information such as host name, IP address, time zone, etc. The
location of this information depends on whether the installation client is
connected to a network or off-network during the installation. If the installation
client is connected to a network during installation, this information must be
available from a name service such as NIS+ or NIS, or provided from the /etc/
bootparams , /etc/ethers , and sysidcfg files from a host on the network.
The minimum entries required in the /etc/bootparams file are as follows:

The sysidcfg file specified by /etc/bootparams contains the following:

To perform an automated installation without network connectivity, you must
have placed a sysidcfg file in the /etc directory of the filesystem image taken
from slice 1 of the Solaris 8 OE CD.

server01# bc
1128960-(1128679+1)
280
server01# dd if=/dev/zero of=pad.s0 bs=512 count=280
280+0 records in
280+0 records out

server01# cat /etc/bootparams
client06 sysid_config=server01:/jumpstart/Sysidcfg/Solaris_8

server01# cat /jumpstart/Sysidcfg/Solaris_8/sysidcfg
system_locale=en_US
timezone=US/Pacific
network_interface=primary {netmask=255.255.255.0
 protocol_ipv6=no}
terminal=vt100
security_policy=NONE
root_password=Q7jsh1m6IztTU
name_service=NONE
timeserver=localhost

12 Customizing JumpStart Framework for Installation and Recovery • month 2002

Mount the filesystem image file by using the Solaris 8 OE loopback file driver
administration commands.

7. After mounting the filesystem image, use standard Solaris OE commands to
remove the symbolic link for the default sysidcfg file and to copy a complete
sysidcfg file to the filesystem image.

Note – For the off-network automated installation, the host name, IP address,
netmask, and IPv6 specification must be in the sysidcfg file.

See Chapter 11, ”System Cloning,” for a fully automated technique for a
JumpStart software installation with no network connectivity, using the WebStart
Flash extensions.

server01# cat /bicd8/sysidcfg
system_locale=en_US
timezone=US/Pacific
network_interface=primary {hostname=client06
 ip_address=10.1.1.9
 netmask=255.255.255.0
 protocol_ipv6=no}
terminal=vt100
security_policy=NONE
root_password=Q7jsh1m6IztTU
name_service=NONE
timeserver=localhost
server01# lofiadm -a /bicd8/sol8.s1
/dev/lofi/1
server01# mount /dev/lofi/1 /mnt
server01# ls -al /mnt/etc/sysidcfg
lrwxrwxrwx 1 root other 24 Nov 28 16:38 /mnt/etc/
sysidcfg -> ../tmp/root/etc/sysidcfg
server01# rm /mnt/etc/sysidcfg
server01# cp /bicd8/sysidcfg /mnt/etc/sysidcfg
server01# umount /mnt
server01# lofiadm -d /dev/lofi/1

Building a Bootable Installation from CD-ROM 13

8. Concatenate the VTOC, HSFS image, padding, and unmodified images of slices
1 through 5 into one image and write it to the CD writer on device c3t2d0 with
the cdrw command:

Testing the Bootable Installation CD

To validate the newly created bootable installation CD, place it in the CD drive of
the installation client, client06 . For this example, the client is off-network while
the installation occurs and the sysidcfg file in the /etc directory of slice 1 of the
CD was modified, as shown in step 3 of “Procedure Specifics” on page 5. After the
OBP boot cdrom command is issued, client06 boots from the CD and performs
an automated installation of the Solaris 8 OE.

Issue the boot cdrom command with the - install options to initiate the
automated installation:

server01# cat sol8.cdrom.vtoc new.sol8.s0 pad.s0 \
sol8.s1 sol8.s2 sol8.s3 sol8.s4 sol8.s5 >bicd8.image
server01# cdrw -d cdrom1 -i bicd8.image
Initializing device...done.
Writing track 1...done.
done.
Finalizing (Can take up to 4 minutes)...done.

screen not found.
{0} ok boot cdrom - install
Boot device: /pci@1f,4000/scsi@3/disk@6,0:f File and args: -
install

SunOS Release 5.8 Version Generic_108528-05 64-bit
Copyright 1983-2000 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices
Using RPC Bootparams for network configuration information.
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
Skipping interface hme0
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?

