
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

Sun WorkShop Visual User’s Guide

Part No. 806-3574-10
May 2000, Revision A



Please
Recycle

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

Copyright © 2000 Imperial Software Technology Limited. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, Java, JavaBeans, Java Workshop, JavaScript, SunExpress,

Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are

trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Visaj is a registered trademark of Pacific Imperial, Inc.

X-Designer is a registered trademark of Imperial Software Technology Limited.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Silicon Graphics, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Copyright © 2000 Imperial Software Technology Limited. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, Java, JavaBeans, Java Workshop, JavaScript, SunExpress,

Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des

marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes

les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-

Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Visaj est une marque déposée de Pacific Imperial, Inc. X-Designer est une marque déposée d’Imperial Software Technology Limited.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Silicon Graphics, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6





Contents v

Contents

1. Overview 1

Introduction to Sun WorkShop Visual 1

Operating Environment 3

Requirements for Compiling Generated Code 3

Basic Concepts and Terms 4

Protection from Invalid Actions 7

On-Line Help 7

The Sun WorkShop Visual Development Cycle 9

How This Manual Is Organized 10

2. Building the Widget Hierarchy 13

Introduction to the Tutorial 13

The Design Hierarchy 14

Starting and Stopping 15

Navigating in the Menus 16

Toolbar 17

Status Line 18

Starting the Design 18

Widget Names 19

Naming Widgets 20



vi Sun WorkShop Visual User’s Guide • May 2000

Adding Children to the Hierarchy 20

Dynamic Display of Layout 22

Currently Selected Widget 22

Multiple Selection 23

No Selected Widget 23

Adding the Buttons 24

Building the Menu Bar 25

Adding the Work Area 27

Building the Radio Box 28

Building the Row Column Array 29

Adding the Toggle Buttons 30

Adding a Window to Your Application 32

Creating a Second Window 33

Editing the Hierarchy 36

Search 38

Fast Find 40

Display Options 43

Printing Your Hierarchy 48

Using the File Browser 50

3. Resources 53

Introduction 53

The Label Resource Panel 54

Multiple Selection and Resources 59

Resource Panels in Microsoft Windows Mode 59

Button Widget Resources 60

Shared Resource Panels 61

Resources for Menu Items 63

The Keyboard Page 64



Contents vii

Designated Help Widget 67

RowColumn Resources 69

Shell Resources 72

Navigating in the Resource Panels 76

Core Resource Panel 77

Constraints Panel 81

Default Resource Settings 82

The Reset Command 84

Rejected Resource Settings 85

Resource Bindings 85

Loose Bindings 86

Tight Bindings 92

Comparison of Resource Generation 95

Where to Look for More Information on Resources 95

4. The Layout Editor 97

Introduction 97

Concepts 98

Displaying the Layout Editor 99

Editing Area 100

Editing Modes 101

Selection: Single, Primary, and Secondary 102

Layout Editor Toolbar 102

Layout Editor File Menu 102

Layout Editor Edit Menu 103

Layout Editor View Menu 103

Layout Editor Layout Menu 105

Grid 105

Resize Policy 106



viii Sun WorkShop Visual User’s Guide • May 2000

Understanding the Default Layout 107

Rough Layout: the Move Mode 107

Offsets 110

Attachments to the Form 112

Attachments Between Widgets 113

Aligning Widgets: the Align Mode 118

Aligning Widgets: Group Alignment 120

Distribute 123

Proportional Spacing: the Position Mode 126

Self Mode 128

Resize Mode 130

Using the Constraints Panel 131

Other Layout Widgets 133

Layout Editor Restrictions 134

5. Other Editors 135

Introduction 135

Setting Colors 135

Setting Fonts 139

Selecting Pixmaps 146

Editing Pixmaps 148

Editing the Color Palette 159

Using the Pixmap Editor 161

Compound Strings 163

Callback and Prelude Editing 170

6. Activating the Interface: Adding Your Own Code 171

Introduction 171

Callbacks 172



Contents ix

Designating a Callback 173

Callback Functions 178

Accessing Widgets in Callbacks 180

Manipulating Widgets 181

Links 183

Drag and Drop 188

Translations and Actions 190

Xt Procedures 198

7. Generating Code 207

Introduction 207

The Generate Menu 208

Generate Dialog 208

Adding Callback Functionality 226

Analysis of the Primary Module 230

Resource File Syntax 235

Arranging Your Files 237

Customizing the Generated Files: Preludes 239

Module Preludes 240

Code Preludes 242

Using the Edit Mechanism 246

8. Structured Code Generation and Reusable Definitions 249

Introduction 249

Structured Code Generation 249

Function Structures 250

Data Structures 252

C++ Classes 254

Method Declarations 260



x Sun WorkShop Visual User’s Guide • May 2000

Method Preludes 262

Creating a Derived Class 263

Modifying the Base Classes 263

Children Only Place Holders 265

Structured Code Generation and UIL 266

Changing Declaration Scope 266

Definitions 268

The Definitions File 269

Modifying a Definition 272

Instances 273

Definitions and Resource Files 275

Online Help for Definitions 276

9. C++ Code Tutorial 277

Introduction 277

Creating a C++ Class 278

Callback Methods 285

Adding Class Members 291

Creating a Derived Class 293

Creating a Definition 297

Adding a Definition to the Palette 298

Generating Code for a Definition 300

Creating an Instance 301

Modifying and Extending an Instance 302

Creating a Derived Class 303

Overriding a Callback Method 306

Definitions and Resource Files 309



Contents xi

10. Designing for Java 313

Introduction 313

What Is Java? 314

The Generated Java Code 314

Requirements 315

Using Sun WorkShop Visual for Java 315

Java Version 319

Widgets 323

New Widgets for Java Classes 323

Event Model 330

Generate Dialog 336

Generated Code 339

Moving Sun WorkShop Visual Designs to Visaj 347

Motif Widgets to Java Classes - the MWT Library 350

Mapping Motif Widgets to Swing Components 353

11. Designing for Microsoft Windows 357

Introduction 357

Prerequisites 358

Generating the Application 359

Starting in Microsoft Windows Mode 360

The Sun WorkShop Visual Window 361

Microsoft Windows Compliance 363

Compliance Failure 369

Using Links 372

Manager Widgets and Layout 373

Fonts 375

Pixmaps, Bitmaps, and Icons 376

Colors 377



xii Sun WorkShop Visual User’s Guide • May 2000

Using Third Party Widgets 377

Method Declarations 380

DrawingAreas 381

Application Class 383

Event Handlers 384

File Names 384

Code Generation 385

Configuring Sun WorkShop Visual 388

12. Creating a Microsoft Windows and Motif Application 391

Introduction 391

Starting Your Design 392

Popup Menu 398

Setting Resources 399

Building the Application 402

Filling in the Stubs 406

Compiling the Application 408

Single Sourcing 413

13. Design Tools 417

Introduction 417

AppGuru 418

Sun WorkShop Visual Capture 425

Capture Dialog 427

Using Sun WorkShop Visual Capture From the Command Line 431

14. Sun WorkShop Visual Replay 433

Introduction 433

How to Invoke an Application with Sun WorkShop Visual Replay 435

Recording and Replaying From the Command Line 447



Contents xiii

Getting the Most From Sun WorkShop Visual Replay 448

Preparing Rolling Demonstrations 449

Taking Screen Dumps 449

Testing 450

Extending the Sun WorkShop Visual Replay Widget Set 458

Adding Your Own Sun WorkShop Visual Replay Commands 471

Allowing Your Applications to Be Recorded and Replayed 475

15. Groups 477

Introduction 477

Creating a Group 478

Groups as Shortcuts 479

Groups for Smart Code 480

16. Get/Set Smart Code 485

Introduction 485

How the Smart Code Information Is Organized 485

Using Smart Code 486

Get/Set Smart Code 487

Get/Set Tutorial 493

17. Thin Client Smart Code 501

Introduction 501

Using Thin Client Smart Code 502

Requirements 504

Thin Client Smart Code Tutorial 504

Thin Client Server Callbacks 512

Server Application 513

Customizing the Server Connection 514

Going Live 521



xiv Sun WorkShop Visual User’s Guide • May 2000

Generated Code 525

18. Internet Smart Code 533

Introduction 533

Internet and Thin Client 534

Receiving Data 535

Communication Protocol 536

Simple Internet Smart Code Tutorial 536

Extracting Information From HTML Data 541

19. Makefile Generation 553

Introduction 553

Makefile Generation Options 553

Creating the Initial Makefile 556

Updating the Initial Makefile 558

Editing the Generated Makefile 562

Using Your Own Makefiles 564

20. Advanced Layout 567

Introduction 567

Column Layout Using the RowColumn 567

Column Layout Using the Form 571

Edge Problems 581

Form Resizing 585

21. Hypertext Help 597

Introduction 597

The Help Model 597

Help Viewers 598

Setting up Help in Sun WorkShop Visual 605

Module Defaults 608



Contents xv

Finding Help Documents and Markers 610

Linking Help Into Your Application 611

Help Implementation 613

22. Internationalization 615

Introduction 615

What Is the Problem? 615

Locale 616

Font Sets 617

Creating International Text 620

Localized Input in Your Application 622

Setting the Application Font Resource 624

Using Eight-Bit Characters in Shell Titles 625

Unsupported Locales 626

23. User-Defined Widgets 627

Introduction 627

Using Pre-Configured Integration Kits 628

Requirements 628

Generating UIL 629

Generating Java Code 629

Generating MFC Code 630

Caveats 630

Prerequisites 631

How Sun WorkShop Visual Works 631

Getting Widget Information 634

visu_config - the Main Dialog 636

Widget Classes 639

Widget Attributes 640



xvi Sun WorkShop Visual User’s Guide • May 2000

Resources 645

Aliases 649

Enumerations 650

Converters 655

Popups 657

Resource Memory Management 664

XmStringTable Resources 665

Headers 665

Motif Widgets Stop List 666

Generating and Compiling Code 667

Testing the Configuration 670

Configuration Functions 672

Generating UIL 679

24. Command Line Operations 685

Introduction 685

Command Line Switches for Interactive Use 685

Generating Code From the Command Line 686

Sun WorkShop Visual Replay 689

Sun WorkShop Visual Capture 690

Converting UIL Source to Sun WorkShop Visual Save Files 691

Converting GIL Source to Sun WorkShop Visual Save Files 693

25. Configuration 701

Introduction 701

Setting up Callback and Prelude Editing 701

Palette Icons 703

Palette Contents 705

Palette Layout 706



Contents xvii

Toolbar 707

Makefile Features 708

Dynamic Display Window 713

26. Command Summary 715

Introduction 715

Widget Name and Variable Name 715

The File Menu 716

The Edit Menu 718

The View Menu 720

The Palette Menu 723

The Widget Menu 724

The Module Menu 729

The Generate Menu 732

Tear-Off Menus 736

The Tools Menu 737

The Help Menu 738

Keyboard Shortcuts 740

27. Widget Reference 743

Introduction 743

ArrowButton 744

BulletinBoard 745

CascadeButton 747

Command 748

DialogTemplate 749

DrawingArea 750

DrawnButton 751

FileSelectionBox 752



xviii Sun WorkShop Visual User’s Guide • May 2000

Form 753

Frame 754

Label 755

List 756

MainWindow 757

Menu 758

MenuBar 760

MessageBox 761

OptionMenu 762

PanedWindow 763

PushButton 765

RadioBox 766

RowColumn 767

Scale 769

ScrollBar 769

ScrolledList 770

ScrolledText 771

ScrolledWindow 772

SelectionBox 773

SelectionPrompt 774

Separator 775

Shells- Dialog, Top Level, and Application 777

Text 778

TextField 780

ToggleButton 781

Mapping Motif Widgets to Microsoft Windows 782

Mapping Motif Resources to Microsoft Windows 785

Window Styles 785



Contents xix

28. Troubleshooting in Sun WorkShop Visual 793

Introduction 793

Sun WorkShop Visual Interface 794

Definitions and Instances 795

Unsupported Locale 796

Resource Panels 797

Layout Editor 801

Links 803

Code Generation 804

Sun WorkShop Visual Replay and Sun WorkShop Visual Capture 807

A. Sun WorkShop Visual Replay Command Syntax 811

Introduction 811

Specifying the Context of Actions 812

Button Actions (Simple Controls) 813

Menu Operations 815

Option Menu Operations 816

Keyboard Operations 817

Text Entry 819

Button Actions (Position Dependent Controls) 820

Resource Evaluation 822

Widget Hierarchy Analysis 823

Non-Application Operations 825

Condition Clauses 827

Display Expressions 829

Widget State Expressions 830

Importing User-Defined Commands 831

Sun WorkShop Visual Replay Widget Naming Conventions 832



xx Sun WorkShop Visual User’s Guide • May 2000

B. Motif XP Reference 835

Introduction 835

Motif XP Library 836

Linking Error with Some Compilers 853

C. Getters and Setters 855

Introduction 855

How to Use This Information 856

More Information 856

Label and Button 857

Toggle 858

Text Field, Text, and Scrolled Text 859

Scale 861

List and Scrolled List 862

Option Menu 863

Radio Box 865

D. Application Defaults 867

Introduction 867

General 868

Callback and Prelude Editing 870

Microsoft Windows 871

Filters 871

Generate Dialog 872

Generation 875

Comments in Generated Code 877

Help 877

Auto Save 878

Layout Editor 878



Contents xxi

Hierarchy Colors 879

Workarounds 882

FrameMaker 883

Configuration 883

E. Further Reading 885

Introduction 885

Books Mentioned in This Manual 885

Books on X and Motif 886

Books on C++ and Object Oriented Programming 887

Books on Microsoft Foundation Classes 887

Books on Java 887

Books on Networking and World Wide Web 888

Books on Internationalization 888

Books on CDE 888

Books on HTML 888

Glossary 889

Index 899



xxii Sun WorkShop Visual User’s Guide • May 2000



1

CHAPTER 1

Overview

Introduction to Sun WorkShop Visual

Sun WorkShop™ Visual is an interactive tool for building graphical user interfaces

(GUIs) using the widgets of the standard OSF/Motif toolkit as building blocks. Sun

WorkShop Visual lets you design a hierarchy of widgets on the screen quickly and

easily by clicking on icons. It displays your design in two ways simultaneously: as a

tree structure which represents the widget hierarchy and as a dynamic display—an

active prototype which shows what your interface looks like and how it behaves.

Interactive editing features let you browse through the hierarchy, cut and paste

individual widgets and change widget resources. Because the dynamic display

changes as you edit your widget hierarchy, you can immediately see the effects of

your actions.

When your design is complete, Sun WorkShop Visual automatically generates the

code files required for your interface. You can compile, link and run the code

generated by Sun WorkShop Visual without modification as a prototype of your

interface. You connect the prototype interface to your application code by writing

connecting code. Sun WorkShop Visual provides sample files which you can use as

templates for the connecting code.

One way you can connect your Sun WorkShop Visual interface to the application is

by associating callback functions with specific widgets. For example, you can

designate a certain routine to be called whenever the user clicks a certain

pushbutton in the interface. Callbacks let your application receive and handle user

events from the interface.

Sun WorkShop Visual incorporates the tools Sun WorkShop Visual Replay, Sun

WorkShop Visual Capture and AppGuru. All of these tools help you with your

design. AppGuru provides you with the basics for your application while Sun

WorkShop Visual Replay and Sun WorkShop Visual Capture let you update and



2 Sun WorkShop Visual User’s Guide • May 2000

examine your existing Motif applications. See Chapter 13 starting on page 417 for

details on both Sun WorkShop Visual Capture and AppGuru and Chapter 14 starting

on page 433 for details on Sun WorkShop Visual Replay.

With Smart Code callback technology, Sun WorkShop Visual helps you to build a

thin client and server application from your design. It also allows you to create client

applications capable of accessing the Internet. The following chapters cover this

area:

■ Chapter 15 starting on page 477. This describes the building blocks of Smart

Code.

■ Chapter 16 starting on page 485. This introduces the basic principles of Smart

Code.

■ Chapter 17 starting on page 501. This explains how to create a thin client and a

server from your design - a tutorial is included.

■ Chapter 18 starting on page 533. This chapter describes how Sun WorkShop

Visual automatically generates the code and structure required for your design to

access the Internet.

Sun WorkShop Visual can also be extended to use widgets from other X toolkits.

Chapter 23 starting on page 627 discusses how to extend Sun WorkShop Visual to

include additional widgets.

Sun WorkShop Visual typically generates code for use with the standard OSF/Motif

and X toolkits. However, it can also generate code that will result in an equivalent

interface on Microsoft Windows. The code can be structured in such a way that the

majority of your application will remain the same on either platform. This technique

makes extensive use of Sun WorkShop Visual’s C++ code generation facilities and is

discussed in Chapter 11 starting on page 357 and Chapter 12 starting on page 391.

Sun WorkShop Visual can also generate Java from your design, giving you an

alternative cross-platform strategy. This is covered in Chapter 10 starting on page

313.



Chapter 1 Overview 3

Operating Environment

Sun WorkShop Visual 6 requires one of the following configurations:

■ SolarisTM 2.6 Operating Environment and the Motif from the Solaris 2.6 release

■ Solaris 7 Operating Environment and the Motif from the Solaris 7 release

■ Solaris 8 Operating Environment and the Motif from the Solaris 8 release

Note – Solaris 2.6, Solaris 7 or Solaris 8 Operating Environment for Developer

System Support or Entire Distribution cluster has to be installed.

Requirements for Compiling Generated
Code

In order to compile the code generated by Sun WorkShop Visual, you will need the

following:

■ X11R5 or X11R6 headers and libraries

■ Solaris Motif or Solaris CDE packages available with Solaris 2.6, Solaris 7 or

Solaris 8

To compile the MFC code generated when in Microsoft Windows mode, you will

also require the following;

■ Microsoft Windows 3.1, 3.11, 95 or 98 or Microsoft Windows NT 3.5.1 or 4.0 or

Microsoft Windows 2000

■ Visual C++

■ MFC



4 Sun WorkShop Visual User’s Guide • May 2000

Basic Concepts and Terms

The following introduces some of the basic concepts of Sun WorkShop Visual

together with some of the terms used in this manual.

Widgets

Widgets are the building blocks used to create a user interface. Some widgets have a

specific appearance and behavior in the interface display. Examples in Motif include

PushButton, Label, and TextField widgets. Another type of widget is invisible itself

but serves to contain and organize other widgets and is thus known as a container
widget. Container widgets include the Form, BulletinBoard, MenuBar and

RowColumn widgets.

All the Motif widgets, and any additional widgets which your configuration of Sun

WorkShop Visual uses, are represented by icons in a widget palette on the left side of

the main Sun WorkShop Visual screen. When you click on one of these icons, a

widget of that type is added to the design. Individual widgets in the design are

known as instances of a widget class. For example, if you click on the PushButton icon

three times, you add three instances of the widget class PushButton to your design.

Design Hierarchy

The widgets in a design are organized in a design hierarchy which Sun WorkShop

Visual displays as a tree which has its root at the top and branches spreading

downward. The design hierarchy is displayed in the large drawing area of the main

Sun WorkShop Visual screen, as shown in Figure 1-1. This area is called the

construction area.



Chapter 1 Overview 5

FIGURE 1-1 The Main Sun WorkShop Visual Screen

Widgets added to the hierarchy are children of the parent widget immediately above

them. This relationship is important because a parent widget can affect its children’s

appearance and behavior. For example, a RowColumn widget can impose a strict

layout on its children which causes the children’s size and position to change

automatically.

Parent widgets appear above their children on the screen, as shown in Figure 1-2.

Widget
Palette

Construction Area

Window Holding Area

Toolbar

Design Hierarchy



6 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 1-2 A Design Hierarchy

Resources

Resources are attributes of a widget which affect its appearance or behavior.

Examples include dimensions, the content of a label or text field, and color. When

Sun WorkShop Visual creates an instance of a widget, it assigns valid default values

for each resource. Interactive resource panels allow you to supply your own resource

values.

Since resources and their valid values are defined by the widget manufacturer, and

not by Sun WorkShop Visual, it is not possible to document all of them fully in the

Sun WorkShop Visual manual. However, to aid you in learning Sun WorkShop

Visual, we discuss some commonly used Motif resources in this book. As you

become more experienced, you should consult the Motif documentation for

complete information about its widget set and the possible resource settings for each

widget. If you are using widgets from other toolkits, consult the documentation

from the widget developer for guidelines.

One group of resources (attachments) controls the spatial position of widgets within

the Form container widget. Sun WorkShop Visual provides an interactive editor, the

Layout Editor, for setting attachments.

Gadgets

Some classes of widgets have counterparts called gadgets. Gadgets are like widgets

but have a more restricted set of resources. Because gadgets are less expensive than

widgets in terms of machine resources, they are sometimes preferred.

Children

Parent widget



Chapter 1 Overview 7

Protection from Invalid Actions

Sun WorkShop Visual has many features designed to protect you from specifying

widget hierarchies or resource combinations which are not valid in Motif.

Commands that cannot be executed in the current circumstances, resources that do

not apply to a particular widget and the icons of widgets that are not valid children

of a proposed parent widget are grayed out on the screen, as shown in Figure 1-3.

Grayed-out commands, resources, and icons have no effect if selected.

FIGURE 1-3 Active and Inactive CascadeButton Icons

Sun WorkShop Visual also rejects invalid resource settings. An entry on a resource

panel may be rejected for two reasons: either the value entered is outside the valid

range, or you are trying to change a resource which is controlled or limited by the

widget’s parent. This subject is discussed in the Using the Resource Panels chapter.

Motif’s rules for resource settings are complex and invalid settings can have serious

consequences. This feature of Sun WorkShop Visual ensures that your resource

settings are valid.

On-Line Help

On-line help is available throughout Sun WorkShop Visual. For general help, pull

down the Help Menu in the main window and select the “Help” option. There are

two viewers which can be used to display help: Sun WorkShop Visual Help and

NetscapeTM. Use the “Viewer” pullright menu in the “Help” menu to change

between them. By default, Netscape is used.

Active Inactive



8 Sun WorkShop Visual User’s Guide • May 2000

The Sun WorkShop Visual Help window is shown in Figure 1-4.

FIGURE 1-4 Help Viewer

Sun WorkShop Visual Help has a menubar and a toolbar. There is a “File” menu for

the usual file operations, an “Edit” menu for text editing functions and a

“Navigation” menu for navigation commands. The toolbar buttons are shortcuts to

many of the menu items. The status line at the bottom of the window informs you of

each button’s function as you move the mouse pointer over it. A list of related topics

is displayed in the section at the bottom of the help viewer window. Double-click on

one of these to view help on that topic.

Most dialog boxes and resource panels also have a “Help” button which you can

click on for specific help about that dialog box.

The help viewer provided with Sun WorkShop Visual can be built into your

application to provide help for your users. This is described in “Setting up Help in

Sun WorkShop Visual” on page 605.



Chapter 1 Overview 9

Using Netscape for Help

By default, Sun WorkShop Visual uses Netscape to display hypertext help. In

Netscape, you can use the usual navigation keys and commands. You can also click

on any highlighted word or phrase in the text to follow a link.

Widget Palette Help

The “Palette Icons” option in the main Sun WorkShop Visual Help Menu displays a

copy of the widget palette with the name of each Motif widget icon. Clicking on any

of the icons on this screen displays a description of the widget class of which the

selected widget is a member. A list of the icons and their names is also available on

the Sun WorkShop Visual Quick Reference Card.

The Sun WorkShop Visual Development
Cycle

The process of creating Sun WorkShop Visual applications usually involves the

following four stages:

Designing the interface. This stage includes the following operations:

■ Building the widget hierarchy

■ Setting resources

■ Using the Layout Editor to adjust the layout

■ Designating callbacks to be associated with individual widgets

Generating code. Sun WorkShop Visual automatically generates all the C or C++

code needed to display and operate your interface. Sun WorkShop Visual can also

generate a stubs file containing all the #include statements and function declarations

necessary to connect the interface code to your application code.

Writing code. To connect your interface prototype to a real application, supply the

necessary code between the empty function brackets in the stubs file.

Linking, running and testing. This phase follows the debugging cycle needed for

developing any software program.



10 Sun WorkShop Visual User’s Guide • May 2000

How This Manual Is Organized

This manual is organized in three main parts:

■ Tutorial

■ Power use

■ Reference

The Tutorial

Because Sun WorkShop Visual is highly interactive, it is easier to learn its features by

actually going through the steps for a simple layout than by reading descriptions of

the various features. If you are new to Sun WorkShop Visual, we recommend

reading the tutorial chapters at your workstation and performing the steps given to

build a simple interface. The tutorial begins with Chapter 2 starting on page 13 and

continues through the following chapters, giving detailed instructions for all stages

of the development cycle: building the design hierarchy, setting resources, adjusting

the layout, setting callbacks, generating code and writing a very simple callback

routine. At the end of the tutorial you will have a fully operational (if rudimentary)

interface and you will have used all the major features of Sun WorkShop Visual.

Knowledge of the X Window System and Motif is valuable at all stages of learning

Sun WorkShop Visual. However, if you are new to X or Motif, you can profit from

the first several chapters of the Sun WorkShop Visual tutorial while studying the

documentation for X and Motif simultaneously. The bibliography in this manual

provides a list of recommended books on X and Motif. At the code generation stage

you must have some understanding of X and Motif, and one of the programming

languages used by Sun WorkShop Visual (C, C++, or UIL).

Power Use

The tutorial ends in Chapter 7 starting on page 207. The remainder of the manual

covers advanced techniques for getting the most from Sun WorkShop Visual. It is

intended for users who are familiar with Motif and X and who have prior experience

with Sun WorkShop Visual or have finished working through the tutorial. There are

sections dealing with the advanced code generation capabilities, Makefile

generation, configuring the widget palette and toolbar, integrating user-defined

widgets, advanced layout and internationalization. There are also short tutorials

illustrating the structured code generation and cross platform development

capabilities using MFC (Microsoft Foundation Classes) or Java. In addition, there are

chapters describing the design tools Sun WorkShop Visual Replay, Sun WorkShop



Chapter 1 Overview 11

Visual Capture and AppGuru together with details on how Sun WorkShop Visual

Replay can be extended. There are also chapters explaining Sun WorkShop Visual’s

Smart Code, thin client and Internet capabilities.

Reference

The reference section is intended for Sun WorkShop Visual users at all levels. It

includes:

■ Summaries of all the Sun WorkShop Visual commands

■ A summary of the Motif widgets and available resources, and some information

on how they are mapped to Microsoft Windows code

■ Suggestions for troubleshooting

■ A description of the resources which can be set to alter Sun WorkShop Visual’s

behavior and appearance

■ A description of the keywords used in Sun WorkShop Visual Replay scripts

■ Some details on the integration of Sun WorkShop Visual with third party products

■ A glossary

Conventions Used in this Manual

1. New terms occur in italics the first time they appear. These terms are defined in

the Glossary.

2. The names of keyboard keys and mouse buttons appear in italics, enclosed by

angle brackets: <Tab>. When two keys must be pressed simultaneously, we use

this form:

<1st key-2nd key>

For example: <Ctrl-C>, <Meta-H>, <Shift-button1>

3. Text to be typed at the keyboard is shown in this format:

type this exactly

without quotation marks. If quotation marks appear, they are to be entered with

the text.



12 Sun WorkShop Visual User’s Guide • May 2000

4. Some menu commands have keyboard accelerators—keystrokes which can be

used to execute the command without using the mouse. In these instructions, we

mention keyboard accelerators in parentheses after naming the menu command.

The following instruction:

Pull down the Widget Menu and select “Reset” (<Ctrl-T>).

means to select “Reset” from the menu or press <Ctrl-T>—but not both.

5. File names, function names, and variable names are all given in italics. Function

names are distinguished by empty parentheses after the function name:

XtAppMainLoop(). Angle brackets indicate a variable portion of a name:

The default widget name is in the form <widget-class><n>, where widget-class is a

Motif class (button, label etc.) and n is a numeral.

6. “Click” always means to use mouse button 1 unless otherwise noted. Unless you

have reconfigured your mouse, button 1 is usually the left button, button 2 the

middle button and button 3 the right button.

The instruction to “click twice” is different from “double-click”. “Double-click”

means that you must press the mouse button twice in rapid succession. “Click

twice” can be done at any speed.

7. Names of Motif widget classes are capitalized: Label, PushButton. When similar

words are used in an ordinary sense, they are not capitalized:

The main window of this design does not use a MainWindow widget but a Form

widget.

8. Books mentioned in the text of this manual are listed in Appendix E, “Further

Reading”, starting on page 885.



13

CHAPTER 2

Building the Widget Hierarchy

Introduction to the Tutorial

The tutorial section of this document comprises the following chapters:

■ Chapter 2 ”Building the Widget Hierarchy“.

■ Chapter 3 ”Resources“.

■ Chapter 4 ”The Layout Editor“.

■ Chapter 5 ”Other Editors“.

■ Chapter 6 ”Activating the Interface: Adding Your Own Code“.

■ Chapter 7 ”Generating Code“.

The tutorial is meant to be read at your workstation while you follow the step-by-

step instructions to build a simple interface. In the process, you will be introduced to

all of the major features of Sun WorkShop Visual.

When completed, the tutorial interface looks like Figure 2-1:



14 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 2-1 Tutorial Interface

Most of this tutorial addresses the Motif-only style of development, except where

reference to a more general technique makes the inclusion of cross platform

information relevant. There are further specialized tutorials on structured code

generation and cross platform development in Chapter 9, “C++ Code Tutorial”,

starting on page 277 and Chapter 12, “Creating a Microsoft Windows and Motif

Application”, starting on page 391.

The Design Hierarchy

The first steps in building an interface are deciding which widgets should be used to

build it and then developing an appropriate design hierarchy on the Sun WorkShop

Visual screen. These steps are explained in this chapter. In the process, you will learn

how to:

■ Start the program and begin a new design

■ Build a design hierarchy for the five common combinations of widgets shown in

Figure 2-1

■ Menu bar

■ Radio box

■ Row column array

■ Group of toggle buttons

■ Group of pushbuttons

■ Assign names to widgets

■ Save and retrieve Sun WorkShop Visual files

■ Edit the structure of a design hierarchy using cut, paste, copy and on-screen

dragging facilities

Menu Bar

Radio Box Row Column Array

Push Buttons

Toggle Buttons



Chapter 2 Building the Widget Hierarchy 15

Starting and Stopping

You should have Sun WorkShop Visual properly installed on your system before you

begin the tutorial. Consult the installation instructions or your system administrator

if Sun WorkShop Visual is not yet installed, or if the commands below do not bring

up the main Sun WorkShop Visual screen.

Use one of the following commands to start Sun WorkShop Visual from within X.

Either command brings up the main Sun WorkShop Visual screen.

● Type: visu

or

● Type: small_visu

(for VGA or other small screen displays)

Note – If you invoke Sun WorkShop Visual with small_visu , the icons are smaller

and slightly different from those shown in this document.

Command-Line Options

Sun WorkShop Visual has numerous command-line options. These are documented

in Chapter 24, “Command Line Operations”, starting on page 685. You can also get a

listing of them when you invoke Sun WorkShop Visual with the -x option. Sun

WorkShop Visual also accepts all the standard X toolkit options.

To resume work on a previously saved design, you can specify the filename on the

command line: visu <filename>. The current filename is displayed in the

window border. When there are unsaved changes the filename is followed by an

asterisk (*).

To start Sun WorkShop Visual in Microsoft Windows mode, which enables the cross

platform development capabilities, use the command line switch -windows .

The File Menu of Sun WorkShop Visual provides commands to let you save your

work, exit the program and come back to your design later. We introduce these

commands here so you can use them at any time during the tutorial.



16 Sun WorkShop Visual User’s Guide • May 2000

Save, Save As

You can save your design by selecting “Save as...” (<Ctrl+A>) from the File Menu.

“Save as...” displays a file browser, described later in this chapter, which lets you

specify a filename for your design.

If you have already specified a filename, you can simply select “Save” (<Ctrl+S>).

This procedure is faster since you are not prompted for a filename. By convention,

names for Sun WorkShop Visual design files have the suffix .xd .

Sun WorkShop Visual’s window border contains the name of the current file. If there

are any unsaved changes, the filename is followed by an asterisk (*).

In the Save As dialog you are given the option of saving a file suitable for importing

into Visaj, the visual application builder for Java. This is described in detail in

“Moving Sun WorkShop Visual Designs to Visaj” on page 347.

Open, New, Exit

To load a saved design file into Sun WorkShop Visual, use the “Open” command

(<Ctrl+O>). “Open” displays a file browser, described later in this chapter, which

lets you select an existing design file. “New” (<Ctrl+N>) clears the construction area

and starts over with an empty design. “Exit” (<Ctrl+E>) terminates the program. All

three of these commands discard any changes you have made to the design. If you

have changes in your design that have not yet been saved, Sun WorkShop Visual

asks if you want to save before it executes any of these commands.

Navigating in the Menus

You can select commands from the Sun WorkShop Visual menus in three ways:

■ Clicking with the mouse

■ Using keyboard accelerators
■ Using keyboard mnemonics

Accelerators

A keyboard accelerator is a keystroke which is designated to execute a menu

command. For example, you can press <Ctrl+S> to execute the “Save” command.



Chapter 2 Building the Widget Hierarchy 17

Accelerators work whenever the input focus is in any region of the Sun WorkShop

Visual screen. Accelerators are printed in parentheses wherever this tutorial instructs

you to execute a command. They also appear opposite the command name in the

pulldown menu on the screen.

Mnemonics

The underscored characters in menu names and options are mnemonics, a way of

navigating in the menus without using the mouse. To pull down a menu by using its

mnemonic character, press that character while holding down the <Meta> key. For

example, you can pull down the File Menu by pressing <Meta-F>. After pulling

down the menu, you can select any item by pressing its mnemonic character without

<Meta>. The complete sequence for calling “Save” using mnemonics is: <Meta-F>,

<s>.

In the Using the Resource Panels chapter, you will learn how to set up accelerators and

mnemonics on the menu bars you create in Sun WorkShop Visual.

Toolbar

The Sun WorkShop Visual interface includes a toolbar which can be configured by

the user to contain buttons corresponding to menu items. The default toolbar layout

is shown in Figure 2-2.

FIGURE 2-2 Default Toolbar Layout

When you select a toolbar button, it does exactly the same thing as the

corresponding menu button.

New

Save Clear

Copy Definition

Edit Groups

 Resources

Constraints

Callbacks

Generate

Capture

Open

Cut

Search
Paste

Add to
New Group

Reset
Core
Resources

Layout
Editor

Links

Pixmap
Editor

Replay

AppGuru



18 Sun WorkShop Visual User’s Guide • May 2000

Microsoft Windows mode specific elements

When Sun WorkShop Visual is in Microsoft Windows mode the default toolbar

configuration contains two additional elements: the flavor option menu and the

Microsoft Windows compliant toggle button. These are shown in

FIGURE 2-3 Windows-specific Toolbar Items

The flavor option menu is used to indicate which target code will be generated, e.g.

Motif, Motif XP. This is useful when using the toolbar code generation buttons. The

Microsoft Windows compliant toggle indicates whether the current design is

Microsoft Windows compliant. That is, whether Sun WorkShop Visual could

generate valid Microsoft Windows code for it. The toggle button is also used to

invoke the compliance checking process. These features are discussed more fully in

“Microsoft Windows Compliance” on page 363.

Status Line

The status line appears at the bottom of the Sun WorkShop Visual window. Prompts

are displayed here when the mouse button moves over a menu item, a button in a

toolbar or a button in the Widget Palette. This relates to all toolbars, including those

in the Pixmap Editor and the Layout Editor. The prompts tell you what each menu

item or button does. Information can only be displayed for those buttons which are

enabled (or sensitive).

Starting the Design

All dialogs start with a Shell widget. The Shell icons, shown in Figure 2-4, are in the

upper left corner of the widget palette. Although there is only one Shell widget,

changing one of its resources makes three types of Shell widget. The three types of

Shell are:

1. Application Shell. This is the main window of an application. It is the first one

displayed when the application runs.



Chapter 2 Building the Widget Hierarchy 19

2. Top Level Shell. A window which remains visible when the Application Shell is

iconified and can be iconified independently.

3. Dialog Shell. A window which cannot be iconified independently of the

Application Shell. This is usually used for sub-dialogs in an application.

Far more detail concerning the Shell types is given in “Shell Types” on page 73.

Whenever you start a new design, all icons except the Shells are disabled.

FIGURE 2-4 Shell icons

● Click on the Application Shell icon.

A copy of the Shell icon appears in the construction area.

Note – Because the tutorial aims to teach you how to use Sun WorkShop Visual

from scratch, you are asked to start in this way. You can, however, use the Sun

WorkShop Visual utility AppGuru to start an application. See Chapter 13, “Design

Tools”, starting on page 417, for more details.

Widget Names

When an instance of a widget is added to the hierarchy, it is assigned two names by

Sun WorkShop Visual: a widget name and a variable name. The variable name is the

name by which the widget is referenced in the code. The widget name is the name

used by the toolkits to assign resources. By default these names are identical. Sun

WorkShop Visual tries to assign sensible default names. These are of the form

widget_nameN, where widget_name reflects the class of the widget (button, form, shell

etc.) and N is an integer assigned by Sun WorkShop Visual and which increments

within the widget class (button1, button2, form1, form2 etc.) However, because

several features of Sun WorkShop Visual require explicit variable names, it is a good

habit to assign explicit variable names to the most important widgets as you add

them.

dialog shell top-level shell application shell



20 Sun WorkShop Visual User’s Guide • May 2000

Naming Widgets

To name the Shell widget:

1. Double-click in the box opposite “Variable Name” at the top of the screen.

When you double-click in the box, all text in it is highlighted. Entering new text

replaces the highlighted text.

2. Type: myFirstShell

The name is automatically assigned to the widget when you create and select

another widget. You may also assign the name by pressing <Return> in the variable

name box.

Note – The variable name must be unique because it is used to refer to the widget

structure for that instance of a widget when Sun WorkShop Visual generates code.

Sun WorkShop Visual does not let you enter a variable name used elsewhere in your

design. To avoid problems in compiling, never use the names of your application

functions or variables, Motif or X defines or routine names, or C or C++ reserved

words as widget variable names.

When you change the variable name, Sun WorkShop Visual automatically assigns

the same name to the widget name unless you also explicitly specify a widget name

in the “Widget Name” box.

The widget name does not have to be unique. Widgets with the same widget name

can be configured to share resource settings. It is often convenient to group widgets

by a common widget name so that end users can reset their resources with a single

operation. You can do this by selecting all the widgets you wish to share a widget

name and typing the name into the field labelled “Widget Name”. “Multiple

Selection” on page 23 gives more information on selecting more than one widget.

The subject of shared resources is discussed more extensively in “Shared Resource

Values” on page 237.

Adding Children to the Hierarchy

The Shell widget can have any kind of widget as its child; it can, however, only have

one child. Therefore, you should choose a widget which can contain the rest of your

layout. A MainWindow, BulletinBoard, Form, or DialogTemplate are commonly

used. The DialogTemplate provides a convenient layout for the tutorial interface.



Chapter 2 Building the Widget Hierarchy 21

● Click on the DialogTemplate icon.

FIGURE 2-5 Dialog Template Widget Icon

If you need help identifying the icons, turn on both names and icons from Sun

WorkShop Visual’s Palette menu or bring up the Palette Icons Dialog from the Help

Menu (<Meta H> <p>). Also note that the status line at the bottom of the Sun

WorkShop Visual screen will show the name of the widget when the cursor is

positioned over an icon in the palette.

See “The Palette Menu” on page 723 and “Palette Icons...” on page 739.

The DialogTemplate

The DialogTemplate is a container widget which can have three kinds of children: a

MenuBar, any number of buttons and one additional child which is called the work
area.

The DialogTemplate positions the MenuBar child at the top of the window and

arranges all children which are buttons of any type in an evenly spaced row at the

bottom of the window. This row of buttons is called the button box.

The DialogTemplate places the work area between the MenuBar and the button box,

separated from the button box by a Separator (a horizontal line). The Separator is

created as part of the DialogTemplate and will appear in your widget hierarchy

automatically.

FIGURE 2-6 The DialogTemplate in the Hierarchy

In the tutorial interface, Figure 2-1, the menu bar cascade buttons and the

pushbuttons which make up the button box are labeled. The work area contains the

radio box, row column array and toggle buttons.



22 Sun WorkShop Visual User’s Guide • May 2000

● Assign the variable name: myDiag to the DialogTemplate.

As you add widgets to the design, we recommend that you continue to assign

variable names to them. Explicit names make it easier to identify widgets and are

required for certain operations. However, since Sun WorkShop Visual does not

strictly require names unless you refer to the widget in some way, these instructions

only include this step for names which the tutorial uses later.

Dynamic Display of Layout

When you added the DialogTemplate widget, you may have noticed that your

layout became visible as a small rectangle over the construction area. This is the

dynamic display window in which Sun WorkShop Visual builds a working example of

your interface.

What you see in the dynamic display is a collection of widget instances. Sun

WorkShop Visual does not draw pictures of widgets but actually creates them using

the same Motif function calls that your interface will use when it is running. Right

now the dynamic display window has few identifiable features because it contains

only the Shell and DialogTemplate.

As you add widgets and move them around, they appear in this window as they

will appear in your finished interface. You can use the normal window manager

facilities to move the dynamic display window to a part of your screen where it does

not obstruct your view of the hierarchy.

When you add widgets to your hierarchy, they may not appear in the dynamic

display window where you want them. Later, you will use the Layout Editor to

achieve the correct appearance.

The layout shown in a dynamic display is a fully active prototype of your interface;

you can click on the buttons, pull down the menus, type text into text fields, and so

on.

Currently Selected Widget

In Sun WorkShop Visual, it is possible to have one widget selected, many widgets

selected or no widgets selected. If only one is selected, it is known as the currently
selected widget. A widget must be selected before you can do anything to it, such as

setting its resources, cutting and pasting, or giving it children. The selected widget is

highlighted in the construction area and in the dynamic display.



Chapter 2 Building the Widget Hierarchy 23

Widgets that cannot legally be children of the selected widget are grayed out on the

widget palette so you cannot select them.

As a rule, widgets are selected when you first add them to the hierarchy. Therefore,

when you add the DialogTemplate, it is automatically selected and the next widget

you add will be its child. However, widgets are not automatically selected if they

cannot have children. To select a different widget, click on its icon in the

construction area.

Multiple Selection

You can select more than one widget by:

■ Dragging a rectangle around the widgets.

■ Selecting a widget with the mouse while the Shift key is held down. This will

select the widget in addition to any currently selected.

In order to add widgets in another dialog to the selection, hold the Shift key down

while selecting the Shell in the window holding area in order to retain the current

selection.

When there is more than one widget selected, you can perform the following

operations on them:

■ Set a resource - both core and widget resources. You will only be able to set those

resources which are appropriate to all selected widgets. See “Multiple Selection

and Resources” on page 59 for more details.

■ Clear the selected widgets. These widgets are then removed from your design.

No Selected Widget

By clicking in a blank part of the construction area or by holding down the Shift key

while clicking over each selected widget, it is possible to have no widgets selected.

You will then only be able to perform those actions which affect the whole design.



24 Sun WorkShop Visual User’s Guide • May 2000

Adding the Buttons

The buttons at the bottom of the layout can be added directly as children of the

DialogTemplate, as shown in Figure 2-7.

FIGURE 2-7 Hierarchy for the Buttons

● With the DialogTemplate widget selected in the construction area, click three
times on the PushButton icon.

Each time you click, a PushButton is added as a child of the DialogTemplate. The

PushButtons also appear in your dynamic display with the default label button<n>.

Later, in Chapter 3, “Resources”, starting on page 53, you will assign proper text strings

to these labels.

The dynamic display now looks like Figure 2-8.

FIGURE 2-8 Dynamic Display of the Buttons

The window title “Dialog” is the default used by Sun WorkShop Visual. “Setting

Resources for the Main Shell” on page 75 describes how to set your own title.

PushButtons in the Hierarchy

Separator
Button box



Chapter 2 Building the Widget Hierarchy 25

Building the Menu Bar

A menu bar at the top of the screen is a common feature of many computer

interfaces. Motif provides a MenuBar widget, which is invisible until you add a

series of other widgets to form pulldown menus. Sun WorkShop Visual guides you

through the process of building a menu bar by graying out all widgets except the

relevant ones. The hierarchy you need to add is shown in Figure 2-9.

FIGURE 2-9 Hierarchy for the MenuBar and Its Children

Creating the Menu Bar

To build the menu bar:

1. With the DialogTemplate widget selected, click on the MenuBar icon.

The DialogTemplate automatically places the menu bar above the work area in the

dynamic display.

2. Assign the variable name: main_menu to the MenuBar.

3. Click on the CascadeButton icon twice.



26 Sun WorkShop Visual User’s Guide • May 2000

When you add the CascadeButtons, they appear in your dynamic display with the

default labels “cascade1” and “cascade2”, as shown in Figure 2-10.

FIGURE 2-10 Dynamic Display of the CascadeButtons

You can click on these buttons with the mouse and see that they are active but they

don’t do anything because they don’t as yet contain any menus.

4. Select the first CascadeButton in the construction area and assign it the name:
procedure_cascade

Note that this long name means that the second CascadeButton cannot be seen on

the menubar in the dynamic display. Later in this tutorial they will be assigned more

sensible names. This will make them both appear as expected. Resize the dynamic

display if you wish to see both CascadeButtons now.

Adding the Menus

To attach a menu:

1. Select the left CascadeButton in the hierarchy and click on the Menu icon.

2. Click on the PushButton icon twice.

3. Click on the Separator icon; then click on the PushButton icon again.

4. Click on the last PushButton and assign it the variable name: exit_button

The left cascade button in your dynamic display now has a working pulldown

menu, which you can see by placing your cursor on the cascade button and holding

down mouse button 1, as shown in Figure 2-11.

Menu bar

Separator

Button box



Chapter 2 Building the Widget Hierarchy 27

FIGURE 2-11 Pulldown Menu in the Dynamic Display

The PushButtons in this menu have default labels, which can be changed later.

Menus can have three kinds of selectable children: PushButtons, ToggleButtons, or

CascadeButtons (used to create submenus). They can also contain non-selectable

Labels and Separators. This menu contains a Separator, which appears as a

horizontal bar that separates the buttons into two regions.

To complete the MenuBar portion of the design hierarchy:

5. Select the second CascadeButton in the construction area and assign it the
variable name: help_cascade

6. Click on the Menu icon.

7. Click on the PushButton icon.

8. Click on the PushButton in the construction area and assign it the variable name:
help_button

The second CascadeButton now also has an active menu with one option which you

can pull down with the mouse in the dynamic display.

Adding the Work Area

The interface now has a menu bar at the top and several buttons at the bottom.

There is no work area until you add one. The DialogTemplate can have only one

work area child. However, that child can be a container widget with multiple

children. Since our work area will contain several widgets for choosing the ice cream

flavors and toppings, we use a Form for the work area.

1. Select the DialogTemplate in the hierarchy.

2. Click on the Form icon.

PushButtons in Menu

MenuBar

Separator

CascadeButton

Mouse pointer



28 Sun WorkShop Visual User’s Guide • May 2000

The Form is invisible until you give it children. The options in our interface are

arranged in three groupings:

■ A RadioBox containing the “Double Scooper” and “Small” toggles

■ A RowColumn array for the topping options

■ Three ToggleButtons for the ice cream flavors

Building the Radio Box

The RadioBox, like the Form, is an invisible widget which exists only to control the

behavior of its children. It can contain a group of ToggleButtons which it configures

as radio buttons. Only one radio button can be selected by the user at any one time.

The hierarchy you need to add is shown in Figure 2-12.

To build the radio box:

1. Click on the Form in the hierarchy.

2. Click on the Frame widget icon.

The black line around the “Double Scooper” and “Small” radio buttons in Figure 2-1

is not the RadioBox itself but a Frame widget which contains the RadioBox. The

Frame is used to display the logical grouping of the radio box components.

3. Click on the RadioBox icon.

4. Click on the ToggleButton icon twice.

The resulting hierarchy for the radio box is shown in Figure 2-12.

FIGURE 2-12 Hierarchy for the Framed Radio Box

The dynamic display should now resemble Figure 2-13:



Chapter 2 Building the Widget Hierarchy 29

FIGURE 2-13 Dynamic Display So Far

Building the Row Column Array

A RowColumn container widget will be used for the array of labels and text fields

which specify the toppings in Figure 2-1.

1. Select the Form in the hierarchy.

2. Click on the RowColumn icon.

3. Click on icons in the following order: Label, TextField, Label, TextField, Label,
TextField.

The Label and TextField widgets must be added in this order because the

RowColumn always takes its children in order when constructing rows or columns.

In this case, you are building rows and each row should have a label and a text field.

The RowColumn part of the hierarchy is shown in Figure 2-14.

FIGURE 2-14 Partial Hierarchy: the RowColumn Widget and Its Children

This hierarchy results in the dynamic display shown in Figure 2-15.

Work area
containing radio
box



30 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 2-15 Dynamic Display So Far

Because, by default, the RowColumn widget is laid out in a single vertical column, it

doesn’t look much like the finished layout in Figure 2-1. Later in the tutorial, you

will change its resources to achieve the desired effect.

Adding the Toggle Buttons

The last group of options required for the layout is the set of toggle buttons

(representing ice cream flavors) at the bottom of the work area.

1. Select the Form in the hierarchy.

2. Click on the ToggleButton icon three times.

Your design hierarchy for the tutorial interface is now complete, as shown in Figure

2-16.



Chapter 2 Building the Widget Hierarchy 31

FIGURE 2-16 Complete Hierarchy

The interface, shown in Figure 2-17, is not yet finished but it contains all the

necessary widgets in their proper parent-child relationships. In later chapters you

will use resource panels and the Layout Editor to make it look more attractive.

FIGURE 2-17 Dynamic Display So Far

Notice the difference between the appearance of the toggle buttons you just added

and the ones in the RadioBox. When ToggleButtons are inside a RadioBox, they

become radio buttons. Radio buttons are distinguished by a diamond-shaped

indicator. ToggleButtons that are not the children of a RadioBox can be switched on

and off independently and have a square indicator.



32 Sun WorkShop Visual User’s Guide • May 2000

Now that you have added the last widget to the design, save your work using the

“Save as...” command.

3. Select “Save as...” from the File Menu.

4. Click to the right of the text in the “Selection” text field.

5. Enter a filename for your design.

By convention, Sun WorkShop Visual design files have the suffix .xd .

6. Click on “OK”.

If you have already saved your design, you can use the “Save” command instead.

Adding a Window to Your Application

You have now finished setting up the main window of your interface. Most

interfaces, however, have multiple windows. This chapter shows how to add a

second window to your interface. The second window is a simple help screen, as

shown in Figure 2-18:

FIGURE 2-18 Help Screen

This help screen will appear when the user invokes the “About This Layout”

command in your interface’s Help Menu and will disappear when the user clicks on

the “OK” button. This behavior is similar to that of Sun WorkShop Visual’s

copyright screen. Before you start, you may want to pull down Sun WorkShop

Visual’s Help Menu and select “About Sun WorkShop Visual”. Note that the

copyright screen appears when you click on “About Sun WorkShop Visual” and

disappears when you click on its “OK” button.

To achieve these results, you will:

1. Create an additional window for your interface.

2. Design a simple help screen within the second window.



Chapter 2 Building the Widget Hierarchy 33

3. Create a “Show” link to display the help screen when the “Help” command is

given from the Help Menu. This happens in “Links” on page 183.

4. Create a “Hide” link to remove the help screen when the user clicks on the “OK”

button. This also happens in “Links” on page 183.

Creating a Second Window

You can create a new window at any time, regardless of which widget is selected in

the design hierarchy.

To add a dialog to your interface:

1. Click on the Dialog Shell icon in the widget palette.

See “Shell Types” on page 73 for information on the different types of Shell.

Sun WorkShop Visual clears the construction area and displays the hierarchy for the

new window. So far, this consists only of the Shell. Note that the dynamic display for

the first window is still visible. As you build the secondary window, you can see

both dynamic displays at the same time.

2. Click on the DialogTemplate icon.

3. Click on the Label icon.

4. Click on the PushButton icon.

The hierarchy for the subwindow and its default dynamic display are shown in

Figure 2-19. Because this screen is so simple, you can use a Label instead of a

container widget with children for the work area. The DialogTemplate centers the

PushButton in the button box with the work area above it. There is no menu bar.

FIGURE 2-19 Hierarchy and Default Dynamic Display for Second Window

Set the text on the Label and PushButton:



34 Sun WorkShop Visual User’s Guide • May 2000

5. Double click on the Label in the design hierarchy to bring up the Label resource
panel.

6. On the “Display” page, double-click in the “Label” box and type:

This dialog can be used

to provide help for your

application.

Use <Return> to put newlines into a multi-line label. Do not put a newline at the end

of the last line.

7. Click on “Apply”.

8. Click on the PushButton in the design hierarchy.

9. Double-click in the “Label” box and type: OK

10. Click on “Apply”.

11. Click on “Close”.

Navigating Between Windows

When you add a Shell to your design, regardless of which type of Shell it is, a

corresponding icon appears in the window holding area at the top right of the main

Sun WorkShop Visual window, as shown in Figure 2-20. To move from one

window’s hierarchy to another, click on the Shell icon associated with that window

in the window holding area. Because most Shell icons look alike, and because icons

are not necessarily shown in this area in the order in which you created them, it

helps to assign explicit variable names to all Shell icons and turn on the “Show

dialog names” option in the View Menu so that you can tell them apart.

The order of the Shells in the window holding area is significant. When a design is

saved to a file, the Shells are saved in the order they appear in the window holding

area - from left to right. When the file is loaded, Sun WorkShop Visual retains that

order, displaying initially the hierarchy of the first (leftmost) Shell and its dynamic

display. If this is not the one you wish to see first, you can change the order of the

Shells in the window holding area by clicking over a Shell icon and dragging it to its

new position while holding down mouse button 1.



Chapter 2 Building the Widget Hierarchy 35

FIGURE 2-20 Upper Part of Sun WorkShop Visual Screen

Assign a name to the second Shell in your design.

1. If the Dialog Shell is not already selected in the hierarchy, select it.

2. Double-click in the “Variable name” field.

3. Type: help_window

To register the new name:

4. Type <Return> or select any other widget in the hierarchy.

By default, the names of the Shells are shown in the window holding area. You can

turn this off, if you wish to see what type of Shell they are, by doing the following:

5. Pull down the View Menu and select “Show dialog names” to turn the toggle off.

FIGURE 2-21 Window Holding Area without Dialog Names

● This concludes the step-by-step tutorial in this chapter.

At this point, you can proceed directly to the next chapter to continue the tutorial or

you can continue reading and experiment with the various editing features

discussed in the following pages.

Window
holding area



36 Sun WorkShop Visual User’s Guide • May 2000

Editing the Hierarchy

Sun WorkShop Visual provides dragging, cutting and pasting facilities to let you edit

the hierarchy. By using these facilities, you can alter your design dramatically

without losing any of the resource values you have specified.

All editing functions act equally on the children of the selected widget. This lets you

retain the relative positions of widgets inside a container widget such as a Form or

RowColumn by moving the container widget and everything beneath it as a unit.

Dragging Widgets Around the Hierarchy

To drag a widget and its children to a new location, hold down mouse button 1 over

the widget and drag it to its new location. When the widget is correctly positioned

beneath a potential parent, a vertical line appears connecting it to the new parent.

When you see the line, release the mouse button. If there is no line when you release

the mouse button, the widget being dragged reverts to its former position.

Rules When Dragging Widgets

You can drag widgets to a different position beneath the same parent, or to a new

parent. However, Sun WorkShop Visual does not let you drag a widget to a position

which is not valid in Motif.

Widgets that are part of a composite widget, such as the ScrollBars which form part

of the MainWindow, can only be dragged by dragging their parent.

Because a widget’s children are dragged with it, you cannot drag a widget to a

position beneath its own child. To get this effect, use the copying facility described

below.

If you change your mind after starting to drag a widget, you can cancel by dragging

to an empty spot in the construction area.

The Shell widget cannot be dragged because it is not a valid child of any class of

widget.



Chapter 2 Building the Widget Hierarchy 37

Copying Widgets

To copy a widget and its children to a new location while leaving the original widget

in place, drag the widget using mouse button 2. A default variable name is assigned

to the copied widget.

Edit Commands: Cut, Paste, Copy and Clear

The Edit Menu has “Cut”, “Paste”, “Copy”, and “Clear” commands which can also

be used to alter the hierarchy. To copy a widget and its children onto the Sun

WorkShop Visual clipboard, select the widget and use the “Copy” command

(<keypad>Copy).

“Cut” (<keypad>Cut)) deletes the selected widget and its children and copies them

onto the clipboard. “Clear” also deletes the selected widget and children but does

not affect the clipboard. Cleared items cannot be pasted back into the hierarchy.

“Paste” (<keypad>Paste) inserts the contents of the clipboard directly beneath the

currently selected widget. “Paste” is disabled if the clipboard is empty, or if the

widget in the clipboard is not a valid child of the currently selected widget. The

pasted widget is always made the last child of the selected widget. To place it in a

different position, drag the selected widget with the mouse.

Copy to File, Paste from File

As well as copying to the Sun WorkShop Visual clipboard, you can copy a widget

and its children to a clipboard file and paste in a widget from an existing clipboard

file. This feature lets you build a library of design fragments, such as a standard

menu bar. By convention, Sun WorkShop Visual clipboard filenames have the suffix

.cxd .

Alternate Method of Selecting Widgets

To select any widget that is not highlighted, you can use the mouse or you can step

up, down, left, or right in the hierarchy by using the arrow keys. The arrow keys

only work this way when the construction area has the input focus. If the arrow keys

seem to be disabled, use the <Tab> key to cycle the focus around the various areas of

the Sun WorkShop Visual screen until they become active.



38 Sun WorkShop Visual User’s Guide • May 2000

Search

The search facility, available from the Edit menu, allows you to search for strings in

preludes, callbacks, methods, translations, widget and/or variable names and string

resources. The Search dialog is shown in Figure 2-22.

FIGURE 2-22 The Search Dialog

There are four main areas in the Search dialog - the text box containing the string to

be found, a set of toggles to specify where to look for the string, a set of toggles to

define which widgets to search and some options affecting the search.

String to be Found

You may type any string or part of a string in this text box. If you leave the text box

blank, every string is matched. The search mechanism will look for strings according

to which options have been selected from the String Type Panel.

String Type Panel

This area consists of a series of toggles relating to the types of string which can be

set for a widget. These are preludes, callbacks, methods, translations, widget names,

variable names and string resources. You may select any number of these at once.

Selecting none results in no matches.



Chapter 2 Building the Widget Hierarchy 39

Where to Search

You can specify one of the following:

■ All dialogs – Look through all dialogs in the current design

■ Current dialog – Only search through the current dialog

■ Current sub-hierarchy – Only search through the hierarchy below and including the

selected widget

■ Refine search – Only search through those widgets which matched in the previous

search

Search Options

You can choose whether you wish Sun WorkShop Visual to ignore the case of letters

in the string when looking for a match. You can also select whether you wish to

“Append” to an existing list of widgets which were found as the result of a previous

search. If you are searching string resources or widget or variable names, you may

select whether you want to search only those values which you have explicitly set or

all values including defaults.

Find or Search List

Pressing Find displays a list of widgets which match the search criteria in a separate

dialog, the Search list dialog. Pressing “Search list” displays the list of widgets

which have already been found - it does not repeat the search. This is useful if you

have closed the Search list dialog and wish to view the same list again.

The Search List Dialog

The Search list dialog shows a list of widgets which match one or more of the search

criteria. After selecting a widget from this list, the following options are available:

■ Go to – The corresponding widget in the design hierarchy is selected. If the widget

is in a part of the hierarchy which was folded, it is unfolded. Similarly, if the

widget is not in the current dialog, the relevant dialog is selected first. If the

string is found anywhere other than in the widget or variable name, the dialog or

resource panel containing the string is opened (Callback Methods dialog, for

example). Note that Double-clicking on an item is the same as pressing Go to

■ Next – The next widget in the list is selected and the “Go to” action is invoked on

the selection.

■ Clear – Clears the list so that you can perform another search



40 Sun WorkShop Visual User’s Guide • May 2000

Deleting a widget will remove it from the list, as will temporary deletions such as

reset or cut and paste.

FIGURE 2-23 The Search List Dialog

Fast Find

If you have a complex design, finding a particular widget in the design area can be

difficult. Sun WorkShop Visual allows you to go straight to a widget via the dynamic

display. With the pointer over the required widget in the dynamic display, simply

press <Ctrl-G>. Sun WorkShop Visual immediately displays the widget, unfolding

the hierarchy if necessary.

Figure 2-24 shows a simple example. With the Shell keyboard focus set to “Pointer”

(as explained in “Focus Policy and Fast Find” on page 41), pressing <Ctrl-G> over

the label in the dynamic display highlights the corresponding label in the hierarchy.



Chapter 2 Building the Widget Hierarchy 41

FIGURE 2-24 Fast Find

The key sequence <Ctrl-G> is a translation and can be altered using the following

resource:

visu.fastFindTranslation: Ctrl<Key>G

Fast find does not have any effect on translations in the generated code.

Focus Policy and Fast Find

The fast find feature finds the widget which has the focus in the dynamic display. In

order for this to work on widgets such as Labels, which do not usually receive the

focus, you may need to set the focusPolicy of your Shell to “Pointer”. Do this by

going to the Settings page of the Shell widget’s resource panel.

Note – Remember to set the shell’s focusPolicy back again before generating code,

otherwise the final application may be confusing if there are different focus policies

for different shells.



42 Sun WorkShop Visual User’s Guide • May 2000

Configuring Fast Find

Ctrl-G is the translation provided by default. This is known not to conflict with any

translation in the Motif widget set. Fast find works with third party widgets which

support translations. For some widgets, however, this default translation may not be

suitable. You may change the translation for:

1. All widgets in Sun WorkShop Visual. The following resource affects all widgets:

visu.fastFindTranslation: Ctrl<Key>G

2. All widgets of a specified class. The following are examples which would affect

all widgets of the class “XmText” in the first example and “xrtTable” in the

second:

visu.XmText.fastFindTranslation:   Ctrl<Key>F

visu.xrtTable.fastFindTranslation: Meta<Key>M

3. Particular widget instances. The following is an example which would affect only

the widget named “my_text_widget”:

visu.my_text_widget.fastFindTranslation: Ctrl<Key>K

However, you may need or want to change the translation sequence for a particular

widget type if the suggested default conflicts with the behaviour of the given

widget.

Fast find translations can be configured for a widget class by specifying the input

sequence required for the class. For example:

visu.XmText.fastFindTranslation:   Ctrl<Key>F

visu.xrtTable.fastFindTranslation: Meta<Key>M

Fast find can also be configured for a widget instance:

visu.my_text_widget.fastFindTranslation: Ctrl<Key>K

Note – It is possible to accidentally disable the fast find facility by providing

translations of your own for a widget which override or replace the Sun WorkShop

Visual fast find translation.

Disabling Fast Find

The reserved value of <None> disables the application of the fast find translation for

widgets of a specified class or instance. You may wish to use this instead of altering

the values of the widget in visu_config if you find that Sun WorkShop Visual's fast



Chapter 2 Building the Widget Hierarchy 43

find mechanisms do not interact well with a given widget or widget class. Here are

two examples. The first refers to a class of widgets and the second refers to a

particular widget instance:

visu.xintGraphObject.fastFindTranslation: <None>

visu.my_text_widget.fastFindTranslation:  <None>

The following simple entry will disable fast find for all widgets in Sun WorkShop

Visual:

visu.fastFindTranslation: <None>

Third party widgets can have the fast find feature disabled by using visu_config;

simply set the “Disable Find Widget” toggle on the widget page.

Gadgets and Fast Find

The fast find facility uses translations, this means that gadgets (which neither

support translations nor have their own window) cannot be found. In such a case,

Sun WorkShop Visual will take you to the nearest ancestor of the gadget, in the

hierarchy, which does support translations.

Display Options

There are a number of ways in which you can affect the display of the Sun

WorkShop Visual hierarchy. Most of these are available from the View Menu. These

options only change the appearance of the Sun WorkShop Visual display and do not

affect your design.

Show Widget Names

This View menu option (<Ctrl-W>) displays the name of each widget beneath its

icon in the construction area as shown in Figure 2-25. The name shown is the unique

variable name assigned to the widget, not the widget name.



44 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 2-25 Show Widget Names

Show Dialog Names

Each Shell widget in the design is represented by an icon in the rectangular area at

the top right corner of the Sun WorkShop Visual screen. This rectangular area is

called the window holding area. “Show Dialog Names” (<Ctrl-D>), available from the

View menu, displays the variable name of each Shell widget beneath its icon in the

window holding area, as shown in Figure 2-26. The icon shrinks to accommodate the

name. This feature is useful in layouts with multiple windows.

FIGURE 2-26 Show Dialog Names (Window Holding Area Shown)

Left Justify Tree

This View menu option (<Ctrl-L>) changes the appearance of the hierarchy in the

construction area from a centered tree with branches spreading in both directions to

a left-justified tree with branches spreading to the right, as shown in Figure 2-27.

This feature can be useful for the rapid location of parent widgets in large designs

On Off

On Off



Chapter 2 Building the Widget Hierarchy 45

FIGURE 2-27 Left Justified Hierarchy

Shrink Widgets

This View menu option is useful when the hierarchy is large and you want to see

more of the structure in the same size window. The widgets shrink to a uniform

small square so that more fit in the construction area, as shown in Figure 2-28.

However, the distinction between widget classes and between folded and unfolded

widgets, is lost. As with the other View options, your actual design is not affected.

FIGURE 2-28 Shrink Widgets

Widget Annotations

Sun WorkShop Visual provides a method of annotating the design hierarchy to

indicate which widgets have been given a specified attribute. The View menu

contains a pullright tear-off menu labelled Annotations, as shown in Figure 2-29.



46 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 2-29 The Annotations Menu

There are six categories in this menu, each of which is a toggle button. To see which

widgets in the design hierarchy have been given one of these attributes, set the

toggle. The corresponding symbol is instantly placed next to each widget in the

design hierarchy which matches the criteria of the associated symbol:

■ For Callbacks, Pre-create preludes and Pre-manage preludes the criterion is that

the widget has been given one of these. Selecting Callbacks also annotates any

widget with a method declaration and annotates any widget which is a class

where a method has been added for any descendent children

■ For Links, the criterion is that the widget is the source of a link

■ For Search, the criterion is that the widget was found in a previous search, as

described in “Search” on page 38

Figure 2-30 shows an annotated hierarchy.

FIGURE 2-30 An Annotated Hierarchy

Configuring the Annotation Symbols

The annotation symbols are arranged around the widget icon in the hierarchy in

such a way that all six symbols can be seen clearly. Where they appear in relation to

the icon, how much space they use and the name of the pixmap are all specified in

the Sun WorkShop Visual resource file. You can change these. See Appendix D,



Chapter 2 Building the Widget Hierarchy 47

“Application Defaults”, starting on page 867 for more details on Sun WorkShop

Visual’s application resources. The relevant lines are as follows - the example here is

the search symbol:

visu*annotate_search.annotatePosition:NorthWest

visu*annotate_search.annotateWidth:10

visu*annotate_search.annotateHeight:3

visu*annotateSearchPixmap:an_search.xpm

The first line above specifies the geographical location NorthWest. This is in relation

to the widget icon and can be any of the eight primary or secondary compass points.

Structure Colors

The “Structure colors” option in the View Menu is useful when you are building a

design that uses the structured code generation features. This option color-codes

widgets that are designated as function or data structures, C++ classes, or Children

Only place holders.

“Structure colors” has a pullright submenu. Select “Show colors” on the submenu to

display your structures in the appropriate colors. Click on the dashed line at the top

of the submenu to tear it off as a reference to the color code.

Widgets that are not designated as any kind of structure are displayed against the

usual background color.

Fold/unfold Widget

“Fold/unfold” is available from the Widget menu but it affects the appearance of the

widgets in the construction area. As your hierarchy becomes larger, you may want to

fold a widget which has a number of children so that its children do not take up so

much space in the construction area. For example, in the tutorial layout, you may

want to fold the MenuBar widget because its children fill so much display space.

When a widget is folded, its children are not shown in the hierarchy. Folding

widgets is only a display convenience and does not remove widgets from your

design.

There are two ways of folding a widget. One involves using the Widget menu, the

other involves selecting a special icon in the hierarchy.



48 Sun WorkShop Visual User’s Guide • May 2000

Using the Widget Menu

Select the widget to be folded. Pull down the Widget Menu and select “Fold/

unfold” (<Ctrl-F>). The same command unfolds the selected widget if it is already

folded.

Using the Hierarchy Fold Icon

Select the fold icon in the hierarchy. This icon appears below each widget which may

have children and looks like a small box containing a minus sign (-). Clicking on this

icon folds the hierarchy below it.

When the hierarchy is folded, whether by this method or by using the Widget menu,

the fold icon changes to display a plus sign (+). Selecting this icon will unfold the

hierarchy below it.

Figure 2-31 shows a folded widget.

FIGURE 2-31 Tutorial Hierarchy So Far, with MenuBar Widget Folded

Printing Your Hierarchy

The Print Dialog lets you print out a hard copy of your hierarchy at any time while

you are developing it. The Print Dialog is shown in Figure 2-32.



Chapter 2 Building the Widget Hierarchy 49

FIGURE 2-32 Print Dialog

To print to a file, click on the “File” toggle and enter the filename in the text box

under “File”. To send to a printer, click on the “Command” toggle and enter the

command, such as lpr , in the same text box, which is now labelled “Command”.

The output is Postscript, so a Postscript printer or viewer is required.

The option menus in the Print Dialog let you specify the page size, orientation,

pages and scale. In the “Scale” option menu, the reduced scale option prints the

diagram two-thirds of its actual size. Note that if the “Scale to fit” option is not

selected, the diagram prints on as many pages as required. The “Pages” option menu

lets you print either all the hierarchies in your design if your design contains more

than one window or just the hierarchy currently displayed in the construction area.

Selecting the “Show names” toggle lets you print the variable names of the widgets.

Selecting the “Print headings” toggle puts a border around the hierarchy and prints

a title, which you can specify in the “Title” text field. The title is restricted to one line

of text.



50 Sun WorkShop Visual User’s Guide • May 2000

Using the File Browser

The file browser, shown in Figure 2-33, lets you specify the name of a Sun WorkShop

Visual file to open or save. The file browser is displayed when you select any

command that requires you to specify a filename, such as the “Open” and “Save

as...” commands from the File Menu. You can either enter a pathname in the

“Selection” field or use the mouse to select an existing filename from the “Files” list.

FIGURE 2-33 The File Browser

The “Filter” text field displays the current directory and a filename pattern to be

matched in the “Files” list. You can change the current directory and filename

pattern by editing the text in the “Filter” text field and clicking on the “Filter” button

at the bottom of the screen.

The subdirectories of the current directory appear in the “Directories” box. To

navigate through the directory structure, either click on a selection in this list and

then click on “Filter”, or double-click on the selection.

The filename pattern controls the “Files” listing. Any filenames in the current

directory that match the pattern appear in the “Files” box. You can change the

pattern by editing the text and clicking on the “Filter” button at the bottom of the

screen. If the pattern is an asterisk (* ), all files in the current directory are listed. If

the pattern is *.xd , only files that have the .xd suffix are listed. To select a file, either

click on the filename then click on the “OK” button at the bottom of the screen, or

double-click on the filename. When you select a file, Sun WorkShop Visual proceeds

with the operation you requested, such as “Open”, “Read”, or “Save as....”.



Chapter 2 Building the Widget Hierarchy 51

When you save a file or generate code, you can either select an existing filename or

specify a new filename in the “Selection” field and click on “OK”.

Note – Note that if files have been added to the current directory since the filter has

been applied, they will not appear in the “Files” listing until the filter is re-applied.

This is the case even if the dialog was closed when the files were added.



52 Sun WorkShop Visual User’s Guide • May 2000



53

CHAPTER 3

Resources

Introduction

In Motif, the appearance and behavior of a widget is controlled by its resources.

Resources include colors, fonts, images and text, titles, positions and sizes of

windows or widgets, callbacks, and all other customizable parameters that can affect

the behavior of the interface. Resources can have indirect as well as direct effects.

For example, changing the label on a PushButton also changes the size of the button

to allow space for the new label.

When you add a widget to the design hierarchy, Sun WorkShop Visual sets default

values for all of that widget’s resources. In most cases, however, you must set some

resources explicitly to make the widget useful. To make it easy to set these resources,

Sun WorkShop Visual groups resources on dialogs called resource panels.

There are two types of resource panel - “Widget” and “Core”. The Widget resource

panel contains resources relevant to the class of the selected widget. The Core

resource panel groups together resources which apply to all classes of widget

because they apply to the base classes - Core, Primitive and Manager. All widget

classes are derived from the Core class and most are also derived from either the

Primitive or the Manager class. The Core resource panel is described in “Core

Resource Panel” on page 77.

When you generate source code for your design, you can also choose to generate an

X resource file. This is a separate file containing resource settings which may be

altered by the end user. See “Setting up the X Resource File” on page 215 for details

on resource files and their generation. As well as allowing you to control which

resources should be generated into the resource file, Sun WorkShop Visual also

provides loose and tight bindings which give you greater control over the way in

which resources are assigned to the widgets in your design. This is described in

“Resource Bindings” on page 85.



54 Sun WorkShop Visual User’s Guide • May 2000

In this chapter, you will use resource panels to:

■ Display the resources of widgets in the hierarchy

■ Edit the text for Labels and the various types of button widgets

■ Designate keyboard accelerators and mnemonics

■ Designate a Help widget for the menu bar

■ Set the arrangement of rows and columns in a RowColumn widget

■ Edit resources for the Shell widget, including the main title at the top of the

dialog frame

In addition to resource panels, Sun WorkShop Visual offers special editors for laying

out widgets in a Form, setting fonts and pixmaps, editing XmString (Motif

compound string) structures and selecting colors. See Chapter 4, “The Layout

Editor”, starting on page 97 for a full description of the Layout Editor, and

Chapter 5, “” for descriptions of the font, color, pixmap and compound string

editors.

The Label Resource Panel

To make the tutorial interface meaningful, you must set the text of all labels and

buttons to something other than the default. Begin by changing the three labels in

the RowColumn widget to the text shown in Figure 3-1.

FIGURE 3-1 Labels Before and After Setting Text

First, bring up the resource panel for the first label:

1. Double click on the first Label under the RowColumn widget.

When you double click on the Label, Sun WorkShop Visual displays its resource

panel, as shown in Figure 3-2.

Labels with default text After setting text



Chapter 3 Resources 55

FIGURE 3-2 Label Resource Panel

Resource panels usually have several pages. The option menu in the top left corner

of the panel is a page selector. If the “Display” page is not already selected:

2. Select the “Display” page.

Now, edit the text of the label.

3. Double-click in the text box opposite “Label”.

Editing text in these boxes works in much the same way as assigning widget names.

When you double-click, the first word in the box is highlighted. Triple-clicking

highlights all the words in the box. Entering new text replaces the highlighted text.

4. Type: Topping 1:

Note – Do not press <Return>. Labels can contain multiple lines and pressing

<Return> inserts a newline character into your label. If you unintentionally press

<Return>, you can backspace to remove the newline.

5. Click on the “Apply” button at the bottom of the resource panel.

Resource file
masking toggles

Buttons to show
dialogs

Inactive
resources

Widget/Gadget
toggles

Page
selector

General
commands

“Apply”
button

Text boxes
for typing
new resource
values



56 Sun WorkShop Visual User’s Guide • May 2000

The “Apply” command sets the new resource value. When you click on “Apply”, the

dynamic display shows the new label text.

Note – If your locale is not the default “C” and you are using international text in

your labels, the text will not appear correctly until you have set up the fontlist

resource required for your particular language. See “Setting the Application Font

Resource” on page 624 for more information. See Chapter 22, “Internationalization”,

starting on page 615 if you are not sure whether this applies to you.

Regions of the Resource Panel

Although different classes of widgets have different resource panels, all resource

panels have the same basic structure.

Annotations

As you change resources, a change bar appears at the far right of the resource panel,

as shown next to the “Label” resource in Figure 3-3.

FIGURE 3-3 Annotated Resources



Chapter 3 Resources 57

After you press “Apply”, the change bar alters in appearance to that shown next to

the “Font” resource in Figure 3-3.

Resources which will be honored in Java code have a picture of a steaming coffee

cup next to them in the resource panels, as shown in Figure 3-3. The same

symbol with the letter “S” over it indicates that the resource can be mapped to

the property of a Swing component. For more information on using Sun WorkShop

Visual for Java code generation, see Chapter 10, “Designing for Java”, starting on

page 313.

Note – If Sun WorkShop Visual cannot allocate enough colors for its icons it will use

the letter ‘J’ to indicate Java resources.

The tick and cross symbols shown in Figure 3-3 will only appear when running in

Microsoft Windows mode. The tick indicates that the resource is applicable to

Microsoft Windows and the cross indicates that it is not. This is explained more fully

in “Visual Compliance Indicators” on page 363.

Resource Names

Resource names are shown on the left of a resource panel. Sometimes these names

are simply labels and sometimes they are buttons which, when pressed, display a

dialog relevant to the resource type. In Figure 3-2 above, all the resource names are

buttons. Any resources that do not apply to the selected widget are grayed out.

Resource Values

Current resource values are shown in the boxes on the right. These boxes are either

single-line text fields, multi-line text boxes or menu options. You can edit resource

settings by typing into these boxes or selecting from an option menu. Default values

are shown in parentheses.

Masking Toggles

The unlabeled toggle to the left of each resource name is the resource masking toggle
which can be used at the code generation stage to mask resources in or out of the X

resource file. This topic is discussed in “Masking Resources” on page 223. You do

not have to set these toggles in order to set resource values.



58 Sun WorkShop Visual User’s Guide • May 2000

Page Selector and Toggle Switches

The main section of the resource panel usually has several pages. The option menu

at the top of the panel is a page selector which lets you move from one page to

another. The Label panel also has a toggle switch which can be used to designate this

widget as a gadget. The widget-gadget toggle appears in the resource panels for

other widget classes if the widget class has a gadget counterpart. Some widget

classes also have other toggle switches appropriate to the class.

General Commands: Apply

The four buttons at the bottom of the panel offer general commands. “Apply” causes

your new resource settings to take effect. If you do not click “Apply”, your edited

settings are lost when you select another widget or close the resource panel.

Undo, Close, Help

“Undo” makes all edited settings revert to the last applied settings. “Close” makes

the resource panel disappear. “Help” displays the appropriate help screen.

Note that in Figure 3-3, the “Apply” button is highlighted. Pressing <Return> when

a resource panel has the input focus generally executes the highlighted command.

However, <Return> does not work in this way when you type into a multi-line text

box, because the text box accepts <Return> as a newline character.

Now set the text of the other two Label widgets. You do not have to close the Label

resource panel. However, you may need to move it if it covers the construction area.

1. Select the second Label widget.

Note that the “Label” resource on the panel changes to reflect the current setting of

the newly selected widget.

2. Double-click in the “Label” box in the resource panel to highlight the default
label.

Additional ways to edit in text boxes include: dragging with the mouse to highlight

text, using <Delete> to delete highlighted text, or just typing at the current cursor

location.

3. Type: Topping 2:

4. Click on “Apply”.

5. Repeat Steps 1 through 4 for the third Label, using the text: Topping 3:



Chapter 3 Resources 59

6. Click on “Close”.

“Close” makes the resource panel disappear.

Multiple Selection and Resources

If you have more than one widget selected you can still set resources - in both the

core and widget resource panels. In this case you will only be able to set those

resources which are relevant to all the selected widgets. Sun WorkShop Visual

decides which resources are relevant by finding a widget class which is common to

all the selected widgets. In the case of widgets which are very different, for example

a Button and a MenuBar, the only class they have in common is the low-level Core

widget class. In such a case, you would only be able to change Core resources.

Resource Panels in Microsoft Windows
Mode

When Sun WorkShop Visual is running in Microsoft Windows mode, it makes sure

that the design you are creating is Microsoft Windows compliant. Motif resources do

not map directly to Microsoft Windows resources. Some resources can be translated

into something similar on Microsoft Windows (which may not necessarily be a

resource), some cannot.

Resources are marked in the resource panels, according to their relevance to

Microsoft Windows, in two ways:

■ Annotation icons (tick or cross)

■ Color

Resources which are not applicable to Microsoft Windows have their fields colored

pink in the resource panel. You can still enter values into these fields and they will

be generated for Motif, but nothing will be generated for Microsoft Windows. You

can change the color of these non-Microsoft Windows resource fields by changing an

entry in the Sun WorkShop Visual application resource file. See “Setting the Color of

Non-Microsoft Windows Resource Fields” on page 389 for details on how to do this.



60 Sun WorkShop Visual User’s Guide • May 2000

Button Widget Resources

Use the same procedure as that used for the Label widgets to set the labels of

ToggleButtons, CascadeButtons and PushButtons. Set labels for the ToggleButtons in

the work area as shown in Figure 3-4.

FIGURE 3-4 ToggleButtons Before and After Setting Labels

1. Double click on the first of the set of three ToggleButtons to bring up its resource
panel.

You can also bring up the selected widget’s resource panel by selecting the

“Resources” item in the “Widget” Menu, by pressing the Resources toolbar icon or

by pressing <Return> when the widget has the input focus in the construction area.

2. Click twice in the “Label” box and type: Vanilla

3. Click on “Apply”.

4. Select the second ToggleButton.

5. Click twice in the “Label” box and type: Chocolate

6. Click on “Apply”.

7. Select the third ToggleButton.

8. Click twice in the “Label” box and type: Strawberry

9. Click on “Apply”.

Default labels After setting



Chapter 3 Resources 61

Shared Resource Panels

Notice that the resource panel for a ToggleButton looks the same as for a Label. This

is because, in Motif, the ToggleButton widget class is derived from the Label class.

Another way of saying this is that the ToggleButton is a specialized kind of Label,

also called a subclass of Label. The Label is the ToggleButton’s superclass.

Widget Class Inheritance

The ToggleButton class inherits most of its characteristics, including most of its

resources, from the Label class. By means of inheritance, all Motif widget classes are

organized in a hierarchy known as the class hierarchy. The class hierarchy is an

abstract hierarchy of available widget classes and should not be confused with the

design hierarchy you are building on the screen.

Several types of buttons - ToggleButtons, PushButtons, CascadeButtons and

DrawnButtons - are derived from the Label class. You can set the text of all widgets

of these classes using the same resource panel without having to close and re-open

it.

Set labels for the radio buttons (the ToggleButtons in the RadioBox) as shown in

Figure 3-5.

FIGURE 3-5 Radio Buttons Before and After Setting Labels

1. Double click on the first toggle on the RadioBox to bring up its resource panel.

2. Click twice in the “Label” box and type: Large

3. Click on “Apply”.

4. Select the second radio button.

5. Click twice in the “Label” box and type: Small

6. Click on “Apply”.

Default labels After setting



62 Sun WorkShop Visual User’s Guide • May 2000

If you assign a label to the radio button which is longer than the default label, the

Frame widget changes size to accommodate the new width. This represents a chain

reaction: the ToggleButtons resize to accommodate longer text strings, then their

RadioBox parent and its Frame parent resize to fit in turn. Motif does all this

automatically. This behavior is not obvious in the tutorial layout but it is illustrated

in Figure 3-6.

FIGURE 3-6 Radio Buttons With Longer Labels

Use the same Label resource panel to set the label resources of the CascadeButtons

as shown in Figure 3-7.

FIGURE 3-7 Menu Bar Before and After Setting CascadeButton Labels

7. Select the first CascadeButton and assign it the label: Procedures

8. Select the second CascadeButton and assign it the label: Help

Finally, set the labels of the three PushButtons in the button box, as shown in Figure

3-8. PushButtons also resize automatically to accommodate their labels.

FIGURE 3-8 Button Box Before and After Setting Resources

9. Select the first PushButton and assign it the label: Cone

10. Select the second PushButton and assign it the label: Dish

11. Select the third PushButton and assign it the label: Cancel

Default labels Longer text strings

Default labels After setting

Default labels After setting



Chapter 3 Resources 63

Tip

Remember to click on “Apply” after setting resources, or your new settings will

have no effect. If you do not apply your new settings before selecting another

widget, Sun WorkShop Visual displays the warning shown in Figure 3-9.

FIGURE 3-9 Warning that New Resources Were Not Applied

Click “Cancel” on this display to return to the resource panel.

Resources for Menu Items

Next, set resources for the buttons in the pulldown menus of the menu bar. So far

you have set only the CascadeButton labels and the pulldown menus look like

Figure 3-10.

FIGURE 3-10 Pulldown Menus After Setting CascadeButton Labels

1. Select the first PushButton child of the first Menu widget.

2. Change the “Label” resource to: Wash Dishes...

By convention, the ellipsis (...) is used to indicate that a menu item brings up an

additional dialog box before the command is executed.

3. Select the second PushButton and assign it the label: Count Money

4. Select the third PushButton and assign it the label: Exit

5. Select the PushButton child of the second Menu widget.



64 Sun WorkShop Visual User’s Guide • May 2000

6. Assign it the label: About This Layout...

The pulldown menus now look like Figure 3-11.

FIGURE 3-11 Pulldown Menus After Setting PushButton Labels

In the following sections, you will:

■ Designate <Ctrl-E> as an accelerator for the “Exit” button

■ Put a visible “Control+E” label on the “Exit” button to help the user remember

the accelerator

■ Designate “H” as a mnemonic for “Help” and “A” as a mnemonic for “About

This Layout”

The Keyboard Page

Accelerators and mnemonics are keyboard resources which are found on a separate

page of the Label resource panel. Use the following steps to set an “H” mnemonic on

the “Help” CascadeButton:

1. Select the “Help” CascadeButton.

2. Select “Keyboard” from the resource panel’s page selector.

This brings up the “Keyboard” page, shown in Figure 3-12. The resources that are

not grayed out are the ones which apply to the CascadeButton class.



Chapter 3 Resources 65

FIGURE 3-12 Keyboard Resources for the CascadeButton

Mnemonics

Sun WorkShop Visual lets you set keyboard mnemonics which work like those in the

Sun WorkShop Visual interface. A mnemonic can be any character, even one which is

not in the label. It is easiest for the end user if you use a character which appears in

the label, preferably the first character. Mnemonics must be unique within a menu

bar or menu.

1. Double-click in the “Mnemonic” box.

2. Type: H

3. Click on “Apply”.

4. Select the PushButton child of the “Help” menu.

5. Double-click in the “Mnemonic” box.

6. Type: A

7. Click on “Apply”.

Note that the “H” and “A” characters now appear underscored, which is Motif’s

way of indicating a mnemonic. This lets the user invoke the “About This Layout”

command in two ways: with the mouse, or by pressing <Meta-H>, <A>.

You may have to reset the widget in order for the mnemonic to show in the dynamic

display. Do this by checking that the Cascade Button is still selected and either

pressing the Reset button on the toolbar or choosing “Reset” from the Widget menu.



66 Sun WorkShop Visual User’s Guide • May 2000

Accelerators

Now add the keyboard accelerator for the Exit button. As in Sun WorkShop Visual,

an accelerator immediately executes a menu command, whether or not the menu is

displayed.

1. Select the “Exit” button (the third PushButton under the first pulldown Menu).

2. Double-click in the “Accelerator” box.

3. Type the text string: Ctrl<Key>E

4. Click on “Apply”.

These steps make the accelerator active. When the interface is running, <Ctrl-E> will

have the same effect as the “Exit” button. The exact syntax of the accelerator is

important. If a syntax error occurs, Sun WorkShop Visual displays the error message

shown in Figure 3-13 when you try to apply.

FIGURE 3-13 Accelerator Syntax Error Message

Accelerator syntax is the same as that used for translation tables. This topic is

discussed in “Translations and Actions” on page 190.

Accelerator Text

A related resource is accelerator text. This resource displays extra text to the right of a

menu option to remind the user of its accelerator. Since accelerator text is just a

display convenience, you do not have to use any particular syntax. “Control+E”,

“Ctrl-E” and “^E” are some common forms.

1. Double-click in the “Accelerator Text” box.

2. Type the text string: Control+E

3. Click on “Apply”.

When you pull down the left menu, you now see the new labels on all the buttons

and the designated accelerator text on the Exit button, as shown in Figure 3-14.



Chapter 3 Resources 67

FIGURE 3-14 Pulldown Menus After Setting Resources

4. Click on “Close”.

Designated Help Widget

The Motif Style Guide suggests designating one CascadeButton child of the MenuBar

as the Help widget. The Help widget always appears at the right end of the menu

bar.

1. Double click on the MenuBar to bring up its resource panel.

The MenuBar is a specially configured RowColumn and shares its resources. The

resources that are not grayed out apply to the MenuBar.

2. Select the “Display” page if not already selected.

To designate a Help widget:

3. Double Click in the “Help widget” field and type: help_cascade

Accelerator text for
<Ctrl-E> accelerator

“H” and “A”
mnemonics



68 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 3-15 Display Resources for the MenuBar

4. Click “Apply”.

The Help widget must be one of the CascadeButtons in the menu bar. You must type

the CascadeButton’s variable name exactly. If you make a mistake, Sun WorkShop

Visual does not accept the entry.

The dynamic display does not show this change automatically. To see the effect of

designating the Help widget, resize the dynamic display.

Leave the MenuBar resource panel open.



Chapter 3 Resources 69

RowColumn Resources

By default, the RowColumn widget has one vertical column. Its resources can be set

to change it from this default state to an arrangement of three horizontal rows, as

shown in Figure 3-16.

FIGURE 3-16 RowColumn Array, Before and After Setting Explicit Resources

To achieve the result shown in Figure 3-16, you must also set the size of the

TextFields.

1. Select the three TextField widgets in the hierarchy.

You can do this either by dragging a rectangle around the widgets or by selecting

one widget and then holding down the Shift key while selecting the other two.

Note that when you select a TextField widget, the MenuBar resource panel, which is

still present on the screen, becomes inactive. Its “Apply” button is grayed out and if

you try to type into its text fields, your machine beeps. The panel becomes active

again whenever a widget of the same base class (RowColumn) is selected.

2. Bring up the TextField resource panel and select the “Display” page.

Invoke the resource panel by double-clicking over one of the TextFields, selecting

“Resources” from the “Widget” menu or pressing the Resources toolbar icon.

The TextField is a variant of the Text widget and shares many of its resources. The

distinction is that Text widgets can contain multiple lines of text, while TextFields

are limited to a single line. Because these classes have no gadget counterparts, this

resource panel has no widget-gadget toggle. There is, however, a toggle to change

the widget from TextField to Text. This toggle lets you change from one variant of

the Text widget to the other without disturbing your hierarchy or resource settings.

RowColumn with default
resources

After setting explicit
resources



70 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 3-17 “Display” Page of TextField Resource Panel

We want to make the text field boxes narrower. The size of the text field boxes is

determined by two factors: the TextField’s “Columns” resource and the rules

imposed by its RowColumn parent. Begin by setting the “Columns” resource to a

smaller number:

3. Double-click in the “Columns” box.

4. Type: 8

5. Click on “Apply”.

The TextFields are now narrower.

The “Columns” resource of a TextField or Text widget only affects the size of the box

and not the number of characters the user can enter. If you want to limit input to a

specific number of characters, set the “Maximum length” which defaults to a very

large number.



Chapter 3 Resources 71

The RowColumn Resource Panel

To get the layout of three horizontal rows, you need to set the resources of the

RowColumn.

1. Select the RowColumn widget in the construction area.

If you already have the MenuBar resource panel up on your screen, it becomes active

again although its title is changed to “RowColumn”. If it is not on the screen, display

it by double-clicking on the RowColumn again.

2. Select the “Settings” page.

FIGURE 3-18 “Settings” Page of RowColumn Resource Panel

The “Settings” page, shown in Figure 3-18, lists resources that have a limited

number of possible settings. Therefore, it has option menus instead of text fields in

its right column.

3. In the “Orientation” option menu, select “Horizontal”.



72 Sun WorkShop Visual User’s Guide • May 2000

4. In the “Packing” option menu, select “Column”.

“Horizontal” orientation lays the RowColumn out in rows rather than columns.

“Column” packing is necessary if the RowColumn is to have more than one row or

column. To see the effect of these two resources:

5. Click on “Apply”.

At this point, the RowColumn appears in a horizontal row, with all the cells the

same size. When “Orientation” is “Horizontal”, the sense of rows and columns is

reversed. Therefore, to make three rows you must set the “Columns” resource.

6. Select the “Display” page.

7. Double-click in the “Columns” box and type: 3

8. Click on “Apply”.

The result is shown in Figure 3-19.

FIGURE 3-19 RowColumn Portion of the Dialog with Horizontal Orientation

Shell Resources

The Shell widget exists primarily as an interface between your application and the X

window system. Its behavior is mainly controlled by the window manager and by

the widgets it contains. However, it does have a few interesting resources of its own.

● Double click on the Shell widget, myFirstShell, to bring up its resource panel.

At the top of this panel is a toggle switch which sets the type of Shell widget.

Although there are three Shell widgets on the widget palette, they are actually the

same but with this toggle set differently.



Chapter 3 Resources 73

Shell Types

Although every window starts with a Shell widget, there are different types of

windows and different types of Shell widgets. Sun WorkShop Visual provides the

following Shell widgets, as shown in Figure 3-20:

■ Application Shell – The main window of the application, which is the first one

displayed when the application runs

■ Top Level Shell – A window other than the Application Shell which remains visible

when the Application Shell is iconified and can be iconified independently

■ Dialog Shell – A window which cannot be iconified independently of the

Application Shell

FIGURE 3-20 Shell Widgets on Palette

Note – The behavior described above applies to mwm. With twm, although Shell

behavior is the same, it looks different because twm can turn Dialog Shells into

pseudo-icons to reduce their size. The pseudo-icons are just a visual convenience for

cleaning up your display. Internally, they are distinguished from true icons and they

look different on your screen.

All windows in the design close when the Application Shell is closed.

Examples of Shell Types in the Sun WorkShop Visual
Interface

To see some possible uses of different Shell types, look at the Sun WorkShop Visual

interface itself. The main screen with the widget palette and construction area is the

Application Shell. Dialogs, resource panels and the Layout Editor screen are all

Dialog Shells. You cannot iconify these windows separately using the window

manager.

To remove them from the display, you must close them, either using the window

manager or by clicking on a “Close” button, which closes the window internally via

an “Activate” callback. All open Dialog Shells disappear when the main window is

iconified and reappear when it is restored.

Dialog Shell Top Level Shell Application Shell



74 Sun WorkShop Visual User’s Guide • May 2000

The “Palette Icons” help panel is an example of a Top Level Shell. While it does not

come up automatically when Sun WorkShop Visual starts, it can still be iconified

independently once you have displayed it. Its popup subwindows, like all Dialog

Shells, are children of the main Application Shell and do not close or iconify with the

“Palette Icons” help panel.

Shell Type in the Dynamic Display

The Shell type is not reflected in the dynamic display. All windows created for

dynamic display are really Dialog Shells and cannot be iconified independently. You

can configure Sun WorkShop Visual to use Top Level shells rather than Dialog Shells

- see Appendix D, “Application Defaults” for details. The generated code creates the

type of Shell you specify for each window at run time.

Application Shell Requirement

You should have at least one Application Shell in each design. If you have no

Application Shell in your design, the application will not display any windows. Sun

WorkShop Visual shows you a warning message at code generation time if you do

not have an Application Shell.

You can have more than one Application Shell in your design. In this case, the main()
program generated by Sun WorkShop Visual creates all the Application Shells but

displays only one of them. Sun WorkShop Visual cannot tell which one you want

displayed first. If you have more than one Application Shell in your design, you may

have to write your own main() program or edit the generated one to start with the

correct Application Shell. To get similar results without ambiguity, use only one

Application Shell for your first window, use Top Level Shells for other primary

windows and use callbacks or links to display all windows but the first. Using more

than one Application Shell is not recommended.

Every application must have at least one (and usually only one) Application Shell
which serves as the main window and as the interface of the application to the X

window system.

Subsidiary windows can be either Dialog Shells or Top level Shells. This distinction is

explained more fully in “Shell Types” on page 73.



Chapter 3 Resources 75

Setting Resources for the Main Shell

The main Shell in your design, myFirstShell, is already an Application Shell. You just

need to change its title:

1. Display the Shell‘s resource panel, if it is not already displayed.

2. Select the “Display” page.

3. Double-click in the “Title” box and type: Ice Cream Shop

FIGURE 3-21 “Display” Page of the Dialog (Shell) Resource Panel

4. Click on “Apply”.

5. Click on “Close”.

The layout now looks like Figure 3-22.



76 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 3-22 Tutorial Interface So Far

Setting Resources for the Secondary Window

In your application, you have another Shell for the Help window. This Shell is a

Dialog Shell. You need to change the title of this window.

To view its resource panel:

1. Double click on the Shell for the Help window.

2. Select the “Display” page.

3. Double-click in the “Title” box and type: Help

4. Click on “Apply”.

5. Click on “Close”.

Navigating in the Resource Panels

Because Motif has so many resources, Sun WorkShop Visual uses multiple-page

resource panels to display them on the screen. You may find it useful to refer to

Chapter 27, “Widget Reference”, starting on page 743 while you are becoming

familiar with the structure of the resource panels. That chapter has a list of resources

by widget class and page.



Chapter 3 Resources 77

Some resources that are not available on the resource panel of a specific widget class

can be found on the Core resource panel, which is discussed in “Core Resource

Panel” on page 77.

Settings

In general, any multiple-choice resource - one with a limited number of settings - is

found on the “Settings” page, where you can set it with an option menu. All other

resources that require you to type in a new value or call an additional dialog to set

the new value are divided among the other pages. Except for the “Settings” page,

resources are organized loosely by topic.

Display, Margins

Resources that affect the widget’s appearance are generally found on the “Display”

page. These resources include text, colors, fonts and dimensions. The Core resource

panel also includes some resources that affect the dimensions and the location of the

widget.

Labels and Label derivatives have enough display resources to require a second

page. The Label resource panel divides these resources into a “Display” page,

containing color, font, text and pixmap resources, and a “Margins” page, containing

size and margin width resources.

Keyboard

The “Keyboard” page lets you set keyboard mnemonics and accelerators for widgets

that can have them.

Core Resource Panel

Sun WorkShop Visual gives you access to resources for these broad superclasses via

a single resource panel, the Core resource panel. To bring up the Core resource panel

for a specific widget:

1. Select a widget.

2. Pull down the Widget Menu and select “Core resources...”.



78 Sun WorkShop Visual User’s Guide • May 2000

A page from the Core resource panel is shown in Figure 3-23.

FIGURE 3-23 “Display” Page of the Core Resource Panel

Display Page of the Core Resource Panel

The “Display” page of the Core resource panel has basic color and pixmap resources.

For example, you can set the colors for the widget’s foreground, background,

highlighting and shadows. You will do this in Chapter 5, “Other Editors”.

Dimensions Page of the Core Resource Panel

The “Dimensions” page offers resources that affect the widget’s size and location on

the screen. Class-specific dimension resources may override the settings on the Core

panel. You may want to experiment with the effects of setting “Shadow thickness”

on a TextField or “Highlight thickness” on a PushButton.



Chapter 3 Resources 79

Settings Page of the Core Resource Panel

The “Settings” page offers miscellaneous multiple-choice settings which apply to

most widget classes. This page also allows you to change the “Map when managed”

setting, which works in conjunction with the managed toggle, described below.

Code Generation Page of the Core Resource Panel

The “Code Generation” page gives you increased control over the generation of

code. For example, you can designate a specific widget as static, local, or global. See

“Accessing Widgets in Callbacks” on page 180 for a reason to change a widget‘s

access. If you are using C++, you can also designate it as private, protected, or

public. “Widget Member Access Control” on page 280 discusses C++ access. The

“Code Generation” page also allows you to create your own derived C++ classes.

This subject is described in detail in “C++ Classes” on page 254.

Managed Toggle

The managed toggle also appears on the “Code Generation” page. By default all

widgets are generated as managed, with the exception of the “Apply” button in a

SelectionBox that is not a child of a Dialog Shell. This state can be modified using the

“Managed” toggle in the “Code generation” page of the Core resource panel.

Usually this just means that the code to manage the widget is omitted from the

generated code. For widgets or gadgets that are components of composite widgets,

the generated code explicitly unmanages the widget if the toggle is off, since the

toolkit always creates these widgets as managed. For the “Apply” button of a

Selection Box, code to explicitly manage the button is generated if the toggle is on.

See “Manipulating Widgets” on page 181 for more information on widget

manipulation.

Include in Resource Bindings Toggle

The toggle labelled “Include in Resource Bindings” refers to the generation of

resources for the selected widget. This is explained in full in “Tight Bindings” on

page 92.



80 Sun WorkShop Visual User’s Guide • May 2000

Drop Site Page of the Core Resource Panel

This is where you can specify a drop site. A drop site is a widget that is prepared to

receive certain types of data from other widgets by means of the drag and drop

mechanism introduced in Motif 1.2. Drag and drop allows you to pass information

between widgets by selecting the data and dragging it using the mouse.

The initialization of a drag is a dynamic function that would normally be done from

within a callback or action function. Sun WorkShop Visual provides simple support

for the reception of a drop but not for the source of a drag.

For details on how to set up a widget as a drop site, see “Drag and Drop” on

page 188.

FIGURE 3-24 The Drop Site Page



Chapter 3 Resources 81

Constraints Panel

Motif has two classes of widget, the PanedWindow and the Form, which are called

constraint widgets. Widgets of these classes have a special set of resources, called

constraint resources, that control the size and position of their children. A constraint

widget maintains a separate set of constraints for each of its children. Sun WorkShop

Visual lets you set them as if they were resources of the children.

To view constraint resources for any child of a constraint widget:

1. Select a child of a contraint widget (i.e. a child of the form).

2. Pull down the Widget Menu and select “Constraints...”.

FIGURE 3-25 Constraints Panel

Figure 3-25 shows the default constraints resource panel for the Frame child of the

Form in the tutorial layout. This panel shows that the Frame’s top is attached to the

top of the Form and its left side is attached to the left side of the Form, with an offset

of 0 pixels. This is why it is located at the upper left corner of the Form. The bottom

and right side of the Frame are unconstrained.

The constraints resources which the Form imposes on its children interact in

complex ways and the preferred way of setting them is by using the interactive

Layout Editor, which is discussed in Chapter 4, “The Layout Editor”. The constraints

resource panel is mainly useful for viewing the constraints which have been set, as



82 Sun WorkShop Visual User’s Guide • May 2000

an adjunct to the Layout Editor. Advanced users may want to set values on the panel

itself. This can be done as with any other resource panel, by typing in the new value

and clicking on “Apply”.

The constraints resource panel for children of the PanedWindow displays a different

set of values. This panel is discussed in the section on the PanedWindow in

Chapter 27, “Widget Reference”, starting on page 743.