The system is coming up. Please wait.
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
(continued on next page)

14 Customizing JumpStart Framework for Installation and Recovery • month 2002

(continued from previous page)
Starting remote procedure call (RPC) services: sysidns done.
Starting Solaris installation program...
Searching for JumpStart directory...
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
<<< using CD default >>>
Checking rules.ok file...
Using profile: S8-server.profile
Executing JumpStart preinstall phase...
Searching for SolStart directory...
Checking rules.ok file...
Using begin script: install_begin
Using finish script: patch_finish
Executing SolStart preinstall phase...
Executing begin script "install_begin"...
Begin script install_begin execution completed.

Processing default locales
- Specifying default locale (en_US)

Processing profile
- Selecting cluster (SUNWCall)
- Deselecting package (SUNWpmowm)
- Deselecting package (SUNWpmowr)
- Deselecting package (SUNWpmowu)
- Deselecting package (SUNWpmr)
- Deselecting package (SUNWpmu)
- Deselecting package (SUNWpmux)
- Selecting locale (en_US)

Installing 64 bit Solaris packages
- Selecting all disks
- Configuring boot device
- Using disk (c0t0d0) for "rootdisk"
- Configuring / (c0t0d0s0)
- Configuring swap (c0t0d0s1)
- Deselecting unmodified disk (c0t1d0)
- Deselecting unmodified disk (c1t8d0)
- Deselecting unmodified disk (c1t9d0)
- Deselecting unmodified disk (c1t10d0)
- Deselecting unmodified disk (c1t11d0)
- Deselecting unmodified disk (c1t12d0)
- Deselecting unmodified disk (c1t13d0)
- Deselecting unmodified disk (c2t0d0)
- Deselecting unmodified disk (c2t1d0)

(continued on next page)

Building a Bootable Installation from CD-ROM 15

(continued from previous page)
- Deselecting unmodified disk (c2t2d0)
- Deselecting unmodified disk (c2t3d0)
- Deselecting unmodified disk (c2t4d0)
- Deselecting unmodified disk (c2t5d0)

Verifying disk configuration
- WARNING: Unused disk space (c0t0d0)
- WARNING: Changing the system’s default boot device in the

EEPROM
Verifying space allocation

- Total software size: 737.00 Mbytes

Preparing system for Solaris install

Configuring disk (c0t0d0)
- Creating Solaris disk label (VTOC)

Creating and checking UFS filesystems
- Creating / (c0t0d0s0)

Beginning Solaris software installation
Starting software installation

SUNWxwrtx...done. 736.96 Mbytes remaining.
SUNWxwrtl...done. 736.91 Mbytes remaining.
SUNWwbapi...done. 736.40 Mbytes remaining.

.

. (package listing deleted for brevity)

.

SUNWnamos...done. 257.17 Mbytes remaining.
SUNWnamow...done. 257.09 Mbytes remaining.
SUNWnamox...done. 256.90 Mbytes remaining.

Completed software installation

Customizing system files
- Mount points table (/etc/vfstab)
- Unselected disk mount points (/var/sadm/system/data/

vfstab.unselected)
- Network host addresses (/etc/hosts)

Customizing system devices
- Physical devices (/devices)
- Logical devices (/dev)

(continued on next page)

16 Customizing JumpStart Framework for Installation and Recovery • month 2002

(continued from previous page)
Installing boot information

- Installing boot blocks (c0t0d0s0)
- Updating system firmware for automatic rebooting

Installation log location
- /a/var/sadm/system/logs/install_log (before reboot)
- /var/sadm/system/logs/install_log (after reboot)

Installation complete
Executing SolStart postinstall phase...
Executing finish script "patch_finish"...

Finish script patch_finish execution completed.
Executing JumpStart postinstall phase...
The begin script log ’begin.log’
is located in /var/sadm/system/logs after reboot.

The finish script log ’finish.log’
is located in /var/sadm/system/logs after reboot.

syncing filesystems... done
rebooting...
Resetting ...

screen not found.
Can’t open input device.
Keyboard not present. Using ttya for input and output.

Sun Ultra 60 UPA/PCI (2 X UltraSPARC-II 450MHz), No Keyboard
OpenBoot 3.27, 2048 MB memory installed, Serial #13100146.
Ethernet address 8:0:20:c8:ff:fa, Host ID: 80c8fffa.

Initializing Memory
Rebooting with command: boot
Boot device: disk:a File and args:
SunOS Release 5.8 Version Generic_108528-05 64-bit
Copyright 1983-2000 Sun Microsystems, Inc. All rights reserved.
configuring IPv4 interfaces: hme0.
Hostname: client06
Configuring /dev and /devices
Configuring the /dev directory (compatibility devices)
The system is coming up. Please wait.
Configuring network interface addresses: hme0
(continued on next page)

Building a Bootable Installation from CD-ROM 17

Note – The repeated warnings about the lack of network response and the RPC
time-out error during the postinstallation boot are due to the installation client being
disconnected from the network.

(continued from previous page)
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
.
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
RPC: Timed out
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
Starting IPv4 routing daemon.
starting rpc services: rpcbind done.
System identification is completed.
Setting netmask of hme0 to 255.255.255.0
SUNW,hme0 : No response from Ethernet network : Link down -- cable
problem?
Setting default IPv4 interface for multicast: add net 224.0/4:
gateway client06
syslog service starting.
Print services started.
volume management starting.
The system is ready.

client06 console login:

18 Customizing JumpStart Framework for Installation and Recovery • month 2002

Recovering a Failed System with
JumpStart
The typical mechanism for attempting recovery on a failed system is to boot the host
from the Solaris OE installation CD. This approach is the most direct method to
bring the to-be-recovered host to a point where some form of corrective action can
be initiated. However, this method does have a major drawback: the unalterable
nature of the CD restricts the available tools and thereby restricts the recovery
procedures or adversely affects the recovery time. Tools commonly used in the
datacenter, such as Veritas Volume Manager (VxVM), Veritas NetBackup, or Solstice
Backup™ software are either completely unavailable or very cumbersome to use
when booted from the CD.

Booting from the network with JumpStart technology is virtually identical to booting
from the CD-ROM. Although the mechanics of access to the filesystem and data files
may differ between a network boot and a CD boot, the operating environment image
loaded when booting from the network is identical to the one loaded when booting
from the CD-ROM. In addition, booting from the network restricts the system
administrator in the same fashion as booting from the CD itself; the root filesystem
provided to the client is mounted read-only. However, since the JumpStart server’s
boot image originates on writable media, it can be modified at the server side before
the client is booted.

JumpStart Recovery Techniques
An example of this concept is patching the JumpStart boot image for the Solaris OE.
The boot image is patched, on the server, with the patchadd command. When a
client does a network boot, it is served the patched kernel. Similarly to this
straightforward patching procedure, the boot image can also be changed to allow a
different startup processing or can even be augmented with other tools that might
prove useful during a service event or a system recovery.

Additionally, by modifying the client’s boot image, you can install software tools
commonly used in the datacenter into the JumpStart boot image and configure them
for use by any system which uses that boot image.

Further, by installing Solaris for IA on a laptop and modifying the JumpStart
miniroot on the laptop, you can create a mobile recovery server. This mobile
recovery server can then be deployed onto whatever subnet is necessary at the time
of system recovery.

Recovering a Failed System with JumpStart 19

$ROOTDIRDirectory
To understand how to correctly modify or augment the client’s boot image, you
must understand how the JumpStart server maps the filesystem that contains the
boot image to the client’s view of the same filesystem. For example, to modify the
network services available on the client, you may need to modify the client’s
/etc/inetd.conf file. If this is the case, you must locate and modify the client’s /
etc/inetd.conf file on the JumpStart server.

This information is controlled, in part, by the manner in which the JumpStart server
was installed. /jumpstart is the filesystem that is used as the location for all
JumpStart configuration information, profiles, boot images, and software installation
packages.

1. Use commands setup_install_server and add_to_install_server to copy
the boot image and install packages from the Solaris OE Software CD-ROMs to
the specified directory (/jumpstart/OS/Solaris_8_2001-04) on the JumpStart
server.

2. Execute the add_install_client command to configure the sample client
(client06) to boot from this server image.

3. Use the add_install_client command to update (or create if necessary) the/
etc/bootparams file containing the information for the specified client.