Default Resource Settings

You may have noticed that Sun WorkShop Visual displays default resource settings

in parentheses. Default settings are different from explicit settings, even if the values

are the same when you build the interface. The difference is that default settings are

not added to the generated code or X resource files. If your interface uses default

settings, and is then run on a machine other than the one used to design it, it will

use the Motif defaults for the machine on which it is running.

Many resources, such as the label on a PushButton or the number of columns in a

RowColumn, are unlikely to cause portability problems. Others, such as dimensions

and colors, are machine-specific. To make your interface portable, you must either

use default values for such resources or put them into an X resource file at the time

of code generation so they can be edited for each machine. This is discussed in

“Setting up the X Resource File” on page 215.

Figure 3-26 shows a resource panel with some resources which have been explicitly

set either in the current Sun WorkShop Visual session or in a previous one. The

explicit settings are those marked with a change bar.



Chapter 3 Resources 83

FIGURE 3-26 Resource Panel with Explicitly Set Resources

To revert to the default setting for a resource for which you have entered an explicit

setting:

1. Delete all text in the resource’s text field on the resource panel.

2. Click on “Apply”.

To select the default value for a resource on the “Settings” page:

3. Select the option displayed in parentheses from that option menu.

4. Click on “Apply”.

Note – The default value in this case will be the value currently being used in the

dynamic display (i.e. the last value assigned to the resource). When the application

is run outside of Sun WorkShop Visual the system default will be used. To see the

system default in Sun WorkShop Visual, you will need to reset the widget.



84 Sun WorkShop Visual User’s Guide • May 2000

The Reset Command

When you set any resource, Sun WorkShop Visual tries to apply that value to the

selected widget in your dynamic display. Note that what you see in the dynamic

display is a collection of widget instances. Sun WorkShop Visual does not draw

pictures of widgets but actually creates them, using the same Motif function calls

which your interface will use when it is running. When Sun WorkShop Visual sets a

resource, it makes the appropriate Motif function call to set that resource’s value for

that widget.

Usually, the result of setting a value is the same as creating the widget with that

value in the first place. However, this is not always the case. Sun WorkShop Visual

has a command on the Widget Menu, “Reset” (<Ctrl-T>), which destroys the selected

widget and its children and recreates them with the most recently applied resource

settings. If your layout does not look or behave as expected, try using the “Reset”

command. The following steps demonstrate a case where “Reset” is required:

1. Double click on the “Help” CascadeButton widget in the hierarchy to bring up its
resource panel.

2. Select the “Keyboard” page.

3. Remove your previously set mnemonic by deleting all text from the “Mnemonic”
text field.

4. Click on “Apply”.

Notice at this point that the “Mnemonic” text field reverts to the <Default> setting.

However, the “Help” button in the dynamic display still has an underscore under

the “H”, indicating a mnemonic which is no longer present. To update the display:

5. Select “Reset” from the Widget Menu.

Resetting only affects the selected widget and its children. Resetting a widget that is

low in the hierarchy may leave inaccuracies elsewhere in the dynamic display. If you

set many resources, it is wise to reset the Shell to guarantee that what you see is

what you get.

The “Reset” command is particularly useful when using the Form widget and its

attachment resources. This topic is discussed in Chapter 4, “The Layout Editor”.

6. Reinstate the mnemonic.



Chapter 3 Resources 85

Rejected Resource Settings

Motif and other widget toolkits have rules which control legal settings of resources

and, since Sun WorkShop Visual works with real instances of widgets and not

simulations, any new resource setting that does not satisfy these rules is rejected.

The rules include valid values for the particular widget, requirements of a parent

widget such as a RowColumn and requirements of the machine you are using to

build your design.

For example, if you are designing an interface for use on a large-screen workstation,

you might want to set a dimension resource to a large number of pixels. If you are

designing on a smaller-screen machine, you may find you cannot set the value you

want even though the interface will run on the large-screen machine later. (In this

situation, you could still set the width you want by using an X resource file.)

When Motif rejects a new resource setting, it does not revert to the previous setting

but calculates a new value based on defaults and other resource settings in the

hierarchy. This new value is reflected on the resource panel and in your dynamic

display.

Resource Bindings

Previously in this chapter you have seen how to set resources for individual widgets.

“Setting up the X Resource File” on page 215 describes how Sun WorkShop Visual

can generate a resource file which contains all the resources you have set in the

design.

The way resources and widgets are tied together is often referred to as a binding. One

line is generated for each resource which has been explicitly set and which you have

asked to be generated into a resource file. See “Resource File Syntax” on page 235 for

a description of the format of resource files. “Code Generation Options” on page 218

shows how you can tell Sun WorkShop Visual which resources to generate into the

resource file.

There are two methods of setting resources in Sun WorkShop Visual:

1. Setting resources on individual widgets in the resource panel

2. Using loose bindings



86 Sun WorkShop Visual User’s Guide • May 2000

Which method you choose depends on the number of widgets you wish to use a

resource. In large designs you may want all widgets of a particular class to look the

same (all buttons to be green, for example). Loose bindings provide the means of

doing this. Resources which apply to individual resources should be set using the

resource panel.

Tight bindings are a way of avoiding conflicts in an application’s resource file. This

is explained in more detail in “Tight Bindings” on page 92.

Loose Bindings

Setting a loose binding lets you specify a default resource that will be used if no

explicit resource has been set. The loose bindings dialog allows a lot of flexibility

because widgets can be referred to by their widget name, their class name or even by

a wildcard indicating that any widget fitting the description is applicable. You can

also specify how general to make the binding. This is explained in more detail in the

example below. Loose bindings are useful if, for example:

■ You wish all buttons in your design to have the same background color

■ You wish all buttons in a particular RowColumn to be displayed in the same font.

■ You wish all “Help” or “Ok” buttons in your application to share the same label

You can achieve this by setting up loose bindings. This can be explained with a

simple example.

Example Loose Binding

1. Create a widget hierarchy containing a TopLevel Shell, a Form, another Form and
three PushButtons, as shown in Figure 3-27.

FIGURE 3-27 Hierarchy for Loose Bindings Example



Chapter 3 Resources 87

2. Name the Shell “MyShell” and one of the Forms “MyForm”, as shown.

For resources, the widget name is the name that will be used. Setting the variable

name, however, automatically sets the widget name using the same name.

3. Select the Shell, the Form named MyForm and the first Button.

Select one and then hold the Shift key down while selecting the others.

4. Select “Loose bindings” from the “Widget” menu.

The Loose Bindings dialog appears.

FIGURE 3-28 Loose Bindings Dialog

Loose Bindings Dialog

The Loose Bindings Dialog, shown in Figure 3-28, consists of the following areas:

Menubar

This contains three menus: “File”, “Edit” and “Options”. The “File” menu contains

commands to Load, Merge and Inherit bindings from external resource files. These

operations are described in more detail in “Resources from External Resource Files”

on page 90. The “Edit” menu allows you to delete bindings as well as cut, copy and



88 Sun WorkShop Visual User’s Guide • May 2000

paste them. The cut and paste mechanism is important because the order of the

bindings in the list is the order they are generated. The order of resources in the

resource file is significant because the file is read in order by the X toolkit. If there

are any conflicting resources, the later resources override previous ones. The

“Options” menu contains one option “Use Inherited Bindings” which allows you to

decide whether or not to use any inherited bindings which appear in your loose

bindings list. This toggle is set by default.

Currently Defined Bindings

At the top of the window is the list of currently defined loose bindings. Beneath the

list there is an up and a down arrow button. Use these to change the order of the

bindings in the list. The order in which the bindings appear in this list is the order

they are generated into the resource file.

Binding Under Construction

Underneath the list of existing bindings there is a scrolling window of option menus

representing a binding for the selected widgets in the widget hierarchy.

Resource Name and Value

Beneath the representation of the binding there are two text boxes - one for the name

of the resource and one for its value.

Resource Panels

At the bottom of the dialog there are buttons to bring up the core and widget

resource panels. The resource panels relate to the bottommost widget that you have

selected in the widget hierarchy (also known as the leaf widget). There is also a

button to “Add” the binding to the list of those currently defined.

Creating the Binding

To continue with our example:



Chapter 3 Resources 89

1. Change the option menus in the Loose Bindings dialog so that the Shell and the
Form are referred to by name (“MyShell” and “MyForm” respectively) and check
that an asterisk separates each widget reference.

This shows a binding which refers to the Shell and one of the Forms by name but to

the button by its Motif class name. This means that the binding refers to all the

buttons below the named Form. In between each widget, we have selected the

asterisk (*), to indicate that there can be other widgets between the named ones. The

other Form is included in this way.

FIGURE 3-29 Widget Options for Loose Bindings

2. Press “Widget Resources”.

The Button widget resource panel is displayed.

3. Set the Label resource to: Bound . Press “Apply” and close the resource panel.

The “Resource Name” text box now contains the text “labelString” which is the

name for the Label resource recognized by X Windows. The “Resource value” text

box contains the text “Bound” which is the value you typed into the resource panel.

The following line is added to the loose bindings list:

XApplication*MyShell*MyForm.XmPushButton.labelString: Bound

4. Press “Apply”.

When you next generate a resource file this will appear in it. In plain English this

means:



90 Sun WorkShop Visual User’s Guide • May 2000

All Push Button widgets which are children of Forms named “MyForm” which are

descendants of Shells named “MyShell” (with any number of widgets in between)

which are in an application of class “XApplication” will have their Label set to

“Bound”.

Resources from External Resource Files

The Loose Bindings dialog “File” menu contains three items:

■ Load

■ Merge

■ Inherit

Selecting either “Load” or “Merge” produces a File Selection Box prompting you for

the name of a resource file. Selecting “Inherit Bindings” from the “File” menu

displays the “Inherit Bindings” dialog.

Inherit Bindings Dialog

The Inherit Bindings dialog contains two areas: a text box and button allowing you

to specify the name of the resource file from which to inherit bindings and a list of

bindings from the last specified file. This is a read-only list. Pressing the button

labelled “Resource File” displays a File Selection Box where you can locate a

resource file.

In order to inherit the bindings displayed in this dialog, set the “Use Inherited

Bindings” toggle in the “Options” menu.

When you next generate a resource file, if the toggle button in the “Options” menu

is set, a reference to the named resource file is generated. This, in effect, inherits all
the resources listed in the Inherit Bindings dialog. You can unset the “Inherited

Loose Bindings” toggle if you no longer wish to inherit resources. If you unset the

toggle button, no resource bindings are inherited.

Refining the Binding

The example illustrated in “Example Loose Binding” on page 86 is a simple one. You

have more ways of altering the resource binding in the Loose Bindings Dialog. Each

element in the binding currently being defined can be altered by means of the

corresponding option menu, as shown in Figure 3-30.



Chapter 3 Resources 91

FIGURE 3-30 Binding Under Construction with Corresponding Buttons

You can refine the binding using these option menus. There are three types of

refinement that can be made:

■ Changing the wildcard

■ Changing the reference to the widget

■ Changing the resource

These are described below.

Wildcard

In between each widget name there is a wildcard character. This can be either a

period (.) or an asterisk (*). Period means that the widget on the right is a direct

descendant of the widget on the left. Asterisk means that there can be any number of

other, unnamed widgets in between the widget on the left and the right.



92 Sun WorkShop Visual User’s Guide • May 2000

Widget Reference

There are three ways of referring to widgets. You can select the Motif class name

(e.g. XmPushButton for buttons, XmForm for Forms etc.), the widget name you have

specified or a question mark character (?). The question mark is a wildcard meaning

that there must be a widget at this point in the description but that it can be any
widget.

Resource

The last item in the binding currently being defined is the resource and its value. If

you have set more than one resource for this binding they are listed in the

corresponding option menu. You can set a loose binding for any number of

resources.

Note – If the name of a widget is changed loose bindings will not be re-applied to

that widget until a reset is performed.

Tight Bindings

The default resource bindings that Sun WorkShop Visual generates could lead to

ambiguities if more than one widget has the same widget name within the same

application class. Tight bindings are a means of naming extra widgets in a resource

binding in order to lessen the possibility of ambiguity. “Resource File Syntax” on

page 235 describes the structure of resource bindings as present in the resource file.

The default resource binding generated by Sun WorkShop Visual for the hierarchy

shown in Figure 3-31 is:



Chapter 3 Resources 93

FIGURE 3-31 First Hierarchy

This example mentions only one widget explicitly, the leaf widget, whose widget

name is “OkButton”.

Note – The variable name for this widget has not been set. In resource files it is the

widget name which is important.

In an application you may find that you have more than one leaf widget with the

same widget name. If, however, the widgets need different resources the default

resource syntax described above would not be useful since it refers to all of them.

Some resource settings would then be lost. The more widgets that are named in the

resource binding, the less possibility of there being a conflict over widget names in

the resource file.

Example Tight Binding

Using the example above, the following shows how you can still have more than one

leaf widget (in this case a PushButton) with the same name but with different labels.

1. Create the hierarchy shown in Figure 3-31, making sure that you have used the
names shown for the widget names.

2. Select another Shell (of any type) from the palette and create a second hierarchy as
shown in Figure 3-32. Give the button the widget name “OkButton”, the same
widget name as the button in the first hierarchy.

XApplication*OkButton.labelString: Ok

Application class name
widget name

resource name
resource value



94 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 3-32 Second Hierarchy

3. Specify the label: Ok for the button in the first hierarchy

4. Specify the label: Apply for the button in the second hierarchy

5. Select the widget FirstShell in the first hierarchy and bring up its core resource
panel

6. Select the “Code Generation” page

7. Set the toggle labelled “Include in Resource Bindings”

This is the toggle which makes a widget’s resource bindings “tight”.

8. Press “Apply”

When the resource file is next generated, the widget with the tight resource binding

will appear as follows:

XApplication*FirstShell*OkButton.labelString: Ok

9. Now do the same for the second hierarchy, including the widget SecondShell in
the resource binding.

The binding for the second hierarchy looks like this:

XApplication*SecondShell*OkButton.labelString: Apply

Resources for the two buttons with the same widget name are now easily

distinguished. You can add any number of widgets into the resource binding (in this

example we could have added the Form as well). This would make the binding

tighter and less open to ambiguity.



Chapter 3 Resources 95

Tight Resource Binding Recommendation

It is recommended that you set the “Include in Resource Bindings” toggle on all

Shells in your design. This will not cause any unwanted effects and will prevent

most ambiguities.

Comparison of Resource Generation

If you explicitly set the Label resource of the first button in the loose bindings

example shown in Figure 3-27, but you do not set a loose binding, the following line

is generated into the resource file:

XApplication*button1.labelString:Bound

If you have used tight bindings, which are described in “Tight Bindings” on page 92,

to set a tight binding for the Shell, MyShell, without specifying any loose bindings,

the following line is generated into the resource file:

XApplication*MyShell*button1.labelString:Bound

If you have set a loose binding to encompass all the buttons, as described in

“Example Loose Binding” on page 86, the following line is generated into the

resource file:

XApplication*MyShell*MyForm*XmPushButton.labelString:Bound

Where to Look for More Information on
Resources

For more information on widget resources see Chapter 27, “Widget Reference”,

starting on page 743. This chapter contains a summary of the most commonly used

resources for each of the Motif widget classes. While this summary is necessarily

brief, it will help you get started.

There are many books available that provide a more complete discussion of Motif

widget resources. The Motif Programming Manual includes a summary which is both

thorough and readable. Several other useful books are listed in Appendix E,

“Further Reading”.

If you are using Sun WorkShop Visual with additional widgets, you should also

consult the documentation provided by your widget developer.



96 Sun WorkShop Visual User’s Guide • May 2000



97

CHAPTER 4

The Layout Editor

Introduction

The next step in designing your interface is to rearrange the widgets geometrically.

The DialogTemplate automatically places the menu bar at the top of the window and

arranges the buttons at the bottom. However, the arrangement of widgets inside the

Form is up to you.

Figure 4-1 shows the present appearance of the tutorial interface and how it will

appear when you finish making the modifications in this chapter.

FIGURE 4-1 Default and Modified Layout for Tutorial Interface

Form
portion of
window



98 Sun WorkShop Visual User’s Guide • May 2000

The arrangement of widgets inside the Form is called the layout. To make these

changes in the layout, you will perform the following steps with Sun WorkShop

Visual’s interactive Layout Editor:

1. Move widgets around to the approximate layout you want.

2. Attach the top and left side of the Frame to the sides of the Form at a fixed offset.

3. Attach the RowColumn to the Frame at a fixed offset.

4. Align the tops of the three ToggleButtons located at the bottom of the layout.

5. Set position attachments for proportional spacing of the three ToggleButtons.

Concepts

Several classes of Motif widgets can impose geometric rules on their children. You

have already seen that the children of a RadioBox, RowColumn and MenuBar are

laid out in specific ways. In a MenuBar, the CascadeButtons are laid out in a single

row. In a RowColumn, all children are laid out in a grid.

Three types of widget, Form, BulletinBoard and DrawingArea, allow more flexible

layout of their children. These three widget classes are called layout widgets. Sun

WorkShop Visual provides an interactive Layout Editor for laying out the children of

these widgets.

Attachments

Attachments are constraints that force a widget to be in a certain location relative to

the layout widget or to another child of the layout widget. All three types of layout

widget let you attach their children’s upper left and lower right corners at any x,y
location relative to the layout widget. If you constrain the upper left corner of a

widget, you fix its location. If you also constrain its lower right corner, you also fix

its size. These are the only attachments offered by the BulletinBoard and

DrawingArea widgets.



Chapter 4 The Layout Editor 99

Form Attachments

The Form widget lets you attach a side of a child widget to a side of the Form at a

specified distance (measured in pixels). This has the effect of positioning the widget

at a specific x,y location, like the attachments provided by the BulletinBoard and

DrawingArea. In the case of the Form, this type of attachment is called a Form
attachment to distinguish it from other types of attachments available for the Form.

Position Attachments

The Form also has position attachments, which are specified as a percentage of the

total width or height of the Form. When you use position attachments, widgets get

farther apart when the window gets larger so that the interface can take advantage

of extra space when it is available.

Widget Attachments

Widget attachments let you attach two of the Form’s children to each other at a

specified absolute distance (measured in pixels). Attachments can be made edge to

edge or top to bottom. Facilities are also provided for you to align and distribute a

group of widgets.

These additional features of the Form allow you to design a layout which retains its

appearance when the main window or an individual widget is resized. For example,

by attaching a widget to both sides of the Form, you can make it stretch when the

main window becomes larger. By attaching two widgets edge-to-edge, you can

ensure that the spacing between them will be preserved even if one of them moves

or changes size.

Displaying the Layout Editor

You can display the Layout Editor for any layout widget in your hierarchy by

selecting it and either selecting “Layout” from the Widget menu or clicking on the

Layout button on the toolbar, as shown in Figure 4-2.

FIGURE 4-2 Layout Toolbar Button



100 Sun WorkShop Visual User’s Guide • May 2000

To edit the layout in your Form:

1. Select the Form.

2. Click on the Layout button on the toolbar.

This displays the dialog shown in Figure 4-3.

FIGURE 4-3 Layout Editor Dialog

Editing Area

The editing area displays a sketch of the layout. Widgets in the editing area are

displayed schematically as boxes within a larger box which represents the Form. In

Figure 4-3, the boxes represent, from top to bottom, the Frame, the RowColumn and

the three ToggleButtons.

If widgets overlap, the outlines are still visible so that you can see where they are.

When you select a widget, the smallest enclosing widget is selected enabling you to

select a widget which may be obscured by a larger one.

Grid slider

Menu bar

Radio buttons
to set editing
mode

Widgets in layoutEditing area

Tool bar



Chapter 4 The Layout Editor 101

The Layout Editor shows the Form’s children but nothing lower on the hierarchy.

For example, you cannot see the RadioBox and its ToggleButtons inside the Frame

nor the Labels and TextFields inside the RowColumn. You also cannot see the

MenuBar or the PushButtons, which are outside the Form.

Note – The Layout Editor has its own menu bar, toolbar and several command

buttons. Some of the Layout Editor commands have keyboard accelerators. If you

use them, be sure that the Layout Editor screen has the input focus as some of the

same characters are also used as accelerators within the main Sun WorkShop Visual

window where they have different functions.

Editing Modes

A set of radio buttons on the left side of the editor screen lets you select one of

several editing modes. Selecting an editing mode assigns that function to mouse

button 1.

You can also use any mode, regardless of which is currently selected, by using the

mouse button sequence indicated next to that radio button. For example, you can

always use mouse button 2 to move a widget, or <Shift-button 2> to set an attachment.

There are six modes:

■ Move. See “Rough Layout: the Move Mode” on page 107.

■ Resize. See “Resize Mode” on page 130.

■ Attach. See “Attachments Between Widgets” on page 113.

■ Align. See “Aligning Widgets: the Align Mode” on page 118. This is slightly

different from using the align toolbar buttons as described in “Aligning Widgets:

Group Alignment” on page 120.

■ Position. See “Proportional Spacing: the Position Mode” on page 126.

■ Self. See “Self Mode” on page 128.



102 Sun WorkShop Visual User’s Guide • May 2000

Selection: Single, Primary, and
Secondary

To select a widget, click over it in the editing area. To select additional widgets, hold

down the Shift key while selecting them. The primary selection is always displayed

with a thick border, secondary selections are displayed with a dotted border. The last

widget to be added to the selection is always the primary selection. You need to

know which is the primary selection because alignments are performed by aligning

to the primary selection.

Layout Editor Toolbar

Below the menu bar is a toolbar containing the following buttons which are also

available from the menus:

See “Reset” on page 103.

See “Undo” on page 103.

See “Zoom In, Zoom Out” on page 104.

See “Zoom In, Zoom Out” on page 104.

Layout Editor File Menu

The File menu contains one item, “Close”, which removes the Layout Editor window

from the screen.



Chapter 4 The Layout Editor 103

Layout Editor Edit Menu

The Edit menu provides three functions.

Undo

“Undo” reverses the last operation done in the Layout Editor. Selecting “Undo”

repeatedly lets you step back through multiple operations. As with other Layout

Editor commands, you may need to “Reset” before you can see the effect of “Undo”.

Reset

“Reset” (<Ctrl>-T) destroys the current instance of the layout widget, along with its

children, and re-creates your dynamic display.

Sometimes new constraints are not reflected accurately in the dynamic display

window until after you reset the layout widget. Therefore you should reset often

when using the Layout Editor, especially if a change does not produce the result you

expect.

If container widgets within a Form do not properly display after a reset, select a

widget higher up the hierarchy and do another reset.

Layout Editor View Menu

The View Menu of the Layout Editor provides four useful display commands.

Edge Highlights

This option highlights the widget edge closest to the pointer when the pointer is

inside the widget. Any attachment you make is applied to the highlighted edge of

the widget. “Edge Highlights” is on by default.



104 Sun WorkShop Visual User’s Guide • May 2000

● Move the pointer around the sketch of the Form and note that, whenever the
pointer is inside the box representing a widget, the edge nearest the pointer is
highlighted.

Annotation

This option displays an identifying string inside each box in the editing area. When

you pull down the View Menu and select “Annotation”, a pullright menu appears

with a choice of “Widget names” or “Class names”. “Widget names” (<Ctrl-W>)

displays the variable name of each widget. “Class names” (<Ctrl-N>) displays the

class of each widget, such as “Frame” or “RowColumn”. Selecting one option

disables the other. Selecting the same option when it is set removes all annotation

from the display.

The annotation options are illustrated in Figure 4-4.

FIGURE 4-4 Annotation Options

● Pull down the View Menu and select “Class names” from the “Annotation”
submenu.

Zoom In, Zoom Out

Use “Zoom In” to increase the display scale and “Zoom Out” to decrease the scale.

Widget names Class names



Chapter 4 The Layout Editor 105

Layout Editor Layout Menu

The Layout Menu provides some layout commands in addition to those available in

the editing modes palette which is described in “Editing Modes” on page 101. There

are two functions available from this menu - align and distribute.

Align

Pressing “Align” displays a pull-right menu containing the various types of

alignment available. These functions are only enabled if there is more than one

widget selected. See “Aligning Widgets: Group Alignment” on page 120 for a

detailed description of the alignment functions available from this menu item.

Distribute

Pressing “Distribute” displays a pull-right menu containing two further pull-right

menus which lead to the distribution options available. These functions are only

enabled if there are more than two widgets selected. See “Distribute” on page 123 for

a detailed description of the distribution functions available from this menu item.

Grid

To display a grid on your layout, use the grid slider, situated in the bottom left

corner of the dialog, to select a spacing from 2 to 50 pixels. The number of pixels is

considered to be at 1:1 scale so that the grid will scale with the layout if you use the

Zoom commands.

The “Move” and “Resize” modes snap to the grid if one is visible. When you move

a widget, its top left corner snaps to the nearest grid intersection. Likewise, when

you resize a widget, its lower right corner snaps to the grid.

You can disable the grid by setting the slider to zero.

● Set the grid slider to 10 pixels.



106 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 4-5 Tutorial Layout with 10 Pixel Grid

Resize Policy

Most Form resources should be left at their default values. You could, however,

consider resetting the “Resize Policy” resource to “Grow”.

1. Double click on the Form widget or press the “Resources” button in the toolbar to
display the Form’s resource panel.

2. Select the “Settings” page of the resource panel.

3. Set “Resize policy” to “Grow”.

4. Click on “Apply” and then “Close”.

If you do not set this resource, the Form always shrinks immediately to the

minimum size when you move widgets around, which can be annoying. With a

policy of “Grow”, although you may sometimes have extra blank space in the

layout, it goes away when you reset the Form.



Chapter 4 The Layout Editor 107

Understanding the Default Layout

The attachments are displayed in the Layout Editor using symbols as shown in

Figure 4-6.

FIGURE 4-6 Symbols used in the Layout Editor

Your layout already has two kinds of attachments: Form attachments and widget

attachments. Form attachments are shown as arrowheads on one edge of the widget.

The Frame, which is the top widget in the default layout, has two such attachments

- to the top and the left side of the Form. The other four widgets are each attached to

the left side of the Form. All the widgets are stacked top to bottom in the order in

which they were added to the hierarchy.

Each of the four lower widgets is attached to the widget above it. A widget

attachment is shown as an arrow with an arrowhead at one end and a small filled

circle at the other.

Default MenuBar Attachment

In addition to the above default attachments, a MenuBar is treated as special and

given a default attachment from its right edge to the right side of the Form. This is

to make a MenuBar fill the top of the window and resize appropriately.

Rough Layout: the Move Mode

The “Move” command lets you drag a widget to a new location. This sets two Form

attachments which fix the widget’s upper left corner at that point. The best way to

start arranging any layout is to use this mode to place all the widgets approximately

where you want them; you can then use the other modes to specify widget

positioning and resize behavior more precisely.

widget attachment

Form attachment
position attachment

self attachment



108 Sun WorkShop Visual User’s Guide • May 2000

Removing Attachments on Move

When you move a widget, Sun WorkShop Visual removes all attachments from that

widget. Attachments to the widget are preserved. You can prevent this from

happening by pressing the Control key while moving a widget. Sun WorkShop

Visual removes attachments by default because other functions such as align and

distribute rely on making attachments. Often the new attachments conflict with the

old and cause the Form to report errors. Once into this state it is often difficult

(though not impossible) to recover - see “Circular Attachments” on page 116. You

can avoid this situation by allowing Sun WorkShop Visual to remove all attachments

before performing one of the layout functions.

Using Move

To invoke the “Move” mode:

1. Click on the “Move” toggle.

Once in “Move” mode, you can drag widgets around in the layout with mouse

button 1. You can also move widgets using mouse button 2, regardless of the current

mode.

2. Place the pointer inside the box corresponding to the RowColumn.

3. Hold mouse button 1 down and drag the RowColumn to the right until it overlaps
the right edge of the Form.

To do this, you have to drag the RowColumn so that its right margin extends beyond

the edge of the Form. This is acceptable. When you release the mouse button, the

Form automatically resizes to allow room for all its children.

4. Drag the RowColumn up until its top is aligned with the top of the Frame.

5. Reset the Form.

If the display is not correct, reset the Shell, select the Form and then re-display the

layout editor.

Figure 4-7 shows what your layout looks like now and the resulting dynamic

display. The DialogTemplate automatically adjusts the size of the MenuBar and the

spacing of the PushButtons to accommodate the new width of the Form.



Chapter 4 The Layout Editor 109

FIGURE 4-7 Rough Layout as Shown in the Layout Editor

How “Move” Mode Works

The tops and left edges of the RowColumn and Frame have arrowheads, indicating

that they are attached to the top and left side of the Form. “Move” works by setting

two attachments to the Form to fix the upper left corner of the widget at its new

location. You can make these attachments either at a distance of zero (so that the

widget touches the side of the Form) or at a non-zero distance to produce a space

between the widget and the Form. This distance is called the offset. In this case, the

left edge of the RowColumn is attached to the Form at a non-zero offset. Offsets are

discussed in a later section of this chapter. In the “Move” mode, Sun WorkShop

Visual calculates the offset based on the location of the pointer.

One Attachment Replaces Another

There can be only one attachment on each side of a widget. “Move” breaks any

attachments that are already on those edges and then sets two new attachments on

the top and left edges of the moved widget. In the default layout, the top of the

RowColumn was attached to the bottom of the Frame. This attachment no longer

exists because “Move” has set a new attachment on the top of the RowColumn.

“Move” breaks the attachments made from a widget but preserves any attachments

made to it from other widgets.

Note – You can retain attachments during a “Move” by holding down the Control

key as you move the widget.

Layout Dynamic display



110 Sun WorkShop Visual User’s Guide • May 2000

One Attachment Affects Another

Note that when you moved the RowColumn widget up, the three ToggleButtons

moved with it. This happens because of the attachments between the widgets.

Because the top of the first ToggleButton is attached to the bottom of the

RowColumn, when you move the RowColumn up, the top ToggleButton also has to

move. The other two ToggleButtons also move up in a chain reaction since the

second is attached to the first and the third to the second.

The attachment from the ToggleButton to the RowColumn was not removed when

you moved the RowColumn. This is because this attachment belongs to the

ToggleButton and not to the RowColumn. This distinction is discussed later in this

chapter.

Offsets

The tops of the RowColumn and the Frame are now lined up. However, there is an

important difference in the way they are attached to the Form. The top of the Frame

has a default attachment which was left over from the default layout. The

RowColumn has a zero attachment which was set when you used the “Move” mode

in Step 1 on page 108.

Default vs. Explicit Offsets

Default offsets are controlled by the “Horizontal spacing” and “Vertical spacing”

resources of the Form. Explicit offsets override Default offsets through actions such

as Move or Align in the Layout Editor. The Frame is 0 pixels from the top of the

Form because the spacing resources are both 0 by default.

To see the effect of resetting the spacing:

1. Select the form and click on the “Resources” button on the toolbar.

On the Form resource panel:

2. Select the “Display” page.

3. Double-click in the “Horizontal spacing” box and type: 20

4. Double-click in the “Vertical spacing” box and type: 20

5. Click on “Apply” and then “Close”.



Chapter 4 The Layout Editor 111

In the Layout Editor:

6. Click on “Reset”.

Figure 4-8 shows the results. All attachments with default offsets, including those on

the Frame and the three ToggleButtons, now use the 20 pixel spacing. The

RowColumn doesn’t move because its attachments were set with “Move” and have

explicit offsets that do not refer to the spacing resources. The result is that the Frame

and RowColumn are no longer aligned.

FIGURE 4-8 Effect of Resetting Vertical and Horizontal Spacing

The additional spacing between the ToggleButtons forces the entire Form to become

larger. The DialogTemplate also resizes to accommodate the Form.

An advantage of default offsets is that they let the user control the amount of spread

in the layout at run time. The main disadvantage of default offsets is that they

require all spacings in your layout to be the same, which may not be what you want.

Also, you should be careful not to confuse default and explicit offsets, since default

offsets may change while explicit ones remain the same. For example, your Frame

and RowColumn lost their alignment when you changed the spacing because one

has an explicit offset and the other a default offset from the top of the Form. The

Layout Editor screen does not distinguish between explicit and default offsets.

Explicit
offsets

Default
offset

Vertical spacing

Horizontal spacing



112 Sun WorkShop Visual User’s Guide • May 2000

Attachments to the Form

You can attach a widget to the Form by dragging from just inside the widget’s edge

to a point just outside the side of the Form. This can be done with button 1 in

“Attach” mode or with <Shift-button 2> in any mode. Attachments are set using the

offset value in the “Offset” field. If the “Offset” field is empty, a default offset is

used.

1. Click on the “Attach” toggle.

Note that when you are in the “Attach” mode or have <Shift-button 2> down, the

pointer becomes a set of crosshairs.

Now replace some of the default attachments with attachments that use explicit

offsets of 0 pixels.

2. Click in the “Offset” box and type: 0

Attach the left edge of the Frame to the left side of the Form:

3. Place the crosshairs just inside the left edge of the Frame so that the left edge
highlights.

4. Hold down mouse button 1 and drag to a position just outside the left side of the
Form.

5. Release the mouse button.

The new attachment, like the old one, appears as a filled triangle on the side of the

Frame. You can see its effect because the explicit 0 offset moves the Frame over to

the side of the Form. If this does not happen, try setting the attachment again.

Do the same thing for the “Vanilla” ToggleButton:

6. Place the crosshairs just inside the left edge of the top ToggleButton so that the
edge highlights.

7. Drag with mouse button 1 to a position just outside the left side of the Form.

8. Release the mouse button.

The ToggleButton moves over to the side of the Form.

The top of the Frame looks good at its present location. The 20 pixel offset from the

top of the Form centers the Frame with respect to the RowColumn. However, this

should be an explicit offset, not a default, so that it will remain constant if the Form

spacing resources change. To change to an explicit offset, you must replace the

attachment.



Chapter 4 The Layout Editor 113

9. Double-click in the “Offset” field and type: 20

10. Place the crosshairs just inside the top of the Frame so that the edge highlights.

11. Drag with mouse button 1 to a position just outside the top of the Form.

12. Release the mouse button.

Figure 4-9 shows the result. If your dynamic display does not look the same

13. Click on “Reset”.

FIGURE 4-9 Form Layout with 20 Pixel Form Spacing

Attachments Between Widgets

Setting a widget attachment between two widgets in the Form is similar to attaching

a widget to one side of the Form. To attach a pair of widgets, you simply drag the

crosshairs from just inside one of the widgets to just inside the other.

Attaching Widgets Edge to Edge

To attach two widgets edge to edge, either touching or with an offset, you either

attach the right edge of one to the left edge of the other, or the top of one to the

bottom of the other.

You should still be in “Attach” mode from the last section. Attach the left side of the

RowColumn to the right side of the Frame:



114 Sun WorkShop Visual User’s Guide • May 2000

1. Double-click in the “Offset” box and type: 50

2. Position the pointer just inside the RowColumn’s left edge so that the left edge
highlights.

3. Hold down mouse button 1 and drag to a point just inside the Frame, until the
right edge of the Frame highlights.

4. Release button 1.

The new attachment appears as an arrow with an arrowhead pointing at the right

edge of the of the Frame and a filled circle on the center of the left edge of the

RowColumn. The RowColumn repositions itself with a gap of 50 pixels from the

right edge of the Frame.

Although this does not change your layout much now, there is a significant

advantage to this kind of attachment if the strings inside the Frame are likely to

change. The RowColumn is now positioned relative to the right side of the Frame

and not relative to the side of the Form. Even if the Frame grows, the RowColumn

preserves the 50 pixel distance.

5. Double-click on the first radio button in the radio box in the construction area.

6. Go to the “Display” page of the resource panel and change the button’s label to:
Double Scooper .

The results are shown in Figure 4-10.

FIGURE 4-10 Frame Resize Behavior

50 pixels



Chapter 4 The Layout Editor 115

Direction of Attachment

Attachments are not symmetrical. When you create an attachment by dragging the

pointer from Widget A to Widget B, the attachment is said to originate from Widget

A. To indicate this, Sun WorkShop Visual draws an arrow from inside Widget A to

Widget B. The attachment you have just made originates from the RowColumn.

Attachments apply only to the widget from which they originated. For example, the

attachment you have just made constrains the RowColumn to a certain position

relative to the Frame. If the Frame is moved or resized, the RowColumn moves in

turn. If the RowColumn is moved or resized, the Frame is unaffected.

Attachments Affect Only One Coordinate

Note that the top ToggleButton has an attachment to the bottom of the RowColumn.

This attachment is left over from the default layout and has the default offset. It is

therefore controlled by the Form’s spacing resources, which are still set at 20 pixels.

You were able to move the RowColumn away from the first ToggleButton because of

the following rules:

1. Attachments on the top or bottom of a widget only affect its y coordinate.

2. Attachments on the left or right edge of a widget only affect its x coordinate.

The top of the first ToggleButton is still 20 pixels (the current vertical spacing) from

the bottom of the RowColumn. Because there is no attachment between the

ToggleButton’s left or right side and the RowColumn, the RowColumn’s position in

the horizontal dimension has no effect on the ToggleButton.

Change the spacing of this attachment to 10 pixels:

1. If it is not already selected, click on the Form in the construction area.

2. Double-click in the “Offset” field and type: 10

3. Position the crosshairs just inside the top edge of the top ToggleButton so that the
edge highlights.

4. Hold mouse button 1 down and drag to a position just inside the bottom edge of
the RowColumn so that the edge highlights.

5. Release mouse button 1.

The new attachment replaces the old one and the top ToggleButton adjusts its

position.



116 Sun WorkShop Visual User’s Guide • May 2000

Circular Attachments

The Motif rules for the Form widget prohibit you from attaching Widget A to Widget

B and then also attaching Widget B to Widget A. This is called a circular attachment.
Any larger attachment loop, such as attaching Widget A to B, B to C and C to A, is

also considered circular and results in an error. If your layout contains such a loop,

Sun WorkShop Visual displays the warning message shown in Figure 4-11 and you

must break one or more attachments to eliminate the loop.

FIGURE 4-11 Circularity Warning Message

Circularity is only a problem with widget attachments. Attachments to the Form and

position attachments (see “Proportional Spacing: the Position Mode” on page 126)

cannot produce a circular attachment because these attachments can only originate

from the child widget and not from the parent Form.

Method for Avoiding Circularity

A good method for avoiding circularity is to make all attachments between widgets

point in only two directions, usually up and left. When you lay out your interface,

start at the upper left corner and work down and to the right. Whenever you attach

two widgets, make the attachment originate from the widget that is below or to the

right. In this way, all the attachment arrows point the same way and you avoid

accidental circular attachments.

Removing Attachments

Use any of the following methods to remove attachments in the Layout Editor:

1. Set a new attachment of any type on that edge of the widget. This removes and

replaces the old attachment.



Chapter 4 The Layout Editor 117

2. Use “Move” to reposition the widget. This removes all attachments that

originated from it.

3. Using the “Attach” mode (<Shift-Button 2>), click just inside the widget on the

edge where the attachment originates. This removes the attachment without

setting a new one. The “Edge Highlights” mode can help you position the

crosshairs properly.

4. Click on “Undo” to remove the last attachment added.

Motif requires that each widget have at least two edges attached. If you remove all

attachments, the Form supplies simple Move-type attachments, based on the

widget’s last location, when you reset.

Contradictory Attachments

You can specify attachments that contradict one another without being circular. For

example, you might attach the left edge of a widget to the right side of the form

using a positive offset. When you reset a Form that has contradictory attachments,

Motif tries to calculate a layout that will satisfy all of them. If a satisfactory layout

has not been found after a large number of iterations of a loop, the loop is broken

and Sun WorkShop Visual displays the warning message shown in Figure 4-12. In

these circumstances, some widgets may appear very small, or the Form itself may be

resized very wide or long, until you remove the attachment that is causing the

problem.

FIGURE 4-12 Bailed out Warning Message

As with circular attachments, contradictory attachments must be removed before

you can proceed.



118 Sun WorkShop Visual User’s Guide • May 2000

Limit on Number of Attachments

A widget can have only one attachment originating from each of its four edges. That

attachment can be of any type: a Form attachment, a widget attachment or a position

attachment (see “Proportional Spacing: the Position Mode” on page 126). Whenever

you specify a new attachment originating from one edge of a widget, it replaces any

attachment that was already there.

There is no limit to the number of attachments to a widget, provided they all

originate from other widgets.

Aligning Widgets: the Align Mode

You can align the tops of two widgets by attaching them top to top with an offset of

zero. An easy way to do this is to select the “Align” mode of the Layout Editor. The

“Align” mode is simply an attachment with an explicit zero offset. You can also align

a pair of widgets on any other edge: bottom to bottom, left to left or right to right. Be

careful to avoid circularity when you use this feature.

To align the tops of the first two ToggleButtons:

1. Use “Move” (button 2) to move the bottom two ToggleButtons into a rough
horizontal row.

Do not move the top ToggleButton.

So that you can see the effects of “Align” and, later, “Distribute”, deliberately leave

the tops of the widgets and the spacing of their edges, slightly uneven, as shown in

Figure 4-13.

FIGURE 4-13 ToggleButtons Before Alignment

2. Click on the “Align” toggle.

3. Position the crosshairs just inside the top of the middle ToggleButton.



Chapter 4 The Layout Editor 119

4. Hold mouse button 1 down and drag to a position just inside the top of the first
(left) ToggleButton.

5. Release the mouse button.

FIGURE 4-14 After Aligning First Two ToggleButtons

How Alignment Works

To understand how this works, remember that an attachment affects a widget’s

position in only one dimension. For example, if you attach the top of Widget 1 to the

bottom of Widget 2:

top_1 = bottom_2 + offset

where top_1 represents the y coordinate of the top of Widget 1 and bottom_2 the

y coordinate of the bottom of Widget 2. This is true whether or not the two widgets

overlap in the horizontal dimension.

FIGURE 4-15 Attachment of Two Widgets Top-to-Bottom

Example A
Top of B2 attached to bottom
of B1, offset 10. Effect: Top
edge of B2 is 10 pixels below
bottom edge of B1.

Example B
Same widget attachment as
in Example A; widgets do
not overlap in x dimension.



120 Sun WorkShop Visual User’s Guide • May 2000

Similarly, if you attach two widgets top to top:

top_1 = top_2 + offset

If the offset is 0, the tops of the two widgets have the same y coordinate; that is, they

are aligned.

FIGURE 4-16 Attachment of Two Widgets Top-to-Top

Example A of Figure 4-16 shows the type of attachment used by the “Align” mode.

Example B shows a similar attachment with a non-zero offset. The effect is similar to

an alignment but with a step effect.

Aligning Widgets: Group Alignment

You can align widgets in pairs using either the “Align” mode or by using the

“Attach” mode with a 0 offset to attach their left, right, top or bottom edges. The

align buttons in the Layout Menu provide a quick way to align a group of widgets.

The attachments set by these are the same kind used to align widgets in the “Attach”

or “Align” mode.

These buttons are only enabled if more than one widget is selected. For more details

on selecting more than one widget, in particular specifying the primary selection, see

“Selection: Single, Primary, and Secondary” on page 102.

Example B
Top of B2 is attached to top
of B1, offset 10. Effect: Top
edge of B2 is positioned 10
pixels below top of B1.

Example A
Top of B2 attached to top of
B1, offset 0. Effect: Tops of
widgets are aligned.



Chapter 4 The Layout Editor 121

The Align Functions

There are six align functions on the pull-right menu available from “Align” in the

Layout Menu. These are:

■ Align left edges.

■ Align left and right edges.

■ Align right edges.

■ Align top edges.

■ Align top and bottom edges.

■ Align bottom edges.

Using the Align Functions

To see the effects of group alignment:

1. Use “Move” mode or mouse button 2 to move the second ToggleButton back out
of alignment.

2. Use “Move” mode or mouse button 2 to move the right ToggleButton so that its
right edge is aligned with the right edge of the Frame.

Now align the tops of the three ToggleButtons as a group:

3. On the Layout Editor screen, click on the right ToggleButton.

In “Move” mode, widgets are drawn with a thicker border as you click on them to

indicate that they are selected. After you click on the first widget, you must use

<Shift-Button 1> to add widgets to the selection group. The primary selection is

shown with a thick border while all other selections are shown with a dotted border,

as in Figure 4-17.

FIGURE 4-17 Primary and Secondary Selections

“Align” will align to the primary selection.



122 Sun WorkShop Visual User’s Guide • May 2000

4. Click with <Shift-Button 1> on the middle ToggleButton.

5. Click with <Shift-Button 1> on the left ToggleButton.

To align the tops of the ToggleButtons:

6. Select “Align top edges” from the “Align” pull-right menu in the Layout Menu.

This sets the attachments shown in Figure 4-18.

FIGURE 4-18 Layout After Aligning the Three ToggleButtons

Direction of Attachments Set by Group Alignment

When you align a group of widgets, the last widget selected is unaffected and the

others are aligned to it. The order in which widgets are selected does not matter

except for the last. Sun WorkShop Visual sets attachments in the order of the

widget’s spatial positions. Each widget in the group except the last is attached to its

neighbor and all attachments point toward the last widget selected. In your layout,

the right widget is attached to the center widget, which is attached to the left widget.

Figure 4-19 illustrates this general rule. If a group of widgets is selected in the order

shown in the first figure, the resulting attachments would connect them in the order

shown in the second figure.

FIGURE 4-19 Direction of Attachments Set by Group Align

This rule works similarly for columns of widgets aligned along their left or right

edges.

1 2 LAST 3 4Selection Order

Attachments



Chapter 4 The Layout Editor 123

Note – As when setting other attachments, be careful to avoid circularity in aligning

groups of widgets. The best method is to position the top or left-most widget where

you want it and then align other widgets to it, selecting them from right to left or

from bottom to top.

Distribute

The distribute functions on the “Distribute” pull-right menu in the Layout Menu let

you distribute a group of widgets evenly across a given space. These functions are

only enabled if you have more than two widgets selected. See “Selection: Single,

Primary, and Secondary” on page 102 for details on how to select more than one

widget.

The Distribute Functions

Selecting the “Distribute” item in the Layout Menu displays a pull-right menu

containing two items which are also pull-right menus.

Horizontal

Selecting “Horizontal” displays a pull-right menu with the following items:

■ Centres. Distributes horizontally so that the centres are equally spaced between

the two farthest edges.

■ Edges. Distributes horizontally so that there is an equal space between the edges

within the space delimited by the two farthest edges.

■ Constant. Distributes horizontally leaving a gap between widgets as specified in

the “Offset” field. If the “Offset” field is empty, the default Form spacing is used.

In this mode, the total space occupied by the group of widgets may change.

Note that the difference between the first two items is most visible when the widgets

being distributed are very different in size.



124 Sun WorkShop Visual User’s Guide • May 2000

Vertical

Selecting “Vertical” displays a pull-right menu with the following items:

■ Centres. Distributes vertically so that the centres are equally spaced between the

topmost and bottommost edges.

■ Edges. Distributes vertically so that there is an equal space between the edges

within the space delimited by the topmost and bottommost edges.

■ Constant. Distributes vertically leaving a gap between widgets as specified in the

“Offset” field. If the “Offset” field is empty, the default Form spacing is used. In

this mode, the total space occupied by the group of widgets may change.

Note that, as with horizontal distribution, the difference between the first two items

is most visible when the widgets being distributed are very different in size.

Using the Distribute Functions

You can use these functions to distribute the three ToggleButtons evenly across the

bottom of the Form.

1. Click on the right ToggleButton.

If widgets are still selected from the previous section, they are deselected when you

click on a new widget to start a new group.

2. Click with <Shift-Button 1> on the middle ToggleButton.

3. Click with <Shift-Button 1> on the left ToggleButton.

The three buttons are now all highlighted. The primary selection, indicated by a

thick border around the widget, is the last ToggleButton selected. See “Selection:

Single, Primary, and Secondary” on page 102 for more details. However, the order of

selection does not matter to the “Distribute” feature.

Distribute the buttons horizontally with equal space between their edges:

4. Pull right from “Distribute” in the Layout Menu.

5. Pull right from “Horizontal” in this second menu.

6. Select “Edges”.

In this case you could equally well choose “Centres”. The result would be much the

same because the selected widgets are equal in size.

The result is shown in Figure 4-20.



Chapter 4 The Layout Editor 125

FIGURE 4-20 Distribution of Widget Edges

Direction of Attachments Set by “Distribute”

“Distribute” sets attachments in a different order from group align (“Align” in the

Layout Menu). With “Distribute”, attachments are always made in spatial order

from bottom to top or from right to left, as shown in the Figure 4-21. Each widget is

attached to its neighbor. In “Distribute”, unlike “Align”, the order of widget

selection makes no difference.

FIGURE 4-21 Direction of Attachments Set by “Distribute”

You can see in the Layout Editor screen that the arrows attaching the ToggleButtons

edge to edge all point from right to left. It is easier to see the arrows if you pull

down the View Menu and temporarily remove class name annotations from your

screen.

Horizontal Attachments

Vertical Attachments



126 Sun WorkShop Visual User’s Guide • May 2000

Avoiding Circularity Tip

Because “Distribute” only sets attachments as described above, circular attachments

can easily result unless you plan ahead. For example, you can select widgets from

right to left, “Align” them and then “Distribute” them, as you have just done.

However, you cannot select them from left to right, “Align” them and then use

“Distribute” on the same group of widgets. Doing this results in circular

attachments.

If you make all other attachments from right to left or from bottom to top,

“Distribute” never results in circularity.

The attachments set by “Align” and “Distribute” may also conflict with existing

attachments - see “Removing Attachments on Move” on page 108 for more details.

Proportional Spacing: the Position Mode

Position attachments let you attach an edge of a widget at a position that is a

percentage of the Form’s total width or height. This capability lets the widgets in

your interface take advantage of additional space when the window resizes.

Positions are always measured from the top left corner of the Form. If the top or

bottom edge of a widget has a position attachment of n%, that edge is positioned n%
of the way down from the top of the Form. If the left or right edge of a widget has a

position attachment of n%, that edge is positioned n% of the way across from the left

edge of the Form.

The position is specified as a percentage value in the “Position” field. If you do not

enter a value, Sun WorkShop Visual assumes a value of zero. Position attachments

are shown as hollow circles on the attached edge of the widget.

First, demonstrate the current window behavior:

1. Resize the window so that it is wider than the present size.

Note that the RowColumn stays at the same distance from the Frame, as shown in

Figure 4-22.



Chapter 4 The Layout Editor 127

FIGURE 4-22 Behavior of RowColumn with Fixed Offset Attachment When Window is
Resized

This is the behavior you expect when you set an attachment with a fixed offset. Any

extra window width is just unused space. Many interfaces use this resize behavior.

However, you can also use a position attachment to make the RowColumn move

over to take advantage of available window space.

To do this, specify a 45% position attachment on the left edge of the RowColumn:

2. Click on the “Position” toggle.

3. Double-click in the “Position” box and type: 45

4. Position the pointer just inside the left edge of the RowColumn so that the edge
highlights and click.

The position attachment appears as a hollow circle on the edge of the RowColumn,

replacing the existing attachment and the arrow that represented it. This type of

attachment places the RowColumn’s left edge 45% of the distance across the Form,

regardless of the window size. To see the effects of this:

5. Resize the window narrower, then wider.

The RowColumn now moves right to fill any extra space, as shown in Figure 4-23.

This type of resize behavior is the main advantage of position constraints.

FIGURE 4-23 Behavior of RowColumn with Position Attachment When Window is Resized



128 Sun WorkShop Visual User’s Guide • May 2000

The disadvantage of this type of attachment is that a position attachment is

calculated only by the size of the Form and does not adjust to fit the sizes of other

widgets. This is a problem if other widgets resize, as shown in Figure 4-24. When

one of the labels inside the Frame becomes longer, the Frame can get closer to the

RowColumn, or even overlap it.

FIGURE 4-24 Behavior of RowColumn with Position Attachment When Another Widget
Resizes

Compare this behavior to that shown in Figure 4-10, where the layout had a widget

attachment with a 50-pixel offset. The choice of attachment type is up to you and

should be based upon the types of widgets in your layout and any possible changes

at run time. Various aspects of layout strategy are discussed further throughout

Chapter 20, “Advanced Layout”, starting on page 567.

Self Mode

The “Self” mode is another way of setting a position attachment. Instead of typing a

percentage value, you click on one edge of the widget and Sun WorkShop Visual

calculates a percentage based on the widget’s present location and the present size of

the Form. When you use “Self”, you do not have to specify a percentage in the

“Position” field and any value that is already in the field is ignored. You must,

however, first place the widget where you want it to be using “Move” or one of the

other commands.

“Self” works especially well in combination with “Distribute”. You have already set

up the buttons at the bottom of the Form with a fixed gap between them. By setting

“Self” attachments on both sides of each button, you can preserve the evenness of

spacing while letting the buttons take advantage of extra window space that may

become available.



Chapter 4 The Layout Editor 129

By default, “Self” attachments snap to the grid. Therefore, in order to take advantage

of the precise spacing set by “Distribute”, you should disable the grid.

1. Set the grid slider to 0.

2. Click on the “Self” toggle.

In “Self” mode, positions are calculated relative to the total size of the Form. Since

you have been changing the window size, you should:

3. Reset the Form.

Resetting the Form calculates its best size based on the attachments currently set on

its children.

4. Click on the right edge of the right ToggleButton.

The “Self” attachment appears as a filled circle on the edge of the ToggleButton.

5. Click on the left edge of the right ToggleButton.

6. Click on the right edge, then the left edge, of the middle ToggleButton.

7. Click on the right edge, then the left edge, of the left ToggleButton.

8. Reset the Form.

“Self” attachments appear as filled circles. In Motif, however, a “Self” attachment is

the same as a position attachment and therefore Sun WorkShop Visual cannot tell

them apart after you reset the Form. In this event, “Self” attachments appear as

hollow circles and behave exactly like Position attachments. After resetting the

Form, the ToggleButtons look as shown in Figure 4-25.

FIGURE 4-25 “Self” Attachments after Form Reset

9. Save your design.

This concludes the tutorial portion of this chapter. The rest of this chapter discusses

some additional layout features.



130 Sun WorkShop Visual User’s Guide • May 2000

Resize Mode

“Resize” works like “Move” but sets attachments on the bottom and right side of a

widget. To use “Resize”:

1. Click on the “Resize” toggle.

2. Using mouse button 1, drag the lower right corner of a widget to the position you
want.

“Resize” is useful with BulletinBoards and DrawingAreas if you want to fix the size

of a widget. In a Form, “Resize” works by attaching the lower right corner of the

widget to a specific x,y location relative to the upper left corner of the layout widget.

When combined with attachments on the upper left corner of the widget, this fixes

the widget’s size. In a BulletinBoard or DrawingArea, “Resize” simply sets the width

and height resources of the widget.

This option is not normally used with Form layouts, because most widgets behave

better when you let them calculate their own best size. Figure 4-26 shows a typical

example of how widgets can resize themselves.

FIGURE 4-26 Frame Widget Resize Behavior

The Frame in Figure 4-26 is constrained by a “Move” command only. If the user

changes the label text for one of the ToggleButtons, the Frame is free to resize itself

because its bottom and right sides are unconstrained.

If the Frame also has attachments set by “Resize”, however, it cannot resize, as

shown in Figure 4-27.

Frame with
original set of
labels

“Move” attachment
controls position of
Frame’s upper left corner

Frame resizes when
ToggleButton labels get
longer



Chapter 4 The Layout Editor 131

FIGURE 4-27 Effects of Using Move and Resize Attachments Together

Because the combination of “Move” and “Resize” attachments shown in Figure 4-27

fixes all four sides of the Frame, it cannot subsequently expand to accommodate a

larger label. Motif handles this situation by displaying only part of the label string.

“Resize” is used mainly with the BulletinBoard and DrawingArea as these widgets

do not offer position attachments or widget attachments. “Resize” offers a way to

force widgets to remain at a certain size and prevents them from overlapping. The

disadvantage of “Resize” is that it eliminates the positive effects of automatic

resizing.

To get the best behavior with widgets that are likely to change size, use a Form and

attach widgets to one another so that when one widget changes size other widgets

move to accommodate it.

Using the Constraints Panel

The constraints panel, which was introduced in the previous chapter, can be used to

view attachments on any child of the Form and to adjust attachments. The

constraints panel is only recommended for viewing or fine-tuning attachments. Note

that the constraints panel only shows attachments that originate from a widget. Use

the Layout Editor for any large-scale changes.

1. Select “Close” from the File menu on the Layout Editor screen.

2. Select the RowColumn in the construction area.

3. Pull down the Widget Menu and select “Constraints”.

This command displays the attachments set on the RowColumn, as shown in Figure

4-28.

Resize attachment also
fixes Frame’s lower right
corner

Frame is not allowed to
resize when labels get
longer



132 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 4-28 Constraints Panel for RowColumn

The top edge of the RowColumn has an attachment to the Form with an offset of 0.

The left edge of the RowColumn has a position attachment of 45%. The right and

bottom edges of the RowColumn have no attachments.

You can use the constraints panel to:

■ View the attachments on any child of a Form

■ View the names of widgets to which each edge of the widget is attached

■ Distinguish default offsets (shown in parentheses) from explicit offsets

■ Change the type of attachment - “Form”, “Position”, or “Widget” - by selecting

from the “Type” option menu

■ Remove an attachment by selecting “None” from the “Type” menu (only if the

widget still has at least one attachment in x and one in y)

■ Adjust the offset or position by typing a new value into the “Offset” field

■ Specify whether the Form should resize if this child resizes. This is the

“Resizeable” option menu. If “No” is selected here, the Form parent will remain

the same size whatever size this child becomes.

4. To effect any changes in the constraints panel, click on “Apply”.



Chapter 4 The Layout Editor 133

Other Layout Widgets

The Layout Editor also works on the BulletinBoard, Drawing Area and RowColumn

widgets.

BulletinBoard and DrawingArea

The Layout Editor works in much the same way on the BulletinBoard and

DrawingArea as on the Form. There are a few differences when you use it with other

layout widgets. The following comments refer only to the BulletinBoard and

DrawingArea.

As mentioned above, widget, self and position attachments are not available. The

Layout Editor does not show arrows or arrowheads indicating attachments, but only

the positions and sizes of widgets in the layout.

When you first display the Layout Editor, you may find that several widgets are

initially laid out directly on top of one another. Use “Move” repeatedly to drag them

to new positions so that they do not overlap.

The only available editing modes on the main screen are “Move” and “Resize”. You

can also use “Group Align” and “Distribute” but not the “Align” mode on the main

screen. “Group Align” and “Distribute” do not attach widgets to one another, but

merely reposition them.

There is no danger of circular attachment as widgets cannot be attached to each

other.

Internally, the Layout Editor does not set resources of the BulletinBoard and

DrawingArea as it does for the Form. Instead, it determines layout by setting Core

size and position resources of the child widgets. The constraints panel is not

available for these layout widgets. To view the size and position resources, display

the Core resource panel for the child widget.

RowColumn

The RowColumn is a manager widget and, therefore, the Layout Editor can be

invoked. The only function you can use, however, is “Resize”. None of the others

apply to RowColumns.



134 Sun WorkShop Visual User’s Guide • May 2000

Layout Editor Restrictions

You cannot move a widget in the layout editor, or set constraints on it, if:

■ it is not managed

■ it is part of a definition instance and you have not been given access to it (see

“Modifying and Extending an Instance” on page 273)

You can manage a widget by setting the “Managed” toggle for it on the Code

Generation page of the Core resources dialog.



135

CHAPTER 5

Other Editors

Introduction

Sun WorkShop Visual provides special editors which simplify certain common tasks.

You can use these editors to perform the following tasks:

■ Setting colors

■ Setting fonts for text strings

■ Using bitmaps or pixmaps for labels instead of text

■ Creating pixmaps

■ Creating and editing compound strings

■ Editing callbacks and preludes

The editors are used in this chapter to customize the tutorial interface. They are

invoked from the widget resource panels and the result added to the appropriate

field in the resource panel. It is also possible to display the Color Selector, Pixmap

Editor and Font Selector from the “Tools” menu. The editors can be used

independently of any selected widget.

Setting Colors

Because foreground and background colors are the basic elements of all widgets,

these resources are located on the Core resource panel. Use the following

instructions to set these colors for widgets in the hierarchy.

1. Select the “Strawberry” ToggleButton icon in the hierarchy.



136 Sun WorkShop Visual User’s Guide • May 2000

2. Click on the “core resources” button on the toolbar or pull down the Widget
Menu and click on “Core resources...”.

In previous chapters, you entered settings for resources directly in the text boxes on

the right side of the resource panels. To use the editors described in this chapter,

click on the buttons on the left side of the resource panels instead.

3. On the “Display” page, click on the “Foreground color” PushButton.

Sun WorkShop Visual displays the Color Selector, shown in Figure 5-1:

FIGURE 5-1 The Color Selector

Selecting from the X Colors List

X provides many pre-named colors. These standard colors make a good starting

point for selecting colors for the interface.

1. Scroll down through the X colors displayed in the scrolled list.

currently
selected color

sliders for
color
adjustment

Selection Box

original color



Chapter 5 Other Editors 137

2. Select a color.

As you select colors, the currently selected one is shown on the right at the top of the

dialog. On the left, the original color is displayed so that you can compare the two.

Choose a dark reddish color such as maroon. These colors are clustered about half-

way down the list. The selected color is displayed at the top of the Color Selector.

3. Click on “Apply” in the Color Selector.

This applies your selection to the “Foreground color” resource on the Core resources

panel. To apply it to the widget, you must:

4. Click on “Apply” in the Core resources panel.

The “Strawberry” ToggleButton changes color in the dynamic display. Don‘t worry if

it looks like the background color changes instead of the foreground color; this is

because the widget is selected in the hierarchy and the selection is reflected in the

dynamic display by inverting the foreground and background colors.

To see the true colors:

5. Select the Shell in the hierarchy.

Now you can see the true foreground and background colors of the “Strawberry”

ToggleButton in the dynamic display.

Using Color Components

Selecting from the X colors list is only one of several ways to specify a color. Another

method is to create the color using components. Use this technique to set the

background color of the “Strawberry” ToggleButton:

1. Select the “Strawberry” ToggleButton in the hierarchy.

2. On the Core resource panel, click on “Background color”.

3. Use the sliders to change the color.

The sliders at the top of the Color Selector let you individually control the red, green

and blue components and the hue, saturation and brightness of your color. You can

use the sliders in any order. Changes are reflected immediately at the top of the

Color Selector. Notice that the color name is a concatenation of values.

Since this is a background color, a light (non-saturated) color is recommended. This

provides a good contrast for the labels, which are darker.

4. When you are satisfied with the color, apply it by repeating Step 3 and Step 4 in
“Selecting from the X Colors List” on page 136.

Do not change the color in the Color Selector before proceeding to the next section.



138 Sun WorkShop Visual User’s Guide • May 2000

Color Objects

To create a visually appealing interface, it is essential to use colors consistently. Sun

WorkShop Visual assists you by providing color objects, which let you bind colors to

names which you specify. Use this feature to apply the same background color to all

the widgets in the central part of the tutorial interface:

1. Select the “Strawberry” ToggleButton in the hierarchy.

2. In the Core resource panel, click on “Background color”.

3. In the Color Selector, click in the “Name” Text box underneath the list of Color
objects.

4. Type: background

5. Click on “Bind”.

This binds the color to a color object named “background”. The selection box shows

the name background in angle brackets.

6. Click on “Apply” in the Color Selector and in the Core resources panel.

Apply this background color to other widgets in the hierarchy by entering the color

object name as the setting for the background color resource:

7. Select the “Vanilla” ToggleButton in the hierarchy.

8. In the Core resource panel, double-click in the “Background color” text field.

9. Type: <background>

Note that you must use angle brackets. The angle brackets distinguish an object

name from a string value. For example, a color object named <red> is distinct from

the color red.

10. Click on “Apply”.

The color in the “Vanilla” ToggleButton changes. Now apply this background color

to the “Chocolate” ToggleButton and any other widgets you want to share the same

background color.

Rebinding Color Objects

When you use a color object, you can easily change the color on all widgets which

reference that color object. This makes experimenting with colors easy.

1. In the Color Selector, click on “background” in the “Color objects” list.



Chapter 5 Other Editors 139

The background color is displayed at the top right of the Color Selector and

“background” is displayed in the text field underneath the list of objects.

2. Using the sliders at the top of the Color Selector, change the color.

3. Click on “Bind”.

All the resources which refer to the color object change to the new color and the

change is reflected immediately in the dynamic display.

Experiment with creating new colors, binding them to color objects and assigning

these color objects to some color resources. You can also bind colors from the X

colors list to color objects. By repeating these steps, you can build your own palette

of colors. Remember that it is better to name a color object for the function it serves,

such as “background”, than for the color it represents, since the color can change.

Color objects are saved with the design file. This means you can use the same names

for color objects in different design files, even though the colors might be different.

For example, the color object, background, might be yellow in one design and light

blue in another. Within the same design, however, an object name such as

“background” always refers to the same color.

Color objects can be shared between files by making them “global”. This is

controlled by setting the appropriate toggle when you generate code. See “Global

Object Functions” on page 219 for more information.

Setting Fonts

The Font Selector lets you select font styles and sizes for the text which appears in

your widgets. Your system determines which font styles are available; you can’t

create new fonts the way you can create new colors.

So far, you have used the default font for all text in the tutorial interface. In this

section you will use the Font Selector to:

■ Select a font

■ Set a font on a single widget

■ Bind a font object to a particular font

■ Apply a font object to multiple widgets

This section discusses the use of a single font in a text string. Complex font objects

which let you use multiple fonts in a single label string are discussed in “Compound

Strings” on page 163.



140 Sun WorkShop Visual User’s Guide • May 2000

Selecting a Font

To add more visual interest to the tutorial interface, you are going to change some of

the fonts from their default to an oblique font, as illustrated in Figure 5-2.

FIGURE 5-2 Toggle Buttons Before and After Setting Font

First, bring up the Font Selector:

1. Click twice on the “Double Scooper” radio button to bring up the resource panel.

2. On the “Display” page of the resource panel, click on “Font”.

Sun WorkShop Visual displays the Font Selector, shown in Figure 5-3.

Default font

Oblique font



Chapter 5 Other Editors 141

FIGURE 5-3 The Font Selector

Regions of the Font Selector Panel

The Font Selector lists all the fonts available on your system. Because different

machines may have different fonts installed, your list may look different from the

figure.

Since there can be hundreds of fonts in the list, the menu bar lets you filter the list

according to different criteria such as the font family, weight and point size.

The toggles below the font list let you select scalable fonts, non-scalable fonts, or

both.

When you select a font from the list, the name appears in the “Font name” and

“Selection” fields.

The Font Selector also lists font objects and their associated fontlist tags. Simple font

objects can be used as aliases for font names. “Compound Strings” on page 163

discusses the use of more complex font objects.

List of fonts

Scalable/
non-scalable
toggles

Sample
text

Font
objects

Fontlist
tags

Fontset
toggle



142 Sun WorkShop Visual User’s Guide • May 2000

Filtering the Font List

You are going to change the font of the “Double Scooper” label to 14-point bold

oblique Helvetica. (If this font is not installed on your machine, select an

alternative.) Because there are so many fonts in the list, it helps to filter the list. The

“Font name” and “Selection” fields reflect your choices as you make them.

1. Pull down the Family Menu from the menu bar and select “Helvetica”.

This eliminates all fonts from the list which are not Helvetica.

2. Pull down the Weight Menu and select “bold”.

3. Pull down the Slant Menu and select “o” for “oblique”.

4. Pull down the PtSize (point size) Menu and select “140”.

Note that, because point sizes are specified in tenths of a point, this selects a 14-point

font.

These steps reduce the font list to about four entries. A typical font name entry is

shown in Figure 5-4. Although many fields are required to specify a font uniquely,

most of them are only interesting to advanced typographers. The fields you are most

likely to use are family, weight, slant and point size. You may also need to specify

the display resolution such as 75 dpi (dots per inch) or 100 dpi. These fields are

identified in Figure 5-4.

FIGURE 5-4 A Typical Font Name

The example in Figure 5-4 specifies a display resolution of 100 dpi, both horizontal

and vertical, which is appropriate for most workstation displays.

5. Pull down the ResX Menu and select a resolution of 100 or 75 dpi.

Select the resolution appropriate to your display. If in doubt, use 100 dpi.

Family Slant

Weight

Point size

X and Y Resolution

-adobe-helvetica-bold-o-normal--17-120-100-100-p-92-iso8859-1



Chapter 5 Other Editors 143

Applying the Font

The selections you have made are sufficient to specify a font for the interface. Now

you can apply it to the “Double Scooper” radio button.

1. Click on “Apply” in the Font Selector.

This applies your selection to the “Font” resource in the resource panel.

2. Click on “Apply” in the resource panel.

The “Double Scooper” radio button is now labeled in a large, bold, oblique font.

3. Select the “Small” radio button.

4. Pull down the PtSize (point size) Menu and select “100”.

You can press the “Sample text” button to re-display the example text whenever the

filtering has been changed. Sun WorkShop Visual doesn’t do this automatically as

some fonts can take a very long time to load.

5. Click on “Apply” in the Font Selector and in the resource panel.

The “Small” radio button is now labeled in a bold, oblique font, smaller than the

“Double Scooper” label. Before proceeding, reset the Font Selector panel so that it

shows all the fonts:

6. Click on the “All fonts” button at the bottom of the Font Selector.

This resets all elements of the font filter to “*” and so all available fonts are

displayed again.

Scalable Fonts

The font you used on the radio buttons is a non-scalable font. This means that it is

only available in certain fixed point sizes. X also supports scalable fonts, which can

be any size you like. Try selecting some scalable fonts:

1. Clear the “Non-scalable” toggle in the Font Selector.

This eliminates all non-scalable fonts from the list and so the list is now empty.

2. Set the “Scalable” toggle.

This adds the scalable fonts to the list. You can specify a size for any of these fonts in

two ways: by adjusting either the pixel size or the point size. The pixel size is the

first numeric field in the font descriptor and the point size is the second numeric

field. Both of these fields are initially set to zero for all scalable fonts, indicating a

default size.



144 Sun WorkShop Visual User’s Guide • May 2000

3. Click on one of the font names in the list.

Your selected font appears in the “Font name”, “Selection” and “Sample text” fields.

4. Click in the “Font name” field (not the “Selection” field).

5. Edit the second numeric field (point size) to 240 (24 points).

6. Press <Return> or click on the “Sample text” button to display a sample of this
text size.

When using scalable fonts, specify a non-zero value for either the pixel size or the

point size, but not both. X adjusts the remaining zero value to fit the explicitly

specified value. If you specify non-zero values for both fields, however, Sun

WorkShop Visual displays an error message if they do not match.

Typical point size values, specified in tenths of a point, are larger than typical pixel

size values. A point size of 240 roughly corresponds to a pixel size between 30 and

35. The exact proportion depends on the resolution of your screen and the specific

font.

X has two ways of scaling fonts: outline scaling and bit scaling. If the sample text is

very jagged, the font is bit-scaled. To list only outline-scaled fonts, pull down the

Fndry Menu and select “bitstream”.

After experimenting, set the Font Selector to see the non-scalable fonts again:

7. Click on the “Non-scalable” toggle.

Simple Font Objects

For the two radio buttons, you set the fonts individually. If you use this method to

set the same font for multiple widgets, any later changes must also be made for each

widget individually. Also, the code generated by Sun WorkShop Visual for the

application makes a separate call to your system to load the same font for each label,

which is inefficient.

Therefore, if multiple widgets use the same font, you can simplify both the code and

maintenance of it by creating a simple font object. A font object is an alias for a list of

fonts. A simple font object is an alias for a one-element list.

1. Use the pulldown menus to select the 12-point bold oblique helvetica font.

If more than one font appears in the list of X fonts, highlight one.

2. In the “Name” field underneath the list of Font objects, type: option_labels

Remember that it is better to name a font object for the function it serves rather than

for the size or style it represents, since these specifications can change.



Chapter 5 Other Editors 145

3. Click on “Bind”.

This creates a font object called “option_labels”. It only has one font in its list: the 12-

point helvetica font. This has an associated fontlist tag “<Default>”. The use of

fontlist tags is discussed in “Compound Strings” on page 163.

Notice that the “Selection” field automatically updates to show the

“<option_labels>” name. The angle brackets (<>) indicate that it is a font object

rather than a font name. This font is applied to the resource panel when you click on

“Apply”. Do not do this yet as we are going to apply this font object to all the

ToggleButtons and Labels at once.

4. Select all three ToggleButtons: “Vanilla”, “Chocolate” and “Strawberry” and the
three Labels: “Topping1”, “Topping2” and “Topping3”.

Do this by either dragging a rectangle around the widgets or by selecting each

widget while holding down the Shift key.

5. Click on “Apply” in the Font Selector.

This applies the font object to the ToggleButton resource panel.

6. Click on “Apply” in the resource panel.

This applies the font object to all the selected widgets.

The interface now looks as shown in Figure 5-5.

FIGURE 5-5 Interface with Fonts Applied

Changing the Font Object

The text on the ToggleButtons and Labels is now shown in the font to which the font

object is bound. To change this font style, just bind the font object to another font.

1. Pull down the Slant Menu and select “r” for “regular”.



146 Sun WorkShop Visual User’s Guide • May 2000

2. Pull down the Family Menu and select “Times”.

The font list now displays the 12-point bold Times fonts. If the list is empty or Times

is not availab, select a different font family.

3. Click on “Bind”.

4. Click on “Apply” in the Font Selector.

5. Click on “Apply” in the resource panel.

The font object changes to correspond to the Times font and all the Labels and

ToggleButtons change immediately in the dynamic display.

Font objects are saved with the design file. This means you can use the same names

for font objects in different design files, even though the font might be different. For

example, the option_labels font object might be Helvetica in one design and Times in

another.

Font objects can be shared between files by making them “global”. This is controlled

by setting the appropriate toggle when you generate code. See “Global Object

Functions” on page 219 for more information.

Selecting Pixmaps

You can use pixmaps instead of text strings on labels and buttons. Sun WorkShop

Visual provides two editors for creating and applying pixmaps. First you will use

the Pixmap Selector to learn the basics of applying pixmaps to widgets. Then you

will use the Pixmap Editor to create some custom pixmaps.

Sun WorkShop Visual lets you use bitmaps created using the standard X bitmap

editor. It also lets you use pixmaps in the public domain Xpm format and provides

an editor for you to build pixmaps in this format. The Xpm library is included with

the Sun WorkShop Visual release.

Bitmaps and Pixmaps

Note that you can use pixmaps created with any other utility provided they are in

Xpm format. The difference between a bitmap and pixmap is that bitmaps are

monochrome and pixmaps are color images. They are also different formats -

bitmaps are Xbm format and pixmaps are Xpm format. You can still edit X bitmaps

using the Sun WorkShop Visual Pixmap Editor. When you do this, Sun WorkShop

Visual converts the bitmap to a two-color pixmap and writes it out in Xpm format.

You can keep it with only two colors or add more colors to it.



Chapter 5 Other Editors 147

Selecting a Bitmap

As a first step, replace the label of a ToggleButton with one of the X bitmaps.

1. Click twice on the “Cone” PushButton in the hierarchy.

2. On the “Display” page of the resource panel, click on “Pixmap”.

Sun WorkShop Visual displays the Pixmap Selector. This is shown with example

entries in Figure 5-6:

FIGURE 5-6 The Pixmap Selector with Example Entries

3. Select any bitmap from the list of X bitmaps.

The selected bitmap is displayed at the top of the Pixmap Selector.

4. Click on “Apply” in the Pixmap Selector.

This applies your selection to the “Pixmap” resource in the resource panel.

5. Click on “Apply” in the resource panel.

Now the ToggleButton has both a text label and a pixmap label, although only the

text label appears in the dynamic display. To display the pixmap label, you must

change the resource that controls which type of label is displayed.

currently
selected
pixmap

Selection Box



148 Sun WorkShop Visual User’s Guide • May 2000

6. On the “Settings” page of the resource panel, change the “Type” setting to
“Pixmap”.

7. Click on “Apply” in the resource panel.

The ToggleButton now displays the pixmap instead of the text label. Since the

pixmap does not convey any useful information in this case, change the “Type”

resource back to “String”.

If you have additional X bitmap files on your system, you can also use these.

Clicking on “Open...” displays a file selector which lets you locate bitmap files and

add them to the list of X bitmaps.

You can also enter names of bitmaps in the text box under the list of X bitmaps, then

click on “Add” to add the name to the list. If the bitmap doesn’t exist yet, you can

still add its name to the list and apply it to resources. Later, in development or at run

time, you can supply the bitmap.

Selecting a Pixmap

The list on the right of the Pixmap Selector is the list of currently defined pixmap

objects. These are pixmaps which have been bound as an object. The names in the

list are the names of the objects. You can name a new pixmap object and then create

a pixmap or read in an existing pixmap or bitmap. To make a new object, type its

name in the text box below the list. To identify a pixmap with that object, press the

“Edit” button. “Editing Pixmaps” on page 148 describes how to read in or create a

pixmap.

Editing Pixmaps

Sun WorkShop Visual provides an editor for creating pixmaps. In addition to

allowing you to design your own pixmaps, the Pixmap Editor also lets you:

■ Bind pixmaps to pixmap objects

■ Drag pixmaps and pixmap filenames into the Pixmap Editor design area

■ Load pixmaps files in Xpm format

■ Load X bitmap files and convert them to pixmaps for editing

■ Write pixmaps to files in Xpm format

You can choose whether to write the pixmap in Xpm version 1 or 3. You should use

version 3 as this is the most recent. Version 1 is provided for compatibility with older

pixmap-handling applications.



Chapter 5 Other Editors 149

All pixmaps used by widgets in Sun WorkShop Visual must be bound to pixmap

objects. First, you will create a pixmap for the “Cone” PushButton, as shown in

Figure 5-7:

FIGURE 5-7 The Tutorial Interface with Pixmap Button

If you are continuing from “Selecting Pixmaps” on page 146, you already have the

Pixmap Selector displayed and so you can skip the next two steps.

1. Double click on the “Cone” PushButton in the hierarchy.

2. On the “Display” page of the resource panel, click on “Pixmap”.

3. In the text box in the “Pixmap objects” portion of the Pixmap Selector, type: cone

4. Press the “Edit...” button.

Sun WorkShop Visual displays the Pixmap Editor, shown in Figure 5-8:



150 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 5-8 The Pixmap Editor

The Pixmap Editor has a menubar at the top of the window, a toolbar beneath the

menubar, a tools palette on the left, the current foreground and background colors

beneath the tools palette, an image drawing area in the centre and an image shown

actual size on the right.

Pixmap Editor Toolbar

The toolbar, shown in Figure 5-9 contains buttons for the following operations:

■ Open. Open a pixmap file, exactly as in “Open file” on page 151.

■ Cut. Cut the selected area of the pixmap. See “Cut” on page 152.

■ Copy. Copy the selected area of the pixmap. See “Copy” on page 153.

■ Paste. Paste the contents of the clipboard into the pixmap. See “Paste” on

page 153.

■ Clear. Clear the selected area. See “Clear” on page 153.

■ Zoom in/Zoom out. Zoom in magnifies the whole image and zoom out makes the

image appear smaller. These are view options and do not affect the pixmap.

Tools

Color palette

Actual size
pixmap
display



Chapter 5 Other Editors 151

FIGURE 5-9 Pixmap Editor Toolbar

Pixmap Editor File Menu

The File menu contains four options: “New”, “Open File”, “Save XPM File” and

“Close”.

New

New creates a new, blank editing area removing any image that was there before.

Sun WorkShop Visual warns you if you have not bound the image since making any

changes. If you wish to bind the image, select “Cancel” and then bind it, as

described in “Pixmap Objects” on page 162. If you do not wish to bind the image,

press “OK” and continue.

Open file

If you have X pixmap files on your system, you can also use these in your interface.

Selecting “Open file...” in the File Menu displays a file selector which lets you load a

pixmap file into the Pixmap Editor. Sun WorkShop Visual reads pixmaps in XPM3

format. It also reads X bitmap files and converts the bitmaps to pixmaps for editing

in the Pixmap Editor.

Save XPM file

Selecting “Save XPM file...” lets you write the pixmaps you create to files. Sun

WorkShop Visual writes XPM1 and XPM3 format. You should normally save

pixmaps in XPM3 format. XPM1 is provided for compatibility with older versions of

third-party pixmap-handling utilities.

Open file

Cut

Copy

Paste

Clear

Zoom in

Zoom out



152 Sun WorkShop Visual User’s Guide • May 2000

Close

This closes the editor window. If you have made changes since last binding, Sun

WorkShop Visual will issue a warning. See “Pixmap Objects” on page 162 for details

on binding images to objects.

Saving Your Work

Every time you bind or write to an XPM file, you effectively save the current state of

the pixmap you are creating. It’s a good idea to do this frequently as you work.

Pixmap Editor Edit Menu

The Edit menu has seven items: “Undo”, “Cut”, “Copy”, “Paste”, “Clear”, “Crop”

and “Select All”.

Most of these options operate on the selected portion of the pixmap. To select, use

the arrow in the selection tool on the palette, as shown in Figure 5-10.

FIGURE 5-10 Selection Tool

1. Click on the selection tool.

2. Click in the drawing area and drag.

The selected portion of the pixmap includes pixels in the rectangular border marked

with crosses and all the pixels within the border. Note that when you select an area

of the image, the size and location of the selected area is displayed in the status line

at the bottom left of the window. The “Select all” option in the Edit menu selects the

entire image.

Undo

This undoes the last action in the editing area.

Cut

Cut removes the selected portion of the image to the clipboard.



Chapter 5 Other Editors 153

Copy

Copy copies the selected portion of the image to the clipboard.

Paste

Pastes the contents of the clipboard into the selected area. If the selected area is

smaller than the area on the clipboard, Sun WorkShop Visual places the top left of

the clipboard image at the top left of the selected area and draws as much of the area

from the clipboard as there is room to do.

Clear

Clear removes the selected portion of the image without copying it to the clipboard.

Crop

Crop reduces the image to the selected area, thereby resizing it.

Select All

This selects the whole image.

Pixmap Editor View Menu

The view menu contains one pullright menu item, labelled “Drag color”. This refers

to the color of the selection rectangle as you drag it. When you pullright from this

item, two radio buttons appear labelled “Invert” and “Xor”. These describe the

method of showing the selection rectangle.

Pixmap Editor Image Menu

The Image menu contains one item, “Resize”. Selecting this item displays the dialog

in Figure 5-11.



154 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 5-11 Resize Dialog

Type the new size in the format “width x height”. Setting the “Rescale to Fit” toggle

causes the Pixmap Editor to rescale the image to suit the new dimensions specified.

Pixmap Editor Effects Menu

The Effects menu has four items: “Reflect Horizontally”, “Reflect Vertically”, “Rotate

180” and “Gray Out”.

Reflect

“Reflect Horizontally” and “Reflect Vertically” reflect the selected area across a

horizontal or vertical axis respectively.

Rotate

“Rotate 180” rotates the selected area through 180 degrees - effectively reflecting the

selected area across a diagonal axis.

Gray Out

This item creates a grayed out version of the selected area by ‘xor’ing each pixel.

This is useful for creating insensitive pixmaps.

Pixmap Editor Palette Menu

The Palette menu allows you to edit the color palette or read in a new palette. There

are two items: “Edit Palette” and “Read Palette”.



Chapter 5 Other Editors 155

Edit Palette

This produces the Palette Editor which is described in “Color Palette” on page 157.

Read Palette

This lets you read in the palette of a saved pixmap file. When you select this item, a

file selection dialog appears prompting you for the name of an Xpm format file.

When the file is read in, the palette of colors from the saved file replaces the existing

palette. Sun WorkShop Visual then changes the colors of the current image, if you

have one, to use the colors of the new palette. Sun WorkShop Visual will use the

closest color match it can find.

Supplied with Sun WorkShop Visual are some palettes which are color cubes. Also

supplied is the palette used by Sun WorkShop Visual for its icons. These files can be

found in: $VISUROOT/lib/palettes , where VISUROOT is the install directory of

your Sun WorkShop Visual.

Tools Palette

To help you draw and color your image there is a palette of tools on the left of the

Pixmap Editor window, as shown in Figure 5-12.

FIGURE 5-12 Tools Palette



156 Sun WorkShop Visual User’s Guide • May 2000

Note that all of the drawing tools use the current foreground color. You can,

however, use the current background color instead. See “Swapping Background and

Foreground Colors” on page 158. You may also change all instances of a particular

color in your image. See “Changing a Color in the Image” on page 158 for details on

how to do this.

You must select one of these drawing tools to perform an operation on the window.

There is always one and only one tool selected at any time.

This is the selection tool. You can select rectangular areas of the image. Many of the

menu functions operate on the selected area.

This is the filled rectangle tool. With this selected you can draw rectangles filled with

the current foreground color.

This is the fill tool. Click the mouse button over an area of the pixmap to fill that

area with the current foreground color.

This allows you to draw the outline of a circle using the foreground color. The circle

is drawn from the centre.

This enables you to draw individual pixels using the foreground color.

With this selected, you can draw a circle from the centre filled with the foreground

color.

Select this to draw straight lines in the foreground color.



Chapter 5 Other Editors 157

This is the dropper tool. Use this to pick up colors from the image. Clicking over a

color in the image while this is the selected tool sets that color as the foreground

color. See “Dropper Tool Shortcut” on page 157 for a quick way of doing this.

This allows you to draw the outline of a rectangle using the foreground color.

Dropper Tool Shortcut

With any tool selected, clicking over a color with the Control key held down sets the

foreground color in exactly the same way as the dropper tool. Clicking with Mouse

Button 2 while the Control key is held down sets the background color.

Dragging into the Editing Area

You can drag pixmaps and pixmap filenames into the editing area using the Motif

“drag and drop” mechanism. Usually this means pressing Mouse Button 2 over the

source and dragging it into the Pixmap Editor editing area before releasing the

mouse button. If this does not work, check with your system administrator for your

system’s configuration.

A dragged pixmap appears in the editing area exactly as if you had created it

yourself, complete with a color palette containing all the colors used in the pixmap.

Color Palette

Color palettes are important in the Pixmap Editor. In order to create color pixmaps

you need to specify which colors you wish to use. Any colors defined in the color

palette for a pixmap will be stored with the pixmap. While you are creating your

image you need to be aware which colors from the palette are the current

background and foreground colors.

Background and Foreground Colors

The two squares of color below the tools palette show the current foreground and

background colors. The foreground color is the color used for any drawing. The

background color is used to fill blank space left by the editor. “Cut” and “Clear”



158 Sun WorkShop Visual User’s Guide • May 2000

both leave blank space which is filled with the background color. See “Cut” on

page 152 and “Clear” on page 153 for details on these operations. “Gray out” uses

the background color to produce the grayed out effect. See “Gray Out” on page 154.

Resizing to a larger size fills the extra space with the background color.

Swapping Background and Foreground Colors

When you draw anything in the Pixmap Editor, the current foreground color is used.

If, however, you draw with Mouse Button 2 pressed down, the current background

color is used.

Seeing the Color Palette

Pressing the mouse button when the pointer is over either the background or

foreground square displays the color palette.

You can edit the color palette so that it contains the colors you wish to use in your

image. This is described in “Editing the Color Palette” on page 159.

Changing the Background and Foreground Colors

You can change the current background and foreground colors by displaying the

color palette and releasing the mouse button over the new color.

Changing a Color in the Image

If you have a color image and you wish to change all instances of one particular

color to another, do the following:

1. Make sure the color you wish to change is the current foreground color.

2. Press the Control key and select another foreground color.

Wherever the previous color was displayed in your image, the new color is now

displayed.



Chapter 5 Other Editors 159

Editing the Color Palette

Selecting “Edit palette” from the Palette menu produces the Palette Editor, as shown

in Figure 5-13.

FIGURE 5-13 Palette Editor

Each color square is a button. You can select a color square by pressing the mouse

button over it. The name of the selected color is displayed at the bottom of the

Palette Editor window.

Removing Colors

The “Remove” button removes the currently selected color from the palette. If that

color was being used in the pixmap, it is replaced by the background color.

Adding Colors

Pressing the “New” button adds a color to the end of the palette. The new color is

the same as the last color on the palette.



160 Sun WorkShop Visual User’s Guide • May 2000

Editing Colors

To change a color, double click over it or select it and press “Edit”. This invokes the

Color Editor. See “Setting Colors” on page 135 for more details on the Color Editor.

Transparent Colors

If you set the toggle labelled “Transparent” for a selected color, the color will be

“transparent” in the pixmap. This means that when the pixmap is displayed in the

final application those areas of the pixmap which are transparent show the color that

is beneath them. You may wish to use this so that the background of a button, for

example, shows through parts of the pixmap.

Note, however, that it is XPM that supports transparent colors. The Motif

PushButton and Label widgets provide no support for them. You could use the XPM

library to translate the “none” color to the background color of the widget

displaying the pixmap. The following file provides more detailed information on

using the XPM library:

$VISUROOT/contrib/xpm/doc/xpm.ps

where VISUROOT is the install directory of your Sun WorkShop Visual.

If you wish to use transparent colors, some third-party widgets may provide more

support.

The name “none” is displayed for the transparent color in the color palette editor.

Saving a Color Palette

When a pixmap is saved, the color palette is also saved. This means that you can

create a pixmap specifically for its color palette and then load in the palette at

another time (this is discussed below). Sun WorkShop Visual compresses the number

of colors saved to those used in the picture. If you are creating a pixmap in order to

save the color palette, simply set one pixel to each of the colors in your palette.

Reading a Color Palette

See “Read Palette” on page 155 for details on reading in a color palette from a saved

pixmap.



Chapter 5 Other Editors 161

Note – If you plan to use a lot of colors you should run Sun WorkShop Visual with

the “-L” command line switch, as described in “Command Line Switches for

Interactive Use” on page 685, so that Sun WorkShop Visual uses its own private

colormap. Otherwise, you may not be able to use many colors.

Using the Pixmap Editor

First, set the size of the pixmap you’ll be creating.

1. Select “Resize” from the Image menu.

2. Type: 40 x 40 into the text box in the Resize dialog.

3. Press “OK”.

The actual-size pixmap display and the grid in the drawing area should resize. To

draw:

4. Select black as the foreground color.

See “Changing the Background and Foreground Colors” on page 158 for details on

changing the foreground color.

5. Click on the filled rectangle tool.

See “Tools Palette” on page 155 if you are not sure which is the filled rectangle tool.

6. Click in the drawing area and drag to create a black filled rectangle.

The actual-size pixmap display updates to show what you’ve just drawn.

7. Experiment with the drawing tools until you feel comfortable using them.

It is helpful to learn the options on the Edit Menu and add some colors to the color

palette before you undertake a drawing task.

8. Add some colors to your color palette.

Now that you have more colors, experiment more with the drawing tools. When you

are ready, use the tools and colors to create a pixmap showing an ice cream cone.

9. Draw an ice cream cone.



162 Sun WorkShop Visual User’s Guide • May 2000

Pixmap Objects

To display your finished pixmap, you must bind it to a pixmap object first.

1. Type “cone” in the “Bind” field in the Pixmap Editor.

2. Click on “Bind” or press <Return> in the “Bind” field.

In the Pixmap Selector, the pixmap object name appears in the list of pixmap objects

and in the selection box.

3. Click on “Apply” in the Pixmap Selector.

4. Click on “Apply” in the resource panel.

5. On the “Settings” page, change the “Type” setting to “Pixmap”.

6. Click on “Apply” in the resource panel.

Pixmap objects work very much like color objects. You can use the same pixmap in

more than one place. Changes you make to the pixmap are reflected in the dynamic

display as soon as you bind again.

Pixmap objects are saved with the design file. This means you can use the same

names for pixmap objects in different design files, even though the pixmap might be

different. For example, the pixmap object, cancel, might be a cancel stamp in one

design and the international “No” symbol in another.

If you want, try creating and adding pixmap objects for the “Dish” and “Cancel”

buttons. Hint: the lettering for the “Cancel” stamp shown in Figure 5-14 was done

with the line tool, not the pencil tool.

FIGURE 5-14 The Tutorial Interface with Three Pixmap Buttons

7. Save your design.



Chapter 5 Other Editors 163

Pixmap objects can be shared between files by making them “global”. This is

controlled by setting the appropriate toggle when you generate code. See “Global

Object Functions” on page 219 for more information.

Compound Strings

The labels in the tutorial example all use simple text strings. This section describes

the Sun WorkShop Visual compound string editor, which uses an internal structure

to let you create more complex strings. In conjunction with complex font objects,

these strings let you display labels that use more than one font, or labels that are

written entirely or partly from right to left.

To most people a string is just an ordered list of ASCII characters - a character string.

Most Motif resources that have string values use a different string representation:

the compound string.

Motif compound strings are used for all string resource values except for the strings

in Text and TextField, which are ordinary character strings. (It is important not to

confuse the Motif compound string with the compound text format of X. The Motif

compound string is often called an XmString because this is the naming convention

for the Motif toolkit functions used to manipulate it.)

A compound string is a way of encoding text so that it can be displayed in multiple

languages and fonts without changing the code. In this section, you will learn how

to create a string to be displayed in multiple fonts. For information about using

multiple languages, see Chapter 22, “Internationalization”, starting on page 615 and

your Motif documentation. Appendix E, “Further Reading” is a list of recommended

books on Motif.

Conceptually, a compound string consists of four types of component:

■ A text string (a string of bytes)

■ A fontlist tag. Fontlist tags were previously called “charsets” and this term is still

used in many Motif documents

■ A direction indicator: right-to-left or left-to-right

■ A newline separator

Although these types of component can be in any order, it is common for each text

string component to be preceded by a fontlist tag component.

A compound string can be used for the label of a widget by specifying a fontlist for

the widget’s font resource. A fontlist is a set of (font, tag) pairs. The fontlist tags

indicate which font in the fontlist to use for each text string component.



164 Sun WorkShop Visual User’s Guide • May 2000

To familiarize yourself with the features of Sun WorkShop Visual’s compound string

editor, use the following step-by-step example while running Sun WorkShop Visual

at your workstation.

● Select “New” from the File Menu.

The object of the exercise is to reproduce the masthead of the London Guardian on a

Label widget, shown in Figure 5-15.

FIGURE 5-15 Final Appearance of the Text String

Creating a Complex Font Object

So far, you have learned how to select a font and apply it to a widget. You have also

created a simple font object that corresponds to a single font. Complex font objects let

you produce more complex visual effects. A complex font object corresponds to a list

of fonts; different parts of a string can then be displayed using different fonts from

the list. The step-by-step example in this section requires a complex font object.

Create a widget that uses a label and give it a font object with more than one font in

its list.

1. Create a widget hierarchy with a Label as the child of a Form.

2. Double-click on the Label widget to display the resource panel.

3. Click on the “Font” resource button to display the font selector.

4. Use the pulldown menus to select a 24-point medium italic Times font.

5. In the Font object “name” field, type: masthead

6. In the “Fontlist tag” field to the right of the “Font object” field,
type: italic

7. Click on “Bind”.

This creates a font object called masthead with one font in its list. The font is tagged

italic.



Chapter 5 Other Editors 165

Note – Tag names are arbitrary. However, several pre-defined tags are listed by the

“Default” button and the “UIL” pulldown menu. The “Default” and “UIL” buttons

are above the “Fontlist tag” field. Selecting the “Default” option produces the tag

XmFONTLIST_DEFAULT_TAG. The UIL menu lists tags that can be used in UIL

(Motif’s User Interface Language). If you are a UIL user, note that most UIL

compilers produce a “severe internal error” if you use a tag that is not on this list. If

you are not a UIL user, ignore the UIL options.

Next, add another font to the font object. The second font has a different tag.

8. Select a 24-point bold regular Helvetica font.

9. In the “Fontlist tag” field, type: bold

Do not change the masthead font object name.

10. Click on “Bind”.

This adds the bold font to the font object list and tags it “bold”. You can see samples

of the two fonts in the “Sample” field by selecting the different tags in the “Fontlist

tag” list.

You now have a font object that can be used to display a string using two different

fonts. Apply it to the Label widget:

11. Click on “Apply” in the font selector.

12. Click on “Apply” in the Label resource panel.

The text in the Label is displayed in the italic Times font because it is the first in the

list. To display a text string that uses both fonts, you must create a compound string.

Creating A Compound String

When you type text into the “Label” text field of the resource panel, Sun WorkShop

Visual creates a compound string which only contains text string components and

separator components, which correspond to the newlines. To create a compound

string that includes fontlist tags, you must use the compound string editor.

1. Click on the “Label” button in the resource panel.

This displays the compound string editor, shown in Figure 5-16.



166 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 5-16 Compound String Editor

The compound string editor includes the current fontlist name, an editing area and a

list of existing compound string objects. The fontlist name is currently “masthead”,

to correspond with the name of the font object used in the widget.

As you enter text in the compound string, it appears in the editing area. The fontlist

named at the top of the screen is used to display the text. Other components, such as

empty text components and directional indicators, appear as symbols. You can turn

off the symbol display using the “Show symbols” toggle to see how the text will

look in the widget.

If the “Show symbols” toggle is not on:

2. Click on the “Show symbols” toggle.

To create the compound string, start by entering the text:

3. Click on the I-beam cursor in the editing area.

This makes the cursor blink, indicating that the editor is ready for text entry.

Current
fontlist
name

Compound string
editing area

Compound
string list

Symbol
key



Chapter 5 Other Editors 167

4. Type the following string with no space between the
words: TheGuardian

The text is displayed using the first font in the fontlist, which is the italic Times font,

as shown in Figure 5-17.

FIGURE 5-17 Initial Text for the Compound String

To make different parts of the text display in different fonts, you must insert fontlist

tags into the compound string.

5. Position the pointer between “The” and “Guardian”, then press and hold mouse
button 3.

A popup menu appears. Selecting an item from this menu inserts a component of

the corresponding type into the string. Selecting “Delete” deletes the current

component. To display the word “Guardian” in the bold Helvetica font, you must

insert the appropriate fontlist tag (“bold”) at the pointer.

6. Pull right for the Fontlist tags Menu and select “bold”.

This inserts the fontlist tag symbol and changes the display as shown in Figure 5-18.

FIGURE 5-18 Compound String with Fontlist Tag

If you accidentally insert the tag in the wrong position, you can pick it up and move

it using mouse button 1.

While the word “The” is now correctly displayed in the italic font, this is only

because Motif uses the first font in the fontlist by default. To make the compound

string complete you should insert the italic tag at the beginning of the string.

7. Position the pointer before “The”, then press and hold down mouse button 3.

8. Pull right and select “italic”.

This inserts a second fontlist tag symbol, as shown in Figure 5-19.

FIGURE 5-19 Compound String with Fontlist Tags

The compound string is now complete. To see it as it will appear on the label:



168 Sun WorkShop Visual User’s Guide • May 2000

9. Click on the “Show symbols” toggle to turn off the symbols.

This redraws the string without the fontlist tag symbols, as shown in Figure 5-20.

FIGURE 5-20 Compound String Without Symbols

Creating a Compound String Object

Now you can create a compound string object and bind it to the string.

1. In the field labelled “Name” underneath the list of XmString objects, type:
guardian

2. Click on “Bind”.

The name of the object appears in the XmString object list. Finally, you can apply the

compound string object to the Label.

3. Click on “Apply” in the compound string editor.

This applies the compound string object to the Label resource panel.

4. Click on “Apply” in the Label resource panel.

The text in the Label now displays the compound string in the selected fonts.

Direction Indicators

So far, this exercise has demonstrated two of the components in a compound string:

the text and fontlist tags. The other two components are the newlines used as

delimiters and direction indicators.

A newline causes a line break in the text. You can either press <Return> while

entering text, or insert a newline using the pull-down menu. Before experimenting

with inserting, moving and deleting newlines, make sure the “Show symbols” toggle

is on so you can see what you are doing.

The direction indicators let you create text in either a left-to-right or a right-to-left

direction. Although the default direction is from left to right, you can specify any

portion of the string to be drawn from right to left.

If the “Show symbols” toggle is not on:



Chapter 5 Other Editors 169

1. Click on the “Show symbols” toggle to display the symbols.

2. Position the pointer between “Guar” and “dian”, then press and hold mouse
button 3.

3. Pull down and select “Right to left”.

The compound string changes as shown in Figure 5-21.

FIGURE 5-21 Compound String with Direction Change

The small diamond represents a change of direction from left-to-right to right-to-left.

The arrow is the direction indicator, which appears at the beginning of the affected

text. Since this is a right-to-left segment, the beginning of the text is on the right, not

on the left. A change to left-to-right is represented by a direction indicator arrow

pointing to the right at the beginning (the left end) of the new text.

Inserting newlines and fontlist tags into a right-to-left segment may seem to produce

the opposite effects from what you expect if your normal reading direction is from

left to right.

Remember that symbols affect the text that follows them, which means the text to

the left in a right-to-left segment.

Finally, bind the compound string object guardian to the new string.

4. Click on “Bind”.

The Label text changes as shown in Figure 5-22.

FIGURE 5-22 Final Appearance of the Text String

String objects can be shared between files by making them “global”. This is

controlled by setting the appropriate toggle when you generate code. See “Global

Object Functions” on page 219 for more information.

Direction change R to L



170 Sun WorkShop Visual User’s Guide • May 2000

Updating Changes to the Font

If you create a new font object, or decide to use a different one while using the

compound string editor, you can update the “Font” field in the widget’s resource

dialog by pressing the “Update font” button in the Compound String Editor. This

ensures that the widget is using the same font object as the editor. This is not

necessary if you have changed the contents of the font object - only if you want to

use a different one.

Callback and Prelude Editing

Sun WorkShop Visual provides a means of editing callbacks and code preludes. This

facility is available once you have specified a callback and generated a stubs file or,

in the case of code prelude editing, you have defined a code prelude and generated

the primary source file.

■ See “Adding Callback Functionality” on page 226 for details on adding a callback.

■ See “Setting up the Stubs File” on page 213 for details on generating a stubs file.

■ See “Customizing the Generated Files: Preludes” on page 239 for details on code

preludes.

■ See “Setting up the Primary Source File” on page 211 for details on generating the

primary source file.

You must first select the widget which has been given the callback or prelude. For

callbacks, the editing capabilities are available from the Callbacks dialog. For code

preludes they are available from the Widget menu. See “Designating a Callback” on

page 173 for details on the Callbacks dialog.

When you ask to edit a callback or prelude you are given a text editor running inside

an Xterm window. The editor used is determined by the editor application default

which is described in Appendix D, “Application Defaults”.

If you have not already generated a stubs file or primary source file, you are

prompted to do so.

More about callback editing is provided in “Adding Callback Functionality” on

page 226. More about code prelude editing is provided in “Code Preludes” on

page 242.



171

CHAPTER 6

Activating the Interface: Adding
Your Own Code

Introduction

The aim of Sun WorkShop Visual is to let you develop as much of your application

as possible without writing code. You still need to write code, however, to make

your application work as you intend and to link it to the user interface. You must

also write code to control the behavior of the user interface. The following Sun

WorkShop Visual features make some of this easier:

■ Callbacks. You can name a callback function or method for individual widgets

and generate a skeletal procedure for it.

■ Links. Some commonly used callback events are known to Sun WorkShop Visual,

enabling you to add them graphically and immediately view the effect.

■ Drag and Drop. You can set up a widget to receive data via the Motif drag and

drop mechanism.

■ Translations and Actions. You can change the way individual widgets respond to

events.

■ Xt Procedures. Sun WorkShop Visual provides a quick and easy means of adding

Xt Work, Input, Timeout, Action and Language procedures and Event handlers to

your design.

This chapter uses the tutorial example built in the preceding chapters to demonstrate

how to add a callback and how to add links to your design. The above topics are

also examined separately in some detail.



172 Sun WorkShop Visual User’s Guide • May 2000

Callbacks

A callback list is a list of one or more callback functions designated to be triggered by

user actions in your application. User actions include mouse button presses, keyboard

selections and movements of the pointer. By setting up a callback, you can instruct

your interface to call the functions on the callback list whenever a certain user action

occurs within a widget. The callbacks dialog is shown in Figure 6-1.

FIGURE 6-1 Callbacks dialog

An “M” or “C” displayed to the right of a callback indicates that a method or

callback respectively has been declared.

Callbacks which apply to Java code are listed with the letter ‘J’ after them, as shown

in Figure 6-1. Callback functions are not generated into the Java code, so you should

use callback methods if you wish to use them in your Java application. For more

information on using Sun WorkShop Visual to generate Java code, see Chapter 10,

“Designing for Java”.

An asterisk (*) next to a callback indicates that the callback is not supported by

Microsoft Windows.



Chapter 6 Activating the Interface: Adding Your Own Code 173

The area in the lower left of the Callbacks dialog allows you to set up a Smart Code

callback. These are callbacks which give you toolkit independence by “wrapping”

specified widgets in an extra layer of code. Smart Code is most useful when you are

creating a thick client, or a thin client and server, from your design. See Chapter 16,

“Get/Set Smart Code”, starting on page 485 for more information on Smart Code.

For this tutorial, you will not be using Smart Code. However, there are a number of

tutorials which do use Smart Code in later chapters.

Designating a Callback

In the following steps you will designate the simplest example of a callback by using

the design from the tutorial of the preceding chapters. Clicking on the “Exit” button

(exit_button) will trigger a callback list with just one function, quit(), which

terminates the program.

The “Callbacks” dialog lets you associate lists of functions with user actions. You can

associate quit() with exit_button now, even though quit() has not yet been written.

quit() and other callback routines are written in C or C++ and linked in with the code

generated by Sun WorkShop Visual. You will write your quit() routine in “Adding

Callback Functionality” on page 226. The topic of writing callbacks is discussed in

greater depth in “Callback Functions” on page 178.

1. Open your saved tutorial design.

2. Click on the “Exit” button (exit_button).

3. Click on the “Callbacks” toolbar button or select “Callbacks” from the Widget
menu.

You are going to associate quit() with the “Activate” callback. Activating means that

the user presses and then releases a mouse button while the pointer is located inside

the widget. The user can also activate with the <Return> key, or other keys as

described in the Motif User Guide.

When a callback in the “Callbacks” dialog is selected, the list of callback functions

you have associated with it are displayed. To add an Activate callback:

4. Click on “Activate” in the list of Callback types.

This displays, in the list of callback routines, both those callbacks local to the widget

and those inherited by it. Inherited callbacks are explained in “Inherited Callbacks”

on page 174.



174 Sun WorkShop Visual User’s Guide • May 2000

You may only change callbacks which have not been inherited. Figure 6-2 shows two

typical examples. Example A of the figure shows the callback list for the “Exit”

button in the tutorial interface; Example B shows a slightly more complex list.

FIGURE 6-2 Callback Text box and Two Examples of Syntax

Inherited Callbacks

Widgets which are instances of definitions can inherit callbacks from the

corresponding widget in the definition.

Example A

Example B



Chapter 6 Activating the Interface: Adding Your Own Code 175

Inherited callbacks are shown enclosed in square brackets ([]), as shown in Figure

6-3.

FIGURE 6-3 Inherited Callbacks

Callback Syntax

In general, the syntax for each function call in the callback list is the same as C

syntax. You do not, however, type them in as C code. Function brackets () are not

required as these are added automatically.

Note – If you add function brackets or parameters to the name of the callback

function or method these will be treated as part of the name - they will not be

recognized as syntactically separate.

When we specify the name of the callback, we must also choose which language we

are using.

1. If it is not already selected, choose “Function name” from the option menu.

2. Click in the “Function name” text box.

3. Type: quit



176 Sun WorkShop Visual User’s Guide • May 2000

4. Click on “Add”.

Pressing Return has the same effect.

5. Close the dialog.

6. Save your design.

Order of Execution

While the callback list looks like C code, it has no logical flow. This means that you

can neither use C’s logical operators such as if...else and while, nor can you rely on

your callbacks being executed in any particular order. All routines in your list will

be executed whenever the specified event occurs but not necessarily in the order you

type them. If the execution sequence is important, you can write a single callback

function which contains subroutine calls in the order you want.

Client Data

The “Client Data” text box allows you to specify data to be passed in to the callback.

It is better practice to use this mechanism when a callback needs to use some data

than to use a global variable. Enter the string you wish to appear as the parameter

here. You may also add a type cast in the usual C/C++ syntax. You do not, however,

need to type the function parameter brackets () as these will be added for you

automatically. See “Callback Function Parameters” on page 178 for more details

about the parameters passed to callback functions and an example.

Note – You can only add client data to function callbacks, not to method callbacks.

See “Callback Methods” on page 259 for more details about this.

Methods

If the selected widget is enclosed in a C++ class and “Method name:” is selected

from the pulldown menu to the left of the name text field, a “Methods...” button is

shown to the right of the name text box. With “Function name:” selected, this button

is not shown. When pressed, the “Methods...” button displays a list of callback

methods already defined for the selected widget’s enclosing class.

Selecting one of these and pressing “OK” will place the selected item in the “Method

name” text field. See “C++ Classes” on page 254 for details about the way in which

widgets are enclosed in classes.



Chapter 6 Activating the Interface: Adding Your Own Code 177

Edit Code

Pressing this button allows you to edit your stubs file (the generated file containing

the specified callbacks) without leaving Sun WorkShop Visual. This is dealt with in

more detail in “Adding Callback Functionality” on page 226. See also “Setting up

Callback and Prelude Editing” on page 701 for details on how to set up the editing

feature so that you can use the editor of your choice.

Flavor Option Menu

The option menu next to the “Edit Code” button contains the possible code

generation “flavors”. The options are:

■ Motif C

■ Motif CPP

■ Motif XP

■ Microsoft Windows MFC

Note – The last two options are only shown in Microsoft Windows mode. See “The

Flavor Menu” on page 362 for information on these.

The Flavor Option Menu works in conjunction with the “Edit Code” button. When

you edit your stubs file, you must specify which language you are using. Sun

WorkShop Visual will try to work this out for you and set the menu accordingly

when you invoke the dialog. Sometimes this is not possible if, for example, you are

working with two languages in the same design. You should, therefore, always

check that the appropriate option is chosen from this menu.

Update

Use the “Update” button to change the settings of an existing callback.

If you wish to change a non-Smart Code callback to a Smart Code callback you can

only do so if the callback is used in just one place. This is because the same callback

cannot be both at the same time. If you select a non-Smart Code callback that is

being used elsewhere, the Smart Code toggle remains insensitive.

If an existing callback has been changed into a Smart Code callback and you have

already generated a stubs file, you should go to the file and remove or rename the

non-Smart Code callback stub so that Sun WorkShop Visual will generate the new

Smart Code for you



178 Sun WorkShop Visual User’s Guide • May 2000

Clear Settings

Using the “Clear Settings” button is most useful if you have one or more Smart Code

callbacks and you wish to add a new callback routine without accidentally picking

up the Smart Code settings of the previously selected callback. “Clear Settings”

deselects all callbacks and any other non-default settings.

Remove

The “Remove” button removes the currently selected callback. Be careful when using

this button as the operation cannot be undone.

The tutorial example continues in “Links” on page 183. The chapter now continues

with a more thorough explanation of callbacks and how they may be used.

Callback Functions

“Creation Procedures” on page 232 describes how Sun WorkShop Visual creates the

widgets in your application and sets their initial resource values. However, it is the

callback functions and translations that make the application work. See

“Translations and Actions” on page 190 for more information on translations.

Most callback functions have a similar structure. A typical callback function does

some or all of the following:

■ Extracts information from widgets, such as the text in a Text widget or the state of

a ToggleButton

■ Uses this information as parameters for calls to application functions

■ Uses the results of these functions to change widget attributes. These attributes

include not only values (such as the text in a Text widget) but also sensitivity

(responsiveness to user input), visibility and even existence

Callback Function Parameters

A callback function receives three parameters:

■ The widget from which the callback was invoked

■ The call data

■ The client data



Chapter 6 Activating the Interface: Adding Your Own Code 179

The call data is a pointer to a data structure defined by the widget developer. Call

data structures are described in your Motif documentation or documentation

supplied by the developer of the widget toolkit. See “Books on X and Motif” on

page 886 for details of some useful Motif documentation.

The client data is a pointer that you can use to pass the address of any variable or

structure. When you register a callback, you can specify the value for the client data

parameter that is passed to the callback function.

In Sun WorkShop Visual, the client data is specified in the callback dialog as a single

optional parameter of the callback function. See “Client Data” on page 176 for

details on how to do this. This could be a pointer to a structure, which can be

defined and initialized in a suitable prelude. For example, a typical prelude might

be:

/* Pre-manage prelude for main dialog Shell */
/* Define and initialize client data for the rungrep callback */

static rcdata_t rcdata = {

&hitstring,

&errorshell,

&errorform,

&errortext,

&mainshell

};

/* End of Shell pre-manage prelude */

The callback is specified as:

rungrep((XtPointer)&rcdata)

To enter this in the Callbacks dialog, the function name rungrep is typed into the

text field labelled “Function name” and the parameter, including the cast, is typed

into the “Client data” text field: (XtPointer)&rcdata .

The declaration of the structure rcdata_t would normally be in a header file that

would be included in the generated code (by adding “#include ...” as the module

prelude) and in the callback function module. The callback function can then cast the

client data to (rcdata_t *) and so access the data.

Note that the structure rcdata is defined to contain pointers to the widget variables,

rather than the values of the variables themselves. This lets rcdata be initialized

before the widgets are created. You can also define a structure into which the values

of the widget variables are copied. However, this cannot be initialized until all the

widgets have been created, which can be tricky.



180 Sun WorkShop Visual User’s Guide • May 2000

Callbacks in C++

Ideally it would be desirable to add class member functions to widgets as callback

functions. Unfortunately this is not possible because callback functions are called by

a C library and they cannot provide the instance context (the this pointer) required

by a class member function. Sun WorkShop Visual provides an automatic way of

calling a class member function from a callback. These are called callback methods

and are discussed in “Callback Methods” on page 259.

Accessing Widgets in Callbacks

All callbacks are passed the address of the widget to which they belong. This is a

variable of type Widget. In the Sun WorkShop Visual generated code, the variable

name of the widget is used for the name of this pointer. If you want a callback

function to access widgets in your design other than the widget to which the

callback belongs, you have the following choices:

Client Data Structure

Pass the other widgets as part of the client data structure. See “Callback Function

Parameters” on page 178 for a description of this structure.

Global Widget Variables

The simplest technique is to have Sun WorkShop Visual define the widget variables

as global. You can then access them from a callback function by declaring them as

extern in the callback function module. You could include Sun WorkShop Visual’s

generated “Externs” file in the stubs file in order to do this.

Sun WorkShop Visual declares named widgets as global by default. You can change

this behavior by setting the Storage Class of the widget in the Core resource panel.

The strength of the global variable approach is its simplicity. However, having many

global variables does nothing for the structure of your program and you must pay

attention to naming conventions to ensure meaningful names and avoid duplicates.



Chapter 6 Activating the Interface: Adding Your Own Code 181

Inclusion of Generated Code

You can reduce the need for global variables by including the primary module in the

callback function module, using #include. The primary module should be generated

without includes of the X and Motif header files.

If you do this, Sun WorkShop Visual still declares named widgets as global. You may

want to change their storage class to static, which makes them local to the callback

function module.

This technique works well where a callback function needs access to widgets that are

all or mostly within a single design. In more complex situations, you can add

accessor functions to the callback function module. A callback function that needs to

manipulate a widget which is local to another callback module can do so via the

accessor functions.

You can also access widgets using the X toolkit convenience function

XtNameToWidget() . Pass the widget name to this function and a pointer to the

widget is returned. See your X toolkit documentation for more information.

Manipulating Widgets

“Accessing Widgets in Callbacks” on page 180 gives you some ways to access the

widgets in your design. Once you have a widget, there are many ways you can

manipulate it. This section outlines a few of them. It is not a detailed description, but

is only intended to point you to the appropriate functions and their documentation.

Toolkit Convenience Functions

The Motif toolkit provides a large number of convenience functions for getting and

setting attributes of some widgets. These are all named after the widget class that

they affect, such as XmTextSetString(), XmTextGetString(), XmToggleButtonGetState().
These are documented in the Motif Programmer’s Reference.

Convenience functions are the first place to look. They are the easiest to use and are

likely to be efficient.

One point to note is that convenience functions take a Widget parameter and expect

this to be a pointer to a widget of the appropriate class. If the widget is of the wrong

class, they commonly core dump. There are also both widget and gadget versions of

some of the convenience functions and you may get a core dump if you use the

wrong one.



182 Sun WorkShop Visual User’s Guide • May 2000

Setting and Getting Resources

If there is no convenience function, you may have to get or set one or more of the

resources of the widget directly using XtGetValues() or XtSetValues(). This is

fundamental to widget programming and any book on Xt or Motif should cover it

adequately.

Not all resources can be set after a widget has been created. The Motif Programmer’s
Reference documents the access controls on each resource of every widget class.

Enabling and Disabling Widgets

To disable a widget (that is, to make it insensitive to user input), or enable it again,

use XtSetSensitive(). You should not set the resource XmNsensitive directly.

When a widget becomes insensitive, so too do all its descendants. Insensitive

widgets are usually grayed out.

If you make a Text or TextField widget insensitive, the user cannot use key input to

pan and scroll the text and so has only a limited view. It may be better to set the

resource XmNeditable to False.

Showing and Hiding Widgets

There are two ways to make a widget appear or disappear: managing and mapping.

If a widget is unmanaged, its parent does not reserve any space for it and it is not

visible on the screen. A widget is unmanaged using XtUnmanageChild() or

XtUnmanageChildren() and managed using XtManageChild() or XtManageChildren().
Sun WorkShop Visual generates code to manage widgets after they have been

created, but the Managed toggle in the Core resource panel changes this.

If a widget is managed but not mapped, its parent reserves space for it. However, it

is still not visible; there is a blank hole. Widgets are normally mapped automatically

when they become managed. This is controlled by the resource

XmNmappedWhenManaged which can be found on the “Settings” page of the Core

Resource panel.

Mapping and unmapping is commonly used to change the visibility of widgets

within a dialog without causing its layout to change. Managing and unmanaging

cause layout changes.

You can make a complete dialog appear or disappear by managing or unmanaging

the child of the Dialog Shell. If the dialog uses a Top level Shell, use XtPopup() and

XtPopdown() on the Shell instead.



Chapter 6 Activating the Interface: Adding Your Own Code 183

Note – “Links” on page 183 describes an automatic and dynamic means of showing

and hiding widgets using Sun WorkShop Visual‘s built-in links facility.

Creating and Destroying Widgets

Sun WorkShop Visual generates code to create the widgets for your dialogs. The

default main() program calls all the creation functions at start-up time. Since widget

creation is relatively expensive, this may cause an unacceptable delay. It is common

practice to defer creation of a dialog until the first time it is popped up. A static

Boolean flag in the callback function that performs the popup can be used to

determine if the dialog has already been created.

As well as generating code to create complete dialogs, Sun WorkShop Visual can

generate creation functions for dialog fragments, as described in “Children Only

Place Holders” on page 265. You can call these from a callback function, so as, for

example, to create another instance of some reusable component.

To destroy a widget (and all its children), use XtDestroyWidget(). It is inefficient to

destroy a widget and then recreate it; you should unmanage it, then manage it again

when it is needed.

Links

Sun WorkShop Visual has predefined callback procedures called links. There are six

links available:

■ Show – makes a widget and its children appear on the screen

■ Hide – makes a widget disappear. The widget is not destroyed, just hidden

■ Manage – manages a widget which has already been created

■ Unmanage – unmanages a widget

■ Enable – enables a button or command

■ Disable – disables (grays out) a button or command

Distinction Between Links and Callbacks

Only PushButtons, ArrowButtons and CascadeButtons can be the source of a link. All

links are triggered by an “Activate” event. A link can show, hide, manage,

unmanage, enable, or disable any widget in the design. One button can have

multiple links.



184 Sun WorkShop Visual User’s Guide • May 2000

Links are callbacks which Sun WorkShop Visual sets up for you. Unlike callbacks,

however, links work in the dynamic display and can therefore be used for

prototyping window behavior. When you generate code, you can either include

links, which work exactly as they do in the dynamic display, or substitute more

complex callbacks for the simple links.

Restrictions on Adding Links

Links can only be added if at least one of the following criteria is met. If none are

met, the “Add” button is disabled and no links can be made. The requirements are:

■ The target widget of a link - that is, the widget to be shown, hidden, managed,

unmanaged, enabled, or disabled - must have an explicit variable name. The

source widget does not have to be explicitly named.

■ If the target widget is a Shell, its immediate child must also be explicitly named.

■ The widgets on either end of a link must not be designated as static or local
variables. See “Changing Declaration Scope” on page 266 for a discussion of static

and local widget variables.

■ The target widget must not be declared “children only”. See “Children Only Place

Holders” on page 265 if you are not sure what this means.

■ If the target widget is part of an instance of a definition, the root widget of the

instance must also be named. See “Instances” on page 273 for more information

on instances.

■ If the target widget is part of an instance of a definition which is a C++ class, it

must be declared “Public”. See “C++ Classes” on page 254 for more information

on C++ classes and member access.

■ If you are generating Java code, the source widget must be contained within a

class and not be abstract. The term ‘abstract’ refers to the ‘extra’ widgets which

appear in the hierarchy when composite widgets are selected - such as the

ScrolledText in a FileSelectionBox. For more information on using Sun WorkShop

Visual for Java code generation, see Chapter 10, “Designing for Java”.

Note – If the variable name of a target widget changes, any links defined to that

widget are no longer effective.



Chapter 6 Activating the Interface: Adding Your Own Code 185

Setting Links in the Tutorial

You are now going to set a common configuration of links to display the help screen

you have just built and make it disappear again at the proper time. To do this you

will:

■ Set a “Show” link on the “About This Layout” button in the Help Menu

■ Set a “Hide” link on the “OK” PushButton in the help screen

The “OK” PushButton is currently visible in the construction area and so begin by

setting the “Hide” link on this PushButton.

1. Select the PushButton.

2. Double-click in the “Variable name” field.

3. Type: ok_button and press <Return> to register the new name.

4. Pull down the Widget Menu and select “Edit links”.

This displays the panel shown in Figure 6-4.

FIGURE 6-4 Default Links Panel

The target of the “Hide” link should be the widget help_window so that when the

“OK” button is activated, the entire help screen disappears.

To select the target widget:

5. Select the Shell help_window in the design hierarchy.

The name of the Shell, help_window, appears in the “Widget” field of the Links panel.

However, the “Add” command is still disabled. This is because you have not yet

named the DialogTemplate which is the immediate child of the Shell. As discussed

above, the child of a Shell must be named explicitly before you can set a link to the

Shell.

Link type
selector

Target widget
selector

Link display
area



186 Sun WorkShop Visual User’s Guide • May 2000

You can leave the Links panel open while you name the DialogTemplate:

6. Select the DialogTemplate.

7. Double-click in the “Variable name” field and type: dialog_2

8. Reselect the Shell help_window .

The Shell is now a valid target widget and so “Add” is enabled.

Now select the type of link:

9. Select “Hide” from option menu of link types.

10. Click on “Add”.

The new link appears in the link display area, as shown in Figure 6-5.

FIGURE 6-5 Links Panel with New “Hide” Link

11. Click on “Close”.

To demonstrate the new link:

12. Click on the “OK” button in the dynamic display.

The help screen vanishes. You can restore it by resetting the Shell.

You can also set up a “Show” link to display the help screen when a button is

pressed in the main window. To do this:

13. Click on the MyFirstShell icon in the window holding area.

The hierarchy for the main window is displayed in the construction area.

Set the new link on the PushButton in the Help Menu:



Chapter 6 Activating the Interface: Adding Your Own Code 187

14. Select the help_button widget, the PushButton child of the second Menu.

The Links panel, unlike resource panels and the Layout Editor, does not

automatically start adding links to the currently selected PushButton. To edit links

for the currently selected button, you must:

15. Pull down the Widget Menu and select “Edit links”.

The Links panel now displays the name and the links (none, so far) of the current

PushButton. Select the target widget, which is the Shell for the help screen:

16. Click on the help_window icon in the window holding area.

In the Links panel:

17. Select the “Show” link type.

18. Click on “Add”.

The new link appears in the link display area.

To demonstrate the behavior of these two links:

19. Click on the MyFirstShell icon in the window holding area.

20. Pull down the Help Menu in the dynamic display and select “About This Layout”.

The Show link on this pushbutton makes the help screen appear.

21. Click on the “OK” button in the dynamic display of the help screen.

The Hide link on this pushbutton makes the help screen disappear. You can repeat

the previous two steps as many times as you want.

22. Save your design.

Removing Links

To remove a link:

● Select the link’s icon in the link display area and click on “Remove”.

The tutorial continues in Chapter 7, “Generating Code”. The remainder of this

chapter looks at other ways of adding functionality to your application using Sun

WorkShop Visual.



188 Sun WorkShop Visual User’s Guide • May 2000

Drag and Drop

Motif 1.2 provides a sophisticated drag and drop mechanism that lets applications

communicate data via the X selection mechanism. Sun WorkShop Visual provides

some simple support to let you specify drop sites in your application. Because the

initialization of a drag is a dynamic function that would normally be done from

within a callback or action function, Sun WorkShop Visual does not provide any

explicit support.

A drop site is a widget that is prepared to receive certain types of data from the

transfer mechanism. Sun WorkShop Visual provides its support through the Drop

site page of the Core resource panel.

FIGURE 6-6 The Drop Site Page



Chapter 6 Activating the Interface: Adding Your Own Code 189

To designate a widget as a drop site, simply set the “Drop site” toggle on and specify

the import targets and drop procedure. The “Import targets” field is a list of strings

that are converted into atoms to designate types that can be handled by the drop

procedure. The list is specified as strings separated by commas or spaces.

By default Motif makes Label (and derived) widgets start a drag operation to

transfer the labelString or labelPixmap if Button 2 is pressed over them. Sun

WorkShop Visual takes advantage of this by adding a drop procedure to the drop

site widget that imports these types if specified in the import targets. The following

tutorial lets you see how the drop site operates.

1. Create a dialog containing an Application Shell with a RowColumn containing
two Push Buttons.

2. Name the widgets: shell, rowcolumn, MyButton1 and MyButton2 respectively.

3. Pop up the Drop site page of the core resources for MyButton1.

4. Set the drop site toggle on and set animation style to “shadow in”.

5. In the “Import targets” field, type: COMPOUND_TEXT

6. In the “Drop procedure” field, type: drop_button1

7. Apply your changes and close the dialog.

The drop and drag procedure fields specify the names of functions to be called to

handle the drop and dynamic drags respectively.

8. Try dragging the text from any label (press mouse button 2 and drag) across
MyButton1 in the dynamic display window.

The button is “shadowed in” i.e looks selected, to indicate that it is a valid drop site

for the target being dragged.

9. Release the mouse button to drop the text into the widget.

The drop procedure provided by Sun WorkShop Visual simply copies the label into

the widget.

10. Select MyButton2 and repeat Step 4.

11. In the “Import targets” field, type: PIXMAP

12. In the “Drop procedure” field, type: drop_button2

13. Try dragging a pixmap from the tool bar across MyButton2 in the dynamic display
window.

For further examples of using drop sites and for information on starting drags, refer

to the Motif documentation.



190 Sun WorkShop Visual User’s Guide • May 2000

Code is generated for C and C++, with a call to XmDropSiteRegister() being generated

for widgets that are not normally drop sites. Text widgets are drop sites by default,

which can import COMPOUND_TEXT. This can be disabled by setting the drop site

toggle off, or modified by simply changing the appropriate resources.

You must write the drop procedures to handle the transfers. They are simply

declared as external functions in the generated code.

Translations and Actions

Widgets have behavior. For example, when a user presses mouse button 1 over a

PushButton, it highlights. When the user releases the mouse button, the

PushButton’s appearance reverts to normal and the functions on the Activate

callback list are invoked.

This behavior is not hard-wired into the PushButton widget. Instead, it is

determined by the widget’s translation table, which maps events to the actions to be

taken in response to the events. When a widget is created, its translation table is

initialized to contain a default set of entries. For example, the PushButton widget’s

default translation table includes these entries:

<Btn1Down>:Arm()

<Btn1Up>:Activate() Disarm()

To the left of the colon is an event specification; to the right are the names of the

actions that the widget performs in response. A second table, the action table, is

used to map the action name to the address of a function that performs it.

For example, the PushButton’s default action table includes:

“Arm”,Arm

“Activate”,Activate

“Disarm”,Disarm

The first item in each entry is an action name and the second is the name of a

function. Convention and common sense dictate that the action and function names

should be the same, or at least related in a well-defined way.

You can change the translation table of any widget within Sun WorkShop Visual.

You cannot change the action table of a widget. However, you can define new

actions in an application-global action table which is searched after the one

associated with the widget. This requires some coding, as described below.



Chapter 6 Activating the Interface: Adding Your Own Code 191

Note – Translations are not supported on Microsoft Windows. For this reason, the

Apply button in the Translations dialog turns pink when in Microsoft Windows

mode.

Modifying a Translation Table

Modifying the translation table of a widget in Sun WorkShop Visual is

straightforward. To understand the procedure, do the following simple exercise in

Sun WorkShop Visual.

1. Create a simple widget hierarchy containing a PushButton.

2. Select the PushButton icon in the widget hierarchy.

3. From the “Widget” menu, select “Translations...”.

This displays the translations dialog, shown in Figure 6-7.

FIGURE 6-7 Translations Dialog

4. Click in the lower section, under “Augment”, and type: Ctrl<Key>q:
ArmAndActivate()

5. Click on “Apply”.



192 Sun WorkShop Visual User’s Guide • May 2000

This adds the new translation to the PushButton widget and you can now try its

effect.

Note – You may notice an error dialog indicating that the action has not been found.

This is for information only, the change has been taken. See “Additional Actions” on

page 197 for information about creating an action table within Sun WorkShop Visual.

6. Place the mouse pointer over the pushbutton in the dynamic display window.

7. Type: <Ctrl-Q>

The effect is identical to clicking with mouse button 1. Note that translations do not

work if the window does not have the input focus and that the input focus behavior

depends on the configuration of your window manager.

You can also change the translations you have specified so that the button triggers

on other events. Note that if you do this, the previous translation remains effective

in addition to the new one until you reset the widget.

Augment, Override, and Replace

The translations dialog has sections labeled “Override” and “Augment”. You can

enter new translations in either section or both. They only differ if you specify a

translation with the same event specification as an existing translation. If you type

the new translation into the “Override” box, your new translation replaces the

existing one. If you use “Augment”, the existing translation takes precedence.

The existing default translations for the widget are not affected when you add

translations unless you override them. This is important because Motif widgets have

many default translations that produce their expected behavior.

If you set the “Replace” toggle, however, all existing translations are removed and

replaced by the translations you enter. Use “Replace” with caution. Do not confuse

“Replace”, which removes all the default translations, with “Override”, which

replaces them one by one.

Translation Table Syntax

The syntax of translation tables is complex. The following sections detail the syntax

as used in Sun WorkShop Visual. For a complete and definitive description, consult

the X toolkit documentation.

Each entry in a translation table has the form:



Chapter 6 Activating the Interface: Adding Your Own Code 193

[ modifier_list ]< event >[,< event >...][( count )][ detail ]:
[ action ([ arguments ])...]

Square brackets ([] ) indicate that an item is optional; an ellipsis (... ) indicates that

the item may be repeated.

Modifier List

The modifier list represents the state (pressed or not pressed) of the modifier keys

(such as Control and Shift) and the mouse buttons (X believes that a mouse has five

buttons). The most useful modifiers are Ctrl, Shift, Alt and Meta. These can be

abbreviated as c, s, a and m.

If the modifier list is omitted, the state of the modifiers is unimportant:

<Key>Q matches <Q>, <Ctrl-Q>, <Alt-Meta-Q>, etc.

If a particular modifier is not mentioned in the list, its state is unimportant:

Ctrl<Key>Q matches <Ctrl-Q>, <Ctrl-Meta-Q>, <Ctrl-Alt-Meta-Q>,...

You can specify multiple modifiers in the modifier list:

Ctrl Meta <Key>Q matches <Ctrl-Meta-Q> but not <Ctrl-Q> or <Meta-Q>

To specify that a modifier must not be pressed, precede it with a tilde (~):

Ctrl ~Meta<Key>Q matches <Ctrl-Q> but not <Ctrl-Meta-Q>

To specify that the modifiers pressed must exactly match what you specify, start the

modifier list with an exclamation mark (!):

!Ctrl<Key>Q matches <Ctrl-Q> but not <Ctrl-Meta-Q> or <Ctrl-Q> with a mouse

button pressed.

The modifier “None” means that there must be no modifiers pressed at all.

None<Key>Q matches <Q> but not <Ctrl-Q> or <Alt-Meta-Q>, etc.

Normally, translations are not case-sensitive. <Key>Q matches both <Q> and <q>.

You can specify that a translation is case-sensitive by preceding it with a colon (:).

:<Key>Q matches <Q> but not <q>



194 Sun WorkShop Visual User’s Guide • May 2000

Event and Count

The event can be the name of an X event, or one of a number of aliases. Some of the

most useful events are Key (a key press), BtnDown and BtnUp (for any mouse button)

and BtnNDown and BtnNUp (where N is between 1 and 5). For a complete list of

events and aliases, see the Xt documentation.

<Key>a matches <a>

<Btn1Up> matches a release of mouse button 1

You can specify a sequence of events in a translation, separated by commas.

<Key>Q,<Key>A matches <Q> followed by <A>, with no intervening event.

<Btn1Down>,<Btn1Up> matches a click of mouse button 1.

The count can be used with button press and release events to detect multiple clicks.

The count is a number from 1 to 9, possibly followed by a plus (+).

<Btn1Down>(2) matches two presses of mouse button 1

<Btn1Up>(3+) matches 3 or more releases of mouse button 1

If a count is used, the button events must come close together (usually within 200

milliseconds of each other), or there is no match.

Detail

The final field in the event specification is the detail. This is normally used only with

key events, where the detail specifies which key is to be pressed.

The value specified in the detail field is a keysym, as in the header <X11/keysymdef.h>,

with the XK_ prefix removed. For most keys, this is the same as the character on the

key.

<Key>a matches <a>

For non-alphanumeric keys, check the name of the keysym. The keysym for “+” is

XK_plus, so

<Key>plus matches <+>

Since matching is case-insensitive, this also matches the other symbol on the plus

key, which is <=> on most keyboards.

Motif adds another level of complexity by translating certain incoming key events

into Motif virtual keysyms. You should use these virtual keysyms in your translation

tables instead of the X ones.



Chapter 6 Activating the Interface: Adding Your Own Code 195

<Key>osfDelete , not <Key>Delete

The virtual keysyms are listed below. For details of their interpretation, see the

VirtualBindings(3X) section of the Motif Programmer’s Reference.

You can also use the detail field with mouse button events to specify a particular

mouse button. This is not commonly done since it is easier to specify the mouse

button in the event field.

<BtnDown>Button1 is the same as <Btn1Down>

Actions

The actions on the right side of the translation table entry are simple. Usually each

action is just a name followed by parentheses. Although any number of string

arguments can be given between the parentheses, most action routines expect no

arguments. Arguments should not be quoted. Typical additional translations for a

ScrollBar widget might be:

<Key>d:IncrementDownOrRight(0)

<Key>u:IncrementUpOrLeft(0)

You can specify multiple actions or none at all. Overriding an existing translation

with one that has the same event specification but no action is a useful way of

disabling part of a widget’s default behavior.

In many cases, the actions used are the ones predefined by the toolkit. The

“Additional Actions” on page 197 discusses how to add your own actions.

TABLE 6-1 OSF Virtual Keysyms

osfActivate osfAddMode osfBackSpace osfBeginLine

osfCancel osfClear osfCopy osfCut

osfDelete osfDown osfEndLine osfHelp

osfInsert osfLeft osfMenu osfMenuBar

osfPageDown osfPageLeft osfPageRight osfPageUp

osfPaste osfPrimaryPaste osfQuickPaste osfRight

osfSelect osfUndo osfUp



196 Sun WorkShop Visual User’s Guide • May 2000

Translation Table Ordering

When an event is received, the translation table is searched from the top down. The

search terminates at the first entry whose event specification matches the event. This

means you should organize your translation table with the most specific events first.

For example, a translation table might contain the following entries:

<Key>q: action1()

Ctrl<Key>q: action2()

When the user types either <Q> or <Ctrl-Q>, the search terminates at the first entry

and action1() is invoked in both cases. To make <Ctrl-Q> invoke action2, you must

reverse the order of the entries.

For additional subtleties in ordering translation tables, see the X toolkit

documentation.

Available Actions

By changing the translation table, you can make a widget perform actions in

response to event sequences that would not normally trigger those actions. While

you can write your own action routines, translations provide the most benefit when

you can use one of the built-in actions of the widget.

The built-in actions of the Motif toolkit are documented in the Motif Programmer’s
Reference. Each widget description includes both the default translations and the

actions they invoke. Some of the primitive widgets offer a particularly large set of

actions.

If you add a translation that uses one of these actions, you can test it in Sun

WorkShop Visual immediately. Alternatively, a few built-in actions, such as the

PushButton’s Activate() action, invoke the functions in one of the widget’s callback

lists. In this case, it may be easier to specify a translation to call that action on the

appropriate event sequence and put the code in an ordinary callback function.



Chapter 6 Activating the Interface: Adding Your Own Code 197

Additional Actions

If you cannot find a built-in action to suit your needs, you can write your own action
routine to perform the action. Figure 6-8 shows an example translation. The example

shown says that when <Ctrl-e> is pressed, the action “doActionE” is triggered.

FIGURE 6-8 Translation Example

If you define your own action routine, it needs to be added to the application’s

“action table”. Sun WorkShop Visual does this for you automatically when you

define the action procedures in the Action Procedures dialog, displayed by selecting

“Action Procedures...” from the Module menu, as shown in Figure 6-9.



198 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 6-9 Action Procedures Dialog

In the example shown in Figure 6-8, “doActionE” is an action which needs to be

defined for the application. Figure 6-9 shows the definition of this action. The

“Action Name” is the name used in the Translations dialog, the “Procedure Name”

is, as you might expect, the name of the procedure which will be called. In the

interests of clarity, these names are usually the same.

Action procedures do not have any client data associated with them, but they are

passed the parameters defined for the action in the Translations dialog. You can

provide any number of parameters in that dialog and within the parentheses, so

long as they are all strings.

You may have any number of action procedures defined within your design. Sun

WorkShop Visual generates their stubs and the associated action table into the main

code file.

Xt Procedures

Sun WorkShop Visual allows you to add the following types of Xt procedure:



Chapter 6 Activating the Interface: Adding Your Own Code 199

1. Additional event procedures. This includes input sources and timeouts which

may be treated as though they are the source of events, as well as Xt Work

procedures which are called when there are no events to process.

2. Language procedures. One of these is called at the beginning of an X application

as a means of customizing the localization of the application, although you may

specify any number of them.

3. Event handlers. These procedures are called when one of a number of pre-

defined actions occurs (e.g. “mouse button 1 pressed”). These bypass the

translation table.

The first two types of Xt procedure listed above are specified on an application-wide

basis. The fourth is specified on a per-widget basis. All are described in the

following sub-sections.

Alternate Event Sources for X

An Xt (X toolkit) application normally waits for events from the X server. User

actions, such as keyboard presses and mouse clicks, arrive at the Xt application via

the X server. If, for some reason, a user is sitting quietly and not typing or clicking,

then the application just waits. This means that an Xt application can spend a

considerable amount of time waiting. For this reason, Xt allows you to register

procedures to be called when there are no other events to process. You may also

register procedures which respond to certain events not originating from the X

server. Here are the “extra” procedure types which may be added:

1. Xt Work Procedure.

2. Input Procedure.

3. Timeout Procedure.

As with widget callback procedures added inside Sun WorkShop Visual, any Xt

procedures that you have added are generated as stubs into the stubs file. You may

then edit them from within Sun WorkShop Visual in the same way as widget

callbacks may be edited. The code for adding your procedures is generated by Sun

WorkShop Visual into the main module.

Note – If you are not generating a main module, your Xt procedures will not be

added to your application.

These procedures are added by selecting the corresponding item in the Module

menu. The following sub-sections describe each procedure type individually.



200 Sun WorkShop Visual User’s Guide • May 2000

Xt Work Procedures

A work procedure is a function that is called when Xt has no other events to process.

Work procedures are, therefore, a convenient means of setting up a background

batch process without interfering with events from the X server. One common use of

work procedures is in program initialization. There are often many widgets which

need to be created when an application is started. Since this is a time-consuming

process, using work procedures allows the application to respond to user actions

almost immediately.

Work procedures should return True or False. A value of True indicates to the X

toolkit that your procedure should be removed from the work queue once executed.

False indicates that it should be called again the next time the queue is empty of user

events. You can have any number of work procedures registered at any time.

To add a work procedure, select “Work Procedures...” from the Module menu. The

dialog shown in Figure 6-10 appears. You may add any number of work procedures

but you should remember that your application cannot handle any other event while

executing a work procedure. For this reason, work procedures should return quickly.

Priority is generally given to work procedures in the order registered.

FIGURE 6-10 Work Procedures Dialog



Chapter 6 Activating the Interface: Adding Your Own Code 201

Input Procedures

Use input procedures to set up a file or pipe as a source of events. The input

procedure is called when the file is ready for reading (or writing). To add an input

procedure, select “Input Procedures...” from the Module menu. The dialog shown in

Figure 6-11 is displayed.

FIGURE 6-11 Input Procedures Dialog

To define an input procedure, you will need to provide the file descriptor of the file

or pipe. The Input Mask specifies the type of access the file should have. When the

file is ready for the specified access, the input procedure is called. You may define

any number of input procedures, they will be added in turn.

Timeout Procedures

A timeout procedure provides a means of performing a function after a specified

amount of time has elapsed. Timeouts are called once only, so if you need a timeout

procedure to be called at regular intervals, it will have to add itself as another

timeout procedure before exiting. The following function call will do this:

XtAppAddTimeOut(appContext, timeoutPeriod, procedure, clientData);



202 Sun WorkShop Visual User’s Guide • May 2000

To add a timeout procedure, select “Timeout Procedures...” from the Module menu.

This causes the dialog shown in Figure 6-12 to be displayed.

FIGURE 6-12 Timeout Procedures Dialog

The “Timeout Period” is specified in milliseconds.

Timeout procedures work better in an X environment than time-interrupt

programming using signals, which is often the preferred method with UNIX. You

may define any number of timeout procedures; Sun WorkShop Visual generates

them all into the main code file.

Language Procedures

An application operates within the context of a particular locale. The locale

determines how to accept keyboard input, how to display characters and the format

of date and time strings. This allows developers to customize their applications for

use in different countries.

Sun WorkShop Visual generates a call to the X toolkit routine XtSetLanguageProc
in the main code file. One of the parameters to this routine is the name of the

procedure which will set up the locale. Xt provides a default language procedure,

but you can define your own should you wish to have additional methods of setting



Chapter 6 Activating the Interface: Adding Your Own Code 203

the locale or only provide support for certain locales. To define a language

procedure, choose “Language Procedures...” from the Module menu. The Language

Procedures dialog, shown in Figure 6-13, is then displayed.

FIGURE 6-13 Language Procedures Dialog

You may specify as many language procedures as you like, but only one will be

effective (as only one can be passed as a parameter to XtSetLanguageProc ). Sun

WorkShop Visual chooses the procedure at the top of the list in the Language

Procedures dialog as the procedure to pass in. You can change which is the topmost

procedure in this list by using the arrow buttons underneath. Simply select the

required procedure and press the up arrow until it is at the top. Stubs for all

language procedures in the list are generated into the stubs file.

Event Handlers

Event handlers provide an efficient means of performing low level input handling

which bypasses the translation tables of the widget. They are particularly suited to

high-volume events. A translation and associated action, however, can do almost

anything that an event handler can do but may be easier to maintain.

Event handlers, unlike the other Xt procedures, are defined for individual widgets

rather than for the whole application.



204 Sun WorkShop Visual User’s Guide • May 2000

Add an event handler by selecting the widget whose events are wanted and then

choosing “Event Handlers...” from the Widget menu. The dialog shown in Figure

6-14 is displayed.

FIGURE 6-14 Event Handlers Dialog

In this dialog there are text fields for entering a procedure and an event mask. The

text fields have corresponding buttons which, when pressed, display sub-dialogs

showing the procedures and event masks available. You may define a new

procedure but the event masks should come from the valid set displayed. The event

masks are annotated with the Java “coffee cup” if they are applicable to Java code,

and indicated with a tick if they are mapped to MFC for Windows, as shown in

Figure 6-15.

Note – You will only see the ticks and crosses for MFC mapping if you are running

in Windows mode. More information on Event Handlers for MFC is given in



Chapter 6 Activating the Interface: Adding Your Own Code 205

FIGURE 6-15 Event Masks

If the “Non Maskable” toggle is set, the event handler will also receive the non-

maskable events (ClientMessage, GraphicsExpose, MappingNotify, NoExpose,

SelectionClear, SelectionNotify and SelectionRequest). This toggle would normally

remain unset as these events are not particularly useful.

The “Raw” toggle is a means of telling Sun WorkShop Visual to add a raw event

handler. This is an event handler which does not respond immediately to the events

for which it is registered. Instead, the handler is triggered when its events are

selected elsewhere (by another event handler, for example).

One possible use of raw event handlers is to “shadow” another event handler. If

both are added with the same event mask, but one is “raw” and the other is not,

then both handlers will be called when the appropriate events occur. The raw event

handler can then log the events that the other handler receives.

As with callback functions, you can specify the same event handler for any number

of widgets and then use the Client Data to set the context.

Typically, event handlers are used in situations where the widget has little in the

way of built-in interaction support, or where large volume or crude input may need

processing. DrawingAreas are obvious candidates for event handlers.

Event handlers are generated by Sun WorkShop Visual into the code file as part of

the general widget configuration and a stub is generated into the stubs file.

There is a “Widget annotation” for event handlers. By selecting the event handler

annotation from the pullright menu in the View menu, you can see at a glance which

widgets have had event handlers defined for them.



206 Sun WorkShop Visual User’s Guide • May 2000

Editing Xt Procedures

As with callbacks, the generated stubs for Xt procedures can be edited from within

Sun WorkShop Visual using your favorite configured editor.



207

CHAPTER 7

Generating Code

Introduction

Up to this point, you have used the interactive features of Sun WorkShop Visual to

build a working prototype of a user interface. Now you can use the code generation

features to produce the files necessary to convert that design into a free-standing

program. Code can be generated as C, C++, Java or UIL.

In this chapter, you will:

■ Generate a primary module for your design, including all the code needed to

prototype your interface

■ Generate a stubs file for convenience in writing callback functions

■ Compile, link and run your prototype

■ Generate an X resource file containing resource settings which are not hard-wired

into the code

■ Write your quit() callback

This chapter also includes an analysis of the code which is generated into the

various files and a discussion of strategies for arranging your files.

Prerequisites

You need some knowledge of C, C++, Java or UIL to understand the generated code

files and to supply code for callback functions. You also need some knowledge of the

X Window System.



208 Sun WorkShop Visual User’s Guide • May 2000

The Generate Menu

The Generate Menu is used to generate source code, X resource files and Makefiles

from your design. The Generate Menu has seven items: “C”, “C++”, “UIL”,

“X Resources”, “Makefile”, “Java” and “Generate”. The first six options generate the

type of file selected provided that you have set up that file in the Generate dialog.

The “Generate” option displays the Generate dialog.

Note – In Microsoft Windows mode the Generate Menu has an additional selection

to generate Microsoft Windows resource files. This is discussed in “Building the

Application” on page 402.

C is used for the examples in this chapter. The procedure for generating C++ is

exactly the same and you may use C++ for the tutorial if you prefer. The procedure

for UIL is very similar to the procedure for C with the exception of one additional

step which is discussed in “Special Notes for UIL” on page 210.

For information on generating Java, see Chapter 10, “Designing for Java”, starting on

page 313.

Generate Dialog

To display the Generate dialog, pull down the Generate menu and select “Generate”.



Chapter 7 Generating Code 209

FIGURE 7-1 Generate dialog

This dialog gives you an overview of all the files which can be generated from your

design. The dialog contains some default settings, including default filenames. The

default filename is appropriate to the type of file and the language being generated.

You can change the defaults in the application resource file. See “Filters” on page 871

for more details. If, having generated code, you wish to reset the dialog back to the

default filenames (complete with brackets) simply press the “Reset” button.

Setting up the Dialog

Before setting up individual files to be generated, you need to set two options which

affect all the files:

■ The language you are using.

■ The base directory in which you wish to generate your files.

Setting the Language

For the language, use the “Language” option menu at the top of the dialog. You

have a choice of C, C++, UIL and Java. When in Microsoft Windows mode, you have

the additional choices “C++ (Motif XP)” and “C++ (Microsoft Windows MFC)”. See



210 Sun WorkShop Visual User’s Guide • May 2000

Chapter 11, “Designing for Microsoft Windows”, starting on page 357 for more

details about Microsoft Windows mode, Motif XP and MFC. This tutorial uses the C

language, so:

● Make sure that “C” is selected from the “Language” option menu.

Note – Use of the Generate Dialog is quite different when “Java” is the selected

language. For this reason, the Generate Dialog for Java code generation is explained

in “Generate Dialog” on page 336 in Chapter 10 ”Designing for Java“.

Special Notes for UIL

When you work in UIL, the code generation procedure is basically the same as for C.

However, because UIL is not as powerful a language as C, there are some features of

Sun WorkShop Visual which cannot be implemented in UIL. To get the full

functionality of your design, a supplementary C file must be generated in addition

to your UIL file.

When you select “UIL” from the Language option menu, enter the name of the UIL

file in the “UIL” field and the name of the supplementary C file in the “Code” field.

You must also specify a name for the compiled UIL file. This is done by pressing the

Code “Options” button and then entering the name in the “Uid file” field.

“Includes” (see “Setting up the Primary Source File” on page 211), “Main program”,

and “Links” (see “Code Generation Options” on page 218) can be generated into the

C file but not into the UIL.

UIL is a Motif-specific language and does not work with widgets outside the Motif

toolkit. If your design contains a widget from another toolkit, you must use C or

C++.

Setting the Base Directory

To set the base directory you can type it directly into the text box labelled

“Directory” or you can press the “Browse” button. The “Browse” button displays a

file selection box so that you can find and select a directory. The filenames of the files

to be generated are relative to the base directory. By default, the base directory is the

directory from which you last opened a saved design or, if you are working on a

new design, the directory from which you invoked Sun WorkShop Visual. The

default, which is shown enclosed in brackets, is not saved into your “.xd” file. An

explicitly named directory will be saved.



Chapter 7 Generating Code 211

You can type an absolute pathname into the filename text boxes. This method is not

recommended because you would have to do this for every file. It is easier and less

prone to typing mistakes if you set up the directory first and assume all files are

relative to that directory.

Setting up the Primary Source File

In the text box labelled “Code”, enter the filename of your primary source file. A

description and explanation of this file is given in “Analysis of the Primary Module”

on page 230.

1. Type: icecream.c into the text box labelled “Code”.

By convention, all C files, including primary source files and stubs files, have the

suffix .c .

2. Check that the “Generate” toggle next to the text box is set.

Only those files which have the “Generate” toggle set will be generated.

3. Press the button labelled “Options” beside the “Code” filename.

This button displays the options relevant to the primary source file.

FIGURE 7-2 Primary Source File Options Dialog

The Options Dialog for the primary source file offers the following:

■ ANSI C Select this if you wish Sun WorkShop Visual to generate ANSI C.

■ Include Motif Header Files. This is selected by default. If you deselect this option

you must find somewhere else to include the Motif headers, otherwise you will

see compilation errors. For the tutorial, check that this option is selected. This

option is not visible if you are running in Microsoft Windows mode and you are

generating MFC flavor code.



212 Sun WorkShop Visual User’s Guide • May 2000

■ Include MFC Header Files. This option is only visible when you are running in

Microsoft Windows mode and you are generating MFC flavor code. This is

selected by default and ensures that your code file includes the header files

required if you wish to use the MFC.

■ Include Header File. If you wish Sun WorkShop Visual to add a line to your

source file to include a header file1, you would set the toggle next to this text and

type the name of the header file in the text box. For the tutorial, however, we are

not going to include a header file so make sure that this option is not selected. See

“Notes on Including a Header File” on page 213 for additional information on

including header files in your source code.

Note – If you generate a separate code and main program file, you must include the

generated externs file so that both files can use the same variables.

■ Include Pixmaps file. This is similar to the “Include Header File” option. If you

are going to generate a separate pixmaps file, and you wish to include the

generated pixmaps file in your primary source file, turn on this toggle and supply

the name of the pixmaps file in the text box. Sun WorkShop Visual then generates

an #include directive instead of explicit pixmap definitions in the primary source

file. See “Setting up the Pixmaps File” on page 214 for details on generating a

pixmaps file. For the tutorial, make sure that this option is not selected.

■ Uid File. This item only appears if you are generating UIL. This is the name of the

Uid file. See “Special Notes for UIL” on page 210 for more information.

4. Press “Ok” to close the Options dialog.

5. Press “Apply” in the Generate dialog.

This will save everything you have set up without generating straight away.

#include Generation Control

As part of your design, you can specify the names of files to be added as include

files in the generated code. By default, Sun WorkShop Visual generates these include

statements with angled brackets, as in the following example:

#include <externs.h>

This behavior is not suitable for all language types and for all configurations. The

following resources now allow you to control the way in which “#include”

statements are generated:

visu.defaultIncludeInQuotes: true

visu.defaultIncludeObjectFileInQuotes: false
1. The terms “Header file” and “Externs file” are used interchangeably in both Sun WorkShop Visual and the

User’s Guide.



Chapter 7 Generating Code 213

The first statement controls whether the external files are included in quotations or

not, the second controls the generation of header files which are automatically

generated by Sun WorkShop Visual (the xdclass.h files).

This mechanism overrides the default behavior. Explicitly placing "" or <> around the

name of the header file when you type it into the Primary Source File Options dialog

overrides these defaults.

Notes on Including a Header File

If you wish to include both an external header file (not created by Sun WorkShop

Visual) and an Externs file created by Sun WorkShop Visual in your code file, you

can enter the name of the external header file in the “Include Header File” field and

then make sure that this header file includes the Externs file generated by Sun

WorkShop Visual.

When you set the “Include Header File” toggle in the Code Options dialog and enter

the name of the externs file, the file is included in the code file, the stubs file (if you

are generating one) and the main program file (if it is different from the code file).

If you are generating a separate code and main program file, you must include the

externs file because they both use variables which are defined in the externs file.

Setting up the Stubs File

Callback stubs, i.e. “empty” routines with the specified callback or method name, are

generated for all callbacks and callback methods in your design. These are generated

into a separate source file called a Stubs File. If you have callbacks or methods in

your design, generating a stubs file allows you to compile the application since the

callbacks are referenced from the main source code. It is left to you, however, to add

the required functionality to the callback routines. You are shown how to do this in

“Adding Callback Functionality” on page 226.

Along with the callback stubs, Sun WorkShop Visual generates special comments.

These comments are explained in “Stubs File Comments” on page 229.

Your design has just one callback: quit(). For now, generate a stubs file with an

empty quit() function. The dummy function lets you compile, link and run your

application as a prototype. Later (in “Adding Callback Functionality” on page 226),

you will add functionality to quit() to complete your application.

1. Type: stubs.c in the text box labelled “Stubs”.

2. Set the “Generate” toggle next to the text box.

Remember that only those files with a selected “Generate” toggle will be generated.

There are no separate options for the Stubs file.



214 Sun WorkShop Visual User’s Guide • May 2000

Setting up the Externs File

Sun WorkShop Visual can generate a header file with extern declarations for all

widgets which are global in scope, C++ class definitions and C structure definitions

for your design. Global widgets include all widgets which you have explicitly

named and those which you have designated as global on the Core resource panel.

To set up an Externs file, type the name of the file in the text box labelled “Externs”

and set the “Generate” toggle next to it. By convention, Externs files have the suffix

.h.

● Make sure that the “Generate” toggle next to the text box labelled “Externs” is not
set because you do not need an externs file for the tutorial.

To include the generated Externs file in your primary module, see the description of

the Options dialog in “Setting up the Primary Source File” on page 211. Sun

WorkShop Visual then generates a #include directive instead of explicit type

definitions in the primary source file. Global widgets are still allocated in the main

source file when you do this.

The Externs file is also useful for including in your stubs file or other code files

where you access global widgets or refer to type definitions. See “Global Widget

Variables” on page 180 for more details.

There are no separate options for the Externs file.

Setting up the Pixmaps File

The Pixmaps file is similar to the Externs file. It is a header file with static
declarations of all the pixmaps in your design. Generating one of these files lets you

keep the cumbersome definitions of pixmap structures separate from your primary

source file.

To generate a Pixmaps file, type the name of the file into the text box labelled

“Pixmaps” and set the corresponding “Generate” toggle. By convention, Pixmaps

files have the suffix .h.

● Make sure that the “Generate” toggle next to the text box labelled “Pixmaps” is
not set because you do not need a pixmaps file for the tutorial.

Setting up the Main Program File

The main program file is a file containing the main() procedure. By generating a

separate file you can keep this procedure away from the rest of your source code.

This is useful if you need to edit the procedure to perform some of your own



Chapter 7 Generating Code 215

initializations or call other parts of your application before starting off the user

interface. If you edit this file, make sure that you generate it only once as subsequent

generations will overwrite your changes. A full description of the main() procedure

is provided in “Description of the Main Program” on page 234.

If you wish the main() procedure to be generated into the primary source file, make

sure that the text box labelled “Main program” contains the same name as the

“Code” text box and the corresponding “Generate” toggle is set.

For the tutorial:

1. Check that the base directory is set.

See “Setting the Base Directory” on page 210.

2. Type: icecream.c into the text box labelled “Main Program”.

3. Check that the “Generate” toggle next to the “Main Program” text box is set.

There are no separate options for this file.

Setting up the X Resource File

As you have seen in Chapter 3 ”Resources“, resource settings need to be available or

they are not applied when your interface runs. You can make them available in one

of two places: the primary source file or the X resource file. Generating resources into

the source file is known as hard-wiring them.

1. Check that the base directory is set. See “Setting the Base Directory” on page 210.

2. Type into the text box labelled “X resources” the filename: icecream.res

3. Set the “Generate” toggle next to the text box.

You can control which resources are generated and into which file by setting the

options described in “Code Generation Options” on page 218.

Making X Find Your Resource File

X does not automatically recognize icecream.res as your application’s resource file.

One recommended method of telling X where to find this file is to copy the resource

file to the designated application resource directory (/usr/lib/X11/app-defaults on

POSIX systems). The filename in that directory should be the application class name,

XDTutorial, without a suffix (see “Code Generation Options” on page 218 for details

on how to set the application class name). This method avoids any confusion of this

application-specific resource file with other files you might be using.



216 Sun WorkShop Visual User’s Guide • May 2000

Because you may not have access permission to the application resource directory, a

different method is described here.

4. Set the environment variable XENVIRONMENT to the filename of the resource
file.

The exact syntax for doing this will differ depending on which shell you are using.

For a C shell, enter:

setenv XENVIRONMENT icecream.res

For a Bourne shell, enter:

XENVIRONMENT=icecream.res export XENVIRONMENT

There are other ways to get X to recognize your X resource file. To find out what they

are, you will need to look them up in a book about the X Window System. See

Appendix E for the names of some books you may wish to try.

Setting up the Makefile

Sun WorkShop Visual can generate a makefile containing compilation instructions

for all the files required by your design with the correct dependencies. For the

tutorial, your makefile needs to compile both icecream.c and stubs.c. It also needs to

link the resulting object files with the required libraries.

1. Check that the base directory is set to the directory where your primary source file
and stubs file have been or will be generated.

2. Type “Makefile” into the text box labelled “Makefile” and check that the
“Generate” toggle is set.

3. Press the button labelled “Options” next to the Makefile text box.

This displays the Makefile Options dialog, shown in Figure 7-3.



Chapter 7 Generating Code 217

FIGURE 7-3 Makefile Options Dialog

In order to generate a Makefile, Sun WorkShop Visual uses an internal makefile

template which contains information about different platforms and environments.

Using the template mechanism, Sun WorkShop Visual is also able to create a

Makefile which can build the sources generated from more than one design into one

application.

The “New Makefile” and “Makefile Template” toggles in the Makefile Options

dialog relate to the two different types of makefile that you can generate: a simple

makefile, which just builds the sources from one design, and a makefile with

templates, which allows further sources to be added to it. “Debugging” refers to the

“-g” flag for the compiler.

When you generate code in one language and then generate another set of code files

in another language, all Makefiles generated afterwards will contain rules for both

sets of generated files. Setting the “Current language only” toggle ensures that you

are generating a Makefile for the current language only.

The right of this dialog shows the list of target platforms and compilers for which

Sun WorkShop Visual can automatically generate a Makefile. This list also gives you

the option of compiling a 64-bit application. All aspects of this dialog are explained

more fully in Chapter 19, “Makefile Generation”, starting on page 553.

This section shows you how to generate a simple Makefile capable of building the

sources from your tutorial design. For more details on Makefile generation,

including using templates and customization of Makefiles, see Chapter 19, “Makefile

Generation”, starting on page 553. For details on how to change the Makefile

template application resource, see “Generation” on page 875 in Appendix D.



218 Sun WorkShop Visual User’s Guide • May 2000

1. For the tutorial, set the “New Makefile” toggle but do not set the “Makefile
Template” toggle.

You are not going to add any more source files to the tutorial application so you do

not need the template comments.

2. You may turn off the “Debugging” toggle if you prefer.

We shall not be using debugging in this tutorial.

3. Check that the selected item in the list on the right of the dialog matches your
target platform and compiler.

The item selected by default should be appropriate. If you are not sure, ask your

system administrator. More information on this list is given in “The List of Makefile

Types” on page 555.

4. Press “Ok” to save your changes and close the Makefile Options dialog.

This takes you back to the Generate dialog.

Code Generation Options

Before generating any files, you should check to see whether you need to change any

of the code generation options. Press the “Options” button at the bottom of the

Generate dialog. The dialog in Figure 7-4 appears.

FIGURE 7-4 Generate Options Dialog



Chapter 7 Generating Code 219

This dialog lets you control where, and whether, the code for links is generated,

specify the application class name and control where individual resource types

should be generated. These are explained separately below.

Application Class Name

The application class name is used to identify resource settings when you generate an

X resource file. Assigning a name other than the default “XApplication” prevents

confusion of your resource values with system-wide X resources.

Links Code Generation

Using the option menu labelled “Links”, you can choose whether the links are

generated into the primary source file, into the stubs file or not generated at all.

Alternatively, you could choose to generate the links code declarations only.

The code created as part of the links functionality consists of a set of generic

functions (one for each type of link) and the declarations of these functions. Because

the functions are always the same, you only need to generate one set of the functions

for your whole application. If you are generating code from more than one design,

each of which contains links, you only need to generate the functions once but you

will need to generate the declarations for each design. The declarations are always

generated into the primary source file.

Global Object Functions

Sun WorkShop Visual allows generation of global accessor functions for color, font,

string and pixmap objects. This means that these objects can be shared across

different files in your application. The toggles in the Code Options dialog allow you

to make color, font, string and pixmap objects global. When selected, these toggles

cause Sun WorkShop Visual to create one function per object which returns the

object. Sun WorkShop Visual uses the name of the object to build a function name

using the following algorithm:

xdGet + <object_name> + <object_type> + Object

where <object_name> is the name you bound to your object and <object_type> is

one of “Color”, “Font”, “String”, “Pixmap”, depending on the type of the object. For

example, a color object named “Foreground” would be generated by default with

the accessor name:

xdGetForegroundColorObject

The xdGet tag can be overridden through the resource:

visu.globalObjectFunctionStart: xdGet



220 Sun WorkShop Visual User’s Guide • May 2000

For example, suppose you have:

visu.globalObjectFunctionStart: my

and with a single color object “Background”, you would have the following code

generated if the global object toggle for color is set:

Pixel myBackgroundColorObject() {

...

}

or, if the language is MFC:

CBrush myBackgroundColorObject() {

...

}

Control of Default Storage

By default, Sun WorkShop Visual generates each widget as a variable local to the

function in which it is created. If you name a widget, however, Sun WorkShop Visual

makes the variable global. This default behavior, for named widgets, can be

controlled in the Code Options dialog by changing the “Default storage” option

menu.

If a widget belongs to a class (i.e. is the child of a widget which has been made a

class), however, it will remain a variable of that class, regardless of the storage

option chosen in the Code Options dialog.

The default storage for named widgets is “global”. You can change this default by

setting the following resource:

visu.defaultStorageType:static

The possible values of this resource are:

■ default (that is, use the usual Sun WorkShop Visual default - in this case,

“global”)

■ global

■ static

Comment Preludes

This option menu refers to the special comments which appear in the generated code

around the areas where preludes can be added. Adding preludes is described in

“Customizing the Generated Files: Preludes” on page 239. You can choose whether



Chapter 7 Generating Code 221

you wish comments to be added “Always” (whether a prelude has been specified or

not), “When Defined” (i.e. only when a prelude has been specified) or “Never”. The

default is “Never”.

The example below shows a comment for a shell pre-manage prelude. Because there

is no prelude inside the comment we must assume that “Always” was the selected

option:

/* visu: prelude for shell1: pre-manage >>> */

/* <<< pre-manage ends. */

XtSetArg(al[ac], XmNallowShellResize, TRUE); ac++;

shell1 = XmCreateDialogShell ( parent, “shell1”, al, ac );

ac = 0;

/* visu: prelude for form1: pre-create >>> */

/* <<< pre-create ends. */

XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;

form1 = XmCreateForm ( shell1, “form1”, al, ac );

Control of Resources

The panel in the middle of the Options dialog contains references to each type of

resource.

Motif defines the following resource types:

■ Strings – Includes null-terminated character strings and XmStrings

■ Fonts

■ Colors

■ Pixmaps

■ Translations – Defined by a command in the “Widget” menu and discussed in

“Translations and Actions” on page 190

■ Scalars – Multiple-choice resources, including Booleans. On most resource panels,

these are on the “Settings” page

■ Integers – Any integer resource setting which is not a scalar

■ Reals – Any floating-point numeric resource value

You can specify into which file each resource type should be generated. If a resource

is generated into the source code it is then hard-coded and cannot be modified

through the resource file. Typically, any resources which are not generated into the



222 Sun WorkShop Visual User’s Guide • May 2000

source code are generated into the X resource file, where they can be edited by the

end user. See “Setting up the X Resource File” on page 215 for more details on X

resource files.

The option menu labelled “Callbacks” only appears if you have selected UIL as the

language type. This lets you choose whether callbacks are registered in the UIL code

or the C code. By default, they are registered in the UIL. If you use client data,

however, you should generate the callbacks into the C code, because structure types

cannot be defined in UIL. See “Special Notes for UIL” on page 210 for an

explanation of the C for UIL file.

For the tutorial, make the following changes in the Generate Options Dialog:

1. Select “Generated to code” from the “Links” option menu.

2. In the “Application Class Name” text box type: XDTutorial

3. Make sure that the resource type option menus are set as shown in Figure 7-5.

Note that the callbacks option menu is shown. This is only displayed if you have

selected UIL as the language type.

4. Make sure that the “Mask widget resources” radio button is on.

The significance of this radio button is discussed in “Masking Resources” on

page 223.

5. Click on “Ok”.

FIGURE 7-5 Resource Settings for Code Generation (with UIL language type)



Chapter 7 Generating Code 223

Masking Resources

If you look at any resource panel, you will see that it contains unlabeled toggles next

to each resource, as shown in Figure 7-6.

FIGURE 7-6 Resource Panel Masking Toggles

These work in combination with the “Mask widget resources” and “Mask only

global resources” radio buttons in the Generate Options dialog. Using these gives

you control over the generation of resources on an individual basis.

Mask Widget Resources

The following description applies when the “Mask widget resources” toggle is set:

If an individual resource does not have its resource panel toggle set, the resource is

generated according to the option menu for its type in the Generate dialog - i.e. a

Label string with the resource panel toggle off will be generated to the file specified

by the option menu labelled “Strings”.

Resource
masking
toggles



224 Sun WorkShop Visual User’s Guide • May 2000

If an individual resource does have its resource panel toggle set, the resource is

generated to the opposite file from the one specified for its type by the option menu

in the Generate dialog - i.e. an integer resource with the resource panel toggle on
will be generated to the resource file if the “Integers” option menu is set to “Code”

and to the code file if the option menu is set to “Resource file”.

Another way of saying this is that the option menus in the Generate dialog establish

a general rule and the toggles in the Resource Panels identify exceptions to this rule.

Mask Only Global Resources

The following description applies when the “Mask only global resources” is set:

The option menus in the Generate dialog now apply only to global objects (font, color

and pixmap objects). These (and only these) are controlled exactly as discussed for

all resources in “Mask Widget Resources” on page 223.

All other resources are controlled only by their individual resource panel toggles.

They are generated into the code file if the resource panel toggle is off and into the

resource file if the resource panel toggle is on.

Examples of Masking Effects

In many cases, designers want to generate most strings into an X resource file so that

they can be edited easily. This makes it possible to produce a foreign-language

version of the application simply by editing the X resource file. To do this, you

generate strings into the X resource file. However, there may be a few strings, such

as the company’s address, which you do not want users to be able to change. You

can hard-wire these few string resources by setting their individual masking toggles.

Similarly, you might want to let users edit nearly all color resources except for your

company colors. To do this, set the masking toggles on the individual resources

which control the company colors. When you generate code, generate colors as a

group into the resource file. Sun WorkShop Visual hard-wires the tagged ones into

the source code.

Default Settings

Default resource values, shown in brackets on the resource panels, are never

generated into either file. In this case, Motif calculates the resource value at run time.

The result may be different from the default value you saw while building the

interface, depending on the platform you run the program on. Using default values

is often helpful in making your application portable.



Chapter 7 Generating Code 225

Finishing the Generate dialog

When you have finished setting up the files you wish to generate and their options

in the Generate dialog, you can press “Apply” to save the settings or “Generate” to

generate the files straight away. If you select “Apply” you can invoke the Generate

dialog when you are ready and then generate all the selected files, or you can select

the relevant button on the toolbar (or in the Generate menu) to generate individual

files using the settings you applied earlier without producing the generate dialog

again. If you have set the “Apply on Generate” toggle, pressing “Generate”

performs a “Apply” as well as generating the requested files.

Running the tutorial

Having set up the Generate dialog with the files you wish to generate and their

associated options, you are now ready to generate code and run your prototype

application.

1. To generate all the files for your prototype, display the Generate dialog and press
the “Generate” button.

2. Make sure that you are in the directory where the files were generated, as
specified in the Generate dialog.

3. Set VISUROOT to the path to the root of the Sun WorkShop Visual installation
directory.

4. To build your prototype, type: make

5. Make sure that X can find your X resource file.

See “Making X Find Your Resource File” on page 215.

6. To run your prototype, type: icecream



226 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 7-7 Interface Prototype Running

As in the dynamic display, all the widgets in your prototype are functional. You can

click on the buttons, pull down the menus, and so on. Your prototype also includes

links. You can display the help screen by pulling down the menu at the right side of

the screen and clicking on its single entry; you can make the help screen disappear

by clicking on its button.

Although your prototype also calls quit() when you click on exit_button, quit()
doesn’t do anything because you have not yet supplied the code to make it

functional. This will be added in the following section. To terminate your prototype

when you have finished examining it:

7. Use the window manager to close the main window.

Adding Callback Functionality

All that remains to complete the tutorial is adding functionality to quit(). Sun

WorkShop Visual provides a means of editing callbacks directly in the stubs file.

Editing Callback Code from Within Sun

WorkShop Visual

The Callbacks dialog contains a button labelled “Edit Code”. Next to this button

there is an option menu allowing you to tell Sun WorkShop Visual which language

the stubs file is using. This is to prevent ambiguity if you are generating both C and



Chapter 7 Generating Code 227

C++. You will not normally need to use this option menu as Sun WorkShop Visual

will usually choose the correct value for you. See “Designating a Callback” on

page 173 for a description of the Callbacks dialog.

Sun WorkShop Visual uses the Sun Workshop Edit Server when you press the “Edit

code” button. The stubs file is opened in a separate editing window with the

insertion point inside the function brackets of the selected callback. As you select

other callbacks the insertion point moves around the file so that you are always at

the correct place. If you try to regenerate the stubs file when there are unsaved

changes in the Edit Server window, you will be prompted to save those changes first.

Before allowing you to edit the stubs file, Sun WorkShop Visual checks to see

whether there have been any changes to the design since the last stubs file

generation. If so, you are asked whether you wish to regenerate the file before

editing. You cannot edit the file if you do not regenerate it.

If you have unsaved changes in an editing window when you try to regenerate the

stubs file, you will be asked if you wish to save the file first. If you do save the file

first, any callback code you have added will be preserved. See “Incremental Stubs

File Generation” on page 228 for more details. If you choose to regenerate without

saving changes, any changes made since the last save will be lost.

Editing the Callback

If you do not wish to use Sun WorkShop Visual to edit your callback:

● Open stubs.c with a text editor and skip ahead to Step 5.

To edit your callback from within Sun WorkShop Visual:

1. Select the exit_button widget.

2. Click on the Callbacks button in the toolbar or select “Callbacks” from the Widget
menu.

3. Select “quit()” from the list of callbacks.

4. Press the button labelled “Edit code”.

Pressing this button opens stubs.c .

Editing the Stubs File

The code for quit() looks like this:

void

quit (Widget w, XtPointer client_data, XtPointer xt_call_data )



228 Sun WorkShop Visual User’s Guide • May 2000

{

XmPushButtonCallbackStruct *call_data =
(XmPushButtonCallbackStruct *) xt_call_data;

}

5. Replace the text between the braces of quit() by: exit (0);

6. Save the file.

7. Remake your executable and run the program.

Refer back to “Running the tutorial” on page 225 for details on how to do this.

The “Exit” button is now functional. To quit your program:

8. Pull down the Procedures menu of your interface and click on the “Exit” button.

“Callback Functions” on page 178 looks at callbacks in more detail, including the

parameters passed to them and the ways in which you can access and manipulate

widgets in your design.

The tutorial is now complete. The remainder of this section looks in more detail at

the issues discussed in previous sections.

Incremental Stubs File Generation

When you subsequently generate the same stubs file, Sun WorkShop Visual reads

the special comments in that file in order to work out which callbacks and methods

have already been generated. In this way you can add your own code to the stub and it
will not be overwritten.

Sun WorkShop Visual then appends any new callbacks or methods to the end of the

stubs file. Whenever a new stubs file is generated, the old version is copied to a file

with the name you have specified and a .bak extension.

Note – When you remove a callback from a widget in Sun WorkShop Visual, the

callback stub will remain in the stubs file. If you want to remove the routine, you

will need to open the stubs file and remove the comment above the callback routine.

Below is the listing of a stubs file containing one callback, named quit:

/*

** Generated by Sun WorkShop Visual

*/



Chapter 7 Generating Code 229

The Beginning of the Prelude:
/*

** Sun WorkShop Visual generated prelude.

** Do not edit lines before “End of Sun WorkShop Visual generated
prelude”

** Lines beginning ** Sun WorkShop Visual Stub indicate a stub

** which will not be output on re-generation

*/

/*

**LIBS: -lXm -lXt -lX11

*/

The End of the Prelude:
/* End of Sun WorkShop Visual generated prelude */

Special Comment to Indicate a Stub:
/*

** Sun WorkShop Visual Stub quit

*/

void

quit (Widget w, XtPointer client_data, XtPointer xt_call_data )

{

        XmPushButtonCallbackStruct *call_data =

(XmPushButtonCallbackStruct *) xt_call_data;

}

Stubs File Comments

At the beginning of the file there is a prelude which Sun WorkShop Visual reads and,

effectively, throws away. The prelude is always regenerated anew. Before every stub

Sun WorkShop Visual generates a comment giving the name of the callback or

method. In this way Sun WorkShop Visual can calculate which stubs it still needs to

generate, having read the existing stubs file.



230 Sun WorkShop Visual User’s Guide • May 2000

Note – You should not alter these comments in any way unless you wish Sun

WorkShop Visual to regenerate the stub.

Regeneration of Callback Stubs

If you wish Sun WorkShop Visual to regenerate one of the stubs, simply remove the

comment preceding the stub and the stub itself. If you remove only one or the other,

one of the following will occur:

■ If you remove the stub but leave the comment, no stub will be generated

■ If you remove the comment but leave the stub, you will have two copies of the

stub

Remember that regeneration of a stub will lose the contents of the routine.

Sun WorkShop Visual will not remove old stubs even though a special comment no

longer matches a callback or callback method.

Regeneration of the Whole File

You may wish Sun WorkShop Visual to regenerate the whole file anew if, for

example, you have deleted some callbacks or changed some names, the old ones are

still being generated and the file is starting to become full of redundant code. In

order to do this, simply remove, or change the name of, the stubs file and the

“.bak ” file. If Sun WorkShop Visual cannot find a file with the name you have

specified for the stubs file, it will generate a new file.

Analysis of the Primary Module

From top to bottom, your primary code module contains the following sections:

■ Headers (optional)

■ Global variable declarations

■ Declarations of link functions, or the functions themselves (optional)

■ Structures needed for your fonts and pixmaps and code setting up font and

pixmap objects

■ Widget creation code for your design hierarchy



Chapter 7 Generating Code 231

■ A main() procedure (optional)

This section analyzes the code in your file.

● Open icecream.c with the text editor and inspect it as you read.

The optional portions of the file can be included or excluded by setting toggles on

the control panel. These toggles, and the advantages and disadvantages of including

the optional sections, are discussed in “Code Generation Options” on page 218.

The Header Section

The primary module has the following header material, in this order:

■ The module heading (if any)

■ Sun WorkShop Visual’s heading

■ The #include statements (optional)

■ The module prelude (if any)

Your file does not need to have a module heading or module prelude. You can

specify code to be inserted in these places from within Sun WorkShop Visual. The

procedure for doing so is discussed in “Customizing the Generated Files: Preludes”

on page 239.

After some standard Sun WorkShop Visual comments, there is a list of #include
statements needed for the code in your module. The #include statements are optional

and are controlled by the toggles in the Code Options dialog - see “Setting up the

Primary Source File” on page 211.

Sun WorkShop Visual also needs to include its own header file in order to define the

base classes that it uses. If you wish to change the name of the file to be included, or

not include a base class header file at all, refer to “Generation” on page 875 for

details of the application resource that you will need to change.

Link Functions or Link Declarations

Next, the module contains code for the link functions. The following code fragment

shows a typical link function:

void XDunmanage_link ( Widget w, XtPointer client_data, XtPointer
call_data )

Generation of this code is optional and is controlled by the Generate Options dialog

- see “Code Generation Options” on page 218.



232 Sun WorkShop Visual User’s Guide • May 2000

Variable Declarations

In this section, all globally defined widgets in the design are declared. The following

lines are typical:

Widget exit_button = (Widget) NULL;

Widget help_cascade = (Widget) NULL;

Only global widgets are declared here. By default, widgets are local in scope. Local

widgets are defined in the function which creates their parent Shell and cannot be

referenced elsewhere in your application. To make a widget global, you can:

■ Specify it as global on the Core resource panel

■ Give it an explicit variable name

Note that the variable names of Application Shells and Top level Shells are always

global in Sun WorkShop Visual and therefore should not be made local. See “Shell

Types” on page 73 for more information on the different shell types.

Variable Names

Variable names must be unique. If you “Read” or “Paste” widgets into your design

whose variable names duplicate names of existing widgets, Sun WorkShop Visual

silently removes the duplicate names and assigns new, local, names of the form

widget_type<n>, e.g. shell4, form5, etc.

By convention, variable names of widgets should begin with a lower-case letter. This

helps avoid conflict with Motif declarations.

Creation Procedures

By default, Sun WorkShop Visual generates a creation procedure for each Shell widget

in your design. The creation procedures are the heart of the generated code. Each

creation procedure does the following:

■ Creates the Shell widget itself

■ Creates and manages all the children of the Shell and their children

■ Sets all hard-wired resources for any child of the Shell

■ Adds callbacks and (optionally) links to any child of the Shell which has them

The creation procedures do not display the Shell. Usually, windows are displayed by

a function call in the main() procedure or in a callback routine.



Chapter 7 Generating Code 233

By default, creation procedures have the form create_<shell name>, based on the

variable name of the Shell. Your design has two Shells: a Dialog Shell, named

help_window, and an Application Shell, named myFirstShell. It therefore has two

creation procedures: create_myFirstShell and create_help_window. You can change the

name of a creation procedure in a code prelude, discussed later in this chapter.

create_help_window has the following form:

void create_help_window (Widget parent)

{

. . .

}

The function body has function calls which create the Dialog Shell itself:

help_window = XmCreateDialogShell ( parent, "help_window", al, ac );

Dialog Shells, unlike Application Shells, are dependent on another Shell, parent. See

“Shell Types” on page 73 for more details concerning the various Shell types and

their respective behavior.

create_help_window also creates all the Shell’s children. The DialogTemplate child, to

which you gave an explicit variable name, is created and assigned to a global

variable:

dialog_2 = XmCreateMessageBox ( help_window, "dialog_2", al, ac);

The Label, if you did not name it explicitly, is assigned to a local variable as

illustrated below. (Note that the widget variable name may be different in your

code.)

label1 = XmCreateLabel ( dialog_2, "label1",al,ac);

create_myFirstShell, the creation procedure for your Application Shell, has different

arguments because it is a different type of Shell:

void create_shell_1 (Display *display, char *app_name, int app_argc,
char **app_argv)

{

. . .

}

See “Shell Pre-create Prelude” on page 244 for a discussion of these arguments.

This function is similar to create_help_window, although it is considerably longer as

your main window has more child widgets than the help window.



234 Sun WorkShop Visual User’s Guide • May 2000

Callback Procedures

The primary module does not include callback functions themselves. However, it

does add any callbacks you have specified to each widget’s callback list.

create_myFirstShell contains the following lines (not necessarily together) which

create the exit_button and add the quit callback.

exit_button = XmCreatePushButton ( rowcol1, "exit_button", al, ac );

. . .

XtAddCallback (exit_button, XmNactivateCallback, quit, NULL);

An extern declaration of quit() is generated earlier in the source file.

The “Show” link on the widget help_button inserts an Activate callback to the Sun

WorkShop Visual function XDmanage_link. The code which creates help_button and

adds a link to it looks much like the code which creates exit_button and adds its

callback.

help_button = XmCreatePushButton ( rowcol2, "help_button", al, ac );

. . .

XtAddCallback (help_button,XmNactivateCallback, XDmanage_link,
(XtPointer) &xd_links[0] );

Description of the Main Program

A minimal main() procedure is either generated into a separate file or at the end of

your primary module. See “Setting up the Main Program File” on page 214 for

details on generating this procedure into a separate file.

Sun WorkShop Visual’s main() procedure does the following things:

■ Opens a connection to the X server

■ Initializes the X toolkit

■ Calls the creation procedure for the first Application Shell

■ Calls the creation procedures for all other Shells in the design

■ Calls XtRealizeWidget() to display the first Application Shell

■ Calls XtAppMainLoop() (which never returns)

■ Calls exit() (This call is for neatness only, since this line of code is never executed)

As you have seen, this main() procedure is sufficient to run the interface and check

its behavior. In many applications, very little additional code is needed in main()
because most functionality is handled in callbacks. However, if you need to initialize

other parts of your application, you should generate a separate main() procedure

source file from the Generate dialog once only and edit the file. Termination code

goes in the callback function which is invoked to exit the application.

● Close the file icecream.c .



Chapter 7 Generating Code 235

Resource File Syntax

The syntax for generated resource files, by default, is as follows:

<application name>*<widget name>.<resource>: <value>

For identification purposes, the widget’s variable name (not the widget name)

precedes the list of its resources in a comment. If a group of widgets share a widget

name, however, only one variable name from the group appears. A comment is also

generated for any widget which has no resources generated into the file.

Example Syntax

● Open your X resource file (icecream.res) with a text editor and look at it.

The file fragment below includes only String resources.

! button1

XDTutorial*button1.labelString: Cone

! button2

XDTutorial*button2.labelString: Dish

! button3

XDTutorial*button3.labelString: Cancel

! procedure_cascade

XDTutorial*procedure_cascade.labelString: Procedures

! button4

XDTutorial*button4.labelString: Wash Dishes...

! button5

XDTutorial*button5.labelString: Count Money

! exit_button

XDTutorial*exit_button.labelString: Exit

XDTutorial*exit_button.accelerator: Ctrl<Key>E



236 Sun WorkShop Visual User’s Guide • May 2000

XDTutorial*exit_button.acceleratorText: Control + E

! help_cascade

XDTutorial*help_cascade.labelString: Help

XDTutorial*help_cascade.mnemonic: H

! help_button

XDTutorial*help_button.labelString: About This Layout

XDTutorial*help_button.mnemonic: A

An end user can change any of these strings by editing its value in the X resource

file. For example, the second line could be changed to read:

XDTutorial*procedure_cascade.labelString: Closing Up

Resource values in the X resource file are overridden by values for the same resource

in the .Xdefaults file in the user’s home directory.

Include in Resource Binding

If you have set any of the “Include in resource binding” toggles (found on the “Code

generation” page of the Core Resource panel) for any widgets in your design, your

resource file will look slightly different. The syntax that Sun WorkShop Visual

generates for resource files by default is very general - it applies to all widgets with

the specified widget name within the whole application. It is often the case that you

have more than one widget with the same name. Tight bindings give you more

control over widget resources.

Note – This section only discusses the syntax of the generated resource file, refer to

“Tight Bindings” on page 92 for a thorough explanation of tight bindings.

The example given in “Tight Bindings” on page 92 would produce the following

line:

XDTutorial*FirstForm*OkButton.labelString: Ok

Loose Bindings

If you have set any loose bindings, these will appear at the top of the generated

resource file. Their syntax is slightly different as they never refer to individual

widgets.



Chapter 7 Generating Code 237

Note – This section only describes the syntax of resource files - for a thorough

explanation of loose bindings, refer to “Loose Bindings” on page 86.

The example given in “Loose Bindings” on page 86 would generate the following

line in the resource file:

XDTutorial*XmDialogShell*MyForm.MyButton.labelString: Bound

Shared Resource Values

To identify a widget completely, X requires a list of all the widget’s ancestors in the

hierarchy as well as the widget’s own name. In the generated X resource file, Sun

WorkShop Visual uses a wildcard (*) instead of a list of specific ancestors. Thus, each

widget is distinguished only by the application name and the widget name, and any

widgets which share a widget name, also share any resources generated into the

X resource file.

The following lines are taken from Sun WorkShop Visual’s own X resource file:

/* dialog buttons */

visu*apply_button.labelString: Apply

visu*cancel_button.labelString: Close

Sun WorkShop Visual has several buttons, in several places, which have the widget

name apply_button. All these buttons share the label string “Apply”. Similarly, all

buttons with the widget name cancel_button share the label string “Close”. These

strings can be changed on all buttons at once by editing one line of the X resource

file.

By contrast, resources generated into the source file are always set separately for

each widget, even if widgets share a widget name.

Arranging Your Files

Sun WorkShop Visual allows considerable flexibility in arranging files to suit your

preference. This flexibility requires some care on your part, since you must include

all necessary pieces of code, yet avoid duplication, in order for your application to

link successfully.



238 Sun WorkShop Visual User’s Guide • May 2000

Another consideration is that your file setup should allow changes to your interface

in Sun WorkShop Visual after the first pass at generating code. Remember that any

changes you make will require regenerating code and, possibly, resource files. Your

files and directories should be set up so that when you regenerate files you do not

overwrite any coding work you have done.

With these considerations in mind, this section discusses strategies for organizing

your code files.

Using Separate Directories

It is a good practice to keep a separate directory for each Sun WorkShop Visual

application. Make the directory before you start designing. Save your design file and

generate all code files and resource files into that directory.

Keeping Generated Files Unchanged

To avoid errors, do all of your own coding outside the primary module and

X resource file generated by Sun WorkShop Visual. Code preludes, module preludes

(see “Customizing the Generated Files: Preludes” on page 239) and the various

options in the Generate dialog give you some control over the primary module from

within Sun WorkShop Visual. Similarly, resource preludes let you adjust the

X resource file. If you do not edit these files outside Sun WorkShop Visual, you can

regenerate them when you make changes in your design without sacrificing any

work you have done.

Keeping Main Separate

The main() procedure almost always needs to be edited. For this reason it is best to

generate a separate main program file. You can then edit this file as you wish. Make

sure that you do not regenerate the main program file once you have made your

own changes to it. See “Setting up the Main Program File” on page 214 for details on

how to generate a separate main program file.



Chapter 7 Generating Code 239

Stubs File

Unlike other generated files, the stubs file is meant to be edited. Sun WorkShop

Visual will preserve changes to stubs files on re-generation. See

Chapter 6 ”Activating the Interface: Adding Your Own Code“ for details on adding,

editing and understanding callbacks. See “Adding Callback Functionality” on

page 226 for details on editing a stubs file.

Where to Put Links

If your application uses links, you must generate the link functions and function

declarations into either the code file or the stubs file.

If your application uses generated code from more than one design file, you should

generate the link functions declarations into all the primary modules but generate

the link functions into only one file.

Where to Put Includes

If your make procedure involves compiling the primary module and the application

code separately, you should turn on the “Include Header File” toggle for the primary

source code file. This procedure was followed in the tutorial. See “Setting up the

Primary Source File” on page 211 for details on how to do this.

Another strategy involves writing a #include directive to include the generated code

in your application code file and compile all the code together. If you do this, you

should turn on “Include Header File” only once for the primary module and turn it

off when you generate the stubs file.

Customizing the Generated Files:
Preludes

Sun WorkShop Visual lets you edit the primary source file, which it generates, in

order to add lines of your own code, here called preludes. All preludes can be entered

by typing them into Sun WorkShop Visual and allowing Sun WorkShop Visual to

insert them into the code at the appropriate place. There are several types of prelude,

distinguished by where the code is inserted.



240 Sun WorkShop Visual User’s Guide • May 2000

Note – After adding any type of prelude, you should re-generate code in order to

see your changes.

Module Preludes

The “Module prelude...” command in the “Module” menu lets you enter a heading
prelude, a module prelude and a resource prelude in your code, using the dialog shown

in Figure 7-8.

FIGURE 7-8 Module Prelude Dialog

Selecting one of the toggles which appear in the representative text, allows you to

edit that type of prelude. There are two ways of adding a code prelude:

■ Editing the generated code

■ Typing the code into the dialog

Use the “Edit in place” toggle to specify which of the above you wish to use. If the

“Edit in place” toggle is set, the generated code is opened for you to add your code.

See “Using the Edit Mechanism” on page 246 for more details on this.



Chapter 7 Generating Code 241

If the “Edit in place” toggle is not set, a large text widget appears on the right of the

dialog. Enter your code here. You should type the code exactly as if you were using

a text editor to type any other code. This means that you should observe all the rules

and conventions of the target language, including end of line markers, bracketing

conventions etc. You should always press Return after the last line in a prelude.

Heading Prelude

The heading prelude is inserted at the beginning of the main program file, the code

file, the externs file and the stubs file. Typically, a module heading would contain a

comment with information such as the program name, SCCS ID, or version number.

Module Prelude

The module prelude is inserted at the top of the generated code file - just after Sun

WorkShop Visual’s generated #include statements, if you asked for them. The module

prelude can be used to supply #define or #include statements or extern declarations

which are needed by your code. The module prelude is generated only into the

primary module, not the stubs file.

Resource Prelude

The resource prelude is inserted at the beginning of the X resource file to specify

application resources - i.e. resources which refer to the whole application and not to

individual widgets. Use the following syntax:

ApplicationName*resource: value

For example:

visu*symbolFont: -*-symbol-medium-r-normal--14*

Although these resource bindings apply to all widgets in the application, they are

overridden by more specific resource settings on individual widgets or groups of

widgets with a common name.

You may also wish to include comments or SCCS or RCS keywords in a resource

prelude.

See “Loose Bindings” on page 86 for information on setting up loose resource

bindings for the whole module and for individual widgets.



242 Sun WorkShop Visual User’s Guide • May 2000

Code Preludes

While module preludes apply to the whole module, code preludes apply to

individual widgets. This means that the code will be inserted before the widget is

created or managed. To add prelude code:

1. Select the widget to which you wish to add code

2. Select “Code Preludes” from the “Widget” menu

The Code Prelude dialog is shown in Figure 7-9:

FIGURE 7-9 Code Preludes Dialog

Code Preludes Dialog

The Code Prelude dialog contains text representing generated code for the selected

widget. This code is representative only, so that you can see where the preludes will

be added. This is not the actual generated code.

This dialog contains two sections - one for C code (labelled “Code preludes”) and

one for C++ (labelled “Method preludes”). Within both sections of text are toggles

allowing you to choose whether you wish to edit the various kinds of prelude. There



Chapter 7 Generating Code 243

are two kinds of code prelude which can be used with C: Pre-create and Pre-manage.

These are discussed in “Pre-create Preludes” on page 243 and “Pre-manage

Preludes” on page 245.

There are three kinds of method preludes for use with C++: public, private and

protected. These relate to their access. “Method Access Control” on page 260 provides

more information on method access. You can, however, add both methods and data

members in a prelude. “Adding Class Members as a Prelude” on page 291 shows, as

part of a tutorial, how to add data members using the Code Prelude dialog.

Clicking over “Code preludes” or “Method preludes” folds away the corresponding

text area so that only the other prelude type is visible.

Adding a Code Prelude

Selecting one of the toggles which appear in the representative text, allows you to

edit that type of prelude. There are two ways of adding a code prelude:

■ Editing the generated code

■ Typing the code into the dialog

Use the “Edit in place” toggle to specify which of the above you wish to use. If the

“Edit in place” toggle is set, the generated code is opened for you to add your code.

See “Using the Edit Mechanism” on page 246 for more details on this.

If the “Edit in place” toggle is not set, a large text widget appears on the right of the

dialog. Enter your code here. You should type the pre-creation code exactly as if you

were using a text editor to type any other code. This means that you should observe

all the rules and conventions of the target language, including end of line markers,

bracketing conventions etc.

Pre-create Preludes

Pre-create preludes are inserted into the code before the selected widget is created.

If the selected widget is not a Shell widget, the pre-creation prelude is inserted in the

creation procedure for the widget’s parent Shell and you can provide any code

without restriction. Pre-creation preludes are commonly used to set resources which

can only be set at widget creation time. Pre-create preludes for Shells are different

and are described in “Shell Pre-create Prelude” on page 244. Below is a segment of

generated code showing where pre-create preludes are added:

...

/* visu: prelude for rowcol1: pre-create >>> */

Enter pre-create code here



244 Sun WorkShop Visual User’s Guide • May 2000

/* <<< pre-create ends. */

rowcol1 = XmCreateRowColumn ( shell11, “rowcol1”, al, ac );

...

If you had selected “Edit in place” and you are editing the generated code directly,

make sure that your code is typed into the area surrounded by special comments. It

is then preserved when you regenerate code. You must not alter or remove the

special comments.

Shell Pre-create Prelude

The code preludes for a Shell differ slightly from those of other widgets. The pre-

creation prelude is used to replace the function header for the Shell’s creation

procedure. You can then, if you wish, define extra parameters.

The generated body of the procedure refers to one or more variables, which, in the

default procedure heading, are passed as parameters. While these variables must be

in scope, you can choose to pass them as parameters or declare them as global

variables. The following variables must be in scope:

Required for Application Shell widgets:
Display *display;

char *app_name;

int app_argc;

char **app_argv;

Required for Dialog Shell or Top level Shell widgets:
Widget parent;

In C for UIL the following are also required:
MrmHierarchy hierarchy_id;

MrmCode *class;

If you do not provide a pre-create prelude for a Shell widget, the creation procedure

name defaults to create_<widget-variable-name> with the compulsory parameters as

the only parameters.



Chapter 7 Generating Code 245

Note – If you provide a pre-create prelude for a Shell, the call of the creation

procedure in the generated default main() program is unlikely to be correct.

WARNING – Shell pre-create preludes cannot be edited in place for Motif XP or

MFC code. In general, code preludes should not be used for cross-platform

designs because, by their very nature, preludes tend to include platform-specific

code.

Pre-manage Preludes

The pre-manage prelude appears slightly later than the pre-create prelude in the

generated code - just before the widget’s callbacks are added. One use of this

prelude is to set up client data for the callbacks. Other uses include setting the value

of a Text widget, filling a ScrollingList, adding buttons from a file, or any other

dynamic initializations. Below is a segment of generated code showing where pre-

manage preludes appear:

...

/* visu: prelude for shell1: pre-manage >>> */

Enter pre-manage code here

/* <<< pre-manage ends. */

XtSetArg(al[ac], XmNallowShellResize, TRUE); ac++;

XtSetArg(al[ac], XmNargc, app_argc); ac++;

XtSetArg(al[ac], XmNargv, app_argv); ac++;

...

If you had selected “Edit in place” and you are editing the generated code directly,

make sure that your code is typed into the area surrounded by special comments. It

is then preserved when you regenerate code. You must not alter or remove the

special comments.

Shell Pre-manage Prelude

A Shell’s pre-manage prelude is inserted just after the local declarations in the

procedure. Otherwise it is the same as for other widgets.



246 Sun WorkShop Visual User’s Guide • May 2000

Using the Edit Mechanism

Sun WorkShop Visual uses the SunSoft Workshop Edit Server when you edit the

generated code file. The file is opened in a separate editing window at the

appropriate place in the file for the selected prelude type. As you select other

prelude types the insertion point moves around the file so that you are always at the

correct place. If you try to regenerate the code file when there are unsaved changes

in the Edit Server window, you will be prompted to save the changes first.

Prelude Acceptance Chooser

When you regenerate the code file after having added a prelude in place, the Prelude

Acceptance Chooser is displayed. This is shown in Figure 7-10. Adding a prelude

directly into the Preludes dialog will not cause the Prelude Acceptance Chooser to

appear.

FIGURE 7-10 Prelude Acceptance Chooser

In this dialog, you can choose individual preludes which have changed since the file

was last generated and specify whether you wish to accept or reject those preludes.

Select the preludes and press the arrow keys to move them from one list to the other.

When you press “Ok” only those preludes you chose to accept will be regenerated.

Alternatively, you can choose to reject or accept all the newly added preludes.

Preludes which you reject are deleted when you “Ok” the dialog and cannot be

retrieved at a later date.



Chapter 7 Generating Code 247

Preludes which were added before a previous code generation took place are

retained - the Prelude Acceptance Chooser only affects those preludes which have

been added since your code file was last generated.

Note – If you unset the “Edit in place” toggle and you have added a prelude since

the last code file generation the Prelude Acceptance Chooser is displayed because

any new preludes need to be shown in the Preludes dialog.



248 Sun WorkShop Visual User’s Guide • May 2000



249

CHAPTER 8

Structured Code Generation and
Reusable Definitions

Introduction

This chapter describes how Sun WorkShop Visual helps you to control the structure

of the generated code. Being able to do this is essential for creating reusable widget

hierarchies. These reusable hierarchies, known as definitions, appear on the widget

palette and can be added to the hierarchy like any other widget. A detailed

description of definitions also appears in this chapter.

Structured Code Generation

Sun WorkShop Visual provides controls for structuring your generated code so that

it is more flexible and can be reused more easily. Before reading this section, you

should review the structure of the default generated code in “Analysis of the

Primary Module” on page 230. In particular, note that the default code has a single

creation procedure for each Shell in the design. Widgets are declared as local if they

have not been named and global if they are named or are Application Shells.

The structured code controls let you:

■ Designate any widget in the hierarchy to have its own creation function that

returns the widget, including its descendants

■ Designate any widget to have its own creation function that returns a structure

containing the widget and its named descendants



250 Sun WorkShop Visual User’s Guide • May 2000

■ Designate any widget to be defined as a C++ class with descendant widgets as

members

■ Designate a widget as a place-holding container that serves only to house a

collection of child widgets

■ Explicitly specify a widget as global, local, or static

Sun WorkShop Visual’s controls for structuring code are located on the “Code

generation” page of the Core resource panel.

Function Structures

The simplest case of structured code generation is to designate a widget as a function
structure. This makes Sun WorkShop Visual generate a separate function that creates

that widget and its descendants. This function is called by the creation procedure for

the enclosing widget.

To do this, select the “Code generation” page of the Core resource panel and select

“Function” from the “Structure” option menu.

FIGURE 8-1 Example: Structure

The hierarchy shown in Figure 8-1 produces the following generated code, slightly

simplified for clarity:1

Widget shell = (Widget) NULL;

Widget form = (Widget) NULL;

1. The comments describing the functions and procedures are not generated.

button_box designated as
Function Structure



Chapter 8 Structured Code Generation and Reusable Definitions 251

Widget button_box = (Widget) NULL;

Widget b1 = (Widget) NULL;

/* This is the creation function for the button_box. */

Widget create_button_box (Widget parent)

{

Widget children[1];      /* Children to manage */

Arg al[64];                    /* Arg List */

register int ac = 0;           /* Arg Count */

Widget button_box = (Widget)NULL;

button_box = XmCreateRowColumn ( parent, "button_box",

al, ac );

b1 = XmCreatePushButton ( button_box, "b1", al, ac );

children[ac++] = b1;

XtManageChildren(children, ac);

/* The button box is created, but not managed, and returned. */

return button_box;

}

/* The creation function for the Shell calls the button box creation function. */

void create_shell (Widget parent)

{

Widget children[1];      /* Children to manage */

Arg al[64];                    /* Arg List */

register int ac = 0;           /* Arg Count */

XtSetArg(al[ac], XmNallowShellResize, TRUE); ac++;

shell = XmCreateDialogShell ( parent, "shell", al, ac );

ac = 0;

XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;

form = XmCreateForm ( shell, "form", al, ac );

ac = 0;

button_box = create_button_box ( form );

/* The constraint resources for the button box are set in the parent’s creation

function. */

XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM);



252 Sun WorkShop Visual User’s Guide • May 2000

ac++;

XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM);

ac++;

XtSetValues ( button_box,al, ac );

/* The button box is managed at this point. */

children[ac++] = button_box;

XtManageChildren(children, ac);

}

This module now has two functions: one (create_shell()) for creating the whole

hierarchy and one (create_button_box()) for creating the button box.

Data Structures

The next type of code structuring is the data structure. This is similar to a function

structure, in that Sun WorkShop Visual generates a separate creation procedure for

the widget and its descendants. When a widget is designated as a data structure,

Sun WorkShop Visual also generates a typedef for a structure including that widget

and its children. The creation procedure for the widget creates and sets up that type

of structure and returns a pointer to it. A deletion function (delete_<widget_name>) is

also generated so that the allocated memory can be freed.

To designate a widget as a data structure, select the “Code generation” page from

the Core resource panel and select “Data structure” from the “Structure” option

menu.

Using the same hierarchy as shown above, but with button_box designated as a data

structure, the following code is produced, slightly simplified for clarity:1

/* First the type declarations are generated for the data structure. */

typedef struct button_box_s {

Widget button_box;

Widget b1;

} button_box_t, *button_box_p;

Widget shell = (Widget) NULL;

Widget form = (Widget) NULL;

button_box_p button_box = (button_box_p) NULL;

/* The creation procedure returns a pointer to a button_box structure. */

1. The comments describing the functions and procedures are not generated.



Chapter 8 Structured Code Generation and Reusable Definitions 253

button_box_p create_button_box (Widget parent)

{

Widget children[1];      /* Children to manage */

button_box_p button_box = (button_box_p)NULL;

/* Space is allocated for the structure and the fields are filled in. */

button_box = (button_box_p) XtMalloc ( sizeof (

button_box_t ) );

button_box->button_box = XmCreateRowColumn ( parent,

"button_box", al, ac );

button_box->b1 = XmCreatePushButton
( button_box->button_box, "b1", al, ac );

children[ac++] = button_box->b1;

XtManageChildren(children, ac);

return button_box;

}

/* A deletion function is supplied to free the allocated memory. */

void delete_button_box ( button_box_p button_box )

{

if ( ! button_box )

return;

XtFree ( ( char * )button_box );

}

/* Again, the Shell creation function calls the button box creation function. */

void create_shell (Widget parent)

{

Widget children[1]; /* Children to manage */

Arg al[64]; /* Arg List */

register int ac = 0; /* Arg Count */

shell = XmCreateDialogShell ( parent, "shell", al, ac );

form = XmCreateForm ( shell, "form", al, ac );

button_box = create_button_box ( form );

XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM);

ac++;

XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM);

ac++;



254 Sun WorkShop Visual User’s Guide • May 2000

/* The button_box widget has to be referenced inside the structure. */

XtSetValues ( button_box->button_box,al, ac );

ac = 0;

children[ac++] = button_box->button_box;

XtManageChildren(children, ac);

ac = 0;

}

C++ Classes

The use of C++ classes is very similar to data structures. Sun WorkShop Visual does

not wrap each widget in the hierarchy with a C++ class, but instead designates

sections of the hierarchy as classes in their own right. Each widget designated as a

C++ class has a class defined for it. Its named descendant widgets become members

of that class and widget creation and widget destruction methods are supplied. In

addition, if the class contains members that are themselves (pointers to) classes, a

constructor and destructor method is generated to create and destroy these

members. Note that the widgets are not created at the time of the class instance but

by an explicit call to the widget creation function. Similarly, destroying the class

instance does not destroy the widgets.

To designate a widget as a C++ class, select the “Code generation” page of the Core

resource panel and select “C++/Java class” from the “Structure” option menu. Note

that if you designate a widget as a C++ class, then generate C, the widget is treated

as a data structure.

This section describes C++ classes. For information Java classes in Sun WorkShop

Visual, see Chapter 10, “Designing for Java”, starting on page 313.