4. Specify the -e and -i options and instruct add_install_client to update
/etc/ethers and /etc/hosts , respectively, if necessary.

/jumpstart is shared through the NFS system with read-only access rights and the
effective UID of unknown users mapped to root . For the anon=0 option, see the
share_nfs (1M) man page for additional details.

20 Customizing JumpStart Framework for Installation and Recovery • month 2002

The following command sample illustrates a typical installation and configuration of
a JumpStart server.

server01# share -F nfs -o ro,anon=0 /jumpstart
server01# mkdir /jumpstart/OS/Solaris_8_2001-04
server01# cd /cdrom/sol_8_401_sparc/s0/Solaris_8/Tools
server01# ./setup_install_server /jumpstart/OS/Solaris_8_2001-
04
Verifying target directory...
Calculating the required disk space for the Solaris_8 product
Copying the CD image to disk...
Install Server setup complete
[insert Solaris 8 Software cd 2 of 2]
server01# cd /cdrom/sol_8_401_sparc_2/Solaris_8/Tools
server01# ./add_to_install_server /jumpstart/OS/Solaris_8_2001-
04

The following Products will be copied to /jumpstart/OS/
Solaris_8_2001-04/Solaris_8/Product:

Solaris_2_of_2

If only a subset of products is needed enter Control-C
and invoke ./add_to_install_server with the -s option.

Checking required disk space...

Copying the Early Access products...
213481 blocks

Processing completed successfully.
server01# cd /jumpstart/OS/Solaris_8_2001-04/Solaris_8/Tools
server01# ./add_install_client \
> -i 129.153.47.6 -e 8:0:20:7c:ff:d0 \
> -p server01:/jumpstart/Sysidcfg/Solaris_8 \
> -c server01:/jumpstart \
> client06 sun4u

Altering the Boot Process 21

Examination of /etc/bootparams shows how the JumpStart server, server01 ,
view of the client’s root filesystem is mapped to the client server, client06 , view.

The parameter root is set to server01:/jumpstart/OS/Solaris_8_2001-04/
Solaris_8/Tools/Boot . This is what the NFS filesystem client06 mounts as its
root filesystem when booting over the network. Since the JumpStart environment
variable, $ROOTDIR, is set to this value, the JumpStart server’s view of this directory
is commonly referred to as $ROOTDIR. In this example, $ROOTDIRis set to
server01:/jumpstart/OS/Solaris_8_2001-04/Solaris_8/Tools/Boot .
Locating or placing a file into the client’s filesystem on the JumpStart server simply
becomes a matter of prefixing $ROOTDIRto the file. For example, if the client needs
to have a file placed in its /etc directory, that file must be placed in $ROOTDIR/etc
on the JumpStart server.

Altering the Boot Process
This section demonstrates how to augment the client’s boot image to make it
suitable for use as a platform for system recovery operations:

■ Modify the option and argument processing during boot
■ Provide services and daemons
■ Provide an interactive shell

It is important to note that the following modifications to the client’s boot image
offer additional functionality. The default functionality of the client’s boot image
remains unchanged, and you can still use the client’s boot image to install the Solaris
OE.

The first challenge in transforming the install boot image into a boot image suitable
for recovery operations is to change the boot process, or startup process, of the
miniroot. The client should come up to multiuser mode, yet not enter the default
action of beginning the installation process. To take control away from the default
boot process, you must modify the scripts that run at startup time on the client.

client06 root=server01:/jumpstart/OS/Solaris_8_2001-04/
Solaris_8/Tools/Boot install=server01:/jumpstart/OS/
Solaris_8_2001-04 boottype=:in sysid_config=server01:/jumpstart/
Sysidcfg/Solaris_8 install_config=server01:/jumpstart
rootopts=:rsize=32768

22 Customizing JumpStart Framework for Installation and Recovery • month 2002

Processing Options and Arguments During Boot
The first task in converting the install boot image into a recovery boot image is to
augment the boot process with a “recover” mode. You do that by altering the boot
parameter processing logic in the startup scripts. For example, the OBP boot
command, boot net - install , is normally used to perform a JumpStart (network)
boot and installation. The install argument is passed through the kernel and to
init as the system startup scripts are executed. We want to find where that
argument is parsed and add logic to allow other keywords (such as recover).

The OBP passes options to the kernel, such as the -s (boot to single-user mode) and
-r (initiate a device tree rebuild and kernel reconfiguration) options. In this instance
the kernel is genunix , the miniroot. The OBP passes arguments along to the kernel
as well. Since the kernel does not process command-line arguments (it only
processes the options it recognizes), the arguments are ignored by the kernel and
passed along to init . To prevent confusion, kernel switches and arguments are
separated by a lone dash, which is why the space following the minus character (-)
is crucial in the command boot net - install .

In turn, init passes all arguments on to the scripts that it calls. FIGURE 0-1 shows an
overview of the startup process.

FIGURE 0-1 Overview of the Startup Process

Loader genunix init

rcS

rc2

startup

sysconfig suninstall
Binaries
Shell Scripts

Altering the Boot Process 23

By using the processing control table used by init , $ROOTDIR/etc/inittab , as a
road map to the startup processing, you can determine that $ROOTDIR/sbin/rcS is
where the argument processing takes place. The portion of $ROOTDIR/sbin/rcS
relevant to the argument processing is as follows:

set -- ""
set -- ‘/sbin/getbootargs 2>/dev/null‘
if [$# -gt 0] ; then
 while [$# -gt 0] ; do
 case $1 in

FD=*)
at end of script, save root dev in /tmp/.preinstall
this is an unambiguous indication of stub boot
 FJS_BOOT="yes"

From=‘(IFS="="; set -- $1; echo "$2 $3 $4 $5")‘
 break
 ;;
 browser)
 cat < /dev/null > /tmp/.install_boot
 cat < /dev/null > /tmp/.smi_boot
 shift
 ;;

 install)
 INSTALL_BOOT="yes"
 cat < /dev/null > /tmp/.install_boot
 shift

dhcp)
 TRY_DHCP="yes"
 shift
 ;;

tape*)
echo “$1” >/tmp/.cjfiles_method
shift
;;

 mansysid)
 cat < /dev/null > /tmp/.manual-sysid
 shift
 ;;

 w)
 cat < /dev/null > /tmp/.nowin
 shift
 ;;
 *)
 shift
 ;;
 esac
 done
fi

24 Customizing JumpStart Framework for Installation and Recovery • month 2002

It is now relatively straightforward to add recognition and processing for the
recover argument by adding another “word” to the case statement. The modified
section of $ROOTDIR/sbin/rcS is as follows:

set -- ""
set -- ‘/sbin/getbootargs 2>/dev/null‘
if [$# -gt 0] ; then
 while [$# -gt 0] ; do
 case $1 in

FD=*)
at end of script, save root dev in /tmp/.preinstall
this is an unambiguous indication of stub boot
 FJS_BOOT="yes"

From=‘(IFS="="; set -- $1; echo "$2 $3 $4 $5")‘
 break
 ;;
 browser)
 cat < /dev/null > /tmp/.install_boot
 cat < /dev/null > /tmp/.smi_boot
 shift
 ;;

recover)
cat < /dev/null > /tmp/._recover_startup
shift
;;

install)
 INSTALL_BOOT="yes"
 cat < /dev/null > /tmp/.install_boot
 shift

dhcp)
 TRY_DHCP="yes"
 shift
 ;;

tape*)
echo “$1” >/tmp/.cjfiles_method
shift
;;

 mansysid)
 cat < /dev/null > /tmp/.manual-sysid
 shift
 ;;

 w)
 cat < /dev/null > /tmp/.nowin
 shift
 ;;
 *)
 shift
 ;;
 esac
 done
fi

Altering the Boot Process 25

It is important to note that almost no action is performed within the case statement
or $ROOTDIR/sbin/rcS . As in the case of the install argument, the processing of
the recover argument consists only of creating a state file (or flag file). Using this
mechanism eases the decision process in scripts executed later, without the need to
parse the arguments directly. If recovery scripts or tools must start automatically on
a recovery boot or if scripts must determine the state of the system and take
appropriate action, these scripts only need to check for the existence of the file /tmp/
._recover_startup to determine the system’s state. Because this method of
modifying $ROOTDIR/sbin/rcS reduces complexity and minimizes the
opportunity for human error in modifying the crucial $ROOTDIR/sbin/rcS script,
it is strongly recommended that you use the same or a similar approach whenever
adding additional startup processing.