Chapter 8 Structured Code Generation and Reusable Definitions 255

FIGURE 8-2 Example: C++ Class Structures

The C++ code generated from this example is shown below, simplified for clarity:1

Classes are declared for button_box and shell:

class button_box_c: public xd_XmRowColumn_c {

public:

virtual void create (Widget parent, char *widget_name =

NULL);

protected:

Widget button_box;

Widget b1;

Widget b2;

};

typedef button_box_c *button_box_p;

The shell class has constructor and destructor functions because it contains a pointer

to class (or data structure) member:

class shell_c: public xd_XmDialog_c {

public:

virtual void create (Widget parent, char *widget_name =

NULL);

shell_c();

virtual ~shell_c();

1. The comments describing the functions and procedures are not generated.

Both shell and button_box set
to C++ class structure



256 Sun WorkShop Visual User’s Guide • May 2000

protected:

Widget shell;

Widget form;

Widget text;

button_box_p button_box;

};

typedef shell_c *shell_p;

shell_p shell = (shell_p) NULL;

The creation function now becomes a method of the class. This method is declared

public in the Sun WorkShop Visual base class, which is supplied with the release:

void button_box_c::create (Widget parent, char *widget_name)

{

Widget children[2];      /* Children to manage */

Arg al[64];                    /* Arg List */

register int ac = 0;           /* Arg Count */

if ( !widget_name )

widget_name = "button_box";

button_box = XmCreateRowColumn ( parent, widget_name,

al, ac );

_xd_rootwidget is a protected member of the class that stores the widget that is at the

root of the sub-hierarchy. This lets the base class operate on the widget:

_xd_rootwidget = button_box;

b1 = XmCreatePushButton ( button_box, "b1", al, ac );

b2 = XmCreatePushButton ( button_box, "b2", al, ac );

children[ac++] = b1;

children[ac++] = b2;

XtManageChildren(children, ac);

ac = 0;

}

// The Shell’s creation method calls that for the button box.

void shell_c::create (Widget parent, char *widget_name)



Chapter 8 Structured Code Generation and Reusable Definitions 257

{

Widget children[2];      /* Children to manage */

Arg al[64];                    /* Arg List */

register int ac = 0;           /* Arg Count */

if ( !widget_name )

widget_name = "shell";

XtSetArg(al[ac], XmNallowShellResize, TRUE); ac++;

shell = XmCreateDialogShell ( parent, widget_name, al,

ac );

ac = 0;

_xd_rootwidget = shell;

XtSetArg(al[ac], XmNautoUnmanage, FALSE); ac++;

form = XmCreateForm ( shell, "form", al, ac );

ac = 0;

text = XmCreateText ( form, "text", al, ac );

The button box class is instantiated in the constructor method and so at this point

only the widgets need to be created:

button_box->create ( form, "button_box" );

XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET);

ac++;

XtSetArg(al[ac], XmNtopWidget,

button_box->xd_rootwidget()); ac++;

XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM);

ac++;

XtSetValues ( text,al, ac );

ac = 0;

XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM);

ac++;

XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM);

ac++;

XtSetValues ( button_box->xd_rootwidget(),al, ac );

ac = 0;



258 Sun WorkShop Visual User’s Guide • May 2000

children[ac++] = text;

children[ac++] = button_box->xd_rootwidget();

XtManageChildren(children, ac);

ac = 0;

}

shell_c::shell_c()

{

Instantiate the child classes:

button_box = new button_box_c;

}

shell_c::~shell_c()

{

Free the child classes:

delete button_box;

}

If a widget is designated a C++ class and C code is generated, the widget is treated

as if it were a data structure.

By default, the generated class is derived from one of the supplied Sun WorkShop

Visual base classes. You can override this by specifying the base class in the field

below the C++ Access option menu. The Sun WorkShop Visual base classes supplied

with the release provide minimal support, sufficient for the generated code to

execute correctly. You can modify and extend those classes to provide reusable

methods that suit your approach to GUI development.

Descendant widgets appear as protected members of the class if they are named, or

if they are themselves data structures or C++ classes. It is therefore important to

name the C++ class widget itself and any of its descendants that you want to access

as class members. You can alter the default access control by selecting the required

level (Public, Protected, or Private) from the C++ Access option menu.

Using an unnamed widget for the C++ class widget itself does not cause an

immediate error. However, this is not recommended as numbers assigned by Sun

WorkShop Visual can change when you edit your hierarchy.



Chapter 8 Structured Code Generation and Reusable Definitions 259

Callback Methods

The X toolkit functions which invoke callback functions expect a callback function in

the following form:

void my_callback (Widget, XtPointer, XtPointer)

An ordinary member function is not suitable as a callback function because the C++

compiler passes it an extra first parameter - the this pointer - that lets it find the

instance data for the object. If you use an ordinary member function as a callback

function, the member function interprets the widget pointer as the instance data

pointer and does not work as expected.

Sun WorkShop Visual uses a common technique to work around this. A static

member function (which does not expect a this pointer) is declared and used as the

callback function:

static void my_callback (Widget, XtPointer client_data, XtPointer
call_data)

The client data parameter is used to pass in a pointer to the instance. The static

member function merely calls an ordinary non-static member function using that

instance pointer and passes on the widget and call data parameters. The non-static

member function has the following form:

virtual void my_callback (Widget, XtPointer call_data)

Sun WorkShop Visual generates both function declarations, all the code for the static

callback function and a stub for the regular member function which is written by

you. Note, because this function is declared as virtual, you can override it in a

derived class to modify the behavior. For a discussion of this technique, see “Object-
Oriented Programming with C++ and OSF/Motif” by Douglas Young.

Editing Callback Methods

When you add a callback method, Sun WorkShop Visual also adds a declaration for

the method (if it has not already been declared). Pressing the “Methods” button in

the Callbacks dialog shows you a list of the methods declared in the enclosing class

of the currently selected widget.

By default, Sun WorkShop Visual declares methods as not pure virtual and with

public access. If these attributes are not as you intended, use the Method

Declarations dialog to change them. See “Method Declarations” on page 260 for

details.



260 Sun WorkShop Visual User’s Guide • May 2000

Method Declarations

If you add a callback as a method, for convenience Sun WorkShop Visual adds the

declaration of the method in the enclosing class for that widget. You can view, add

and remove method declarations by selecting the widget which is the enclosing class

and selecting “Method declarations” from the “Widget” menu. The Method

Declarations dialog is shown in Figure 8-3.

FIGURE 8-3 Method Declarations Dialog

To find which widget is the enclosing class, use “Structure colors” from the “View”

menu, as described in “Structure Colors” on page 47, and select the nearest ancestor

of the widget for which you have added a method. Of course, this would be the

same widget if it is defined as a C++ class.

Method Access Control

By default, methods added by Sun WorkShop Visual have public access. You can

control the access for individual callback methods using the “Access” option menu

in the Method Declarations dialog.

Pure Virtual Methods

You can set the “Pure virtual” toggle to declare the non-static member function as

pure virtual. For example, if you set this toggle for a callback method OnNew() in a

menubar class, Sun WorkShop Visual would declare the method as:



Chapter 8 Structured Code Generation and Reusable Definitions 261

class menubar_c: public xd_XmMenuBar_c {

...

public:

...

virtual void OnNew( Widget, XtPointer ) = 0;

};

Because the function is pure virtual, you do not have to provide an implementation

of menubar_c::OnNew() and menubar_c becomes an abstract class. That is, you cannot

create an instance of menubar_c but only use it as a base class for others.

By default, methods added by Sun WorkShop Visual are not pure virtual.

Deleting Callback Methods

When you remove a callback method from a widget you are only removing the use
of the method (the call to it). When you add a method callback in Sun WorkShop

Visual, a declaration of the method is automatically added for you. If you want to

remove this declaration as well you must remove it from the method declarations

list of the widget which is the enclosing class. See “Method Declarations” on

page 260 for more information on how to do this and for information on the

declaration added by Sun WorkShop Visual.

Changing the Structure and Invalidating Methods

When a callback method is added, the method is declared in the enclosing class, as

described above. If you change the structure of this widget (the enclosing class) so

that it is no longer a class, the method becomes invalid. To help you when this

happens, Sun WorkShop Visual displays the Invalidated Methods dialog, shown in

Figure 8-4.

This dialog is modal - you can not continue working on your design until it is

closed. It is only ever displayed when you change a widget’s structure in such a way

that method declarations are made invalid.



262 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 8-4 Invalidated Methods Dialog

The Widget list on the left shows all the widgets with methods which are invalidated

by changing the structure. When you select a widget any invalidated methods are

listed on the right. For each selected method, this dialog shows you the class in

which it is currently declared and suggests a new class for the declaration of your

method. The “Proposed Class” is always the nearest ancestor class. If there is no

other suitable class, this dialog serves as a warning that the method will become a

function.

Pressing “Declare” changes the declaration of the selected method to the “Proposed

Class”. Pressing “Declare All” changes each invalidated method to its respective

“Proposed Class”.

Method Preludes

You can add additional data or function members to a C++ class using the “Code

preludes” dialog. Select “Public methods”, “Protected methods”, or “Private

methods” and type your declarations into the text area (or into the code if you are

editing in place). C++ code preludes are generated into the class declaration, both in

the primary module and in the Externs file.



Chapter 8 Structured Code Generation and Reusable Definitions 263

Creating a Derived Class

To add a function to a class it is often better to write a new class derived from the

generated class. The logical gap between the subclass and generated base class can

be used to add members and provide implementations for virtual functions.

By default, Sun WorkShop Visual derives the name of a C++ class from the variable

name of the root widget and so the class for the widget menubar is menubar_c:

class menubar_c: public xd_XmMenuBar_c {

...

};

When Sun WorkShop Visual generates code to create an instance of the class, it uses

the same name:

menubar = new menubar_c;

You can change the default behavior so that Sun WorkShop Visual declares the

generated class under one name and creates the instance under another. For

example:

menubar = new mymenubar_c;

To make this change, use the “Instantiate as” field on the Code Generation page of

the Core resource panel.

Modifying the Base Classes

By default, Sun WorkShop Visual derives a generated class from a base class

appropriate to the type of the root widget. For example, a class with a MenuBar at

the root of its widget hierarchy is derived from xd_XmMenuBar_c. The name of the

base class can be changed in the Core resource panel.

The Sun WorkShop Visual distribution contains a sample implementation of a set of

base classes. These can be used as they stand or modified to add extra functionality

appropriate to a particular application area.

A Makefile is included to build the sample base classes. Sun WorkShop Visual makes

two assumptions about the base classes:

There is a data member _xd_rootwidget of type Widget.



264 Sun WorkShop Visual User’s Guide • May 2000

There is an accessor function xd_rootwidget() that returns the value of _xd_rootwidget
to be retrieved.

These assumptions, together with a few items of basic class restrictions, are

encapsulated in the class xd_base_c:

class xd_base_c

{

public:

xd_base_c() {_xd_rootwidget=NULL;}

Widget xd_rootwidget() const {return _xd_rootwidget;}

protected:

Widget _xd_rootwidget;

private:

void operator=(xd_base_c&); // No assignment

xd_base_c(xd_base_c&);      // No default copy

};

Sun WorkShop Visual places no other constraints on the base classes used. In other

words, any set of base classes can be used provided that they are derived from

xd_base_c (or another base class that satisfies Sun WorkShop Visual’s assumptions).

Note that actual parameters for the base class constructor can be supplied with the

class name. If parameters are supplied (if the base class string contains a '()’, the

class is forced to have a constructor and the parameter string is passed to the base

class. For example, setting the “Base class” string to mymenubar_c (“Hello World”)

for the widget menubar will cause Sun WorkShop Visual to generate:

class menubar_c : public mymenubar_c {

public:

menubar_c();

...

};

...

menubar_c::menubar_c () : mymenubar ( "Hello World" )

{

}

...

menubar = new menubar_c;



Chapter 8 Structured Code Generation and Reusable Definitions 265

Children Only Place Holders

The Children Only structure option lets you designate one widget (the Children Only

widget) as a container structure for another structure. Children Only widgets

provide context for their descendants in the hierarchy, but no code is generated for

them. Consider the following example:

FIGURE 8-5 Use of Children Only Structure

When you generate code from the design shown in Figure 8-5, Sun WorkShop Visual

produces code for the pulldown menu structure only. This feature lets you generate

fragments of the design that can be controlled by your application program.

Note – If you specify a widget as “children only”, code is only generated for

children which are structured or named. Therefore, if all you have underneath a

“children only” widget is unstructured and unnamed widgets, then all you will see

in the code is Widget declarations.

Pulldown Menu is Data Structure

Shell is Children Only



266 Sun WorkShop Visual User’s Guide • May 2000

Children Only Structure in Microsoft Windows

Mode

When you are in Microsoft Windows mode, you cannot make the child of a shell a

C++ class. To overcome this, so that you can create a hierarchy with a “children

only” shell, add a “dummy” container (a rowcolumn or form widget) beneath the

shell and then make the container beneath that a C++ class. This would also be

useful for creating definitions in Microsoft Windows mode, where the root widget

must be structured but the child of the shell cannot be.

Structured Code Generation and UIL

When generating UIL for a design that contains structures of some kind, the

approach is basically similar to that for C and C++. Independent hierarchies are

generated into the UIL file and separate creation functions are generated into the

code file. The creation function fetches the appropriate widgets from the UIL

hierarchy and fills in the data structure fields as appropriate.

Changing Declaration Scope

Widgets are normally declared locally in the enclosing creation function unless they

are structured in some way, or named. In this case they are declared in the enclosing

structure if there is one, or as global variables. This default behavior can be modified

by setting the storage class of a widget in the Core resource panel. Setting the

storage class to Local forces a widget that would otherwise be declared globally or

within a structure to be local to the creation function. Setting the storage class to

Global forces an unnamed widget or a named element of a structure to be global.

Global status is especially useful for widget-type resources and links as discussed in

“Unreachable Widgets” on page 267. The Static option is similar to Global but the

declaration is static to the module.

There is no way to force an unnamed widget into a data structure. Unnamed

children of a data structure widget are created and managed locally to the data

structure’s creation procedure.



Chapter 8 Structured Code Generation and Reusable Definitions 267

Unreachable Widgets

When you use the structured code generation in conjunction with widget-type

resources such as XmNdefaultButton for a BulletinBoard, you could specify designs

that reference widgets that are not in scope. These are considered unreachable

widgets. Sun WorkShop Visual attempts to detect these cases and warns you at code

generation time. Also, if you use unreachable widgets in conjunction with Children

Only structures or dynamic run-time creation of hierarchies, unexpected failures

may result.

FIGURE 8-6 Hierarchy with Unreachable Widgets

An unreachable widget is illustrated in Figure 8-6. b1 must be available to the Form’s

creation function so that it can be used as the default button argument. However,

since b1 is local to the button_box function, it is not in scope in the Form’s creation

function. Sun WorkShop Visual detects this situation and displays the following

warning at code generation time.

FIGURE 8-7 Unreachable Widget Error

Code is still generated but it may not compile or run as expected. The simplest

solution to this is to force the appropriate widget to be global by using the Storage

Class option.

b1 has Storage
class Local

button_box is
Function structure

form has default
button b1



268 Sun WorkShop Visual User’s Guide • May 2000

Definitions

Once a hierarchy of widgets has been encapsulated as a structure (either a C++ class

or a C structure), you can re-use it in other designs by turning it into a definition. A

definition is a reusable hierarchy of widgets which is added to the Sun WorkShop

Visual widget palette. Selecting a definition from the palette creates an instance of

the definition in the design. This instance can be further modified and in turn be

made into a definition.

Prerequisites

A widget hierarchy can become a definition provided that:

1. The root widget has a non-default variable name.

2. The root widget has been designated as a C++ class or a structure.

3. The root widget is not part of another definition.

4. The widget hierarchy does not contain a definition.

5. The widget hierarchy does not contain any global or static widgets.

Designating a Definition

Designating a definition requires that the design file containing the widget is saved

and the widget marked in it as being a definition. To mark the widget as a definition

use the Definition toggle in the Widget menu. Creating a definition freezes the

widgets within it. Their resource panels are disabled and you cannot add widgets or

change widget names. You can edit the widgets that make up a definition only by

temporarily removing the definition status. This should be done with caution to

avoid conflicts with designs that use the definition. For details, see “Modifying a

Definition” on page 272.

To make the definition available for use in other designs Sun WorkShop Visual needs

an external reference to it. This is provided by means of a definitions file which is

edited using the Edit Definitions dialog.



Chapter 8 Structured Code Generation and Reusable Definitions 269

Definition Shortcut

The “Define” button in the Palette Menu is a quick way of adding a new definition.

It designates the currently selected widget as a definition, saves the design and adds

the definition to the palette. The header filename for the definition is taken from the

type declarations filename in the code generation dialog. No icon is used.

The Definitions File

The definitions file is read by Sun WorkShop Visual to establish the set of definitions

which are to appear on the palette. The definitions filename is specified by setting

the definitionsFileName resource. The default value is $HOME/.xddefinitionsrc.

If you need to work on multiple projects, each of which uses a different set of

definitions, you can change the definitions file by setting the resource. For example:

visu.definitionsFileName:/home/project6/xddefs

The value of this resource can include environment variables:

visu.definitionsFileName:$PROJECT_ROOT/xddefs

To change to the new setting, exit and restart Sun WorkShop Visual.

Editing the Definitions File

To modify the definitions file use the Edit Definitions button in the Palette menu.

This displays the dialog shown in Figure 8-8.



270 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 8-8 Adding a Definition to the Palette

You can use this dialog to add a new definition, delete a definition, or edit an

existing definition. To add a definition, you must supply:

■ Definition – A definition name

■ Widget name – The variable name of the root widget of the definition

■ Save file – The name of a saved design file (.xd)

You can also specify:

■ Icon resource – A resource name which will be used to locate the pixmap file for

the definition. See “Specifying the Icon File” on page 703 for further details

■ Icon file – A file containing a bitmap or xpm pixmap to be used as the palette icon

if one is not found using the Icon resource



Chapter 8 Structured Code Generation and Reusable Definitions 271

■ Include file – The name of the header file that declares the corresponding structure

or class. This file is automatically #included in generated code when instances of

the definition are used, therefore you will have to make sure that the compiler can

locate it. It must be the same name as the externs file generated from the

definition

■ Resource file – The name of the resource file which contains values for the

definition. It is included in the generated resource file when instances of the

definition are used. It should correspond to the name specified when the resource

file was generated for the definition

■ Family – The family, or group, to which this definition belongs. This is only

relevant to the display of definitions on the widget palette. Definitions are

grouped together in families. One family is displayed at any given time. You can

change which family is displayed by selecting from the option menu above the

definitions on the widget palette. By default, definitions are assigned to the

“Default” family. You can specify any name for a family. You can also group any

number of definitions in the same family

■ Help information – A document and tag pair which can be used to provide help to

users. See “Online Help for Definitions” on page 276 for more details

■ MFC Offset – This field is only present when Sun WorkShop Visual is in Microsoft

Windows mode. In Microsoft Windows applications controls are given a unique

number by which they are identified. Sun WorkShop Visual attempts to generate

unique numbers and in most circumstances there will not be a problem. However

when adding widgets to an instance which has a very large number of controls

already, it is possible for the numbers to overlap. The MFC offset is added to the

id of a control which is being added to an instance. By increasing this number you

can make sure that the control’s id does not clash with any of the controls in the

definition

Attributes not set at creation time can be set later. For example, you can test and

debug a definition before designing its icon.

You can use the “Prime” button to fill in several of the fields for the currently

selected widget.

Base Directory

If a definition is specified with a relative file name (a name that does not start with /

), Sun WorkShop Visual adds the base directory to the front of the file name. If a base

directory is not specified, the directory that contains the definitions design file is

used.



272 Sun WorkShop Visual User’s Guide • May 2000

To specify a base directory, display the Edit Definitions dialog, click on “Base

Directory”, select a new directory and click on “Apply”. The new base directory is

saved in your definitions file and is immediately used in the current session of Sun

WorkShop Visual. The base directory cannot be changed if the current design

contains instances of existing definitions.

Modifying a Definition

Widgets in the definition are frozen. You cannot add or delete widgets, rename them,

set constraints on them in the layout editor, or reset resources. To modify a

definition, you must temporarily undefine it. When you need to modify a definition,

use the following steps:

1. Open the save file that contains the definition.

2. Select the root widget of the definition.

3. Pull down the Widget Menu and turn off the “Definition” toggle.

Turning off the toggle unfreezes the widgets in the definition so you can make any

necessary changes. After making your edits:

4. Select the root widget and set the “Definition” toggle on again.

5. Regenerate the code file and externs file.

6. Save the design.

Impact of Modifying a Definition

Changing a definition affects every design file that uses it. Each time you open a

design that uses a definition, Sun WorkShop Visual also opens the file that contains

the definition and merges information from the two files. If the definition has been

modified, Sun WorkShop Visual tries to reconcile the new definition with the design

that uses the old version of it.

If any changes cannot be reconciled, Sun WorkShop Visual displays an error message

and saves any irreconcilable parts of the design in temporary Sun WorkShop Visual

clipboard files. At this stage there are several ways to proceed:

■ Paste the clipboard file into your design and manually resolve its contents with

the new definition

■ Discard the clipboard file contents altogether



Chapter 8 Structured Code Generation and Reusable Definitions 273

■ Exit from Sun WorkShop Visual without saving and modify or revert the

definition so that it is compatible with the designs that use it

To minimize the risk of incompatibilities:

■ Avoid changing the names of widgets in the definition

■ Replace a widget in the definition only with a subclass widget of the same name.

For example, replacing a Label “foo” with a PushButton “foo” is normally safe

Instances

To create an instance of a definition simply click on the appropriate button in the

palette. The instance is shown with a colored background.

Definitions and instances must be in separate designs. Although you can see them in

the same design within Sun WorkShop Visual, the generated code does not compile

unless they are separate.

Definition Families

Definitions are grouped together on the widget palette according to their family. An

option menu above the definitions on the widget palette allows you to change which

family is currently displayed. See “Editing the Definitions File” on page 269 for

details on specifying a definition’s family.

Modifying and Extending an Instance

Creating an instance of a definition corresponds to creating an instance of the

structure (either a C structure or a C++ class). You can modify an instance after you

have created it provided that the modifications can be reflected in the generated

code. For example, you can set resources on widgets or add children to widgets only

if they are accessible (i.e. if they are named and, for C++, they have an appropriate

access mode). You cannot remove widgets or change their names. The root widget is

an exception. Because the root widget of the instance is always accessible (through

the member function xd_rootwidget()), it can always be modified.

Note – You cannot move a widget in the layout editor, or specify constraints for it,

unless it is accessible.



274 Sun WorkShop Visual User’s Guide • May 2000

Creating a Derived Structure

It is frequently useful to create a new structure that is derived from the definition. To

do this simply set the Structure option on the Code generation page of the Core

resources dialog. The derived structure can only be set to the same value as the

definition, e.g. it is not possible to derive a C++ class from a C structure.

Overriding a Definition Callback Method

Inherited methods from definitions can be overridden in the instance so that the

instance has different behavior from that specified in the definition.

Compiling Code Containing an Instance

To compile code generated from a design containing an instance of a definition, you

need to link in the definition code too. There are two ways to do this:

1. Link in a library containing the definition code

2. Compile the definition code and the instance code together

These are explained separately below.

Using a Library

To link a library containing the definition code in with the instance code, first

compile the code for the definition into a library. Usually, on UNIX and using C or

C++, this is done in the following way:

make <definitioncode>.o

ar r <definitionlib>.a <definitioncode>.o

You then need to edit your Makefile for the code containing the instance so that:

1. The compiler can locate the header file for the definition. Sun WorkShop Visual

automatically #includes this header file into the code generated for the instance.

2. The linker can locate the library containing the definition code. Simply add the

full pathname of the library to “EXTRALIBS”.



Chapter 8 Structured Code Generation and Reusable Definitions 275

Compiling the Definition with the Instance

Another way of compiling the instance of a definition involves generating the

definition, the instance of it and a corresponding Makefile into the same directory.

You can tell Sun WorkShop Visual to configure the Makefile so that the definition

and instance can both be compiled into the same application. The following

instructions show you how to do this.

1. Open the design containing the instance first.

2. Make sure you are generating a “Main program”

3. Set the “New” and “Template” toggles in the Makefile Options dialog.

4. Generate all the required files.

5. Open the definition design.

6. Unset the “Main Program” generate toggle.

7. Unset the “New” toggle in the Makefile options dialog, leaving the “Template”
toggle on.

8. In the Code Options dialog, set “Links” to None (you have already generated the
links functions, doing so twice would result in a linker error).

9. Generate the code, externs and Makefile (and resources if required).

10. Type:

make

at the command prompt.

Doing the above will give you one application containing your instance.

Definitions and Resource Files

Resource values for widgets that are components of definitions can be either

hard-coded or specified in resource files.



276 Sun WorkShop Visual User’s Guide • May 2000

Instances and Definition Resource Files

When you specify a resource file for a definition, Sun WorkShop Visual #includes that

file in the resource file for any design that contains an instance of the definition. The

Xlib mechanisms that read the resource file interpret this directive and use it to find

the resource file for the definition.

Online Help for Definitions

To record information about a definition and communicate with other developers

who are using it, you can provide online help for definitions. The online help is

accessed in the Sun WorkShop Visual interface by using the <Tab> and arrow keys to

get to the icon or button for the definition, then pressing the <osfHelp> key (usually

<F1>).

Help files are stored in subdirectories of the Sun WorkShop Visual help directory.

The help directory is determined by the helpDir resource. By default, it is

$VISUROOT/lib/locale/${LANG}/help

where VISUROOT is the path to the Sun WorkShop Visual installation root directory and
LANGis the name of your locale (default C).

Text Help Documents

Text help documents are in HTML format. The name of the file is formed by

concatenating the document name and marker name. These are joined using the

value of the visu.userHelpCatString resource. By default this resource is set to “.” The

file is then given a “.html” suffix. Sun WorkShop Visual looks for this file in the

UserDocs subdirectory of the Sun WorkShop Visual help directory.



277

CHAPTER 9

C++ Code Tutorial

Introduction

This chapter describes how to use Sun WorkShop Visual’s C++ code generation

facilities to add structure to application code and to create reusable widget

hierarchies that correspond to C++ classes. These reusable hierarchies, known as

definitions, appear on the widget palette and can be added to the hierarchy like any

other widget. Although this chapter primarily covers C++, most of the material

covered is also relevant to structured code generation in C with the exception of the

sections on callback methods. Where they diverge the differences are noted.

This chapter is a tutorial. It contains step-by-step instructions that show you how to:

■ Create a C++ class corresponding to a widget hierarchy

■ Use class methods to handle callbacks

■ Use derived classes and preludes to add extra members to the generated class

■ Modify or replace the base classes from which the Sun WorkShop Visual classes

are derived

■ Turn a class into a reusable definition and place the definition on the widget

palette

■ Modify the definition

■ Create and modify an instance of the definition

■ Use a derived class to extend an instance of the definition

■ Override callback methods

■ Generate and use resource files for definitions

For best results, read this chapter at your computer while running Sun WorkShop

Visual and do the steps as you read.



278 Sun WorkShop Visual User’s Guide • May 2000

Further information on the subject of structured code generation can be found in

Chapter 8 ”Structured Code Generation and Reusable Definitions“.

Creating a C++ Class

A C++ class in Sun WorkShop Visual corresponds to any widget with its children.

When you designate a widget as a C++ class, Sun WorkShop Visual generates a class

with that widget and its named descendant widgets as data members. This class can

be extended by adding data members and member functions and thus provides a

single location for properties that relate to the whole hierarchy.

Designating a C++ Class

Use the following steps to create a widget hierarchy containing a MenuBar widget

and designate the MenuBar as a C++ class. Note that this example would not be

compatible with Microsoft Windows code generation.

1. Create two new directories, libmenu and cmd which have the same parent
directory.

2. Change to the libmenu directory and start Sun WorkShop Visual.

3. Build the widget hierarchy shown in Figure 9-1.



Chapter 9 C++ Code Tutorial 279

FIGURE 9-1 MenuBar Widget Hierarchy

Only explicitly named widgets are created as members of the class; unnamed

widgets are local to the function that creates them. Naming the widgets makes them

directly accessible from member functions of the class. Since they are protected

members by default, they are also accessible from member functions of any derived

class.

4. Assign the widget names as shown in Figure 9-1.

5. Set the “Label” resource for each CascadeButton and PushButton to an
appropriate string: “File”, “Help”, “New” and “Exit”.

6. Use the Shell resource panel to designate the Shell widget as an Application
Shell. Assign the title “Demo” to the Shell widget.

This completes the example hierarchy. Now designate the menu bar as a C++ class:

7. Select the MenuBar widget in the widget hierarchy.

8. Display the “Code generation” page of the Core resource panel.

9. Select “C++/Java class” from the “Structure” option menu, as shown in Figure 9-2.



280 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-2 Designating a Widget as a Class

10. Click on “Apply”.

By default, Sun WorkShop Visual uses the variable name of the widget as the basis

for a default class name and “Instantiate as” name and so the widget named menubar
produces the class named menubar_c. The base class for menubar_c depends on the

widget class; here it is xd_XmMenuBar_c. These names can be changed, as described

later in this chapter.

Widget Member Access Control

The generated menubar_c class will contain the class widget (menubar) and all its

named descendent widgets as members. Although, by default, they are protected

members, you can change the access control on any widget by using the Core

resource panel. Use the following steps to make the Help menu a public member of

the class.

1. Select the CascadeButton named help in the widget hierarchy.

2. Display the “Code generation” page of the Core resource panel.

This is shown in Figure 9-3.

FIGURE 9-3 Member Access Control

3. Select “Public” from the “C++ Access” option menu, then click on “Apply”.

“C++ Access”
option menu



Chapter 9 C++ Code Tutorial 281

C++ Class Code Generation

The code generated for the class consists of a class declaration in the generated

Externs file and an implementation in the primary C++ code file. To generate these

files for the example:

1. Display the Generate dialog and make sure the “Language” option menu is set to
C++.

2. Type menubar.cpp into the text box labelled “Code” and set the “Generate” toggle.

3. Type menubar.h into the text box labelled “Externs” and set the
“Generate” toggle.

4. Type menubar.cpp into the text box labelled “Main Program” and set the
“Generate” toggle.

5. Type Makefile into the “Makefile” field and set the “Generate” toggle.

6. Click on the “Options” button next to the “Makefile” field.

This displays the Makefile options dialog.

7. In the Makefile Options dialog set both “New makefile” and “Makefile template”
toggles on. Press the “Ok” button.

8. Press the “Options” button next to the “Code” field.

This produces the Code Options dialog, as shown in Figure 9-4.

FIGURE 9-4 Code Options Dialog

9. Type menubar.h into the text box labelled “Include Header File”, as shown in
Figure 9-4 and set the toggle. Press the “Ok” button.

10. Press the “Options” button at the bottom of the Generate dialog and set the
options as shown in Figure 9-5. Ensure that the String resources are generated into
the Code. Press the “Ok” button.

non-default
settings



282 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-5 Code Generation Options for the menubar_c class

11. Press “Generate” in the Generate dialog.

The C++ externs file, menubar.h, contains the declaration for the class:

...

class menubar_c: public xd_XmMenuBar_c {

public:

virtual void create (Widget parent, char *widget_name =

NULL);

Widget help;

protected:

Widget menubar;

Widget file;

Widget filemenu;

Widget fm_new;

Widget fm_exit;

};

typedef menubar_c *menubar_p;

...

The new class for this MenuBar is based on an existing class, xd_XmMenuBar_c. The

MenuBar and its named widget descendants are protected members, except for the

widget help, which you designated as public.

 non-default
settings



Chapter 9 C++ Code Tutorial 283

The primary C++ file, menubar.cpp, contains the creation function for the new class.

This function creates the MenuBar widget and its descendants. Note that this is not
done in the constructor for menubar_c. This gives you the option of creating the

widgets later than the class instantiation.

...

#include “menubar.h”

...

void menubar_c::create (Widget parent, char *widget_name)

{

Widget children[2];/* Children to manage */

Arg al[64];/* Arg List */

register int ac = 0;/* Arg Count */

XmString xmstrings[16];/* temporary storage for

XmStrings */

if ( !widget_name )

widget_name = "menubar";

menubar = XmCreateMenuBar ( parent, widget_name, al,

ac);

_xd_rootwidget = menubar;

xmstrings[0] = XmStringCreateLtoR("File",

(XmStringCharSet)XmFONTLIST_DEFAULT_TAG);

XtSetArg(al[ac], XmNlabelString, xmstrings[0]); ac++;

file = XmCreateCascadeButton ( menubar, "file", al,

ac);

ac = 0;

...

children[ac++] = file;

children[ac++] = help;

XtManageChildren(children, ac);

ac = 0;

}

The menubar.cpp file also includes a creation function for the complete hierarchy. This

function creates any widgets not in the class: in this case, just the Shell. It then

creates an instance of the menubar_c class and calls menubar_c::create() to create the

widget members of the class:

void create_shell (Display *display, char *app_name, int app_argc,
char **app_argv)



284 Sun WorkShop Visual User’s Guide • May 2000

{

Widget children[1]; /* Children to manage */

Arg al[64]; /* Arg List */

register int ac = 0; /* Arg Count */

XtSetArg(al[ac], XmNallowShellResize, TRUE); ac++;

XtSetArg(al[ac], XmNtitle, "Demo"); ac++;

XtSetArg(al[ac], XmNargc, app_argc); ac++;

XtSetArg(al[ac], XmNargv, app_argv); ac++;

shell = XtAppCreateShell ( app_name, "XApplication",

applicationShellWidgetClass, display, al, ac );

ac = 0;

menubar = new menubar_c;

menubar->create ( shell, "menubar" );

XtManageChild ( menubar->xd_rootwidget());

}

Compiling the Generated C++ Code

Since you set the “Main program” toggle when you generated code, menubar.cpp also

contains a main program and so the application can be built as it stands.

The C++ code generated by Sun WorkShop Visual is straightforward to build. The

only special feature is that the base classes from which the generated classes are

derived, such as xd_XmMenuBar_c, must be available. The $VISUROOT/src/xdclass/lib
directory contains source for the default base classes. $VISUROOT/src/xdclass/h
contains header files.

If the libxdclass.a library has not yet been built, use the following steps to build it

using the supplied Makefile:

1. Go to the src/xdclass/lib directory in your Sun WorkShop Visual installation.

2. Set VISUROOT to the path of the root of your Sun WorkShop Visual installation.

3. Type: make

When this completes, the libxdclass.a library is ready to use.

You are now ready to build the program using the generated Makefile.

Note – Because the generated Makefile contains references to $VISUROOT, you

must set this environment variable before building the program.



Chapter 9 C++ Code Tutorial 285

4. To build the menubar program, type: make

5. To run the application, type: menubar

The application looks and behaves exactly as it would if there were no classes in it.

Callback Methods

So far, this example has shown how to designate a widget hierarchy as a class and

the form of the code that is generated. At this stage, it does not exploit the fact that

the widget hierarchy is a class.

Note – This section, and the following three sections, are specific to C++

programming. When using C structures the conventional callback mechanism

applies. If you are not doing C++ programming you might like to skip to “Creating

a Definition” on page 297.

Callbacks and Member Functions

Sun WorkShop Visual provides a simple mechanism that allows you to specify class

member functions as callback functions. In Sun WorkShop Visual these are known as

callback methods. The technique used is discussed fully in “Callback Methods” on

page 259.

Specifying a Callback Method

The callbacks dialog lets you specify the member functions that are invoked in

response to events. When you specify a callback method for a particular widget, the

method which is invoked is that which belongs to the most immediate class-

designated ancestor of the widget (perhaps the widget itself). For example, callback

methods on the menu buttons in the MenuBar example invoke member functions of

the menubar_c class.

Use the following steps to declare a class method on the fm_new button:

1. Select the fm_new button.

2. Invoke the Callbacks dialog by selecting “Callbacks” from the “Widget” menu or
pressing the Callbacks button on the toolbar.



286 Sun WorkShop Visual User’s Guide • May 2000

3. Select “Activate” from the list of callback lists.

4. In the “Method name:” field, type OnNew

5. Click on “Add”.

This adds OnNew to the list of local methods, as shown in Figure 9-6:

FIGURE 9-6 Specifying a Callback Method

This designates the member function menubar_c::OnNew() as the method that

handles the Activate callback of the button fm_new. When you do this, Sun

WorkShop Visual also declares the method on the parent widget menubar if you

haven’t already declared it.

Use a similar procedure to enter a callback method on the fm_exit button:

6. Select the fm_exit button in the widget hierarchy.

7. Select “Activate” from the Callbacks dialog.

8. In the “Method name:” field, type: OnExit

9. Click on “Add”.

10. Close the Callbacks dialog

The class now has two callback methods, menubar_c::OnNew() and

menubar_c::OnExit().



Chapter 9 C++ Code Tutorial 287

Generating Code for Callback Methods

Using a callback method from within a class causes Sun WorkShop Visual to

generate declarations for two additional member functions, a complete

implementation for one of them and a stub for the other.

1. Display the Generate dialog and make sure the “Language” option menu is set to
C++.

2. Type menubarS.cpp into the text box labelled “Stubs” and set the “Generate”
toggle.

3. Display the Makefile Options dialog.

4. Set the “New makefile” toggle off and the “Makefile template” toggle on. Press
the “Ok” button.

5. Set the Makefile “Generate” toggle in the Generate dialog.

6. Press the “Generate” button.

Look at the class declaration in menubar.h. Two new member functions have been

added for each callback method:

class menubar_c: public xd_XmMenuBar_c {

public:

...

static void OnExit( Widget, XtPointer, XtPointer );

virtual void OnExit( Widget, XtPointer );

static void OnNew( Widget, XtPointer, XtPointer );

virtual void OnNew( Widget, XtPointer );

};

Note that only the static versions of these functions have the argument list expected

by an Xt callback. Therefore, when Xt invokes the callback method

menubar_c::OnNew(), the C++ compiler selects the static version based on the

argument list.

Note the following line in the creation function in menubar.cpp:

XtAddCallback (fm_new, XmNactivateCallback, OnNew, (XtPointer)

this);

The code for the static function is also generated into menubar.cpp. This function

simply invokes the non-static virtual member OnNew(Widget, XtPointer), using the

instance pointer passed in as client data:

void menubar_c::OnNew( Widget widget, XtPointer client_data,
XtPointer call_data )



288 Sun WorkShop Visual User’s Guide • May 2000

{

menubar_p instance = (menubar_p) client_data;

instance->OnNew ( widget, call_data );

}

You provide the code for the non-static virtual member function OnNew(Widget,
XtPointer). A stub for this function is generated to menubarS.cpp:

void

menubar_c::OnNew (Widget w, XtPointer xt_call_data )

{

XmAnyCallbackStruct *call_data = (XmAnyCallbackStruct*)

xt_call_data;

}

Sun WorkShop Visual generates code according to this pattern for all the callback

methods that are used in a hierarchy. In this example, similar code is generated for

OnExit().

OnNew() and OnExit() are invoked from the fm_new and fm_exit PushButtons but the

functions are methods of the menubar_c class. This means that all the callback

functions that define the behavior of widgets in the class are kept in one place. It

also means that all callback functions have access to the instance data for the class

and can use it to share information.

Implementing a Callback Method

The application behavior is added by implementing the callback methods. You can

edit the callback method using Sun WorkShop Visual’s editing mechanism. Use the

following steps to implement the OnExit() method:

1. Select the fm_exit button.

2. Display the Callbacks dialog and select the OnExit() callback method.

3. Press the “Edit code” button.

The file menubarS.cpp is opened ready for you to add your code to the OnExit

method. See “Editing Callback Code from Within Sun WorkShop Visual” on

page 226 for more details on callback editing.

4. Complete the implementation of menubar_c::OnExit() as:

void

menubar_c::OnExit (Widget w, XtPointer xt_call_data )

{



Chapter 9 C++ Code Tutorial 289

XmAnyCallbackStruct *call_data = (XmAnyCallbackStruct*)

xt_call_data;

exit(0);

}

5. Close the Callbacks dialog.

6. To build the menubar program, type: make

7. To run the application, type: menubar

8. Select the “Exit” button from the File Menu.

Verify that the program exits.

Editing Methods Attributes

Callback methods have two attributes: their access level and whether they are

designated pure virtual. The access level determines whether the method is

accessible from derived classes and external code. A method can be designated pure

virtual to indicate that it has no implementation in the base class, which must be

sub-classed to provide an implementation. See “C++ Classes” on page 254 for

further details.

The attributes are set initially to default values when the callback method is first

specified. This can be done on any widget that has a class ancestor or is a class itself.

However, they can only be changed on the root widget for the class. For example,

the OnNew() callback method of the class menubar_c can only be edited via the

menubar widget itself.

1. Select the menubar widget in the widget hierarchy.

2. Select “Method declarations” from the “Widget” menu to display the method
declarations dialog.

This shows a list of the callback methods declared for the class (rather than a list of

the methods invoked for any particular event). You can use this panel to edit the

callback methods and to declare methods that are not invoked by events in this class

but which may be invoked in a derived class.

3. Select the method OnNew() and set the “Pure virtual” toggle.

4. Click on the “Add/Update” button to apply the change. The result is shown in
Figure 9-7.



290 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-7 Editing a Callback Method

5. Generate the code again.

You do not have to provide an implementation for a pure virtual member function

although it is legal to do so. Therefore:

6. Copy the stubs file, menubarS.cpp, to temp.cpp.

7. Edit the stubs file, menubarS.cpp, to remove the stub for OnNew(), i.e. the code
between the curly braces.

8. Build the menubar program, as before.

The C++ compiler produces an error message like:

"menubar.cpp" line 100: Error: Cannot create a variable for abstract
class menubar_c

The error occurs because the menubar_c class contains a pure virtual function and

therefore cannot be instantiated. It is now only useful as a base class. Later in this

chapter you will use this class as a basis for a derived class.

9. Copy the file temp.cpp to menubarS.cpp and then remove temp.cpp.



Chapter 9 C++ Code Tutorial 291

Adding Class Members

This section and the following one present two techniques for adding members to

Sun WorkShop Visual’s generated classes. The two techniques are:

■ Using Sun WorkShop Visual’s preludes mechanism

■ Generating a derived class

Note – This section is specific to C++ programming.

Adding Class Members as a Prelude

The easiest way to add a small number of members is to use the preludes

mechanism. This lets you type fragments of code in Sun WorkShop Visual and have

them passed into the generated code.

Note – It is possible to type preludes directly into the generated code using Sun

WorkShop Visual’s edit mechanism. See “Customizing the Generated Files:

Preludes” on page 239 for details on doing this.

For this example, we shall add the prelude in the Preludes dialog before generating

the code.

1. Select the menubar widget in the widget hierarchy.

2. Pull down the Widget Menu and select “Code preludes”.

This displays the dialog shown in Figure 9-8.



292 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-8 Code Preludes Dialog

3. Unset the “Edit in place” toggle.

Doing this expands the Preludes dialog so that an editing area appears on the right.

This is where you will add the prelude.

4. Select the “Protected methods” toggle in the text labelled “Method Preludes”.
(You may have to scroll down to find this.)

5. In the text area on the right, press the TAB key and then type:

int modified;

and press Return.

6. Click on “Apply” and then “Close”.

To see the result of this operation:

7. Generate the code again.

8. Examine menubar.h and verify that the class menubar_c now has the additional
member.



Chapter 9 C++ Code Tutorial 293

Creating a Derived Class

The Code Preludes dialog is designed for making small insertions to the generated

code. To add substantial functionality, it is often better to write a new class derived

from the generated class. The logical gap between the two classes can be used to add

members and provide implementations for virtual functions.

Note – This section is specific to C++ programming.

By default, Sun WorkShop Visual derives the name of a C++ class from the variable

name of the root widget and so the class for the widget menubar is menubar_c:

class menubar_c: public xd_XmMenuBar_c {

...

};

When Sun WorkShop Visual generates code to create an instance of the class, it uses

the same name:

menubar = new menubar_c;

You can change the default behavior so that Sun WorkShop Visual declares the

generated class under one name and creates the instance under another, for example:

menubar = new mymenubar_c;

To make this change, use the “Instantiate as” field on the Code Generation page of

the Core resource panel:

1. Select the menubar widget in the widget hierarchy.

2. Display the “Code generation” page of the Core resource panel.

3. Set the “Instantiate as” name to mymenubar_c, as shown in Figure 9-9.



294 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-9 Changing “Instantiate as” Name

4. Click on “Apply” and then “Close”.

5. Generate the code again.

The original class, menubar_c, is declared exactly as before. However, when Sun

WorkShop Visual generates code to create an instance of the class, it uses the

“Instantiate as” name:

menubar = new mymenubar_c;

Writing the Derived Class

Sun WorkShop Visual doesn’t generate code for the mymenubar_c class. You must

provide a header file which declares the class and code to implement any methods it

contains. There are no limitations on the new class except that it must be derived

from menubar_c. For this example use the sample code given below.

1. In a new file named mymenubar.h, write the class declaration for the derived class
mymenubar_c.

Use the following code:

#ifndef _mymenubar_h

#define _mymenubar_h

#include <menubar.h>

class mymenubar_c: public menubar_c {

public:

// Constructor



Chapter 9 C++ Code Tutorial 295

mymenubar_c();

 //Provide implementation for inherited pure virtual

void OnNew(Widget, XtPointer);

};

#endif

Because the new class is derived from menubar_c, it inherits all widget members and

member functions you declared for that class in Sun WorkShop Visual. You can add

any number of new members. Here we add a constructor function and an

implementation of the OnNew() virtual callback method.

2. In a new file named mymenubar.cpp write the class implementation for the
derived class mymenubar_c.

Use the following code:

#include <mymenubar.h>

mymenubar_c::mymenubar_c()

{

modified = TRUE;

}

void

mymenubar_c::OnNew(Widget, XtPointer)

{

 // Reset modified flag

if (modified)

modified = FALSE;

}

This completes all the code for the class. Note that the generated C++ code module

mymenubar.cpp needs to include the header file for the derived class mymenubar_c.

This is done using the “Include Header File” in the Generate dialog.

3. Display the Generate dialog.

4. Press the “Options” button next to the “Code” field.

This displays the Code Options dialog.

5. Set the “Include Header File” field to mymenubar.h, set the associated toggle and
click on “Ok”.

The Code Options dialog containing the new file name is shown in Figure 9-10:



296 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-10 Changing the Declarations Header

6. Generate the code.

7. Add the following lines to the Makefile before the line that reads
“XD_ALL_C_SOURCES=...”.

XD_CC_SOURCES=mymenubar.cpp

XD_CC_OBJECTS=mymenubar.o

8. Add the following lines at the end of the Makefile:

mymenubar.o:mymenubar.cpp

$(CCC) $(CCFLAGS) $(CPPFLAGS) -c mymenubar.cpp

Note – The indentation of the compiler instruction line is deliberate, you must have

this too.

9. Save the Makefile.

10. Build the menubar program, as before.

The application now uses the class mymenubar_c and invokes its OnNew() method

when the “New” button in the “File” menu is pressed. To check this, you can extend

mymenubar_c::OnNew() to print out a message.

You should note that actual parameters for the constructor can be supplied with the

class name. For example, setting the “Instantiate as” string to mymenubar_c (“Hello

World”) will cause Sun WorkShop Visual to generate:

menubar = new mymenubar_c ( "Hello World" );



Chapter 9 C++ Code Tutorial 297

Creating a Definition

Once a hierarchy of widgets has been encapsulated as a class, you can re-use it in

other designs by turning it into a definition. A definition is a reusable group of

widgets which can be added to the Sun WorkShop Visual widget palette. Selecting a

definition from the palette creates an instance of that structure in the design. When

Sun WorkShop Visual generates code containing an instance, the definition’s create

function is called to create the widgets.

Prerequisites

A hierarchy of widgets can become a definition provided that:

■ The root widget has a variable name

■ The root widget has been designated as a C++ class or a C Data Structure

■ The root widget is not part of another definition

■ The widget hierarchy does not contain a definition

■ The widget hierarchy does not contain any global or static widgets

Designating a Definition

Use the following steps to designate the MenuBar class as a definition:

1. Select the menubar widget in the hierarchy.

2. Pull down the Widget Menu and set the “Definition” toggle.

The menubar widget and its descendants are enclosed in a colored box to indicate

that they constitute a definition.

3. Save the design as menubar.xd.

Note – You must save the design containing the definition before adding it to the

palette. Sun WorkShop Visual uses the saved design file each time the definition is

used. Although you can have multiple definitions in a single design file, it is easier

to keep track if each file contains only one definition.



298 Sun WorkShop Visual User’s Guide • May 2000

Creating a definition freezes the widgets within it. Their resource panels are disabled

and you cannot add widgets or change widget names. You can edit the widgets that

make up a definition only by temporarily removing the definition. This should be

done with caution to avoid conflicts with designs that use the definition. For details,

see “Modifying a Definition” on page 272.

Adding a Definition to the Palette

This section explains how to add the new definition to the widget palette.

1. Select the menubar widget in the design hierarchy.

2. Choose “Edit definitions” from the Palette Menu.

This displays the dialog shown in Figure 9-11.

FIGURE 9-11 Adding a Definition to the Palette

Required



Chapter 9 C++ Code Tutorial 299

You can use this dialog to add a definition (if it has been “marked” as one), delete a

definition or edit an existing definition. To add a definition, you must supply:

■ Definition – A definition name

■ Widget name – The name of the root widget of the definition

■ Save file – The name of a saved design file (.xd)

Other attributes are described in “Designating a Definition” on page 268.

Attributes not set at creation time can be set later. For example, you can test and

debug a definition before designing its icon.

3. Press the “Prime” button.

This fills in the “Save file”, “Definition”, “Widget Name” and “Include file” fields.

Note that the “Instantiate as” name you specified for the MenuBar applies each time

the definition is used.

4. Enter menubar.xpm in the “Icon file” field.

The icon is optional. If you do not specify an icon, Sun WorkShop Visual uses the

name of the root widget as a label in a PushButton on the widget palette. If you

specify an icon file and the icon file does not exist, the Sun WorkShop Visual icon of

the widget at the root of the definition is displayed on the palette,

You can use the Sun WorkShop Visual pixmap editor to design an icon for your

definition. It should use an area of color “none” which is used to show the selection

in the widget hierarchy. See “Using the Pixmap Editor” on page 161 for details on

the pixmap editor and “Palette Icons” on page 703 for details on creating new

widget palette icons.

Note that you can also specify the icon via the Sun WorkShop Visual resource file. To

do this, specify the name of the Sun WorkShop Visual resource in the “Icon

resource” field and set that resource to a file name in the Sun WorkShop Visual

resource file.

The other fields in the Edit Definition dialog are discussed later in this chapter.

5. Click on “Update”.

The icon you specified appears on the Sun WorkShop Visual widget palette. It

becomes active whenever you select a widget that can have a MenuBar child.



300 Sun WorkShop Visual User’s Guide • May 2000

Generating Code for a Definition

The code for a definition has two parts: the declaration in the public header file (the

externs file) and the code module containing the implementation. The code module

does not have to be public in order to compile applications containing instances; it

can be made available in compiled form in a library.

Use the steps in this section to generate only the code for the definition, i.e. without

the Shell or other widgets and without a main program.

To mark the Shell widget so that no code is generated for it:

1. Select the shell widget in the hierarchy.

2. Display the Core resource panel and select the “Code generation” page.

3. Set the “Structure” option menu to “Children only” and then click on “Apply”
followed by “Close”.

After you do this, Sun WorkShop Visual ignores the Shell and any of the Shell’s

children that are not designated as C++ classes, functions, or data structures. Code is

generated only for the MenuBar and its descendants.

You must also suppress generation of the main program:

4. Open the Generate dialog.

5. Unset the “Generate” toggle for “Main program”.

6. Ensure that the “Generate” toggles for “Code”, “Stubs” and “Externs” are on and
that menubar.h is specified as the Externs file name.

7. Unset the “Generate” toggle for “Makefile”.

8. Press “Generate”.

9. Save the design file.

This completes the process needed to create a definition and the code for the

corresponding class. It can now be used in an application. The normal way to make

the implementation available for reuse is as a library:

10. Use the following commands to create the library:

make menubar.o

make menubarS.o

make mymenubar.o

ar r libmenu.a *.o



Chapter 9 C++ Code Tutorial 301

Creating an Instance

A definition can be used in the same way as a widget on the palette. Clicking on the

palette button creates an instance of the definition. Sun WorkShop Visual copies the

definition’s hierarchy into the tree where it can be modified and extended. In the

generated code, Sun WorkShop Visual will include a call to the definition’s creation

function to create the instance.

Use the following steps to build a new design using the menubar definition.

1. Select “New” from the File menu.

2. Click on the following palette icons: Shell, MainWindow and your new menubar
definition.

Your new definition is appended to the widget palette and has the icon you specified

in Step 4 on page 299.

This produces the widget hierarchy shown in Figure 9-12.

FIGURE 9-12 Hierarchy Containing an Instance of a Definition



302 Sun WorkShop Visual User’s Guide • May 2000

The components of the instance are enclosed in a colored box to indicate that they

form a single entity. All widgets except the root widget are given the same names

they had in the original definition. The root widget is assigned a default name of the

form <widgetclass><n>. For reliable code, assign it an explicit name.

3. Name the root widget of the instance, the Shell and the MainWindow as shown in
Figure 9-12.

4. Use the Shell resource panel to designate the Shell widget as an ApplicationShell.

Modifying and Extending an Instance

You can modify an instance after you have created it provided that the modifications

can be done in the generated code. For example, you can set resources on widgets or

add children to widgets only if they have public access. You cannot remove widgets

or change their names. The root widget is an exception. Because the root widget of

the instance can be accessed through the member function xd_rootwidget(), it can

always be modified.

In our example, all components of the definition are protected except for the help
button. This means only the help button’s label can be changed. Similarly, it is

possible to add extra widgets under the help button but not under the filemenu menu.

1. Select the help widget in the widget hierarchy.

2. Click on the Menu icon in the widget palette and then on the PushButton icon.

This adds a single item menu under the help CascadeButton.

3. Set the widget names as shown in Figure 9-13.



Chapter 9 C++ Code Tutorial 303

FIGURE 9-13 Extending an Instance of a Definition

4. Set the label for the hm_about button to “About...”.

Currently, you cannot modify other widgets in the definition. For example, you

cannot add buttons to filemenu. However, if you create a subclass from a definition,

you can modify protected as well as public widgets. This technique is discussed in

the next section.

Creating a Derived Class

Because most members of the class corresponding to the definition are protected,

they cannot be accessed in an instance of the definition. There are two ways to

address this:

■ modify the original definition to make the members public

■ designate the instance as a class (Because the instance class is derived from the

definition class, it has access to the protected members)

The second approach maintains better encapsulation and lets you exploit the

callback methods.

1. Select the MenuBar widget, appmenu, in the widget hierarchy.



304 Sun WorkShop Visual User’s Guide • May 2000

2. Display the “Code generation” page of the Core resource panel.

3. Select “C++ Class” from the “Structure” option menu and then click on “Apply”.
Close the resource panel.

The MenuBar widget is designated as a class, as in Figure 9-14. This class is derived

from the class that corresponds to the definition.

FIGURE 9-14 Creating a Derived Class from a Definition

Because member functions of the class can access the protected members of

mymenubar_c, extra widgets can now be added anywhere in the hierarchy.

4. Select the filemenu widget in the widget hierarchy.

5. Add two extra PushButtons to the menu and label them “Open...” and “Save...”.

6. Set the variable names of the new buttons to fm_open and fm_save.

7. Use mouse button 1 to drag the new buttons into the positions shown in Figure
9-15.



Chapter 9 C++ Code Tutorial 305

FIGURE 9-15 Extending a Derived Class

The order of a definition cannot be changed. This means that, while you can move

new widgets into the definition, you cannot move widgets which are part of the

definition.

8. Select fm_open in the hierarchy.

9. Display the Callbacks dialog either by selecting “Callbacks” from the “Widget”
menu or pressing the Callbacks button on the toolbar.

10. Select “Activate” from the list of callback lists.

11. In the “Method name:” field, type: OnOpen

12. Click on “Add”.

13. Repeat the above steps to set the Activate callback methods for fm_save to
OnSave.

14. Close the Callbacks dialog.

This technique is also valid for C structures. Sun WorkShop Visual will generate a

new structure which is an extension of the definition’s structure.



306 Sun WorkShop Visual User’s Guide • May 2000

Overriding a Callback Method

The class appmenu_c, which corresponds to the MenuBar, has four callback methods:

OnNew() and OnExit(), which are inherited, and OnOpen() and OnSave() which are

defined by appmenu_c itself. However, the inherited methods can be overridden so

that the derived class has different behavior from the base class.

Note – This section is specific to C++ code.

1. Select the widget appmenu in the widget hierarchy.

2. Select “Method declarations” from the “Widget” menu.

FIGURE 9-16 Method Declarations

Note that OnSave() and OnOpen() are local to appmenu_c, whereas OnExit() and

OnNew() are inherited from menubar_c. Inherited methods are shown in square

brackets.

3. In the text field, type: OnExit

4. Make sure the “Pure virtual” toggle button is unset and then press “Add/Update”.

OnExit() is added to the list of local methods. It can now be overridden.



Chapter 9 C++ Code Tutorial 307

Implementing Overridden Methods

Overridden methods are implemented by completing the stubs generated by Sun

WorkShop Visual:

1. Display the Generate dialog and make sure the “Language” option menu is set to
C++.

2. Replace the text in the Directory field by the absolute path of your cmd directory,
e.g. /u/mgs/TUTORIAL/cmd.

This specifies the name of the directory into which the code will be generated.

3. Type: app.cpp into the text box labelled “Code” and set the “Generate” toggle.

4. Type: appS.cpp into the text box labelled “Stubs” and set the “Generate” toggle.

5. Type: app.h into the text box labelled “Externs” and set the
“Generate” toggle.

6. Type: app.cpp into the text box labelled “Main Program” and set the “Generate”
toggle.

7. Type: Makefile into the “Makefile” field and set the “Generate” toggle.

8. In the Makefile Options dialog set both “New makefile” and “Makefile template”
toggles on and press the “Ok” button.

9. Press the “Options” button next to the “Code” field.

10. Type: app.h into the text box labelled “Include Header File”, set the toggle and
press the “Ok” button.

11. Press the “Options” button at the bottom of the Generate dialog and set the
options as shown in Figure 9-17.



308 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 9-17 Code Generation for the Application

12. “Ok” the dialog.

13. Press “Generate” and close the Generate dialog.

14. Complete the stubs file, appS.cpp, as follows:

...

#include <iostream.h>

void

appmenu_c::OnExit (Widget w, XtPointer xt_call_data)

{

...

if (modified)

XBell(XtDisplay(w), 100);

else

exit(0);

}

void

appmenu_c::OnSave (Widget, XtPointer xt_call_data)

{

...

cout << “Saving...” << endl;

modified = FALSE;

}

void

 non-default
settings



Chapter 9 C++ Code Tutorial 309

appmenu_c::OnOpen (Widget, XtPointer xt_call_data)

{

...

cout << “Opening...” << endl;

modified = TRUE;

}

This implementation of OnExit() overrides the implementation in the definition. The

function XBell() rings the bell on the X server. OnSave() and OnOpen() are stub

functions that print appropriate messages and update the modified flag.

The functionality of the application’s menubar is now:

■ The modified flag is initially set TRUE in the constructor for the class. It is set

TRUE by “Open” and set FALSE by “New” and “Save”

■ “Exit” terminates the application unless the modified flag is set, in which case it

rings the bell

■ “Open” and “Save” produce informative messages on stdout

15. Edit the Makefile and make the following changes:

MOTIFLIB=-lmenu -lXpm -lXm -lXt -lX11

CFLAGS=-I. ${XINCLUDES} -I${XPMDIR} -I../libmenu \

-L../libmenu

16. Save the Makefile.

17. Build the program by typing make

18. Run the application and verify that the menu behaves as expected.

19. Save the design as app.xd in the cmd directory.

Definitions and Resource Files

Resource values for widgets that are components of definitions can be either

hard-coded or specified in resource files. When you specify a resource file for a

definition, Sun WorkShop Visual includes that file in the resource file for any design

containing an instance of the definition.

So far in this example, all resources have been hard-coded. Use the following steps

to regenerate the menubar definition with string resources in a resource file:



310 Sun WorkShop Visual User’s Guide • May 2000

1. Open the design file menubar.xd from the libmenu directory.

2. Display the Generate dialog and make sure the “Language” option menu is set to
C++ and the Directory is set to the libmenu directory.

3. Display the Code Options dialog from the Generate dialog and set the “Strings”
option menu to “Resource file”. Press the “Ok” button.

This removes hard-coded string resources such as the labels on buttons.

Now generate a resource file containing the string resources:

4. In the Generate dialog, type menubar.res into the “X Resources” field and set the
corresponding “Generate” toggle.

5. Check that the “Generate” toggle for the “Code” field is on and the “Generate”
toggles for the “Main program” and “Makefile” are off.

6. Press “Generate”.

7. Save the design.

8. In the libmenu directory, type: make clean

This removes the old object files.

9. Repeat Step 10 on page 300 to rebuild the library.

Editing the Definition

In the preceding steps, you changed the generated code for the definition so that

string resources are kept in a resource file. Now edit the menubar definition and

specify a resource file:

1. Select “Edit definitions” from the Palette Menu.

2. On the Edit Definitions dialog, select menubar from the scrolled list of definitions.

3. In the “Resource file” field, type:

../libmenu/menubar.res

4. Click on “Update”.

This step saves the change to the definition in your definitions file ($HOME/
.xddefinitionsrc).

Note – You can use the Edit Definition dialog to specify a resource file at any time.

The original menubar.xd design does not have to be loaded to perform this step.



Chapter 9 C++ Code Tutorial 311

Instances and Definition Resource Files

When you specify a resource file for a definition, Sun WorkShop Visual #includes that

file in the resource file for any design that contains an instance of the definition. The

Xlib mechanisms that read the resource file interpret this directive and use it to find

the resource file for the definition. Use the following steps to try this in the app.xd
application.

1. Open the design file app.xd from the cmd directory.

2. Display the Generate dialog and make sure the “Language” option menu is set to
C++.

3. Type: app.res into the “X Resources” field and set the corresponding “Generate”
toggle.

4. Set the “Generate” toggles for “Code” and “Main Program”.

5. Check that the “Generate” toggles for “Stubs”, “Externs” and “Makefile” are off.

6. Display the Code Options dialog from the Generate dialog and set the “Strings”
option menu to “Resource file”. Press the “Ok” button.

7. Press “Generate”.

The X resource file for the application contains the following directive:

! Generated by Sun WorkShop Visual

#include “../libmenu/menubar.res”

Xlib interprets this #include directive as giving a pathname relative to the directory

containing the application resource file. For details, see the Xlib documentation.

8. Build the program by typing: make

9. Set the environment variable XENVIRONMENT to the name of the resource file.

The exact syntax for doing this will differ depending on which shell you are using.

For a C shell, enter:

setenv XENVIRONMENT app.res

For a Bourne shell, enter:

XENVIRONMENT=app.res; export XENVIRONMENT

Note – There are other ways to get X to recognize your X resource file. To find out

what they are, you will need to look them up in a book about the X Window System.

See Appendix E, “Further Reading” for the names of some books you may wish to try.

10. Run the application and verify that the menu behaves as expected.

11. Save the design and exit from Sun WorkShop Visual.



312 Sun WorkShop Visual User’s Guide • May 2000



313

CHAPTER 10

Designing for Java

Introduction

This chapter describes the way Sun WorkShop Visual can generate Java code with

the option of using the Swing component set, from any design. It is divided into the

following sections:

1. Requirements. This describes what you will need in order to use the generated

Java code. This starts on page 315.

2. Using Sun WorkShop Visual for Java. This section describes how to use Sun

WorkShop Visual to create a Java-compliant design. This section starts on

page 315.

3. Java Version. This section describes how you can generate code for Java 1.0, 1.1

and Swing and how to tell which resources apply to which version. This starts on

page 319.

4. Widgets. This introduces the way in which a Motif design can be generated in

Java, starting on page 323.

5. New Widgets for Java Classes. This section describes the extra layout widgets for

those Java layout components which have no Motif equivalent. See page 323.

6. Event Model. This describes how you can use the Java 1.1 event model, complete

with listener objects, in Sun WorkShop Visual. A short tutorial is provided to help

you get started. This section starts on page 330.

7. Generate Dialog. Changes have been made to the Generate dialog to allow you to

generate Java code. This descriptions starts on page 336.

8. Generated Code. This section is a discussion of the code generated for Java and

starts on page 339.



314 Sun WorkShop Visual User’s Guide • May 2000

9. Moving Sun WorkShop Visual Designs to Visaj®. This section describes how

you can take your Java design further by saving your design in a format which

can be imported into Visaj, the visual application builder for Java. See page 347.

10. Motif Widgets to Java Classes - the MWT Library. This section describes the

library of classes which map Motif widgets to Java classes. This starts on

page 350.

What Is Java?

Java is a programming language with elements reminiscent of C and C++ (amongst

others). It has libraries specifically geared for the Internet environment. In addition,

Java is highly portable, object-oriented and interpreted. It is threaded, has automatic

storage management and uses exceptions. If none of this means anything to you,

you may like to read the books listed in “Books on Java” on page 887 before

continuing.

Swing

Sun WorkShop Visual can also generate code to use the Swing component set. Swing

components use the JFC (Java Foundation Classes) to give a set of components

which are independent of the underlying window system. They also feature the

“pluggable look and feel” built into the JFC. All of this means that you can create

one user interface which can reflect the look and feel of any of the major Java

platforms (Windows, Solaris, Macintosh). This look and feel can even be switched at

runtime without the need to restart the application. Swing gives your application a

consistent interface and platform independence.

The Generated Java Code

The code generated by Sun WorkShop Visual can be in the form of applets or

straightforward applications. An applet is a small application which is embedded in

a web page and runs when the page is browsed.

The generated Java code is not restricted in any way. That is to say, the code can be

taken away and used on any platform supporting Java and used any number of

times. Because Sun WorkShop Visual allows you to design on Motif-based platforms

regardless of your target platform, the generated code imports a library of classes



Chapter 10 Designing for Java 315

implementing the mapping of Motif widgets to Java classes. This library is known as

MWT and is supplied as part of the Sun WorkShop Visual release. In Java, classes

can be grouped together into packages. The MWT is in a package called

uk.co.ist.mwt .

“Motif Widgets to Java Classes - the MWT Library” on page 350 details the way in

which Motif widgets have been mapped to Java classes.

Requirements

In order to compile and run the generated Java code, you will need a Java compiler

and interpreter. See your Sun WorkShop Visual Installation Notes for details on

obtaining a Java compiler and interpreter. If you intend to generate applet code, you

will also need either an applet viewer or a HTML browser to view the applet.

To generate Java code from Sun WorkShop Visual, you do not need to set any

environment variables other than those you already use for Sun WorkShop Visual. In

order to compile and run the generated code, however, you will need to set the

CLASSPATH environment variable. This, like the PATH environment variable, is a

list of directories. This list must include the directory $VISUROOT/lib/java_classes -

where VISUROOT is the install directory of your Sun WorkShop Visual. It should

also include any directory where you have generated class definitions which will be

used by your application - for example, the current working directory (.). If you have

generated Swing code from your design, your CLASSPATH must also include the

Swing jar file. You should also make sure that the directory containing your Java

compiler and interpreter is in your PATH list.

Using Sun WorkShop Visual for Java

The way Sun WorkShop Visual is used in order to generate Java code bears some

resemblance to the way Sun WorkShop Visual is used for the generation of C++ and

Microsoft Windows code. This is because Java is a class-based language like C++.

The way in which class instantiations, derived classes and methods are handled is

the same.

Note – If, therefore, you are not familiar with the use of Sun WorkShop Visual for

C++, it is strongly recommended that you refer to Chapter 8 ”Structured Code

Generation and Reusable Definitions“.



316 Sun WorkShop Visual User’s Guide • May 2000

User-Defined Widgets and Java

You can generate Java code for designs containing user-defined widgets. This is

detailed in “Generating Java Code” on page 629 in Chapter 23 ”User-Defined

Widgets“. Using the resource file mechanism, the widgets are mapped to Java

components. The section mentioned above details how to do this and where to find

existing resource files.

Creating Java Compliant Designs

The “Module” menu contains a toggle labelled “Java compliant”. Setting this toggle

on indicates to Sun WorkShop Visual that you wish your design to be suitable for

Java code generation. If your design cannot be reproduced in Java code, the Java

Compliance Failure dialog is displayed.

Java Compliance Failure Dialog

The Java Compliance Failure Dialog lists all aspects of the

design which cannot be reproduced in Java code. The dialog is illustrated in Figure

10-1.

FIGURE 10-1 Java Compliance Failure Dialog

The buttons at the bottom of the dialog perform the following functions:



Chapter 10 Designing for Java 317

■ Go to. Pressing this button causes the widget selected in the Java Compliance

Failure Dialog to become selected in your design. If the widget is in a Shell other

than the currently viewed one or it is in a folded section of the hierarchy, the view

changes so that the widget can be seen.

■ Next. Pressing this button moves the selection in the Java Compliance Failure

Dialog to the next item in the list of offending widgets.

■ Fix. Pressing this button fixes whatever is causing the compliance failure for the

selected widget in the dialog. This button is only enabled when it is possible for

the compliance failure to be fixed automatically in this way.

■ Close. This button closes the dialog.

■ Help. This button displays help on the dialog.

Design Restrictions for Java Code Generation

The following is a list of user interface features which cannot be carried over to Java

code:

1. A file selection box with a parent which is not a shell.

A file selection box must have a shell as a parent; Java only has a modal file

selection dialog.

2. A file selection box which has a work area.

3. A file selection box which is a class.

4. A widget which is a class between a menubar and a shell.

This restriction is imposed so that the shell can find out what its menubar is.

5. More than one menubar in a shell

In Java, a shell may only have one menubar.

6. A cascade button has no menu.

Because there is no equivalent to a cascade button in Java (menus are added

directly to menubars), a cascade button on its own is meaningless.

7. The design contains a popup menu.

Java does not support popup menus.

8. There is a multi-line string in a menubar.

Multi-line strings are not supported in menubar. They are supported elsewhere.

9. A link source is not a class.

The source of a link must be a class in Java.



318 Sun WorkShop Visual User’s Guide • May 2000

10. A callback source is not within a class.

This is a restriction of the current version of the AWT event model and may be

improved in later versions as this model develops.

11. A pixmap in a menu.

12. A Label in a menu.

13. A menu in the main window of an applet

The three items above are not supported in Java.

Applet Design Rules

There are some design restrictions which apply specifically to applets. These are:

1. An applet must have an application shell as the parent

2. The applet itself must not be a class, although its immediate child must be a class.

3. Any other shells should be top level shells.

4. All top level shells should be classes.

To Make a Class or Not To Make a Class...

The Java compiler applies a restriction to class methods. A class method must

contain no more than 64 variables. This has a major impact on your design although

this is not immediately apparent. 64 variables sounds a lot but it is easy to reach

such a figure. Once you do hit this limit, you will need to start designating widgets

as classes so that there are more methods, each with the 64 variable allowance. If

your design does overstep this limit, Sun WorkShop Visual informs you when you

generate Java code.

There is a shortcut method of making a widget a class; simply hold down the right

mouse button to display a menu of useful commands, including “Make class”.



Chapter 10 Designing for Java 319

Enclosing Class for Callback Declarations

Widgets in Java designs can be given callbacks in the same way as widgets in any

other type of design. Unless the callback is intended to define a listener object (as

described in “Event Model” on page 330), the callback should be a method. The

method is declared in the enclosing class for the widget. If the widget which has been

given the callback is itself a class, then the callback method is declared in the

widget’s class. If it is not, Sun WorkShop Visual searches up the hierarchy to find the

nearest ancestor which is a class and declares the method in the class for that widget.

Java Version

By default, Sun WorkShop Visual supports Java version 1.1. You may generate code

for Java 1.0 or for Swing by selecting the appropriate option in the generate options

dialog. This is described in “Java Version for Generated Code” on page 319.

Resources and callbacks are marked to indicate which version (or versions) of Java

supports them. A full description is provided in “Version Symbols for Resources and

Callbacks” on page 321.

The event model (the way messages are passed between widgets) changed with Java

1.1. Sun WorkShop Visual fully supports this model by using listener objects. All of

this is detailed in “Event Model” on page 330.

You can find out which version of Java you are using by running java with the

“-version” switch. The version is then printed on standard output and Java

immediately exits.

Java Version for Generated Code

The Java Options dialog, shown in Figure 10-2, includes a new option menu

allowing you to select the Java version for your generated code.



320 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 10-2 Java Options Dialog

The Java Options dialog is displayed by pressing the button labelled “Java

options...” on the Java page of the Generate Overview dialog.

Whichever version was last selected is the version used when code is generated from

the command line. If no selection has been made, the default of “Java 1.1” is used. If

you choose “Swing” from this option menu, your generated application can run

with any compatible version of Java including 1.1 and Java 2.

Java version
option menu



Chapter 10 Designing for Java 321

Version Symbols for Resources and Callbacks

There are four annotation symbols in the resource panels to show Java support. The

coffee cup with the text “1.1” printed over it , as shown in Figure 10-3, indicates

that the resource is supported in Java 1.1 only.

FIGURE 10-3 Java 1.1 Core Resources for Popup Menu

The text “1.0” over the coffee cup , shown in Figure 10-4, indicates that the

resource is supported in Java 1.0 only. A coffee cup with no text indicates that

the resource is supported in both versions of the JDK. The coffee cup with the letter

“S” over it indicates that the resource is supported in Swing. Having no coffee

cup indicates that the resource has no Java support.

Java 1.1 only



322 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 10-4 Resource Panel Annotations

Callbacks in the callbacks dialog are shown with the string “J1.0” to indicate that the

callback is supported in Java 1.0 only. The string “J1.1” indicates that the callback is

supported in Java 1.1 only. A simple “J” indicates that a callback is supported in

both versions. As with resources, no annotation means that the callback is not

carried forward into Java. Examples of these annotations are shown in Figure 10-5.

FIGURE 10-5 Callback Dialog Annotations

Supported in
both versions
of Java

Java 1.0 only

Not supported
in Java

Supported in Java 1.0 only

Supported in Java 1.1 only

Not supported in Java

Supported in both versions of Java



Chapter 10 Designing for Java 323

Widgets

The set of Java components and the set of Motif widgets are not the same. This

means that two areas need to be covered to resolve the problem of generating Java

code from a design built on a Motif-based platform:

1. Map the Motif widgets available from Sun WorkShop Visual to Java classes

2. Add widgets to represent Java classes which cannot be mapped back to Motif

widgets

In order to address the first issue listed above, the MWT is supplied with Sun

WorkShop Visual. This is a library of classes which mimic the Motif widgets. This

library is called MWT and is located in $VISUROOT/lib/java_classes. The classes in

this library have been grouped together into a package which is referred to as

uk.co.ist.mwt . All code generated from Sun WorkShop Visual imports this

package.

Internally, Sun WorkShop Visual decides which widgets correspond to which Java

classes. A full listing of this mapping is provided in “Motif Widgets to Java Classes -

the MWT Library” on page 350 along with a list of the resources which are relevant

to Java code.

To satisfy the second criterion above, the following Java layout classes, which have

no counterpart in Motif, are provided as widgets:

■ Card

■ Flow

■ Border

■ Grid

■ GridBag

These are detailed below.

New Widgets for Java Classes

There are five new widgets; each one simulates a Java layout manager. The widgets

are a part of Sun WorkShop Visual and, as such, appear on the palette. The source

code for them is also supplied as a part of the Sun WorkShop Visual release. This can

be found in $VISUROOT/src/java_widgets (where VISUROOT is the install

directory of your Sun WorkShop Visual). The directory also contains a file named

README which provides more information on the widgets.



324 Sun WorkShop Visual User’s Guide • May 2000

The following sub-sections provide information on how to use each of the new Java

widgets and the resources associated with them.

The Card Widget

The Card widget is a Motif equivalent of the Java CardLayout class. It lays out its

children so that they are all the same size as itself with only the topmost child

visible. Each child can be given a “page number” and the Card widget can be told to

show the child with a specified page number.

A typical use for the Card widget is multi-page dialogs controlled by an Option

menu or by “Tab” buttons.

There are three resources associated with the Card widget:

■ horizontalSpacing

■ verticalSpacing

■ currentPage

The spacing resources are of type XtRDimension and refer to the spacing around the

Card.

The current page resource determines which of the various children of the Card is

currently displayed “on top”. The resource is of type XtRInt.

Each child of a Card widget has a constraint resource, pageNumber, which allows

you to assign a page number to the child widget. This resource is of type XtRShort.

To display any given child, set the Card widget currentPage resource to the

pageNumber specified for the child.

There is a convenience function XdCardShowPage(Widget card, int page) defined in

the Card widget sources for performing this within your own code.

The Flow Widget

The Flow Widget is a Motif equivalent of the Java FlowLayout class. It lays out its

children in rows from left to right. When a row is full it moves onto a new row i.e. it

lays out its children as a word processor lays out words in a paragraph. The rows

may be left/right aligned or centred.

There are three resources associated with the Flow widget:

■ horizontalSpacing

■ verticalSpacing

■ horizontalAlignment



Chapter 10 Designing for Java 325

The horizontal and vertical spacing resources are of type XtRDimension. They refer

to the gap between the rows and columns of child widgets.

The horizontal alignment resource is of type XdRAlignment and can be set to one of

left, center or right.

The resource behaves similarly to the alignment of text in a paragraph.

The Border Widget

The Border widget is a Motif equivalent of the Java BorderLayout class. It can accept

up to five children, which can be assigned to five positions: north, south, east, west

and center, as shown in Figure 10-6. The Border widget can have more than five

children but the surplus ones are simply added at a default location and not laid out.

FIGURE 10-6 Schematic Depiction of BorderLayout

The north and south children expand to fill the width of the Border widget. The west

and east children fill the space between the north and south children vertically and

the center child fills any space left over. The Border widget makes a good

replacement for the MainWindow widget as it does not suffer from many of the

MainWindow’s problems and peculiarities. Any of the five positions may be left

empty.

There are two resources for the Border widget:

■ horizontalSpacing

■ verticalSpacing

Both of these resources are of type XtRDimension and refer to the gap between the

children.

Each child of the Border widget has a constraint resource which is the

borderAlignment. This is of type XdRBorderAlignment, and can be set to north,

south, east, west, or center.

North

South

W
e
st

E
a
st

Center



326 Sun WorkShop Visual User’s Guide • May 2000

The Grid Widget

The Grid widget is a Motif equivalent of the Java GridLayout class. The Grid widget

makes all its children the same size and lays them out in a grid pattern. The number

of columns in the grid is specified by a resource - the number of rows is calculated.

Resizing the Grid widget will cause all its children to resize to fit.

There are three resources for the Grid widget:

■ horizontalSpacing

■ verticalSpacing

■ numColumns

The horizontal and vertical spacing resources are of type XtRDimension and refer to

the gap between the rows and columns of the children.

The numColumns resource is of type XmRShort, and this refers to the number of

columns to display in the grid.

The GridBag Widget

The GridBag widget is a Motif equivalent of the Java GridBagLayout class. The

GridBag widget is complicated but provides the greatest flexibility of all the Motif

and Java layout widgets. The GridBag incorporates the idea of a grid - with widgets

in cells laid out in rows and columns. The rows and columns of the GridBag, unlike

those of the Grid widget, can be different heights and widths to accommodate the

different types of widget. The size of a row or column is determined by the tallest or

widest child widget in that row or column respectively. Child widgets can also be

expanded to fill any number of rows and columns and can be aligned to a specified

geographical location within the cell(s) that they occupy. The GridBag also allows

you some control over the way children resize when the GridBag itself is resized.

This is explained in “Resizing the GridBag” on page 328.

When children are added to the GridBag, they are placed to the right of the

previously added widget. To change their position in the grid, you will need to use

the constraints dialog on each individual child widget.

GridBag Constraints Dialog

The Constraints dialog for the child of a GridBag is shown in Figure 10-7.



Chapter 10 Designing for Java 327

FIGURE 10-7 Constraints Dialog for GridBag

The top of the Constraints dialog shows two option menus. The cellAlignment

resource tells the GridBag where the widget should be placed geographically in the

group of cells that it occupies - North, South, East, West, NorthEast, NorthWest,

SouthEast, SouthWest or Center. The cellFill resource makes the widget resize to fill

part or all of the group of cells that it occupies. Selecting Horizontal makes the

widget fill all the columns that it occupies, selecting Vertical makes it fill all the

rows. Selecting Both makes the widget expand to fill all the rows and columns that it

has been given. The None option keeps the widget at its original size at the

geographical location specified by the cellAlignment resource.

The row and column resources allow you to tell the GridBag where you wish the

selected widget to appear in the grid. The similarly sounding rows and columns

resources tell the GridBag how many rows and columns the widget will occupy. The

widget does not expand to fill the specified number of rows and columns - that

behavior is controlled by the cellFill resource described below. There are two

“special” values which can be entered in the rows and columns textbox:

1. A value of 0 (zero) in the columns or rows textbox indicates that the widget

should occupy all columns or rows respectively from its current position to the

edge.

2. A value of -1 (minus one) in the column or row textbox indicates that the widget

should remain vertically or horizontally next to the previously added widget,

respectively.



328 Sun WorkShop Visual User’s Guide • May 2000

The rowWeight and columnWeight resources refer to the resize policy and are

explained in “Resizing the GridBag” on page 328.

The padX and padY resources specify internal padding to add on each side of the

component horizontally and vertically respectively.

The inset resources (insetLeft, insetRight, insetTop and insetBottom) specify the

margins to appear on each side of the selected widget.

Resizing the GridBag

The Constraints dialog for the children of a GridBag contains the rowWeight and

columnWeight resources. These resources affect the way the rows and columns will

resize when the GridBag is resized.

Although each widget child of a GridBag can be given a rowWeight and a

columnWeight, the GridBag searches for the highest number in each row and

column and uses that number for its calculations for the whole row or column. For

this reason there is no need to set a weight on every widget, just one in each row and

column.

The easiest way to describe the effect of setting row and column weights is through

examples.

rowWeight Example

This first illustration considers rowWeights. Imagine that you have set row weights

as shown in Figure 10-8. The top row has a highest rowWeight setting of 3, the

middle 2 and the bottom row 1. These “highest” settings are the only ones that

matter - we can now ignore the other rowWeights in each row.

The GridBag now calculates the sum of all rowWeights - in our case, this is 6. Now

imagine that the GridBag is stretched downwards. Any extra space is allocated to

the rows as follows:

■ The row with a rowWeight of 3 receives one half of the extra space (because 3 is

one half of 6)

■ The row with a rowWeight of 2 receives one third of the extra space (because 2 is

one third of 6)

■ The last row, with a rowWeight of 1 receives the remaining one sixth of the extra

space (because 1 is one sixth of 6)



Chapter 10 Designing for Java 329

FIGURE 10-8 Example rowWeight Settings

columnWeight Example

The GridBag calculates how to resize its columns in the same way as it calculates the

rows, explained above. Imagine a GridBag containing widgets which have been

given columnWeights as illustrated in Figure 10-9. This is the same illustration as

that shown in Figure 10-8 except that the figures now refer to columnWeight instead

of rowWeight. The highest columnWeight value in the left column is 2 and the

highest value in the column on the right is 3. The GridBag is only interested in the

highest figure in each column and ignores any other columnWeights that you may

have set. The sum of these “highest” columnWeights is 5. With all of these figures,

the GridBag can perform some percentage calculations when there is extra space

available.

Now imagine that the GridBag depicted is stretched outwards to the right. It

allocates the extra space to its columns as follows:

■ The left column, with a columnWeight of 2 receives two-fifths of the extra space

(because 2 is two-fifths of 5)

■ The right column, with a columnWeight of 3 receives the remaining three-fifths of

the extra space (because 3 is three-fifths of 5)

1

2

1

3

2

1

Three rows of
child widgets

rowWeight

Highest = 3

Highest = 2

Highest = 1

GridBag



330 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 10-9 Example columnWeight Settings

GridBag Resources

There are two resources for the GridBag widget:

■ horizontalSpacing

■ verticalSpacing

Both of these resources are of type XmRInt and refer to the gap between the rows

and columns.

Event Model

The event model (the way messages are passed between objects) changed between

versions 1.0 and 1.1 of Java. If you select “Java 1.1” as the version to generate, the

new event handling mechanism is used.

Whichever mechanism is being used, if you have registered a callback method (as

opposed to a function), your method is called when the event is triggered. The main

difference between the two versions is in the way callback functions are handled.

If you generate Java 1.0 code, all callback functions are ignored. They are not

generated. Java deals with classes and therefore only supports the concept of

methods.

Two columns of child widgets

1

2

1

3

2

1

columnWeight GridBag

Highest = 3Highest = 2



Chapter 10 Designing for Java 331

When generating Java 1.1 code, however, your callback functions are treated as calls

to an external listener object which can be generated by Sun WorkShop Visual. This

means that if you are moving from C++ to Java and your code uses functions, you

can generate Java 1.1 code and maintain equivalent behavior.

Note – The buttons in a Java File Selection Box do not fire events when pressed. For

this reason, links from a File Selection Box will not work in the generated Java code.

Listener Objects in Sun WorkShop Visual

When generating code for Java 1.1, Sun WorkShop Visual interprets callbacks which

have been defined as functions (as opposed to methods) as listener objects. A listener

object is an instance of a class which implements an interface between an action

occurring in the user interface front end and the rest of the application. These are

also called “helper” and “adapter” classes.

Sun WorkShop Visual can follow one of two strategies when generating listener

objects from callback functions. This is controlled by the following resource:

visu*javaWrapFunctions:true

The default is “true”. This causes Sun WorkShop Visual to generate a wrapper

object, as explained in the following subsection. Set this resource to “false” if you

wish to handle the listener object code yourself, as described in “Controlling

Listener Objects Yourself” on page 333.

Using Callback Objects

When Java 1.1 is generated, callback functions are treated as references to listener

objects. A callback object is generated into its own file using the name of the function

with “callback” appended. If, for example, you have a callback function named

“myFunction”, the following class is generated in a separate file called

myFunctionCallback .java :

public class myFunctionCallback

{

        static myFunctionCallback me = null;

        public void doit( AWTEvent e, Object context)

        {

// write your code here

        }



332 Sun WorkShop Visual User’s Guide • May 2000

        static myFunctionCallback getInstance()

        {

return new myFunctionCallback();

        }

        static myFunctionCallback get()

        {

if (me == null)

me = getInstance();

return me;

        }

}

The file is only generated if it does not already exist. You can safely add to it because

this file is not overwritten.

There is only one instance of each callback’s object. If you have added the same

callback function to a number of different widgets, they will share the one callback

object by calling a get() method which returns the single instance. The object is

created the first time get() is called.

The callback object has a doit() method which is similar to a standard callback stub -

this is where you add your own code. The doit() method is called from the listener

object in the enclosing class of the object with the defined function. The context

object and the event itself are passed into the doit() method. For example:

{ // Java ‘global’ callback object

final myFunctionCallback myFunctionHandler =

myFunctionCallback.get();

if ( myFunctionHandler != null )

button1.addActionListener(

new ActionListener()  {

public void actionPerformed(ActionEvent event)

{

myFunctionHandler.doit(event,

XApplication.this);

}

}

);

}



Chapter 10 Designing for Java 333

This is the default behavior. Changing the javaWrapFunctions resource to “false”

results in the behavior described in the following section.

Controlling Listener Objects Yourself

If the javaWrapFunctions resource is set to “false”, none of the callback object code

described above is generated. In the example of the Activate callback on a button,

the following is generated into the enclosing class:

if (myFunction != null)

button1.addActionListener( myFunction );

Where “button1” is the name of the widget which has a callback function defined for

it and “myFunction” is the name of the callback function.

The code as generated is intentionally incomplete; it will not compile as it is. There

are two pieces of code which you need to add:

1. The declaration of the listener object “myFunction”.

2. The definition of the class of which “myFunction” is an instance.

The first piece of code is relatively simple. It would look like this:

EventListener myFunction = new EventListener();

This declares the listener object “myFunction ” as an instance of the class

“EventListener” which is a class that you are about to define.

The second piece of code is a little more complex:

class EventListener implements TextListener, ActionListener {

public void actionPerformed(ActionEvent e) {

        Object source = e.getSource();

        if (source == button1)

            // Add the code to do something here...

}

}

This is the definition of the new EventListener class. The method “actionPerformed”

is called when an event occurs in button1. You may wish to define classes like this in

their own file with “public” access so that they may be used by any component. You

will then need to make sure that you can access the component (in this case

“button1”).



334 Sun WorkShop Visual User’s Guide • May 2000

Note – Only callbacks which are marked as Java compliant in the Callbacks dialog

are generated. Those without the Java mark in the Callback List are ignored when

Java code is generated.

X Events as Listener Objects

Selecting “Event Handlers...” from the Widget menu, when you have a widget

selected, displays the Event Handlers dialog which is described in “Event Handlers”

on page 203. Any procedures added here are treated the same as callback functions

when Java code is generated if you have specified Java-compliant event masks. Event

masks which are not Java-compliant are ignored when Java code is generated.

Sun WorkShop Visual assumes that you have a listener object with the name given

for the procedure, in the same way it does for callback functions. Sun WorkShop

Visual registers the listener object for each Java event type corresponding to each X

event mask. For example, Figure 10-10 shows an event handler with the following

event mask:

PointerMotionMask | KeyReleaseMask | EnterWindowMask

for a procedure called “exampleHandler” on a widget named “MyButton”.

FIGURE 10-10 Example Event Handler

For such an event handler, Sun WorkShop Visual would generate the following Java

code:

if ( MyHandler != null )

MyButton.addMouseMotionListener( myHandler );



Chapter 10 Designing for Java 335

if ( MyHandler != null )

MyButton.addKeyListener( myHandler );

if ( MyHandler != null )

MyButton.addMouseListener( myHandler );

You would then be expected to add a line to the generated code file declaring that

myHandler is an instance of a class defined elsewhere, for example:

MyHandler myHandler = new MyHandler();

To compile this code, you would need to define the class MyHandler. This class

would have the following signature (it could also be “public” if so required):

class MyHandler implements MouseMotionListener, KeyListener,

MouseListener {

The MyHandler class would contain definitions of all the methods of the three

listener classes.

Version Incompatibility for Callback Method

Signatures

Callback methods for Java 1.0 have the signature:

void foo( Event x )

and for Java 1.1, they have the signature:

void foo( AWTEvent x )

The result of this is that if you generate a new Java 1.1 file on top of an existing Java

1.0 one, new stubs are generated for all of your callback methods. The old ones are,

of course, retained, but they are no longer the methods which will be called. When

upgrading your design from Java 1.0 to Java 1.1, you should move any code from

the old methods to the new, adapting any code which uses the event objects.



336 Sun WorkShop Visual User’s Guide • May 2000

Generate Dialog

The Generate Dialog is quite different when “Java” is selected from the Language

option menu. A list of files which can be generated is displayed, as shown in Figure

10-11.

FIGURE 10-11 Java Generation Dialog

The text box labelled “Directory” shows where the files will be generated. To change

this either type the name of the directory directly into the text box or press the

“Browse” button and use the File Selection dialog.

Only files which are selected (or highlighted) will be generated. To select or deselect

a file, click over it. Use the Shift key modifier to extend the selection list and the

Control key modifier to add individual files to the selection. For more details on the

files listed in this dialog, see “Java Files” on page 340. “Using the Generated Files”

on page 345 explains how to compile and run the generated code.

The button labelled “Java Options” displays a dialog containing options which are

relevant to Java code generation, as shown in Figure 10-12. For a description of the

Code Options dialog, which is produced when the button labelled “Options” is

pressed, see “Code Generation Options” on page 218.



Chapter 10 Designing for Java 337

FIGURE 10-12 Java Generation Options Dialog

Java Generation Options Dialog

The Java Generation Options Dialog allows you to control the following five areas

associated with Java code generation:

1. Whether you wish to create an application or an applet.

2. The name of the base class of the application.

3. Which version of Java code you wish generated - including the option of

generating Swing.

4. Whether you wish your design to use GIFs or not.



338 Sun WorkShop Visual User’s Guide • May 2000

5. The name of the package to create, if you wish your classes to be bundled

together into a package.

Application or Applet

By default, Sun WorkShop Visual will generate an application from your design. If

you prefer to generate an applet, select the appropriate option from the option

menu. If you select “Applet”, the generated main code file will contain extra code to

allow the application to run inside an HTML browser.

Changing the Base Class

The main code file contains one class which, effectively, links together your design.

The name of this class is whatever you have specified as the application class in the

Code Options dialog (or XApplication by default). This can be extended from another

class by typing its name in the text box labelled “Base class”. If you are generating

an application and you do not specify a base class, the application class is not

extended. If you are generating an applet and you have not specified a base class,

the Java class “Applet” is used by default.

Using GIFs

The GIF options section of the dialog takes on one of two forms, depending on

whether you are generating an application or an applet. In both cases, there is a

toggle labelled “Use GIFs for images” at the top of the section. If this toggle is not

selected, the rest of the section is insensitive. When it is selected and you are

generating an application, the code generated for pixmap objects assumes that all of

the pixmaps are stored in separate GIF file. When the “Use GIFs for images” toggle

is not set, the pixmap objects are stored in a file named

<ApplicationClassName>PixmapObjects.java as arrays of integers. When the

“Use GIFs for images” toggle is set, that file contains code to load the GIF files. Also

in this case, an extra file is added to the list of Java code files. This is the property file

and is named <ApplicationClassName>Properties . In this file, the GIFs are

referenced as follows:

<ApplicationClassName>.<ApplicationImagesName>.<PixmapObjectName>

where “ApplicationImagesName” is the value entered into the text field in the GIFs

options section of this dialog. For example, if you are using the default application

class name, XApplication, and you have created a pixmap object named “TreeIcon”

and you have entered the value “MyApplicationImages” into the text field, then the

property name for the TreeIcon pixmap would be:

XApplication.MyApplicationImages.TreeIcon



Chapter 10 Designing for Java 339

and if you had another pixmap object, this time named “LeafIcon”, the property

name would be:

XApplication.MyApplicationImages.LeafIcon

If you are generating an applet and you have set the “Use GIFs for images” toggle,

the GIFs section of the dialog contains a text box which allows you to specify a

directory (relative to the document base) where the GIF images can be found.

If you wish to use GIFs in your application or applet, you will need to create the GIF

files. Sun WorkShop Visual provides some help by allowing you to generate XPM

files for all your pixmap objects in one go. To do this, go to the “Pixmaps” page of

the Generate Dialog. This contains a list of the pixmap objects in your design.

Pressing “Generate” creates a XPM file for each object giving it the name

<PixmapObjectName>.xpm . You can choose whether you wish to generate XPM2

or XPM3 format. Once you have generated the XPM files, you will need to convert

them to GIF using a conversion utility. There are a number of freely distributed

conversion utilities available including pbmplus and netpbm.

Specifying a Package

The last section of the Java Generation Options Dialog contains a text area where

you can specify the name of a package. A package is a group of classes that are

bundled together. If you choose to generate your classes as a package, your main

code file will contain a statement to import it.

Note – There are some conventions which should be followed in the naming and

organizing of packages. Your Java documentation will have more details on this.

Generated Code

Java code differs substantially from C or C++ code in its structure. All code in Java

must be contained within a class. Each separate class must be contained within its

own file. The “main” procedure is a method of the application class. The Java

interpreter will locate this method and start the application.



340 Sun WorkShop Visual User’s Guide • May 2000

Java Files

In the generate dialog, when “Java” is selected from the menu of language flavors, a

selectable list of files is shown. Depending on the structure of your design, these will

be as follows (names in angle brackets indicate a variable name according to the

names you have used in the design):

1. <ApplicationClassName>.java . This is the principal code file for the

application which is a class defining the application. One method of this class is

the “main” procedure. The name of the file is determined by the name of the

application class - by default “XApplication”. You can change this in the Code

Options Dialog.

2. <ApplicationClassName>Links.java . This is the file containing code to

implement the dynamic links between widgets. You do not need this file if you

have not made any links.

3. <ApplicationClassName>PixmapObjects.java . If you have specified any

pixmap objects, they will appear in a separate file.

4. <ApplicationClassName>FontObjects.java . If you have specified any font

objects, they will appear in a separate file.

5. <ApplicationClassName>ColourObjects.java . If you have specified any

colour objects, they will appear in a separate file.

6. <ApplicationClassName>StringObjects.java . If you have specified any

string objects, they will appear in a separate file.

7. <WidgetClassName>_c.java . Every widget you have designated as a Java

class (from its Core Resource Panel), must have its own code file containing the

class definition. There will, therefore, be as many of these files as there are classes

in your design. Unless you have a good reason for ignoring one of the widgets in

your design, you will always need to generate these files.

Command Line Code Generation

For generating Java code from the command line, an extra flag has been added to

Sun WorkShop Visual. The flag is ‘-J’.

Example Code

The code generated by Sun WorkShop Visual for the hierarchy and design shown in

Figure 10-13 is listed below. To generate the code yourself, follow these steps:



Chapter 10 Designing for Java 341

1. Select a Shell widget.

2. Name the Shell “MyShell”.

3. Make “MyShell” an Application Shell.

This is done in the Shell resource panel.

4. Add the DialogTemplate to the Shell.

5. Name the DialogTemplate “MyMessageBox”.

6. Select three PushButtons and a Form widget.

7. Select a ScrolledText as the child of the Form.

8. Name the ScrolledText “MyScrolledText”.

9. Select the ScrolledText , press the right mouse button and select “Make class”
from the menu which is displayed.

This is a quick way of changing the structure of the selected widget. Alternatively,

you could display the Core Resource panel, go to the “Code Generation” page and

change the “Structure” option menu to “C++/Java class”.

You should now have the hierarchy shown in Figure 10-13.

FIGURE 10-13 Hierarchy and Design for Example Code



342 Sun WorkShop Visual User’s Guide • May 2000

This simple design has no resources set as we are only interested in the code which

is generated from it. In the generate dialog, when “Java” is selected, we are offered

the files shown in Figure 10-14.

FIGURE 10-14 Generate Dialog for Example Code

Because we have not specified an application class name, the default (XApplication)

is used in the filenames. You will need the file XApplication.java as this is the main

entry point for the application and you will also need the file MyScrolledText_c.java

as this is the class definition of the ScrolledText widget. So, what you should do

breaks down as follows:

10. Make sure that XApplication.java and MyScrolledText_c.java are both selected.

11. Check the “Directory” shown at the top of the dialog. The files will be generated
there so change it as necessary.

12. Press “Generate”.

For important information on when to make widgets into classes see “To Make a

Class or Not To Make a Class...” on page 318.

Below is a listing of the file XApplication.java :

/*

** Generated by Sun WorkShop Visual/Java(tm) Edition

*/



Chapter 10 Designing for Java 343

import java.awt.*;

import uk.co.ist.mwt.*;

/*

** Sun WorkShop Visual/Java(tm) Edition - main program

*/

/**

 * A class representing the user interface specified by the entire

 * design.

*/

public class XApplication  {

protected MyScrolledText_c MyScrolledText;

protected Panel MyMessageBox;

DlogTemplateLayout MyMessageBoxLayout = new

DlogTemplateLayout();

protected Frame MyShell;

public XApplication()  {

Button button3;

Button button4;

Button button5;

Panel form2;

FormLayoutManager form2Layout = new

FormLayoutManager();

MyShell = new Frame();

MyMessageBox = new Panel();

MyShell.add( “Center”, MyMessageBox );

MyMessageBox.setLayout( MyMessageBoxLayout );

button3 = new Button( “button3” );

MyMessageBox.add( button3 );

button4 = new Button( “button4” );

MyMessageBox.add( button4 );

button5 = new Button( “button5” );

MyMessageBox.add( button5 );

form2 = new Panel();

MyMessageBox.add( form2 );

form2.setLayout( form2Layout );

MyScrolledText = new MyScrolledText_c();



344 Sun WorkShop Visual User’s Guide • May 2000

form2.add( MyScrolledText );

FormLayoutConstraints MyScrolledTextConstraints =

new FormLayoutConstraints();

form2Layout.constrain( MyScrolledText,

MyScrolledTextConstraints );

MyShell.pack();

MyShell.layout();

MyMessageBox.layout();

form2.layout();

MyScrolledText.layout();

MyShell.show();

        }

        public static void main( String args[] )  {

new XApplication();

        }

}  /* ...class XApplication (main application class) */

/*

** (end of Sun WorkShop Visual/Java(tm) Edition generated main
program)

*/

/*

** (end of Sun WorkShop Visual/Java(tm) Edition generated code)

*/

Now, this is MyScrolledText_c.java :

/*

** Generated by Sun WorkShop Visual/Java(tm) Edition

*/

import java.awt.*;

import uk.co.ist.mwt.*;

/**

* A class represented by the widget MyScrolledText_c in the design

file

 */



Chapter 10 Designing for Java 345

// Private: classHeader Sun WorkShop Visual-generated code - do not
edit >>>

class MyScrolledText_c extends TextArea  {

// Private: classHeader <<< Sun WorkShop Visual-generated code ends.

// Private: instanceVars Sun WorkShop Visual-generated code-do not
edit >>>

// Private: instanceVars <<< Sun WorkShop Visual-generated code ends.

/**

* The constructor method for MyScrolledText_c

*/

// Private: constructor Sun WorkShop Visual-generated code - do not
edit >>>

public MyScrolledText_c()  {

}

// Private: constructor <<< Sun WorkShop Visual-generated code
ends.

// Private: endClass Sun WorkShop Visual-generated code - do not edit
>>>

}

// Private: endClass <<< Sun WorkShop Visual-generated code ends.

/*

** (end of Sun WorkShop Visual/Java(tm) Edition generated code)

*/

These files can be taken away and used in any way you see fit. The only caveat is the

inclusion of the MWT. The line:

import uk.co.ist.mwt.*;

imports into your Java program all of the Java class library provided with Sun

WorkShop Visual. This means that if you wish to take the generated files to a

different platform and run the resulting application there, you will need to take the

Java class library, MWT, as well.

Using the Generated Files

Once you have your Java code files you are free to use it on any platform which

supports Java as long as you have the MWT library on that platform. Follow these steps

to build a Java application from your generated files:



346 Sun WorkShop Visual User’s Guide • May 2000

1. Make sure that your CLASSPATH environment variable is set as explained in
“Requirements” on page 315.

2. Make sure that the directory containing any classes you have just generated is
included in the CLASSPATH list.

This may be your current working directory, in which case you should check that .

(dot) is in the CLASSPATH list.

3. Make sure that your PATH environment variable includes the directory
containing your Java compiler.

4. Type: javac <ApplicationName>.java

This will give you a file <ApplicationName> with a “.class” extension.

5. Type: java <ApplicationName>

Your Java application should appear on the screen.