Providing Services for Recovery
The default boot process does not start any service daemons that are not required by
the Solaris OE installation process. However, some of these daemons may facilitate
or are needed during a system recovery operation. For example, the Internet service
daemon, inetd , is not needed for installation. However, a recovery operation is
greatly facilitated by having inetd start automatically on a recovery boot.

Unfortunately, daemons can be started from many scripts and there is no reference
or mapping of where a particular daemon may be started. However, most of the
standard or common Solaris OE daemons are present, but commented out (referred
to as stubbed), in the startup scripts executed by init . The only recourse is to follow
the execution flow of the scripts launched by init to locate what services are
started from which scripts, uncommenting the required daemons. For example,
inetd is present but commented out in $ROOTDIR/sbin/sysconfig . To start
inetd during a recovery boot, modify $ROOTDIR/sbin/sysconfig (at the point
where inetd startup is commented out), as follows:

Starting inetd is sufficient for the most common network services. “Adding a
Recovery Tool” on page 26 gives an example of adding additional services. If a
service or daemon is required at startup but is not stubbed in one of the startup
scripts, you must add the invocation to the startup processing. If it is necessary to
add a call to a script or the execution of a command, it is recommended that the
addition be done as late as possible in the startup sequence to avoid impacting
dependencies or setup work that services may have on other services or daemons.
For example, many network services require that sysidnet has been run, which
implies the presence of a name service or sysidcfg file.

if [-f /tmp/._recover_startup] ; then
/usr/sbin/inetd -s

fi

26 Customizing JumpStart Framework for Installation and Recovery • month 2002

Providing an Interactive Shell
The default installation boot image enters the installation utility (suninstall) at
the end of its startup processing. To have the default installation boot image act as a
recovery platform, you will find it advantageous to provide an interactive shell
rather than to execute suninstall . To provide the interactive shell, add the
following lines to the end of $ROOTDIR/sbin/sysconfig .

Adding Utilities and Manual Pages
The methodology of the previous section can also be applied to the task of
augmenting the client’s boot image with tools, utilities, and documentation. Most of
the tools to be added to the client’s boot image do not require special configuration.
In most cases, the utility or tool only needs to be copied into its expected location
under $ROOTDIRto be accessible and usable by the client after a boot net -
recover . However, it is important to note that device drivers, kernel extensions,
and utilities expecting a writable /var/tmp are a special case that is examined in
“Files in /var ” on page 29.

Adding a Recovery Tool
Let’s take Solstice Backup software as an example of adding a recovery tool to a
client’s boot image. Solstice Backup software installs its client-side utilities in
/usr/bin/nsr and /usr/lib/nsr . To provide the client portions of Solstice
Backup software to the client’s recovery boot image, you need only replicate or
relocate the /usr/bin/nsr and /usr/lib/nsr directory hierarchies on the
JumpStart server in $ROOTDIR/usr/bin/nsr and $ROOTDIR/usr/lib/nsr ,
respectively. You accomplish this relocation by using the root-path option (-R) of
pkgadd or simply by copying the directory hierarchies from an installed Solstice
Backup Client to $ROOTDIR/usr/bin/nsr and $ROOTDIR/usr/lib/nsr .

if [-f /tmp/._recover_startup] ; then
echo “Starting interactive Korn shell...“
exec /bin/ksh -o vi

fi

Adding Utilities and Manual Pages 27

Adding Device Drivers
As with system services and daemons, the only device drivers provided in the
default client’s boot image are those device drivers that may be necessary for
installing the Solaris OE. Providing the client’s recovery boot image with additional
device drivers, such as FDDI, ATM, or some other high-bandwidth network driver,
can be useful or required in system recovery situations.

Consider the FDDI network interface. The default client’s boot image does not
provide this device driver. However, many datacenters use a dedicated FDDI
network for backups and restores. During a recovery operation, the system
administrator would benefit from having the recovery boot image available to access
this high-bandwidth network to recover data from the backup server.