Callback Stubs

All code in a Java code file must appear within a class. This means that the callback

stubs are generated as part of the class to which they belong. There is no separate

callback file as there is with other flavors. This is not a problem, however, because all

code added to the generated code is retained as long as the new code is outside of the
guard comments. This subject is explained in the following section, “Retaining Edits”

on page 346.

Retaining Edits

The sample code above contains the following section:

/**

* The constructor method for MyScrolledText_c

*/

// Private: constructor Sun WorkShop Visual-generated code - do not
edit >>>

public MyScrolledText_c()  {

}

// Private: constructor <<< Sun WorkShop Visual-generated code ends.



Chapter 10 Designing for Java 347

This section contains a number of comments and illustrates how comments are used

to retain any code you add. The first comment is for your information only. The

second and third, however, are special. Any comment which begins “// Private: ...”

- do not edit” indicates that the following lines must be left as they are. There is a

corresponding “//Private: ... ends” which indicates the end of a section to be left

untouched.

Any code or comment that you add outside of the special comments detailed above,

will be retained when the file is regenerated. This means, for example, that you can

add code to callback methods which will always remain.

Javadoc

Along with the Java compiler and interpreter you also have javadoc, an automatic

documentation tool. Javadoc looks at .java files, parses the declarations and

comments beginning with “/**” and produces HTML pages detailing the chain of

class inheritance and all the public fields in a class along with any extra information

contained in the special comments. The special comment mechanism is there for you

to add to the documentation that javadoc creates. Code generated by Sun WorkShop

Visual includes some basic information for Javadoc.

Moving Sun WorkShop Visual Designs
to Visaj

Sun WorkShop Visual allows you to import your Sun WorkShop Visual designs into

Visaj, the Java development tool. This gives you the ability to move your legacy

Motif C/C++ designs quickly to Java.

You can, of course, use Sun WorkShop Visual’s Java code generation facility to

convert your design to Java. This would allow you to maintain a common code base

covering Java, C/C++ for Motif and MFC for Microsoft Windows. If, however, you

intend to use Java only, you may wish to move on to Visaj, IST’s visual application

builder for Java.

Moving your design from Sun WorkShop Visual to Visaj is simple and involves only

the following steps:

■ Save the design in a special format using Sun WorkShop Visual’s Save As dialog.

■ Load the file using Visaj’s Import dialog.

This section describes how to achieve this from both sides - Sun WorkShop Visual

and Visaj. The section ends with some troubleshooting hints.



348 Sun WorkShop Visual User’s Guide • May 2000

From Sun WorkShop Visual

To save a file for Visaj, select ‘Save as...’ from the File menu and then select ‘Visaj

bridge format’ from the ‘Save format’ option menu.

Specify a filename and press “OK”. This name will not be used as the default

filename for your design.

If the design is not Java 1.1-compliant, the compliance dialog appears. This is the

same dialog displayed when you generate Java form a non-compliant design. Fix the

errors and try saving again.

As the file is generated, windows may flash up on the screen.

To Visaj

The Import pullright menu in the File menu contains the item “X-Designer bridge

file” (X-Designer and Workshop Visual save files are fully compatible). When this is

selected, a file dialog appears. Type the name of the file saved from Sun WorkShop

Visual.

If you have used a feature in Sun WorkShop Visual which has no equivalent in the

version of Visaj which you are using1, a dialog is displayed describing what has

been found. The possible items in this dialog are as follows:

One or more classes were expanded into simple component
hierarchies

In Sun WorkShop Visual, you can make any component a class. In Visaj, classes are

separate hierarchies in different designs. To use them together in a design:

1. Generate code for each class.

2. Compile the code.

3. Add the compiled classes to the palette as beans.

4. Use the newly added beans in a larger design.

This method of conversion from Sun WorkShop Visual to Visaj allows you greater

control of the way classes are used than if Sun WorkShop Visual made those

decisions for you.

1. This applies to version 2.0 of Visaj.



Chapter 10 Designing for Java 349

While importing, Visaj “expands” classes. You can, of course, refine this by cutting

subhierarchies and pasting them into new Visaj designs after importing the design.

One or more frames were moved into their own classes

Visaj supports one frame per class. If your design contains multiple application

shells or top-level shells, it is converted into several Visaj class files - one for each

shell.

Dialogs, by contrast, are all reparented to the application shell (or a top-level shell if

there is no application shell). However, if there is no application shell and there are

no top-level shells, but if there are multiple dialogs, then each dialog is placed into

its own class.

String/font/color objects in your design were expanded into
simple property settings

Visaj has no equivalent to these objects, so all references to objects are expanded into

simple resource values. For example, if you have a label myLabel whose text is

<myObject>, where <myObject> is a string object with the value “Hello”, then after

import, myLabel has the text “Hello”, and <myObject> is no longer used.

All XmForms in the design were changed to absolute
positioning using a null layout

In Visaj, there is no layout manager com.pacist.mwt.FormLayoutManager .

Components whose layout is controlled by this manager are positioned absolutely as

a result.

Note – You are recommended to change your design to use one of the Java layout

managers.

After Import

Once imported into Visaj, your design reflects exactly the Motif design in Sun

WorkShop Visual. This is the same as if you had generated Java code directly except

that, with Visaj, you can continue your Java application development.



350 Sun WorkShop Visual User’s Guide • May 2000

Motif Widgets to Java Classes - the MWT
Library

You may design your application user interface using Sun WorkShop Visual on a

Motif-based application and then generate both C/C++ code for Motif and Java

code. Sun WorkShop Visual allows you to do this by providing a library of Java

classes, called the MWT, which map Motif widgets to Java classes. Some Motif

widgets have a direct counterpart in Java, others do not. Where there is no clear

mapping, the MWT library attempts to mimic the Motif widget using available Java

classes. The following table lists the Motif widgets available on Sun WorkShop

Visual’s widget palette and show which Java or MWT class is being used in the Java

code generated.

Note that if you are generating Swing, Sun WorkShop Visual tries to map the Motif

widgets to Swing components and if it cannot, uses a separate MWT library

specifically for Swing components. This is detailed in the following section,

“Mapping Motif Widgets to Swing Components” on page 353.

TABLE 10-1 Mapping of Motif Widgets to Java Components

Motif Widget Java Component

Shell If the Shell is set to be an application shell or top level shell, it

is mapped to the Java Frame class. If it is set to be a dialog

shell, it is mapped to the Java Dialog class. If, however, the

child of the shell is a FileSelectionBox, then both the shell and

the FileSelection box are mapped to the one Java FileDialog

class.

MessageBox The MessageBox widget can be mapped to three different Java

classes according to the value of the XmNdialogType resource,

which can be set in the Settings page of the MessageBox

resource panel. The three mappings are: The dialog type is set

to Error, Information, Question, Warning or Working. In these

cases the widget is mapped to the IconMessagePanel class

which is part of the MWT library. The dialog type is set to

Message. In this case the widget is mapped to the

MessagePanel class which is part of the MWT library. The

dialog type is set to Template. In this case the widget is

mapped to the Java Panel class combined with the

DialogTemplateLayout class from the MWT library.



Chapter 10 Designing for Java 351

MainWindow The MainWindow widget is, essentially, a composite widget

with particular resource settings. To mimic this Sun WorkShop

Visual maps the MainWindow to various combinations of

Panel and BorderLayout classes according to which resources

have been set on the MainWindow and the number of children

it has.

DrawingArea The DrawingArea widget maps to the Java Panel class

combined with the DrawingAreaLayout from the MWT

library.

DialogTemplate The DialogTemplate widget maps to the Java Panel class

combined with the DialogTemplateLayout class from the

MWT.

MenuBar This maps to the Java MenuBar class.

BulletinBoard The BulletinBoard widget is mapped internally to the Java

Panel class combined with the BulletinBoardLayout class from

the MWT library.

Command This is mapped to the CommandPanel class from the MWT

library.

Menu The Menu widget is mapped to the Java Menu class. Note that

this is a Pulldown menu - Popup menus are not mapped to a

Java class.

Form The Form widget maps to the Java Panel class combined with

the FormLayoutManager class from the MWT library.

SelectionPrompt The SelectionPrompt widget is based on the SelectionPanel

class from the MWT library. To differentiate this widget from

the SelectionBox, which also maps to the SelectionPanel class,

internal class methods are called.

RadioBox This widget maps to the Java Panel class combined with the

Java CheckBoxGroup class and a layout manager.

PanedWindow The PanedWindow widget maps to a Java Panel class

combined with the PanedWindowLayout class from the MWT

library.

SelectionBox This maps to the SelectionPanel class from the MWT library.

RowColumn The RowColumn widget maps to the Java Panel class

combined with the ColumnPackedRCLayout class or the

TightPackedRCLayout class (both from the MWT library)

according to whether the packing resource has been set to

“Column” or “Tight” respectively.

TABLE 10-1 Mapping of Motif Widgets to Java Components (Continued)

Motif Widget Java Component



352 Sun WorkShop Visual User’s Guide • May 2000

ScrolledWindow If the scrolling policy resource for the ScrolledWindow is set to

“Automatic”, the widget is mapped to the ScrolledPanel class

from the MWT library. If the scrolling policy is not set to

“Automatic”, the widget is mapped to the ScrollablePanel

class, also from the MWT library.

FileSelection The FileSelection widget maps to the Java FileDialog class.

Since the Java class is a dialog, the Shell parent of the

FileSelection widget is included in this mapping; both widgets

become the one Java class.

Label If the label type resource is set to “Pixmap”, the widget is

mapped to the ImageArea class from the MWT library.

Otherwise, the Label widget is mapped to the Java Label class.

CascadeButton This widget is not mapped at all. The label string resource of

this widget becomes a resource of its Menu child.

TextField This is mapped to the Java TextField class.

PushButton If the label type resource is set to “Pixmap”, the widget is

mapped to the ImageButton class from the MWT library.

Otherwise, the mapping of the PushButton widget is

dependent on whether it is in a menu or not. If the

PushButton is not in a menu, it is mapped to the Java Button

class. If it is in a Pulldown menu, it is mapped to the

MenuItem class. If the PushButton widget is in an

OptionMenu, the label string resource is retained as a resource

of the parent Choice class.

OptionMenu If the Label widget of the OptionMenu has a label string

resource set, then the OptionMenu is mapped to the Panel

class with one Label and one Choice as its children combined

with the FlowLayout class. If, however, the Label child of the

OptionMenu has no label string set, then the OptionMenu is

mapped to the Choice widget. All of these widgets are from

the standard Java classes.

Text The Text widget is mapped to the Java TextArea class.

ToggleButton If the ToggleButton widget is not in a menu, it is mapped to

the Java CheckBox class. If it is in a menu, it is mapped to the

Java CheckBoxMenuItem class.

Separator If the Separator widget is in a menu, it is mapped to the Java

MenuItem class with its label set to dash (-). If the Separator is

not in a menu, it is mapped to the Separator class from the

MWT library.

ScrolledText The ScrolledText widget is mapped to the Java TextArea class.

TABLE 10-1 Mapping of Motif Widgets to Java Components (Continued)

Motif Widget Java Component



Chapter 10 Designing for Java 353

Mapping Motif Widgets to Swing
Components

When you generate your Motif design as Java code using Swing components, Sun

WorkShop Visual tries to map each Motif widget in your design to a Swing

component. If no clear counterpart can be found, Sun WorkShop Visual uses its own

MWT library to “mimic” a Swing component and generate code for the widget. The

table below illustrates how each Motif widget is mapped.

DrawnButton The DrawnButton widget is mapped to the ImageButton class

from the MWT library.

Scale If the Scale widget has no children it is mapped to the Scale

class from the MWT library. If it does have children, it is

mapped to the ScalePanel class, also from the MWT library.

List The List widget is mapped to the Java List class.

ArrowButton The ArrowButton widget is mapped to the ArrowButton class

from the MWT library.

ScrollBar The ScrollBar widget maps to the Java ScrollBar class.

ScrolledList The ScrolledList widget maps to the Java List class.

TABLE 10-2 How Each Motif Widget is Mapped for Swing Generation

Motif Widget Swing Mapping

Shell If the Shell is set to be an application shell or top level shell, it

is mapped to a JFrame component. If it is set to be a dialog

shell, it is mapped to a JDialog component.

MessageBox The MessageBox widget can be mapped to two different Java

classes according to the value of the XmNdialogType resource,

which can be set in the Settings page of the MessageBox

resource panel.

When the dialog type is set to Error, Information, Question,

Warning or Working, the widget is mapped to the

IconMessagePanel class which is part of the MWT library.

When the dialog type is set to Message, the widget is mapped

to the MessagePanel class which is part of the MWT library.

TABLE 10-1 Mapping of Motif Widgets to Java Components (Continued)

Motif Widget Java Component



354 Sun WorkShop Visual User’s Guide • May 2000

MainWindow This maps to the JPanel component.

DrawingArea The DrawingArea widget maps to a JPanel component.

DialogTemplate The DialogTemplate widget maps to a JPanel component.

MenuBar This maps to a JMenuBar component.

BulletinBoard The BulletinBoard widget is mapped to a JPanel component.

Command This is mapped to the CommandPanel class from the MWT

library.

Menu The pulldown Menu widget is mapped to a JMenu

component. Popup menus are mapped to the JPopupMenu

component.

Form The Form widget maps to a JPanel component.

SelectionPrompt The SelectionPrompt widget is based on the SelectionPanel

class from the MWT library.

RadioBox This widget maps to a JPanel component.

PanedWindow The PanedWindow widget maps to a JSplitPane component if

it has no more than two children. If it has, then it simply maps

to a JPanel.

SelectionBox This maps to the SelectionPanel class from the MWT library

unless the XmNdialogType resource is set to “command” in

which case it is mapped to the CommandPanel class from the

MWT library.

RowColumn The RowColumn widget maps to a JPanel component unless

its XmNrowColumnType resource is set to:

- “menu bar” in which case it becomes a JMenuBar

- “menu pulldown” in which case it becomes a JMenu

- “menu popup” in which case it becomes a JPopupMenu

- “menu option” in which case it becomes a JComboBox.

ScrolledWindow If the scrolling policy resource for the ScrolledWindow is set to

“Automatic”, the widget is mapped to a JScrollPane

component. If the scrolling policy is not set to “Automatic”,

the widget is mapped to the ScrollablePanel class from the

MWT library.

FileSelection The FileSelection widget maps to a JFileChooser component.

Label The Label widget is mapped to a JLabel component.

CascadeButton If the parent of this widget is either a menubar or a pulldown

menu, this widget is not mapped at all because the parent

widget is mapped to a suitable component. If the parent is

neither of these, this widget is mapped to a JLabel component.

TABLE 10-2 How Each Motif Widget is Mapped for Swing Generation (Continued)

Motif Widget Swing Mapping



Chapter 10 Designing for Java 355

TextField This is mapped to a JTextField component.

PushButton If the parent of this widget is a pulldown menu, the widget is

mapped to a JMenuItem component. Otherwise it is mapped

to a JButton.

OptionMenu If the Label widget of the OptionMenu has a label string

resource set, then the OptionMenu is mapped to a JPanel

component. If, however, the Label child of the OptionMenu

has no label string set, then the OptionMenu is mapped to a

JComboBox component.

Text The Text widget is mapped to a JTextArea component.

ToggleButton If the ToggleButton widget is the child of a pulldown menu, it

is mapped to a JCheckBoxMenuItem component. If it is the

child of a radiobox widget or a rowcolumn widget with the

radio enabled resource set to true, then it is mapped to a

JRadioButton. If none of the above is true, it is mapped to a

JCheckBox component.

Separator If the Separator widget is in a menu, it is mapped to a

JMenuItem component. Otherwise, it is mapped to a

JSeparator component.

ScrolledText The ScrolledText widget is mapped to a JScrollPane

component with a JTextArea underneath.

DrawnButton The DrawnButton widget is mapped to a JButton component.

Scale This is mapped to a JSlider component.

List The List widget is mapped to a JList component.

ArrowButton The ArrowButton widget is mapped to the ArrowButton class

from the MWT library.

ScrollBar The ScrollBar widget maps to a JScrollBar component.

ScrolledList The ScrolledList widget maps to a JScrollPane component with

a JList underneath.

TABLE 10-2 How Each Motif Widget is Mapped for Swing Generation (Continued)

Motif Widget Swing Mapping



356 Sun WorkShop Visual User’s Guide • May 2000



357

CHAPTER 11

Designing for Microsoft Windows

Introduction

This chapter describes how you can use Sun WorkShop Visual to design applications

to run under Microsoft Windows. Sun WorkShop Visual generates MFC (Microsoft

Foundation Classes) code for your design which is then directly portable to

Microsoft Windows. This chapter covers the following areas:

1. Generating the Application - a brief description of the three flavors of C++ code

generation and the option of generating dialog template files. This starts on

page 359.

2. Starting in Microsoft Windows Mode - how to run Sun WorkShop Visual so that

it checks your design for its suitability for MFC code generation. See page 360.

3. The Sun WorkShop Visual Window - a description of the visual differences you

can see when running Sun WorkShop Visual for creating Windows designs. See

page 361.

4. Microsoft Windows Compliance - details of the checking Sun WorkShop Visual

does to make sure that your design is suitable for generating as a Windows

application, starting on page 363.

5. Compliance Failure - what happens, and what to do, when an imported design

fails the Windows compliance check. See page 369.

6. Using Links - how to use Links in designs for Microsoft Windows. See page 372.



358 Sun WorkShop Visual User’s Guide • May 2000

7. Special notes for particular widgets and resource types - what to bear in mind

when using the following:

a. Manager Widgets and Layout (page 373).

b. Fonts (page 375).

c. Pixmaps, Bitmaps, and Icons (page 376).

d. Colors (page 377).

e. DrawingAreas (page 381).

8. Using Third Party Widgets - how to use third party widgets (or user widgets) in

your Microsoft Windows design. See page 377.

9. Method Declarations - how to control where methods are declared in the

generated MFC code. See page 380.

10. Application Class - how to change the generation of CWinApp in the MFC code.

See page 383.

11. File names - a note on some points you should bear in mind when naming files

to be ported to Microsoft Windows. See page 384.

12. Code Generation - a description of the code generated for Microsoft Windows,

starting on page 385.

13. Configuring Sun WorkShop Visual - a description of the resources relevant to

creating designs for Microsoft Windows. See page 388.

Chapter 12 ”Creating a Microsoft Windows and Motif Application“ provides step-

by-step instructions for creating a Windows-compatible design and generating the

MFC code for it. Following this tutorial would give you a detailed insight into the

use of Sun WorkShop Visual for creating Windows applications.

Prerequisites

This chapter makes certain assumptions about your knowledge of Sun WorkShop

Visual. It is assumed that you understand structured code generation, as described

in “Structured Code Generation” on page 249 and that you are comfortable with the

idea of generating C++ code. “C++ Classes” on page 254 provides information on

C++ in Sun WorkShop Visual.

You may wish to follow the tutorial in Chapter 9 ”C++ Code Tutorial“ to gain

experience with the generation of C++ code.



Chapter 11 Designing for Microsoft Windows 359

Generating the Application

The best way to develop an application which is to be ported to different platforms

is to encapsulate the platform specific parts in some way so that the body of the

application is isolated from the implementation details. Sun WorkShop Visual uses

its C++ code structuring capabilities to generate a set of classes for the user interface

that have the same public interface, but two different implementations. In Sun

WorkShop Visual these implementations are known as flavors. There are three flavors

of C++ code that can be generated:

1. Motif – The “vanilla” flavor is the same as generating C++ code when not using

the Windows-aware version of Sun WorkShop Visual. The base classes are a very

simple set provided, with source, with the Sun WorkShop Visual release.

2. Microsoft Windows MFC – The target base classes on the Microsoft Windows

platform are the Microsoft Foundation Classes. These provide a fairly high level

set of controls and functions which can be used to build user interfaces.

3. Motif XP – A set of base classes supplied with source as part of the Sun WorkShop

Visual release. They are very similar to the Motif flavor base classes except that

they are named to match the Microsoft Foundation Classes and provide a little of

the basic functionality. They are not intended to provide the whole of the MFC

interface, only enough to allow the developer some measure of shared code in the

user interface. The real goal is in sharing code in the rest of the application.

Using Dialog Templates

When you generate code for Microsoft Windows using MFC, you are given the

choice of:

1. Generating the dialogs in your design as dialog templates, which are Microsoft

Windows resource files describing the dialog.

2. Generating the design in MFC code.

For the first option above, Sun WorkShop Visual generates some MFC code to fetch

widgets out of the dialog templates and to control the dialogs, thereby generating a

complete application.

● To generate dialogs as resource files, set the “Generate as Resources” toggle in the
Code Options dialog.

If the “Generate as Resources” toggle is not set, plain MFC is generated for your

design. By default, the toggle is set.



360 Sun WorkShop Visual User’s Guide • May 2000

The full capabilities of Sun WorkShop Visual’s C++ model can still be used for MFC

applications. This means that you can use sub-classing and inheritance to add

additional functionality. These techniques can be used, for example, to support cross

platform versions of your user-defined widgets.

Starting in Microsoft Windows Mode

There are three methods of invoking Sun WorkShop Visual so that it is running in

Microsoft Windows mode. Select the method which suits you best, bearing in mind

that you may have to share your copy of Sun WorkShop Visual with other users who

do not want to run Sun WorkShop Visual in Microsoft Windows mode.

The Resource File

Microsoft Windows mode can be specified by a resource in the file containing your

Sun WorkShop Visual application resources:

visu.windows:true

The Command Line Switch

Microsoft Windows mode can also be specified by a command line switch when

invoking Sun WorkShop Visual:

visu -windows

Separate Version of Sun WorkShop Visual

The third method of invoking Sun WorkShop Visual in Microsoft Windows mode

gives the appearance of a separate application which is always in Microsoft

Windows mode. This method uses the application resource, described above.

1. Create a hard link to your Sun WorkShop Visual shell script in the $VISUROOT/
bin directory.

2. Give this file a name such as visuwin .

3. Create a hard link to your Sun WorkShop Visual binary in the $VISUROOT/lib
directory. Use the same file name as in Step 2.



Chapter 11 Designing for Microsoft Windows 361

4. Add the windows flag to the .Xdefaults file in your home directory, using the
name of your symbolic link, as follows:

visuwin.windows:true

In this way, you can simply type

visuwin

This will invoke Sun WorkShop Visual in Microsoft Windows mode. Other people

can then continue to use Sun WorkShop Visual safe in the knowledge that the

default will not be Microsoft Windows mode.

Note – This is the technique that Sun WorkShop Visual uses to bring up the version

for smaller screens - such as the VGA screen. The program small_visu is nothing

more than a hard link to the Sun WorkShop Visual binary which picks up an

alternative set of resources from the Sun WorkShop Visual resource file.

The Sun WorkShop Visual Window

The Sun WorkShop Visual Window looks slightly different when in Microsoft

Windows mode. The main differences are the addition of two items in the toolbar at

the top (and in corresponding menus) and the fact that some of the widgets are not

included in the widget palette. This second point is dealt with in “Microsoft

Windows Compliance” on page 363. The first set of differences is described here.

Microsoft Windows Compliant Toggles

There are two Microsoft Windows Compliant toggles - one on the toolbar and one in

the Module menu. They both have the same function.



362 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 11-1 The Compliance Buttons in the Toolbar (left) and the Module Menu (right)

These toggles indicate whether or not the current design is Microsoft Windows

compliant. If you read in a design created with a version of Sun WorkShop Visual

not in Microsoft Windows mode or you cut and paste areas of a compliant hierarchy,

it is possible to create structures which are not Microsoft Windows compliant.

In such a case a message is displayed informing you where the problem is and the

two Microsoft Windows Compliant toggles are unset. The toolbar toggle displays a

red cross when it is unset. Having made the appropriate changes to your design,

pressing either of these toggles will check the compliance again. If your design is

now Microsoft Windows compliant, the toolbar button will be set (the red cross will

disappear). If not an error message will appear indicating the problem and the

toggles will remain unset.

The Flavor Menu

The flavor menu in the toolbar specifies which flavor of code you wish to generate:

plain Motif, Motif XP or Microsoft Windows. This only applies to C++ code

generation.

FIGURE 11-2 The Flavor Menu in the Toolbar

Design is not compliant Design is compliant



Chapter 11 Designing for Microsoft Windows 363

Visual Compliance Indicators

In addition to the compliance issues which prevent code from being generated for

Microsoft Windows, there are many attributes of a design which have no effect in the

Microsoft Windows implementation (for example the alignment of a label on a

button), because the Microsoft Windows toolkit does not support the concept. Sun

WorkShop Visual indicates this by means of the following:

1. Icon Cues. In the resource panels, those resources which have no effect on

Microsoft Windows are indicated with a cross icon, those that do have an effect

are indicated with a tick icon.

2. Color Cue. By default, text input fields and option menus in the resource panels

use a pink color to indicate that setting the resource will have no effect in the

Microsoft Windows flavor.1

If the variable name field of the selected widget is pink1, this indicates that the

widget will not map to any equivalent Microsoft Windows object. For instance, in

Microsoft Windows a menubar is simply an attribute of a Dialog, there is no

menubar object. Consequently Sun WorkShop Visual will show the variable name

pink for menubar widgets.

Sun WorkShop Visual will also use this technique to indicate that some links will not

be reproduced in the Microsoft Windows code. Links are discussed in more detail in

“Using Links” on page 372.

Microsoft Windows Compliance

Unfortunately for the user interface developer, the Motif and X toolkits bear little

resemblance to the Microsoft Windows toolkit. Although the visual appearance is

similar, the actual use of the toolkit is very different. This requires Sun WorkShop

Visual to impose some restrictions on the developer before Microsoft Windows code

can be generated for a design. Sun WorkShop Visual will impose these restrictions

when it is in Microsoft Windows mode. When Sun WorkShop Visual is in Microsoft

Windows mode it needs to permit the developer to work on designs which do not

comply with these restrictions (so that an existing design can be read in for

example). As a result Sun WorkShop Visual will check that a design is Microsoft
Windows compliant. If a design is not Microsoft Windows compliant then C++ code

can only be generated for the Motif flavor.

1. Pinking is only discernible on a color display.



364 Sun WorkShop Visual User’s Guide • May 2000

This section details the restrictions imposed by Sun WorkShop Visual which ensure

that Microsoft Windows compliant code can be generated. When in Microsoft

Windows mode Sun WorkShop Visual will not allow you to create a design which

violates these restrictions.

Structure Restrictions

Because of the differences between Motif and Microsoft Windows in the way events

are handled, some widgets cannot be made classes. In Microsoft Windows, events

concerning certain widgets are always sent to the enclosing class. Other widgets

must be classes in order to handle Microsoft Windows messages. Here is a list of

these restrictions:

■ Cannot be class

■ MenuBar

■ PopupMenu

■ CascadeButton

■ OptionMenu

■ Any widget which is the child of a Shell

■ Must be class

■ Shells

■ ScrolledWindow (unless child of Shell)

■ Frame

■ RadioBox, unless the child of a Frame

■ DrawingArea (unless child of MainWindow, ScrolledWindow or Shell)

■ Paned Window

■ Child of Paned Window

The first error you are likely to encounter on reading a non-compliant design is the

fact that the Shell must be structured as a C++ class. This error is easy to fix and can

be done automatically from the Compliance Failure dialog. See “Compliance

Failure” on page 369 for more details.

C Structures

Sun WorkShop Visual does not support the Function or Data Structure options in a

compliant design.



Chapter 11 Designing for Microsoft Windows 365

Classes and Callbacks

Structural errors can be considerably more complicated if you have a design which

is well-structured, making good use of C++ classes and with callback methods

scattered among the child widgets. The following example demonstrates how this

problem may occur and how to overcome it.

Example

When a widget is given a callback method, the method is declared in the enclosing

class. In the following example, while using a version of Sun WorkShop Visual

which was not in Microsoft Windows mode, the MenuBar, MBar_class, was declared

a class and the button given a callback method:

FIGURE 11-3 Non-Compliant Hierarchy

The method is declared in MBar_class. If you then read the design into a version of

Sun WorkShop Visual in Microsoft Windows mode, you will be presented with the

following error message because MenuBars cannot be classes:



366 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 11-4 Error Message Showing Non-Compliance

If you remove the class definition of the MenuBar (using the Core Resources dialog),

you will then see the following error message:

FIGURE 11-5 Message Informing of Method Callback Declaration Invalidation

Make sure that the method declarations are removed from the MenuBar and, in this

case, added to the Shell by either pressing the “Declare all” button or selecting

“active_button” in the list and pressing “Declare”. You cannot add them to the Form

because the Form, like the MenuBar, does not map to an object on Microsoft

Windows.



Chapter 11 Designing for Microsoft Windows 367

Although Sun WorkShop Visual assists you in the above way, changing whether a

widget is a class or not could have a major impact on your application. You will

need to reconsider the structure of your application very carefully.

Menubar Restrictions

Menubars in Microsoft Windows are created by setting an attribute of the Dialog.

This leads to two compliance restrictions:

■ Only one Menubar per shell is supported. You cannot have a design which

contains more than one Menubar in a Dialog

■ The Menubar parent must be the child of the Shell. A Menubar cannot be an

immediate child of a Shell, nor can it be at a deeper level in the widget hierarchy

than as a child of the Shell’s child

FileSelectionBox

The File Selection Box must be a child of a DialogShell or TopLevelShell. In

Microsoft Windows file selection is provided by a pre-defined FileSelection Dialog.

This dialog can only contain a single work area child, it cannot support a Menubar,

nor additional buttons (not managed by the work area).

Unsupported Widgets

The following widgets have no comparable control in Microsoft Windows and so

cannot be used in a design that is to be portable:

■ SelectionBox

■ Command

■ MessageBox

■ SelectionPrompt

■ DrawnButton

■ ArrowButton

All but the last two buttons, however, can be emulated using the Dialog Template

widget, which is supported as a Windows control.



368 Sun WorkShop Visual User’s Guide • May 2000

Scale

The Scale widget maps to a Microsoft Windows ScrollBar control which cannot

support child controls. Therefore a Scale widget with children violates the Microsoft

Windows compliance restrictions.

Frame and RadioBox

Because of the way messages are passed to an enclosing control, both Frame and

RadioBox (if not the child of a Frame) have to be classes. However, as the child of a

Shell cannot be a class, it follows that neither Frame nor RadioBox can be the

immediate child of a Shell.

The second child of a Frame must be a Label widget - this is the title of the Frame.

The Frame control in Microsoft Windows (actually a CButton in disguise) simply has

a title attribute. There is no way to use another control as the title. The first child can

be any widget.

MainWindow and ScrolledWindow

Microsoft Windows does not support automatic scrolling and hence Sun WorkShop

Visual in Microsoft Windows mode disables automatic scrolling options. The

MainWindow widget may only include a work area and Menubar child. It does not

support the command window or message window.

Paned Windows

A compliant design cannot contain a Paned Window which has Separator,

MainWindow, OptionMenu, or MenuBar children. Neither may the children be

definitions or instances.

Definitions

The XmNlabelType resource cannot be explicitly set for a widget which is a

component of a definition when it is instantiated in another design. If a Button does

not have XmNlabelType set in a definition then when that definition is used

XmNlabelType cannot be set to PIXMAP. This is because Microsoft Windows uses a



Chapter 11 Designing for Microsoft Windows 369

different class (CBitmapButton instead of CButton) to implement a button with a

bitmap on it. It is obviously not possible to change the class of a variable after it has

been created, hence the restriction.

For the same reason it is not possible to have a CascadeButton in a definition which

has no Pulldown menu and to then add the Pulldown in an instance.

You cannot make the child of a shell widget the root of a definition because you

cannot make the child of a shell a C++ class, as explained in “Structure Restrictions”

on page 364. To overcome this restriction, simply add a “dummy” container between

the shell and the widget you wish to use as the root of your definition.

Slightly more subtly, it is not possible to have a widget with methods added to an

instance which is not being sub-classed. For example, if you have an instance of a

RowColumn definition, and the root widget (i.e. the RowColumn) does not have its

structure set to class. When not in Microsoft Windows mode it is possible to add a

button to the RowColumn instance and give it a method callback which is declared

in an enclosing scope (say a Shell class). This is not possible in Microsoft Windows;

the event has to be handled by the enclosing control (in this case the CWnd which

represents the RowColumn).

The widgets in a definition must be named. This is a requirement for all C++

definitions, not just those destined for use under Microsoft Windows.

Compliance Failure

When you read in a design which was created by Sun WorkShop Visual while not in

Microsoft Windows mode or you use cut and paste in such a way as to cause a

design to become non-compliant, the Compliance Failure dialog appears showing

you which widgets are causing the design to be non-compliant.



370 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 11-6 The Compliance Failure Dialog

You can select the widgets in the scrolled list of non-compliant widgets. You may

then press one of the following buttons:

■ Go to – This highlights the widget in your design. If the widget is part of a dialog

which is not the current one, the relevant dialog is selected. If the widget is in a

part of the design which is folded, the design is unfolded. Double-clicking on a

widget is the same as pressing Go to. For structure problems, Sun WorkShop

Visual will also open the Core resources dialog on the Code Generation page.

■ Next – This moves to the next widget in the list and selects the widget in the

hierarchy.

■ Fix – This fixes the problem, where possible. Sun WorkShop Visual can only fix

those errors connected with the structure of a widget. Other errors cannot be fixed

automatically. See “Microsoft Windows Compliance” on page 363 for a list of the

possible compliance errors.

Example

This example shows how compliance failure is detected. In the hierarchy shown in

Figure 11-7, the RowColumn widget rc_is_class has been made a class:



Chapter 11 Designing for Microsoft Windows 371

FIGURE 11-7 RowColumn Defined as Class

If you were to cut rc_is_class, clear the form and then paste (i.e. pasting rc_is_class as

a child of shell), Sun WorkShop Visual would mark the design as non-compliant and

display the Compliance Failure Dialog shown in Figure 11-8 indicating that the child

of a shell may not be a class:

FIGURE 11-8 Error When Pasting a Class as Child of Shell

Sun WorkShop Visual allows you to continue with the operation but until you

change the structure of rc_is_class, you will have a design which is not Microsoft

Windows compliant. The Microsoft Windows compliant toggle in the toolbar

displays a red cross to remind you.



372 Sun WorkShop Visual User’s Guide • May 2000

Using Links

In the Motif flavors links are pre-defined callbacks. In the Microsoft Windows flavor

they are implemented as simple global functions which are called by a button’s

message handler. There are, however, some restrictions on how links can be used on

Microsoft Windows. These restrictions only affect whether code is generated for a

link, they do not affect the design’s compliance.

Destination Widget Not an Object on Microsoft

Windows

If the widget selected as the destination of a link is not mapped to an object on

Microsoft Windows, the Add button in the Edit Links dialog is pink. The link can

still be added and will be effective on Motif but it will not be generated into the

Microsoft Windows code. To indicate this, the widget in the list of links is pink. See

“Mapping Motif Widgets to Microsoft Windows” on page 782 for more information

on which widgets are mapped to Microsoft Windows objects.

Buttons in Menus as Link Destinations

When adding a link where the destination widget is a PushButton in a Menu, the

type of link is restricted to enable and disable. You cannot show, hide, manage or

unmanage a Menu Button on Microsoft Windows.

File Selection Dialog as Link Destination

FileSelectionBox is implemented on Microsoft Windows as a CFileDialog, a modal

dialog which is shown by calling the DoModal method. This method does not return

until the FileSelection is complete or cancelled. On Microsoft Windows, therefore,

only the show link is supported. For both MFC and Motif XP flavors the code is

structured so that the DoModal method does not return until the selection is

complete or cancelled.



Chapter 11 Designing for Microsoft Windows 373

Manager Widgets and Layout

The Motif manager widgets have no equivalents on Microsoft Windows. Widgets

such as Forms and RowColumns do not exist on Microsoft Windows. If you have

one of these in your design which is not a class, it is ignored in the generated code.

If it is a class, Sun WorkShop Visual generates a Canvas in its place.

If you are generating dialog templates from your design, most manager widgets are

ignored because dialog templates tend to be flat. They do not use the containment

hierarchy that is common on Motif. Your design, therefore, is flattened out in the

template files. Widgets are taken out of sub-containers and made children of the

dialog. This also enables system resources to be used throughout the design.

If you choose to generate your design into Windows resource files (or dialog

templates) along with the main application code, you will be able to make

adjustments to the layout using your Microsoft Windows IDE (Integrated

Development Environment). These changes cannot be taken back into Sun

WorkShop Visual but they do allow you to make quick, simple adjustments right

where they are needed.

If you do not wish to generate dialog templates, Sun WorkShop Visual generates

code containing absolute values for sizes and positions as they are at the moment of

generation. So, for example, if you have a PushButton that is 100 pixels wide, 30

pixels high and is located at 10, 200 then those explicit values will be used in the

Microsoft Windows code, even though you have not explicitly set the x, y, width and

height resources but allowed them to be calculated by the Motif toolkit. In practice

this gives very good results - generating Microsoft Windows dialogs which look

very similar to their Motif counterparts.

Fonts and Appearance

Because Sun WorkShop Visual is generating an absolute size for a Microsoft

Windows control, it is important that the size of a dialog is appropriate for any font

that will be used for text displayed in it. The best way to ensure this is to make Sun

WorkShop Visual use a similarly sized font to display the dialog while it is being

designed. There are two ways to do this.

The first way is to force the control to use a particular sized font, perhaps by setting

the XmNfontList resource for the control or by setting the appropriate font resource

on the shell. Consequently the dialogs will be similarly sized.

Alternatively use a resource so that Sun WorkShop Visual displays the design

windows with a font that approximates to the default font used on Microsoft

Windows. This will cause Sun WorkShop Visual to generate absolute sizes that are



374 Sun WorkShop Visual User’s Guide • May 2000

appropriate to the font. The Motif code will use a default font in the normal way. To

make Sun WorkShop Visual use a specific font for the design on Microsoft Windows,

use settings similar to the following in your resource file:

visu*dialog.labelFontList:\
-adobe-helvetica-medium-r-normal-*-14-*-*-*-*-77-iso8859-1

visu*dialog.buttonFontList:\
-adobe-helvetica-medium-r-normal-*-14-*-*-*-*-77-iso8859-1

visu*dialog.textFontList:\
-adobe-helvetica-medium-r-normal-*-14-*-*-*-*-77-iso8859-1

These values may work well for you, but it will depend on the precise font used on

your Microsoft Windows system. It is the size and average width values which are

important.

Resize Behavior

In Microsoft Windows mode, Sun WorkShop Visual generates OnSize message

handlers to provide some resize behavior when the user resizes a dialog. Sun

WorkShop Visual does not attempt to reproduce exactly the Motif geometry

management, rather it generates a handler which will simulate the resize behavior of

certain manager widgets. In particular, these are:

■ ScrolledWindow

■ Form

■ Frame

■ DialogTemplate

These managers do not need to be classes in order to produce the resize behavior;

Sun WorkShop Visual generates a handler for the enclosing class that handles all

descendant widgets. You can suppress the generation of the resize handler if you

want to provide your own (through a sub class for example), by unsetting the MFC

OnSize handler toggle on the Code generation page of the Core resources dialog. See

Figure 11-9.



Chapter 11 Designing for Microsoft Windows 375

FIGURE 11-9 The Core Resources Dialog - Code Generation Page

Fonts

In order for a font to be generated into the Microsoft Windows code you must use font
objects. This is because fonts must be persistent on Microsoft Windows. Only by

using font objects can you guarantee this. Sun WorkShop Visual provides a visual

cue by making the Apply button pink if you select an item from the list of fonts in

the font selection dialog. If, however, you select an item from the list of font objects,

the Apply button is no longer pink.



376 Sun WorkShop Visual User’s Guide • May 2000

Fontlists and Compound Strings

If you specify fontlists for your objects in Sun WorkShop Visual, the first font in the

list will be used for the object on Microsoft Windows. Compound strings containing

a mixture of tags will be translated to Microsoft Windows using only the first font

specified.

Font Naming

Fonts in Microsoft Windows are named using a different mechanism from that used

by X Windows. However, Microsoft Windows has quite a sophisticated matching

algorithm. So, although Sun WorkShop Visual uses a fairly crude mapping to

translate the font specification, even if you specify a font which is not available in

Microsoft Windows, it will probably be substituted with something that looks

reasonable.

Pixmaps, Bitmaps, and Icons

Pixmap objects created in Sun WorkShop Visual are converted into a Microsoft

Windows bitmap or icon (depending on whether the object is a button or label

respectively). This is done for you automatically when you generate a Microsoft

Windows resource file. X monochrome bitmaps are not supported in the translation

to Microsoft Windows.

When you select “Microsoft Windows Resources” from the Generate dialog, Sun

WorkShop Visual informs you that it will create a resource file and a bitmap/icon

file for each pixmap you have created. Bitmap files are generated with the suffix

“.bmp” and icon files with the suffix “.ico”. You never need to save the pixmap to a

file for Microsoft Windows but you may wish to do so for the Motif version. Note

that icons are always scaled to 32x32 pixels on Windows.

Buttons With Pixmaps

For a Motif Button with a pixmap type label, Sun WorkShop Visual generates a

CBitmapButton for Microsoft Windows. One difference between buttons with

pixmaps on Motif and CBitmapButtons on Microsoft Windows is that

CBitmapButtons have no border - in fact they do not look like buttons at all. You

may, therefore, wish to incorporate a border in your pixmap design.



Chapter 11 Designing for Microsoft Windows 377

Colors

You can set the Background and Foreground color of a widget which will be mapped

to an object on Microsoft Windows. These colors will be generated into the Microsoft

Windows code in terms of their RGB (Red, Green, Blue) values. Microsoft Windows

does not normally have the richness of color that is commonly available on X/Motif.

For this reason the colors may not look identical on the two platforms. By default,

however, the colors for the Microsoft Windows 95 “look and Feel” are used.

Color Objects

Specify the Background and Foreground colors in the usual way in Sun WorkShop

Visual. Background colors must be color objects - Foreground colors do not have to

be.

Using Third Party Widgets

Sun WorkShop Visual can be extended to support widgets from any other Xt toolkit

in addition to the default Motif set. Widgets added to Sun WorkShop Visual are

called user-defined widgets or third party widgets. Chapter 23 ”User-Defined Widgets“

provides a detailed description of this topic. The new widgets appear in the Sun

WorkShop Visual widget palette and can be used in the same way as the pre-defined

Motif ones.

Although, in Microsoft Windows mode, Sun WorkShop Visual does not provide

explicit support for third party widgets, Sun WorkShop Visual’s C++ model allows

you some flexibility in this area.

Sun WorkShop Visual’s Automatic Behavior

Sun WorkShop Visual automatically treats third party widgets as though they are an

instance of the class from which they are derived. So, for example, if you have a

third party widget derived from XmPushButton, Sun WorkShop Visual will add it to

your design as though it is an XmPushButton. Sun WorkShop Visual will then

generate Motif XP code which is based on the CButton class, since this is the way



378 Sun WorkShop Visual User’s Guide • May 2000

XmPushButton is implemented in the Motif XP, to create an instance of your third

party widget. The Microsoft Windows code will be exactly the same as if you had

used a PushButton.

The example above uses the XmPushButton class which is a class supported by the

Motif XP. If, however, the third party widget is derived from a class which is not
supported by the Motif XP then Sun WorkShop Visual cannot handle that widget

and will not generate code for it. In this case, you should use the strategy outlined in

the following section.

Configuring Sun WorkShop Visual for Third Party

Widgets

If Sun WorkShop Visual’s default behavior for a particular third party widget

(described above) is not satisfactory, you can use the flexibility of the C++ model to

enhance Sun WorkShop Visual’s behavior. There are two steps:

1. Decide on a sensible mapping from your third party widget to a Windows control

- whether that is a builtin MFC class or another third party component. For

example, many third party widget sets contain a ComboBox widget; this would

clearly map through to the builtin MFC CComboBox class.

2. Tell Sun WorkShop Visual the name of the class it should use. On the Code

Generation page of the Core Resources panel, specify the C++ class structure to be

generated for the selected third party widget. Sun WorkShop Visual fills this page

in with its own mappings for the Motif components, but does not always know

what to do with third party widgets, simply generating a basic Canvas in its

place. All you would need to do here is to override the suggested classing with

the mapping you feel is appropriate, and Sun WorkShop Visual will generate code

accordingly. This means you will get an object of the right type rendered into

your MFC code.

On the Unix side, you would need to include a dummy class so that the code

compiles there also for either pure Motif C++ or Motif XP, depending on what you

want. The following is an illustration of the code you would have to add:

/* Pure Motif C++ Code */

#ifdef    XD_MOTIF

#define MY_BASE_CLASS xd_XtWidget_c  /* Use the Base Sun WorkShop
Visual

Widget Class */

#endif /* XD_MOTIF */

/* Motif XP C++ Code (Unix C++ with strict MFC API) */



Chapter 11 Designing for Microsoft Windows 379

#ifdef    XD_MOTIF_MFC

#define MY_BASE_CLASS CWnd /* Use the Base Motif XP “MFC” Control

Class */

#endif /* XD_MOTIF_MFC */

/* Windows C++ Code (Real MFC) */

#ifdef    XD_WINDOWS_MFC

#define MY_BASE_CLASS   CComboBox /* Use the Real Mapping MFC

Control Class */

#endif /* XD_WINDOWS_MFC */

#if   defined(XD_MOTIF_MFC) || defined(XD_MOTIF)

class MyMappingClass_c : public MY_BASE_CLASS

{

}

#endif /* XD_MOTIF_MFC || XD_MOTIF */

For generating Motif XP, you could also extend the Motif XP library. See “Enhancing

the Motif XP” on page 835 for details on how to do this

Third Party Widget Resources

With third party widgets which it does not understand, Sun WorkShop Visual has no

way of knowing which Motif resources map to which MFC resources. For these

widgets you will probably have to add the code for their resources by hand. Here

are some possible strategies:

1. Put all the third party widget resources into Loose Bindings so that they go into

the X resource file and are maintained inside Sun WorkShop Visual, thus working

well on the X side. Then hand-edit the MFC resource file for similar purposes. See

“Loose Bindings” on page 86 for more information on how to create and use

Loose Bindings.

2. Generate code on Unix with resources and the code options appropriately set,

then generate no resources to code for the third party widgets and again maintain

the MFC resource file by hand.

3. Specify a code prelude to add the resources you need. This can have anything you

like in it, so you could do something like the following as a pre-manage prelude

(assuming my_text is a class):

#ifdef    XD_MOTIF

XtVaSetValues(my_text->xd_rootwidget(), XmNvalue, “Hello”, 0) ;



380 Sun WorkShop Visual User’s Guide • May 2000

#endif /* XD_MOTIF */

#if   defined(XD_MOTIF_MFC) || defined(XD_WINDOWS_MFC)

my_text->SetWindowText(“Hello World”) ;

#endif /* XD_MOTIF_MFC || XD_WINDOWS_MFC */

Method Declarations

The Method Declarations dialog has an extra feature when in Microsoft Windows

mode. There is a toggle button labelled Microsoft Windows MFC.

FIGURE 11-10 Method Declarations Dialog with Microsoft Windows MFC Toggle

This toggle is used to denote whether the method is declared in the class structure of

the enclosing class when generating Microsoft Windows code. When generating

Motif code, the method is still declared in the enclosing class. The enclosing class is

the nearest ancestor which has its structure set to class (either explicitly or

automatically).

This toggle does not indicate whether or not the method appears in the Microsoft

Windows code stubs - the Callbacks dialog indicates this. If, in that dialog, the

method callback has an asterisk (*) appended to it, it will not be generated into the

Microsoft Windows stubs file. The Microsoft Windows MFC toggle gives you control

over the method declarations, although you would usually use the default that Sun

WorkShop Visual provides. Use the Method declarations dialog to declare methods

in a class of your choosing or declare them in one of your own classes. They must be

declared somewhere.



Chapter 11 Designing for Microsoft Windows 381

When you add a method callback in the Callbacks dialog, if the method has not been

declared already, Sun WorkShop Visual will declare it for you in the enclosing class.

If you do not wish the method to be declared there, use the Method Declarations

dialog to unset the Microsoft Windows MFC toggle.

DrawingAreas

If a DrawingArea is not the child of a ScrolledWindow, MainWindow or Shell it is

created as a basic CWnd class - otherwise it is ignored for Microsoft Windows code

generation. See “Mapping Motif Widgets to Microsoft Windows” on page 782 for

more information.

Adding Drawing Callbacks for Microsoft

Windows

The Motif XP class library does not include any drawing support; any you require

will be platform specific. However, Sun WorkShop Visual does allow you to add

callback methods which by default are only declared for Motif flavors and Microsoft

Windows message handlers. When in Microsoft Windows mode Sun WorkShop

Visual adds a set of additional toggle buttons to the DrawingArea resource panel

which can be used to add a Microsoft Windows message handler in the generated

code.



382 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 11-11 The DrawingArea Resource Panel

The Microsoft Windows Message Handler for

DrawingArea

If, for example, you were to select the OnRButtonDown toggle in the panel pictured

above, the following stub is added to your callback stubs file:

afx_msg void scrolled_win_c::OnRButtonDown( UINT nFlags, CPoint point
)

{

}

Note that afx_msg is a pseudo keyword on Microsoft Windows. The following lines

are added to your C++ externs file:

//{{AFX_MSG(scrolled_win_c)

afx_msg void OnRButtonDown( UINT nFlags, CPoint point ):

//}}AFX_MSG

DECLARE_MESSAGE_MAP ()

This registers the message handler with Microsoft Windows.



Chapter 11 Designing for Microsoft Windows 383

Application Class

Sun WorkShop Visual generates an instance of a CWinApp class to the MFC C++

flavors to represent the application. You can configure this class by means of the

Application Class dialog which is displayed from the Module Menu. Figure 11-12

shows the dialog.

FIGURE 11-12 The Application Class Dialog

Note – The declaration of the application class (whether defined by yourself or

using Sun WorkShop Visual’s default) is only generated when you are generating a

main procedure - the “Main Program” in the Generate dialog.



384 Sun WorkShop Visual User’s Guide • May 2000

Event Handlers

“Event Handlers” on page 203 explains how Sun WorkShop Visual allows you to

add event handlers to widgets in your design. Most of the event masks available for

Motif widgets can be mapped to Windows code. The following table shows this

mapping.

File Names

Filenames on the PC are restricted to 12 characters in total (including the dot) which

must be distributed as no more than eight before the dot and no more than three

after. If you wish to share files between the two platforms, this restriction will have

to be kept in mind when generating Microsoft Windows code. Remember, also, that

MS-DOS and Microsoft Windows are not case sensitive. Do not rely on upper and

lower case letters to distinguish filenames.

TABLE 11-1 How Event Masks Are Generated into Windows Code

Motif Event Mask Windows Code

MouseMotion Generates a generic handler for any mouse

movement with or without a button press.

ButtonPress Generate all three handlers - Left, Center and Right

pressed handlers.

ButtonRelease Generates all three handlers - Left, Center and

Right release handlers.

EnterWindow OnMouseActivate

ExposureMask OnEraseBkgnd

KeyPressMask WM_KEYDOWN

KeyRelease WM_KEYUP

KeymapstateMask WM_SYSKEYUP / WM_SYSKEYDOWN

LeaveWindowMask WM_KILL_FOCUS

ResizeRedirect WM_SIZE

PropertyChangeMask ON_WM_PAINT

VisibilityChangeMask WM_SHOWWINDOW



Chapter 11 Designing for Microsoft Windows 385

Pixmaps

The above restrictions should also be remembered when naming pixmap objects.

When you ask Sun WorkShop Visual to generate a Microsoft Windows resource file

after you have created pixmaps, Sun WorkShop Visual automatically generates

Microsoft Windows bitmaps and icons in separate files using the name you specified

in the pixmap editor. If, therefore, you have specified a name with more than eight

characters, you will encounter problems on Microsoft Windows.

C++ Code

Different compilers have varied conventions acceptable on filename extensions. The

suffix ‘.cxx’ seems to be universally supported; most compilers should support

‘.cpp’; some compilation systems may accept ‘.C’ and ‘.c++’. Visual C++ will

complain if you specify ‘.c’ for a file which contains C++ code.

See “Setting the Filename Filter” on page 389 for details of how to change the default

filters in the Generate dialog.

Makefile

No makefile can be generated for the Microsoft Windows code files. Since make is a

UNIX utility, it is assumed that you will be using a Microsoft Windows development

environment (such as Visual C++) to build your application.

Note – If you are using Make on your UNIX platform, it is best to generate different

code flavors into separate directories in order to avoid confusion and name clashes.

Code Generation

There are a number of points connected with code generation which you should

understand before generating code. These are detailed in the following subsections.

Briefly, they are:

1. Generating Dialog Templates. How you can generate your dialogs as Microsoft

Windows resource files which are more easily manipulated in your Windows

environment.



386 Sun WorkShop Visual User’s Guide • May 2000

2. Project Files. The Visual C++ project files that Sun WorkShop Visual generates for

you.

3. Synchronizing Save and Code Files. How to make sure that your save file and

generated code file remain in synch.

4. Dialog Flashing. A warning that dialogs are realized (and therefore displayed)

when MFC code is generated.

5. Use of Japanese Font. What to do when generating MFC code containing Japanese

text.

Generating Dialog Templates

When you generate code for MFC, the Generate Options dialog (displayed by

pressing the “Options” button at the bottom of the Generate dialog) contains a

toggle labelled “Generate as Resources”. This is shown in Figure 11-13. When this

toggle is set, Sun WorkShop Visual generates the dialogs in your design as dialog

templates, which are Microsoft Windows resource files describing the dialog. Sun

WorkShop Visual generates some MFC code to fetch widgets out of the dialog

templates and to control the dialogs, thereby generating a complete application. If

the “Generate as Resources” toggle is not set, plain MFC is generated for your

design. By default, the toggle is set.

FIGURE 11-13 Generate Options Dialog



Chapter 11 Designing for Microsoft Windows 387

Using dialog templates gives you the following advantages:

1. You can use your system default resources - such as font settings. This is not

possible with plain MFC.

2. You can use your Microsoft Windows IDE to alter the layout of dialogs easily.

Note, however, that you cannot take changes back to Sun WorkShop Visual.

Designs for which resource files (or dialog templates) are generated are dialog based.

They do not have a main Frame window. This gives you a much closer correlation

between what you see on Motif and what you see on Microsoft Windows.

The Application Shell

In the generated code, an Application Shell inherits from a CDialog. This means that

pressing <Enter> when the dialog itself is selected closes the application. As this is

the case two of the dialog’s methods are generated to the stubs file to be overridden

if this behavior is not desired. The methods are OnOK and OnCancel. As with all

methods in the stubs file, anything added to them is retained when code is

regenerated.

Project Files

When you generate any type of MFC code for Microsoft Windows, you can also

generate project files for use in Microsoft Visual C++ using the base name specified

in the Generate dialog. To make Sun WorkShop Visual generate project files, check

that the “Generate Project Files” toggle is set in the Code Options dialog.

The files generated are:

■ <generate_filename>.dsw - This is the main project file. It uses the

information in the following file.

■ <generate_filename>.dsp - this contains information about the generated

files.

To use these, open the main project file (with the suffix “dsw”) in Microsoft Visual

C++. These project files are suitable for Visual C++ version 5 and version 6.

Synchronizing Save and Code Files

Sun WorkShop Visual has to store the widget id numbers in the save file for

definitions so that code can be correctly generated for instances which indirectly

modify the layout of an unnamed component. This can cause a problem if the design



388 Sun WorkShop Visual User’s Guide • May 2000

is changed in a way which affects the widget ids (such as resetting) before the code

is generated. Sun WorkShop Visual will detect such loss of synchronization and will

prompt you to save the file.

Dialog Flashing

In order for Sun WorkShop Visual to correctly generate layout information the

dialogs need to be realized. Sun WorkShop Visual will automatically show and then

hide any unrealized dialogs when Microsoft Windows code is generated. You may

see the dialogs appear briefly on the display.

Use of Japanese Font

Any Microsoft Foundation Class (MFC) code generated by Sun WorkShop Visual

which contains Japanese text needs to be post-processed before it is compiled under

Microsoft Windows.

A filter utility, xdtosj, is provided as part of the Sun WorkShop Visual release to

perform this conversion. xdtosj converts the MFC code from EUC to Shift-JIS

encoding and changes the DEFAULT_CHARSET value in the MFC CFont creation

method to SHIFTJIS_CHARSET.

xdtosj is used in the following way:

xdtosj [-xf*] [file]

The arguments are:

-x Displays a brief explanation of the utility

-f filter The shift-jis filter to use (default jconv)

-* Any other ‘-’ flags are passed to the filter

[file] An optional file. If no file is specified, stdin is used

Configuring Sun WorkShop Visual

There are a number of application resources which apply to Sun WorkShop Visual in

Microsoft Windows mode. One of these is the windows flag, indicating that Sun

WorkShop Visual should start up in Microsoft Windows mode. This is described in

“Starting in Microsoft Windows Mode” on page 360.



Chapter 11 Designing for Microsoft Windows 389

Adding Ctrl-M to Generated Lines

By default, Sun WorkShop Visual generates code for Microsoft Windows which adds

Ctrl-M as the carriage return before the linefeed character. This character is expected

by MS-DOS and may, therefore, be expected by your file transfer program. If,

however, you do not wish to have these characters at the end of each line, make the

following change to the Sun WorkShop Visual resource file:

visu.mfcCarriageReturn:false

Setting the Color of Non-Microsoft Windows

Resource Fields

By default, Sun WorkShop Visual indicates that a field in a resource panel, or a

button or any other text field, is not applicable to Microsoft Windows by coloring it

pink. This color can be changed by altering the following line in the Sun WorkShop

Visual application resource file:

visu.mfcTextWarningBackground:#ecc9c9eacdda

The example above shows the default file entry - i.e. the color pink. You can change

this large number to a more readable color name.

Setting the Filename Filter

In the Generate dialog, Sun WorkShop Visual provides a default filename filter in the

Filter text field. You can change this in the application resource file. Search for the

following:

visu.c++Filter:*.c

visu.c++StubsFilter:*.c

These are the default entries for Motif code generation - both vanilla Motif and Motif

XP. For Microsoft Windows code generation there are two extra filename filters:

visu.visualC++Filter:*.cpp

visu.visualC++StubsFilter:*.cpp

If you wish to share code between the two platforms, you might consider changing

the filename filters for the two different flavors so that they are the same. See “File

names” on page 384 for more details about points to bear in mind when naming files

intended for both platforms.



390 Sun WorkShop Visual User’s Guide • May 2000



391

CHAPTER 12

Creating a Microsoft Windows and
Motif Application

Introduction

This chapter shows you how to produce the simple application shown in Figure 12-1

on both Motif and Microsoft Windows. In addition, “Single Sourcing” on page 413 at

the end of this chapter looks at the how you might share callback files between

UNIX and Microsoft Windows.

FIGURE 12-1 Final Application



392 Sun WorkShop Visual User’s Guide • May 2000

Starting Your Design

This tutorial shows you how to put together a main application window and a sub-

dialog. As well as building the user interface, it uses links, callbacks and sets

resources, including pixmaps. It even shows you how to pop up a menu in a

drawing area. All of this will be ported to Microsoft Windows.

It is assumed that you are familiar with the basic use of Sun WorkShop Visual. For

this reason, a design file containing the completed hierarchies for this tutorial is

included with Sun WorkShop Visual. You can either open this file, as explained in

Step 2, or follow the instructions to build the hierarchy yourself.

1. Start Sun WorkShop Visual in Microsoft Windows mode.

See “Starting in Microsoft Windows Mode” on page 360 if you are not sure how.

2. If you wish to save time by not building the hierarchies yourself, open the
following file and skip ahead to Step 18 on page 396:

$VISUROOT/src/examples/tutorial/windows.xd

where VISUROOT is the root directory of your installed Sun WorkShop Visual.

Note – You only need to do Step 3 through to Step 17 if you wish to build the

hierarchy yourself.

3. Start with an application shell. Add a form to it and put a menubar, a button, a
scrolled window, a label and a text field inside the form.

This hierarchy is shown in Figure 12-2.



Chapter 12 Creating a Microsoft Windows and Motif Application 393

FIGURE 12-2 The Initial Hierarchy

4. Name the shell “shell”, the menubar “menubar”, the scrolledwindow
“popup_window” and the button “subd_pixmap”.

You do not need to name any other widgets - names of the type [widget-

class][number] (e.g. “button1”) are the default names assigned by Sun WorkShop

Visual.

5. To the menubar, add three cascade buttons. Name them “file_menu, “edit_menu”
and “help_menu” respectively.

6. To the “file_menu” cascade button, add a menu. Add two buttons, a separator and
another button to this menu.

7. Name the last button added to the menu “exit_b”.

8. To the “edit_menu” cascade button, add a menu. Add three buttons to this menu.

9. To the “help_menu” cascade button, add a menu. Add two buttons to this menu,
naming the first one “subd_b”.

The completed hierarchy for the menubar is shown in Figure 12-3.



394 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 12-3 The Hierarchy Under the MenuBar

10. To the “popup_window” scrolled window, add a drawing area. Name it
“draw_area”.

11. To the drawing area, add a popup menu naming it “popup”. Add three buttons to
the popup menu.

The completed scrolled window hierarchy is shown in Figure 12-4.

FIGURE 12-4 The Hierarchy Under the ScrolledWindow



Chapter 12 Creating a Microsoft Windows and Motif Application 395

12. Use the Form layout editor to adjust the layout of the widgets inside the form so
that the dynamic display looks as shown in Figure 12-5.

You will need to move the widgets to the right place and specify attachments. If you

are not sure how to do this, read Chapter 4, “The Layout Editor”, starting on page

97, first.

Although the Form widget will not be generated into the Microsoft Windows code

(we have not made it a C++ class), attachments and positions are calculated and

handled by Sun WorkShop Visual in the generated code. In this way the resize

behavior will be preserved. See “Manager Widgets and Layout” on page 373 for

more details.

FIGURE 12-5 The Main Window Dynamic Display

13. Save your design into a file named MyWinApp.xd .

14. Add another shell to your design - this time a dialog shell. Name it “sub_shell”.

15. Add a form to the shell and name it “sub_form”.

16. Add a label and a button to the form. Name the button “close_b”.

The completed hierarchy for this sub-dialog is shown in Figure 12-6.

FIGURE 12-6 The Sub-Dialog Hierarchy



396 Sun WorkShop Visual User’s Guide • May 2000

17. Use the Form Layout Editor to layout the widgets so that the button is at the
bottom of the dialog and the label grows when the dialog is resized, as shown in
Figure 12-7.

You will need to move the widgets to the right place and specify attachments. To

make the label grow, for example, attach the bottom of the label to the top of the

button and attach all other edges to the sides of the form. If you are not sure how to

do this, read Chapter 4, “The Layout Editor”, starting on page 97, first.

FIGURE 12-7 The Sub-Dialog

18. Save your design.

Do this even if you have opened the supplied design file in Step 2 on page 392. Then

you will have your own local copy. Name it MyWinApp.xd .

Adding Callbacks

Here we shall add a callback method for the close button which will close the sub-

dialog, and a callback method on exit_b in the file menu of the main application

shell.

1. Select the close button, close_b.

2. Display the Callbacks dialog and select the Activate callback from the list of
callback types.

3. Check that the option menu underneath the list of defined callbacks says “Method
name”.

You will be generating C++ so you need to check that you are adding methods.

4. Type DoClose into the text box and press the “Add” button.

5. Close the Callbacks dialog.

6. Select the shell named “shell” in the window holding area.

7. Select the button named “exit_b” underneath the file menu.

8. Display the Callbacks dialog and select the Activate callback from the list of
callback types.



Chapter 12 Creating a Microsoft Windows and Motif Application 397

9. Check that the option menu underneath the list of defined callbacks says “Method
name”.

10. Type DoExit into the text box and press the “Add” button.

11. Close the Callbacks dialog.

12. Save your design.

Note – For a Motif-only application you would not need to add a callback to close

the application from a button - instead you could set the AutoUnmanage resource in

the about_form resources to “Yes”. For Microsoft Windows, however, you need to

add a callback.

Adding a Link

You are going to add a link to display the sub-dialog from the main window. Sun

WorkShop Visual is able to generate code to implement links on both Motif and

Microsoft Windows. See “Using Links” on page 372 for restrictions on Microsoft

Windows which should be taken into account when creating links. Read “Links” on

page 183 if you are not sure how to set up links in a dialog.

1. Select “subd_b” in the menu called “help_menu” in the main application shell
“shell” and display the Edit Links dialog.

Do this either by pressing the button on the toolbar or by selecting “Edit Links” from

the Widget menu. Figure 2-2 on page 17 shows you where to find the Edit Links

button on the toolbar.

Note that the Add button is pink when a menu button is selected as the destination

widget. Show, Hide, Manage and Unmanage links are only effective for menu

buttons on Motif; Enable and Disable links are effective on menu buttons in both

Motif and Microsoft Windows. However, the menu button currently selected is not

the destination widget for this exercise.

2. Select “sub_shell” in the window holding area.

The text box labelled “Widget” in the Links dialog now contains the name of the

about dialog shell, “sub_shell”.

3. Select the “Show” link in the Links dialog and press the “Add” button to add the
Show link to “sub_shell”.

4. Close the Edit Links dialog.

You are now going to add the same link from “subd_pixmap” in the main

application shell.



398 Sun WorkShop Visual User’s Guide • May 2000

5. Go back to the main application shell, “shell”.

Select the shell from the window holding area.

6. Select “subd_pixmap” and display the Edit Links dialog again.

You need to redisplay the dialog so that the selected widget is the “source” widget.

Otherwise, it is a “destination” widget.

7. Select “sub_shell” in the window holding area again.

8. Select the “Show” link in the Links dialog and press the “Add” button to add the
Show link to “sub_shell”.

9. Close the Links dialog and save the design.

Popup Menu

Adding a popup menu to a DrawingArea widget is useful whichever language you

intend to generate. The next stage of the tutorial shows you how to do this. You will

have to write a small amount of extra code as Sun WorkShop Visual does not

automatically generate code to popup menus. Motif and Microsoft Windows have

different ways of popping up a menu so your code will have to be different for each

platform. The code is added much later in the tutorial, first you need to set up the

callback.

1. Select “draw_area” from inside the ScrolledWindow, “popup_window”, in the
main application shell.

2. Display the Callbacks dialog.

3. Select “Input” from the list of callback types and add a callback method called
DoInput .

The Input callback type is marked with an asterisk (*), indicating that this callback

will have no effect on Microsoft Windows.

4. Close the Callbacks dialog.

5. Display the DrawingArea resource panel, shown in Figure 12-8.

The quickest way to do this is to double-click over the drawing area.

The Motif XP library does not attempt to emulate the Microsoft Windows drawing

or input model, hence the list of Microsoft Windows target message handlers.



Chapter 12 Creating a Microsoft Windows and Motif Application 399

FIGURE 12-8 DrawingArea Resource Panel

6. Set the OnRButtonDown toggle, press “Apply” and close the resource panel.

This will generate an appropriate Microsoft Windows message handler, which will

be called in response to the corresponding Microsoft Windows message, and a

matching callback stub.

“Filling in the Stubs” on page 406 of this chapter explains how to fill in the stubs to

popup the menu.

7. Save the design.

Setting Resources

Sun WorkShop Visual generates resource files for Motif and Microsoft Windows.

Motif, however, allows a far greater range of control over its widgets. Although

there are resources in Microsoft Windows, they are limited in comparison with

Motif/X resources. Microsoft Windows resources are compiled into the executable

file so, unlike Motif, changing a resource on Microsoft Windows means re-compiling

the application.



400 Sun WorkShop Visual User’s Guide • May 2000

Setting Label Resources

In this example application, we have string, pixmap and keyboard resources. First of

all, we shall set the strings of the labels, buttons and shells.

1. Select the form which is the child of the main application shell.

2. Display the form’s resource panel.

3. Set the dialog title to “Tutorial” by typing into the text field labelled “Title”.

4. Press “Apply” and then close the resource panel.

5. Display the resource panel of the “file_menu” cascade button and give it the label
string “File”. Press “Apply”.

6. Do the same for the other two cascade buttons so that “edit_menu” displays the
label “Edit” and “help_menu” displays the label “Help”.

This is shown in Figure 12-9.

FIGURE 12-9 MenuBar Labels and Shell Title

7. Set the labels of the buttons in “file_menu” to “New”, “Open” and “Exit”.

8. Set the labels of the buttons in “edit_menu” to “Cut”, “Copy” and “Paste”.

9. Set the labels of the buttons in “help_menu” to “About...” and “Help”.

The three menus are shown in Figure 12-10.

FIGURE 12-10 Menu Item Labels

10. Select the first button in the popup menu child of the drawing area and display its
resource panel.

11. Set the button’s label to “Cut”.

12. Select each of the other two buttons in the popup menu and set their labels to
“Copy” and “Paste” respectively.



Chapter 12 Creating a Microsoft Windows and Motif Application 401

13. Select the dialog shell “sub_shell” in the window holding area.

The design area now shows the hierarchy for this sub-dialog.

14. Select the label and display its resource panel.

15. Set the string of the label widget to display a few lines such as:

The quick brown fox

jumped over

the lazy dog

16. Center the string in the label by going to the “Settings” page of the resource panel
and changing the “Alignment” option menu to “Center”. Press “Apply”.

17. Set the label of the button to “Close”.

18. Set the title of the sub-dialog to “Information”

Do this by typing into the text box labelled “Title” in the resource panel of the Form

which is the child of the shell. The completed dialog is shown in Figure 12-11.

FIGURE 12-11 Completed Sub-Dialog

19. Save your design.

Generating String Resources

All of these labels are string resources. When you generate the code for the Motif

version of your design you can decide whether the resources should go into the code

or into the resource file. For the Microsoft Windows version all string resources are

automatically generated into the source code.

Using Pixmaps

If you are using pixmaps in your design, Sun WorkShop Visual automatically

converts them to Windows bitmaps when you generate code. To illustrate this, you

are going to give one of the buttons a pixmap label.



402 Sun WorkShop Visual User’s Guide • May 2000

1. Select the button named “subd_pixmap” in the main application shell and display
its resource panel.

2. Set the Type Resource of the buttons to Pixmap.

You can find this on the “Settings” page of the button resource panel.

3. Go to the “Display” page of the button resource panel and press the button
labelled “Pixmap”.

This displays the Pixmap Selector dialog.

4. In the Pixmap Selector dialog, either select an existing pixmap or press “Edit” to
display the Pixmap Editor.

5. If you are creating a new pixmap in the Pixmap Editor, make sure that you type a
name for it into the text field at the top and press “Bind”. Close the Pixmap Editor.

6. In the Pixmap Selector dialog, press “Apply” so that the object name appears in
the text field next to the button labelled “Pixmap” in the resource panel.

If you are not sure about creating and using pixmap objects, see “Selecting a

Pixmap” on page 148.

7. When you press “Apply” in the resource panel, the pixmap you have specified is
shown on the button.

8. Save your design.

Naming the Pixmap

Remember that filenames on MS-DOS (and Microsoft Windows) must be no longer

than eight characters before the extension. Sun WorkShop Visual uses the name to

which you bind the pixmap in the basename of the file in Microsoft Windows mode,

so make sure that you have not specified a name longer than eight characters.

You have now finished the design of your application. The rest of this tutorial shows

you how to generate code for the UNIX and for Microsoft Windows and how to

build the application on each platform.

Building the Application

Now that you have designed the application user interface in Sun WorkShop Visual,

you can generate the Motif and Microsoft Windows code. Having generated the

code, you are then ready to build the two applications. Full instructions are

provided in this section, including how to fill in the callback stubs.



Chapter 12 Creating a Microsoft Windows and Motif Application 403

Controlling the Sources

For this tutorial, you need to generate two separate applications - one for Motif and

one for Microsoft Windows. You should generate them into two separate directories

to avoid such problems as overwriting and including the wrong header file. This

tutorial does not exploit the possibilities of single sourcing, which are discussed in

“Single Sourcing” on page 413.

Code Generation for Motif

1. Display the Generate dialog.

The filename fields are primed with names based on your Sun WorkShop Visual

save file name.

2. Check that “C++ Motif XP” is the selected item from the “Language” option
menu.

At the top of the dialog there is a text area where you can type the name of a base

directory. All filenames are then relative to this directory. You can use the “Browse”

button to find a directory.

3. Set the base directory to the area where you wish to generate your files.

Remember that you should generate the Motif XP and the Microsoft Windows MFC

code into separate directories to avoid confusion.

4. Check that the “Generate” toggle is set for the “Code” file.

5. Open the Code Options dialog.

Press the button labelled “Options” next to the “Code” text box.

6. Set the “Include Header File” toggle

7. Make sure that the “Include Motif Header Files” toggle is set.

8. Press “Ok”.

This saves your changes and closes the Code Options dialog.

9. Check that the “Generate” toggle next to “Externs” is set.

10. Set the “Generate” toggle next to the “Stubs” file.

11. Make sure that the “Generate” toggle next to the “Main Program” text box is set.

12. Display the Generate Options dialog.

Do this by pressing the button labelled “Options” at the bottom of the Generate

dialog.



404 Sun WorkShop Visual User’s Guide • May 2000

13. Check that the “Links” option menu is set to “Generated to Code”.

14. Change the “Strings” option menu to “Code” and check that all other resource
types are set to “Code”.

For the sake of simplicity, all the resource settings are going to be “hard-coded” for

this tutorial. For a real application, you would normally generate them into a

separate resource file.

15. Press “Ok”.

This saves your changes and closes the Generate Options dialog.

16. Set the “Generate” toggle next to “Makefile”.

17. Press “Generate” in the Generate dialog.

Your files are generated into the chosen directory.

18. Save the design.

This saves any settings in the Generate dialog.

The Makefile

You may have to edit the Makefile in order to access the Motif XP code, depending

on how Sun WorkShop Visual has been installed and configured. Check that the

XPCLASSLIBS and CCFLAGSdefinitions access the Motif XP library and include

files. VISUROOT is the path to the root of the Sun WorkShop Visual installation

directory:

XPCLASS = $(VISUROOT)/src/motifxp

XPCLASSLIBS = $(XPCLASS)/lib${ABIDIR}/libmotifxp.a

GEN_CFLAGS=-I. ${XINCLUDES} -I${XPMDIR} ${GROUP_COMPILEFLAGS}

CCFLAGS=${CFLAGS} ${ABICCFLAGS} -I${XPCLASS}/h ${GROUP_COMPILEFLAGS}

Code Generation for Microsoft Windows

The steps to generate the code for Microsoft Windows are almost the same as for

Motif. Sun WorkShop Visual remembers a different set of files for each flavor so you

can use the toolbar flavor menus and code generation buttons once you have

specified the name of the files for the different flavors.

Remember that, on the PC, a filename must be eight characters or less before the

extension. Some IDEs, including Visual C++, complain if they encounter a source file

containing C++ code which has been given only a ‘.c’ extension. You can specify

“.cpp” or “.cxx” .



Chapter 12 Creating a Microsoft Windows and Motif Application 405

1. Display the Generate dialog if you do not still have it open on the screen.

2. Check that “C++ Microsoft Windows MFC” is the selected item from the
“Language” option menu.

3. Set the base directory at the top of the Generate dialog to a directory where you
wish to generate your files.

Remember that you should generate the Motif XP and the Microsoft Windows MFC

code into separate directories to avoid confusion.

4. Check that the “Generate” toggle next to the “Code” file is set.

5. Open the Code Options dialog.

Press the button labelled “Options” next to the “Code” text box.

6. Set the “Include Header File” toggle.

7. Press “Ok”.

This saves your changes and closes the Code Options dialog.

8. Check that the “Generate” toggle is set for the “Externs” and “Stubs” files.

9. Make sure that the “Generate” toggle next to the “Main Program” text box is set.

10. Set the “Generate” toggle next to the “Microsoft Windows resources” file.

This file will contain the dialog templates. When this is set, Sun WorkShop Visual

converts pixmaps into Windows bitmaps - one per file, as described in “Pixmaps,

Bitmaps, and Icons” on page 376.

11. Display the Generate Options dialog.

Press the button labelled “Options” at the bottom of the Generate dialog.

12. In the Generate Options dialog, check that the “Generate as Resources” toggle is
set.

This makes Sun WorkShop Visual generate dialog templates which are Microsoft

Windows resource files, as described in “Generating Dialog Templates” on page 386.

13. If you are using MFC 4 or 5, set the “MFC 4 Enhancements” toggle.

This gives you the 3D look and feel.

14. Check that the option menus for “Links” and all resources are set to “Generated to
Code”.

15. Press “Ok”.

This saves your changes and closes the Generate Options dialog.



406 Sun WorkShop Visual User’s Guide • May 2000

Note – You do not need to generate a makefile for the Microsoft Windows code

because the files will be built in a different way. This is described in “Compiling the

Microsoft Windows Version” on page 409.

16. In the Generate dialog, press “Generate”.

A message is displayed informing you that a bitmap file for your pixmap has been

generated. The basename of the file is the name of the pixmap object.

The Generated Files

When you generate MFC, you will find that extra files in addition to the code, stubs

and header files are generated. These are:

1. Bitmap files. If you have created any pixmap objects, they are converted to

Windows bitmap files, a file per pixmap. These files have a “.ico” suffix.

2. Project files. These are Visual C++ version 5 (and above) files which, similar to a

Makefile, contain all the information needed to load the application into Visual

C++ where it can then be built. These files have a “.dsw” and “.dsp”. More about

these files is given in “Project Files” on page 387.

Japanese Text

If the generated code contains Japanese text, you need to post-process the code with

a filter utility, xdtosj, which is provided as part of the Sun WorkShop Visual release,

before transferring it to a PC. See “Use of Japanese Font” on page 388 for more

information.

Filling in the Stubs

You have two stubs files - one for MFC and one for Motif. Because you generated

Motif XP code for your Motif application you could share some of the code. This is

because Sun WorkShop Visual’s XP library emulates some of the MFC for Motif. For

simplicity and speed, however, this tutorial keeps the two separate. For more

information on sharing the sources, see “Single Sourcing” on page 413.



Chapter 12 Creating a Microsoft Windows and Motif Application 407

The MFC Stubs

There are two callbacks - one to exit the application and one to popup the menu

from the drawing area. You should fill in the stubs as shown below:

void

shell_c::DoExit ( )

{

exit(0);

}

void

sub_shell_c::DoClose ( )

{

this->ShowWindow(SW_HIDE);

}

afx_msg void popup_window_c::OnRButtonDown( UINT nFlags, CPoint point
)

{

ClientToScreen(&point);

popup->TrackPopupMenu( TPM_LEFTALIGN|TPM_RIGHTBUTTON,

point.x, point.y, this, NULL);

}

The Motif Stubs

There are two callbacks in the Motif stubs file to match the two in the MFC stubs file.

Although the signature of the exit callback is the same for both platforms, the

contents are different.

void

shell_c::DoExit ( )

{

exit (0);

}

Add this line

Add this line

Add these lines

Add this line



408 Sun WorkShop Visual User’s Guide • May 2000

void

sub_shell_c::DoClose ( )

{

this->ShowWindow(SW_HIDE);

}

void

popup_window_c::DoInput ( )

{

popup->TrackPopupMenu(0, 0, 0, this, NULL);

}

Compiling the Application

Having created the design, generated code and filled in the callback stubs, you are

now ready to compile the application on both Motif and Microsoft Windows. After

the brief section on building your application on Motif, there is a description of the

steps you will need to take to build your application on Microsoft Windows.

Step-by-step instructions for building the application using Visual C++ versions 4.0

and 5 on Microsoft Windows are given in “Compiling the Microsoft Windows

Version” on page 409. However, you can build the generated code using any C++

development environment capable of integrating the Microsoft Foundation Classes,

for example Symantec C++. Refer to “Using Other Applications” on page 412 for

general information about configuring Microsoft Windows-based C++ compilers to

build the application.

Compiling the Motif Version

All you need to do now is make the application by typing

make

at the command prompt in the directory where you generated the Motif code. Since

you generated a Makefile, all the files in your application are automatically built.

Before running the application, be sure to arrange for the resource file to be read, as

explained in “Setting up the X Resource File” on page 215.

Add this line

Add this line



Chapter 12 Creating a Microsoft Windows and Motif Application 409

Compiling the Microsoft Windows Version

If you are using Visual C++ Version 5, compiling your application on your PC is

very simple because Sun WorkShop Visual generates full Visual C++ project files for

you. If you are using earlier versions of Visual C+ you will need to create the project.

Although this is not so convenient, it does not take long and only needs to be done

once. Full instructions are given below for using Visual C++ Version 5 and Visual

C++ Version 4.0. If you are using a version of Visual C++ earlier than 4.0 and you

need help on creating a project, contact Sun WorkShop Visual support. “Using Other

Applications” on page 412 gives you some tips on compiling your application if you

are not using Visual C++.

Brief Notes on Visual C++

Visual C++ is an IDE (Integrated Development Environment) to help you develop

applications to run on Microsoft Windows. It comprises a number of tools, including

a compiler, debugger and various editors. It is a useful tool for building, debugging

and controlling the sources of an application. Note, however, that any changes you

make to your code in Visual C++ cannot be taken back into Sun WorkShop Visual.

Visual C++ uses the concept of a project to keep track of the files in your application.

You always need a project when you use Visual C++. For Version 5, Sun WorkShop

Visual generates the project files for you.

Note – PC-NFS, available from SunSoft, is a tool designed to make sharing files

between your PC and your Solaris system easy.

Visual C++ Version 5

Sun WorkShop Visual generates fully configured project files for Visual C++ version

5 and above. These are the files ending with a suffix of “.dsw” and “.dsp”. Take both

of these files to your PC along with all the MFC source files (this includes the code

files, resource file, any bitmap files and header files).

1. On your PC, under Windows, double-click over the “.dsw” file generated by Sun
WorkShop Visual.

Doing this instructs Sun WorkShop Visual to open Visual C++, with the project

ready loaded.

2. Select “Build <projectname>.exe” from the Build menu.

If Visual C++ encounters any errors, these are displayed and the compiler stops

compiling. You may now press F4 to ask Visual C++ to open the file containing the

error and locate you at the relevant point in the file. Subsequent presses of F4 allow



410 Sun WorkShop Visual User’s Guide • May 2000

you to move through the list of errors, opening files as necessary. Double clicking on

an error will also open the relevant file and move to the part of the file where the

error was detected. The windows opened onto these files are full text editing

windows. You can also view and edit a file in this way by selecting Open... from the

File menu.

3. Once the application has built successfully, you can try it out. Select “Execute
<projectname>.exe” from the Build menu.

Visual C++ Version 4.0

If you are using Visual C++ Version 4, you cannot use the project files generated by

Sun WorkShop Visual. The following takes you through the steps required to create

the project.

1. Take all the MFC source files to your PC.

You do not need to take the “.dsp” and “.dsw” files as these are only relevant to

Visual C++ Version 5 and above.

2. Start Visual C++.

3. Select “New” from the File menu.

A list of new items which can be created is then displayed as shown below:

FIGURE 12-12 New Items List

4. Select “Project Workspace” from the items list and Ok the dialog.

The New Project Workspace dialog is then displayed.



Chapter 12 Creating a Microsoft Windows and Motif Application 411

FIGURE 12-13 New Project Workspace Dialog

5. Select “Application” from the Type list and enter a name (such as “Tutorial”) in
the “Name” field.

6. Press the “Create” button to complete your actions.

You are then presented with the main Visual C++ dialog. Next, you must now

populate your project with the files you wish to build.

7. Select “Files into project” from the Insert menu.

The following dialog is displayed:

FIGURE 12-14 Insert Files Dialog

8. Locate the directory where you have placed the files you copied to the PC.

9. Highlight the files required by clicking on the first in the list then press shift and
then click on the last of the files in the list.

10. Press the Ok button to add the selected files to the project.

11. Select the “Settings” option from the Build menu.

The Project Settings dialog is then displayed, as shown below:



412 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 12-15 Project Settings Dialog

12. Select the “Use MFC in a Shared Dll...” option from the Microsoft Foundation
Classes option menu as shown above and then Ok the dialog.

Finally, to build your application:

13. Select “Build Tutorial.exe” from the Build menu.

If Visual C++ encounters any errors, these are displayed and the compiler stops

compiling. You may now press F4 to ask Visual C++ to open the file containing the

error and locate you at the relevant point in the file. Subsequent presses of F4 allow

you to move through the list of errors, opening files as necessary. Double clicking on

an error will also open the relevant file and move to the part of the file where the

error was detected. The windows opened onto these files are full text editing

windows. You can also view and edit a file in this way by selecting Open... from the

File menu.

14. Once the application has built successfully, you can try it out. Select “Execute
<projectname>.exe” from the Build menu.

Using Other Applications

The code generated by Sun WorkShop Visual is MFC code. It has not been generated

for any specific Microsoft Windows application. The following lists the important

points to bear in mind when building your user interface on Microsoft Windows if
you are not using Visual C++. This section applies to all compilers.

1. You will need a C++ compiler and the Microsoft Foundation Class (MFC) include
files and libraries installed on your system.

2. Configure the build tool to build a Microsoft Windows .EXE file.



Chapter 12 Creating a Microsoft Windows and Motif Application 413

3. Make sure the compiler has a valid include path to the MFC header files.

4. Make sure the compiler has a valid include path to the subdirectory containing
the Sun WorkShop Visual-generated source files.

5. Compile the code using large memory model settings.

Make sure the linker links in the MFC libraries or DLLs.

Single Sourcing

Using Sun WorkShop Visual’s Motif XP library gives you the potential to share some

of your callback code between Motif and MFC. Appendix B, “Motif XP Reference”,

starting on page 835 lists the classes which have been emulated for Motif. Use this

appendix to find out which calls to the MFC toolkit you can use for both platforms.

To use the XP library, you should choose “Motif XP” as the language to generate for

your Motif application in the Generate dialog. When generating code, you should

remember that only a suffix of “.cxx” or “.cpp” is acceptable to both UNIX and

Windows platforms. The following list of steps uses pre-built designs and a stubs file

which has already been filled in to illustrate how you can use the Motif XP to write

a callbacks file which can be used on both Motif and Windows. The files required for

this are found in $VISUROOT/src/examples/tutorial where VISUROOT is the

install directory of your Sun WorkShop Visual.

1. Start Sun WorkShop Visual in Windows mode.

See “Starting in Microsoft Windows Mode” on page 360 if you need more

information on this.

2. Choose “Open” from the File menu and read in this file:

$VISUROOT/src/examples/tutorial/singlesource.xd

3. Check that you have the design shown in Figure 12-16.

It is a simple dialog consisting of two option menus, two toggles and a text field.



414 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 12-16 Design Hierarchy and Dynamic Display

4. Display the Generate dialog and choose “Motif XP” as the first language to
generate.

Make sure that you have a target directory for the Motif-only sources.

5. Generate the Code file, Externs file, Main code file, Makefile and Stubs file. Use
the names already shown in the Generate dialog.

You are going to overwrite the Stubs file with a pre-configured one, but you need

Sun WorkShop Visual to create a dependency for it in the Makefile.

6. Change the “Language” to “MFC”. Remember to change the target directory as
well.

7. Generate the Code file, Externs file, Main code file and Windows Resource file but
not the Stubs file.

You are going to use the same pre-configured Stubs file mentioned above, but you

need Sun WorkShop Visual to create a dependency for it in the Visual C++ project

files.



Chapter 12 Creating a Microsoft Windows and Motif Application 415

8. Copy over the following stubs file into your Motif XP directory:

$VISUROOT/src/examples/mfc/singlesource_stubs.cpp

You will just need to remember to copy it over to your PC along with the MFC

source you just generated.

You can look at the Stubs file in a text editor. There are three callbacks:

1. JazzChanged. This one checks the state of the “Jazz” toggle and displays the

“Jazz” option menu if it is set, hiding the “Classical” option menu.

2. ClassicalChanged. This one checks the state of the “Classical” toggle and

displays the “Classical” option menu if it is set, hiding the “Jazz” option menu.

3. DoSetText. This fetches the selected item from the visible option menu and puts

the text into the text field.

All of this code can be shared by the Motif XP application and the MFC application.

9. To compile the Motif application, simply make sure you are in your motif
directory and type:

make

at the command prompt. See Chapter 7, “Generating Code”, starting on page 207 for

more information on generating, compiling and running code.

10. Once it has built, run the application on Motif checking that your callbacks work.
Try setting the two toggles and making selections from the option menus.

11. To build the MFC application:

a. Take all of the files generated into your MFC directory to your PC.

If you are using Visual C++ version 5, remember to take the “.dsw” and the

“.dsp” files. These are Visual C++ project files.

b. Take the pre-configured Stubs file from the Motif XP directory to your PC,
overwriting the first one, which was only generated to force the correct
dependencies.

c. If you are not using Visual C++, see “Using Other Applications” on page 412
for points to remember when compiling on your PC.

d. On your PC, open the “.dsw” file in Visual C++ as the project workspace.

This assumes you are using Visual C++ Version 5. If you are using an earlier

version or a different application, refer to “Compiling the Microsoft Windows

Version” on page 409.

e. Build the project.

f. Run the project.



416 Sun WorkShop Visual User’s Guide • May 2000

g. Check that your callbacks work - try setting the toggles and making selections
from the option menus.

Other Ways to Share Source Between Platforms

There are two other options you could consider for single sourcing of callback files:

1. Using Java

2. Using Get/Set Smart Code

The Java programming language gives you platform independence. Sun WorkShop

Visual can generate your design in Java code. In addition, you can save your design

in a format ready for importing into Visaj, the Java application builder. Chapter 10,

“Designing for Java”, starting on page 313 explains all about creating Java

applications from your design.

Get/Set Smart Code gives you a toolkit-independent “wrapper” around widgets

that you are interested in. Full details, including a short tutorial, are given in

Chapter 16, “Get/Set Smart Code”, starting on page 485.



417

CHAPTER 13

Design Tools

Introduction

Sun WorkShop Visual includes a number of tools which assist you in your task of

building a user interface and linking it to your application. This chapter describes

AppGuru and Sun WorkShop Visual Capture. These tools are powerful stand-alone

utilities which work in conjunction with Sun WorkShop Visual. They provide a way

of starting a design - AppGuru gives you the basis of a new design while Sun

WorkShop Visual Capture gives you the design of an existing application.

If you wish to find out more information on other tools in Sun WorkShop Visual, see

the following chapters and sections:

■ Chapter 14, “Sun WorkShop Visual Replay”, starting on page 433. This chapter

provides information on Sun WorkShop Visual Replay which gives you the ability

to record and play back the use of an application.

■ Chapter 23, “User-Defined Widgets”, starting on page 627. This provides

information on the tool visu_config which allows you to use your own widgets in

Sun WorkShop Visual.

■ “Editing Pixmaps” on page 148 - for more information on creating and editing

pixmaps.

■ “Setting Fonts” on page 139 - for more information on selecting fonts and font

sets.

■ “Setting Colors” on page 135 - for more information on choosing colors.



418 Sun WorkShop Visual User’s Guide • May 2000

AppGuru

AppGuru provides a fast way to create a standard interface by giving you access to

reusable designs, called templates. You can create your own templates and make

them available to other users. Templates are created and stored in the AppGuru

Designer dialog. When a template is selected from this dialog, the design it describes

is automatically added to your session of Sun WorkShop Visual.

Display the AppGuru Designer dialog by selecting “AppGuru Designer” from the

Tools menu or by pressing the AppGuru button on the toolbar. This button is shown

in Figure 13-1.

FIGURE 13-1 AppGuru Button on Toolbar

Using AppGuru templates has the following benefits:

1. Styles which must be used within a company or for a particular application are

enforced from the beginning.

2. Designs are pre-configured for convenience and to avoid errors.

3. The basic design of dialogs which are very similar can be re-used.

AppGuru Designer

With AppGuru Designer you can:

1. Create new templates “from scratch”.

2. Edit existing templates.

3. Prime a new template from your current design.

4. Select a template to add to your current Sun WorkShop Visual session.

An optional description field in the template definition allows you to provide some

information to help you and other users understand what the selected template

provides, before adding it to a design.



Chapter 13 Design Tools 419

AppGuru Templates

Selecting “AppGuru Designer” from the Tools menu displays the AppGuru

Templates dialog, shown in Figure 13-2. This shows all currently available templates.

You can load single templates (or all templates in the specified directory) into the

AppGuru Templates dialog by selecting the appropriate command from the

Template menu. You may also “Unload” a template. This simply removes the

template from the AppGuru Templates dialog, any files associated with it remain in

place.

Select a template and press “Apply” to add the design described by a template to

your existing design.

A template is made up of “components”, each of which may consist of any number

of widgets. A component in AppGuru refers to the elements of the template which

may be selected and deselected from the AppGuru Template dialog. The widgets of

a component define the appearance and behavior of the component.

The templates are shown in the top portion of this dialog as “thumbnail” sketches.

As you select each of these, a list of the components defined for that template is

shown in the lower portion of the dialog, allowing you to “switch off” any

components you do not wish to be added to your design. A single component can

represent several widgets in your design.



420 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 13-2 AppGuru Templates Dialog

Templates are edited by selecting “Edit Template” and created by selecting “New

Template” from the Template menu of this dialog. Selecting either of these menu

items displays the AppGuru Edit Template dialog, shown in Figure 13-3.



Chapter 13 Design Tools 421

FIGURE 13-3 AppGuru Edit Template Dialog

AppGuru Edit Template Dialog

This dialog allows you to:

1. Edit all the attributes of the template (including all text associated with the

template, the location of the design file and the pixmap file).

2. Show how the template under construction will appear in the AppGuru

Templates dialog.

3. Add components to the template and remove components from the template.

4. Add widgets to components.



422 Sun WorkShop Visual User’s Guide • May 2000

5. Edit the attributes of a component.

6. Save the template.

Each of these is described below.

Template Attributes

Pressing the “Attributes” button when a template is selected, or double-clicking over

a template, displays the Template Attributes dialog. This is shown in Figure 13-4.

FIGURE 13-4 Template Attributes Dialog



Chapter 13 Design Tools 423

This dialog allows you to edit the following information:

■ The background pixmap. This is the pixmap showing the part of the template

which cannot be filtered out; that is, the part left when all components are

“switched off” in the AppGuru Template dialog.

■ The thumbnail pixmap. This is the small sketch displayed at the top of the

AppGuru Template dialog.

■ The name of the Sun WorkShop Visual save file containing the widgets referred to

in this template. Without this information, Sun WorkShop Visual does not have

any information on the widgets and therefore cannot display them.

■ The location of the template directory. You may wish to keep all your templates in

the same directory because Sun WorkShop Visual can load all templates in a

directory in one action.

■ The directory containing the pixmap files.

■ A short description of the template. This is shown in the AppGuru Template

dialog when the thumbnail is selected.

Prototype

While you are editing or creating a template, press the “Prototype” button to see

how your template will appear when selected in the AppGuru Templates dialog.

Adding and Removing Components

You may add components to a template by:

■ Selecting “Prime” from the Template menu.

■ Pressing the “Add Component” button.

“Prime” adds all the shells in your current design to the selected template. Each

shell is one component of the template. Pressing the “Add Component” button adds

one component. To remove components, simply select them and press the Cut

button. There is no paste or undo facility.

Adding and Removing a Component’s Widgets

To add a widget to a component:

1. Select the component.

2. Select one or more widgets in your Sun WorkShop Visual hierarchy.

3. Press the “Add Selected Widgets” button.



424 Sun WorkShop Visual User’s Guide • May 2000

If the widget you wish to add is in another Sun WorkShop Visual save file or it is

difficult to select in the current design, press “Add widget”, select the widget and

then type the name of the widget in the “Name” text field.

To remove widgets, select them and press the Cut button on the toolbar. Remember

that there is no paste or undo facility.

Editing Component Attributes

You can edit various attributes of a component by selecting “Attributes” from the

Component menu and entering information into the Component Attributes dialog,

which is shown in Figure 13-5.

FIGURE 13-5 Component Attributes Dialog

In the Component Attributes dialog you can change the name of the component as it

is displayed in the AppGuru Editing dialog. The rest of the fields apply to the

component as it appears in the AppGuru Templates dialog. The pixmap named in

this Attributes dialog is drawn over the template background pixmap at the x and y

position given here and with the specified width and height. The toggle label refers

to the label of the toggle for “switching off” the component in the AppGuru

Templates dialog.

Note – The enhancements to AppGuru are backwards compatible: the former

resource-based templates are fully selectable under the new system.



Chapter 13 Design Tools 425

Saving Templates

The File menu in the AppGuru Edit Template dialog contains items to:

1. Save the current template using the current filename, if any.

2. Save the template using a different name.

3. Close the Edit Template dialog.

The saved file is an X resource file. It is this file which is opened by AppGuru. The

resource file, in turn, references the Sun WorkShop Visual design file containing the

description of the template. Change the name of the design file in the Template

Attributes dialog.

Sun WorkShop Visual Capture

Sun WorkShop Visual Capture allows you to capture dialogs from a running Motif

application and drag them into Sun WorkShop Visual. Whether the application has

been “hand-crafted” or designed using a GUI builder, Sun WorkShop Visual Capture

can create an “xd” file of the application’s design.

Sun WorkShop Visual Capture is available from the “Tools” menu. You can also use

this tool from the command line as described in “Using Sun WorkShop Visual

Capture From the Command Line” on page 431.

Before Using Sun WorkShop Visual Capture

For successful operation of Sun WorkShop Visual Capture, the Motif application you

wish to record must have been dynamically linked with the Xt library (libXt). On

many UNIX implementations, you can find out whether the application has been

dynamically or statically linked with libXt by typing:

ldd AnApplication

If the output mentions libXt, the application has been dynamically linked with the Xt

library and can be used with Sun WorkShop Visual Capture. If this library is not

present, the application has probably been statically linked with the Xt library. You

will have to re-link your application with the Xt shared library if you want to use

Sun WorkShop Visual Capture.

Sun WorkShop Visual Capture is completely non-intrusive and will not affect either

the performance or the behavior of an application.



426 Sun WorkShop Visual User’s Guide • May 2000

Running Sun WorkShop Visual Capture

When you select “Sun WorkShop Visual Capture” from the “Tools” menu, a dialog is

displayed allowing you to type the name of a Motif application to be captured into

the text box next to the button labelled “Executable”. There is also a text box

allowing you to type any arguments you wish to be passed to the application. This

dialog is shown in Figure 13-6.

FIGURE 13-6 Capture/Replay Application Prompt

When you press “OK”, your PATH is searched for the named executable. If it is not

in your PATH or you are not sure where to find the application, press the button

labelled “Executable”. This produces a file selection box containing an extra scrolled

list, as shown in Figure 13-7. Each item in this list is a directory from your PATH.

This path list, however, is the path set up for you when you run Sun WorkShop

Visual and may contain some extra directories required by Sun WorkShop Visual.

When you exit Sun WorkShop Visual your PATH is the same as it was before

running the application. When you select a directory from this list, any files in the

directory are shown in the scrolled list labelled “Files”.



Chapter 13 Design Tools 427

FIGURE 13-7 Capture/Replay File Selection Box

You can also run the dialog from the command line. This is explained in “Sun

WorkShop Visual Capture” on page 690.

Capture Dialog

The Sun WorkShop Visual Capture dialog is shown in Figure 13-8. It has two pages -

one for Sun WorkShop Visual Capture and one for Sun WorkShop Visual Replay.

You can change between pages by selecting from the option menu labelled “Page”.

For details on the dialog when you are using Sun WorkShop Visual Replay see

Chapter 14 ”Sun WorkShop Visual Replay“.

Extra scrolled list



428 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 13-8 Capture Dialog

The text to the right of “Shell” displays the name of the currently active Shell of the

associated application. This is the Shell which will be captured when you press the

“Capture” button. Beneath the “Capture” button is an area containing the captured

Shells in the current directory.

Saving and Accessing Captured Shells

By default, when applications are captured, files containing the captured design are

created in a temporary unnamed directory.

Note – The temporary directory (and its contents) is removed automatically when

you exit the application. If you want to preserve your work, you should be working

in a named directory (see below).

Use the “Directory” menu to create a new directory, open an existing one or save the

current directory under a different name.

When you open a directory, the dialog displays any captured designs that are

contained there. Captured designs are displayed as “thumbnail” sketches of the

Shell which was captured.

Window holding area
containing thumbnail
sketches of captured
dialog designs



Chapter 13 Design Tools 429

Using the operations in the “Edit” menu, designs can be cut or copied from one

directory and pasted into another. The “Clear” command deletes the selected design.

By convention, captured designs are given the filename suffix “.xd”, although this

suffix is not displayed in the Sun WorkShop Visual Capture dialog.

Note – A corresponding “.xpm” file is created with each captured dialog design.

This is to enable Sun WorkShop Visual Capture to display the “thumbnail” sketch of

the dialog in the window holding area.

Using Sun WorkShop Visual Capture

This section is a set of step-by-step instructions showing you how to use Sun

WorkShop Visual Capture to capture the design of the user-widget configuration

utility supplied with Sun WorkShop Visual, visu_config.

1. Select “Sun WorkShop Visual Capture” from the “Tools” menu.

2. Type visu_config into the Command field of the Command Execution Dialog and
press “Ok”.

The Sun WorkShop Visual Capture tool searches your path (the list of directories set

by the PATH environment variable) for the named application, and invokes the first

one it finds. Both the visu_config and Capture dialogs are displayed.

Note that the Capture dialog is effectively attached to the visu_config program, so

when you exit the visu_config application, Sun WorkShop Visual Capture also exits.

3. Press “Capture” in the Capture dialog.

A thumbnail sketch of the active Shell of visu_config appears in the Capture dialog.

To capture other dialogs, simply display them in visu_config and then press

“Capture” again. Each dialog is added to the window holding area in the Sun

WorkShop Visual Capture dialog.

4. To see the design in Sun WorkShop Visual, drag (using mouse button 2) the
thumbnail from the window holding area of the Capture dialog into Sun
WorkShop Visual’s construction area.

As you do this, the Shell and its hierarchy appear in Sun WorkShop Visual.

Your Sun WorkShop Visual widget hierarchy now contains the widget structure of

the initial visu_config dialog along with all associated resources. The dynamic

display looks like visu_config. If you captured any sub-dialogs, they can also be

dragged into the Sun WorkShop Visual construction area. They are added as

separate dialogs.



430 Sun WorkShop Visual User’s Guide • May 2000

Application Modal Dialogs

If your application runs an Application Modal dialog, you will not have access to the

Sun WorkShop Visual Capture interface and therefore cannot use the Capture

button. Instead, you must press the “hot key”. By default, this is set to the F5

function key in the Sun WorkShop Visual resource file. The hot key is translated to

the function which effects the capture. The resource file entry is shown below:

*xdsTranslations:"<Key>F5: vcrInteractiveCaptureShell()"

You can change this to another key by editing the Sun WorkShop Visual resource file

(which changes it for every user) or by editing the .Xdefaults file in your home

directory (which changes it just for you). We have created a second “hot key” to

ensure there are no clashes with your application, this can be accessed by the F12

key.