In principle, device drivers are added in much the same way that standard files are
added to the JumpStart server. Device drivers or kernel extensions are merely copied
to $ROOTDIR/kernel/drv . Unfortunately, a device driver may need to modify
several other configuration files in order to function properly. The Solaris add_drv
command is the mechanism by which the required files can be updated in a
controlled fashion. For example, to add the FDDI driver to the recovery boot image,
execute the following commands:

Note – Before installation, consult the manufacturer or vendor instructions for all
device drivers.

For most drivers, these commands are sufficient for installation into the recovery
boot image. However, some device drivers, such as those that create or require
entries in /dev upon boot, may require further configuration by hand. Some device
drivers may require modifications to files such as these:

■ $ROOTDIR/etc/devlink.tab
■ $ROOTDIR/etc/driver_aliases
■ $ROOTDIR/etc/system

After you configure the drivers by hand, you must then appropriately modify the
respective files under $ROOTDIRin order to affect the client’s boot image. Consult
the installation documentation for the device driver for any specific modifications
that may be necessary.

server01# ROOTDIR=/jumpstart/OS/Solaris_8_2001-04/Solaris_8/
Tools/Boot ; export ROOTDIR
server01# cd /kernel/drv
server01# cp fddi fddi.conf $ROOTDIR/kernel/drv
server01# add_drv -b $ROOTDIR /kernel/drv/fddi

28 Customizing JumpStart Framework for Installation and Recovery • month 2002

For example, the Veritas Volume Manager (VxVM) product includes the device
drivers vxspec , vxio , and vxdmp. In addition to copying these drivers into
$ROOTDIR/kernel/drv , you must load these device drivers at boot by adding the
following directives to $ROOTDIR/etc/system .

Additionally, these VxVM device drivers require device entries to be created in
/dev according to the specific template in /etc/devlink.tab .

Meeting Challenges Unique to the
Miniroot
As previously discussed, the miniroot is a subset Solaris OE kernel and filesystem.
The miniroot must fit in a prescribed amount of physical memory and so does not
contain all of the software packages that an installed system would contain. In
addition to the size limitations, there are challenges in installation that are unique to
the miniroot. This section covers these specific challenges:

■ Read-only media
■ Files in /var
■ path_to_inst file

Read-Only Media
While it is obvious that the boot image on a Solaris OE Software CD is read-only, it
may not be obvious that the client’s boot image served by the JumpStart server is
also read-only. Because of this, all systems booted from this image for recovery or
installation mount their filesystems read-only. Whether booted from a CD or over
the network from a JumpStart server, the /tmp memory-mapped tmpfs filesystem is
the only writable space for any utility or service that requires writable media.

The Solaris OE tmpfs filesystem is fashioned from the virtual memory in the client
and as such, it loses all its contents when the client reboots. Any file or directory on
the remaining filesystems that must behave as if it is writable must be redirected to
/tmp by means of a symbolic link. For example, the /etc/vfstab file must be
writable, but /etc is on a read-only filesystem. The file /etc/vfstab is actually a
symbolic link, created at the client’s boot, to a writable vfstab file in /tmp . All such

forceload drv/vxdmp
forceload drv/vxspec
forceload drv/vxio

Meeting Challenges Unique to the Miniroot 29

writable file links are created on the read-only CD image or on the client’s boot
image on the JumpStart server. The targets of all such symbolic links are then created
in /tmp when the miniroot is booted.

The same mechanism can be used to provide writable space for tools added to the
recovery boot image. The following commands provide a writable log space for
NetBackup in $ROOTDIR/usr/openv/logs .

However, this approach addresses only half the problem. The target of the symbolic
link, in /tmp , must still be populated at boot. Any required link targets in /tmp can
be populated by one of the following methods:

1. Create a start script that executes mkdir /tmp/_openv_logs .

2. Utilize the built-in script for populating /tmp .

Method one is a brute force approach, but effective on a small or limited scale. The
second method takes advantage of the existing method that the miniroot uses at boot
to populate /tmp .

A prototype (or template for) /tmp is maintained on the miniroot and is copied into
/tmp very early in the boot cycle. This prototype is the directory
$ROOTDIR/.tmp_proto . Early in the startup sequence (in $ROOTDIR/sbin/rcS),
cpio is used to populate /tmp from this prototype. These prototypes become the
targets referenced by symbolic links throughout the miniroot image.