Note – If you would like more information on translations, you are advised to

consult Chapter 4.3.2 in Volume Four of the “X Toolkit Intrinsics Programming
Manual” published by O’Reilly and Associates, or any other comparable book.

Captured Information

You can see straight away that Sun WorkShop Visual Capture has captured the

appearance of visu_config. In fact, more than that has been captured. Here is a list of

what you have:

■ The hierarchy of widgets as used in the original application

■ All explicitly set resources.

■ All layout including Form attachments

■ Dimensions

Sun WorkShop Visual Capture gives you everything you need for the design of a

Motif application. Callbacks, links and other dynamic actions associated with the

application are not captured.

Capturing the Java Emulation Widgets

If you wish to use Sun WorkShop Visual Capture on a design which contains the

new Java layout emulation widgets, you must check that the resource

xdsCaptureUserWidgets is set to “true”. This resource ensures that non-Motif

widgets are captured fully. If this resource is not set, the widgets appear as drawing

areas in the capture script. For more information on the Java emulation widgets see

“New Widgets for Java Classes” on page 323 in Chapter 10 ”Designing for Java“.



Chapter 13 Design Tools 431

Capturing User Defined Widgets

You can capture designs containing third party widgets if you first set the resource

xdsCaptureUserWidgets to “true”, as described above in “Capturing the Java

Emulation Widgets” on page 430. You will be able to view these widgets in Sun

WorkShop Visual only if they have already been integrated. For more information on

integrating third party widgets see Chapter 23, “User-Defined Widgets”, starting on

page 627.

Using Sun WorkShop Visual Capture
From the Command Line

Sun WorkShop Visual Capture is supplied as a stand-alone application called

visu_capture . Type: visu_capture -x to display basic information about the

tool.

The following line gives an example of how Sun WorkShop Visual Capture can be

used:

visu_capture -f MyCaptureDesign.xd AnApplication

MyCaptureDesign.xd is the name of the file which will contain the captured

application. This file will use Sun WorkShop Visual’s save file format.

AnApplication is the name of the application you wish to capture. Pressing the

“hot key” (F5 by default) performs the capture.

See “Sun WorkShop Visual Replay and Sun WorkShop Visual Capture” on page 807

for tips and hints about using Sun WorkShop Visual Capture.



432 Sun WorkShop Visual User’s Guide • May 2000



433

CHAPTER 14

Sun WorkShop Visual Replay

Introduction

Sun WorkShop Visual Replay can record and playback any Xt based application.

In record mode, Sun WorkShop Visual Replay creates a script containing a high level

description of the user's actions e.g. “push hello_button, type Hello World”.

In playback mode, you can check the state of any widget in the application and

control the rate of playback. The actions in the script are replayed exactly as if the

user were sitting at the keyboard.

Sun WorkShop Visual Replay has a user extensible command set which is powerful,

easy-to-use and very flexible. It can be deployed in many ways:

■ Record and playback Motif applications

■ Produce demonstrators of your product

■ Debug your application

■ Recreate problems found in an application

■ Develop tutorials for your product

■ Automate the testing of an application

No recompilation or relink is necessary and no special test environment is required.

Sun WorkShop Visual Replay is available from the Sun WorkShop Visual “Tools”

menu. You can also use the tool from the command line as described in “Recording

and Replaying From the Command Line” on page 447.

This chapter starts by providing you with a description of the use of Sun WorkShop

Visual Replay together with some simple tutorial examples to help you become

acquainted with its use. “Extending the Sun WorkShop Visual Replay Widget Set”

on page 458 and “Adding Your Own Sun WorkShop Visual Replay Commands” on

page 471 describe how to extend the capabilities of Sun WorkShop Visual Replay.



434 Sun WorkShop Visual User’s Guide • May 2000

Appendix A, “Sun WorkShop Visual Replay Command Syntax”, starting on page

811 provides detailed descriptions of the syntax of Sun WorkShop Visual Replay

scripts.

Recording and Replaying Java Applications

Sun WorkShop Visual Replay can be used for Java applications. To do this, you

should specify the Java interpreter as the first application and your target

application afterwards, as explained in “Debugging With Sun WorkShop Visual

Replay” on page 457. That section describes the use of indirections when Sun

WorkShop Visual Replay is used from the command line. Thus, to record or replay a

Java application, you would have to specify the Java interpreter too:

visu_replay java MyJavaProgram

This applies to Java applications but not to applets. For more information on Java

code generation, see Chapter 10 ”Designing for Java“.

Before Using Sun WorkShop Visual Replay

For successful operation of Sun WorkShop Visual Replay, the Motif application you

wish to record must have been dynamically linked with the Xt library (libXt). On

many UNIX implementations, you can find out whether the application has been

dynamically or statically linked with libXt by typing:

ldd AnApplication

If the output mentions libXt, the application has been dynamically linked with the Xt

library and can be used with Sun WorkShop Visual Replay. If this library is not

present, the application has probably been statically linked with the Xt library. You

will have to relink your application with the Xt shared library if you want to use Sun

WorkShop Visual Replay.



Chapter 14 Sun WorkShop Visual Replay 435

How to Invoke an Application with Sun
WorkShop Visual Replay

Note – If you are keen to get started straight away with Sun WorkShop Visual

Replay, you may wish to skip this section and move directly to “Tutorial” on

page 443.

When you select “Sun WorkShop Visual Replay” from the “Tools” menu, a dialog is

displayed requesting the name of the application you wish to record or replay. This

dialog is shown in Figure 14-1.

FIGURE 14-1 Capture/Replay Application Prompt

Enter the name of the application in the text box labelled “Executable”. If you are

unsure of the application’s name, or where to find it on your system, press the

button labelled “Executable”. This produces a file selection box containing an extra

scrolled list, as shown in Figure 14-2.



436 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 14-2 Capture/Replay File Selection Box

Each item in the extra scrolled list labeled “Path” is a directory from your PATH.

Selecting an item from this list displays the contents of that directory in the “Files”

list.

Note – The extra scrolled list uses the PATH set up for you when you ran Sun

WorkShop Visual and may contain some extra directories required by Sun WorkShop

Visual. When you exit Sun WorkShop Visual your PATH is the same as it was before

running the application.

When you select an entry from the “Files” list and “OK” the dialog, the entry is

placed in the “Executable” field of the Capture/Replay Application Prompt dialog.

Enter any flags or arguments for the application in the text box labelled

“Arguments” in this dialog. When you press “OK”, the application is run with Sun

WorkShop Visual Replay.

Two points need to be made here:

1. The Sun WorkShop Visual Replay dialog is part of the application and will be

dismissed when you exit from the application.

2. Sun WorkShop Visual Replay only monitors what happens in the application - it

does not and cannot affect the operation of the application other than by

simulating operations in playback mode.

Extra scrolled list



Chapter 14 Sun WorkShop Visual Replay 437

What Gets Recorded

Sun WorkShop Visual Replay has been designed as an efficient way of exercising

Motif interfaces with the emphasis on portability and clarity of description.

Sun WorkShop Visual Replay focuses on recording navigation between widgets

within an application and the user interaction with those widgets. The following

information can be recorded and replayed:

■ actions on all widgets

■ displaying/closing sub-dialogs.

■ use of keyboard accelerators, modifiers.

■ all keyboard input (text, arrow keys, delete etc.).

■ all mouse button actions - including which mouse button has been pressed.

Sun WorkShop Visual Replay has not been designed as a general-purpose X testing

engine and, consequently, there are some aspects of the use of an application which

Sun WorkShop Visual Replay does not record. However, provision is given for you

to extend the capabilities of Sun WorkShop Visual Replay. This is discussed in

“Extending the Sun WorkShop Visual Replay Widget Set” on page 458 and “Adding

Your Own Sun WorkShop Visual Replay Commands” on page 471.

The Sun WorkShop Visual Replay Interface

The Sun WorkShop Visual Replay dialog appears to the side of your application. A

copyright message is also shown on standard error when Sun WorkShop Visual

Replay starts up.

If the copyright message does not appear, your application has probably not been

dynamically linked with the Xt library (see “Before Using Sun WorkShop Visual

Replay” on page 434).

The Sun WorkShop Visual Replay dialog is shown in Figure 14-3.



438 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 14-3 Sun WorkShop Visual Replay Dialog

You can also display this dialog when running Sun WorkShop Visual Replay from

the command line. This is explained in “Recording and Replaying From the

Command Line” on page 447.

This dialog has two pages - one for Sun WorkShop Visual Replay (Replay) and one

for Sun WorkShop Visual Capture (Capture). You can change between pages by

selecting from the option menu labelled “Page”. For details on the dialog when you

are using Sun WorkShop Visual Capture see “Sun WorkShop Visual Capture” on

page 425.

Functions and Operations

Once the Sun WorkShop Visual Replay dialog is displayed, you can begin to record/

replay scripts straight away. All record/replay actions take place using the Sun

WorkShop Visual Replay button panel which is shown in Figure 14-4.



Chapter 14 Sun WorkShop Visual Replay 439

FIGURE 14-4 Sun WorkShop Visual Replay Button Panel

The buttons are described below:

Only valid buttons can be selected; all other buttons are grayed out.

Before you have created any scripts, the only button you can press is “Record”. This

creates an “unnamed” script. Once you have created a script, you can “Rewind”,

“Play” and “Single step” it.

Record records user actions in the application from the current position in

the selected script. If record is pressed after stopping a script, it

will overwrite the script from that point on. Pressing record at the

end of a script will append to it.

Insert records user actions in the application at the point where the

script was stopped. Subsequent actions in the script are preserved.

Rewind rewinds the selected script to the beginning.

Note – To replay the script exactly, you may have to reset the
application to the state from which the recording was started.

Stop stops the playback of a script.

Play plays the selected script from the current position in the script

until either the script is stopped or reaches its end.

Single step plays the next command in a script.

Pause pauses a record or playback. Press the button again to continue.

Record

Insert

Rewind

Stop

PausePlay

Single
step



440 Sun WorkShop Visual User’s Guide • May 2000

The “Insert” button becomes active when the script is stopped or paused. The

insertion process is described more fully in “Inserting in a Script” on page 447.

Creating and Naming Scripts

Press the “New Script” button to create an empty script. To name or rename a script,

do the following:

1. Click on the associated icon in the Sun WorkShop Visual Replay dialog

2. Enter the name in the New Script text field and press Return

If you enter the same name as that of an existing script, a number is appended to the

newly named script to differentiate between it and the original.

Note – If you have no scripts in the Sun WorkShop Visual Replay dialog, pressing

“Record” will create a new “unnamed” script automatically.

Selection and Status Indicators

The currently selected script is highlighted in the Sun WorkShop Visual Replay

dialog.

The Sun WorkShop Visual Replay status indicator shows you whether you are

recording or replaying and where in the script you are. If the status indicator is red,

it indicates that you are recording. Otherwise you are replaying. Figure 14-5 shows

the possible states of the indicator:

FIGURE 14-5 Sun WorkShop Visual Replay Indicator States

The last button you selected has a red line above it in the button panel.

At start of script In script At end of script Inserting in script Recording (when red)



Chapter 14 Sun WorkShop Visual Replay 441

Monitoring

The “Monitor” button displays a log of the actions you are taking while recording

and replaying. Comments indicating the start and end of a record or replay session

are inserted automatically by Sun WorkShop Visual Replay as demonstrated in

Figure 14-6.

FIGURE 14-6 Sun WorkShop Visual Replay Monitor Window

Inserting Extra Commands

As well as actions, you can also add non-application commands and comments to a

script. This can be done by editing the script by hand or via the Sun WorkShop

Visual Replay interface. This section describes how to edit the script from the

interface.

First stop the script at the point where the additional commands are to be placed. To

place extra commands at the start of the script, you must first rewind it. To place

commands at another point in the script, single-step to that point.

Next press the button labelled “Extra Commands”. This displays a text edit window

into which the extra commands or comments can be entered. This dialog is shown in

Figure 14-7.



442 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 14-7 Extra Commands Dialog

If the “Enter as comment” toggle is set, the contents of the dialog are treated as

comments. Each line is prepended with a ‘#’ character in the script.

The “Run” button executes the commands in the dialog independently of the

recorded script. Use the Monitor window to see the commands being executed. Once

you are satisfied with the commands, press the “Add” button to store them in the

script.

Press “Clear” before entering additional commands or comments. This removes the

information from the Extra Commands dialog - it has no effect on the contents of the

script.

Changing Replay Speed

The fast/slow slider on the Sun WorkShop Visual Replay dialog allows you to

change the speed at which the selected script is replayed. By default, the script is

played at the maximum speed.

Application Modal Dialogs

If your application runs an Application Modal dialog, you will not have access to the

Sun WorkShop Visual Replay interface until you have closed the dialog. This means

that you cannot stop recording or replaying within the dialog. In single-step mode,

all actions within an Application Modal dialog are treated as a single step.



Chapter 14 Sun WorkShop Visual Replay 443

Saving and Accessing Scripts

By default, the scripts you create in the Sun WorkShop Visual Replay dialog are

stored in a temporary unnamed directory.

Note – Unless the environment variable XDS_KEEPDIR is defined, the temporary

directory (and its contents) is removed automatically when you exit the application.

If XDS_KEEPDIR is set, the temporary directory and its contents are stored in /tmp/
XDS_SAVE. If you want to preserve your work, you should be working in a named

directory (see below).

Use the “Save As” option from the Sun WorkShop Visual Replay Directory menu to

save the current directory under a new name.

Use the “Open” option from the Directory menu to access scripts from another

directory. The “Save As” option can also be used to rename the currently opened

directory.

Using the operations in the “Edit” menu, scripts can be cut or copied from one

directory and pasted into another. The “Clear” command deletes the selected script.

By convention, record scripts are given the filename suffix “.xds” in the file system.

Note however that this suffix is not used to label the scripts in the Sun WorkShop

Visual Replay dialog.

Tutorial

This section is a set of step-by-step instructions which demonstrates how to use Sun

WorkShop Visual Replay to record interaction with the visu_config tool and then

replay those actions.

Note – The tutorial requires no knowledge of visu_config. If, however, you would

like more information on this tool, refer to “visu_config - the Main Dialog” on

page 636.

1. Select “Sun WorkShop Visual Replay” from the “Tools” menu.

2. Type: visu_config into the Executable field of the Capture/Replay dialog and press
“Ok”.

This runs visu_config and displays the Sun WorkShop Visual Replay dialog

alongside it.



444 Sun WorkShop Visual User’s Guide • May 2000

3. Press the “New Script” button.

This creates an “unnamed” script.

4. Enter a name for the script in the New Script text field, followed by a carriage
return.

The name of the script is changed accordingly.

5. Press the “Monitor” button.

This brings up a dialog showing a log of all the actions for the session.

6. Press the Record button, as shown in Figure 14-8.

FIGURE 14-8 Record Button

7. In visu_config, perform the following actions:

a. Enter: one in the Selection text field and press Return.

The name is added to the “Families” list.

b. Double click over the name “one” in the Selection field, type: two and press
Return.

The Families list now contains two entries.

c. Click on one in the Families list and press the “Edit” button.

The “Widget Classes” dialog is displayed.

d. Enter: WidgetOne in the Selection text field and press Return.

The name is added to the “Widget classes” list.

e. Double-click “WidgetOne” in the Widget classes list.

This displays the Widget dialog.

f. Press the “Close” button in the Widget dialog.

g. Press the “Close” button in the Widget Classes dialog.

h. Select the “Stop list” option from the “Edit” menu in the Families dialog.

This displays the Stop list dialog.

i. Press the toggles labelled “Pulldown Menu” and “Text Field” in the Stop list
dialog.

j. Press the “Apply” button followed by the “Close” button.



Chapter 14 Sun WorkShop Visual Replay 445

k. Select “New” from the File menu in the Families dialog.

The “Save changes” warning dialog is displayed.

l. Press the “No” button in the Save changes dialog.

8. Press the “Stop” button

The “Record” and “Rewind” buttons become sensitive. All the other buttons become

insensitive.

A file has been created containing a record of your actions. This file can be replayed

at any time. For the purposes of this tutorial, we are going to play it back straight

away.

9. Press the “Rewind” button.

The record, insert, play and single step buttons become sensitive.

10. Press the “Play” button.

You can now see what you have recorded. Using the fast/slow slider in the Sun

WorkShop Visual Replay dialog, you can change the rate at which your session plays

back.

11. Press the “Rewind” button.

12. Press the “Single step” button.

Using this button you can single step through each command in the record script.

This is more informative if you have the Monitor window on the screen. As each

step is replayed it is printed in the Monitor window.

13. Exit visu_config.

Select “No” when you are asked if you wish to save the changes. The record session

ends when the application exits. The Sun WorkShop Visual Replay dialog is also

dismissed. This is because the dialog is, in effect, part of the visu_config program.

Note – Unless the environment variable XDS_KEEPDIR is defined, the temporary

directory (and its contents) is removed automatically when you exit the application.

If XDS_KEEPDIR is set, the temporary directory and its contents are stored in /tmp/
XDS_SAVE. If you want to preserve your work, you should be working in a named

directory (see below).

The Contents of the Script

The example above produces the following script, annotated to show the steps in the

tutorial. This script introduces some 90% of the Sun WorkShop Visual Replay syntax.



446 Sun WorkShop Visual User’s Guide • May 2000

Note – The file you created may not be exactly the same as this one because you

may have performed the actions in a slightly different order or you may have made

mistakes and gone back to correct them. All of this is recorded.

in ApplicationShell

push Text

type one

key Return

doubleclick Text

type two

key Return

push ItemsList(‘one’,1)

push family_selection.OK

in entity_dialog

push Text#5

type WidgetOne

push widgetlist_selection.OK

doubleclick ItemsList#5(‘WidgetOne’,1)

in widgetedit_dialog

push widgetedit_closeb

in entity_dialog

push widgetlist_selection.widgetlist_quitb

in ApplicationShell

cascade family_editb

select family_stop_b

in stop_list_shell

push stop_pulldown_menu

push stop_text_field

push stop_apply

push stop_close

in ApplicationShell

cascade family_fileb

select family_newb

in savechanges_dialog

push savechanges_messagebox.Cancel

Entering “one”
in the Selection text field.

Entering “two”
in the Selection text field.

Selecting “one”
from the Families list.

Entering “WidgetOne” in the
Selection text field in the Widget

Classes dialog.

Selecting “WidgetOne” from the
Widget Classes list.

Closing the Widget and Widget
Classes dialog.

Displaying the
Stop list dialog.

Setting toggles in the
Stop list dialog.

Selecting New
from the File menu.

Saying No to the Save changes
prompt.

(in the visu_config application)



Chapter 14 Sun WorkShop Visual Replay 447

Inserting in a Script

You can insert at the beginning of a script or partway through it (i.e. during a single

step sequence).

Note – You can find out exactly where you are in the script if you have the

“Monitor” window open.

To add to a script:

■ If you are at the beginning of a script, press the “Insert” button.

■ If you are partway through a script, press the “Stop” button and then the “Insert”

button.

In both cases, then continue using the application.

Pressing “Insert” is the same as pressing “Record” except that whatever you do in

the application is inserted into the existing script at the current point. When not in

Insert mode, pressing “Record” will overwrite whatever was in the script.

Note – Remember when inserting actions into a script that script must be able to

continue after the insertion. If this cannot be done, the replay will stop at that point.

Recording and Replaying From the
Command Line

Sun WorkShop Visual Replay is supplied as a stand-alone application which can be

run from the command line both for recording and replaying scripts.

Using Sun WorkShop Visual Replay to Record

Scripts

Sun WorkShop Visual Replay (when used to record user actions) is supplied as a

stand-alone application called visu_record.

Type: visu_record -x to display basic information about the tool.

The following line shows how to use visu_record:



448 Sun WorkShop Visual User’s Guide • May 2000

visu_record -f MyRecordScript AnApplication

MyRecordScript is the name of a file into which a script recording the session will

be saved. You do not have to supply this parameter. If you do not, the script is

written to standard output. AnApplication is the name of the application you

wish to record. The -i flag tells Sun WorkShop Visual Replay that you wish to use

the tool interactively. In this case, the Sun WorkShop Visual Replay dialog is

displayed as described in “The Sun WorkShop Visual Replay Interface” on page 437.

Using Sun WorkShop Visual Replay to Play Back

Scripts

Sun WorkShop Visual Replay, when used to play back recorded scripts, is supplied

as a stand-alone application called visu_replay .

Type: visu_replay -x to display basic information about the tool.

The following line shows how to use visu_replay :

visu_replay -f MyRecordScript AnApplication

MyRecordScript is the name of a file containing the script of the recorded session.

You do not have to supply this parameter. If you do not, the script is read from

standard input. AnApplication is the name of the application you wish to rerun.

The -i flag informs Sun WorkShop Visual Replay that you wish to use the tool

interactively via the Sun WorkShop Visual Replay dialog.

Getting the Most From Sun WorkShop
Visual Replay

This section describes the uses to which Sun WorkShop Visual Replay can be put

and discusses:

■ preparing rolling demonstrations

■ taking screen dumps

■ testing

■ debugging

This list is neither definitive nor exhaustive - it serves only to demonstrate the wide-

ranging capabilities of Sun WorkShop Visual Replay.



Chapter 14 Sun WorkShop Visual Replay 449

Preparing Rolling Demonstrations

A script prepared using Sun WorkShop Visual Replay can be run in a “continuous

loop” using a simple shell script, as shown below:

while (true)

{

visu_replay -f mydemo.xds myapplication

}

end

Note – When preparing such a rolling demonstration, always ensure that the last

part of your script has commands which place your application in a state from

which it can be re-run.

Taking Screen Dumps

Taking screen dumps of an application can be a tortuous process - particularly if the

application is constantly subject to change. Sun WorkShop Visual Replay allows you

to create screen dumping scripts which can be reused at any time. And because the

screen dumping process is now automatic, the cost of producing them falls

dramatically.

A screen dumping script consists of a set of actions to prepare the application for the

screen shot followed by non-application commands which actually do the screen

shot. In the example script fragment shown below, a screen dump of the current_shell
dialog is taken:

in current_shell

setenv ID WindowFrame(current_shell)

shell xwd -id $ID -out /tmp/current_shell.xwd

The last two lines are extra, non-application, commands. The first sets the variable

ID to the current shell window, including its window decorations. The second uses

the xwd command to get a snapshot of the shell window and store it. Of course, you

can substitute xwd with any other screen dumping command of your choice. The

keywords used for setting variables are discussed in “Non-Application Operations”

on page 825.



450 Sun WorkShop Visual User’s Guide • May 2000

Testing

Sun WorkShop Visual Replay is a simple-to-use, portable, and powerful widget-

based testing tool. It is intended to provide a testing solution across the whole range

of platforms that are supported by Sun WorkShop Visual.

The Role of Widget-Based Testing

Most Motif/Xt programming involves reusing the Motif widgets, and using the X

Toolkit. Sun WorkShop Visual Replay testing focuses on the Xt widget hierarchy,

both for controlling a test sequence and for checking whether a test has succeeded.

It is important to note that you are not checking whether the widgets themselves are

correct - only that user interaction with those widgets produces the desired results

within your application.

Note – This testing technique and strategy is highly resistent to test “rot”. Your test

results should be the same, whatever the size, shape or quality of the display being

used. Tests will only need to be added or updated if the application itself changes.

And of course these tests will soon detect any changes which have not been reported

to the tester!

Not all testing can be automated in this way. There will always be a need to visually

inspect an application to check whether it looks right or whether any graphics

programming (e.g. in drawing areas) has worked. While there will always be a

requirement for looking and thinking, the widget-based testing strategy ensures that

you can focus your attention on those few parts of the application that need it.

The Approach to Testing

Experience has taught us that there are three graduated approaches to the

production of a testing script:

■ recording and replaying pre-recorded scripts

■ splitting large tests into smaller fragments

■ data-driven testing



Chapter 14 Sun WorkShop Visual Replay 451

Recording and Replaying Pre-Recorded Scripts

This is the simplest way of checking that user actions can be replayed exactly as they

were recorded. However, the scripts can become very large and troublesome to

maintain. It can also be difficult to work out which part of a test is failing. More

importantly, any change to the application will mean that the whole script will need

to be re-recorded.

Script Fragmentation

Here a large script is split into small, self-contained scripts each of which exercises

an identifiable part of the application. Since this is such an effective testing

technique, we have provided a detailed example in “Using Testing Macros” on

page 455. Each fragment is expanded using a preprocessor (e.g m4 or cpp ), or any

programming language you feel comfortable with. This allows you to build scripts

such as:

StartApplication()

OpenFile(foo.c)

CloseApplication()

Your preprocessor, interpreter or compiler would then translate these fragments into

a full Sun WorkShop Visual Replay command sequence.

This simple strategy takes you away from “step-by-step” programming, and your

test scripts will be far more manageable.

The language you use for expressing your tests should be carefully selected. The

main criteria should be:

■ Ease of expression. If it is hard to describe your interface using the language, then

your model will be harder to write, harder to read and harder to understand.

■ Familiarity. If you use a language you are at ease with, then you can concentrate

on your model.

Class based languages such as Java or Python are ideal for this purpose. Modelling

languages, tailored for symbolic processing, such as Lisp or Prolog are other

obvious candidates. Preprocessors such as m4 or even the C preprocessor will get

you going very quickly.

Alternatively you may prefer to build your model in the language used by your

application. In this way you guarantee that it is always available when you port

your software. The only rule of thumb is that if you feel you're writing a program

rather than designing a set of tests, there is almost certainly an easier way.



452 Sun WorkShop Visual User’s Guide • May 2000

This testing method is appropriate for most small to medium-sized applications.

However, for very large applications (and Sun WorkShop Visual is a good example)

fragmentation also has its limitations:

■ You can easily end up with a large number of fragments

■ Many fragments will be doing similar things in different dialogs - you might have

an open fragment for each dialog in an application

■ The fragments are procedural and prescriptive. While a fragment may contain lots

of useful information about a dialog, you can only use it in the way it was

intended.

The next sub-section describes how to overcome these problems.

Data-Driven Testing

Our experience in devising tests for Sun WorkShop Visual has shown that the most

cost-effective way of writing tests is to provide a description of each dialog and then

use that description in the tests. Consider the following example where Sun

WorkShop Visual’s Color Dialog is described:

ColorDialog.shell= my_color_shell

ColorDialog.helpbutton= color_help

ColorDialog.applybutton = color_apply

ColorDialog.quit = color_quit

The names on the left provide an indirect way of referring to the widgets in a dialog.

The names on the right are the specific widget names. Such descriptions could then

be used in general purpose routines by simply passing in the name of the dialog, for

example:

CheckHelpFor(ColorDialog)

Close(ColorDialog)

The definitions of CheckHelpFor and Close are shown below:

#define CheckHelpFor(dialog)

in dialog.shell

push dialog.helpbutton

#enddef

#define Close(dialog)

in dialog.shell

push dialog.quit

#enddef



Chapter 14 Sun WorkShop Visual Replay 453

These routines could be used for any dialog with a description such as that listed for

ColorDialog, to check that help and close buttons have been provided.

This technique allows you to separate out the description of the interface from the

actions which exercise it. It also means that any change to the interface requires only

a change to the associated data description - test scripts remain unchanged. If a new

dialog is introduced to the application, you simply have to write its description and

any non-standard operations which may be performed on or in it.

The biggest advantage of such a strategy is that the description is simple, clear and

so close to the design itself that keeping tests in sync with product development

becomes a well defined and straightforward exercise.

Checking Test Success/Failure

A good test is one which has been designed to break that part of the application it is

checking. The test is successful if the application does not fall over, otherwise it is a

failure.

Automated replay, by itself, is a minimal form of testing. If the sequence replays

without error, then you have some measure that what was expected did actually

happen. It is minimal because it only tests one potential result of a user action.

Consider the action of opening a file. In a minimal test, the expected result would be

that the file is opened and everything progresses smoothly. However, this test is by

no means complete. You need to consider other (potential) results, e.g.

■ what happens if the file is not accessible

■ should status indicators change when the file is loaded

■ if the file is read-only, is a warning dialog displayed

Using Control Flow and Expressions in a Test Script

The simplest test is one which records a series of actions within your application and

then replays the script to duplicate those actions. While successful execution of such

a script can give some confidence in your application, you can gain even greater

confidence by taking advantage of the extra commands for control flow and

expressions provided by Sun WorkShop Visual Replay to enrich a basic script. These

allow you to cater for different display types, check widget resource settings, print

messages, and much more.

Consider the situation where your application displays a message when it is running

on a monochrome display but displays no message when it is running on a full color

display.



454 Sun WorkShop Visual User’s Guide • May 2000

Clearly, you don’t want to have a separate test for each display. Instead, you can

insert commands at the point where you expect the message to appear and wrap

these commands in an if statement, e.g.

if !IsPseudoColor

message Non PseudoColor display

in warning_popup

push warning.OK

endif

This same check will work whatever display hardware or window manager you are

using.

The size of application dialogs is also important. Two dialogs shown simultaneously

may both be fully visible on one display, overlap on another or be placed one on top

of the other on a third. This can result in application-modal warning messages

disappearing behind the main dialog, and your application apparently locking-up.

The following test script fragment demonstrates how to handle such a problem:

if !IsVisible(open_file_dialog)

error The Open File dialog is off screen

endif

See “Display Expressions” on page 829 for more information on handling different

display types.

If your application exhibits different behavior on different displays, your tests need

to be written to accommodate this. For example, the application may put up a

warning dialog to tell the user to expect some degradation of display quality.

Now consider the selection of an option from an option menu. While a standard

script will certainly make the selection, a good testing script will check that the

selection has been made.

The example below shows how we test that the Language option has been set to an

expected value in the Sun WorkShop Visual Generate dialog:

if !languageOption->menuHistory:'cppButton'

message FAIL: Language option error.

printres languageOption->menuHistory

message expected cppButton

endif



Chapter 14 Sun WorkShop Visual Replay 455

What to Do When a Test Fails

There are three ways to deal with a test failure:

■ stop the test but stay in the application

■ stop the test and exit from the application

■ abort the test and carry on with the next test in the test sequence

Each relates to a particular visu_replay command line flag:

■ -user-on-error - stays in the application

■ -exit-on-error - exits from the application

■ -skip-on-error - skips to the next test

The best way to handle failure is to prepare for it in your script. Use conditional

sequences and take appropriate actions (e.g. output a message) when a failure

occurs.

Another useful aid to the location of test failure is the -v command line flag. This

displays commands from the script on standard out as they are executed. Once you

have located the problem, you can create a smaller script to reproduce it. This can

then be used (perhaps in conjunction with your favorite debugger) to identify the

problem. It can also be added to your regression test suite to demonstrate that the

bug has been fixed.

Using Testing Macros

We described in “Script Fragmentation” on page 451 how test scripts can be

modularized using macros which define actions which are repeated (e.g. opening

dialogs, starting the application, typing into a text field etc.) This makes the scripts

easier to create, amend and check by hand.

Example of Scripts Using Macros

In order to illustrate how macros can be used to create modular scripts, an extract

from the Sun WorkShop Visual test scripts is listed below as an example. This short

script does the following:

1. Starts Sun WorkShop Visual

2. Creates a design containing a Shell and Form

3. Gives the Form a variable name

4. Saves the design, specifying a filename

5. Exits Sun WorkShop Visual



456 Sun WorkShop Visual User’s Guide • May 2000

To do this in a way which makes the top-level script more readable, we shall use the

macro preprocessor, m4. This is available on all UNIX systems.

The high-level script to do the above is:

include(Defs.m4)

StartUp()

shell   date

Palette(xd_XmDialogShell)

Palette(xd_XmForm)

VariableName(myform)

SaveDesignAs(mydesign.xd)

message Test Sequence Over

shell   date

Finish()

Most of the above script consists of macro calls. See Appendix A, “Sun WorkShop

Visual Replay Command Syntax”, starting on page 811 for more details on which

part of the syntax are keywords.

The macro definition script, named Defs.m4, looks like this:

define(HandleExpectedWarning,

        in warning_popup

                push warning.OK)

define(StartUp,

        if !IsPseudoColor

                message Non PseudoColor display

                HandleExpectedWarning()

        endif)

define(Palette,

        in ApplicationShell

                push $1)

define(VariableName,

        in ApplicationShell

multiclick nb_vn_t

type $1

key Return)

define(SaveDesignAs,

        in ApplicationShell



Chapter 14 Sun WorkShop Visual Replay 457

                cascade file_menu

                        select fm_menu.fm_saveas

                in save_dialog_popup

                        doubleclick Text

                type $1

push save_dialog.OK)

define(Finish,

        in ApplicationShell

                cascade file_menu

                                select fm_menu.fm_exit

                if in save_changes_dialog

                        push xd_question.xd_question_cancel_b

                endif)

The following command:

m4 Test.in > Test.xds

creates the final script file which can be passed to Sun WorkShop Visual Replay. The

file Test.in is the high-level script and Test.xds is the output file which will contain

the final script with expanded macros.

Try out this example by typing in the files listed above and then using m4 to make

the final script file. Having done this, run Sun WorkShop Visual Replay with Sun

WorkShop Visual specifying Test.xds as the script to be replayed:

visu_replay -f Test.xds visu

You could take this example one step further by defining the names of the widgets

on the Sun WorkShop Visual widget palette in a separate file and then defining the

“Palette” macro so that it looks up the widget name from a high-level name such as

“shell” or “form”:

define(shell, xd_XmDialogShell)

define(form, xd_XmForm)

In this way the internal names are kept in one place where they can be maintained

and changed more easily.

Debugging With Sun WorkShop Visual Replay

Running Sun WorkShop Visual Replay from the command line allows you to

provide more than one application name if the application is an indirection.



458 Sun WorkShop Visual User’s Guide • May 2000

For example, the following command:

visu_replay -f MyScript dbx AnApplication

would run a dbx session on the application AnApplication . Any debugger can be

used. Using Sun WorkShop Visual Replay means that you can reach the stage at

which you wish to start debugging quickly. To break into the debugger you can

either reach the end of the script or place a “breakpoint” in the script. “breakpoint”

is a keyword which is followed by the name of a widget. When the widget is

activated, the application breaks into a debugger.

Extending the Sun WorkShop Visual
Replay Widget Set

Overview

Sun WorkShop Visual Replay is based on the principle that the actions which are

recorded in a script must be immediately recognizable as user actions.

Most actions which take place within a Motif application are described in terms of

how a user interacts with its widgets (e.g. by clicking with one of the mouse buttons)

or what is typed from the keyboard. This makes recording and replaying a Motif

application very straightforward. It also makes it easy for a tester to understand,

program and maintain scripts. The same must be true of any non-standard widget

used in an application.

There are a number of Motif widgets (those for which the position in the widget is

important) for which this approach does not immediately work. For most, e.g.

Scales, ScrollBars, etc., a single mechanism will work for all instances of that widget.

In a DrawingArea, or other custom widget, each instance of a widget may behave

quite differently.

For example, although the recording software may observe a click in a drawing area,

the user sees this action quite differently. He is interacting with objects that have

been drawn in the drawing area by the application. But these objects only appear

within the code of the application - they are not part of the interface.

Since you, as an application programmer, will know exactly what a click in a

particular custom widget or drawing area actually means, you can easily provide

routines which describe these actions so that they can be understood and used by

people who wish to record and replay your widget.



Chapter 14 Sun WorkShop Visual Replay 459

If you are programming a drawing-area, or some other customized widget, you will

already have written code to convert from an event at a particular (x,y) coordinate in

that widget to a particular action in the application. Sun WorkShop Visual Replay

provides interfaces which allow you to register converters that allow testers to make

use of your routines.

You need to provide Sun WorkShop Visual Replay with two converters: one for

recording, which converts an event at a particular (x,y) coordinate into an action and

another, for replaying which converts that action to an (x,y) coordinate.

The conversion routine allows you to map the (x,y) coordinate to something which

makes sense both to the user and to the widget itself.

Note – Some widgets provide an easy way to convert between (x,y) coordinates and

the internal structure of the widget, e.g. the XmListYToPos function. This is the

preferred method. Other widgets provide ways of determining and changing the

state of a widget. For example you use XmScrollBarGetValues to record a user action

on a scroll bar and XmScrollBarSetValues to replay that action. You can use the

converters to program a widget directly if the event strategy is difficult to

implement.

The same mechanism is used both for widget classes (e.g. third party widgets) and

for custom widgets (e.g. the Motif XmDrawingArea widget).

The next two sections describe the converter routines. We then give an example

which shows the creation of converters for the Motif XmList widget class.

Event to Name/Attribute Conversion Routine

Name

Synopsis

typedef int (*xdsXYToNameProc) (

Widget widget ,

int x,

int y,

xdsXyToNameProc - interface definition for procedure used to

convert from an event to a name/attribute

description



460 Sun WorkShop Visual User’s Guide • May 2000

char** name_p,

char** attribute_p  )

Inputs

Usage

The routine should return 0 on failure, 1 on success. The strings that you assign to

name_p and attribute_p are not freed by Sun WorkShop Visual Replay. Since

copies are taken, you can use static storage.

If the routine fails, an error is reported.

Name/Attribute To Event Conversion Routine

Name

Synopsis

typedef int (*xdsNameToXyProc) (

Widget widget ,

char* name,

char* attribute ,

int* x_p ,

widget the widget that will use the routine

x the x co-ordinate of the event

y the y co-ordinate of the event

name_p (return) pointer to a string that identifies the part of

the widget

attribute_p (return) pointer to a string that adds to the name, e.g.

center, left, right

xdsNameToXYProc - interface definition for procedure used to

convert from a name/attribute description to an

event



Chapter 14 Sun WorkShop Visual Replay 461

int* y_p  )

Inputs

Usage

The routine should return 0 on failure, 1 on success.

Notes

Sometimes it is very easy to program the effect you need to replay directly onto the

widget, e.g. by setting a resource value or calling a convenience function, but

extremely difficult to mimic the event sequence precisely. In these circumstances,

you can handle it yourself in the routine.

You should still return success, but set the (x,y) co-ordinates to negative values. The

standard mechanism simulates a single click within a widget and expects positive

coordinates.

An Example

This worked example comes from the Sun WorkShop Visual Replay sources. It is an

example of how to register converters for a class of widgets, in this case the Motif

XmList widget class. It demonstrates how a click in an XmList widget can be

converted to the selection of a particular instance of an element from that list. This is

the actual mechanism used for XmList widgets by Sun WorkShop Visual Replay. An

example of its use is illustrated in the script fragment below:

in my_shell

push my_list_widget(‘this line’,1)

When the script is replayed, a button click is simulated at the appropriate (x,y)

coordinates within the widget.

widget the widget that will use the routine

name a string that identifies the part of the widget

attribute string that adds to the name, e.g. center, left, right

x_p (return) pointer to the x co-ordinate result

y_p (return) pointer to the y co-ordinate result



462 Sun WorkShop Visual User’s Guide • May 2000

Once you have read through this example, you will be able to:

■ integrate a 3rd party widget

■ use the conversion mechanisms and understand the widget(name,attribute)
notation

■ understand how we have implemented the XmList widget class

The source files for the example, together with a Makefile are provided in the

$VISUROOT/src/examples/replay/cvtXm directory, where $VISUROOT is the location

of your Sun WorkShop Visual installation.

The contents of this directory are listed below:

The support files provide the framework which allows your shared object to

communicate with the Sun WorkShop Visual Replay engine. You do not need to

change any of these files.

For the purposes of this example, we will be examining motif2.c which contains the

XmList converters and register.c which includes code to register these converters.

The example illustrates the three stages in extending the Sun WorkShop Visual

Replay widget set:

1. Event (x,y) to Name/Attribute pair - xdsXYToNameProc

2. Name/Attribute pair to Event (x,y) - xdsNameToXYProc

3. Registering Converters - xdsRegisterContextHandler

The three associated routines are:

1. xdsListXyToName() - which takes an (x,y) position and returns a name/

attribute pair.

2. xdsListNameToXy() - which takes a name/attribute pair and returns an (x,y)

position.

3. xdsRegister() - which registers a widget and its associated converters with

Sun WorkShop Visual Replay

File Description

Makefile allows you to build the shared object on different platforms

README shows how to build your shared object

motif*.c conversion routines

register.c registration routines

xds* support files



Chapter 14 Sun WorkShop Visual Replay 463

What is important is the structure of the converter code and how the converters are

registered and not how we have implemented the XmList converters.

xdsListXyToName()

This function is in motif2.c. It converts an (x,y) coordinate to a name/attribute pair,

illustrating the xdsXyToNameProc interface definition structure. This function is

used when Sun WorkShop Visual Replay is in record mode.

int

xdsListXyToName( widget, x, y, namep, attrp)

Widget widget;

int x, y;

char ** namep;

char ** attrp;

{

extern Boolean XmStringCompare();

extern char *  xdsCvtXmStringToString();

extern Boolean xdsCvtSetListError();

extern int     xdsCvtListFailure();

extern Boolean xdsCvtGetXmListEntries();

extern int XmListYToPos();

static char name[255];

static char count[20];

int pos;

int len = 0;

int n;

int instance = 1;

XmString * list = (XmString*)0;

XmString   item;

/* get the element */



464 Sun WorkShop Visual User’s Guide • May 2000

if (! xdsGetXmListEntries 1( widget,&list, &len)) {

return xdsListFailure();

}

/* use XmListYToPos() to get the list element */

pos = XmListYToPos 2( widget, (Position)y);

if (pos < 0 || pos > len) {

xdsCvtSetListError(LIST_OUT_OF_BOUNDS);

return xdsCvtListFailure();

}

item = list[--pos];

for (n = 0; n < pos; n++) {

if (XmStringCompare( item, list[n]) == True)

instance++;

}

/* prepare the description */

(void) sprintf ( count, "%d", instance);

(void) strcpy  ( name, xdsXmStringToString 3(item));

*namep  = name;

*attrp  = count;

return 1;

}

xdsListNameToXy()

This function is also in motif2.c. It converts a name/attribute pair to an (x,y)

coordinate, illustrating the xdsNameToXyProc interface definition structure. It is

the complementary function to xdsListXyToName() . This function is used when

Sun WorkShop Visual Replay is in replay mode

1. xdsGetXmListEntries () - we are going to return the element in the list; this is a simple routine
that fetches the elements of an XmList.

2. XmListYToPos () - the Motif convenience function XmListYToPos( widget, y) does all
the conversion that we need. It takes the y-coordinate of the event, and returns its position in the list.

3. xdsXmStringToString () - a routine to convert an XmString to a String.



Chapter 14 Sun WorkShop Visual Replay 465

int

xdsListNameToXy( widget, name, attr, xp, yp)

Widget widget;

char * name;

char * attr;

int  * xp;

int * yp;

{

extern char * xdsCvtXmStringToString();

extern Boolean xdsCvtSetListError();

extern int    xdsCvtListFailure();

extern int    xdsCvtSetListItem();

extern Boolean xdsCvtGetXmListEntries();

Position x, y;

Dimension w, h;

int pos;

int len = 0;

int n;

char * s;

int instance = 1;

XmString * list = (XmString*)0;

XmString   item;

if ((instance = atoi(attr)) == 0) {

xdsCvtSetListError(LIST_BAD_INSTANCE);

return xdsCvtListFailure();

}

instance--;

if (!xdsCvtGetXmListEntries( widget, &list, &len)) {

xdsCvtSetListError(LIST_EMPTY_LIST);

return xdsCvtListFailure();

}

for ( n = 0; n < len; n++) {



466 Sun WorkShop Visual User’s Guide • May 2000

s = xdsCvtXmStringToString(list[n]);

if (strcmp( name, s) != 0)

continue;

if (instance--)

continue;

break;

}

if (n == len) {

xdsCvtSetListError(LIST_ELEMENT_NOT_FOUND);

return xdsCvtListFailure();

}

(void) xdsCvtSetListItem( widget, n+1);

if (! XmListPosToBounds 1( widget, n+1, &x, &y, &w, &h)) {

xdsCvtSetListError(LIST_OUT_OF_BOUNDS);

return xdsCvtListFailure();

}

*xp = x + (w/2);

*yp = y + (h/2);

return 1;

}

xdsRegister()

The function is called in register.c. It registers the two converters in motif2.c and those

for the XmScrollBar, XmScale and XmDrawingArea widgets.

void

RegisterWidgets()

{

extern Boolean xdsRegister();

extern int xdsListNameToXy();

extern int xdsListXyToName();

1. XmListPosToBounds() - the Motif convenience function, XmListPosToBounds(), gives us the window
bounding-box of a particular item in the list. This can be used to work out likely (x,y) coordinates for a click on
that element.



Chapter 14 Sun WorkShop Visual Replay 467

extern int xdsScrollBarNameToXy();

extern int xdsScrollBarXyToName();

extern int xdsScaleNameToXy();

extern int xdsScaleXyToName();

extern int xdsDaNameToXy();

extern int xdsDaXyToName();

(void) xdsRegister( "XmList", xdsListNameToXy, xdsListXyToName);

(void) xdsRegister( "XmScrollBar", xdsScrollBarNameToXy,
xdsScrollBarXyToName);

(void) xdsRegister( "XmScale", xdsScaleNameToXy,
xdsScaleXyToName);

(void) xdsRegister( "XmDrawingArea", xdsDaNameToXy,
xdsDaXyToName);

}

void RegisterThisListWidget(

Widget w;

{

xdsRegisterContextHandler(w, xdsListNameToXy, xdsListXyToName);

}

The function is defined in xdsSetup.h and illustrates the

xdsRegisterContextHandler interface definition structure.

Boolean

xdsRegister( classname, name2xy, xy2name)

char * classname;

int_f  name2xy;

int_f  xy2name;

{

bool_f bf = xdsGetRegisterFunction();

if (!bf)

return False;

return (*bf)( classname, name2xy, xy2name);

}



468 Sun WorkShop Visual User’s Guide • May 2000

Building the Example

The supplied Makefile is configured to build a shared object. A number of operating

systems are supported. These can be listed by typing: make.

You only need to change the OBJECTline in the Makefile in order to build the shared

object. This should be changed to:

OBJECT = cvt<classname>

where classname is the prefix of the widget class. In this example, the widget class

is XmList, so we use the Xm prefix, i.e.

OBJECT=cvtXm

To create the shared object, type: make <system>. For example on a Solaris machine,

you would type: make solaris . This would create a shared object called

libcvtXm.so.

Once the shared object has been built, copy or link it into the directory $VISUROOT/
lib/xds. It will then be loaded by Sun WorkShop Visual Replay when required.

The source files for registering converters, together with a Makefile are provided in

the $VISUROOT/src/examples/replay/cvtTemplate directory, where $VISUROOT is the

location of your Sun WorkShop Visual installation.

Adding Converters for Customizable Widgets

The example described above relates to widget classes. For customizable widgets (i.e.

a specific instance of a widget, such as a Motif XmDrawingArea) a mechanism for

registering conversion routines is provided for you in the Sun WorkShop Visual

distribution. This allows you to tailor the behavior of Sun WorkShop Visual Replay

in order to allow it to record and replay user actions within individual instances of

widgets (Motif or non-Motif).

The converter registration code is listed below:

int_f _xdsRegisterFunction = (int_f)0;

Boolean

xdsRegisterContextHandler( widget, name2xy, xy2name)

Widget widget;

int_f  name2xy;

int_f  xy2name;

{

if (!_xdsRegisterFunction)



Chapter 14 Sun WorkShop Visual Replay 469

return False;

return (*_xdsRegisterFunction)( widget, name2xy, xy2name, True);

}

A call must be made to this function in the application.

Note – The _xdsRegisterFunction function pointer variable is set to 0. This

means that the routine will always return and do nothing in your application when

it is run without Sun WorkShop Visual Replay. When you run with Sun WorkShop

Visual Replay, the variable is set to point to the Register handler which then gets

called.

The routine for registering converters is described below.

Registering Converters

Name

Synopsis

Boolean xdsRegisterContextHandler(

Widget widget,

xdsNameToXYProc name2xy,

xdsXYToNameProc xy2name)

Boolean xdsRemoveContextHandler( Widget widget)

xdsRegisterContextHandler - interface definition for procedure used to

register a converter



470 Sun WorkShop Visual User’s Guide • May 2000

Inputs

Description

This routine is for registering your own interpretations of events in a widget. You

can call xdsRegisterContextHandler at any time after you have created the

widget in your code, for example:

button1 = XmCreatePushButton ( shell1, "button1", al, ac );

xdsRegisterContextHandler(shell1, func1, func2)

When replaying, Sun WorkShop Visual Replay will call the func1 routine. When

recording, it will call the func2 routine.

The mechanism is available to you either as a source file (client.c), or as a

precompiled library module (libxdsclient.a). In the former case, it has to be compiled

with your application, in the latter case re-linked with it.

It has no impact on the application itself and can be left in it with no adverse effects.

Summary

To extend the Sun WorkShop Visual Replay widget set:

■ Create an (x,y) to name/attribute converter

■ Create a name/attribute to (x,y) converter

For widget classes:

■ Register the converters

■ Create a shared object and copy or link it to the $VISUROOT/lib/xds directory

For individual widgets:

■ Call xdsRegisterContextHandler to associate a widget with a specific

function

■ Build your application with client.c or link it with the libxdsclient.a library

Use the contents of the supplied examples directory as a guide to writing, registering

and building your converters.

widget the widget that will use the routines

name2xy pointer to a conversion function for replay

xy2name pointer to a conversion function for record



Chapter 14 Sun WorkShop Visual Replay 471

Adding Your Own Sun WorkShop Visual
Replay Commands

Overview

The command set of Sun WorkShop Visual Replay is intended for replaying user

actions and for checking the state of an application with respect to its widget

hierarchy and its resource settings. You are not limited to this set of commands. You

can extend it to include commands to meet your own needs, for example:

■ To produce screen dumps at various points in a replay session.

■ To do other sorts of consistency checking on the widget hierarchy - one example

would be to interface with Doug Young’s widgetlint library.

■ To insert a probe or a patch for a particular debugging problem. This will be of

most use in a stripped optimized binary, where you do not have access to the full

power of the debugger.

You have already seen in the previous chapter examples of user-defined modules

which are loaded implicitly by the Sun WorkShop Visual Replay engine. You have

also seen how to construct and build these modules.

import allows you to load a module of your own commands explicitly into a script.

Once the module has been loaded the commands in it can be invoked using the user
command. This section shows you how to produce such a module. The process is

similar in many ways to that described in the preceding section.

An Example

We will describe how to create a module which contains one command. This

command prints a message on standard error and the name of the current shell

widget. You can use this example as a template for constructing your own

commands.

The source files for the command, together with a Makefile are provided in the

$VISUROOT/src/examples/replay/usertemplate directory, where $VISUROOT is the

location of your Sun WorkShop Visual installation.



472 Sun WorkShop Visual User’s Guide • May 2000

The contents of this directory are listed below:

The support files provide the framework which allows your extra commands to

communicate with the Sun WorkShop Visual Replay engine. You only need to

change the xdsResources.h file - the remaining files prefixed with xds need not
be altered in any way.

You only need to change the OBJECTline in the Makefile in order to build the

module. Then build the module by typing:

make <systemname>

You then copy or link the shared object to the $VISUROOT/lib/xds directory:

The contents of the interface.c file are shown below:

#include <stdio.h>

#include <X11/Xos.h>

#include <X11/Xlib.h>

#include <X11/Intrinsic.h>

void

exampleHalloWorld( shell, message)

Widget shell;

char * message;

{

if (!message)

message = "no message";

(void) fprintf ( stderr, "Widget %s says '%s'\n",XtName(shell),
message);

}

As you can see, a user-defined function should have two arguments:

■ shell - is the current shell widget (passed in by Sun WorkShop Visual Replay)

File Description

Makefile allows you to build the extra command module on different

platforms

README shows how to build your command module

interface.c contains the code for the extra command described in this

section

xds* support files



Chapter 14 Sun WorkShop Visual Replay 473

■ message - a string

The message is all the text which follows the user command syntax on that line in the

script. The example script fragment below shows how a command would be

accessed and used:

import usertemplate

in ApplicationShell

user HalloWorld I’m here

Here the message is “I’m here”.

The Interface

The interface between all objects and the Sun WorkShop Visual Replay engine takes

place using the standard Xt resource handling routines.

Note – If you would like more information on resource structures, you are advised

to consult Chapter 10 in Volume Four of the “X Toolkit Intrinsics Programming
Manual” published by O’Reilly and Associates, or any other comparable book.

An entry for the new command is added to the resource list in xdsResources.h , as

shown below:

{

“HalloWorld”, XtCCallback, XtRPointer, sizeof(XtPointer),
XtOffsetOf(data_t,HalloWorld), XtRImmediate,
(XtPointer)exampleHalloWorld

}

Only three items are of significance within this code:

■ “HalloWorld” is the resource name

■ XtOffsetOf(data_t, HalloWorld) gives the offset to the relevant entry in

the data structure

■ (XtPointer)exampleHalloWorld is a pointer to the address of the function

A pointer to that resource is added to the data structure within this file:

typedef struct {

int       type;

XtPointer setValues;

XtPointer getValues;

XtPointer engineSetValues;



474 Sun WorkShop Visual User’s Guide • May 2000

XtPointer engineGetValues;

/*-----------------------*/

XtPointer HalloWorld;

} data_t;

Entries above the line in the data structure are common to all Sun WorkShop Visual

Replay objects.

The last thing to do in this file is to declare the function:

extern void exampleHalloWorld();

Building the Module

As in the preceding chapter, you only need to change the OBJECTline in the

Makefile in order to build the module. For this example, we change it to:

OBJECT=usertemplate

and then build the module by typing:

make solaris

Finally, we copy or link the shared object we have built to the $VISUROOT/lib/xds
directory:

cp libusertemplate.so $VISUROOT/lib/xds

That is all there is to it.

Summary

To add a new command to the Sun WorkShop Visual Replay command set:

1. Add the associated function to the interface.c file.

2. Add an entry to the resource list in xdsResources.h

3. Add a function pointer to the data structure in xdsResources.h

4. Add an extern declaration of the function in xdsResources.h

5. If necessary, change the OBJECT line in the Makefile

6. Build the module

7. Copy or link it to the $VISUROOT/lib/xds directory



Chapter 14 Sun WorkShop Visual Replay 475

You can create as many modules as you wish and load them into a script at any

time.

Allowing Your Applications to Be
Recorded and Replayed

To permit users to use Sun WorkShop Visual Replay to record and replay your

application, you must do the following:

■ have the following line in your code:

xdsAllowUserAccess()

■ link the application with the libxdsclient.a library

See “Sun WorkShop Visual Replay and Sun WorkShop Visual Capture” on page 807

for tips and hints about using Sun WorkShop Visual Replay.



476 Sun WorkShop Visual User’s Guide • May 2000



477

CHAPTER 15

Groups

Introduction

In Sun WorkShop Visual you can select one or more widgets and make them into a

Group. A Group can be used as a shortcut means of referencing either large numbers

of widgets or widgets which are performing a similar function. They are, however,

the fundamental building block of Smart Code. Smart Code is the toolkit-

independent layer of code which Sun WorkShop Visual can generate for you to help

you move your Motif application to other platforms and make the most of Internet

technology.

Since Smart Code uses Groups as its basic data structure, you need to understand

how to create them, customize them and use them first. This chapter describes

Groups. For more information on Smart Code, see:

1. Chapter 16, “Get/Set Smart Code”, starting on page 485. This chapter discusses

Smart Code and contains a simple tutorial which shows you how to set up a

Group in your design, generate “Get/Set” Smart Code and access the Group

members independently of the toolkit you are using.

2. Chapter 17, “Thin Client Smart Code”, starting on page 501 describes how to

create a thin client and a separate server application from your design. The server

is a CGI script and the communication between the client and server is achieved

by using the standards of the Internet. Again, a tutorial is included to familiarize

you with the basic concepts.

3. Chapter 18, “Internet Smart Code”, starting on page 533 explains how to generate

code form your design which is capable of accessing pages on the World Wide

Web. A simple tutorial is included to let you try this out.



478 Sun WorkShop Visual User’s Guide • May 2000

Creating a Group

To create a Group, select any number of widgets in your design and press the “Add

to Group” toolbar button (shown in Figure 15-1) or select “Add to a New Group”

from the Widget menu. The Group Editor appears, as shown in Figure 15-2.

FIGURE 15-1 The “Add to Group” Toolbar Button

FIGURE 15-2 Group Editor

The Group Editor allows you to:

1. Change the name of the group.

2. Specify the Group members.

To change the name of the Group, select it, type the new name into the text field

labelled “Name” beneath and press the Return key. This takes effect immediately.



Chapter 15 Groups 479

When a Group is selected, its members are displayed in the list on the right. There

are a number of functions which apply to the Group members:

1. Add. Add any widgets currently selected in the design area to this group.

2. Remove. Remove the selected members from the group.

3. Private. Define the selected member(s) as “private” to this group. This refers to

the way code is generated for the group and is only relevant to thin client

callbacks. More details are provided in “Public/Private Members” on page 480.

4. Public. Define the selected member(s) as publicly accessible (from a server). This

refers to the way code is generated for the group and is only relevant to thin

client callbacks. More information is provided in “Public/Private Members” on

page 480.

5. Select. Select the corresponding widgets in the design area.

6. Go to. For this function, you must have only one member selected in the Group

Editor. Pressing “Go to” makes the selected widget visible in the design area,

unfolding nodes in the hierarchy if necessary.

Groups as Shortcuts

Groups come into their own when used for Smart Code. This is explained in

Chapter 16, “Get/Set Smart Code”, starting on page 485. Within Sun WorkShop

Visual, however, using groups provides an extra level of convenience. Three areas

where groups can be used are detailed in the following sub-sections.

Fast Multiple Selection

In the Group Editor, the “Select” button underneath the list of Groups highlights all

the widgets of the Group in the design area. This allows you to set up Groups of

widgets which may need to be selected again and again. Using Groups in this way

generates very little extra code. The Group is simply defined as an array of widgets.

Quick Find

The “Go to” button next to the list of Group members in the Group Editor, causes

Sun WorkShop Visual to display the selected widget in the design area, unfolding

nodes in the hierarchy if necessary. By making particular widgets into Groups by

themselves, you can mark them for finding later.



480 Sun WorkShop Visual User’s Guide • May 2000

Links

Groups can be used as a link destination in the Edit Links dialog, as shown in Figure

15-3.

FIGURE 15-3 Edit Links Dialog

Using Groups as link destinations provides you with a quick and simple means of,

for example, hiding or disabling whole groups of widgets at once.

Groups for Smart Code

Public and private members and Extra Data are features of the Group structure

intended for development of thin client applications, which are explained in

Chapter 17, “Thin Client Smart Code”, starting on page 501. You do not need to use

these features if you are not using thin client or Internet Smart Code.

Public/Private Members

The “Public” and “Private” toggles allow you to control the accessibility of each

member when code is generated. You only need to change this if you are setting up

a Group to be used in a thin client/server application.

By default, members of a Group are defined to be public. This means that, when a

Group is passed outside of the client application (to a remote server, for example)

the receiving routine can access those members.



Chapter 15 Groups 481

You may wish only the thin client of your application (which is the user interface) to

have access to certain members of a group. The member should then be made

“private”. It is visible everywhere in the thin client application, but not in the server.

Because the client application is controlling the user interface, it may well need

access to more members than the server. This is discussed in more detail in “Extra

Data - Function” on page 483.

Creating thin client and server applications is described in Chapter 17, “Thin Client

Smart Code”, starting on page 501.

Extra Data

The Group Editor contains an area labelled “Extra Data” where you may add extra

members to a Group. These are intended for client/server transactions and represent

name/value pairs. They are always treated as Strings.

Since only the Group is passed to a Smart Code callback, allowing extra data inside

the Group provides a means of passing more information into the callback. This is

especially useful when the callback is functioning in a separate server application

and does not have direct access to the rest of the client application.

The extra data section of the Group Editor contains a list showing the existing

definitions, two text fields for the name and value of the data and an option menu

allowing you to choose whether the extra data is a “Constant”, “Variable” or

“Function”.

To add extra data, type in a name, a value, choose its type and then press “Add”.

The extra data is treated in exactly the same way as any other member of a Group;

there are get and set functions provided for them. This means something slightly

different for a constant, a variable or a function. These “types”, therefore, are

described individually in the sub-sections below.

Extra Data - Constant

The extra data defined as shown in Figure 15-4 results in the extra member

“myNewConstant” being initialized to the string “hello”.

Routines to get and set the value “hello” are provided in the generated code.

Chapter 16, “Get/Set Smart Code”, starting on page 485 provides details on getting

and setting the values of Group members.



482 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 15-4 Extra Data - Constant Type

Extra Data - Variable

To add data with a variable value to your Group, use an existing variable as the

“Value” and enter your own name into the “Name” field. An “extern” definition will

be added to the generated code file for the existing variable (the one named in the

“Value” field). An example of this is shown in Figure 15-5.

FIGURE 15-5 Extra Data - Variable Type

You would have to ensure that “theInfo” is a string variable and is defined

elsewhere. The get and set functions provided in this case would get and set the

value of the variable. For example, supposing that you have defined “theInfo” like

this:

char * theInfo = “hello”;

And you have defined “myNewVariable” as shown above. The following line would

assign the string “hello” to str :

In C:

char * str = SC_GET(Value, myGroup->myNewVariable);

In C++:

char * str = myGroup->myMyNewVariable->getValue();

In Java:

String str = myGroup.myNewVariable.getValue();



Chapter 15 Groups 483

Chapter 16, “Get/Set Smart Code”, starting on page 485 provides details on getting

and setting the values of Group members.

Extra Data - Function

The ability to add extra data in the form of functions provides added flexibility.

Defining an extra member of type “Function” adds a member to the Group whose

value is accessed via a getter and setter function filled in by you. The string typed

into the “Name” field is the name of the extra member. The string typed into the

“Value” field is used for the names of the get and set routines. For example, if you

type address into the “Name” field and myAddress into the “Value” field, an extra

member called “address” is added to the Group and its value is accessed via the

routines:

■ get_myAddress

■ set_myAddress

This is shown in Figure 15-6.

FIGURE 15-6 Extra Data - Function Type

Sun WorkShop Visual generates stubs for these two routines into the file in the

callouts sub-directory whose filename is a concatenation of the name of the group

and the “Value” field. For example, assuming that the “myAddress ” routines shown

above are defined in a group named “myGroup”, the file containing them would be

named myGroup_myAddress.c (for C code).

The following line of C code fetches the value of “address”:

SC_GET(Value, group->address);

This line of code causes the new routine get_myAddress to be called. You should fill

in get_myAddress so that a value is returned. As you might expect, “SC_SET” calls

set_myAddress .

Note – You may type the same name into both the “Name” and the “Value” field.

You may find this less confusing as the getter and setter routines will match the

Group member name more closely.



484 Sun WorkShop Visual User’s Guide • May 2000

Chapter 16, “Get/Set Smart Code”, starting on page 485 provides details on getting

and setting the values of Group members.

Defining extra data in the form of functions is intended for assembling the data of a

Group into a form expected by a server. For example, you may have a server which

has no awareness of user interface components and which expects an address in the

form of one long string. Your user interface, however, may contain several text fields

for the user to type in an address. You could have an extra data member named

“address” which is a function. The get_address routine (assuming the string

“address” was typed into both the “Name” and “Value” fields) would return a

concatenation of all the address fields. A callback sitting in the server could then

simply fetch the value of “address” in the normal way:

char * value = SC_GET(myGroup->address);

Similarly, the corresponding set_address routine could take a string from the

server and separate out the strings relevant to each text field. In this example, you

may also wish to make the text field widgets “Private” and the “address” member

“Public”, since the server is only interested in the one “address” member.

There are many circumstances in which the data available from the Group needs to

be refined for the server. For example, you may wish to send only the selected text

from a text area (as opposed to the whole text).



485

CHAPTER 16

Get/Set Smart Code

Introduction

Sun WorkShop Visual can generate toolkit independent code which it calls Smart

Code. Smart Code can be used in a single generated application or as a means of

communicating between a client and a server. When used for client server

applications, Sun WorkShop Visual generates a thin client using Java, Motif (C or

C++) or Microsoft Windows MFC code and a separate server application. Sun

WorkShop Visual generates code which uses HTTP as the transport protocol. The

generated application can be used within your organizations Intranet or it can

connect to any location on the Internet.

To create a client server or “Web-aware” application from your design, Sun

WorkShop Visual uses Groups as the basic data structure for communication and

Smart Code as the means to access the Group. Groups also provide extra usefulness

within your design. They are described in Chapter 15, “Groups”, starting on page

477.

How the Smart Code Information Is
Organized
■ This chapter describes the “Get/Set” flavor of Smart Code.

■ “Get/Set Tutorial” on page 493 takes you through the steps for defining Groups

and using Get/Set Smart Code.



486 Sun WorkShop Visual User’s Guide • May 2000

■ Chapter 17, “Thin Client Smart Code”, starting on page 501 describes how to tell

Sun WorkShop Visual to split your design into a thin client and a server

application.

■ Chapter 18, “Internet Smart Code”, starting on page 533 describes how to build

an application which is capable of fetching data from anywhere on the World

Wide Web.

Using Smart Code

By default, traditional Motif, MFC or Java callbacks are generated. Ask for Smart

Code by selecting the “Smart Code” toggle in the Callbacks dialog.

Smart Code gives your callback toolkit-independence, not language independence.

You still choose the language you wish to generate. Smart Code is simply a layer of

code which “wraps up” the widgets in a Group using the specified language.

An option menu, shown in Figure 16-1, allows you to choose one of three styles of

Smart Code:

1. Get/Set. This provides you with a suite of “getter” and “setter” functions for a

group of widgets.

2. Thin Client. This provides not only the getters and setters, it also triggers Sun

WorkShop Visual to generate a separate client application containing the user

interface and a server application containing the Smart Code callback(s). In

addition, the code to handle the communication protocol between the two is

generated.

3. Internet. This option is very similar to the “Thin Client” option above except that

no server application is generated. Use this option for generating applications

which will connect to an existing server or which will fetch Web pages.



Chapter 16 Get/Set Smart Code 487

FIGURE 16-1 Smart Code in the Callbacks Dialog

A Smart Code callback requires a Group. This Group gives the callback a handle onto

a set of objects which can then be programmed in a toolkit-independent way. To

specify a Group do one of the following:

1. Type the name of a Group into the “Group” text field.

2. Press the “Group” button to display the Group Editor, select a Group and press

“Apply”.

The “Style” option menu lets you choose the type of Smart Code you require and,

therefore, the structure of the application you are creating. The code generated for

each style is different. The sub-sections below describe each style individually.

Get/Set Smart Code

Choosing “Get/Set” from the Smart Code style menu in the Callbacks dialog tells

Sun WorkShop Visual to generate toolkit independent wrappers for the components in

the specified Group. These are also called “getter” and “setter” functions; they allow

you to get and set the value of the Group’s components without writing any toolkit-

specific code.

For example, suppose you are using C and you have a widget named “text1” and a

toggle named “toggle1” in a Group named “MyGroup”, as shown in Figure 16-2.



488 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 16-2 Group “MyGroup” in Group Editor

In order to access this Group in a callback, you would define a Smart Code callback,

choosing “Get/Set” as the Smart Code style and specifying “MyGroup” as the

Group to be used in the callback. This is shown in Figure 16-3.

FIGURE 16-3 Callback Using “MyGroup”



Chapter 16 Get/Set Smart Code 489

Smart Code Callback in C

The code generated for the callback shown in Figure 16-3 would look like this:

#include <stdio.h>

#include “sc_groups_c.h”

void

accessMyGroup_user ( d, group, client_data)

        sc_data_t * d;

        MyGroup_t* group;

        void* client_data;

{

}

The data structure sc_data_t which is passed into Smart Code callbacks contains

information mainly relevant to the communication between a client and a server.

You can find the definition of this structure in the header file

sc_groups_<language>.h . This file is generated by Sun WorkShop Visual into the

directory specified in the Generate dialog. See “Generated Code” on page 525 for

more information on the code generated for Smart Code and Chapter 17, “Thin

Client Smart Code”, starting on page 501 for more information on creating a client

and server from your design.

To get the value of “text1”, you would simply need to add the following line to this

callback:

char * val = SC_GET(Value, group->text1);

This next piece of code checks the state of the toggle and enters text into “text1” if

the toggle is set:

if (SC_GET(State, group->toggle1)

SC_SET(Value, group->text1, “The toggle is set”);

This example assumes that you are using C. Because the C syntax is more

cumbersome, macros are also provided to maintain ease of programming. The

macros are called SC_SET and SC_GET. They take two parameters. The first is the

type of query (the thing you are getting - Value, State etc.) and the second is the

widget you wish to access (via its Group).



490 Sun WorkShop Visual User’s Guide • May 2000

Smart Code Callback in C++

The Smart Code callback generated for the example shown in Figure 16-3 is different

from the example above when C++ is the chosen language in the Generate dialog. In

this case, Sun WorkShop Visual generates a subclass of the internal pre-defined

Smart Code class sc_data_c using the name of the callback as the new class name.

The class sc_data_c corresponds to the C data structure sc_data_t described

above. The routine called from the main application when this callback is triggered,

is the doit() method of the new class. The following listing of

accessMyGroup_user.cpp from the directory callouts_cpp illustrates this.

accessMyGroup was the name of the callback method entered in the Callbacks

dialog.

The getGroup() method is a convenience routine in the parent sc_data_c class:

#include <stdio.h>

#include “sc_groups_cpp.h”

class accessMyGroup_user: public sc_data_c

{

        void doit() {

 MyGroup_c * g = (MyGroup_c *)getGroup();

        }

};

sc_data_c *

getNew_accessMyGroup()

{

        return (sc_data_c*) new accessMyGroup_user;

}

In C++, you do not need to use the macros described for C code. The following line

of code fetches the contents of “text1”:

char * str = g->text1->getValue();

The following line checks the state of the toggle and sets the contents of “text1” if

the toggle is set:

if (g->toggle1->getState())

g->text1->setValue(“The toggle is set”);

Add your own code here



Chapter 16 Get/Set Smart Code 491

Smart Code Callback in Java

When Java is the selected language in the Generate dialog, your Smart Code callback

shown in Figure 16-3 is generated as a subclass of the SCData Smart Code class. This

is similar to the C++ model described above. You add your own code to the doit()
method of the class. The super class, SCData, includes a convenience function to get

a handle to the Group. The SCData class is defined in the file SCData.java in the

utils_java subdirectory beneath your generate directory.

For the example shown in Figure 16-3, the following code would appear in a file

named accessMyGroup_user.java found in the callouts_java subdirectory:

package callouts_java;

import groups_java.* ;

import utils_java.* ;

public class accessMyGroup_user extends SCData

{

        public void doit() {

                group0_c g = (group0_c)getGroup();

}

        public static accessMyGroup_user getNew()

        {

                return  new accessMyGroup_user();

        }

}

In Java, you do not need to use the macros described for C code. Instead, you would

do something similar to the C++ model. The following line of code would fetch the

contents of “text1”:

String str = g.text1.getValue();

The following line checks the state of the toggle and sets the contents of “text1” if

the toggle is set:

if (g.toggle1.getState())

g.text1.setValue(“The toggle is set”);

Add your own code here



492 Sun WorkShop Visual User’s Guide • May 2000

Priming Dialogs Using the Create Callback

The example above shows a callback defined for “Activate”. This means that your

“Get/Set” code is not called until the button is pressed. If you need to “prime” the

widgets in a dialog when the dialog is first displayed, define a Smart Code callback

for the “Create” callback of the shell. This callback will occur just once when the

dialog is created..

The create callback of a widget is called after all the widget’s children have been

created. The widgets in a Group must be created before a Smart Code callback can

access them. Using the shell’s create callback to prime a dialog means that you can

be sure all the widgets have been created before the create callback is triggered since

the shell is the last widget to be created. If you do not wish to set up a callback on

the shell, add an arbitrary container to your design (if you do not already have one)

which contains all the widgets in your Group. Since child widgets are always created

before their parent, in this way you can be sure that the widgets in the Group you

have specified for the Smart Code callback have been created before the Smart Code

callback is triggered.

Using Getters and Setters

The toolkit-independent wrappers are very simple to use. A full list of the functions

provided for each widget type is given in Appendix C, “Getters and Setters”,

starting on page 855.

HTML Files

In order to help you locate callbacks and familiarize yourself with the files generated

when Smart Code is requested, Sun WorkShop Visual also generates a set of HTML

files. The main one is:

■ index.html

and is found in the top-level directory (i.e. the directory named in the Generate

dialog).

This file, when opened in a web browser (or anything else which can read HTML)

lists the files generated along with a brief description of each one. Sun WorkShop

Visual creates a symbolic link in your generate directory to a directory in the Sun

WorkShop Visual install directory in order to access HTML files which describe the

unchanging features of Smart Code.



Chapter 16 Get/Set Smart Code 493

Get/Set Tutorial

This simple tutorial takes you through the main features of Groups and Get/Set

Smart Code. The tutorial sets up a Group and uses Smart Code to get and set the

values of the group members.

When completed, the application looks as shown in Figure 16-4.

FIGURE 16-4 Final Application

1. Start Sun WorkShop Visual.

2. Create an Application Shell and a Form. Inside the Form, put a button, a label, a
textfield and a toggle.

Figure 16-5 shows this initial hierarchy.

FIGURE 16-5 Initial Tutorial Hierarchy

3. Select the label, text and toggle widgets and press the Group Editor button on the
toolbar.

This is the same as selecting “Add to a New Group” from the Widget menu.

The Group Editor now appears, as shown in Figure 16-6.



494 Sun WorkShop Visual User’s Guide • May 2000

4. Change the name of your new group to “MyGroup” by typing this into the text
field labelled “Name” and pressing the Return key.

You do not have to change the name of the group, but doing so may be simpler,

especially if you intend to have a large number of groups.

FIGURE 16-6 Group Editor for New Group

5. Close the Group Editor.

The “Apply” button only becomes enabled when you are selecting a group to add to

a callback, as will be seen later.

6. Change the layout of the widgets in the Form and the labels of the button, label
and toggle so that they are as shown in Figure 16-7.

This is a purely cosmetic alteration. The label of the button is “Go”, the label is set to

“Text:” and the toggle is “Set text”.



Chapter 16 Get/Set Smart Code 495

FIGURE 16-7 Widgets Laid Out and Labels Set

7. Display the Callbacks dialog for the button.

You can do this by either pressing the Callbacks button on the toolbar or choosing

“Callbacks” from the Widget menu.

8. Make sure that “Activate” is selected from the callback lists.

We are choosing “Activate” so that the callback is called when the button is pressed.

Note – In the Callback Lists section, the Activate callback is shown with a ‘J’ after it

indicating that it is applicable to Java code. These annotations are described in

“Callbacks” on page 172.

9. Set the “Smart Code” toggle.

10. Select “Get/Set” from the Smart Code option menu.

11. Press the button labelled “Group”.

This displays the Group Editor. Note that the “Apply” button is now enabled.

12. Select MyGroup and press “Apply”.

The Editor is dismissed and the name “MyGroup” is added to the text field next to

the Group button. You could also have typed the name in directly.

13. Name the callback “doGoButton” and press “Add”.

The new callback is shown in the list with curly braces enclosing periods ({...}) to

indicate that this is a Smart Code callback. Figure 16-8 shows the defined callback.



496 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 16-8 New Smart Code Callback

14. Close the Callbacks dialog.

The definition of the callback is complete. Now we need to fill it in.

15. Save your design as tutorial.xd .

16. Display the Generate dialog and choose a target directory for your source files.

The target directory is shown at the top of the dialog.

17. Make sure that the “Stubs”, “Code”, “Externs”, “Main program” and “Makefile”
generate toggles are set.

The correct configuration of the Generate dialog is shown in Figure 16-9. For this

tutorial we have changed the names of the files from the default (“untitled”) to

“tutorial”.



Chapter 16 Get/Set Smart Code 497

FIGURE 16-9 Generate Dialog

18. Press the “Options...” button above “Generate” to display the Code Generation
Options dialog.

19. Set the “Strings” option menu to “Code” and close this dialog,

For a simple tutorial, it is easier to generate label strings into the code file than to

generate a separate resource file.

20. Now generate C code by pressing the “Generate” button.

Of course, you can generate C++ code. The example listings below use C.

The directories and files shown in Figure 16-10 are generated.

Tip – “Get/Set Generated Code” on page 526 provides more information on the files

generated for “Get/Set” Smart Code.

21. Save your design.



498 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 16-10 Files and Directories Generated For Tutorial

22. Use your favorite editor to edit the file doGoButton_user.c in the directory
callouts_c.

This is the file highlighted in Figure 16-10.

23. The callback itself is also called “doGoButton_user”.

This is listed below:

#include <stdio.h>

#include “sc_groups_c.h”

void

doGoButton_user ( d, group, client_data)

        sc_data_t * d;

tutorial_stubs.c

doGoButton_user.c

callouts_c Makefile
index.html
sc_groups_c.h
tutorial.c
tutorial.h

groups_c motif_c

your generate directory

Generated code which
may be changed by you

Generated code which will
not be changed by you

Code for
controlling
groups

Motif “wrappers”
for C code

toolkit dependent stubs file

toolkit independent
stubs file



Chapter 16 Get/Set Smart Code 499

        MyGroup_t* group;

        void* client_data;

{

}

Note – This routine is called from the button activate callback in

tutorial_stubs.c .

24. Add the following lines to “doGoButton_user”:

if (SC_GET(State, group->toggle1))

SC_SET(Value, group->text1, “The toggle is set”);

else

SC_SET(Value, group->text1, “”);

These few lines simply check whether the toggle is set or not. If it is set, then the text

field displays “The toggle is set”. If it is not, the text field is cleared.

25. Save your edits.

26. Make sure that you have the environment variable VISUROOT set to Sun
WorkShop Visual’s install directory and that you have your C compiler in your
PATH.

See the Generating Code chapter in the main User Guide for more information on

setting up prior to compiling.

27. Type:

make

in the directory where the files were generated.

28. Once your application has built, try running it.

29. Press the “Go” button with and without the toggle set.

The tutorial is now complete. Although the functions you have added are very

simple, you have established a framework within which your application can be

extended very easily. It would now be much simpler to generate both a client and a

server from your design by defining a Thin Client Smart Code callback. This is

described in Chapter 17, “Thin Client Smart Code”, starting on page 501. A step-by-

step tutorial shows you how to do this in “Thin Client Smart Code Tutorial” on

page 504.



500 Sun WorkShop Visual User’s Guide • May 2000



501

CHAPTER 17

Thin Client Smart Code

Introduction

Motif and MFC applications are traditionally large scale applications. Modern

Internet technologies encourage the thin client approach. This is an application

structure with a clean division between:

■ A lightweight client controlling just the user interface.

■ A remote server providing data back to the client.

Note – The server application generated by default by Sun WorkShop Visual is a

CGI program using a Web server to communicate with the client.

This chapter describes how Sun WorkShop Visual helps you to migrate, very simply,

from a large scale application to the structure described above. This is achieved by

first “grouping together” widgets to create portable data structures, then

“enhancing” your callbacks so that they can either run remotely or communicate

with a remote server. There are no other changes you need to make to your design.

Sun WorkShop Visual also lets you try out the connection between the client and the

server dynamically before you generate code. Setting the “Go Live!” toggle for a thin

client or Internet callback activates that callback by connecting to the specified URL.

This is described in “Going Live” on page 521.

You will need to understand how to use both Groups and Get/Set Smart Code in

order to use the thin client (or Internet) Smart Code because Groups, along with

their getters and setters, are the nuts and bolts of all types of Smart Code.

Information on these subjects is found in:

1. The grouping together of widgets is described in Chapter 15, “Groups”, starting

on page 477.



502 Sun WorkShop Visual User’s Guide • May 2000

2. Chapter 16, “Get/Set Smart Code”, starting on page 485 describes the Get/Set

Smart Code which provides you with toolkit-independent wrappers for the

widgets in your design.

Using Thin Client Smart Code

Creating a thin client and server application from your design is done by setting up

a special Smart Code callback. To do this, you only need to do the following:

1. Display the Callbacks dialog for a widget in your design.

2. Select the “Smart Code” toggle.

3. Choose “Thin Client” from the Smart Code option menu.

4. Specify a Group.

5. Name and add the callback.

What a Group is, and how to create one, is described in Chapter 15, “Groups”,

starting on page 477.

Smart Code gives your callback toolkit-independence, not language independence.

You still choose the language you wish to generate. Smart Code is simply a layer of

code which “wraps up” the widgets in a Group using the specified language.

There are three types of Smart Code:

1. Get/Set. This provides you with a suite of “getter” and “setter” functions for a

group of widgets. This is described in Chapter 16, “Get/Set Smart Code”, starting

on page 485.

2. Thin Client. This provides not only the getters and setters, it also triggers Sun

WorkShop Visual to generate a separate thin client application containing the user

interface and a server application containing the callback you are defining. In

addition, the code to handle the communication between the two is generated.

This chapter describes the use of thin client Smart Code.

3. Internet. This also provides the getters and setters and tells Sun WorkShop Visual

to generate a client application which is ready to communicate with a remote

server. The code for communicating with the server is also generated. Internet

Smart Code is described in Chapter 18, “Internet Smart Code”, starting on page

533.



Chapter 17 Thin Client Smart Code 503

Specifying a Group

Both “Thin Client” and “Internet” Smart Code styles require the name of a Group to

be passed to the callback. The Group gives the callback access to data in the user

interface, even though the callback may be running in a remote server. Either type

the name of the Group directly into the “Group” text field or press the “Group”

button. This displays the Group Editor. Select the Group you require and press

“Apply” to both dismiss the Editor and place the name of the Group into the text

field.

Getters and Setters

All of the stubs generated by Sun WorkShop Visual when either “Thin Client” or

“Internet” is selected, have full use of the “getter” and “setter” routines for the

specified Group. The Get/Set Smart Code is described in Chapter 16, “Get/Set

Smart Code”, starting on page 485. The callback in a server has a slightly different

access to the Group components. It calls a single get or set routine which accesses a

default “value”. This “value” differs according to the type of widget. For example, a

text field has a string value (its contents) and a toggle has a boolean value (its state).

Customize Button

Sun WorkShop Visual Selecting “Thin Client” or “Internet” from the Smart Code

“Style” option menu in the Callbacks dialog enables the “Customize” button. This

button displays the Customize dialog, allowing you to configure how data is sent to

and received from the server. Sun WorkShop Visual does provide sensible defaults.

You will always have to change the URL address of the server with which you are

communicating, however.

The Customize dialog appears slightly different according to whether it is displayed

with “Thin Client” or “Internet” selected from the option menu. The only difference

is the label for the Send custom data handler text

box. This is because Sun WorkShop Visual uses a different HTTP method for the two

types of application. When “Thin Client” is selected, Sun WorkShop Visual uses the

POST protocol. By default, Sun WorkShop Visual uses the GET protocol when

“Internet” is selected because it is assumed that you are only fetching web pages.

You can change this to use POST by providing a custom Send data handler. More

about this is given in “Custom Data Handlers” on page 518.

The Customize dialog is explained in “Customizing the Server Connection” on

page 514 below.



504 Sun WorkShop Visual User’s Guide • May 2000

See “Thin Client/Internet Generated Code” on page 527 for details of the code that

is generated when a server callback is defined, including a list of the stubs files.

Go Live

The “Go Live!” toggle becomes sensitive when a thin client or internet callback has

been defined. Setting the toggle enables you to test the connection between the client

and the server from within Sun WorkShop Visual, before generating code. Detailed

information on this is given in “Going Live” on page 521.

Requirements

Both thin client and Internet Smart Code styles use the standards of the World Wide

Web as the means of communication between the generated client application and a

server. In order to run the generated and compiled applications and to use the “Go

Live” feature, you will need:

1. A networked computer connected to an Intranet or Internet.

2. A running Web server.

If you need more information on this, consult your systems administrator or contact

your Sun WorkShop Visual supplier.

Thin Client Smart Code Tutorial

This simple tutorial gives you the chance to try out the “Thin Client” style of Smart

Code. By following these steps you will quickly generate a thin client containing the

user interface shown in Figure 17-1 and a server which sets the contents of the text

field according to whether or not the toggle is set. The server can run remotely on

your own intranet or anywhere on the Web.

The initial steps are covered only briefly as it is assumed that you are already

familiar with the general use of Sun WorkShop Visual. If you are not, you may wish

to try the main Sun WorkShop Visual tutorial which starts in Chapter 2 ”Building

the Widget Hierarchy“.



Chapter 17 Thin Client Smart Code 505

FIGURE 17-1 Thin Client Application User Interface

1. Start Sun WorkShop Visual.

2. Create a simple hierarchy: application shell->form->button, label, toggle, text
field.

This is shown in Figure 17-2.

FIGURE 17-2 Hierarchy for Smart Code Tutorial

3. Label the button “Go”, the toggle “Check me” and the label “Text:”.

4. Give the shell the title “Tutorial Example”.

Do this in the shell’s resources dialog.

5. Display the Form Layout Editor and lay out the widgets so that they look roughly
as shown in Figure 17-3.

This is a purely cosmetic change. It affects only the appearance and has no impact on

the function of the application.

FIGURE 17-3 Tutorial Widgets Laid Out



506 Sun WorkShop Visual User’s Guide • May 2000

6. Make the toggle and the text field a Group called “MyGroup”.

If you can’t remember how to do this, see “Creating a Group” on page 478.

Tip – There is a lot more information about Groups in Chapter 15, “Groups”,

starting on page 477. The “Get/Set Tutorial” on page 493 is a simple example which

shows you how to create and use a Group.

7. Select the button and display the Callbacks dialog.

8. Type “doGoButton” into the function name text box.

This callback will, in effect, move to the server-side of your application.

9. Set the Smart Code toggle button.

10. Change the Smart Code style to “Thin Client”.

When you do this, the “Customize” button is enabled.

Tip – Much more detail concerning the use and meaning of “Thin Client” is given in

"Thin Client Server Callbacks" section on page 512.

11. Press the “Customize” button to display the Customize dialog.

The dialog is shown in Figure 17-4.

Tip – The various fields in the Customize dialog are described in "Customizing the
Server Connection" section on page 514.



Chapter 17 Thin Client Smart Code 507

FIGURE 17-4 Customize Dialog

12. If you are behind a firewall, fill out the proxy and port fields.

If you are not sure about this, check with your system administrator or see how your

web browser is configured.

Tip – "More on Proxies" section on page 516 lists ways of finding out what your

proxy is.

13. Make sure that the URL field refers to the name and location of your server
program.

For example:

http://localhost/cgi-bin/untitled

would refer to a server named “untitled” located in the “cgi-bin” directory of your

intranet. Following this tutorial, your server application will be called “tutorial” so

you should use this name here - simply change “untitled” to “tutorial”. “cgi-bin” is

a standard directory name, “localhost”, however, should be changed to the name of

your intranet.

Note – In order to work out where to put your server on your filesystem, check the

way your Web server has been configured with respect to the physical location of the

“cgi-bin” area of the server.



508 Sun WorkShop Visual User’s Guide • May 2000

14. Press “Ok” in the Customize dialog.

For this tutorial, we are going to use the default data handlers so we do not need to

change them. Pressing “Ok” closes the dialog.

15. Back in the Callbacks dialog, press the “Group” button and select “MyGroup”
from the Group Editor.

You can type the name of the group directly into the text box, but selecting it from

the Group Editor avoids typing mistakes.

16. Press “Add” to add your “doGoButton” function to the list of callbacks.

17. Close the Callbacks dialog.

18. Save your design as “tutorial.xd ”.

It is good practice to save your design periodically.

19. Display the Generate dialog by selecting “Generate” from the Generate menu.

20. Choose “C” from the Language menu.

21. Choose a target directory for your files.

22. Make sure that the “Stubs”, “Code”, “Externs”, “Main program” and “Makefile”
generate toggles are set.

The “Stubs” file is not selected by default, so make sure it is set before generating.

23. Press the “Options” button at the bottom of the Generate dialog to display the
Code Options dialog.

Do not confuse this with the Primary Source File Options Dialog which is displayed

when pressing the “Options” button next to the “Code” file.

24. In the Code Options dialog, change the “Strings” option menu to “Code”.

By default, this is set to “Resources”. For this simple tutorial, it is easier to generate

the strings (which is all the labels you have set) into the code. This affects only the

appearance of the final dialog.

25. Press “Ok” in the Code Options dialog to save your change and dismiss the
dialog.

26. Back in the Generate dialog, press “Generate”.

As well as generating the main code files, Makefile and HTML index in the top-level

directory, Sun WorkShop Visual also generates the following sub-directories:

■ callouts_c. This contains the client-side stubs for Smart Code callbacks.

■ server_c. This contains all the code for your server including the Smart Code

callback stub.

■ groups_c. This contains the code for the Groups.



Chapter 17 Thin Client Smart Code 509

■ motif_c. This contains the “wrappers” which make Group components

independent of Motif.

■ http_c. This contains all the code for communication between the client and the

server using the HTTP protocol.

Figure 17-5 shows all the files generated. The files containing stubs are highlighted.

FIGURE 17-5 Files and Directories Generated For Tutorial

callouts_c groups_c motif_c http_cserver_c Makefile
index.html
sc_groups_c.h
tutorial.c
tutorial.h
tutorial_stubs.c

doGoButton_cs.c
std_cs.c

your generate directory

MyGroup.c
MyGroup.h
sc_text.c
sc_text.h
sc_toggle.c
sc_toggle.h
sc_types.h
server.h
streams.c
streams.h
tutorial.c
tr_http.c

doGoButton.c

Generated code to be
changed by you

Generated code which will not be changed by you

Code for
controlling
groups

Motif
“wrappers”
for C code

Comms
Code Using
HTTP/URL



510 Sun WorkShop Visual User’s Guide • May 2000

27. Save your design.

The rest of this stage of the tutorial takes place outside of Sun WorkShop Visual. You

can exit Sun WorkShop Visual if you wish.

Of the generated files, there are three you need to know more about. These are:

■ callouts_c/doGoButton_cs.c . This file is in the client side of your

application. It contains the “precondition” and “postcondition” routines which

are called directly before and after the server callback is called. By default they

are empty. You only need to fill them in if, for example, you wish to preprocess or

postprocess the group structure being sent to the server.

■ callouts_c/std_cs.c . This file contains the standard error handler for

handling out of band data. It also contains the routine which communicates with

the server. It is this routine which calls the precondition and postcondition

routines. Although this file is always the same, it is placed here so that, if

necessary, you can see for yourself how the handshaking is performed. You

would not normally have to change this file.

■ server_c/doGoButton.c . This file contains the Smart Code callback stub

which will be called from the client. It is residing in the server application.

Tip – "Generated Code" section on page 525 contains more information on the code

generated by Sun WorkShop Visual for thin client and Internet Smart Code.

28. Edit the file doGoButton.c in the “server_c” directory.

This contains the Smart Code callback stub. You need to add code here to make the

server perform its function.

29. Change the method “doGoButton_callback” so that it contains the lines indicated
below:

int

doGoButton ( sc_data_t * data)

{

MyGroup_t * g = (MyGroup_t*)data->group;

        if (SC_GET(g->toggle1))

                SC_SET(g->text1, “Server says: toggle is set”);

        else

                SC_SET(g->text1, “Server says: toggle is NOT set”);

        return 1;

}

Add these lines



Chapter 17 Thin Client Smart Code 511

30. Make sure you have the environment variable VISUROOT set to Sun WorkShop
Visual’s install directory and your C compiler is in your PATH.

See the Generating Code chapter in the main User Guide for more information on

setting up prior to compiling.

31. At the command prompt, type

make

to build the client application and:

make server

to build the server application.

You can take the entire “server_c” directory somewhere else to compile. Take a copy

of the Makefile too. The Makefile assumes that the directory “server_c” is beneath it.

32. Move the server application (named “tutorial ” in the “server_c” directory) to
the location named in the URL field, as in Sun WorkShop Visual Replay.

33. Try running the client application (named “tutorial ” in the generate directory).

Press the button both with and without the toggle set. A message is displayed in the

text box. This message is produced by the server, which is checking the value of the

toggle first. Although this is a simple example, it demonstrates a structure which can

easily be expanded.

Going a Step Further

Having completed this tutorial, you may like to try some more advanced features of

thin client and Internet Smart Code. Provided as part of your Sun WorkShop Visual

package are HTML files containing instructions for running supplied Sun WorkShop

Visual Replay scripts which run the tutorials for you. You simply watch it running

and then examine the results. Open the following files in an HTML browser:

1. $VISUROOT/lib/locale/<YourLocale>/sc/timex.html . This describes

the “Server Push” tutorial, demonstrating how to create an application with

automatic remote update.

2. $VISUROOT/lib/locale/<YourLocale>/sc/parsex.html . This describes

how to create an application which fetches a Web page and then parses it.

Note – VISUROOT is the install directory of your Sun WorkShop Visual and

“YourLocale” is the name of the locale you are using.



512 Sun WorkShop Visual User’s Guide • May 2000

Thin Client Server Callbacks

When you generate code from a design containing a “Thin Client” Smart Code

callback, Sun WorkShop Visual divides the generated code into a thin client

application containing all the user interface code and a server containing the Smart

Code callback. This server is a CGI script and therefore uses the standards of the

World Wide Web as its means of communication. The code for communicating

between the client and the server, using HTTP, is generated too.

Figure 17-6 gives a diagram of the structure of the application Sun WorkShop Visual

generates when “Thin Client” callbacks are defined. In addition to the Smart Code

callback in the server, stubs are generated on the client side of the application to

allow you to do any necessary operations immediately before and after data is sent

to the server.

The Smart Code callback residing in the server has a handle to a Group. This is the

Group specified when the callback was defined. The Group provides a means of

passing data between the client and server and gives the server some access to the

interface components.



Chapter 17 Thin Client Smart Code 513

FIGURE 17-6 Thin Client Callback Application Structure

Server Application

The server application generated by Sun WorkShop Visual when thin client Smart

Code is requested, is a CGI script. This means that it is a program, which can be

written in any language (or shell script), which is accessed by means of the HTTP

standard. The URL of your server application is passed from the client application to

your Web server which then launches your server application. Output from the

server application is returned to the client. The server application is generated in the

language you request in the Generate dialog.

If you do not have a running Web server, your client and server applications will not

be able to communicate. The Internet Smart Code also assumes that you have a Web

server up and running in order to access Web pages on the Internet. Contact your

Server application

Smart Code callback
preprocessor routine

Client application containing all of the
user interface code

Smart Code callback

Smart Code callback
postprocessor routine

HTTP communication



514 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop supplier for information about Sun’s Web server products or visit

Sun’s Web page at http://www.sun.com. There are a number of freely available Web

servers available on the Internet; you should be able to locate one with a quick Web

search.

Customizing the Server Connection

Pressing the “Customize” button for “Thin Client” or “Internet” Smart Code styles

in the Callbacks dialog displays the Customize dialog shown in Figure 17-7.

This dialog allows you to specify how data is sent to and received from the server.

There are two main areas in this dialog:

1. Connections. The details of the network connections, such as the proxy and the

URL.

2. Custom data handlers. The names of routines which should be used for

communicating across the network instead of those supplied by Sun WorkShop

Visual.

These are described in separate sections below.

FIGURE 17-7 Customize Dialog



Chapter 17 Thin Client Smart Code 515

Connections

Sun WorkShop Visual uses the information in this section to generate code to

establish a link across a network. The fields in this dialog are:

1. Proxy Host. This is only required if you are behind a firewall. It is the name of the

conduit between your computer and the internet.

2. Proxy Port. This is only required if you are behind a firewall. It is the port number

to use on the proxy host.

Note – If you are not sure what values to set for proxies, see “More on Proxies” on

page 516.

3. URL. This is the only field in the dialog which must be filled in. It is a string

which describes the location of an HTML document or CGI script. What this

“document” is depends on the style of communication you have chosen (as

described above):

■ If you have chosen thin client Smart Code, the URL probably names a CGI

program which is the server side of your application.

■ If you have chosen Internet Smart Code but have not specified a Receive

Handler, the URL is the name of a completely separate remote server from

which you only expect some acknowledgment of receipt.

■ If you have chosen Internet Smart Code and you have specified a Receive

Handler, the URL probably names a completely separate remote server (or file

on that server) from which you are expecting data in a particular format.

URLs are part of the established World Wide Web protocol.

4. Query Data. This is a query string. When a question mark (?) appears in a URL,

the remainder is assumed to be an algorithm for matching a document or its

contents, such as may be expected by a search engine. It is up to the server to

interpret this string. Sun WorkShop Visual appends the question mark character

and then the query string to the URL.

5. Server Push. This is a toggle which, when selected, tells Sun WorkShop Visual

that you are prepared to accept asynchronous input from the server. This means

that data will be coming into the client application when it is ready rather than

after a request.



516 Sun WorkShop Visual User’s Guide • May 2000

URL Library

The URL library used by, and supplied with, Sun WorkShop Visual has been

modeled on the Java URL and URLConnection classes in order to facilitate the

transition to Java and to maintain a common interface whether you are using C, C++

or Java. This library is available for your use, should you wish to maintain full

control over the connection between client and server. The programming interface

for the URL library is described in the files reached from symbolic links inside the

generated index.html file. This file is found in your generate directory, as

described in “HTML Files” on page 530.

If you have not yet generated code, open the following file in a HTML browser:

$VISUROOT/lib/locale/<your_locale>/sc/URL.html

where VISUROOT is the install directory of your Sun WorkShop Visual and

<your_locale> is the name of the locale you are using. If you are unsure about

your locale, try typing locale into a terminal window. This prints out your locale

information. Use the string assigned to LANG. Example locales are:

■ C (for English).

■ ja (for Japanese).

More on Proxies

A network proxy is a conduit linking your computer (or your Intranet) to the

Internet through a firewall. A firewall is a “security screen” which prevents

unauthorized access to your computer from the outside world. In order to connect to

the internet from behind a firewall, you will have to specify a proxy host and a

proxy port. If you don’t already know what these are, you could try the following

options:

1. Ask your systems administrator. Someone must have configured your network,

email and internet connection.

2. Find out how your Web browser is configured because, in order to connect to the

Internet, it also has to use a proxy. More about this in the following paragraph.

Somewhere in your Web browser, under “Options” or “Preferences” or

“Configuration”, there will be a dialog where you can specify your network

preferences. This dialog allows you to tell the browser whether or not it needs to use

a proxy and, if so, what it is. There are a number of options here:

1. No proxy is used. In this case, you do not need to provide one in Sun WorkShop

Visual’s Customize dialog.

2. A proxy is specified manually either in this dialog or a sub-dialog. If this is the

case, use the proxy specified. If there is a choice of proxies, use the HTTP proxy.



Chapter 17 Thin Client Smart Code 517

3. The URL of a configuration file is specified for automatic setting of the proxy. In

this case, check the proxy specified in the configuration file.

Constant, Variable, or Function

“Proxy Host”, “Proxy Port”, “URL” and “Query Data” each have a corresponding

option menu allowing you to define whether the value you enter is a “Constant”,

“Variable” or “Function”. As its name suggests, a constant simply retains the value

typed. Selecting “Variable” causes Sun WorkShop Visual to declare an external

variable with the specified name. You should define the variable in your own code.

Selecting “Function” causes Sun WorkShop Visual to generate a file in the “callouts”

sub-directory using the name of the function as the filename. This file contains two

functions: a “get” and a “set”. These routines contain a commented spaceholder

where you should insert your own code for getting and setting the proxy host.

For example, Figure 17-8 shows a proxy host defined as a function called

“MyProxyHost ”. Assuming C code, Sun WorkShop Visual would generate the

following two routines in the file named MyProxyHost.c :

static char * MyProxyHost_value = (char*)0;

char *

get_MyProxyHost ( AnyGroup_t* ingroup)

{

group0_t * group = (group0_t*)ingroup;

if (!MyProxyHost_value) {

/* do something */

(void) fprintf( stderr, “Warning: getMyProxyHost()

returns NULL\n”);

}

return MyProxyHost_value;

}

void

set_MyProxyHost (AnyGroup_t* ingroup, char* value)

{

group0_t * group = (group0_t*)ingroup;

/* set MyProxyHost_value here */

}



518 Sun WorkShop Visual User’s Guide • May 2000

The comments indicate where you should add code to get and set the proxy host.

You may, for example, have defined a form in your user interface which allows a

user to enter a proxy host into a text field. You might then get the contents of the text

field and assign it to the “MyProxyHost_value ” shown above.

FIGURE 17-8 “MyProxyHost” as a Function

The bibliography lists books which you may find useful in connection with

networking and protocols.

Custom Data Handlers

The section of the Customize dialog labelled “Custom Data Handlers” gives you the

option of overriding the following default routines:

1. Send. This is the routine which sends data to the server

2. Receive. This is the routine which receives data from the server.

3. Out of Band Data. This is the routine which handles data of an unexpected type

returning from the server.

Leaving an empty text box for the Send or Receive handlers causes Sun WorkShop

Visual to generate a default routine. For Out of Band Data, the name of the default

routine appears in the text box. These defaults provide basic functionality, allowing

you to create a working client-server application without immediately having to

provide your own handlers. The following sub-sections describe briefly what the

default routines give you as well as information to help you write your own.



Chapter 17 Thin Client Smart Code 519

Send Handler

By default, Sun WorkShop Visual generates a routine which sends data to the server.

This routine does the following:

■ Opens a print stream to the server.

■ Prints the MIME header.

■ Prints each component of the group as a serialized HTTP object.

■ Prints the MIME end.

If you have specified a send handler in the Customize dialog, the routine described

above will not be called. Instead, your routine is called. Your routine is defined as

returning an integer. It takes two parameters, in the following order:

■ A pointer to the output stream.

■ A pointer to the group.

All of the communication protocol remains in place when you override the send

routine - it is only the sending of data which is replaced. The default send routine is

still generated, but not called, when you override it. If you wish to look at it to see

how it sends the MIME header, MIME end and how it serializes the group

components, it is called httpSendOutputStream and is found in:

<YourGenerateDirectory>/http_c/tr_http.c

Your send handler is placed in the callouts directory. See “Generated Code” on

page 525 for more details on the code generated and where it is located.

Tip – If you generate code from a design using the Get/Set shorthand notation

described in “Go Live” on page 504, an example Send Handler is generated. You

may wish to use this as a starting point.

Receive Handler

If you specify a receive data handler in the Customize dialog, this routine is called in

addition to all of the communication protocol which Sun WorkShop Visual generates

by default.

In C and C++ code, your routine is defined as returning an integer and taking two

parameters:

1. A pointer to a structure defined by Sun WorkShop Visual called sc_stdcs_t for

C code and sc_stdcs_c for C++. This structure gives your routine access to the

Group. There are also private fields which are for internal use only. It is defined in

the file sc_groups_c.h in the directory where you are generating code.



520 Sun WorkShop Visual User’s Guide • May 2000

2. A pointer to a structure defined by Sun WorkShop Visual called sc_idata_t in C

and sc_idata_c in C++. This structure gives your routine access to the input

stream, its length and MIME type. It is defined in the file http_transport.h in

the http sub-directory.

For Java, the Receive Handler you specify is made a subclass of the Sun WorkShop

Visual defined class, SCInputDataHandler. Add your own code to the doit() method.

This method is “void” and takes one parameter which is an instance of the SCIData

class, as defined in SCIData.java in the utils_java sub-directory.

The receive handler supplied by default ignores the returned data. You will almost

certainly wish to parse the returned data. Sun WorkShop Visual is supplied with a

full HTML parser. This parser is simple to use because it is data driven - that is, in

the same way that widgets register an interest in the callbacks they wish to see, you

can tell the parser which HTML tags you are interested in. This is all explained in

detail in “Extracting Information from HTML Data” on page 541.

Your receive handler is placed in the callouts directory. See “Generated Code” on

page 525 for more details on the code generated and where it is located.

Tip – If you generate code from a design using the Get/Set shorthand notation

described in “Go Live” on page 504, an example Receive Handler is generated. You

may wish to use this as a starting point.

Out of Band Data Handler

Sun WorkShop Visual expects incoming data to conform to the MIME standard. If

unexpected data is received, a routine in the client side of the application, generated

by Sun WorkShop Visual, is called. This default routine, called scHTTPReply , simply

prints the incoming data onto standard output. It is generated for you (into the

callouts subdirectory) if you have a thin client or Internet Smart Code callback

defined. It is generated in the language requested in the Generate dialog. This is the

routine in C code:

int

scHTTPReply ( csdata, data)

        sc_stdcs_t* csdata;

        sc_idata* data;

{

extern DataInputStream * newDataInputStream();

InputStream* i = (InputStream*)(*data->getInputStream)( data);

DataInputStream *  d = newDataInputStream( i);



Chapter 17 Thin Client Smart Code 521

char * s;

printf(“data from server:\n”);

if (!d)  {

printf(“no data\n”);

return 0;

}

while ((s = (*d->readLine)( d)) != (char*)0) {

printf(“%s\n”, s);

}

(*d->delete)( d);

printf(“end data\n”);

}

If you specify your own routine as the “Out of Band Data” handler in the Customize

dialog, the routine is defined in the same way as the default. The parameters it takes

are exactly the same as those listed for the Receive Handler, which is described

above.

For Java code, the format of the “Out of Band Data” handler is exactly the same as

the Receive Handler - it is a subclass of the Sun WorkShop Visual defined class,

SCInputDataHandler. Add your own code to the doit() method.

Your “Out of Band Data” handler is placed in the callouts directory. See “Generated

Code” on page 525 for more details on the code generated and where it is located.

Going Live

The “Go Live!” toggle lets you turn the Sun WorkShop Visual dynamic display into

a fully functional thin client interface. You can set the toggle for both thin client and

Internet callbacks.

You must define and add the callback before the “Go Live!” toggle becomes enabled.

For thin client Smart Code, the callback is the name of a routine in the server. For

Internet Smart Code, it is the name of a callback in your client application.

Sun WorkShop Visual provides a shorthand getter or setter to allow you to create

dynamic customization in the Customize dialog. This shorthand uses the convention

of spreadsheet packages (the ‘@’ sign) to indicate “the contents of...”. For example,

the following:



522 Sun WorkShop Visual User’s Guide • May 2000

@text1

means “the contents of the widget named text1 in the specified Group”. The

specified Group is the one named in the callbacks dialog. This notation fetches the

contents of a control when it is used in any of the “Connections” fields (URL and

Proxies). When it is used in the Receive handler field, it is assumed that you wish to

set the contents of text1 to the data received from the server.

Go Live Tutorial

The following example illustrates “Go Live!”. It uses the World Wide Web to access

a remote website and read a Web page. You will need to be running a Web server in

order to complete this tutorial.

1. Create the hierarchy shown in Figure 17-9. This is a shell->form->{button,
textfield, text}.

FIGURE 17-9 Hierarchy for Go Live Example

2. Create a Group, called Group0, containing the textfield and text widget, making
the textfield private.

This is shown in Figure 17-10.



Chapter 17 Thin Client Smart Code 523

FIGURE 17-10 The Group for the Go Live Example

3. Display the Callbacks dialog for button1.

4. Set up an Internet Smart Code callback called “doit”, as shown in Figure 17-11.

Don’t add it yet as we need to customize it first.

FIGURE 17-11 The Server Callback for the Go Live Example



524 Sun WorkShop Visual User’s Guide • May 2000

5. Press the “Customize” button.

6. In the Customize dialog, put the getter shorthand notation for the contents of
widget text1 into the “URL” field, as shown in Figure 17-12.

This shorthand notation is: “@text1 ”.

7. Put the shorthand notation for the widget text2 into the “Receive Handler” field,
as shown in Figure 17-12.

This shorthand is: “@text2 ”.

FIGURE 17-12 The Customize Dialog for the Go Live Example

Tip – If you are behind a firewall, you will also have to set the Proxy fields. See

“More on Proxies” on page 516 for details.

8. Press “Ok” to save your settings and close the Customize dialog.

9. Back in the Callbacks dialog, set the “Go Live!” toggle.

10. Add the new callback and close the Callbacks dialog.

11. In the dynamic display’s textfield (the one named “text1”), type the following
URL:

http://www.sun.com/workshop



Chapter 17 Thin Client Smart Code 525

12. Press button1 in the dynamic display.

The main page of the Website typed into the textfield is displayed in text2.

13. Try other URLs in text1 and press button1 again.

As long as you type a valid URL, text2 will display the HTML page to which the

URL refers. For example, try typing the URL of your Intranet, if you have one.

This example connects to a real server dynamically from within Sun WorkShop

Visual.

Generated Code

Code files providing toolkit-independent wrappers and the definitions of Group

objects are generated when Smart Code is selected from the Callbacks dialog. More

files are generated for “Thin Client” and “Internet” than for “Get/Set” because, in

addition to the getters and setters for the Group, all the code for the communication

with a server is generated and, in the case of “Thin Client”, the server side of your

application too.

Some of these files are in specially named directories which are created by Sun

WorkShop Visual and which appear beneath the directory chosen in the Generate

dialog. Other files appear in the chosen directory. Figure 17-5 on page 509 shows the

files generated for the thin client Smart Code tutorial. This gives you an idea of the

files and subdirectories that are generated.

Most importantly, all your callbacks or other routines which may need editing (such

as Custom Data Handlers, pre- and post-processing routines, Extra Data functions

etc.) are kept together so that you may find them easily. You do not need to change

any other code files.

Exactly what is generated differs according to whether you have requested only

“Get/Set” Smart Code for your callbacks or you have asked for “Thin Client” or

“Internet”. The code generated in each case is described below.

Groups

If you are using groups but not Smart Code, an array of widgets is defined in the

primary source file.

Without Smart Code, however, only the files described in the main User’s Guide

“Generated Code” chapter are generated and no new directories are created.



526 Sun WorkShop Visual User’s Guide • May 2000

Get/Set Generated Code

When generating code files, Sun WorkShop Visual uses an extension appropriate to

the chosen language:

1. .c for C code

2. .cpp for C++ code

3. .java for Java code

The following examples use “.c” simply as an illustration.

If you have selected the “Get/Set” style of Smart Code for one or more callback, the

following files are generated into the directory specified at the top of the Callbacks

dialog:

■ Makefile. This is a standard Sun WorkShop Visual-generated makefile which

takes account of the new subdirectories.

■ sc_groups_c.h. This header file simply includes the appropriate header files from

the relevant subdirectory. It also defines the sc_data_t data structure, a pointer to

which is passed into Smart Code callbacks and data handlers.

■ untitled.c. This is the main source code file.

■ untitled.h. This is the main header file.

■ untitled_stubs.c. This is where your callback stubs are generated.

■ index.html. This is an HTML file which lists and briefly explains all of the

generated files. Use this file (by opening it in a web browser or other HTML

reader) to find your way around the files and subdirectories.

In addition, the following sub-directories are created:

■ callouts_c. This contains a file for each “Extra Data” defined for a group which is

defined as a function.

■ groups_c. This directory contains a source, header and HTML file for each group

you have defined. It also contains a more general header file.

■ motif_c. This contains the Motif “wrappers” for each component in your

group(s). This directory also contains an HTML file for each group.

Note – The “c” at the end of each directory name shows that C was the language

chosen for code generation. If another language is chosen this is replaced

accordingly.



Chapter 17 Thin Client Smart Code 527

Where to Add Your Own Code for Get/Set

With “Get/Set” Smart Code, the following stubs files are generated:

■ <progname>_stubs.cpp (<progname>_stubs.c). This is the traditional stubs file

containing any callbacks you have defined. The stubs in this file have a strong

connection with the toolkit and do not have access to any Groups or Smart Code

data. Add only toolkit-specific code here. This file is generated into the directory

specified in the Generate dialog.

■ <callbackname>_user.cpp (<callbackname>_user.c). This appears in the

“callouts” sub-directory. When using Get/Set Smart Code, this contains the main

callback stub, also named <callbackname>_user . This callback is free of any

toolkit-specific code.

■ Extra Data function files. This refers to the “Extra Data” area in the Group Editor.

If you have added extra data and defined it to be “Function”, a file is generated

using the name of the extra data as the filename. Each such file contains two

routines: get_<extradata> and set_<extradata> (where <extradata> is the

name supplied by you in the Group Editor). For C++ and Java these routines are

methods of a class defined using the name of the “Extra Data” function.

Information on using these routines is given in “Extra Data - Function” on

page 483.

Figure 16-10 on page 498 shows a graphical representation of the files generated for

the “Get/Set” Smart Code tutorial.

Thin Client/Internet Generated Code

When you generate code from a design containing any Smart Code callbacks, all of

the files and directories described in “Get/Set Generated Code” on page 526 above

are generated. In addition, the following directories are created by Sun WorkShop

Visual:

■ http_c. This contains the source code for parsing the URL and for sending and

receiving data using the HTTP protocol.

■ server_c. This is the server-side of your application.

The directory “server_c” contains all the files you need to build the server which

will connect to the thin client application containing your user interface. The whole

of this directory can be taken away to be built and run on a remote web server.

The Makefile in the top-level directory contains the rules for building both the client

(your design) and the server. To build the client, you need only type:

make



528 Sun WorkShop Visual User’s Guide • May 2000

at the command line. To build the server, type:

make server

at the command line.

Note – If you move the server code elsewhere, remember to take the Makefile too.

Where to Add Your Own Code for Thin Client/Internet

The following types of stub can be generated when you create a thin client or

Internet Smart Code callback. Some of these are optional, depending on whether you

have specified any routines in the Customize dialog and in the Group Editor:

■ Toolkit-dependent client callback

■ Toolkit-independent client callback

■ Server callback (for thin client Smart Code only)

■ Precondition and postcondition routines

■ Internet connection functions

■ Group Extra Data functions

These are described separately below.

Tip – See “Custom Data Handlers” on page 518 for details on adding your own data

handlers and “Extra Data - Function” on page 483 for information on adding extra

functions to the Group.

Toolkit-Dependent Client Callbacks

The file which contains your traditional, toolkit-dependent client callbacks is:

■ untitled_stubs.c (or untitled_stubs.cpp for C++ code generation).

This is the callbacks file generated when any callback is defined, regardless of

whether Smart Code is being used or not. When you define a thin client or Internet

Smart Code callback, Sun WorkShop Visual automatically generates a client side

callback in this file. This contains toolkit-dependent code. You should only add code

here which uses the toolkit.



Chapter 17 Thin Client Smart Code 529

Toolkit-Independent Client Callbacks

The file which contains your toolkit-independent client callbacks is:

■ <callback>_cs.c (or <callback>_cs.cpp for C++ code generation).

For each thin client or Internet Smart Code callback, a file is generated into the

callouts subdirectory using the name of the callback as the filename with the

addition of “_cs ” (standing for client server). The file contains the callback routine

(or method in the case of C++ and Java). This contains toolkit-independent code

with access to the Group.

Server Callbacks

Your server callbacks are located in:

■ server_c. There is a source file in this sub-directory for each callback you have

defined. The file is given the same name as the callback.

Internet Connection Functions

A file is generated for each of the “Connections” in the Customize dialog, if

“Function” is selected. Each file contains a get_<connection> and

set_<connection> routine. The file is generated into the “callouts” subdirectory,

using the name of the function that you specify as the filename.

A file is also generated for any custom data handlers specified in the Customize

dialog. The filename is the name you type into the Customize dialog.

Extra Data Functions

As described in “Where to Add Your Own Code for Get/Set” on page 527, stub

routines are generated for any “Extra Data” functions defined in the Group Editor.

Figure 17-5 on page 509 shows a graphical representation of the files generated for

the “Thin Client” Smart Code tutorial.



530 Sun WorkShop Visual User’s Guide • May 2000

HTML Files

In order to help you locate callbacks and familiarize yourself with the files

generated, Sun WorkShop Visual also generates a set of HTML files. The main one is:

■ index.html

and is found in the top-level directory (i.e. the directory named in the Callbacks

dialog).

This file, when opened in a web browser (or anything else which can read HTML)

lists the files generated along with a brief description of each, as shown in Figure

17-13.

FIGURE 17-13 index.html in Netscape



Chapter 17 Thin Client Smart Code 531

There are hypertext links to other files, also generated by Sun WorkShop Visual,

which describe the code generated for each group and each Motif “wrapper”.

This file also contains a link to the online reference material for Smart Code

programming. You can view this reference material directly by opening the

following file in an HTML browser:

$VISUROOT/lib/locale/<YourLocale>/sc/index.html

where VISUROOT is the install directory of your Sun WorkShop Visual and

YourLocale is the locale you are using. If you are unsure about your locale, try

typing locale into a terminal window. This prints out your locale information. Use

the string assigned to LANG. Example locales are:

■ C (for English).

■ ja (for Japanese).



532 Sun WorkShop Visual User’s Guide • May 2000



533

CHAPTER 18

Internet Smart Code

Introduction

Choosing “Internet” Smart Code for a callback causes Sun WorkShop Visual to

generate a client application from your design. Internet Smart Code programming is

about accessing pre-existing Web pages and CGI programs on public servers across

the World Wide Web. The Smart Code callback appears in the client application (in a

sub-directory named “callouts”). Figure 18-1 shows the structure of an application

generated by Sun WorkShop Visual when an “Internet” callback is defined. Unlike

thin client Smart Code, only the client application and communication code is

generated for this type of callback.

You will need to understand how to use both Groups and Get/Set Smart Code in

order to use Internet (or thin client) Smart Code because Groups, along with their

getters and setters, are the nuts and bolts of all types of Smart Code. Information on

these subjects is found in:

1. The grouping together of widgets is described in Chapter 15, “Groups”, starting

on page 477.

2. Chapter 16, “Get/Set Smart Code”, starting on page 485 describes the Get/Set

Smart Code which provides you with toolkit-independent wrappers for the

widgets in your design.

The “Go Live” feature allows you to use Sun WorkShop Visual’s dynamic display as

a prototype client in order to test your interface on live data as you are developing

it. The tutorial starting on page 536 shows you how to do this and how to generate

the application using a very simple example.

The use of “Go Live” for Internet Smart Code prototyping is limited because you

will need to write your own Receive Handler to process and act on the incoming

data.



534 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 18-1 Internet Callback Application Structure

Internet and Thin Client

Internet and thin client Smart Code are similar:

■ They both use the toolkit-independent getters and setters.

■ They both use HTTP (generated through the Sun WorkShop Visual URL API) as

the means of communication.

■ They both make your design into a client application.

These similarities mean that parts of their user interface within Sun WorkShop

Visual are shared. In order to use Internet, you may need to refer to the following

sections which can be found in Chapter 17 ”Thin Client Smart Code“:

■ “Customizing the Server Connection” on page 514.

■ “Going Live” on page 521.

■ “Generated Code” on page 525.

A remote server not generated by
Sun WorkShop Visual

Client application containing all of the
user interface code

Smart Code callback

HTTP communication



Chapter 18 Internet Smart Code 535

Internet is, however, distinct from thin client:

■ For Internet Smart Code, no server application is generated.

■ The GET HTTP protocol is used for Internet Smart Code (rather than POST).

■ Because Internet designs are assumed to be thick clients, the way you structure

them will be different.

Applications generated with Internet Smart Code might be used to:

■ Fetch and parse the contents of a World Wide Web page.

■ Connect to a pre-existing remote server

■ Communicate with a server generated from another Sun WorkShop Visual design.

Receiving Data

For applications generated with Internet Smart Code you will need to provide a

Receive Handler. Sun WorkShop Visual gives you a pointer to any data returned, but

it is up to you to handle that data. Data handlers are part of the Customize dialog

and described in “Customizing the Server Connection” on page 514. To make use of

the data returned, Sun WorkShop Visual provides a library which allows you to

express an interest in particular features of the input stream and then “pick out”

these features as they arrive. This is described in “Extracting Information from

HTML Data” on page 541.

You can either process the data as a stream or you can use the InputData class or

object Sun WorkShop Visual provides to access it through the getData() and

getSize() methods. This is particularly useful if you are downloading data to send

to a display widget - for example, a gif or jpeg image. For C code, the InputData

object is a data structure. For C++ and Java it is a class. See the online reference

material for details of InputData by opening this file in an HTML browser and

following the appropriate links:

$VISUROOT/lib/locale/<YourLocale>/sc/index.html

where VISUROOT is the install directory of your Sun WorkShop Visual and

<YourLocale> is the locale you are using.

For a simple example of how to process incoming data, generate code from your

design after setting up an Internet Smart Code callback with the “Go Live” toggle set

which uses the “@<widgetname>” shorthand notation as the Receive Handler. This

is exactly what you will do in “Simple Internet Smart Code Tutorial” on page 536

below.



536 Sun WorkShop Visual User’s Guide • May 2000

Communication Protocol

Sun WorkShop Visual assumes, if you have chosen “Internet” Smart Code, that you

are fetching data from a location on the Internet and therefore uses the GET HTTP

protocol. If you override the send handler by specifying a function name for it in the

Customize dialog, Sun WorkShop Visual uses the POST protocol.

Simple Internet Smart Code Tutorial

This example introduces you simply and quickly to Internet Smart Code. It connects

to a real Web site and downloads data from it. You will see this happening both

within Sun WorkShop Visual, using “Go Live”, and in your generated application.

In order to get you familiar with the use of Internet Smart Code quickly, this

example does not attempt to parse the returned data. Parsing of HTML is described

in “Extracting Information from HTML Data” on page 541.

Note – This tutorial shows you how to connect to a remote server, so make sure you

are working from a computer configured to do this.

1. Create a hierarchy containing the widgets shown in Figure 18-2.

These are: application shell->form->{button, scrolled text}.



Chapter 18 Internet Smart Code 537

FIGURE 18-2 Hierarchy for Internet Tutorial

2. In the Layout Editor, attach the scrolled text widget to the bottom and right edges
of the form so that it resizes when the window is resized.

This is a purely cosmetic step - so that you are able to see the returned data more

easily.

3. Select text1 (the text area of the scrolled text widget). Press the “Add to New
Group” on the toolbar.

This button is shown in Figure 18-3.

FIGURE 18-3 Add to New Group Toolbar Button

4. When the Group Editor appears, check that it shows a group named Group0
containing a text widget as its only member, as shown in Figure 18-4.



538 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 18-4 Group Editor

5. Close the Group Editor.

We do not need to make any changes, we shall use the Group as created by Sun

WorkShop Visual.

6. Select button1 and display the Callbacks dialog.

7. Check that “Activate” is selected from the list on the left and put in goInternet
as the name of the callback.

Do not add this callback yet as we have to define the Smart Code for it.

8. Set the “Smart Code” toggle.

9. Choose “Internet” form the option menu of Smart Code flavors.

10. Select Group0 as the Group for this callback.

Do this by pressing the “Group” toggle, making sure that Group0 is selected and

pressing “Apply”.

11. Press the “Customize” button.

This displays the Customize dialog.



Chapter 18 Internet Smart Code 539

12. In the Customize dialog, type the following URL in the URL field:

http://www.ist.co.uk/index.html

13. If you are behind a firewall, set the Proxy host and port.

Tip – See “More on Proxies” on page 516 for more information on setting your

proxies.

14. In the Receive handler field put the following:

@text1

Tip – See “Going Live” on page 521 for information on the use of “@” in these fields.

15. Press “Ok” in the Customize dialog.

The completed Customize dialog is shown in Figure 18-5.

Note – The Customize dialog shows fictitious proxies as an example - you must

enter those which are relevant to your network, as described in “More on Proxies”

on page 516.

FIGURE 18-5 Completed Customize Dialog



540 Sun WorkShop Visual User’s Guide • May 2000

16. Press “Add” to add your new callback.

17. Still in the Callbacks dialog, set the “Go Live” toggle.

When you set “Go Live” you do not need to “Update” the callback. The callback is

immediate “Live”.

18. In the dynamic display, press button1.

There is a a pause while the connection is made with the remote server, then the

returned data (which is the Web page specified in the Customize dialog) appears in

text1, as shown in Figure 18-6.

FIGURE 18-6 Live Dynamic Display

The final stage of this tutorial shows you the same occurring in the generated

application.

19. Generate code for your Internet enabled design.

You can generate any flavor of code, as long as you are able to compile it.

20. Compile the generated code.

21. Run your client application.

Your application connects to the remote server and displays the specified Web page.



Chapter 18 Internet Smart Code 541

Going a Step Further

Having completed this tutorial, you may like to try some more advanced features of

thin client and Internet Smart Code. Provided as part of your Sun WorkShop Visual

package are HTML files containing instructions for running supplied Sun WorkShop

Visual Replay scripts which run the tutorials for you. You simply watch it running

and then examine the results. Open the following files in an HTML browser:

1. $VISUROOT/lib/locale/<YourLocale>/sc/timex.html . This describes

the “Server Push” tutorial, demonstrating how to create an application with

automatic remote update.

2. $VISUROOT/lib/locale/<YourLocale>/sc/parsex.html . This describes

how to create an application which fetches a Web page and then parses it.

Note – VISUROOT is the install directory of your Sun WorkShop Visual and

“YourLocale” is the name of the locale you are using.

Extracting Information from HTML Data

An application developed with Internet Smart Code might be used to fetch a Web

page, parse it and display the result. To help you organize any HTML data returned

by a server and to considerably simplify the process, a full, yet simple to use, HTML

parser is supplied with Sun WorkShop Visual.

As a result of the origins and intentions of the World Wide Web, most of the data

fetched from Web servers will be in HTML. The parser is based on the reference

SGML parser materials from the SGML User Group1. It has been adapted to produce

a general purpose SGML parser engine. SGML works in conjunction with a DTD

(Document Type Definition) to define a markup language. The DTD for HTML is

supplied with Sun WorkShop Visual

By adding extra DTDs, you can use the parser with other standard and in-house

markup languages. You will also be able to upgrade your application for future

versions of HTML and for XML.

The SGML parser has a simple and convenient programming interface. You register

your interest in one or more features of the input stream (i.e. the HTML tags) and a

routine of your choosing is called whenever the parser finds one of these features.

This is analogous to the widget callback mechanism - widgets register their interest

in certain actions and a given routine is called when such actions occur.

1. Standard Generalized Markup Language Users’ Group (SGMLUG) SGML Parser Materials. Written by James
Clark.



542 Sun WorkShop Visual User’s Guide • May 2000

Note – If you are not familiar with the Web technology which this uses (or you are

confused by the list of acronyms), you may need to do some background reading.

See “Books on Networking and World Wide Web” on page 888, for a list of

suggested books.

To tell Sun WorkShop Visual that you wish to use the parser to extract key

information from the incoming data, set the “SGML/HTML Parsing” toggle in the

Customize dialog. In your Receive Handler, set up the parser according to your

requirements and then send the data to the parser. Exactly how to do all of this (and

what happens next) is detailed below.

Using the Parser

Once you have told Sun WorkShop Visual that you wish to process SGML/HTML by

selecting the toggle in the Customize dialog, the following four steps are needed.

Each of these takes place inside your Receive Handler:

1. Register the MIME type by calling the routine scRegisterSGMLMimeType (or the

shortcut for HTML scRegisterHTML ).

2. Register an error handler by calling the routine

scRegisterSGMLMimeErrorHandler . This is an optional step.

3. Register an interest in one or more features of the input stream by calling the

routines scAddTagCallback and scAddAttrCallback . Alternatively at this point

you can request a traditional parse tree.

4. Call the parser using the routine scProcessSGML .

Each of these steps is examined more closely in the following sub-sections.

Before programming the interface to the parser, make sure that you are including the

following header file:

#include <SGML.h>

The directory of this header file, which is part of the Sun WorkShop Visual

distribution, is automatically included in the Makefile.

In addition, you will need to set the DTDDIR environment variable to:

$VISUROOT/src/sgml/dtds

“Practical Information for Using the Parser” on page 551 provides some more

information on the location of the SGML parser and the files it uses.



Chapter 18 Internet Smart Code 543

Registering the MIME Type

In order to configure the parser, you first need to create an SGML object. This object

is then passed to any other routines you need to call. An SGML object is returned

from the routine you call to register the MIME type of your data, which is shown

below:

SGML_t *

scRegisterSGMLMimeType( mimetype, dtd)

        char * mimetype;

        char * dtd;

Use this to associate a MIME type with an SGML DTD. The most common will be:

SGML_t * sgm = scRegisterSGMLMimeType( “text/html”, “HTML32.soc”);

Because this is the most commonly used, the following is supplied as a shortcut:

SGML_t *

scRegisterHTML( mimetype)

        char * mimetype;

This does exactly the same as the one above, associating “text/html” with the

HTML32 DTD. Add your own DTD by placing it in the directory referenced by the

DTDDIR environment variable.

The following shows what is generated when “processMyData” has been specified

as the Receive Handler, with “SGML/HTML Parser” set. A line has been added to

register the MIME type:

int

processMyData ( data, idata)

        sc_stdcs_t* data;

        sc_idata* idata;

{

extern InputData * newInputData();

group0_t * group = (group0_t*)data->group;

InputStream * i   = (*idata->getInputStream)( idata);

#if 0 /* example usage */

char      * type  = (*idata->getMimeType)(idata);

int         len   = (*idata->getContentLength)( idata);

InputData * id    = newInputData( i);

char *   d        = (*id->getData)( id);



544 Sun WorkShop Visual User’s Guide • May 2000

#endif

sgm = scRegisterHTML( type);

...

return 0;

}

Registering an Error Handler

The default error handler outputs error messages to standard output. You can

override this by registering your own error handler using the following routine:

int

scRegisterSGMLErrorHandler( void_f errorhandler)

Your error handler should be of the form:

void

errorhandler( char * s)

Registering Interest in Input Stream Features

To access the parsed data, you should register an interest in one or more features of

the input (e.g. particular tags and attributes in HTML).

Registering interest in input features is directly analogous to the widget callback

mechanism where widgets register their interest in certain actions and a specified

routine (callback) is called when the action occurs. Here, you register your interest in

features of the language and the parser calls your callback routines when it comes

across one of these features.

There are two major features of HTML: tags and attributes. You can register an

interest in these features using one of the two routines described in subsequent

sections. First, though, a brief description of what is meant by tag and attribute.

Tags

Tags are features of HTML which describe the format of the following piece of text.

Tags appear in angle brackets, for example <menu> to indicate a bulleted list or

<code> to indicate a code listing. The following example shows a “menu” block

containing individual list items:

This line has
been added



Chapter 18 Internet Smart Code 545

<menu>

<li>The first item in the list</li>

<li>The second item in the list</li>

</menu>

Attributes

Attributes are another feature of HTML. They also appear inside angle brackets.

Attributes are placed after the tag and are used to indicate a reference. This may be

an external file, an image or a position elsewhere in the document. Attributes are

always made up of a reserved string, an equals sign (=) and the reference. The

following example shows two attributes. The first, an “href”, names the destination

of a link (somewhere called “bottom”). The text inside the block, “Go to bottom of

page”, is the “visible” part of this link. The second attribute is a “name”. It names a

location - in this case “bottom”. So, from a user point of view, selecting “Go to

bottom of page”, moves the view to the named location “bottom”:

<a href=”#bottom”><b>Go to bottom of page</b></a>

...

<a name=”bottom”></a>

There are two routines which you can use to register your interest in particular

HTML language features. These are:

1. scAddTagCallback. Use this to register an interest in a particular tag.

2. scAddAttrCallback. Use this to register an interest in an attribute. This is the same

as scAddTagCallback but configured to show an interest only in attributes.

The following sections explain these registration routines.

Registering Interest in Tags

The SGML parser needs to know which parts of the HTML input you are interested

in. It also needs to know at what point within the selected block of HTML to call your

callback routine.

The routine for registering interest in tag elements is:

int

scAddTagCallback( SGML_t * sgm, char * tagname, int type, void

(*callback)(), void * data)

The parameters to this routine need more explanation. They are detailed in the

following sub-sections.



546 Sun WorkShop Visual User’s Guide • May 2000

SGML_t * sgm

This is the SGML object returned from the scRegisterSGMLMimeType , the routine

for registering the MIME type of your data. scRegisterSGMLMimeType is described

in “Registering the MIME Type” on page 543.

char * tagname

This is the tag in which you are interested. Do not include the angle brackets, simply

the tag itself in upper case e.g. “A” or “MENU” or “LI”.

int type

This parameter tells the parser when within the chosen tag to call your callback

routine. In addition, which “type” you choose determines whether your callback

routine is passed any of the data from inside the selected block of HTML or not.

Your callback routine always receives the tagname and the type (so that you can use

the same routine for any number of different tags and types) but only “ON_ATTR”

and “ON_DATA” cause any more information to be returned.

You have a choice of four pre-defined types, according to where in the tag block you

wish your callback routine to be called as illustrated in Figure 18-7. The four types

are:

■ ON_ENTRY. This refers to the beginning of a block (e.g. <a> or <menu>). No data

(referred to as call_data in “Your Callback Routine” on page 547) is passed to your

routine.

■ ON_EXIT. This refers to the end of a block (e.g. </a> or </menu>). No data

(referred to as call_data in “Your Callback Routine” on page 547) is passed to your

routine.

■ ON_ATTR. This refers to the attribute appearing inside a tag definition (e.g.

href=”mylink”). Your callback routine receives the text inside the quotation marks

as its call_data parameter (as explained in “Your Callback Routine” on page 547).

■ ON_DATA. This refers to the text (or data) after the tag. Your callback routine

receives the text between the beginning and the end of the tag as its call_data

parameter (as explained in “Your Callback Routine” on page 547).

FIGURE 18-7 Types

<a href = “mylink”>This is the data part of the tag</a>

ON_ATTR ON_EXITON_ENTRY ON_DATA



Chapter 18 Internet Smart Code 547

void (*callback)()

This is the name of the routine which the parser should call when it comes across a

tag you are interested in (the callback routine). This is a routine defined by you. The

format of this routine is described in “Your Callback Routine” on page 547.

void * data

This parameter gives you a chance to pass data to your callback routine. This will be

passed to your routine as its “client data” parameter.

You may register an interest in any number of tags, calling this routine once for each

tag.

Registering Interest in Attributes

The routine for registering interest in attributes is:

int

scAddAttrCallback( sgm, tagname, attrname, callback, data)

SGML_t * sgm;

char * tagname;

char * attrname;

void (*callback)();

void * data;

The only parameter which is different from those described for the tag registering

routine above, is:

■ char * attrname . This is the name of the attribute in which you are interested.

You may register an interest in any number of attributes.

Your Callback Routine

There is no stub file for your callback routine. You must write it all yourself. The

name of the routine is the name specified as the fourth parameter to

scAddAttrCallback or scAddTagCallback (that is, the parameter called

“callback”).



548 Sun WorkShop Visual User’s Guide • May 2000

Your callback routine is called by the parser when it detects a tag or attribute in

which you have registered an interest. The following example shows what your

callback should look like and lists the parameters passed in:

int

mycallback( tag, attribute, type, call_data, client_data)

        char * tag;

        char * attribute;

        int    type;

        void * call_data;

        void * client_data;

The parameters passed into your routine are:

1. char * tag . This is the tag which the parser detected.

2. char * attribute . This is the attribute which the parser detected. If you were

only interested in tags, this is null.

3. int type . This is whether the routine has been called “ON_ENTRY”,

“ON_EXIT”, “ON_DATA” or “ON_ATTR”. These four are discussed in “int type”

on page 546. This parameter is not relevant when you are interested in attributes.

4. void * call_data . When you are interested in attributes, this is the part of the

attribute which comes after the equals sign. For example, if you have registered

an interest in the “href” attribute and the parser finds the following line:

<a href=”#regmime”>

then this parameter would be “#regmime ”.

If you have specified “ON_DATA” as the type, this gives you data after the tag. See

Figure 18-7 on page 546 for an illustration.

5. void * client_data . This is the “data” parameter passed to the registration

routine, allowing you to pass your own data into the callback. This is similar to

the client data for Xt callbacks, as seen in the Callbacks dialog.

Because you may register an interest in any number of tags or attributes, you can

also have any number of callback routines, but having one for tags and another for

attributes is probably the most useful combination.

Parsing the Input Stream

Once you have configured an SGML object by specifying the MIME type, registering

error handlers and registering interest in particular input stream features, you are

ready to call the parser. Here is the routine to do this:



Chapter 18 Internet Smart Code 549

int

scProcessSGML( sgm, istream)

SGML_t * sgm;/* the parser handle scRegisterSGMLMimeType */

InputStream * istream;/* the input stream from the server */

The first parameter is described in the preceding sections. The second parameter, the

input stream, is passed to your Receive Handler.

Using the Parser - Example

This section provides an illustration of the use of the SGML parser. When you

specify in the Customize dialog that you wish to have SGML parsing, you also need

to provide a name for a Receive Handler. Here is the stub for the handler which is

generated by Sun WorkShop Visual:

int

processMyData ( data, idata)

        sc_stdcs_t* data;

        sc_idata* idata;

{

        extern InputData * newInputData();

        group0_t * group = (group0_t*)data->group;

        InputStream * i   = (*idata->getInputStream)( idata);

#if 0 /* example usage */

        char      * type  = (*idata->getMimeType)(idata);

        int         len   = (*idata->getContentLength)( idata);

        InputData * id    = newInputData( i);

        char *   d        = (*id->getData)( id);

#endif

        return 0;

}

In order to make use of the SGML parser, you will have to add some code to this

routine in order to create an SGML object, configure it and then send the incoming

data to the parser. Here is the Receive Handler with extra code for parsing incoming

HTML:

int



550 Sun WorkShop Visual User’s Guide • May 2000

processMyData ( data, idata)

        sc_stdcs_t* data;

        sc_idata* idata;

{

extern InputData * newInputData();

group0_t * group = (group0_t*)data->group;

InputStream * i   = (*idata->getInputStream)( idata);

#if 0 /* example usage */

char      * type  = (*idata->getMimeType)(idata);

int         len   = (*idata->getContentLength)( idata);

InputData * id    = newInputData( i);

char *   d        = (*id->getData)( id);

#endif

SGML_t * sgm;

if ( strcmp( type, “text/html”) != 0)

return -1;

sgm = scRegisterHTML( type); /* the parser object */

(void) scAddTagCallback(sgm, “A”, ON_ENTRY, getanchor,

“a-call”);

(void) scAddAttrCallback(sgm,  “A”, “HREF”,

getlinkinfo, “href”);

(void) scProcessSGML( sgm, i);

return 0;

}

This routine specifies that getanchor should be called whenever the parser finds an

anchor tag (<a>) and getlinkinfo should be called whenever the “href” attribute is

found. These routines, written by yourself, should look like this:

int

getanchor( tag, attr, type, call_data, client_data)

char * tag;

char * attr;

int    type;

This line has
been removed

This line has
been removed

These lines have
been added



Chapter 18 Internet Smart Code 551

void * call_data;

void * client_data;

{

printf(“anchor-start(%s)\n”, client_data);

}

int

getlinkinfo( tag, attr, type, call_data, client_data)

char * tag;

char * attr;

int    type;

void * call_data;

void * client_data;

{

printf( “%s=%s\n”, client_data, call_data);

}

Note – See “Going a Step Further” on page 541 for information on how to run an

on-line Sun WorkShop Visual Replay script which makes use of the parser.

Practical Information for Using the Parser

To use the SGML parser, you will need to link with precompiled code. The sources

are available in:

$VISUROOT/src/sgml

The license provisions mean that you are free to use them as you wish.

To begin with, it is easier to use the precompiled version which comes with Sun

WorkShop Visual.

The SGML parser uses the following files and directories:

1. $VISUROOT/lib . This contains an archive and a shared version of the SGML

library. The make rules, generated by Sun WorkShop Visual into the Makefile ,

use libsgml.so , but you can link with libsgml.a if you prefer.

2. $VISUROOT/src/sgml/hdrs/SGML.h . This is the include file necessary to use

the parser engine API. is referenced in the Makefile if you set the “SGML/HTML

parsing” toggle in the Smart Code Customize dialog.



552 Sun WorkShop Visual User’s Guide • May 2000

3. $VISUROOT/src/sgml/dtds . This is the directory containing the HTML 3.2

DTD and other related data files. The parser will need to find this, so you need to

set the DTDDIR environment to:

$VISUROOT/src/sgml/dtds

Before compiling, you should make sure that:

1. $VISUROOT/bin is in your PATH

2. $VISUROOT/lib has been added to your library path environment variable (for

example LD_LIBRARY_PATH for 32 bit applications and LD_LIBRARY_PATH64

for 64 bit applications.).



553

CHAPTER 19

Makefile Generation

Introduction

This section describes Sun WorkShop Visual’s Makefile generation facilities. Sun

WorkShop Visual can create two types of Makefile: simple or with templates. The

simple Makefile only contains the build rules for the local .xd file and so is only

useful for applications that are contained in a single file. A Makefile with templates

can be updated to add files without overwriting your previous work. Unlike most

generated files, Makefiles with templates can be edited and regenerated without

losing your work.

This section describes the Makefile options available when you generate code for a

design. It also provides a short tutorial with step-by-step instructions for creating a

Makefile with templates and then updating the Makefile when a second design file is

added to the application. Following this tutorial enables you to familiarize yourself

with Sun WorkShop Visual’s Makefile generation capabilities.

Makefile Generation Options

Pressing the button labelled “Options” beside the makefile text box produces the

dialog shown in Figure 19-1.



554 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 19-1 Makefile Options Dialog

The dialog contains four toggles labelled “New Makefile”, “Makefile template” and

“Debugging” and a scrolled list. Setting “Debugging” simply adds the “-g” flag to

the list of flags to be sent to the compiler so that you can build a version of your

application for debugging.

When you generate code in one language and then generate another set of code files

in another language, all Makefiles generated afterwards will contain rules for both

sets of generated files. Setting the “Current language only” toggle ensures that you

are generating a Makefile for the current language only.

New Makefile and Makefile Template Toggles

“New Makefile” and “Makefile Template” relate to the two different types of

makefile that you can generate: a simple makefile and a makefile with templates.

Which one is generated depends on the way in which the toggles in this dialog are

set. The two toggles work in conjunction with one another. There are four ways they

can be set:

1. The “New Makefile” toggle is set and the “Makefile Template” toggle is not set.

This generates a simple Makefile. You would use this option if you do not wish to

add other design files to the application which the makefile will build.

2. Both toggles are set.

This generates a makefile with templates - i.e. with structured comments which

serve as templates for updating the file on subsequent generations. Use this

option if you are going to add other design files to the application which the

makefile will build.



Chapter 19 Makefile Generation 555

3. The “New Makefile” toggle is not set and the “Makefile Template” toggle is set.

This will add the current design code files to the Makefile which was generated as

described in number 2 above.

4. Neither toggle is set.

This works in exactly the same way as number 3 above.

The List of Makefile Types

The scrolled list in the Makefile Options dialog allows you to generate a Makefile for

a specific target platform. For some platforms more than one option is available,

allowing for different environments. On Solaris, for example, you can choose

compile your application for the 32-bit or the 64-bit architectures. The default for

your platform is selected initially. Change this if you wish to generate a Makefile to

build your application on another platform or if you wish to use a different compiler

from the default. You can, of course, generate any number of different Makefiles to

match the environments in which your application will be running.

In some cases, where there is more than one option for a given platform, you can

generate a “multi-target” Makefile. This allows you to specify any of the available

targets using the one Makefile. For example, the following selection from the

Makefile Options dialog:

Solaris 32/64 Multi-target C/C++ (sparc)

generates a Makefile capable of doing the same as all the other Solaris Makefiles

available from the Makefile Options dialog. These are:

Solaris 32bit Ansi C/C++

Solaris 64bit Ansi C/C++ (sparc)

Solaris 32bit Workshop4 Compatible C++

Multi-target Makefiles are identified in the Makefile Options dialog by the words

“Multi-target”. Look at the Makefile itself for the list of command-line options

available.

If you wish to build just one version of your application, choose the appropriate

Makefile type. If you intend to build your application anumber of times - once for

each different target on a given platform, you may find the “multi-target” Makefile

most useful.



556 Sun WorkShop Visual User’s Guide • May 2000

Makefile Generation Notes

There are a few points to bear in mind when generating a makefile:

■ If you are going to use the makefile with templates, make sure that you create the

first makefile (the one with both “New Makefile” and “Makefile Template”

toggles set) for the main design - usually the one which contains the application

shell. Sun WorkShop Visual will assume that the name of the application is the

same as the name of the primary source file of the design from which a “New

Makefile” is generated.

■ When you choose “Makefile Template” only, make sure that you have specified

the name of the makefile which has already been generated. Sun WorkShop

Visual will report an error if you give another name.

■ You can edit a makefile with templates and regenerate it without losing your

changes. This is not the case for simple makefiles.

Creating the Initial Makefile

The first step is to create a design, generate the C code for it and then generate an

initial Makefile. It is assumed that you are familiar with the general use of Sun

WorkShop Visual.

1. Create a new directory myapp. Make this your current directory and start Sun
WorkShop Visual.

2. Build the widget hierarchy shown in Figure 19-2

This is an Application Shell with a Form containing a Button.

FIGURE 19-2 Main Program Widget Hierarchy



Chapter 19 Makefile Generation 557

3. Give the PushButton an Activate callback, button_pressed.

Before you generate a Makefile, you must generate the code files that you want to

include in it. Generating the code files sets the names for these files in the design file.

Until you do this, the Makefile generation feature doesn’t know the names of these

files and can’t add them to the Makefile.

4. Display the Generate dialog and make sure that “C” is the selected language.

The Generate dialog will be primed with filenames based on the save file name or

“untitled” if the design has not been saved.

5. Type: myapp.c into the “Code” field and set the “Generate” toggle.

6. Type: myapp.c into the “Main Program” field and set the “Generate” toggle.

If the “code” and “Main Program” filenames are the same, the code file is generated

with a main procedure.

7. In the Code Options dialog, set the “Include Header File” toggle.

8. Type: app_stubs.c into the “Stubs” field and set the “Generate” toggle.

9. In the Generate Options dialog, set the “Links” option menu to “None”.

Now you can generate a Makefile that compiles and links myapp.c and app_stubs.c:

10. Type: Makefile into the “Makefile” field and set the “Generate” toggle.

11. In the Makefile Options dialog set both “New Makefile” and “Makefile Template”
toggles on, as shown in Figure 19-3.

The scrolled list on the right of the dialog is described in “The List of Makefile

Types” on page 555.

FIGURE 19-3 Initial Makefile Generation



558 Sun WorkShop Visual User’s Guide • May 2000

12. In the Generate dialog press the “Generate” button.

The generated Makefile contains the required make rules and template lines for

further amendment. Ignoring the template lines, the generated Makefile contains the

following rules:

XD_C_PROGRAMS=\

myapp

XD_C_PROGRAM_OBJECTS=\

myapp.o

XD_C_PROGRAM_SOURCES=\

myapp.c

XD_C_STUB_OBJECTS=\

app_stubs.o

XD_C_STUB_SOURCES=\

app_stubs.c

myapp: myapp.o $(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS)

$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -o myapp myapp.o
$(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) $(MOTIFLIBS) $(LDLIBS)

myapp.o: myapp.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c myapp.c

app_stubs.o: app_stubs.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c app_stubs.c

13. Save the current design to myapp.xd.

Updating the Initial Makefile

Once you have generated the initial Makefile, you can update it to reflect additional

work. To demonstrate this, use the following instructions to build a popup dialog in

another file, generate code for it and then update the Makefile to reflect the new

modules.

1. Select “New” from the File menu to start a new design.

2. Build the hierarchy shown in Figure 19-4.



Chapter 19 Makefile Generation 559

FIGURE 19-4 Secondary Popup Dialog

3. Name the Shell and MessageBox error_shell and error_box respectively.

4. Give the MessageBox a Cancel callback, cancel_error.

5. Display the Generate dialog and make sure that “C” is the selected language.

6. Type: error.h into the “Externs” field and set the “Generate” toggle.

7. Type: error.c into the “Code” field and set the “Generate” toggle.

8. In the Code Options dialog, set the “Include Header File” toggle and type:
error.h into the corresponding field.

9. Type: error_stubs.c into the “Stubs” field and set the “Generate” toggle.

10. Make sure that the “Generate” toggle next to “Main Program” is not set.

11. In the Generate Options dialog, select “None” from the “Links” option menu.

12. Type: Makefile into the “Makefile” field and set the “Generate” toggle.

13. In the Makefile Options dialog turn off the “New Makefile” toggle, leaving the
“Makefile Template” toggle set, as shown in Figure 19-5.



560 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 19-5 Updating Makefile

14. Press the “Generate” button in the Generate dialog.

The generated Makefile is updated with the new modules.

XD_C_PROGRAMS=\
myapp

XD_C_PROGRAM_OBJECTS=\
myapp.o

XD_C_PROGRAM_SOURCES=\
myapp.c

XD_C_OBJECTS=\
error.o

XD_C_SOURCES=\
error.c

XD_C_STUB_OBJECTS=\
error_stubs.o\
app_stubs.o

XD_C_STUB_SOURCES=\
error_stubs.c\
app_stubs.c

myapp: myapp.o $(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS)
$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -o myapp\
myapp.o $(XD_C_OBJECTS)\
$(XD_C_STUB_OBJECTS) $(MOTIFLIBS)\
$(LDLIBS)

myapp.o: myapp.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c myapp.c

error.o: error.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c error.c



Chapter 19 Makefile Generation 561

app_stubs.o: app_stubs.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c app_stubs.c

error_stubs.o: error_stubs.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c error_stubs.c

Building the Application

Sun WorkShop Visual has generated the code files for two dialogs, two stub files and

a Makefile. All that remains is to fill in the two stubs and build the application.

1. Edit app_stubs.c and make the following changes.

At the end of the generated list of includes, add the following line:

#include <error.h>

Add functionality to the button_pressed callback stub. This callback pops up the error

dialog when the button is pressed:

void

button_pressed (Widget w, XtPointer client_data, XtPointer

call_data )

{

...

if ( error_shell == NULL )

create_error_shell (XtParent (XtParent (w) ) );

XtManageChild ( error_box );

}

2. Edit error_stubs.c and make the following changes.

Add functionality to the cancel_error callback. This function pops down the error

dialog when the user presses the “Cancel” button.

void

Widget w, XtPointer client_data, XtPointer{

...

XtUnmanageChild ( error_box );

}

3. Save the current design to error.xd.

4. Open the file myapp.xd in Sun WorkShop Visual.

5. Generate X resources into the file myapp.res.



562 Sun WorkShop Visual User’s Guide • May 2000

6. To access these resources do the following:

7. If you are using a C shell enter on the command line:

setenv XENVIRONMENT myapp.res

8. Or, if you are using a Bourne shell or ksh, enter on the command line:

XENVIRONMENT=myapp.res export XENVIRONMENT

9. Set VISUROOT to the path of the Sun WorkShop Visual installation directory.

This must be done as the Makefile includes files and libraries relative to the Sun

WorkShop Visual installation directory.

10. Build the application. On the command line, type: make

11. To run the application, type: myapp

Editing the Generated Makefile

You can edit and regenerate the Makefile without losing information. You can make

the most commonly needed changes by editing the Makefile flags at the beginning of

the file. For example, to make the compiler search the ../hdrs directory for header

files, append the entry:

-I../hdrs

to the end of the CFLAGS line in the Makefile.

The change to CFLAGS is retained when you regenerate the Makefile with the “New

makefile” toggle off. It is only lost if you generate a new Makefile.

Editing Template Lines

A large part of the generated Makefile consists of template lines. Template lines are

comments that control the generation of information into the Makefile. Template

lines have a #Sun WorkShop Visual: prefix. For example, the following template lines

tell Sun WorkShop Visual how to generate the Makefile lines that produce a C object

file from a C source file (XDG_C_SOURCE):

#Sun WorkShop Visual:XDG_C_OBJECT: XDG_C_SOURCE

#Sun WorkShop Visual: $(CC) $(CFLAGS) $(CPPFLAGS) -c XDG_C_SOURCE



Chapter 19 Makefile Generation 563

Each time you update the Makefile to add a file to your application, Sun WorkShop

Visual generates a template instance for each relevant template. These instances

contain the actual build commands for your application.

Template instances are marked with a “DO NOT EDIT” comment at the beginning

and at the end. A typical instance of the template shown above looks like:

#DO NOT EDIT >>>

error.o: error.c

        $(CC) $(CFLAGS) $(CPPFLAGS) -c error.c

#<<< DO NOT EDIT

Template instances should not be edited because your edits may be lost the next

time you generate the Makefile. Instead, to change the build commands, edit the

corresponding template lines. After you edit a template line, delete any instances of

that template line that already exist in the Makefile. The instances are found just

after the template line.

For example, to build all C files for debugging, you would:

1. Change the template line:

#Sun WorkShop Visual: $(CC) $(CFLAGS) $(CPPFLAGS) -c XDG_C_SOURCE

to

#Sun WorkShop Visual: $(CC) $(CFLAGS) $(CPPFLAGS) -g -c XDG_C_SOURCE

2. Remove the instances following the template line.

3. Regenerate the Makefile, with the “New” toggle off, for each design in the
application.

This procedure generates new instances using the modified template.

Template Configuration

The original templates are specified by the file pointed to by the following resources:

visu.motifMakeTemplateFile: $VISUROOT/make_templates/motif

visu.mmfcMakeTemplateFile: $VISUROOT/make_templates/mfc

There are two resources so that you can have different templates customized to pick

up the appropriate class libraries. The value for the resource can contain

environment variables which will be expanded by /bin/sh.

If Sun WorkShop Visual cannot find the file specified, it will fall back to the template

specified in the Sun WorkShop Visual resource file, using the makefileTemplate
application resource. To make a change to the template apply globally to all new

Makefiles, edit the resource file. For details, see the Configuration chapter.



564 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop Visual refers to the template only when you generate a new Makefile.

To change templates in an existing Makefile, edit the file by hand as described in the

previous section, or delete the file and start over.

Dependency Information

Sun WorkShop Visual does not generate dependency information into the Makefile.

The default template includes a “depend” target that can be invoked using:

make depend

This operation invokes the makedepend utility, which scans the existing makefile and

appends a standard dependency list. Use man makedepend for more information.

Using Your Own Makefiles

The $VISUROOT/make_templates directory contains the template used to generate

makefiles. This template contains the include directories and libraries you will need

for each system configuration supported. The configuration chosen from the

Makefile Options dialog determines which “block” in the template to use. There is

always a default configuration for your system so you do not necessarily need to

select one from this dialog. See “The List of Makefile Types” on page 555 for more

details. A typical “block” is shown below:

##: system Solaris 32bit Ansi C/C++

##: default cpp

#UILFLAGS=-I${MOTIFHOME}/include/uil

#MRMLIBS=-L${MOTIF_LIB_DIR} -lMrm

#CPPFLAGS=-Ddrem=remainder -DS_SUNOS5

#MOTIFHOME=/usr/dt

#MOTIFINCLUDES=-I${MOTIFHOME}/include

#MOTIF_LIB_DIR=${MOTIFHOME}/lib${SYSDIR} -R${MOTIFHOME}/lib${SYSDIR}

#XINCLUDES=${MOTIFINCLUDES} -I/usr/openwin/include -I/usr/openwin/
include/X11

#X11_LIB_DIR=/usr/openwin/lib${SYSDIR} -R/usr/openwin/lib${SYSDIR}

#XSYSLIBS=-L${X11_LIB_DIR} -lXt -lX11 -lXext -lnsl -lsocket -lgen

#MOTIFLIB=-L${MOTIF_LIB_DIR} -lXm

#CC=cc

#CCC=CC



Chapter 19 Makefile Generation 565

#ABI2CFLAGS=

#ABI2CCFLAGS=-compat=5

#ABI2LDFLAGS=

#ABI2ABIDIR=/ansi32

#ABI2SYSDIR=

#ABICFLAGS=${ABI2CFLAGS}

#ABICCFLAGS=${ABI2CCFLAGS}

#ABILDFLAGS=${ABI2LDFLAGS}

#SYSDIR=

#ABIDIR=/ansi32

##: end

XINCLUDES and XLIBS specify the extensions to the included directory and library

path respectively.



566 Sun WorkShop Visual User’s Guide • May 2000



567

CHAPTER 20

Advanced Layout

Introduction

This chapter describes some techniques that can be used to achieve more

complicated widget layouts.

Column Layout Using the RowColumn

Dialog elements are frequently arranged in a column or row. This is easy when only

a single column is needed but requires more work to create multiple columns.

The easiest way to create a single column layout is to use a RowColumn widget

instead of a Form. The RowColumn can take almost any widget as a child and

different widget types can be children of the same RowColumn. If the orientation of

the RowColumn is vertical, it produces a single column; if horizontal, it produces a

single row. These results are shown in Figure 20-1.



568 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-1 Single-Column Layouts

Figure 20-1 shows the default behavior of the RowColumn widget when the Packing

resource is set to “Tight”. “Tight” packing produces exactly one column or row. In

the column layout, all widgets are constrained to the same width but they can have

different heights; in the row layout, all widgets are constrained to the same height

but they can have different widths.

If you set Packing to “Column”, both the width and height of all widgets are the

same, as shown in Figure 20-2.

Horizontal Orientation

Widget Hierarchy Vertical Orientation



Chapter 20 Advanced Layout 569

FIGURE 20-2 Column Packing

Resize Behavior of RowColumns

Since any dialog can be potentially resized, the behavior of its components upon

resizing is always important. There is no general documentation of resize behavior;

you have to discover it by experimentation. A vertical RowColumn with “Tight”

packing behaves as shown in Figure 20-3.

FIGURE 20-3 RowColumn Resizing

Vertical Orientation,
Column Packing

Horizontal Orientation, Column
Packing

Initial size Resized taller

Resized wider Resized wider and shorter



570 Sun WorkShop Visual User’s Guide • May 2000

All children in a RowColumn widget are displayed if at all possible. If the

RowColumn is not large enough to display all of its children, the ones that don’t fit

are not displayed at all. It is rare to see only part of a child widget.

Multiple Columns

You can use the RowColumn widget to lay out widgets in multiple columns, as

shown in Figure 20-4.

FIGURE 20-4 Multiple Column Layout with RowColumn Widget

This layout has limitations, however. In order to get more than one column, you

must set Packing to “Column”, which forces all of the children to be the same size.

In this case, because one of the text boxes is 2 lines high, all of the text boxes must be

that size. The result wastes space and may be confusing to the user. The layout

shown in Figure 20-5 is an improvement:

FIGURE 20-5 Multiple Column Layout with Form Widget

This layout cannot be achieved with a RowColumn because some of the rows are not

all the same height. However, it can be achieved with a Form.



Chapter 20 Advanced Layout 571

Column Layout Using the Form

The following section presents a systematic approach to creating complex column

layouts. The first example is a two-column layout with a single row containing one

Label and one TextField widget. Note that, unless otherwise noted, the value of all

attachment offsets in this chapter is zero.

When you first create the Form and add its children, Motif arranges the children

down the left side of the Form by attaching the left side of each widget to the left

side of the Form. The top of the first widget is attached to the top of the Form and

the top of each successive widget is attached to the bottom of the one above it.

Therefore, if you create a Form containing a Label and TextField, you get the layout

shown in Figure 20-6.

The Form used in this example has horizontal and vertical spacing set to 5 pixels.

FIGURE 20-6 Building a Multi-Column Layout

Figures 20-7 to 20-11 illustrate how to start shaping this arrangement into a

two-column layout.

First, move the TextField to its approximate position as in Figure 20-7.

FIGURE 20-7 Positioning the TextField Widget

Next, align the top and bottom of the Label with the top and bottom of the TextField

as shown in Figure 20-8.

Widget hierarchy

Default attachments

Default layout



572 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-8 Aligning the Widgets

Attach the top and right side of the TextField to the top and right side of the Form,

as shown in Figure 20-9.

FIGURE 20-9 Attaching the TextField to the Form

Attach the right side of the Label to the left side of the TextField, as shown in Figure

20-10.

FIGURE 20-10 Attaching the Label to the TextField

Finally, set the position of the left side of the TextField at 25%, as shown in Figure

20-11.

FIGURE 20-11 Setting the Position of the TextField

It may seem strange to fix the left side of the TextField by setting its position, while

the right side of the Label is attached to the left side of the TextField. While it might

seem more natural to fix the left side of the TextField by attaching it to the right side

of the Label, this creates a circular attachment and the Form does not allow it. The

25% value used for the position is arbitrary at this stage. You cannot choose the final

position until you know the widths of all the widgets, at least approximately.



Chapter 20 Advanced Layout 573

Multiple Rows

It is easy to extend this procedure to multiple rows - just repeat the same steps. The

only difference is that in the first row the extreme left and right positions (the left

side of the Label and the right side of the TextField) are set by attaching them to the

sides of the Form. For each subsequent row, however, these positions are set by

aligning the widgets with the row above.

FIGURE 20-12 Multi-Column Layout – Initial State

Figure 20-12 shows the initial state of the dialog shown in Figure 20-5. In that dialog,

the left column consist of three Labels and a PushButton while the right column

contains three TextFields and a Text widget.

You can begin by setting the resources on the widgets that make up the dialog: the

label text for the Labels and Pushbutton and the number of rows and edit mode of

the multi-line Text widget.

It is not necessary to set these resources at this time; you can set them later if you

prefer. However, setting them at this stage gives you an early impression of how the

dialog will look and whether or not it is likely to work as you expect.

Set the resources to produce the layout shown in Figure 20-13.

Hierarchy

Default layoutDefault attachments



574 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-13 Multi-Column Layout with the Resources Set

Now you can apply the procedure illustrated in Figures 20-7 to 20-11 for each row of

the column. The first step is to move the Text and TextField widgets to their

approximate positions, as shown in Figure 20-14.

FIGURE 20-14 Approximate Positions

Next, align the top and bottom of the Labels and PushButton to the top and bottom

of the corresponding Text or TextField widget as shown in Figure 20-15.

FIGURE 20-15 Aligning Labels and Text Widgets

As in Figure 20-9, you can now attach the TextField widget in the first row to the top

and right sides of the Form using an offset of 5 pixels. Attach the top of each other

TextField and Text widget to the bottom of the one above using an offset of 5 pixels.



Chapter 20 Advanced Layout 575

Next, align the Text widgets with the top one. For the right sides, align the right side

of each Text widget with the right side of the one above (or attach using an offset of

0 pixels). Alternatively, use “Group Align”, selecting the Text widgets from bottom

to top. For the left sides, set positions to an arbitrary value such as 50%.

At this stage, align the left side of each Label and the PushButton with the left side

of the widget above. Again, you can use “Group Align”, selecting the widgets from

bottom to top. The layout should now resemble the one shown in Figure 20-16.

FIGURE 20-16 Aligning Into Columns

Attach the right side of each Label and the PushButton to the left side of the

corresponding Text or TextField widget as shown in Figure 20-17.

FIGURE 20-17 Labels Attached to Text and TextField Widgets

The final step is to adjust the position of the left side of the text widgets. This may

require some trial and error. If the percentage is too high or too low, the Form is

wider than necessary and wastes screen space. Some examples are shown in Figure

20-18.



576 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-18 Setting the Position

Reset

Note that when you experiment with different position values, the Form may grow

each time you change it (depending upon the value of the resize policy resource).

This is because the Form is not too clever about constraints which change after the

Form has been created. Reset the Form to see how it will really look in your

application.

While the arrangement of attachments, alignments and positions used for the

multiple column layout may seem complex, it is flexible and adaptable. In particular,

it is relatively easy to add a new row to the dialog.

Adding a New Row

Adding a new row at the bottom of the dialog is easy; just add the new widgets to

the design and set up the attachments as in the row above. Adding a new row in the

middle of the dialog, however, is less straightforward.

Position at 50%

Position at 40%

Position at 60%



Chapter 20 Advanced Layout 577

Adding a Row in the Middle of the Dialog

The first step is to open a space for the new row. Because each row is only attached

to the one above, and because the widget in the left column is attached at the top

and bottom to the widget in the right column, you can move the whole bottom

portion of the dialog down just by dragging the widget in the right column. This

breaks all of its attachments to other widgets and you must remake them later.

However, attachments from other widgets to the widget are unaffected. Figure 20-19

shows the effect of pulling down the Text widget.

FIGURE 20-19 Making Space for a New Row

Now you can add the widgets for the new row, set their resources as required and

move them to their approximate positions as shown in Figure 20-20.

Drag down to create space



578 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-20 Adding the New Widgets

The next step is to align the widgets in the two columns as in Figure 20-21.

FIGURE 20-21 Alignments

Finally, attach each Text or TextField to the one above it and set the positions of the

left sides of the Text or TextField widgets as in Figure 20-22.



Chapter 20 Advanced Layout 579

FIGURE 20-22 Attachments

As the new Label is a little too narrow, set the position of the left sides of the text

widgets to 55% and reset the dialog to produce the result shown in Figure 20-23.

FIGURE 20-23 Position Set to 55%

Changing to Four Columns

Dialogs containing two columns, at least in part, are common. If there are so many

items that a two-column layout becomes too tall, you can change it to a four-column

layout.

For example, you can move the fourth and fifth rows of the example above into a

new pair of columns, 3 and 4. The first step is to break the attachments, shown in

Figure 20-24, that keep these rows aligned with the rows above.



580 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-24 Breaking Attachments

Next you need to make room for two new columns on the right. This is done by

setting positions on the first three rows which approximate the attachments they will

have in the final Form. Figure 20-25 shows the result. When you change the

positions, the Form becomes very wide and so you should reset the Form after

changing the positions.

FIGURE 20-25 Reset Positions

Likewise, set approximate positions on the bottom two rows as shown in Figure

20-26. You must set the positions in the order shown to avoid temporarily putting

the Form in a inconsistent state. If you do things in the wrong order, you get the

message “Bailed out of edge synchronization”. While you can safely ignore this error

message, you must dismiss the message box before continuing. Remember to reset

the Form after changing the positions.

FIGURE 20-26 Position Right-Hand Columns

You can now move the right pair of columns up to their correct position by attaching

the top Text widget to the top and right sides of the Form. This produces the result

shown in Figure 20-27.

Attachments
broken

Position at 50%Position at 25%

1. Position 50%

2. Position 75%



Chapter 20 Advanced Layout 581

FIGURE 20-27 Attach to Top and Right of Form

The layout is almost finished. The right side of column 2 is currently positioned at

50%. Replace this position with an attachment to the left side of column 3, which is

also positioned at 50%. Figure 20-28 shows the final layout.

FIGURE 20-28 Final Layout

Edge Problems

A Form that is a child of a Shell draws a margin line round its inside edge. Any child

widget of the Form that extends exactly to the edge of the Form occludes part of this

margin line (Figure 20-29).

FIGURE 20-29 Occluded Margin

The simplest way to deal with this is to attach any widgets that overlap the margin

to the sides of the Form with a small offset to reveal the margin. However, this can

also produce undesirable resize behavior, as shown in Figure 20-30.



582 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-30 Extra Attachments and Resize Behavior

There are two other possible approaches to solving this problem, both of which

involve introducing extra widgets into the design.

Invisible Widgets

The problem with the simple attachment in Figure 20-30 is that the button resizes

when the Form does and it looks strange. An alternative is to introduce an extra,

invisible widget. Although this also resizes with the Form, it does not look strange

because it is invisible. A Separator gadget with the Type resource set to “No Line” is

most effective. Figure 20-31 shows the widget hierarchy and attachments after

adding an invisible widget to the previous example.



Chapter 20 Advanced Layout 583

FIGURE 20-31 Invisible Widget

The bottom of the Separator is attached to the bottom of the Form by a small offset

to prevent it from hiding the margin line. The top of the Separator is attached to the

bottom of the PushButton with zero offset. The Separator now resizes vertically with

the Form but the other components do not.

Note that the Form Layout Editor exaggerates the height and width of the Separator

(and any other widgets under a certain size) to allow you to set its attachments

using the mouse. Although this makes it look as if it is occluding the margin in the

bottom left corner, in fact it is not.

You could also use a second Separator to keep the right side of the TextField widget

inset from occluding the right edge of the Form (or even use the same Separator for

both jobs). However, the horizontal resize behavior with the attachments shown in

Figure 20-30 is appropriate for most purposes (the TextField widget resizes

horizontally with the Form).

Separator gadget
Type = No line

Separator



584 Sun WorkShop Visual User’s Guide • May 2000

Doubled Forms

Another technique is to use a second Form as the invisible widget. This works

because the Form only draws its margin line if it is the immediate child of a Shell.

The intermediate Form, which is not a child of the Shell, does not draw a visible

margin line and so its children can extend all the way to its edges without causing

occlusion problems. Using an intermediate Form protects against margin occlusion

on all four sides.

Figure 20-32 shows the widget hierarchy and appropriate attachments for this

technique. The child Form is attached at all four sides to the parent Form with a

small offset to make the margins visible.

FIGURE 20-32 Doubled Forms

As an alternative to the parent Form, you can use a BulletinBoard, setting the margin

width and height to a relatively small value such as 5 pixels. Because the Shell

assumes that its child is a BulletinBoard (or a BulletinBoard derivative such as a

Form), you should not use a different kind of container widget (such as a Frame) in

this position.

Child Form attached to
Parent Form

Parent Form

Child Form

Widget attachments in
Child Form

Final Result



Chapter 20 Advanced Layout 585

Form Resizing

What happens when the user resizes a Form depends on how the attachments and

positions are set up. In general, you should try to design every dialog so that if the

user makes it bigger, more of the important information is displayed. For example, if

a dialog contains a scrolling list, the user should be able to make the visible portion

of the list longer by making the window taller. On the other hand, there is no reason

to make widgets such as Labels and buttons grow with the window, since this

conveys no additional information.

In practice, any Form layout must probably compromise between resize behavior,

robust response to size changes within the widget (such as font changes), ease of

implementation and ease of maintenance. This section offers some basic guidelines

for creating Forms with desirable resize behavior.

Widget Resizing

A widget in a Form grows wider when the Form does only if it has constraints on

both right and left edges; it grows taller with the Form only if it has constraints on

both top and bottom.

The most straightforward way to lay out a dialog is to work from the top left corner

towards the bottom right corner of the Form, attaching the top and left of each

widget to the bottom and right of a previous widget. If you do this, none of the

widgets resize with the Form. To make the widgets in a Form resize sensibly, you

must be a little more sophisticated.

Horizontal Resizing

You have already seen an example of horizontal resizing using the RowColumn

widget in “Resize Behavior of RowColumns” on page 569. The rest of this chapter

demonstrates some additional techniques.



586 Sun WorkShop Visual User’s Guide • May 2000

Two-Widget Layouts

Layouts with only two widgets across the width of the Form are relatively simple.

You only need to decide whether the extra width that results when the Form is

resized is given to one widget or the other, or shared between the two.

Figure 20-33 shows one alternative. Widget 1 is attached to the Form at its left side

but its right side is unconstrained; therefore, it finds its own natural width, wide

enough to display the text label. Widget 2 is attached to Widget 1 on the left and to

the Form on the right; therefore, its size varies to fill the part of the Form width that

is not occupied by Widget 1. In other words, Widget 2 gets all the extra space.

When you reset the Form, it sets its own width to accommodate both widgets,

producing the initial state shown in Figure 20-33.

FIGURE 20-33 Two Widgets, Right Dominant

The attachments between the two widgets are reversed in Figure 20-34, i.e. the right

side of Widget 1 is attached to the left side of Widget 2 instead of the other way

around. The result is that Widget 2 stays the same size and Widget 1 gets all the

extra space.

Initial state Resized wide
Resized narrow

Attachments

Hierarchy



Chapter 20 Advanced Layout 587

FIGURE 20-34 Two Widgets, Left Dominant

Avoiding Circularity When Reversing

Attachments

You can reverse a right-to-left attachment between two widgets simply by adding a

new left-to-right attachment in the same place. The Layout Editor detects this

situation when you add the new attachment and removes the old attachment.

However, in the example just given, you will see a circularity error message when

you do this because there are two attachments to be changed. To get rid of the

circular attachment, you must also swap the attachment that aligns the tops of the

two widgets. Since both widgets have the same height, this does not affect the

appearance of your layout.

Proportional Spacing

If you want to share the extra space equally between the two widgets, you must use

proportional positioning. You can set a position on Widget 1 and attach Widget 2 to

it or set a position on Widget 2 and attach Widget 1 to it, or set positions on both.

Any of these methods works as long as you avoid circular attachments. Figure 20-35

shows the three possibilities.

Initial state Resized wide Resized narrow

Hierarchy Attachments



588 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-35 Two Widgets, Equal Shares

In Figure 20-35, the positions are set at about 50% and the two widgets share the

width of the Form about equally. You can use different percentages to favor one

widget or the other. In this example, the extra space is shared in proportion to the

initial sizes of the widgets. The initial state and behavior of the form when resized

narrow is the same in all cases.

Three-Widget Layouts

With three widgets, there are more possibilities. The extra space can be given to any

one of the three, or shared among them. Figure 20-36 shows the simple cases, where

all the extra width goes to one of the three widgets. Notice that in every case the

widget with attachments or position settings at both ends is the one that resizes with

the Form.

Positioned Attached

PositionedAttached

Positioned 51%Positioned 49%



Chapter 20 Advanced Layout 589

FIGURE 20-36 Three Widgets, One Dominant

To share the space among all three widgets, you can use simple proportional

positioning, as shown in Figure 20-37.

FIGURE 20-37 Three Widgets, Equal Shares

As with two widgets, you can use different percentages to favor one widget over

another.

You can use combinations of attachments and positions to create layouts where one

widget does not resize but the other two do. Figure 20-38 shows some examples.

Positioned 33% Positioned 67%



590 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-38 Combined Attachments and Positions

Widgets of Unequal Height

In all the examples so far, the widgets that share the width of the Form are all the

same height. This gives you considerable freedom in arranging the attachments on

the tops and bottoms of the widgets and lets you avoid circular attachments easily. If

the widgets are of different heights, however, this is not so easy.

With a hierarchy like the one shown in Figure 20-39, you want a layout where the

Text widget on the right makes maximum use of the available space, similar to the

right-dominant layout in Figure 20-33. However, this requires attaching the widget

on the right to the one on the left. You cannot do this in the example shown in Figure

20-39, because the Label widget on the left is already attached at the top and bottom

to the Text widget to produce the correct vertical alignment.

FIGURE 20-39 Two Widget Layout with Label and Text Widget

Need to fix the location of this side



Chapter 20 Advanced Layout 591

There are three ways to solve this dilemma:

1. Attach the left side of the Text widget to the left side of the Form using an offset

large enough so that the Text widget does not obscure the Label. Attach the right

side of the Label to the left side of the Text widget as shown in Figure 20-40.

2. Position the left side of the Text widget at a given percentage and attach the right

side of the Label to it as shown in Figure 20-41.

3. If there is only a single row, the alignments at top and bottom of the Label can be

replaced with attachments to the Form and the left side of the Text widget can

then be attached to the right side of the Label as shown in Figure 20-42.

The figures show these three approaches and their behavior when the Form resizes,

the label changes and a font changes. Variations on these approaches display similar

behavior.

In Figure 20-40 the Text widget is attached to the Form at both ends. The virtue of

this layout is that the Text widget gets all the extra space that results if the Form is

resized wider. However, it is only satisfactory if the user is not likely to change the

application’s configuration extensively; it does not behave well if the label or the

font changes.

FIGURE 20-40 Text Widget Attached

Offset on attachment =
width of Label + 2 * gap between widgets

Label changed Font changed

Initial state

Resized wider



592 Sun WorkShop Visual User’s Guide • May 2000

In Figure 20-41, the left side of the Text widget is positioned. This is a more robust

layout if the label or font changes as the label takes a share of any extra Form width.

This is generally the most useful approach, especially for column layouts, as

previously discussed.

FIGURE 20-41 Text Widget Positioned

In Figure 20-42 the problem with circular attachments is removed by attaching the

top and bottom of the label to the Form, instead of aligning them with the top and

bottom of the Text widget. You can then attach the left side of the Text widget to the

right side of the Label, producing a right-dominant layout similar to that used in

Figure 20-33.

Calculate position from width of Label and
width of Form, or by trial and error

Initial state

Resized wider

Label changed Font changed



Chapter 20 Advanced Layout 593

FIGURE 20-42 Removing Circularity

This solution exhibits the best behavior. However, you cannot use it for column

layouts, since each row must be enclosed in a separate Form and there is then no

way to align the columns vertically. It also requires an extra Form widget for each

row, which can create significant overhead.

Vertical Resizing

The solutions for vertical resizing are essentially the same as for horizontal resizing.

However, there are usually fewer problems with circular attachments. This is

because a label positioned above an object can usually be aligned with the left edge

of the object, while a label to the left of an object may need to be centered in the

available space. Figure 20-43 illustrates this.

Alignments to TextField widget
replaced by attachments to Form

Label changed Font changed

Initial state

Resized wider



594 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 20-43 Vertical and Horizontal Clabel Placement

Figures 20-44 to 20-46 show examples of vertical layouts similar to the horizontal

arrangements in Figure 20-36. In each case, any extra height is given to the multi-line

Text widget.

FIGURE 20-44 Resize Top Widget

FIGURE 20-45 Resize Center Widget



Chapter 20 Advanced Layout 595

FIGURE 20-46 Resize Bottom Widget

Initial Size

The initial size of a dialog is determined by a process of negotiation between the

Shell, the Form and the widgets within the Form. Normally the Form tries to find a

layout that satisfies all the constraints on its children and lets each be at least as large

as it wants to be, which is at least the “natural” size. The Form then sizes itself to

contain this layout and the Shell sizes itself to contain the Form.

Most widgets have a sensible natural size. Labels, for example, have a natural size

determined by the text content of the label and the font; Text widgets normally size

themselves according to the number of rows and columns specified by their

resources.

If your dialog only contains widgets that have an acceptable natural size, you can let

the Form work out the initial size for you. Problems only arise when the dialog

contains widgets that do not have an acceptable natural size. You must then fix their

size with constraints, which may make the initial size of the dialog seem too small.

If you have this problem, set the initial size of the dialog by setting the width and

height resources of the top level Form or BulletinBoard. You cannot set the initial

size using the width and height resources of the Shell, although you can set a

minimum size using the appropriate Shell resources.



596 Sun WorkShop Visual User’s Guide • May 2000



597

CHAPTER 21

Hypertext Help

Introduction

Sun WorkShop Visual provides extensive on-line help which can be accessed from

many different points in the application. This chapter describes the support that Sun

WorkShop Visual provides for building help into your application.

The Help Model

The model used to support help in your application is very simple. You can either

use the help callback, available with all Motif widgets, or an activation callback on a

help button. Therefore, to provide context-sensitive help, all you need is a generic

callback that takes as its client data the help (or a path to the help) to be displayed

when the callback is invoked. In Sun WorkShop Visual this help specification is

defined as a document path and a marker that denotes some reference in that

document. We supply a callback that can be used with one of the help system

interfaces provided with Sun WorkShop Visual. See “Help Viewers” on page 598 for

more information on which systems are provided to display your help.

Obviously you are free to re-implement the callback that you use in your application

to make it interface with the help system of your choice. Likewise, you can achieve

the same effect simply by using the ordinary callback mechanisms, or you can

decide not to give your users any on-line help at all.



598 Sun WorkShop Visual User’s Guide • May 2000

Internally, Sun WorkShop Visual uses two systems when displaying help:

■ Sun WorkShop Visual Help. This is the help viewer with built-in navigation

commands and links to related help topics.

■ Netscape. This is used as a HTML browser.

In order to try out your help within Sun WorkShop Visual you will have to use one

of these.

Motif’s Help Callback

By default in Motif the Help callback is invoked by the Help action which is

specified for every widget. This action is bound to the <osfHelp> key using a default

translation in every Motif class.

Help Viewers

Sun WorkShop Visual provides interfaces to the following viewers:

■ Sun WorkShop Visual Help

■ Netscape

■ FrameMaker

You can use these to display help in your application. They are explained in more

detail in the following sections.

You set up help for your application in the same way, regardless of which viewer

you intend to use. You then link your application with the appropriate supplied

library, as described in “Help Implementation” on page 613.

Sun WorkShop Visual Help

Sun WorkShop Visual Help is Sun WorkShop Visual’s own help viewer and is shown

in Figure 21-1.



Chapter 21 Hypertext Help 599

FIGURE 21-1 Sun WorkShop Visual Help Viewer

The Sun WorkShop Visual Help help viewer contains a menubar with “File”, “Edit”,

“Navigation” and “Help” menus containing file, editing and navigation commands

respectively. The “Help” menu contains version information and help on using Sun

WorkShop Visual Help. A toolbar is also provided with buttons for quick access to

most of the menu items. As you pass the mouse pointer over the toolbar buttons,

information about the function of the button is displayed in the status line at the

bottom of the viewer window.

There are two text areas in the help viewer. The topmost text area displays help

about the currently selected topic. The bottom area contains links to other related

topics. Double clicking over one of the links displays help on that topic.

The files used by Sun WorkShop Visual Help are in HTML (HyperText Markup

Language). This is a public domain format which uses only printable characters and

can, therefore, be created in any text editor. It is also a standard used by many

applications.

Sun WorkShop Visual Help does not claim to be a full HTML interpreter; it

recognizes a subset of HTML and interprets them in a simple way. “HTML Tags” on

page 601 describes the HTML keywords recognized by Sun WorkShop Visual Help

and the way they are interpreted.



600 Sun WorkShop Visual User’s Guide • May 2000

See Appendix E, “Further Reading” for suggested books on HTML.

Netscape

Netscape is a browser which takes HTML (HyperText Markup Language) files and

displays them complete with any hypertext links or special formatting you have

specified.

Netscape also provides file operations and navigation commands allowing the user

to browse around the help files you provide.

FrameMaker

FrameMaker is a desktop publishing package which uses its own internal format.

FrameMaker also provides a means of viewing and browsing around read-only

documents. For information on using FrameMaker as your help viewer, see “Using

FrameMaker” on page 604.

Using HTML in Help Documents

Both Sun WorkShop Visual Help and Netscape read HTML files. You will need to

write the files so that you have specified HTML anchors at points which will be the

source and destination of a link. You should remember the names of these anchors as

they are used to specify the help action for individual widgets.

These anchor points are the “markers” in Sun WorkShop Visual which are specified

in the Help callback. Setting up Help callback markers is explained in “Setting up

Help in Sun WorkShop Visual” on page 605.

To use either Sun WorkShop Visual Help or Netscape as the help system in your

application you will need to do the following:

1. Create the help files in HTML format

You do not have to create a separate file for each topic as, in HTML, you can have

links within the same document. In order to maintain the help text, however, you

may wish to have separate files. Because Sun WorkShop Visual Help uses a subset of

HTML, you will need to refer to “HTML Tags” on page 601 for details on which

HTML keywords are recognized by Sun WorkShop Visual Help.



Chapter 21 Hypertext Help 601

2. Specify the Help callback for individual widgets or for whole modules

See “Setting up Help in Sun WorkShop Visual” on page 605 for information on

adding help callbacks to widgets in your design. Note that you will need to follow

the instructions in “Linking Help Into Your Application” on page 611 so that the

help callback is defined in your application.

3. Link the generated code with the Sun WorkShop Visual Help or Netscape
libraries provided

See “Help Implementation” on page 613.

HTML Tags

This section gives a brief description of the major HTML keywords, known as tags.

The tags listed here are all those interpreted by Sun WorkShop Visual Help. The

description given offers an indication of the way the tags are interpreted by most full

HTML interpreters (such as Netscape) and the way they are interpreted by Sun

WorkShop Visual Help, if different.

In HTML tags are enclosed within angle brackets (< and >). You must use these

brackets in your text files. See “Example HTML Document” on page 604 for an

illustration of the way you should use HTML tags in your documents.

The tags have been divided into categories according to their usage. Note that the

tags are listed here in uppercase. HTML, however, is not a case sensitive language.

You can, therefore, use either case.

Starting and Ending

<HTML> All HTML documents start with this tag.

</HTML> HTML documents end with this.

Anchors and Links

<A NAME=”anchorname”>text</A> This is an anchor which will be used as the

destination of a link. anchorname is your internal name for the anchor. text is the text

you want people to click on to go to the link destination.

<A NAME=”#anchorname”>text</A> This is the source of a link to another part of

the same document. anchorname is the internal name given to the anchor.

You can have links to other files using relative or absolute pathnames. An external

file can even reside on another server. For external links anchorname is the filename

and you should omit the ‘#’ sign at the beginning.



602 Sun WorkShop Visual User’s Guide • May 2000

Paragraph

<P> This tag is used to indicate the start of a paragraph. Paragraphs are separated

by a blank line.

</P> This tag is used to indicate the end of a paragraph.

Break

<BR> This tag indicates a hard line break. If there is no line break, the text will flow

to fit the width of the browser window.

Lists

Sun WorkShop Visual Help does not handle the different types of list in the way

most HTML interpreters do. Lists are interpreted for compatibility so that existing

HTML documents can be used.

<OL> Indicates that the following lines are an ordered list. Most HTML

implementations would put a number in front of the list items but Sun WorkShop

Visual Help simply prints a ‘-’ (dash).

</OL> Indicates the end of an ordered list.

<UL> Indicates that the following lines are an unordered list. Most HTML

implementations would put a bullet mark in front of the list items but Sun

WorkShop Visual Help simply prints a ‘-’ (dash).

</UL> Indicates the end of an unordered list.

<DL> Indicates that the following lines are a definition list. Most HTML

implementations would expect a “term” and a “definition” as in a glossary - Sun

WorkShop Visual Help simply prints a ‘-’ (dash) in front of each item in the list.

</DL> Indicates the end of a definition list.

<LI> Indicates a list item. A ‘-’ (dash) is printed at the beginning of the line.

<DT> Indicates a “term” in a definition list. Sun WorkShop Visual Help treats these

as plain list items.

<DD> Indicates a “definition” in a definition list. Sun WorkShop Visual Help treats

these as indented list items with no ‘-’ (dash).



Chapter 21 Hypertext Help 603

Character Formats

<EM> Indicates the following text should be emphasized. Some HTML interpreters

use italic and some use bold. Sun WorkShop Visual Help prints a ‘*’ (asterisk) before

and after the text.

</EM> The end of the text to be emphasized.

<B> Indicates the following text should be printed in bold. Sun WorkShop Visual

Help prints a ‘*’ (asterisk) before and after the text.

</B> The end of the text to be printed in bold.

<I> Indicates the following text should be printed in italic. Sun WorkShop Visual

Help prints a ‘*’ (asterisk) before and after the text.

</I> The end of the text to be printed in italic.

Headings

HTML defines a range of headings from “H1” to “H6” which, according to most

HTML interpreters, start large and bold and gradually lessen in size and weight. Sun

WorkShop Visual Help simply prints two blank lines before a heading. The heading

tags indicate the beginning and end of the text of the heading:

<H1>First Level Heading</H1>

<H2>Second Level Heading</H2>

<H3>Third Level Heading</H3>

<H4>Fourth Level Heading</H4>

<H5>Fifth Level Heading</H5>

<H6>Sixth Level Heading</H6>

Preformatted Text

<PRE> Most HTML interpreters format the text in a HTML document ignoring any

extra spaces, tabs or line returns. The “preformatted” tag causes the interpreter to

print the text as you typed it and uses a monospaced font, such as Courier. Sun

WorkShop Visual Help only prevents the output function from stripping white

space.

</PRE> End of preformatted text.



604 Sun WorkShop Visual User’s Guide • May 2000

Example HTML Document

Below is an example of a help document written for Sun WorkShop Visual Help in

HTML:

<html>

<head>

About Sun WorkShop Visual

</head>

<h1>About Sun WorkShop Visual </h1>

<p>This is Sun WorkShop Visual, a tool to help you develop Motif

Graphical user Interfaces.

<p>

If you are new to Sun WorkShop Visual, select ‘Getting Started’ in the

 list below, and then press the Follow link button.

<p>

A complete list of help topics is available, and can be viewed by
similarly selecting the ‘Index of Help Topics’ item.

See also:

<ul>

  <li><a href=”get_started”>Getting Started</a><br>

<li><a href=”dialogs”>Resource Panels and other >Sun WorkShop Visual

dialogs</a><br>

  <li><a href=”widget_list”>Widgets</a><br>

  <li><a href=”code_gen”>Code Generation</a><br>

  <li><a href=”index”>Index of Help Topics</a><br>

</ul>

</html>

This file is shown displayed in Sun WorkShop Visual Help in Figure 21-1.

Using FrameMaker

If you plan to use FrameMaker to build your help system, you must know how the

FrameMaker hypertext system works. Complete documentation is provided in your

FrameMaker manuals and a brief summary is given below.



Chapter 21 Hypertext Help 605

FrameMaker lets you mark places in the text as either source or destination markers.

Destination markers are places you can jump to in a help document. Source markers

are places in a help document or your application that the user can select which

cause an action, usually a jump to a destination marker. Source markers in a help

document require a visual clue to tell the user he can click on them. The best way to

do this is to specify a character format such as italics or underline to denote a source

link.

When the user clicks in a document at a place where the special character format is

in effect, FrameMaker checks for a source marker in that area. If it finds one, it

highlights the whole graphical area or section of text and executes the action

specified by the marker.

You can insert these special markers into your FrameMaker document by using the

“Marker” command from the Special menu.

1. Select “Hypertext” from the Marker Type list.

2. To specify a destination marker, type: newlink <tag_name> in the Marker Text
field.

3. To specify a source marker, type: gotolink <tag_name>

A tag can be specified either as <tag_name> for a tag in the current document, or as

<document_name>:<tag_name> for a tag in a different document.

4. Hypertext markers are only effective in a locked document. To toggle the lock of a
document on or off, type: <escape> <F> <l> <k>

5. To exit from a locked document, type: <escape> <f> <c>

This command gives you the option of saving the document in its locked state.

Setting up Help in Sun WorkShop Visual

The term tag means the combination of a document and a marker. Help Tags are

specified from the “Code generation” page of the Core resource panel. There are two

Help tags that can be specified: one for the Help callback, which can be specified for

any Motif widget, and one for the Activate callback, which can only be specified for

PushButton and CascadeButton widgets.

Note – The Activate callback for a CascadeButton is only called if there is no

pulldown menu associated with it.



606 Sun WorkShop Visual User’s Guide • May 2000

To specify a tag, type the name of the document and the name of the marker, and

press “Apply”. You should now be able to display that document by invoking the

callback in the dynamic display, which is done by clicking on the button for an

Activate callback, or pressing <F1> for a Help callback.

When you specify tag information in the Core resource panel, Sun WorkShop Visual

automatically adds the callback function XDhelp_link() to the appropriate callback

list for the widget. You do not have to specify a callback in the Callbacks dialog for

the widget.

Inherited Documents

You may be able to specify some of your help information by typing the marker

only, without having to retype the name of the help file. If you specify a marker but

no document name for the Help callback, Sun WorkShop Visual uses the Help

callback document of the closest parent widget. If none of the widget’s ancestors has

a Help callback document, Sun WorkShop Visual uses the default document

specified in the Module Help defaults panel, as described in the Module Defaults
section below.

In the case of the Activate callback, if no document is explicitly set the document for

the Help callback is used. If this is not set, the same Help document inheritance,

described above, takes place.

Help on Windows

If you are running Sun WorkShop Visual in Windows mode, you can specify

Activate Help callbacks which are then mapped through to the Windows code.

When the generated application is run on Windows, these callbacks invoke the

default web browser on the system using the specified URL and a pre-defined help

path. The help path is specified in the Help Defaults dialog which is displayed by

selecting “Help Defaults” from the Module menu. The default path should be set to

the root of the HTML included with the application.

To allow the HTML files to be opened on multiple platforms, you need to be able to

modify the path to the root of the HTML according to the platform. For example, the

path “c:\program files\myapp\myhtml ” will not work with the Motif XP

version of the help system. In order to help you with this, Sun WorkShop Visual

generates the following structure into the stubs and the main code file.



Chapter 21 Hypertext Help 607

In the main code file the following is generated:

#ifndef DUAL_PLATFORM

char * _xd_help_path = "c:\\program files\\myapp\\myhtml\\"

#else

extern char * _xd_help_path;

#endif

The stubs file contains a similar structure:

#ifndef DUAL_PLATFORM

extern char * _xd_help_path;

#else

char * _xd_help_path = "c:\\program files\\myapp\\myhtml\\"

#endif

This structure can be modified and extended. Modifications are retained when code

is regenerated. This allows you to specify the help path for any system you intend to

use for the help, as shown in the following example:

#ifndef DUAL_PLATFORM

extern char * _xd_help_path;

#else

#ifdef WIN32

char * _xd_help_path = "c:\\program files\\myapp\\myhtml\\"

#else

char * _xd_help_path = "/opt/myapp/HTML"

#endif

You then need to specify DUAL_PLATFORMin the project settings for your application.

If you do not wish to provide absolute paths, you can use this mechanism to pick up

environment variables or settings from the registry.



608 Sun WorkShop Visual User’s Guide • May 2000

Module Defaults

There are numerous help defaults that can be specified on a per module basis. To

specify these defaults, pull down the Module Menu and select “Help defaults”. The

resulting dialog is shown in Figure 21-2.

FIGURE 21-2 Help Defaults Dialog

The Help Defaults Dialog lets you specify defaults for use both in building the help

system in Sun WorkShop Visual and in the finished application.

TABLE 21-1

Default document: This field specifies the name of the default

document for use if no other document is

specified on an individual widget.

Default path: All help tag document names are assumed to be

relative paths unless they begin with “/”. This

field specifies a default path to be added to the

beginning of any relative path document names.

The Default path is also used to find documents

when you test your help in Sun WorkShop Visual.

Path resource: In the application, you can override the Default

path setting by setting an application resource.

This field specifies the name of the application

resource.



Chapter 21 Hypertext Help 609

Path environment

variable:

You can also override the resource setting by

setting an environment variable. This field

specifies the name of the environment variable.

Default translation: This field specifies an event to be added as a

translation to every widget that has a marker

specified for the Help callback. The translation

calls the Help() action. This lets you designate a

key combination as an application help key.

Preview Viewer This option menu lets you specify which help

viewer Sun WorkShop Visual should use when

you ask to preview your help document(s). There

are three options: Sun WorkShop Visual Help,

Netscape and FrameMaker.

Always own

window:

This toggle makes the FrameMaker integration

callback display the document in its own

window. If this toggle is off, an existing window

is used to display the new page. You can

designate the use of a new window for individual

pages using the “Own window” toggle in the

Help documents and markers dialog.

TABLE 21-1 (Continued)



610 Sun WorkShop Visual User’s Guide • May 2000

Finding Help Documents and Markers

The “Activate callback” and “Help callback” buttons in the “Code generation” page

of the Core resource panel can be used to display a dialog showing all the

documents and markers that are currently referenced by your design.

FIGURE 21-3 Help Documents and Markers Dialog

TABLE 21-2

Add: You can add a document or marker by typing the

name in the appropriate selection field and

pressing “Add”.

Delete: You can delete a document or marker by

selecting its name from the list and pressing

“Delete”. You cannot delete documents or

markers that are still referenced by a widget in

the design.



Chapter 21 Hypertext Help 611

Linking Help Into Your Application

To use Sun WorkShop Visual’s default help callback function, you must link in the

supplied object files which can be found in Sun WorkShop Visual’s installation

directory (referred to below as $VISUROOT).

There are three directories, one for each help viewer. For Sun WorkShop Visual Help

and FrameMaker you will also need to link with additional files.

Sun WorkShop Visual Help

To use Sun WorkShop Visual Help you will need to link the file helplink.o in with

your application. The source of this object file, helplink.c, is found in:

$VISUROOT/src/libhelplink/helplink

There is also a Makefile with instructions for building helplink.o and a file

named READMEwith information on linking in Sun WorkShop Visual Help.

Find: This button pops up a file selection dialog to

help you navigate in the file system. You can also

display this dialog by selecting the “Default

path” or “Default document” buttons in the Help

defaults dialog.

Preview: This button makes Sun WorkShop Visual try to

connect to the selected help viewer and display

the named document at the named marker. Select

which help viewer you wish to use in the

Module Help Defaults dialog - see “Module

Defaults” on page 608.

Own window: Each document has an “Own window” flag

associated with it. This flag forces the system to

display this document in its own window, not to

share a common window with other documents.

This toggle lets you designate the state of the flag

for the selected document.

<Open>: A special default marker that causes the

document to be opened at the first page.

<Widget name>: A special default marker that uses the widget

name as a marker to jump to in the document.

TABLE 21-2 (Continued)



612 Sun WorkShop Visual User’s Guide • May 2000

In addition you will need to link in the library in:

$VISUROOT/src/help/client

There is a Makefile in that directory with instructions for building the library.

Netscape

To use Netscape you will need to link the file helplink.o in with your application.

The source of this object file, helplink.c, is found in:

$VISUROOT/src/libhelplink/nshelplink

There is also a Makefile with instructions for building helplink.o and a file

named READMEwith information on linking in Netscape.

FrameMaker

To use FrameMaker you will need to link the file helplink.o in with your

application. The source of this object file, helplink.c, is found in:

$VISUROOT/src/libhelplink/fmhelplink

There is also a Makefile with instructions for building helplink.o and a file

named READMEwith information on linking in FrameMaker.

In addition you will also need to build the files in

$VISUROOT/src/libhelplink/fmhelplink/libframe/fmclient

There is a Makefile in that directory with instructions for building the library.

Other

You can also supply your own Help callback function. This function should also be

called XDhelp_link() and should follow the same form as Sun WorkShop Visual’s

function. See the Help Implementation section below for suggestions on how to

customize the Help callback function.



Chapter 21 Hypertext Help 613

Help Implementation

The preceding descriptions show how the help system works within Sun WorkShop

Visual. If you use the default Help callback provided with Sun WorkShop Visual, the

help in your application will work in the same way. However, you may want to

customize your implementation of the Help callback. The following sections

describe how to do so using the FrameMaker integration as a guide.

The Sun WorkShop Visual directory libhelplink/fmhelplink contains all the sources for

the FrameMaker integration callback XDhelp_link. The subdirectory libframe contains

various source files, adapted from the FrameMaker release. The original files are in

$FMHOME/source/openmaker if you want to check them out.

XDhelp_link() receives a client_data parameter that is a pointer to an _XDHelpPair_t
structure:

typedef struct _XDHelpPair_s {

_XDHelpDoc_p doc;

char ** tag;

Bool  open_doc;

} _XDHelpPair_t, *_XDHelpPair_p;

This contains a pointer to an _XDHelpDoc_t structure, a pointer to a marker (tag),

and an open_doc flag. If tag is NULL the developer has specified one of the default

markers: <Widget name> if open_doc is FALSE, <Open> if open_doc is TRUE. The

document structure is:

typedefstruct_XDHelpDoc_s{

char * doc;

char ** path;

int handle;

Bool new_window;

}_XDHelpDoc_t,*_XDHelpDoc_p;

The doc field is the name of the document. path is a pointer to the default path if one

exists. This path is calculated as described above, taking account of the setting of the

help path application resource and environment variable. handle is the document

handle returned from FrameMaker, and new_window specifies whether the document

is to have its own window.

The main code file contains static arrays of documents and markers, and an array of

tag pairs that points into the other arrays. A pointer to an element in the tag pairs

array is passed as the client data.



614 Sun WorkShop Visual User’s Guide • May 2000

XDhelp_link() calls the appropriate routines to communicate with FrameMaker to

display the document as requested. Other implementations of XDhelp_link()
communicate with different help systems. There are libraries supplied for

integrating with Netscape and with Sun WorkShop Visual Help.



615

CHAPTER 22

Internationalization

Introduction

Sun WorkShop Visual helps you to make use of the special features that X and Motif

provide to assist in developing applications that can be used in different languages.

Although internationalization is a complex subject, this chapter points you in the

direction of those areas that you will need to examine in order to fully

internationalize your software.

In order to type text of languages other than your own, you will need an X server

which supports that language. You can find out if this is the case by checking

whether the locale is present on your system. See “Locale Name” on page 617 for

some hints on how to find out.

What Is the Problem?

If your application is to be used by speakers of another language (even if that other

language is British English rather than American English) you cannot assume that

they understand your language and conventions. Apart from the variation in

language, the use and style of addresses, date and time formats, personal names,

even paper sizes may be very different from yours.

Scripts, in particular, can constitute a vast difference in the appearance and behavior

of your application. Some languages, such as Korean, Japanese and Chinese, are

ideographic. They do not have an alphabet as understood in Roman languages. Each



616 Sun WorkShop Visual User’s Guide • May 2000

word is represented in a graphical form. The fonts used to display such a script need

to be able to handle thousands of these characters. This problem is discussed further

in “Creating International Text” on page 620.

Other languages, such as Hebrew and Thai are alphabetic but still totally unlike

Roman scripts. Some letters change according to context. There are often no spaces

to distinguish words and some languages are written right to left while others are

written left to right.

Even languages which appear to be very similar, such as French, English and

German, involve differences in the symbols (or diacritics) used with letters and in

the way in which letters are changed from lowercase to uppercase and vice versa.

X11 does assist you in addressing these problems by providing FontSets. These are

explained in “Font Sets” on page 617. Also explained in this chapter is the

mechanism by which input methods, required by non-alphabetic scripts, can be used

in your application.

Although Japanese is used in most examples in this chapter, the principles are the

same for any language.

It must be stressed here that this chapter aims to introduce you to the large area of

internationalization and to explain how this is supported by Sun WorkShop Visual.

You are strongly advised to refer to additional documentation for more in-depth

information. This includes system documentation, Motif documentation and, where

necessary, books such as those listed in Appendix E, “Further Reading”, starting on

page 885.

Locale

Before you begin to address the issue of internationalization with regard to your

application, you will need to understand how to set up your environment for a

particular location. This involves an understanding of locales. A locale is an ANSI-C

concept. It is a name that is used to identify a set of local information. For example,

the locale might be set to be “en_UK” to denote that the location is the U.K. with

English as the language, “en_US” for English as used in the U.S., or “ja” for

Japanese. The setting of a locale makes certain C library functions operate in

different ways, e.g. defining the sorting order, or date format.



Chapter 22 Internationalization 617

Locale Name

You need to know the system name of the locale you are wishing to use and then set

the LANG environment variable correspondingly so that applications can work out

which language they should be displaying. Note that the name of the locale may

differ depending on which system you are using. For a list of locale names

supported by your UNIX system, look in the directory /usr/lib/locale . This will

contain a directory for every language available. The directory names are used as the

locale name, which is also the name you should use for the LANG environment

variable. Type:

locale -a

to list all locales currently installed on your system.

Specifying the Locale

To run Sun WorkShop Visual with internationalization support, you must set an

appropriate locale. Do this by setting the LANG environment variable before running
your X server, for example:

setenv LANG ja

This tells X to use Japanese for its display fonts and keyboard input, if Japanese is

installed on your system.The value of the environment variable may be different on

your system. See the Locale Name section above for more information.

For a language such as Japanese, which uses an input method in-between the

keyboard and a text widget, you must make sure that you are running the

appropriate version of Sun WorkShop Visual (in this case Japanese). This is because

it is the presence of the Japanese fonts, in combination with the LANG environment

variable, which indicates to the X server that an input method is required.

Font Sets

Part of a locale’s definition includes a specification of the font encodings required in

order to display all possible text. For example, the Japanese locale requires that fonts

with codesets ISO 8859-1, JIS X0208-1983 and JIS X0201-1976 be present in order to

display all text in the Japanese language because Japanese contains Roman

characters, Japanese alphabet characters (kana) and ideographic characters (Kanji). A

FontSet is a collection of Fonts that contains all the required character sets for the

current locale.



618 Sun WorkShop Visual User’s Guide • May 2000

FontLists

The FontList is a collection of Fonts which is used for drawing labels in multiple

fonts and styles. FontLists are specific to Motif whereas FontSets are defined by X.

For example, in order to specify that a string contains both bold and italic, you create

a compound string with markers indicating which font (bold or italic) to use where.

This is easily achieved in the Sun WorkShop Visual XmString editor (see

“Compound Strings” on page 163). To do so, however, you need to define a Font

Object in the Font Editor (see “Setting Fonts” on page 139) which contains a list of

fonts - one bold and one italic. This is your FontList. Each Font in the FontList is

tagged with the name you specify in the Font Editor. These tags are included in the

compound string to tell the X server which font to use.

What Is the Connection Between FontSets and

FontLists?

In order to incorporate FontSets, Motif has extended its definition of a FontList so

that each entry in a FontList can be either a single Font (FontStruct) or a FontSet.

Sun WorkShop Visual simplifies this by presenting all the Fonts in a FontSet as

straightforward members of the FontList. However, when you set the FontSet toggle

in the Font Selection dialog, you are indicating to Sun WorkShop Visual that this

Font is a member of a FontSet. Internally Sun WorkShop Visual gives all members of

a FontSet the same FontList tag. Motif then collects together all Fonts with the same

FontList tag as members of a FontSet.

See “Simple Font Objects” on page 144 for more information on font objects and

“Creating a Complex Font Object” on page 164 for an explanation of FontLists.

Example of the Use of FontSets

The following exercise illustrates the use of FontSets.

The Japanese locale described above requires these three encodings:

■ ISO 8859-1 for Latin characters

■ JIS X0208-1983 for Kanji ideographic characters

■ JIS X0201-1976 for Kana phonetic characters

1. Pop up the Font selection dialog.

2. Enter a Font object f1 and a tag name t1 .

3. Set the “Font set” toggle on.



Chapter 22 Internationalization 619

4. Use the Reg Filter Menu to show all ISO 8859-1 fonts.

5. Select an appropriate ISO 8859-1 font and press bind.

Note that you should press the Default button as the tag name if you wish this

FontSet to be used by default, otherwise you will have to provide code to make sure

that the FontSet is used by your widget.

At this point, Xlib warns you that you have a FontSet that does not have sufficient

encodings charsets to display text in the current locale. This is correct, since you still

have two fonts to do.

FIGURE 22-1 Missing Charsets Warning

FIGURE 22-2 Initial Font in FontSet

6. Select a font with JIS X0208-1983 registry and bind it.

Xlib issues another warning of missing charsets.

7. Select a font with JIS X0201-1976 registry and bind it.

This time Xlib does not warn you because the FontSet is now complete.