For our example above, creating the directory $ROOTDIR/.tmp_proto/
_openv_logs ensures that /tmp/_openv_logs are created when the client
miniroot is started.

Files in /var

The /var directory tree is an extension of the writable directory problem outlined in
“Adding Utilities and Manual Pages” on page 26. Most facilities in the Solaris OE
utilize /var/tmp or write temporary files into some subdirectory of /var . Because
so many utilities expect /var to be writable, the entire /var filesystem is made
writable by means of a symbolic link from /var to /tmp/var . This is accomplished
by the same mechanism as described in “Adding Utilities and Manual Pages” on
page 26. The prototype for the /var hierarchy is in $ROOTDIR/.tmp_proto/var .
For a file or directory to be relocated into the client’s /var , the file or directory must
be the $ROOTDIR/.tmp_proto/var prototype.

server01# cd /jumpstart/OS/Solaris_8_2001-04/Solaris_8/Tools/
Boot/usr/openv
server01# ln -s /tmp/_openv_logs ./logs

30 Customizing JumpStart Framework for Installation and Recovery • month 2002

path_to_inst File
The Solaris OE device instance number file, path_to_inst , is a special case. It is
special because this file must be created from scratch each time a system boots from
the miniroot. The path_to_inst file must be writable; however, it cannot simply
link to /tmp .

The miniroot cannot possibly have a valid device tree and instance number file for
each client that might boot from it. The path_to_inst file and the /dev and /
devices directory trees must be created by the miniroot each time a system boots
from the CD or JumpStart boot image. The OBP is responsible for probing the bus
and inventorying all of the devices in the system. The OBP hands off the result of
this inventory (the OBP device tree) to the kernel when it begins loading. The OBP
device tree is used as the basis for the kernel to map the device location (path) to the
device driver instance numbers. This mapping is what is stored in the
path_to_inst file. For a boot from read-only media (for example, from CD or from
a JumpStart server) the newly created path_to_inst file is generated and written
to /tmp/root/etc/path_to_inst early in the miniroot boot process.

Because a valid /etc/path_to_inst is required by the kernel very early in the
boot cycle, using a writable surrogate in /tmp is not possible, since /tmp is not yet
populated when the instance number file is needed.

For the kernel to be redirected to the real path_to_inst file that was written in
/tmp/root/etc/path_to_inst , two path_to_inst files are used. The real
path_to_inst , which contains valid device paths mapped to the correct instance
names, is created in /tmp/root/etc/path_to_inst . The bootstrap version,
required by the kernel but invalidated after the kernel loads, is in /etc . This
bootstrap version of $ROOTDIR/etc/path_to_inst consists only of the line:

#path_to_inst_bootstrap_1

This bootstrap path_to_inst can cause problems for utilities that are hardcoded to
reference /etc/path_to_inst for the device instance number file.

System utilities and diagnostic tools, like SunVTSTM software or older versions of
STORtools, that must build internal tables of the devices attached to the system
typically read /etc/path_to_inst directly, rather than obtaining the device
instance information from the kernel.

Unfortunately, if these utilities hardcode the path name for /etc/path_to_inst
into their object modules, libraries, or binaries, the path name is not easily changed.
This situation prevents the use of such utilities while the client is booted from the
JumpStart server or CD.

Summary 31

Summary
This chapter provided techniques to augment a CD-ROM-based installation with the
services and behaviors provided by a JumpStart server. The techniques provided
here are suitable to situations when a hands-free Solaris OE installation is necessary
but when a JumpStart server cannot be used.

This chapter also detailed a procedure to create a bootable installation CD, examined
the structure of a bootable Solaris OE CD, and provided specifics on the modification
of the installation behaviors.

Additionally, this chapter examined the startup processing performed by the
miniroot and the use of the miniroot as a platform for recovery operations. The
chapter described methods and techniques to augment the startup processing to
provide a framework for recovering a system. Also described were techniques for
adding tools to the client’s boot image.

Finally, the chapter examined the constraints of the miniroot and techniques for
working within these constraints.