620 Sun WorkShop Visual User’s Guide • May 2000

Font object entries can be deleted and re-bound regardless of whether or not they are

part of a FontSet. A FontList can have many entries which can be either FontSets or

simple fonts. To achieve this, specify different Fontlist tags and set the “Font set”

toggle as appropriate. The following example shows a single font object that has

three entries: t1, big and t2. t1 and t2 are complete FontSets for the ja locale; big is a

simple font.

FIGURE 22-3 A Font Object with Three Entries

Creating International Text

For a language such as Japanese, Chinese or Korean, more characters can be

displayed than there are keys on the keyboard, or numbers that can be represented

by 8 bits. In addition, text displayed by Japanese symbols must be mixed with

Roman numerals and Roman text. These problems are addressed by coding the text

in a special way. Instead of the familiar ASCII mapping, multi byte text strings are

used in order to allow for the larger set of characters in these languages. Multiple

characters in the text signify a single character from the matching font. The way in

which one- and multi-byte characters are distinguished depends on the encoding.

Such languages also have a one-to-many mapping of sound (as may be typed on the

keyboard) and ideographic character. To resolve this, an input method is provided.

Languages such as Hebrew and Arabic also require an input method because the

letters change according to the position in the word and vowels are written around
the consonant.

If an input method is required and you are running an appropriately localized

version of Sun WorkShop Visual, a special key sequence switches into using the

input method when you enter text into a text field. The method converts the

characters typed into corresponding characters in the target language.



Chapter 22 Internationalization 621

Using an Input Method in Sun WorkShop Visual

To enter non-English text into any text input area in Sun WorkShop Visual first of all

make sure that you fulfil the following requirements:

1. The LANG environment variable is set to the language type (locale) you require.

See “Locale” on page 616 for more information.

2. You have an X server which supports the required language.

3. You have the appropriate version of Sun WorkShop Visual.

4. If the language specified needs an input method, it is present on the system and

has either been started automatically or started by you.

The following example illustrates how to type text in a language which requires an

input method. The language used is Japanese. If you are using CDE:

1. Set the locale in the dialog box when you log in and then log in as usual.

If you are not using CDE:

1. Set the LANG environment variable to “ja”

If you are using OpenWindows you do not need to do anything else. If, however,

you are using the Motif Window Manager, you should start the input method server

by typing: htt at the command line prompt.

2. Start your X server

Whenever a window containing a text field has the current focus, a status line
appears at the bottom of the window. This is a text area displaying the current input

mode.

Whether you are using CDE or not, the following instructions are the same:

3. Start Sun WorkShop Visual.

You can read in a saved design or start a new one. Make sure that you have a Text

widget.

4. Select a Text widget, invoke its resource panel and select the “Label” field.

5. Type Ctrl-Space. Check you input method documentation for the correct key.

The status line changes to indicate that you may now type kana.

6. Type Ctrl-W.

The kana is converted to Kanji and a candidate list is displayed allowing you to select

the Kanji you want to enter into the text field.

7. Click on an item in the candidate list and then press <Space> to send the selected
Kanji to Sun WorkShop Visual.



622 Sun WorkShop Visual User’s Guide • May 2000

The procedure for other languages is similar - first, set the LANG environment

variable, start your X server, then invoke Sun WorkShop Visual. For some languages

and on some systems you may also need to start an input method or server. Refer to

your system documentation to check whether this is necessary. The input method

will appear whenever a window with a text area has the current focus.

For more information on international text on Sun platforms, see your Sun

documentation.

Localized Input in Your Application

The previous section described how to enter non-ASCII text into Sun WorkShop

Visual (for example into the label resource). This section describes how to enter

localized text in your generated application. Note that the term “converted text” is

used. This means any text on the screen which differs from that which appears on a

standard keyboard.

How Text Is Converted

The X toolkit does most of the work for you. What you need to do is to indicate to

the X toolkit that a particular text widget will be receiving non-ASCII text. This is

accomplished by fulfilling these criteria:

1. The locale is set.

See “Specifying the Locale” on page 617.

2. You have specified a font object for the text widget that includes a FontSet which

matches the current locale.

If the second condition above is true, the text widget makes a request to the

enclosing Shell to establish a connection to the input method. The X toolkit then

takes over, diverting text input for that text widget to the input method and

returning to the text widget the resulting converted text.



Chapter 22 Internationalization 623

Setting up a Text Widget to Receive Converted

Text

You can see from above that in order for a text widget in your application to use an

input method, all you have to do is to make sure that the text widget has a FontList

specified for it which includes a FontSet matching the locale at creation time. The

simplest way to do this is to use Sun WorkShop Visual to specify a font object

containing an appropriate FontSet and use that as the font resource for the widget.

The following steps illustrate this:

1. Create a dialog with a Text child.

2. Designate the Shell as an ApplicationShell.

3. Select the Text and pop up the resource panel.

4. Click on the Font button.

5. Specify a font object with an appropriate FontSet

Refer to “Example of the Use of FontSets” on page 618 for a description of how to do

this. Remember to give the FontSet fonts the “Default” tag. If you do not, the X

server may not realize that an input method is required.

6. Generate code. Compile.

7. Run the generated application on an X server with support for the language
specified for the Text widget.

Seeing the Input Method in the Dynamic Display

Although the above works correctly for your generated application, there is a

drawback. Sun WorkShop Visual always creates the widget before resources are

applied to it, even on reset or paste. Therefore, to see the input method working in

the dynamic display window, you must force the font to be specified at creation

time. This is best accomplished by setting the textFontList resource on a parent

Bulletin Board or Shell widget. Obviously, this has the disadvantage that all the child

text widgets have the input method.

To see a text widget working with an input method from within Sun WorkShop

Visual, use the following steps.

1. Create a dialog with a Form child.

2. Designate the Shell as an ApplicationShell.

3. Select the Form and pop up the “Fonts” page of its resource panel.



624 Sun WorkShop Visual User’s Guide • May 2000

4. Click on the “Text font” button.

5. Specify a font object with an appropriate FontSet

Refer to “Example of the Use of FontSets” on page 618 for a description of how to do

this. Remember to give the FontSet fonts the “Default” tag. If you do not, the X

server may not realize that an input method is required.

6. Create a Text widget child.

7. Add other widgets as required.

FIGURE 22-4 A Simple Dialog with Input Method Attached

The default main() program includes a call to XtSetLanguageProc(), which initializes

the locale handling routines. If you are writing your own main() program, you must

insert a call to this routine if you are using any internationalization features. Add the

following line to the beginning of your main() routine:

XtSetLanguageProc ( (XtAppContext) 0, (XtLanguageProc) 0, (XtPointer)
0 );

Setting the Application Font Resource

When using international text in Sun WorkShop Visual the text will not appear

correctly in the dynamic display or generated application unless the appropriate

FontList resource is set for the language you are using.

A useful way to implement the correct FontList settings on an application-wide basis

is to use loose bindings to declare a FontList resource binding as in the following

example:

Note – The line breaks in the following example have been inserted for clarity - if

you are editing a resource file you must make sure that there are no line breaks,

otherwise the resource setting will be ignored.



Chapter 22 Internationalization 625

XApplication*FontList:

-misc-fixed-medium-r-normal-*-14-130-75-75-c-140-

jisx0208.1983-0;

-*-*-medium-r-normal-*-14-130-75-75-c-70-jisx0201.1976-0;

-misc-fixed-medium-r-normal-*-14-110-100-100

-c-70-iso8859-1:default

where XApplication is the class name of your application. This example sets some

Japanese fonts. The above example resource can be found in $VISUROOT/src/

examples/loose_bindings/ja_fontlist.res and can be loaded into your design via the

loose bindings dialog.

See “Loose Bindings” on page 86 for details on how to do this.

Using Eight-Bit Characters in Shell Titles

If you intend to use a character with the eighth bit set in the title string of a Shell

widget, you must make sure that the titleEncoding resource is set to “STRING”. You

can do this from within Sun WorkShop Visual by specifying a loose binding which

should look like this:

XApplication*titleEncoding:STRING

(where XApplication is the class name of your application.)

Or this:

*titleEncoding:STRING

depending on whether you wish the resource binding to apply to all applications (as

in the second example) or just your own application.

See “Loose Bindings” on page 86 for details on how to do this.

Alternatively, if you prefer to “hard code” the setting of this resource in your design,

you can set the pre-manage prelude for the main Shell as follows:

XtSetArg ( al[ac], XmNtitleEncoding, XA_STRING ); ac++;

See “Shell Pre-manage Prelude” on page 245 for details on adding a pre-manage

prelude to a Shell widget.



626 Sun WorkShop Visual User’s Guide • May 2000

Unsupported Locales

“Using an Input Method in Sun WorkShop Visual” on page 621 describes how you

can specify a locale using the LANG environment variable. Providing you are using

an appropriate version of Sun WorkShop Visual, you may then use the language of

the locale for the strings in the user interface you are designing. If you have set your

LANG environment variable to a locale which is not supported by your version of

Sun WorkShop Visual, a message is displayed on startup informing you that your

LANG setting is unsupported and that it is being coerced to “C”. This is the default

and is US English. If your Sun WorkShop Visual expects a Latin script1, it will

display and function correctly. The only area where there could be a problem is in

strings in the generated code. If the following are true, you will be able to add labels,

text strings etc. in the locale you specified:

■ The locale you specified for LANG uses a Latin character set

■ The appropriate font or fonts are available

■ The language of the specified locale does not require special processing (i.e. needs

an input method or does not display left to right)

If, however, any of the above is not true, you will probably not be able to enter or

display strings in the specified language.

1. The term “Latin script” here refers to the ISO Latin 1 character set.



627

CHAPTER 23

User-Defined Widgets

Introduction

Sun WorkShop Visual is pre-configured with the Motif widget set and can be

extended to support widgets from any other source in addition to the default set.

Widgets added to Sun WorkShop Visual are called user-defined widgets. They appear

in the Sun WorkShop Visual widget palette and users can create them, set their

resources and generate code for designs that include them.

Sun WorkShop Visual comes with a utility, visu_config, which helps you provide the

information Sun WorkShop Visual needs to support user-defined widgets. You

specify which widgets you want to use and provide information about any

nonstandard resource types defined by the widgets. visu_config generates three C

files that serve as a bridge between Sun WorkShop Visual and the user-defined

widgets.

After generating the visu_config files, you build a new version of Sun WorkShop

Visual from the following components:

■ The Sun WorkShop Visual object file, visu .o
■ Object files or archive libraries containing the added widgets

■ The code file generated by visu_config

■ The config file generated by visu_config

■ Bitmap files for widget icons (optional)

■ Pixmap files for widget icons (optional)

■ Handwritten code files containing any auxiliary functions (optional)

Icons are recommended but not required. Handwritten code is only required if you

want to provide customized popup dialogs, or if you have widgets with special

problems described in “Configuration Functions” on page 672.



628 Sun WorkShop Visual User’s Guide • May 2000

Using Pre-Configured Integration Kits

This chapter describes the use of visu_config. Integrating widgets into Sun

WorkShop Visual is a complicated process. visu_config makes this process easier but

is still a complex tool to use. However, Sun WorkShop Visual is distributed with pre-

configured integration kits for several widget sets. Look in the directory

user_widgets in your Sun WorkShop Visual release directory for some of the

supported widget integrations. Many more are available on request, so it is highly

likely that the set you are interested in already has an integration kit that you can

use. Contact your Sun WorkShop Visual supplier for details of the full set available.

Each integration kit is supplied with detailed information on how to use it. This is

contained in the READMEfile.

You probably only need to use visu_config if you are integrating a proprietary

widget set or you wish to construct a palette containing more than one widget set in

addition to the standard Motif set.

Requirements

User-defined widgets must build and run against the X11 Release 5 or Release 6 X

Toolkit Intrinsics. For each widget class you need the public header file and the

object file that implements the widget class. Both of these are provided by your

widget supplier. The object file may be in an archive library. You may also need the

private header file for the widget class.

You need access to the standard UNIX development tools, including the C compiler,

linker and make.

visu_config requires standard widget information such as the widget class

description. You should therefore have the widget documentation on hand. If your

widget has non-standard resource types, or if you want to supply customized popup

dialogs, you may also need to refer to the header files or widget source code to get

the required information. See “Getting Widget Information” on page 634.



Chapter 23 User-Defined Widgets 629

Generating UIL

Normally you would generate C or C++ for third party widgets. You can, however,

generate UIL. You may need to add extra information in order to tell Sun WorkShop

Visual how to do this. This is described in “Generating UIL” on page 679.

Generating Java Code

Sun WorkShop Visual generates Java code for user-defined widgets in your design

by using a specially configured resource file which provides a mapping from user

widget to Java component. All integration kits supplied with Sun WorkShop Visual

(see “Using Pre-Configured Integration Kits” on page 628) include this resource file.

The resource file is:

$VISUROOT/user_widgets/<USER_WIDGET_SET>/app-defaults/visu

where VISUROOT is your Sun WorkShop Visual installation directory and

<USER_WIDGET_SET> is the name of the widget set that you are using - for

example, XRT or Athena.

If you have created (or intend to create) your own integration, you can supply your

own resource file. There are four resources relevant to Java code generation:

visu*xw_<WidgetClassName>.javaClassName

visu*xw_<WidgetClassName>.java10ClassName

visu*xw_<WidgetClassName>.java11ClassName

visu*xw_<WidgetClassName>.javaSwingClassName

The following shows one example of this:

visu*xw_XrtStringField.javaClassName: TextArea

visu*xw_XrtStringField.java10ClassName: TextArea

visu*xw_XrtStringField.java11ClassName: TextArea

visu*xw_XrtStringField.javaSwingClassName: JTextArea

Sun WorkShop Visual uses “javaClassName” if no more specific Java resource is

found for the given version of Java being generated. In the example above, you do

not need to supply values for “java10ClassName” and “java11ClassName” because

they are the same as the default.



630 Sun WorkShop Visual User’s Guide • May 2000

If a widget cannot be found in the resource file, Sun WorkShop Visual will substitute

any container widget for the Java Panel class and will use the Java Canvas class for

any other type of widget. For more information on Java code generation, see

Chapter 10 ”Designing for Java“.

Generating MFC Code

Sun WorkShop Visual generates C++ and MFC code for user-defined widgets in

your design using exactly the same mechanism as for Java code generation

described in the section above. The following are recognised by Sun WorkShop

Visual to configure third party component C++ classing:

visu*xw_<WidgetClass>.cppClassName

visu*xw_<WidgetClass>.motifClassName

visu*xw_<WidgetClass>.motifMfcClassName

visu*xw_<WidgetClass>.mfcClassName

Here is an example:

visu*xw_XtXrtLabel.mfcClassName: CStatic

The cppClassName is the default if a particular flavor is not found in the file.

The following will generate class “MyClass” for all variants of C++ in the absence of

an MFC, MotifXP, or Motif specific information:

visu*xw_SomeWidgetClass.cppClassName: MyClass

And this will generate “AnotherClass” for all variants of C++ except pure MFC:

visu*xw_SomeWidgetClass.cppClassName: AnotherClass

visu*xw_SomeWidgetClass.mfcClassName: AnotherMfcClass

Caveats

Since Sun WorkShop Visual’s dynamic display works by creating actual instances of

the widget, any widget you build into Sun WorkShop Visual becomes part of the

tool. If the widget doesn’t function as expected, Sun WorkShop Visual may fail when

the user adds the widget to a design. Any memory leaks in the widget can affect Sun

WorkShop Visual and may cause a gradual degradation of performance or a core



Chapter 23 User-Defined Widgets 631

dump. Even widely-used widgets from standard vendors can have problems. You

should therefore test widgets thoroughly before adding them to Sun WorkShop

Visual.

Prerequisites

To configure Sun WorkShop Visual, you need some knowledge of C and an

understanding of common UNIX development tools such as make. You don’t have to

be an expert on X but you need some knowledge of X and the X Toolkit Intrinsics.

visu_config requires you to supply information about the widget, such as the widget

class pointer and symbolic constants representing resource types. For suggestions on

how to get the required information from the widget documentation or source code,

see “Getting Widget Information” on page 634.

How Sun WorkShop Visual Works

Before you start configuring a widget, it is helpful to understand how Sun

WorkShop Visual uses widgets in the dynamic display. This section describes some

aspects of how Sun WorkShop Visual works internally.

Creating Widgets

Sun WorkShop Visual builds its dynamic display with real widgets, not simulations.

It creates widgets by passing the widget class pointer to XtCreateWidget(). The

widget class pointer also gives access to information about the widget’s resources

and their types so that Sun WorkShop Visual can build a resource panel for the

widget.

The order in which widgets are created and managed in the dynamic display is

different from the typical order of operations in an application. When the user clicks

on an icon to add a widget to the hierarchy, Sun WorkShop Visual creates an

instance of the widget, realizes it and manages it before any resources are set. When

Sun WorkShop Visual reads a hierarchy from a file, however, the hierarchy is created

from the bottom up. Each widget is first created, its resources are set and finally it is

managed. In either case, create-only resources can’t be set ordinarily in the dynamic

display since Sun WorkShop Visual creates widgets before setting resources.



632 Sun WorkShop Visual User’s Guide • May 2000

Some widgets, such as the Athena Form widget, require resources to be set at

creation time or don’t behave well when managed without children. In these cases,

you can customize Sun WorkShop Visual’s procedure for adding the widget to the

hierarchy by specifying a Realize function in visu_config. (For more information, see

“Realize Function” on page 673.

Note – Neither of these issues affect the generated code. Sun WorkShop Visual

generates code that creates the hierarchy from the bottom up and sets all resources at

creation time.

Highlighting the Selected Widget

When the user selects a widget in the tree, Sun WorkShop Visual highlights that

widget’s icon in the tree. It also highlights the widget itself in the dynamic display

by swapping the widget’s foreground and background colors. Highlighting the

widget may cause problems if the widget has a create-only foreground resource. In

this case, you can disable foreground swapping on the Widget Edit Dialog, as

described in “Widget Attributes” on page 640.

Preventing Invalid Hierarchies

Sun WorkShop Visual prevents invalid hierarchies by disabling all palette icons for

widgets that are not valid children for the selected widget. Also, when a new widget

is added to the hierarchy, Sun WorkShop Visual doesn’t automatically select it if it

can’t have children.

For user-defined widgets, Sun WorkShop Visual looks at the widget’s superclasses to

determine valid hierarchies. You can also specify configuration functions to

customize a widget’s requirements for valid child and parent widgets. For more

information, see “Configuration Functions” on page 672.

Building the Resource Panel

Sun WorkShop Visual builds a resource panel for the widget based on resource

names and resource types in the widget class record. Resources inherited from a

known superclass, such as the Core widget or a Motif parent class, are left off the

resource panel and can be set on the resource panel for the superclass.



Chapter 23 User-Defined Widgets 633

Sun WorkShop Visual automatically assigns resources of standard types to

appropriate pages on the resource panel. They can however be explicitly assigned to

other pages if required. Most widget resources fall into one of the standard

categories; for a summary, see “Resources” on page 645.

When the resource panel is displayed, Sun WorkShop Visual uses XtGetValues() to

get the current values of all resources for the widget. All resources except

enumerations are converted to text strings and displayed in text fields on the

resource panel. The user can set the resource by editing a text string. In some cases,

such as fonts, colors and callbacks, the user can supply text indirectly through a

popup dialog. For resources that don’t already have a popup dialog in Sun

WorkShop Visual, you can supply a popup; see “Popups” on page 657.

Setting Resources

When the user applies a new resource value, Sun WorkShop Visual converts the text

string to a value and applies it to the widget with XtSetValues(). It then immediately

calls XtGetValues() to retrieve all resource values for the widget, converts the values

back to text and displays them in the resource panel. This procedure shows

immediately whether the toolkit accepted the new value and whether the new value

caused other resources to change.

A function called a resource converter is used to translate a text string to a resource

value and back. For standard resource types, the converter functions are built in and

you don’t have to do anything in visu_config. If your widget has a resource of a

non-standard type, visu_config lets you specify information about the converter

function. For details, see “Converters” on page 655. If you don’t provide this

information, the user can type a text string to set the resource in the generated code

or resource file but Sun WorkShop Visual can’t set it in the dynamic display because

it can’t convert the text string to a value.

For enumeration resources, Sun WorkShop Visual builds an option menu which, by

default, is placed on the “Settings” page of the resource panel. Sun WorkShop Visual

can handle Boolean enumeration resources for user-defined widgets. For other

enumerations, you must provide a list of valid values in visu_config so that Sun

WorkShop Visual can build an option menu. For details, see “Enumerations” on

page 650.

Saving Designs and Code Generation

Saving designs and parsing save files is straightforward. For resource settings, Sun

WorkShop Visual writes the resource name and the text representation of its value to

the .xd file. The resource name and value are saved as they appear on the resource

panel.



634 Sun WorkShop Visual User’s Guide • May 2000

When it generates code, Sun WorkShop Visual uses two versions of every resource

name. In the generated X resource file, resources are identified by a name such as

label. Sun WorkShop Visual gets resource names from the widget class record. In

generated code, resources are identified by a defined name such as XtNlabel. Sun

WorkShop Visual constructs the defined name by adding an XtN prefix to the

resource name. If your widget doesn’t follow this naming convention, visu_config

lets you specify a function to construct the defined name. For details, see

“Configuration Functions” on page 672.

For enumerations, Sun WorkShop Visual also uses two versions of each possible

value: a resource file symbol such as center and a code symbol such as XtJustifyCenter.
When you configure an enumeration, you must provide both versions of each value.

When Sun WorkShop Visual generates code for any widget class, it generates an

#include for that class’s public header file. visu_config lets you specify an #include file

for each user-defined widget class.

Getting Widget Information

To configure your widget, you may have to supply one or more variable names and

symbolic constants from the widget code. This section summarizes the information

you may have to provide. Most of the information you need should be available in

the documentation for the widget. If not, you can get it from the widget’s public and

private header file, from the widget source code (if available), or from your widget

supplier’s technical support service.

In the following paragraphs we mention naming conventions that are observed by

many widget suppliers. However, naming conventions are not invariable rules.

Always check the names in the documentation or source code.

The Widget Class Pointer

When you add a widget class in visu_config, you need to supply the widget class
pointer. The widget class pointer is the name of a pointer variable of type

WidgetClass. This pointer gives access to a structure containing information about the

widget class, including a list of resources and their types. Sun WorkShop Visual uses

this information to build a resource panel for the widget class. By convention,

widget class pointers have names of the form <classname>WidgetClass.



Chapter 23 User-Defined Widgets 635

If you cannot find the widget class pointer in the documentation, look in the public

header file for a line such as:

externalref WidgetClass myWidgetClass

or

extern WidgetClass myWidgetClass

In either case, the widget class pointer is myWidgetClass.

Resource Information

The resource name is a character string used to identify the resource in generated

X resource files and on the resource panel. Sun WorkShop Visual gets this name

directly from the widget class record and so you don’t need to supply it. This string

is usually a straightforward name without a prefix, such as label.

The defined name is a symbolic constant used to identify the resource name in source

code. By convention, the defined name has the form <Prefix>N<name>, where

<name> is the resource name. To find defined names, look in the widget

documentation, or look in the public header file for #define directives. For example,

the following lines from the Athena Form header file identify the defined names

XtNtop and XtNbottom:

#define XtNtop "top"

#define XtNbottom "bottom"

Non-Standard Resource Types

To configure resources of non-standard types, you need to know the resource type.
This is not a type such as unsigned char but a symbolic constant defined as a string by

which the widget class knows the resource type. By convention, resource types have

the form <Prefix>R<Type>. For non-standard resource types, especially

enumerations, <Type> may be the same as the resource name.

If the documentation for your widget gives a resource type as foo, look for a line like

the following in the public header file:

#define XtRFoo "foo"

In this example, you would enter XtRFoo whenever visu_config asks for a resource

type. The resource type can also be found in the source code for the widget. The

following structure defines a resource whose resource type is XtRFoo. Note that you

can also get the resource’s defined name, XtNfoo, from this structure.



636 Sun WorkShop Visual User’s Guide • May 2000

{

XtNfoo, XtCFoo, XtRFoo,

sizeof(foo), XtOffset( FooWidget, foo),

XtRImmediate, (XtPointer) NULL,

}

Non-Standard Enumerations

If your widget has non-standard enumeration resources, you need to specify a list of

possible values. In some cases you may have to read the source code to get the

names you need. For instructions, see “Enumerations” on page 650.

visu_config - the Main Dialog

Run visu_config:

visu_config

The main dialog shown in Figure 23-1 is displayed.

FIGURE 23-1 The Main visu_config Dialog



Chapter 23 User-Defined Widgets 637

Menu Commands

The visu_config File Menu has options to save and read files containing your

configuration data. By convention, these files have the suffix .xdc. Use “Open” to

open an existing widget specification file; “Read” to merge another file with the one

you are currently editing; “Save” and “Save As...” to save your file and “New” to

clear the editing area.

The Edit Menu is used to display the Stop List dialog which lets you remove

selected Motif widgets from the Sun WorkShop Visual palette. This is discussed in

“Motif Widgets Stop List” on page 666.

The Generate Menu contains options to generate the two code files needed to build

Sun WorkShop Visual with the added widgets. For information on generating code

from visu_config and building Sun WorkShop Visual, see “Generating and

Compiling Code” on page 667.

Families

The main dialog displays a list of families. Families are groups of widgets that are

displayed together in the widget palette. The list is empty when you start the

program. Figure 23-1 shows the dialog after loading the Athena.xdc file supplied with

Sun WorkShop Visual. We recommend that you open this file and inspect it as you

read.

You can organize user-defined widgets into families in any way. Grouping widgets

into families has two purposes. First, it keeps the Sun WorkShop Visual widget

palette to a reasonable size. At any given time, Sun WorkShop Visual displays the

icons for the default Motif widgets plus one user-defined widget family. An option

menu lets the user switch from one family to another as with the pages of a resource

panel. Second, grouping widgets into families also makes it easy to generate

versions of Sun WorkShop Visual with different sets of families. At code generation

time, you can select any group of families from your list. This lets you customize

Sun WorkShop Visual to support users with different needs and skill levels.

Editing the Family List

To add a new family to the list, type a name for the family in the “Selection” field,

then click on “Add”. The family can have any name you choose. It is used to identify

the family in visu_config and in the option menu in the Sun WorkShop Visual

widget palette.



638 Sun WorkShop Visual User’s Guide • May 2000

To delete a family, select it in the list and click on “Delete”. To reorder the list, select

a family and use the arrow buttons to move it up and down. The order of the list

determines the order of the items in the option menu in the Sun WorkShop Visual

widget palette.

Suggestions for Organizing Families

You can include the same widget class in more than one family. For example, in

Athena.xdc, the family named “Athena” contains all the Athena widgets and each of

the two smaller families, “Composites” and “Primitives”, contains a subset of the

Athena group. When you generate code from visu_config, you can decide how you

want the widget palette to appear. You can either use the large family to display all

the Athena widgets on the palette at the same time, or use either of the two smaller

families to display a subset of the Athena widgets.

You might want to include a frequently-used widget in more than one family so that

the user has access to it at all times regardless of what page of the palette is

displayed. To do this, however, you have to enter and maintain two separate copies

of the widget configuration information and you should test the icon separately on

each page of the palette.

When you generate code from visu_config, you can select any group of families from

the currently open file but you can’t select families from other files. To configure Sun

WorkShop Visual with widget families from multiple .xdc files, use the “Read”

option to merge the files before generating code.

Adding and Editing Widgets In a Family

To add or configure widgets in any family, select the family and then click on “Edit”

to display the Family Edit dialog. The Family Edit Dialog lets you:

■ Add or delete a widget class in the selected family

■ Edit the specification for a widget class in the selected family

■ Specify instructions for handling non-standard resource types

■ Specify a popup dialog for any resource

The Family Edit dialog has several pages, which you can select from the View Menu.

The name of the currently selected family is displayed in the dialog’s title bar.

For details about the Family Edit dialog, see the following sections.



Chapter 23 User-Defined Widgets 639

Widget Classes

To display a list of widget classes in this family, select “Widgets” from the View

Menu. Figure 23-2 shows the “Widgets” page for the Athena Composites family.

FIGURE 23-2 The “Widgets” Page of the Family Edit Dialog

Adding a Widget Class

To add a new widget class to the family, enter the widget class pointer in the

“Selection” field and click on “Add”. To complete the process, specify attributes for

the class as described in the Widget Attributes section below.

Editing the Widget Class List

To delete a widget class from the family, select it in the list and click on “Delete”. To

reorder the list, select an item and use the arrow buttons to move it up or down. The

order of the widget class list determines the order of widgets in the palette.



640 Sun WorkShop Visual User’s Guide • May 2000

Widget Attributes

To specify attributes of a widget class, select the widget class in the Family Edit

Dialog and click on “Edit”. This displays the Widget Edit Dialog, shown in Figure

23-3. The title bar displays the name of the widget class you are editing.

This section discusses the attributes set on the left side of the Widget Edit dialog.

The right side is used to assign resources to existing or new pages, to specify custom

popup dialogs for widget resources, and to override the default resource memory

management. For details, see “Resources” on page 645.

Applying Changes

When you finish entering widget attributes, click on “Apply” to set the new values.

“Undo” reverts to the last applied changes.

FIGURE 23-3 The Widget Edit Dialog with Attributes for Athena Form



Chapter 23 User-Defined Widgets 641

Include File

In the “Include file” field specify the name of the public header file for the widget

class. Enter the file name (usually relative to /usr/include) without quotes or angle

brackets. This file is included in two places: in the code file generated by visu_config

and in application code generated by Sun WorkShop Visual.

Icons

An icon is an X pixmap or bitmap that represents a user-defined widget in the Sun

WorkShop Visual widget palette and design hierarchy. For each widget, you can

specify both a pixmap and a bitmap. Icon pixmaps are stored in separate files and

specified via an entry in the Sun WorkShop Visual resource file.

Icon bitmaps are built into Sun WorkShop Visual and are used only if the pixmap

resource is not set or the pixmap file cannot be found. If you don’t provide an icon

in either bitmap or pixmap form, or the specified icon cannot be found, Sun

WorkShop Visual displays a button with the widget class name in the widget palette

and a crossed square icon in the hierarchy.

To reduce color usage it is recommended that you use the same color palette that

Sun WorkShop Visual uses for its icons. Read the following file into the Pixmap

editor by selecting “Read palette” from the “Palette” menu:

$VISUROOT/lib/palettes/icons.xpm

where VISUROOT is the install directory of your Sun WorkShop Visual. See “Read

Palette” on page 155 for more information on reading palettes into the Pixmap

editor.

Pixmap Resource

Use the “Pixmap resource” field to specify a name for the pixmap resource. After

building Sun WorkShop Visual, you can set this resource to specify the pixmap file.

For example, if you specify myWidgetPixmap as the pixmap resource for a user-

defined widget, you can specify a pixmap in the Sun WorkShop Visual resource file

using the following entry:

visu.myWidgetPixmap: /usr/local/newwidget.xpm

This specifies /usr/local/newwidget.xpm as the location of the XPM file. You can use

either an absolute or a relative pathname. For details on how to use the pixmap

resource, see “Palette Icons” on page 703.



642 Sun WorkShop Visual User’s Guide • May 2000

Bitmap

To specify a built-in icon bitmap, you must provide two items of information: the

name of the bitmap and the name of the corresponding bitmap file. To specify an

icon for the large-screen (workstation) version of Sun WorkShop Visual, use the

“Large icon” and “Large icon file” fields. For the small-screen (VGA) version, use the

“Small icon” and “Small icon file” fields. You can provide an icon for either version

of Sun WorkShop Visual, both, or neither.

The large-screen icon must be a 32 by 32 pixel X bitmap and the small-screen icon

must be 20 by 20 pixels. You can create icon bitmaps using a tool such as the

X bitmap utility. Pixmaps cannot be used for this purpose.

Enter the bitmap name in the “Large icon” or “Small icon” field. The bitmap name is

defined in the first line of the bitmap file, as shown below:

#define <bitmap_name>_width 32

Enter the icon file name in the “Large icon file” or “Small icon file” field without

quotes or angle brackets. Because this file is included when you build Sun

WorkShop Visual, your Sun WorkShop Visual makefile must reference (-I) the

directory where it is stored. This file does not have to be available to end users.

Help

These attributes let you specify on-line help that is displayed when the user invokes

help for the widget on the palette or from the widget’s resource panel. For each help

item, you specify a document (without any suffix) and a tag if the help for this

widget is contained within a larger document. The Sun WorkShop Visual help

system searches the path list specified by the visu.helpDir resource to locate the

appropriate file. The file name must have a “.html” suffix. The tag refers to an

HTML hypertext anchor within the document.

Configuration Functions

There are four fields for specifying configuration functions: a Defined Name

function, a Can Add Child function, an Appropriate Parent function and a Realize

function. These functions can be used to fine-tune the way Sun WorkShop Visual

handles the widget in the dynamic display. If your widget uses a configuration

function, type the name of the function in the corresponding text field.

The configuration functions perform the following tasks:

■ Defined Name function – Translates resource names to appropriate defined names;

required only if the widget doesn’t follow standard Motif naming conventions



Chapter 23 User-Defined Widgets 643

■ Can Add Child function – Determines whether you can add a widget of another

class as a child of this widget

■ Appropriate Parent function – Determines whether a widget of another class is an

appropriate parent for this widget

■ Realize function – Adds initialization steps when the widget is created in the

dynamic display; required only if the widget cannot be created and managed

satisfactorily without children, or requires resources to be set at creation time

The Can Add Child and Appropriate Parent functions are required only for widgets

that have special requirements for valid hierarchies. Often these functions are not

needed. If you do not supply them, Sun WorkShop Visual uses the rules for the first

known ancestor of the widget class. For example, if a user-defined widget is derived

from the Primitive class, Sun WorkShop Visual uses the rules for the Primitive class

and does not let the user add children to the widget.

For full definitions, synopses and examples of configuration functions, see

“Configuration Functions” on page 672. Note that many widgets do not require

configuration functions.

The Miscellaneous Toggle Buttons

At the bottom of the dialog, there are a number of toggle buttons for turning on or

off various options relating to the use of the widget. These are detailed in the

following sub-sections. Note that the toggles in the “Resources” panel of the Widget

Edit dialog are described separately in “Resources” on page 645.

Generate Class Initialization

When you create a widget for the first time, it usually does some initialization

associated with the specific class of the widget (as opposed to the given widget

instance).

With some widget sets, leaving this initialization until first create of a given widget

may cause a problem; it is often better to explicitly initialize the widget class by

hand before creating any of the widgets in the given widget set. This is the case

where you have some implicit dependencies between the widgets. For example, you

may have a Table widget which can have a Table Label widget as a child. However,

some code in the Table may assume that the Label class has been initialized. In such

a case, you would need to pre-initialize the Label class before you use a Table, even

if you are not going to attach a Label into the Table.

If this toggle is set, Sun WorkShop Visual will generate the following line into your

main module:

XtInitializeWidgetClass(widget_class)



644 Sun WorkShop Visual User’s Guide • May 2000

before calling any creation code.

This toggle is set by default, since it does not cause a problem to pre-initialize the

class, but, for some widgets at least, it can cause problems if you do not.

Disable Find Widget

Unset this toggle if you wish to prevent the user from using the Fast Find facility on

this widget. You may wish to turn off this option if Fast Find does not interact well

with your widget in the dynamic display.

Disable Foreground Swapping

Normally, Sun WorkShop Visual highlights the currently selected widget in the

dynamic display. To disable highlighting for this widget class, turn on the “Disable

Foreground Swapping” toggle. Do this only if the widget class has a foreground

resource that cannot be set after widget creation time. This is required because Sun

WorkShop Visual’s highlighting procedure can cause problems with such widgets. In

all other cases, leave the toggle off.

Default Means Dont Free

This allows you to set the default way in which Sun WorkShop Visual handles the

memory management of XmString and String (char *) widget resources. This topic is

discussed in more detail, including the use of this toggle, in “Resource Memory

Management” on page 664.

Can Create the Widget

When the “Can Create the Widget” toggle is on, users can build the widget directly

into hierarchies. Leave this toggle on if you want the widget’s icon to appear in the

palette.

Turn the toggle off to make the widget class an invisible superclass like the Core

widget. If you turn the toggle off, the widget doesn’t appear in the widget palette

and users can’t create instances of it directly. Sun WorkShop Visual creates a separate

resource panel for the class. The resource panel can be accessed by any derived

widget classes.



Chapter 23 User-Defined Widgets 645

Can Manage the Widget

Not all widgets are GUI components. For example, the various Data Object classes in

the INT ChartObject widget set are for representing components of a graph (Circles,

Rectangles, Axes, etc.) in an MVC (Model View Controller) model. In this case, you

would not render these objects directly but let the graph parent handle it all

internally.

Sun WorkShop Visual does have some internal rules over what it can and cannot

manage: it knows that managing anything that is an ObjectClass or derivative (as

opposed to a WidgetClass) is forbidden by the toolkit - it will corrupt the

ObjectClass if you do so. However, some widget sets have Data Objects derived via

WidgetClass, even though these are not meant to be managed. Sun WorkShop Visual

cannot be aware of these exceptions; its rules about what to manage would be

wrong, both internally and in the generated code. Use this toggle, therefore, in those

rare occasions when you need to stop Sun WorkShop Visual managing the given

component.

Can Edit as Abstract Child

This refers to visu’s ability to display, configure and generate code for the abstract

children of composite widgets. The Motif ScrolledWindow widget is an example of a

composite widget - the scrollbars are the abstract children. Turn this toggle off if

your widget is a composite and you do not wish users to have any access to the

abstract children. More information on accessing the abstract children of third party

composite widgets in Sun WorkShop Visual is given in “Accessing Abstract

Children” on page 669.

Resources

By default, when Sun WorkShop Visual creates the resource dialog for a widget, it

gets the name and type of the resource directly from the widget code and builds a

resource panel. It assigns each resource to a page of the resource panel (based on the

resource type) and assigns a popup dialog for certain types. For example, resources

of type XtRPixel are put on the Display page of the resource panel, with a button to

pop up the Sun WorkShop Visual color editor.

You do not have to do anything to configure a resource unless you want to change

this default behavior or unless the resource is not of a type listed in the table of

standard types shown below.



646 Sun WorkShop Visual User’s Guide • May 2000

Default Handling of Standard Resource Types

Resources of standard types are assigned to pages of the resource panel as shown in

the following table:

Changing Widget Attributes

The right side of the Widget Edit dialog lets you do the following things for

individual widget resources:

■ Inhibit the resource from appearing on the resource panel

■ Assign the resource to a selected page of the resource panel

■ Specify a popup dialog for setting the resource

TABLE 23-1 Sun WorkShop Visual Standard Resource Types

Resource Type Symbol Value Page

XmRDimension “Dimension” Margins

XmRFontStruct “FontStruct” Display

XmRHorizontalDimension “HorizontalDimension” Margins

XmRInt “Int” Margins

XmRPixel “Pixel” Display

XmRPixmap “Pixmap” Display

XmRPosition “Position” Margins

XmRPrimForegroundPixmap “PrimForegroundPixmap” Display

XmRShort “Short” Margins

XmRString “String” Display

XmRVerticalDimension “VerticalDimension” Margins

XmRWidget “Widget” Display

XmRXmString “XmString” Display

XtRBoolean “Boolean” Settings

XtRCallback “Callback” Callbacks

XtRUnsignedChar “UnsignedChar” Settings

XmRFontList “FontList” Display

XtRFontStruct “FontStruct” Settings

XmRXmStringTable “XmStringTable” Display



Chapter 23 User-Defined Widgets 647

■ Control the memory management of the resource. This is described in “Resource

Memory Management” on page 664.

■ Control the “CSG” (Create/Set/Get) accessibility of a widget’s resource.

To customize the attributes of a resource, type the resource name in the Resource

field. This should be the defined name, such as XtNcursorName.

To remove the resource from the resource panel, turn off the “Visible” toggle.

To specify a different page of the resource panel, click on the “Page” button to

display the current list of pages. The list is preset with the default Sun WorkShop

Visual pages. To add a page, type the name of the new page in the “Page name” field

and then click on “Update”. To assign the current resource to a page, select the page

in the list and then click on “Apply”.

visu_config automatically invokes the Sun WorkShop Visual predefined popups for

some types of resources, as shown in the following table. You don’t have to specify a

popup explicitly to use these popups for resources of these types:

You can specify a popup dialog for any resource. You can select one of the

predefined popups or create your own. For more information, see “Popups” on

page 657.

XmStringTable Counter Resource Text Field

Some resources come in pairs. When an array of XmStrings is passed to a Motif list,

you also have to say how many strings are in the array. The following code, for

example, causes your application to core dump:

XmString *xmstrings = ... ;

XtVaSetValues(list, XmNitems, xmstrings, NULL) ;

TABLE 23-2 Standard Resource Popups

Resource Type Popup

XmRFontList Font selector

XtRFontStruct Font selector

XmRPixel Color selector

XmRPixmap Pixmap editor

XmRPrimForegroundPixmap Pixmap editor

XmRXmString Compound String editor

XtRCallback Callback dialog



648 Sun WorkShop Visual User’s Guide • May 2000

The array resource has no notion of an end-of-array marker, such as a null

terminated list. You have to explicitly give the count, as in the following example:

int n = ... ;

XmString *xmstrings = ... ;

XtVaSetValues(list, XmNitems, xmstrings, XmNitemCount, n, NULL) ;

The “XmStringTable Counter resource” text field is for pairing together the array

and array counter resources, so that X-Designer can use them together internally and

also generate the right code with both resources used at once.

This is for both XmString array resources and for char ** array resources which each

need a paired counter resource.

Create/Set/Get

There are three toggles controlling the accessibility of a widget’s resources. The

toggles are labelled “Create”, “Set” and “Get”. These relate directly to “CSG” in the

Motif documentation. Unsetting the “Set” toggle will make the resource read only in

Sun WorkShop Visual and in the code generated by Sun WorkShop Visual. Unsetting

the “Get” toggle means that you will not, in your code, be able to fetch the value of

the resource. Unsetting “Create” means that you will have to create the resource

yourself.

Documentation for third party widgets is often unreliable for “CSG” (Create Set

Get), therefore the feature can be disabled by setting the resource:

visu.xwResourceAccessControl: false

Nonstandard Resource Types

By default, resources of types not in the table of Sun WorkShop Visual standard

resource types are placed on the “Miscellaneous” page of the resource panel. The

user can set them by typing strings into text fields. The strings are generated into the

code exactly as the user types them and resource settings take effect when the

generated code is compiled.

This default behavior has some disadvantages. Sun WorkShop Visual doesn’t

recognize the resource type, so it cannot set the resource in the dynamic display.

Enumeration values must be spelled and capitalized correctly (including any prefix)

or the generated code will not compile.

visu_config offers several ways to refine the way Sun WorkShop Visual handles

nonstandard resource types:



Chapter 23 User-Defined Widgets 649

■ You can specify an alias for a resource whose type behaves like one of the

standard types. For example, if your resource is of a non-standard type that

works the same as XmRInt, you can instruct Sun WorkShop Visual to treat it as

XmRInt

■ You can configure Sun WorkShop Visual to handle enumerations of types other

than XtRBoolean. After you do this, the enumeration resource is placed on the

“Settings” page of the resource panel from where the user can set it with an

option menu. Misspellings are prevented and the resource is active in the

dynamic display

■ You can specify converters for resources of other types. The converter lets Sun

WorkShop Visual set the resource in the dynamic display

■ You can specify a popup dialog for any resource. For resources with popup dialogs,

Sun WorkShop Visual creates a PushButton on the resource panel to invoke the

dialog

The following sections give detailed instructions for these procedures.

Aliases

If your widget uses a resource type that is not in the standard list but has the same

semantics as a standard type, you can tell visu_config that your type is an alias for

the standard type. For example, if you define a type XtRDegrees as an integer from 0

to 359, you can set up an alias to specify that XtRDegrees is equivalent to XmRShort.
The user can then set any XtRDegrees resource on the “Margins” page of the resource

panel and see the results immediately in the dynamic display.

Requirements

The new resource type must have the same semantics as the standard type.

Specifically, the process by which a text string is converted to a resource value and

back again must be the same for both types.

Specifying an Alias

On the Family Edit Dialog, pull down the View Menu and select “Aliases” to display

the dialog shown in Figure 23-4.



650 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 23-4 The “Aliases” Page of the Family Edit Dialog

To specify an alias, enter the non-standard resource type in the “Selection” field and

the name of the corresponding standard in the “Equivalent” field. Click on “Apply”

to register the alias.

Enumerations

Enumeration resources are resources with a fixed set of possible values. You can

determine if a widget has enumeration resources by inspecting the documentation. If

the documentation lists all possible values for a resource, it is an enumeration. Note

that enumerations of type XtRBoolean are handled automatically and don’t require

the configuration procedure described in this section.

By default, Sun WorkShop Visual treats all other enumerations as it treats any

unknown resource type. It places them on the “Miscellaneous” page of the resource

panel and the user can set them by typing a new value in a text field. The setting is

passed to the generated code but has no effect in the dynamic display.

Use the instructions in this section to give Sun WorkShop Visual the information it

needs to build an option menu for the resource on the “Settings” page of the

resource panel and set the resource in the dynamic display.



Chapter 23 User-Defined Widgets 651

Configuring an Enumeration

Select “Enumerations” from the View Menu in the Family Edit Dialog to display the

“Enumerations” page. Figure 23-5 shows the list of enumerations for the Athena

Primitives family.

FIGURE 23-5 The “Enumerations” Page of the Family Edit Dialog

To add a new enumeration, enter a name in the “Selection” field and click on “Add”.

This name is only for your convenience in visu_config. You can use the resource

name from the widget documentation or any other string that helps you identify the

resource. Since all enumerations for the family are kept together in one list, it may be

useful to include the widget name as well as the resource name.

Configuring Enumeration Values

To complete the process, you need to provide the following information about the

enumeration resource:

■ The resource type

■ A list of possible values

■ The default value

■ The code symbol for each value

■ The resource file symbol for each value



652 Sun WorkShop Visual User’s Guide • May 2000

Suggestions for getting the code symbol and resource file symbol are given at the

end of this section. To configure an enumeration, select it in the list of enumerations

and click on “Edit”. This displays the Enumerations Entry Dialog, shown in Figure

23-6. The title bar displays the name of the enumeration.

FIGURE 23-6 The Enumerations Entry Dialog

Specify the resource type and configure each value as described below. When you

finish, click on “Apply” to set the new values.

Specifying the Type

Enter the resource type in the “Type” field.

Specifying Values

To get a list of values for an enumeration, look in the widget documentation or the

public header file. Make an entry in the “Entries” list for each possible value. Entries

in the list are only used in the option menu on the resource panel and can be any

names you want. Sun WorkShop Visual uses names that are meaningful to the user,

such as Horizontal rather than XmHORIZONTAL.



Chapter 23 User-Defined Widgets 653

For each value, type the name in the “Selection” field and click on “Add”. Note that

omitting a value isn’t fatal but the user won’t be able to set that value.

Configuring Values

For each value, you must specify the code symbol and the resource file symbol in the

Enumerations Entry dialog. The code symbol is a symbolic constant that denotes the

value in generated code. The resource file symbol is a string that denotes the value

in resource files.

To find the code symbol, look at the list of values in the widget documentation or

the widget source code. Type the code symbol in the “Code symbol” field.

Type the resource file symbol for the value in the “Resource file symbol” field. Often,

the resource file symbol is the code symbol, converted to lower case and stripped of

any prefix, but this is not an invariable rule. For example, the resource file symbol

for XtJustifyCenter is center.

The resource file symbol is not always listed in widget documentation. If it isn’t, you

may be able to get it from an example resource file or from the widget supplier’s

technical support service. If you have source code for the resource converter, you can

get the resource file symbol from the code, as described in “Getting the Resource File

Symbol” on page 654.

Specifying the Default Value

The first entry in the list of values on the “Enumerations” page is reserved for the

default value. This entry is used to indicate a resource that is not set explicitly. The

option menu should also contain an entry for the same value set explicitly. By

convention, the default value is distinguished by putting its name in parentheses, as

shown in the following list:

(Center)

Center

Left

Right

Specify the same code and resource symbols as for the corresponding explicit value.

Note that Sun WorkShop Visual builds one option menu for the each enumeration

type. If your widget has multiple resources of the same enumeration type, they share

an option menu. If the resources have different default values, a suggested approach

is to enter a generic default value, (Default), on the option menu.



654 Sun WorkShop Visual User’s Guide • May 2000

Enter code and resource symbols for any one of the possible default values. This

does not result in errors in the generated code or when widgets are initially created

in the dynamic display. The dynamic display may be incorrect if the user explicitly

sets this resource and then explicitly requests the default value. However, any such

problem disappears after the widget is reset.

Specifying Order of Entries

The order of entries in the list on the “Enumerations” page controls the order in

which they appear in the option menu on the resource panel. Entries can be listed in

any order as long as the default value is listed first. To move an entry to a different

position, select it in the list and use the arrow buttons to move it up or down.

Getting the Resource File Symbol

This section explains how to get the resource file symbol you need to enter on the

Enumerations Entry Dialog from the resource converter code for the widget. The

resource converter is a function used to convert a string read from the resource file

to the corresponding value. A simple converter may contain fragments like this:

if (StringsAreEqual (in_str, "vertical"))

i = XmVERTICAL;

else if (StringsAreEqual (in_str, "horizontal"))

i = XmHORIZONTAL;

In this example, the string “horizontal” is converted to the value XmHORIZONTAL
and “vertical” is converted to XmVERTICAL. horizontal and vertical are the resource

file symbols; XmHORIZONTAL and XmVERTICAL are the code symbols.

You may find it done more indirectly, as shown in the following code:

if (!haveQuarks) {

XtQEhorizontal = XrmStringToQuark(XtEhorizontal);

XtQEvertical = XrmStringToQuark(XtEvertical);

haveQuarks = 1;

}

XmuCopyISOLatin1Lowered(lowerName, (char *)fromVal->addr);

q = XrmStringToQuark(lowerName);

if (q == XtQEhorizontal) {

orient = XtorientHorizontal;

done(&orient, XtOrientation);



Chapter 23 User-Defined Widgets 655

return;

}

if (q == XtQEvertical) {

orient = XtorientVertical;

done(&orient, XtOrientation);

return;

}

In this code, the resource file symbols are represented by the symbolic constants

XtEhorizontal and XtEvertical. To get the resource file symbols, horizontal and vertical,
examine the related header files for lines such as:

#define XtEhorizontal "horizontal"

#define XtEvertical "vertical"

The code file symbols, XtorientHorizontal and XtorientVertical, are the end result of

the conversion. Note that in this example there is an intermediate step: the strings

are converted to quarks and the quarks are used for the comparison. The mechanics

of the conversion procedure do not affect visu_config.

Converters

If your user-defined widget has resources of non-standard types other than

enumerations, Sun WorkShop Visual places them on the “Miscellaneous” page of the

resource panel by default. The resources can be allocated to other pages from the

Widget Edit Dialog. The user can set these resources by typing a string into a text

field. By default, the string is generated into the code or resource file but Sun

WorkShop Visual doesn’t set it in the dynamic display. To make the resource work in

the dynamic display, you can configure Sun WorkShop Visual with a converter
function for this resource. The converter function is a function that converts a text

string to a resource value.

To configure the converter, select “Converters” from the View Menu. This displays

the page shown in Figure 23-7. The “Entries” list contains a list of resource types in

this family for which converters have been specified.



656 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 23-7 The “Converters” Page of the Family Edit Dialog

Resource Type

Enter the resource type in the “Selection” field and click on “Add”.

Converters Added Internally

Many widgets add their own converters internally when the class is initialized. If

this is the case, all you have to do is add the resource type to the list on the

“Converters” page. Adding the resource type to the list informs Sun WorkShop

Visual that the converter is available; otherwise Sun WorkShop Visual doesn’t

attempt to set the resource in the dynamic display.

To find out whether the widget class adds its own converter, look in the widget

documentation or look for a call to XtSetTypeConverter() in the code for the widget’s

Class Initialize method. If the converter is not added internally or if you are in

doubt, instruct Sun WorkShop Visual to add the converter explicitly, as described

below.



Chapter 23 User-Defined Widgets 657

Converters Added Explicitly

If the widget doesn’t add converters internally, you can instruct Sun WorkShop

Visual to add them explicitly. To do this, specify the name of the converter function

in the “Converter” box. The converter must be a function of type XtTypeConverter.
Toggles are provided to add the converter explicitly either in Sun WorkShop Visual

(for use in the dynamic display), in the generated code, or in both. In general, if you

have to add the converter explicitly, both toggles should be on.

Popup Dialog

The “Popup” button lets you specify a popup dialog to be used for setting all

resources of this type. For details, see the Popups section below.

Popups

Resource popups are dialogs used to set a resource, such as Sun WorkShop Visual’s

color and font selectors. For resources that have popups, Sun WorkShop Visual

creates a button on the resource panel to invoke the popup, in addition to the usual

text field. Figure 23-8 shows popup buttons on the Sun WorkShop Visual Core

resource panel.

FIGURE 23-8 Popup Buttons on Core Resource Panel

Popups for Individual Resources

You can specify a popup dialog for any individual resource. To do this, use the right

side of the Widget Edit Dialog, shown in Figure 23-9. Select the name of the resource

in the list. If you haven’t yet added the resource to the list, enter the defined name of

the resource, such as XtNresourceName, in the “Resource” field and click on

“Update”.

Text
fields

Buttons to
invoke
popups



658 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 23-9 Popup Portion of Widget Edit Dialog

This dialog uses resource names and not resource types. Therefore, you can specify

different popups for different resources of the same type. For example, if you specify

a popup dialog for a specific resource of type XmRInt, that popup is not displayed

for other resources of that type.

After you enter the resource name, click on the “Popup” button to display the

Popups Dialog. Select a popup using the instructions in “The Popups Dialog” on

page 659 section below.

Popups for Resource Types

If you specify a converter for a resource type, you can specify a popup dialog for

that type. To do this, click on “Popups” on the “Converters” page of the Family Edit

dialog. This displays the Popups Dialog. Select a popup using the instructions in the

following section.



Chapter 23 User-Defined Widgets 659

The Popups Dialog

The Popups Dialog is shown in Figure 23-10.

FIGURE 23-10 The Popups Dialog

The Popups Dialog displays the current list of popups. The list is preset with the

built-in Sun WorkShop Visual popup creation functions:

To apply an existing popup to the currently selected individual resource or converter

type, select the popup creations function in the list and click on “Apply”. Note that

all popup dialogs return the resource value in the form of a string such as “red” or

“<big_font>”. Therefore they work for resources that are declared as strings but are

used to specify fonts, colors, or filenames.

TABLE 23-3 Built-In Popups

Creation Function Popup

xd_colour_dialog_create Color selector

xd_font_dialog_create Font selector

xd_fsb_dialog_create File selection dialog

xd_pixmap_dialog_create Pixmap editor

xd_string_dialog_create Compound String editor



660 Sun WorkShop Visual User’s Guide • May 2000

Custom Popup Dialogs

You can create your own popup dialog, add it to the list and apply it to any resource

or converter type. Three functions are required for each popup dialog: a create

function, an initialize function and an update function. Enter the name of each

function in the appropriate text field and then click on “Update” to add the popup

to the list.

Code Requirements

The popup functions are invoked at different points in Sun WorkShop Visual, as

shown below:

Add callbacks on widgets in your popup dialog to furnish hooks for additional

functionality such as setting the new value, editing the value, accessing help and

popping down the dialog. Your dialog should have at least the following standard

callbacks:

The Text or TextField widget on the resource panel (called the source text widget) is

used to pass information from the dialog to the resource panel. When the user sets a

value on the popup dialog, the value should be converted to text and set into the

source text widget. The user can then click on “Apply” on the resource panel to set

the value in the dynamic display, just as if the text had been typed by hand.

You can build your dialog in Sun WorkShop Visual or code it by hand. The example

at the end of this section shows a popup dialog that was built in Sun WorkShop

Visual.

TABLE 23-4

Function Called

create function When the dialog is first popped up.

initialize function Each time the user clicks on the resource button.

update function Each time a new widget is selected.

TABLE 23-5

Callback Functionality

Apply callback Sets new resource value in source text widget.

Close callback Pops down the dialog by unmanaging it.



Chapter 23 User-Defined Widgets 661

Create Function

The create function is called the first time the user clicks on the resource button to

pop up the dialog. This function should create the widget hierarchy for the dialog.

void popup_create ( Widget parent )

The parent parameter is the Application Shell widget for Sun WorkShop Visual, to be

used as the parent widget for the dialog. This parameter is required to call functions

such as XmCreateDialogShell(). You can build popup dialogs in Sun WorkShop Visual

and use Sun WorkShop Visual’s generated creation procedure as the create function,

or write a create function that calls it. In this case, pass parent on to the function

generated by Sun WorkShop Visual.

Note that the initialize function is called immediately after the create function and so

you don’t have to manage the widgets if you do it in the initialize function.

Initialize Function

The initialize function is called every time the user clicks on the resource button to

pop up the dialog. The first time the dialog is invoked, the initialize function is

called after the create function. The function should make the dialog visible by

managing it and initialize any fields in it. The initialize function is passed the source

text widget, the currently selected widget and the resource name.

void popup_initialize( Widget source_text, Widget current, char
*resource_name)

The source_text parameter is the source text widget on the resource panel. This

widget can be used to obtain the resource value currently displayed on the resource

panel. Since the source text widget is used to pass back the new value from the

dialog, the initialize function should also save the source text widget in a static

variable so that it is available later.

current represents the currently selected widget. The initialize function should check

whether the currently selected widget has the expected resource because the user

can invoke the popup dialog from the resource panel after selecting a widget of a

different type. Note that current is NULL if the user has deleted all widgets in the

hierarchy.

resource_name contains the resource name (a string such as “label”), not the defined

name. This parameter is especially useful when you use the same popup to set more

than one resource.



662 Sun WorkShop Visual User’s Guide • May 2000

Update Function

The update function is called for every popup dialog each time the selection changes

in the widget hierarchy.

void popup_update( Widget current )

current represents the newly selected widget. The update function should make the

“Apply” button insensitive if the newly selected widget is of a different class, or if

current is NULL. If you use the same dialog to set multiple resources, the safest

approach is to make the “Apply” button insensitive in all cases. The user then has to

click on the resource button again in order to use the popup. This extra step invokes

the initialize function and ensures that the intended resource is set.

Popup Example

This example shows a simple resource popup consisting of a slider that is used to

select an integer value. When the user clicks on “Apply” in the popup, the slider’s

value is converted to a text string and placed into the text widget in the resource

panel.

The dialog itself was built in Sun WorkShop Visual. The Shell for the dialog was

designated a Data Structure resulting in the structure shown below. Named widgets

in the dialog are easy to access through the structure pointer foo_dialog. For example,

foo_dialog->scale accesses the Scale widget.

typedef struct foo_dialog_s {

Widget foo_dialog;

Widget form;

Widget scale;

Widget apply;

Widget close;

} foo_dialog_t, *foo_dialog_p;

static foo_dialog_p foo_dialog = (foo_dialog_p) NULL;

The following function is generated to create the Shell and all its children. The body

of the generated function is omitted.

foo_dialog_p create_foo_dialog (Widget parent)

{

/* Sun WorkShop Visual generated code to create the dialog omitted here.*/

}



Chapter 23 User-Defined Widgets 663

In the module prelude a static variable is created to hold the source text widget. The

initialize function provides the source text widget.

static Widget source_text;

The dialog has an “Apply” button and a “Close” button, each with an Activate

callback. The “Apply” button invokes the callback function shown below. This

callback function gets the current value of the Scale, converts it to a text string and

sets it into the source text widget. Note that this doesn’t set the resource; the user

must still click on “Apply” on the resource panel.

static void

foo_do_apply (Widget w, XtPointer client_data, XtPointer call_data )

{

int i;

char buf[52];

XmScaleGetValue ( foo_dialog->scale, &i );

sprintf ( buf, “%d”, i );

XmTextSetString ( source_text, buf );

}

The dialog also has a “Close” button. The Activate callback function on this button

simply unmanages the child of the dialog’s Shell widget.

static void

foo_do_close (Widget w, XtPointer client_data, XtPointer call_data )

{

XtUnmanageChild ( foo_dialog->form );

}

The create function calls the Sun WorkShop Visual generated creation function and

saves the widget structure.

foo_create( Widget parent )

{

foo_dialog = create_foo_dialog( parent );

}

The initialize function extracts the text from the source text field, converts it to an

integer and sets the Scale to reflect the current value. It saves the source text field

and so the new value set using the Scale can be applied to the source text field. It

enables or disables the “Apply” button depending on the class of the current widget

and makes the dialog visible.

foo_initialize( Widget text, Widget current)

{



664 Sun WorkShop Visual User’s Guide • May 2000

char *source_value;

int i;

source_text = text;

source_value = XmTextGetString( source_text );

i = atoi( source_value );

XtFree( source_value );

XmScaleSetValue( foo_dialog->scale, i );

XtSetSensitive( foo_dialog->apply,
current && XtIsSubclass (current, fooWidgetClass ) );

XtManageChild( foo_dialog->form );

}

The update function enables or disables the “Apply” button, depending on the class

of the current widget.

foo_update( Widget current )

{

XtSetSensitive( foo_dialog->apply,
current && XtIsSubclass( current, fooWidgetClass ) );

}

Resource Memory Management

Sun WorkShop Visual assumes a default memory management model for XmString

and String (char *) type resources. For XmString type resources this model assumes

that the widget will copy the XmString both on SetValues and on GetValues (i.e. the

application can free the XmString after a GetValues or SetValues).

For String resources it is assumed that the widget copies the String on SetValues but

not on GetValues (i.e. the application only frees a String after a SetValues). If you

have a resource that does not conform to this model (typically an XmString resource

that is not copied by the widget on GetValues), then you can override Sun WorkShop

Visual's default behavior using the two Option Menus in the resource section. Where

an XmString is not copied on GetValues, you should set the GetValues Option Menu

to “Don’t Free” in the Widget Edit dialog. Similarly, if you have a String resource

that is copied by the widget on GetValues (for example XmNmnemonicCharset in a

Label Widget) then you should set the GetValues Option Menu to “Free”.

If you wish Sun WorkShop Visual always to default to not freeing the resources, set

the “Default means Don’t Free” toggle.



Chapter 23 User-Defined Widgets 665

It is important to make sure that Sun WorkShop Visual does not free memory that it

should not free as this will cause Sun WorkShop Visual to crash. It is less important

if Sun WorkShop Visual is not freeing memory that it should free, as this will simply

accumulate as a memory leak.

XmStringTable Resources

For Sun WorkShop Visual to handle XmStringTable resources correctly, you must

also specify the integer type resource which is used as a count for the number of

entries in the table. Add a resource specification for the XmStringTable.

Headers

visu_config generates two code modules, the Config file and the Code file.

visu_config lets you specify a list of headers for each of these files. To specify these

headers, use the Family Edit Dialog. Select “Code Integration Headers” from the

View Menu to display the “Code headers” page and select “Config Integration

Headers” to display the “Configuration headers” page. Both pages are shown in

Figure 23-11.

FIGURE 23-11 The Code and Config Headers Pages of the Family Edit Dialog



666 Sun WorkShop Visual User’s Guide • May 2000

There is a separate list of headers for each file. To add a header, type the filename,

without quotes or angle brackets and click on “Add”. To delete a header, select it

and click on “Delete”. To reorder a list, select any entry and use the arrow buttons to

move it up or down.

The Code file defines the widget class records for user-defined widget classes.

visu_config automatically generates a #include for the widget class header file which

it takes from the Widget Edit dialog. Often no additional Code headers are needed.

The Config file contains a list of user-defined widgets, enumerations, and aliases.

Widget headers for user-defined classes aren’t automatically generated to this file. If

you configure visu_config with non-standard enumerations or resource types,

include the header file in which they are defined.

The easiest way to find out what headers are needed is to generate and compile the

code. If the compiler returns an undefined reference, find out which header contains

the necessary definition and add it to the header list for that file. Then regenerate the

code and try again.

Motif Widgets Stop List

You can use visu_config to stop selected Motif widgets from appearing in Sun

WorkShop Visual. Stopped widgets do not appear in the widget palette. They work

correctly if read in from an existing design file but cannot be selected in the

hierarchy or created interactively. For example, you can use this feature to prevent

users from using the PanedWindow widget if it isn’t in your company’s style guide.

To stop a widget, pull down the Edit Menu in the main visu_config dialog and select

“Stop list” to display the dialog shown in Figure 23-12:



Chapter 23 User-Defined Widgets 667

FIGURE 23-12 The Stopped Motif Widgets Dialogs

To remove a Motif widget from the widget palette, set the appropriate toggle and

click on “Apply”.

Widgets can also be stopped by setting the visu.stopList resource, as described in

“Configuration” on page 883. Note that widgets stopped using the resource can be

reactivated easily using the resource file, while widgets stopped in visu_config can

only be reactivated by rebuilding Sun WorkShop Visual.

User-defined widgets cannot be stopped using this dialog. You can select which

user-defined families to make available in Sun WorkShop Visual via the visu_config

Generate dialog, as discussed in the following section.

Generating and Compiling Code

The Generate Menu has two options, Config and Code which are used to generate

the two configuration files. The pages displayed for each option are similar, as

shown in Figure 23-13. Use the toggle buttons to select the families you want to

include. Generate both files, using the same set of families for each.



668 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 23-13 The Config and Code Generate Dialogs

Compiling

The example makefile in $VISUROOT/user_widgets/Athena1 compiles a Config file

named config.c, a Code file named Athena.c and a file containing configuration

functions, Athenaextras.c. These files and all the Athena icon bitmaps, are located in

$VISUROOT/user_widgets/Athena. You can use this makefile to compile the Athena

example. The result is an executable file called visu .bin.

When you configure with other widgets, use the example makefile as a starting

point. Make sure that the makefile references all directories containing icon bitmap

files and required header files.

If the compilation fails, inspect the generated code to find the problem. The cause

may be a missing header. You can supply additional headers on the Code and

Config Headers pages of the Family Edit dialog. The compiler also catches any

misspellings in any of the visu_config dialogs. Fix the problem, regenerate the Code

and Config files, then recompile.

Note that the linker detects any misspelled function names. If the misspelling

occurred in visu_config, correct the problem, regenerate the Code and Config files,

then recompile.

1. $VISUROOT is the path to the Sun WorkShop Visual installation root directory.



Chapter 23 User-Defined Widgets 669

Using the Widgets in Sun WorkShop Visual

The executable file is invoked with the correct environment by setting the

environment variable USER_WIDGETS to the name of the user widgets directory (in

this example “Athena”) and invoking the standard visu command in $VISUROOT/

bin. This causes the local bitmaps or color_icons directories to be added to

$XBMLANGPATH and the local app-defaults directory to replace $VISUROOT/lib/

locale/<LANG>/app-defaults in $XFILESEARCHPATH.

A site-wide default can be set up by making a symbolic link called “local” in

$VISUROOT/user_widgets to the user widgets directory of choice. In this case all

users will get that version of Sun WorkShop Visual by default unless they explicitly

override it with a setting of USER_WIDGETS. When USER_WIDGETS contains a

value that is not recognized, or the visu .bin in that user widgets directory has not

been built, the site default, if configured, or original “vanilla” Sun WorkShop Visual

is invoked instead.

Accessing Abstract Children

Sun WorkShop Visual allows you full access to the abstract children of third party

composite widgets. The Motif ScrolledWindow is an example of a composite widget

- the scrollbars are the abstract children.

The following resource allows control over the accessibility of abstract children:

visu.abstractObjects: true

The resource defaults to “true”, which allows access to the children of third party

widgets. Setting this to “false” will result in no children being displayed.

You can configure the accessibility of composite widget in visu_config, see “Can Edit

as Abstract Child” on page 645.

Children of third party widgets can be fully configured through their resource

panels. They cannot, however, be cut from your designs.

In the generated code, Sun WorkShop Visual calls XtNameToWidget in order to gain

access to a component of a third party widget. Such components will normally have

unique names. If, however, the widget names are not unique, using

XtNameToWidget will not work correctly. In such a case, you will have to edit the

generated code and use another means of accessing the widget.

Sun WorkShop Visual does not generate cross-platform code (MFC or Java) for the

children of third party widgets. A place holder, such as a Canvas, is added in place

of the root widget.



670 Sun WorkShop Visual User’s Guide • May 2000

Testing the Configuration

This section describes a recommended testing procedure for the Sun WorkShop

Visual interface for a user-defined widget. Use visu_config as suggested to fix any

problems. Note that these tests are designed to detect problems with the way in

which the widget was configured into Sun WorkShop Visual; they do not test the

widget itself.

Creating a Widget

Note – This test is not appropriate if you turned off the “Can create widgets” toggle

in the widget attributes panel.

Run Sun WorkShop Visual and verify that the icon for the user-defined widget is

correct. If you use the small screen Sun WorkShop Visual, invoke Sun WorkShop

Visual with the name small_visu and verify that the icon is correct in this case,

too.

Create a hierarchy that contains an instance of your widget. If Sun WorkShop Visual

fails when the widget is added, you may need a Realize function. For details, see

“Configuration Functions” on page 672. If the failure is accompanied by an X error

message about zero height/width windows, try using sizedCreate() (found in

Athenaextras.c) as the Realize function for the widget.

If this does not work, try setting the “Disable foreground swapping” toggle in

visu_config.

Foreground Swapping

If you have not disabled foreground swapping, create a hierarchy containing the

user-defined widget. Select the Shell in the hierarchy and then select the

user-defined widget. Verify that the widget in the dynamic display highlights

correctly when selected. If this causes a problem, set the “Disable foreground

swapping” toggle in visu_config.



Chapter 23 User-Defined Widgets 671

Defined Name

Create a dialog containing an instance of the user-defined widget with every

resource set. Generate C from Sun WorkShop Visual and compile it. If it fails to

compile, you may get a message like this:

XtNfoo undefined

If you get such a message, first verify that the generated code includes the right

public header for the widget class. If it doesn’t, correct the header in the “Include

file” field of visu_config’s Widget Edit dialog.

If the header is being generated correctly but you still have compilation problems,

you may need a Defined Name function. Look in the public header for a line such as:

#define <something> "foo"

If <something> is not XtNfoo, you need a Defined Name function. For details, see

“Configuration Functions” on page 672.

Pages

If you have specified that resources for the user-defined widget should appear on

specific pages, verify that they do and that all the required pages are present.

Converters

Display the “Miscellaneous” page of the resource panel for the user-defined widget.

Verify that you can type valid resource values into the text widgets and that they are

correctly applied to the widget. If you get a message indicating that there is no

resource converter, you need to use the “Add in Sun WorkShop Visual” setting in

visu_config.

Enumerations

Display the “Settings” page of the resource panel for the user-defined widget. Make

sure the option menus all have the default value in parentheses at the top of their

menus.

Display the “Miscellaneous” page if there is one. Enumeration resources appear on

this page if they weren’t configured in visu_config. If enumeration resources do

appear on this page, go back and add them using visu_config.



672 Sun WorkShop Visual User’s Guide • May 2000

Set each value for the enumeration in turn, including the default. Verify that each

value works as expected in the dynamic display and that the generated code

compiles correctly.

Popup Dialogs

If you specified custom popup dialogs for any resources, display the page of the

resource panel on which each resource appears. Verify that the resource panel

displays a button for each resource with a popup dialog. Click on the button. Verify

that the dialog appears and is correctly initialized with the current value for that

resource.

Set the resource in your dialog. Verify that the text widget on the resource panel

updates correctly. Apply the setting from the resource panel and verify the result in

the dynamic display.

If your dialog has a “Close” button, verify that it works as expected and that the

dialog reappears when you click on the button on the resource panel.

Code Inspection

Finally, verify that the generated code is correct. To check the generated code, set

each resource in turn, generate a C code file and an X resource file and inspect them

to see that you get what you expect.

Code inspection for all the Motif widgets forms part of the Sun WorkShop Visual

release process. Therefore if you have a user-defined widget that is derived from a

Motif widget, you can concentrate on testing resources that are specific to the

user-defined widget. This is also true if you have a user-defined widget that is

derived from another user-defined widget that you have already tested.

Configuration Functions

visu_config lets you provide configuration functions to customize Sun WorkShop

Visual’s handling of user-defined widgets. This section provides definitions and

examples of the configuration functions.



Chapter 23 User-Defined Widgets 673

To add a configuration function, specify the name of the function on visu_config’s

Widget Edit dialog for the widget class, then regenerate the Code and Config files

from visu_config. Edit your makefile to compile and link the file containing the code

for your configuration functions.

For examples of the configuration functions that were used to integrate the Athena

widgets into Sun WorkShop Visual, see:

$VISUROOT/user_widgets/Athenaextras.c 1.

Realize Function

By default, Sun WorkShop Visual creates widgets in the dynamic display by calling

XtCreateWidget(). You can supply a Realize function to substitute for this. A Realize

function is only needed for widgets that cause problems when created in Sun

WorkShop Visual.

Realize Function Prototype

The Realize function has the following form. Note that it takes the same parameters

and returns the same result as XtCreateWidget().

Widget realize( char *name, WidgetClass class, Widget parent,
ArgList args, Cardinal arg_count )

The ArgList passed to a Realize function is always empty.

Realize Function Example

Some composite widgets, such as the Athena Form widget, cannot be realized

without children unless their dimensions are explicitly set at creation time.

Otherwise the widget is created at zero size, causing an X error. To solve this

problem in the dynamic display, you can supply a Realize function like the one

shown below, found in Athenaextras.c. This function initializes the widget’s width

and height resources to non-zero values, then calls XtCreateWidget() and returns the

result.

WidgetsizedCreate( char *name, WidgetClass class, Widget parent,
ArgList args, Cardinal arg_count )

{

Arg al[2];

int ac=0;
1. $VISUROOT is the path to the Sun WorkShop Visual installation root directory.



674 Sun WorkShop Visual User’s Guide • May 2000

XtSetArg(al[ac], XtNheight, 20); ac++;

XtSetArg(al[ac], XtNwidth, 20); ac++;

return XtCreateWidget ( name, class, parent, al, ac);

}

The Realize function is only used when Sun WorkShop Visual creates the widget in

the dynamic display. It has no effect in the generated code.

Defined Name Function

In order to generate both code files and X resource files, Sun WorkShop Visual uses

both the resource name, such as label, and the corresponding defined name, such as

XtNlabel. Sun WorkShop Visual gets the name directly from the widget class record.

By default, Sun WorkShop Visual derives the symbolic constant from the name by

adding an XtN prefix.

If your widget doesn’t follow this convention, you can configure Sun WorkShop

Visual with a Defined Name function. The Defined Name function is a custom

procedure that converts a resource name to its corresponding symbolic constant. To

find out whether a widget needs a Defined Name function, look in the public header

for the widget class. The header file contains lines like the following that define the

symbolic constant and its value:

#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"

You need a Defined Name function if any of the defined names don’t follow the

naming convention. For example, many widget toolkits, including Motif, use a

different prefix:

#define XmNbuttons "buttons"

#define XmNbuttonSet "buttonSet"

#define XmNbuttonType "buttonType"

Defined Name Function Prototype

The Defined Name function has the following form:

char *defined_name ( char *name )



Chapter 23 User-Defined Widgets 675

The Defined Name function is passed a character string containing a resource name

and should return a character string containing the corresponding defined name.

Your Defined Name function can refer to Sun WorkShop Visual’s internal Defined

Name function, def_defined_name(). This function simply adds the default XtN prefix

to the resource name.

Note – The function names defined_name and def_defined_name are already

used by Sun WorkShop Visual so you should make sure that you do not use these

names.

Defined Name Function Example

The defined name for the Athena Clock widget resource hands is not XtNhands but

XtNhand. Therefore, the Clock widget needs the following Defined Name function:

char *clock_defined_name( char *name )

{

/*

 * XtNhand is defined as hands, so can’t just put
* XtN on the front

 */

if ( strcmp ( name, "hands" ) == 0 )

return "XtNhand";

return def_defined_name ( name );

}

All Clock resources except hands follow the naming convention and so

def_defined_name() is used to convert them.

Can Add Child and Appropriate Parent Functions

You can supply Appropriate Parent and Can Add Child functions to define the rules

for valid parent-child relationships involving user-defined widgets. These rules

control Sun WorkShop Visual features such as graying-out of palette icons,

automatic selection of newly created widgets and dragging icons in the construction

area.



676 Sun WorkShop Visual User’s Guide • May 2000

Often these functions aren’t needed. If you don’t supply them, Sun WorkShop Visual

uses the rules for the first known ancestor of the widget class. For example, if a

user-defined widget is derived from the Primitive class, Sun WorkShop Visual uses

the rules for the Primitive class and doesn’t let the user add children to the widget.

The Appropriate Parent and Can Add Child functions are combined with rules for

other widgets. For example, Sun WorkShop Visual already has a rule that MenuBar

widgets can only have CascadeButtons as children, so you don’t need an

Appropriate Parent function to prevent the user from making your widget a child of

a MenuBar. You only need to supply functions if your widget class has additional

rules.

If you configure Sun WorkShop Visual with a non-Motif composite widget, the

widget class should have a Can Add Child function to prevent it from having Motif

children. Motif widgets assume that their parents are Motif widgets and Sun

WorkShop Visual may core dump if a Motif widget is made a child of a non-Motif

widget.

Appropriate Parent Function Prototype

The Appropriate Parent function is called when the user tries to add a widget of the

user-defined class to the hierarchy, or tries to drag or copy the user-defined widget

to another parent. This function determines whether the user-defined widget can be

added as a child of the selected widget.

The Appropriate Parent function has the following form:

Boolean

is_appropriate_parent ( parent, childclass )

Widget parent;

WidgetClass childclass;

The first parameter is an instance of a widget in the hierarchy that is a proposed

parent widget; the second is a pointer to your new widget class. The function should

return TRUE if it is valid to add a child of your new class to the proposed parent

widget and FALSE otherwise.

Because the Appropriate Parent function is passed the instance of the proposed

parent widget, you can make rules based on either the class or the state of the parent

widget. For example, you can check the parent widget’s dimensions, ancestor

widgets, or other children before letting the user add a new child of your

user-defined class.



Chapter 23 User-Defined Widgets 677

Appropriate Parent Function Example

By default, Sun WorkShop Visual lets Motif Manager widgets, such as the Form and

Row Column, have children of any type. Appropriate Parent functions let you

restrict the widget to being a child of only certain classes. For example, if your

widget can only be a child of a DrawingArea, supply an Appropriate Parent function

that returns TRUE if the proposed parent widget is a DrawingArea and FALSE if not.

The code for this case is very simple:

Boolean

drawing_area_parent ( w, class )

Widget w;

WidgetClass class;

{

if ( XtClass ( w ) == xmDrawingAreaWidgetClass )

return True;

return False;

}

Can Add Child Function Prototype

The Can Add Child function has the following form:

Boolean

can_add_child ( parent, childclass)

XWidget_p parent;

WidgetClass childclass;

{

...

}

This function is used for two purposes. Sun WorkShop Visual calls the Can Add

Child function to determine whether a widget of a specific class is a valid child of

the user-defined widget and calls the Can Add Child function to determine whether

it should automatically select a newly created instance of the user-defined widget.

The first parameter is a pointer to an existing instance of the user-defined widget

class. The parent widget instance is passed as an XWidget_s structure, an internal

Sun WorkShop Visual data type that represents a widget instance. One field of this

structure is a pointer to the widget instance. For documentation on the XWidget_s
structure, see $VISUROOT/user_widgets/hdrs/xwidget.h.



678 Sun WorkShop Visual User’s Guide • May 2000

The second parameter may be a pointer to a proposed child widget class, or may be

NULL. If the second parameter is non-NULL, Sun WorkShop Visual is inquiring

about a proposed child class. The function should return TRUE if the child can be

added and FALSE if not. Note that you have a pointer to the parent instance but not

to the child class because the child widget hasn’t been instantiated. Your function

may make rules based on the current state of the instance of the user-defined widget.

For example, you can write a function that lets your widget accept only a limited

number of children. If the second parameter is NULL, the user has just created a

widget of this class.

If the Can Add Child function returns TRUE, Sun WorkShop Visual selects the newly

created widget in the hierarchy; otherwise, the parent widget remains selected. In

this case, the Can Add Child function should usually return TRUE if the widget can

have children of any type and FALSE otherwise.

Can Add Child Example

The following example shows a Can Add Child function.

Boolean paned_can_add_child ( XWidget_p xw, WidgetClass class ) {

/* For newly created instance of this widget class, make the newly created widget

the currently selected widget in the hierarchy. */

if (class == NULL)

return TRUE;

/* Allow all children except Drawing Area and ScrollBar. */

if ( class == xmDrawingAreaWidgetClass ||

class == xmScrollBarWidgetClass )

return False;

else

return True;

}



Chapter 23 User-Defined Widgets 679

Generating UIL

You can generate UIL for third party widgets. Any information Sun WorkShop

Visual needs to do this is provided as part of the widget integration set1. If, however,

you are integrating a new set of third party widgets, you will have to give Sun

WorkShop Visual the extra information it needs in resources, as described below.

Resources for Third Party Widget UIL Code

Generation

In order to generate UIL code for third party widgets, you have to provide Sun

WorkShop Visual with enough information about the header files, creation

procedures and template files. Most commonly used widget sets have already had

this done for them - contact your Sun WorkShop Visual supplier for more details.

The following information is required when you wish to use a lesser known widget

set:

1. UIL Header Files

2. UIL Creation Procedures

UIL Header Files

If the third party widget has a UIL header file associated with it, this is specified as

follows:

visu.xw_<third_party_widget_class>.uilHeaderFile: foo.uil

For example, the XRT 3D widget is defined in this way:

visu*xw_XtXrt3d.uilHeaderFile: Xrt3d.uil

Note – UIL header files are supplied as part of the XRT widget set.

Many widget sets that do not come supplied with UIL header files, have had the

header file created for them in order to enable UIL code generation from Sun

WorkShop Visual. These can be found in:

$VISUROOT/user_widgets/USER_WIDGET_NAME/code_templates/UIL

where VISUROOT is the install directory of your Sun WorkShop Visual.
1. Contact your Sun WorkShop Visual supplier for details of available widget integration sets.



680 Sun WorkShop Visual User’s Guide • May 2000

The make templates generated for third party widgets have UILFLAGS set to

include this code_templates directory automatically, as well as any normal widget-

vendor locations. So for XRT the Makefile would contain the line:

UILFLAGS=-I${XRTHOME}/include/Xm ...

In this way, any third party widget with a UIL header will build.

UIL Creation Procedures

Non-motif widgets need to pre-declare creation procedures in any UIL header file,

but not all suppliers do this. For this reason, there are two resources to control the

required creator procedure that Sun WorkShop Visual must generate to get UIL to

create the third party widget. Here are the three cases you must consider to work out

which resource to use:

1. The supplied header file already has a procedure declaration.

2. The widget creator name has not been put in.

3. No pre-defined creator exists.

4. Special processing is required in order to create the widget.

Note – We cannot simply generate a declaration whatever the circumstance because

UIL does not like multiple declarations of the same procedure. Hence we have two

resources, so that Sun WorkShop Visual can tell when to generate the declaration

and when not to.

These cases are described separately below.

A Procedure Declaration Exists

If there is already a procedure declaration in the header file, specify the name that

Sun WorkShop Visual must generate like this:

visu*xw_<third_party_widget_class>.uilBuiltinProcedureName:
the_procedure_name

For example, XRT have the UIL creator XtCreateXrt3d already declared in Xrt3d.uil,

so you would only need to tell Sun WorkShop Visual the name to generate:

visu*xw_XtXrt3d.uilBuiltinProcedureName: XtCreateXrt3d

Code like the following then appears in our generated UIL:

object some_third_party_object: user_defined

the_object_creator_procedure_name



Chapter 23 User-Defined Widgets 681

So for the sample XRT, Sun WorkShop Visual would generate something like:

include_file “Xrt3d.uil”;

object my_xrt_3d_variable: user_defined XtCreateXrt3d;

No Widget Creator Name Added

If the widget author has not put a widget creator name in, we need Sun WorkShop

Visual to generate not only the call to some creator, but also a declaration.

If you use the following:

visu*xw_<third_party_widget_class>.uilProcedureName:
the_procedure_name

Sun WorkShop Visual would then generate the following:

include_file “AnySpecifiedUilHeader.uil”;

/* THIS NEXT LINE IS BAD IF AnySpecifiedUilHeader.uil already has this
*/

procedure the_procedure_name();

...

object my_third_party_variable: user_defined

the_procedure_name;

There Is No Pre-Defined Creator

Having no pre-defined creator means, for example, that there is no

XmCreatePushButton to replace the lower level generic XtCreateWidget() call.

Sun WorkShop Visual will in this case generate:

1. A creator with the name constructed from the widget class into the UIL file.

2. A declaration for this into the UIL file.

3. An actual function with the same name in the C for UIL file to wrap this up.

The form of the generated constructor is XdUilCreate<widget_class_name>

This will automatically happen if Sun WorkShop Visual comes across some third

party widget where no resources for UIL have been set.

For example, if we had a widget class FredWidgetClass , the UIL file would contain

the following:

procedure XdUilCreateFredWidgetClass();



682 Sun WorkShop Visual User’s Guide • May 2000

...

object fred_variable : user_defined XdUilCreateFredWidgetClass

And the C for UIL would contain:

...

Widget XdUilCreateFredWidgetClass(parent, name, argv, argc)

Widget   parent ;

String   name ;

Arg     *argv ;

Cardinal argc ;

{

return XtCreateWidget(name, fredWidgetClass, parent, argv,

argc) ;

}

Special Processing Needed for Widget Creation

If special processing is required to create one of the third party widgets but no UIL

creator procedure has been declared, a procedure is needed in standard form with

the contents pre-configured.

This is done through the following resource:

visu*xw_<widget_class>.uilProcedureTemplate: some_file_name

Then, some_file_name is simply written out, as is, between the curly brackets of

any UIL procedure Sun WorkShop Visual has to generate into the C for UIL.

For example, if the fred widget had to have its size set before being created, we

would have to:

1. Create a file called fred.uil_template

2. Put this into $USER_WIDGETS/code_templates/UIL

3. Set the resource:

XDesigner*xw_fred.uilProcedureTemplate:

$USER_WIDGETS/code_templates/UIL/fred.uil_template

Note – The value of this resource can take shell variables that are then expanded

automatically.

The next step is to write this template file fred.uil_template as follows:



Chapter 23 User-Defined Widgets 683

/* START OF UIL TEMPLATE FILE */

Arg     *av ;

Cardinal ac ;

Widget   w ;

/*  Copy down any passed arguments */

av = (Arg *) XtMalloc((unsigned) (argc + 2) * sizeof(Arg)) ;

for (ac = 0 ; ac < argc ; ac++) {

av[ac].name  = argv[ac].name ;

av[ac].value = argv[ac].value ;

}

/* Add the necessary width, height */

XtSetArg(av[ac], XmNwidth,  100) ; ac++ ;

XtSetArg(av[ac], XmNheight, 100) ; ac++ ;

w = XtCreateWidget(name, fredWidgetClass, parent, av,

ac) ;

/* tidy up */

XtFree((char *) av) ;

return w ;

/* END OF UIL TEMPLATE FILE */

X-Designer here will go through its normal algorithms for deciding the actual name

of the UIL procedure required, then will put the above between the curly brackets of

this UIL procedure in the C for UIL file.



684 Sun WorkShop Visual User’s Guide • May 2000



685

CHAPTER 24

Command Line Operations

Introduction

This chapter describes the command line switches understood by Sun WorkShop

Visual. They fall into two categories: those which affect Sun WorkShop Visual

running interactively and those which can be used for command line code

generation. This chapter also describes the command line versions of Sun WorkShop

Visual Capture and Sun WorkShop Visual Replay and the commands provided for

conversion of UIL and GIL code into Sun WorkShop Visual save files.

Command Line Switches for Interactive
Use

The following command line switches are available:

TABLE 24-1 visu Command Line Options for Interactive Use

Switch Meaning

windows Start Sun WorkShop Visual in Microsoft Windows mode

f file Specify input file



686 Sun WorkShop Visual User’s Guide • May 2000

For further information on starting Sun WorkShop Visual in Microsoft Windows

mode see “Starting in Microsoft Windows Mode” on page 360.

Using a private colormap is useful if you intend to use a lot of colors in the pixmap

editor. See “Editing Pixmaps” on page 148 for a description of the pixmap editor. If

you do select this option, however, you may observe strange color effects in other

windows.

Generating Code From the Command
Line

The command line synopsis is:

visu [-csepAKCSEulbarmRMFWX [code_file]] [-G directory [-O]]
[-windows] -f filename

L Use private colormap

x Display this explanation (and exit)

V Display Sun WorkShop Visual version information

(the program is not run)

TABLE 24-2 visu Command Line Options

Switch Code file generated

c C

s C stubs

e C externs

p C/C++ pixmaps

A Force ANSI C (use with -c, -s and -e)

K Force K&R C (use with -c, -s and -e)

C C++

S C++ stubs

E C++ externs

u UIL

TABLE 24-1 visu Command Line Options for Interactive Use (Continued)

Switch Meaning



Chapter 24 Command Line Operations 687

code_file represents the file to be generated. If you do not specify a code_file, Sun

WorkShop Visual generates code to the last target file specified in your source file for

the given language.

For Java code generation (-J) and pixmaps (-pixmaps) multiple source files may be

generated and the names of the code files are the names of the classes (for Java) or

the pixmaps used in your design. Therefore, code_file is the target directory for these

source files.

filename represents the design file (.xd) to be used as a source for the code generation.

You must always specify a filename. If you do not also specify a code_file, use the -f
separator to indicate that you are providing only one filename.

The -windows switch specifies Microsoft Windows mode. For further information on

starting Sun WorkShop Visual in Microsoft Windows mode see “Starting in

Microsoft Windows Mode” on page 360.

The M, F, W and R switches are only used in conjunction with the -windows switch.

l C for UIL

b C externs for UIL

a UIL pixmaps

r X resource file

m Makefile

X X resource file (synonym for r)

M Generate Motif flavor C++

F Generate Motif XP flavor C++

J Generate Java to the directory specified as code_file

-G directory Generate to this directory (as if from the Generate Dialog)

-O (with -G) Objects only. Generate no main code

W Generate Microsoft Windows MFC flavor C++

pixmaps Generate all pixmaps to separate .xpm files in the directory

specified as code_file

R Microsoft Windows resource file

windows Start Sun WorkShop Visual in Microsoft Windows mode

f file Specify input file

TABLE 24-2 visu Command Line Options (Continued)

Switch Code file generated



688 Sun WorkShop Visual User’s Guide • May 2000

Examples

The command:

visu -c foo.c -f foo.xd

generates C code from the design in foo.xd into the file foo.c.

The command:

visu -c -f foo.xd

generates C code from foo.xd into the target file that was specified the last time

C code was generated from foo.xd via the Generate Dialog.

You can use a single command to generate multiple files using one of the following

forms:

visu -c -e -s -f foo.xd

or

visu -c <c_file> -e <extern_file> -s <stub_file> -f foo.xd

Sun WorkShop Visual exits with status zero if successful and non-zero status if it

fails to generate the code for any reason.

Trouble-Shooting

Sun WorkShop Visual must be connected to an X server to generate code from the

command line. Usually command line code generation does not create any visible

windows but windows do appear momentarily on the server screen for designs

containing certain types of widgets, such as ScrolledList and ScrolledText and when

generating Microsoft Windows code.

If you don’t specify a code_file, Sun WorkShop Visual relies on the filename saved in

the design file for the specified type of code. The filename is only saved when you

specify it on the Generate Dialog and then save the file. If you have never used the

Generate Dialog to generate this type of code from the design file, Sun WorkShop

Visual produces only an error message.

In all cases, the generate toggles are set as they were last saved in the design file. If

you have never generated this type of code from the design file, default toggle

settings are used.



Chapter 24 Command Line Operations 689

Sun WorkShop Visual Replay

Sun WorkShop Visual Replay (when used to record user actions) is supplied as a

stand-alone application called visu_record. .

The following line shows how to use visu_record:

visu_record -f MyRecordScript AnApplication

MyRecordScript is the name of a file into which a script recording the session will

be saved. AnApplication is the name of the application you wish to record.

The following line shows how to use visu_replay :

You can leave out the filename argument for both Sun WorkShop Visual Replay and

XD/Record. XD/Record will then output to standard output and Sun WorkShop

Visual Replay will read from standard input.

The following table shows the full list of command line switches available for both

visu_record and visu_replay :

TABLE 24-3 visu_record/visu_replay Command Line Options

Switch Meaning

x Display information about the tool

f testscript Save to file (otherwise stdout) for visu_record

Read from file (otherwise stdin) for visu_replay

use n Skip n shells before the real Application Shell

lang locale Run visu_record/visu_replay (including the graphical user

interface and all error messages) in locale and ignore any

LANG settings

p Preprocess script with C preprocessor before replaying

t target Use ’target’ alternative internal libraries if available

v Verbose output

V Print visu_record/visu_replay version information

w Print summary information about the display, server and

window manager

O Override (program exit for non-motif applications

i interactive (uses the Capture/Replay dialog - ignores ‘-f’)

I Force the dialog to appear



690 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop Visual Capture

Sun WorkShop Visual Capture is supplied as a stand-alone application called

visu_capture .

The following line gives an example of how visu_capture can be used:

visu_capture AnApplication

This displays the Capture dialog and runs the application, AnApplication .

The following table shows the full list of command line switches available:

exit-on-error Terminate the visu_replay script and the application if a

command cannot be replayed

user-on-error Terminate the visu_replay script and the application if

a command cannot be replayed but remain in the application

skip-on-error Jump to the next sequence in the script if a visu_replay
command cannot be replayed

interval ms Allow ms (milliseconds) between execution of commands

ignore-server-

time

Allow the client to run as fast as possible

TABLE 24-4 visu_capture Command Line Options

Switch Meaning

x Display information about visu_capture

f file Save to file. No Capture dialog is displayed with this option

lang locale Run visu_capture (including the graphical user interface

and all error messages) in locale and ignore any LANG

settings

t target Use ’target’ alternative internal libraries if available

use n Skip n shells before the real Application Shell

v Verbose output

V Print visu_capture version information

TABLE 24-3 visu_record/visu_replay Command Line Options (Continued)

Switch Meaning



Chapter 24 Command Line Operations 691

Converting UIL Source to Sun WorkShop
Visual Save Files

The uil2xd filter converts UIL source code to Sun WorkShop Visual save files. It reads

UIL source from standard input and writes a save file for Sun WorkShop Visual on

standard output.

By default, uil2xd generates a save file for the latest release of Sun WorkShop Visual.

The command line synopsis is:

uil2xd [-tlxywhpsaX] [-I include_dir]

w Print summary information about the display, server and

window manager

O Override (program exit for non-motif applications

i interactive (uses the Capture/Replay dialog - ignores ‘-f’).

This is the default behavior

I Force the dialog to appear

j Java-Ready Capture

static-design Take a single snapshot of the Application Shell

TABLE 24-4 visu_capture Command Line Options (Continued)

Switch Meaning



692 Sun WorkShop Visual User’s Guide • May 2000

The command line options are listed in the following table:

TABLE 24-5 uil2xd Command Line Options

Switch Meaning

t Don't convert ScrolledWindow containing Text to Scrolled

Text.

By default uil2xd converts a ScrolledWindow widget

containing a Text widget into a ScrolledText widget. Use the -t

flag to preserve the structure.

l Don't convert ScrolledWindow containing List to Scrolled List.

By default uil2xd converts a ScrolledWindow widget

containing a List widget into a ScrolledList widget. Use the -l

flag to preserve the structure.

x Pass through XmNx resources.

By default uil2xd does not output absolute positions in the

save file. Use the -x flag to pass XmNx resources into the

output file.

y Pass through XmNy resources.

By default uil2xd does not output absolute positions in the

save file. Use the -y flag to pass XmNy resources into the

output file.

w Pass through XmNwidth resources.

By default uil2xd does not output absolute sizes in the save

file. Use the -w flag to pass XmNwidth resources into the

output file.

h Pass through XmNheight resources.

By default uil2xd does not output absolute sizes in the save

file. Use the -h flag to pass XmNheight resources into the

output file.

p Preserve position resources in output file. Same as -x -y

s Preserve size resources in output file. Same as -w -h

a Preserve position and size resources in output file. Same as -p

-s

e Explain how to recover from syntax errors

A Generate fake attachments for unattached form children

I include_dir Adds include_dir to the list of directories that will be searched

for include files.

X Print list of switches.



Chapter 24 Command Line Operations 693

uil2xd does not handle the following constructs:

■ String tables containing compound strings

■ Color_table

■ Icon

■ Ascii tables in argument definition

■ Integer tables in argument definition

■ Imported keyword – this is a fatal error

■ Exported keyword

■ Private keyword

■ Creation procedure

■ Default character set clause

■ Identifier section

Except for the imported keyword, uil2xd simply ignores these constructs.

Converting GIL Source to Sun WorkShop
Visual Save Files

The gil2xd filter converts Sun Microsystems Inc.’s DevGuide save files into Sun

WorkShop Visual save files. The converter works by mapping the OPEN LOOK

objects into Motif objects. It reads GIL source from standard input and writes a save

file for Sun WorkShop Visual on standard output.

It generates a save file for the latest version of Sun WorkShop Visual. The command

line synopsis is:

gil2xd [-xywhpsaX]



694 Sun WorkShop Visual User’s Guide • May 2000

The command line options are listed in the following table:

gil2xd does not handle connections other than function calls and the simple notify

actions for buttons which can be mapped to links. Other connections are reported as

warnings. gil2xd simply ignores these constructs.

Mappings

Few of the mappings from OPEN LOOK objects to Motif widgets are

straightforward as they depend somewhat on their context. The fundamentals of the

mappings are outlined below.

base-window

Maps to a DialogShell with a MainWindow child with a Form work area.

TABLE 24-6 gil2xd Command Line Options

Switch Meaning

x Pass through XmNx resources.

By default gil2xd does not output absolute positions in the

save file. Use the -x flag to pass XmNx resources into the

output file.

y Pass through XmNy resources.

By default gil2xd does not output absolute positions in the

save file. Use the -y flag to pass XmNy resources into the

output file.

w Pass through XmNwidth resources.

By default gil2xd does not output absolute sizes in the save

file. Use the -w flag to pass XmNwidth resources into the

output file.

h Pass through XmNheight resources.

By default gil2xd does not output absolute sizes in the save

file. Use the -h flag to pass XmNheight resources into the

output file.

p Preserve position resources in output file. Same as -x -y

s Preserve position and size resources in output file. Same as -w

-h

a Preserve position and size resources in output file. Same as -p

-s

X Print list of switches



Chapter 24 Command Line Operations 695

popup-window

Maps to a DialogShell with a Form child.

canvas-pane

Maps to a DrawingArea which will be a child of a ScrolledWindow if horizontal-

scrollbar or vertical-scrollbar is true. An associated PopupMenu

is created as a child of the DrawingArea.

control-area

Maps to a Form.

menu

Maps to a Menu. If the menu has a menu-title attribute, the first child widget will be

a Label which shows the title, followed by a Separator. The menu items are mapped

to additional children of the Menu. If the menu-type attribute is command, the

widgets will be ToggleButtons; if they have an associated menu they will be

CascadeButtons, otherwise they will be PushButtons. As Sun WorkShop Visual has

no concept of shared menus, menus which are referenced from more than one place

will map to copies of the Menu.

message

Maps to a Label.

button

Maps to a PushButton if it does not have a menu, otherwise it maps to a

CascadeButton. This CascadeButton will be created in a MenuBar. CascadeButtons

which have the same y co-ordinate will be created in the same MenuBar. The

MenuBar will be created in an enclosing MainWindow if possible, otherwise it will

be created at the appropriate location.



696 Sun WorkShop Visual User’s Guide • May 2000

slider and gauge

Both map to a Scale. Separators will be added as children for tick marks and Labels

may be added to show the min-value-string and max-value-string. The min-value

and max-value map to the Scale’s minimum and maximum fields respectively.

setting

Maps to an OptionMenu if setting-type is stack, otherwise maps to a RowColumn.

The choices are mapped to PushButtons in an OptionMenu and ToggleButtons in a

RowColumn. For exclusive and non-exclusive settings the ToggleButton is adjusted

so that the indicator is not used (shadowThickness = 2, marginLeft = 0, indicatorOn

= false).

text field

Maps to RowColumn with Label and Text widgets. Text will be ScrolledText if text-

type is set to multiline.

list

Maps to a ScrolledList. If the list has a label attribute set, the ScrolledList is created

as a child of a RowColumn with a Label child which displays the label. If the list has

a title attribute, the ScrolledList is created as a child of a Frame with a Label to

display this title.

drop-target

Maps to a Label.

stack

Maps to a Form which has each of the stack members as children. The children are

attached to both sides of the Form.

group

Maps to a RowColumn which has each of the member widgets as children.



Chapter 24 Command Line Operations 697

term-pane and text-pane

Both map to ScrolledText.

Attributes

Once the gil objects have been mapped to widgets the attributes must be mapped to

appropriate widget resources. The following resources are always mapped:

The width and height resources are only used if the -w or -h flags are set when

gil2xd is run. The x and y resources will be output if the -x or -y flags are set.

However, for widgets which are children of Forms the x and y co-ordinates will be

used to calculate default Form attachments to preserve the approximate layout.

Note that many of the Motif manager widgets will ignore explicit x, y, width and

height resources anyway. The gil2xd filter can be used without any of the runtime

flags to produce an adequate layout which can be easily modified using Sun

WorkShop Visual.

TABLE 24-7 Resources That Are Always Mapped

gil xd Notes

x XmNx

y XmNy

width XmNwidth

height XmNheight

foreground-color XmNforeground

background-color XmNbackground

initial-state XmNsensitive inactive - sensitive = false

invisible - managed = false



698 Sun WorkShop Visual User’s Guide • May 2000

Other resources are mapped to the nearest possible resource.

TABLE 24-8 Resources That Are Mapped to the Nearest Possible Resource

gil xd Notes

columns XmNcolumns

constant-width XmNrecomputeSize

group-type XmNorientation Sets XmNnumColumns,

XmNorientation and

XmNpacking to reproduce a

similar layout of group

icon-file XmNiconPixmap

icon-label XmNiconName

icon-mask XmNiconMask

initial-state XmNinitialState DialogShell only

initial-value XmNvalue

label XmNlabelString If matching label-type

attribute is glyph then label

is mapped to labelPixmap

label XmNtitle For shells

label XmNtitleString For gauge

label-type XmNlabelType

layout-type XmNorientation

max-value XmNmaximum

menu-type XmNradioBehavior If exclusive,

XmNradioBehavior = true

min-value XmNminimum

multiple-selections XmNselectionPolicy If set, XmNselectionPolicy =

MULTIPLE_SELECT

orientation XmNorientation

pinnable XmNtearOffModel If pinnable,

XmNtearOffModel =

TEAR_OFF_ENABLED

read-only XmNeditable

resizeable XmNallowResize



Chapter 24 Command Line Operations 699

Actions which have a CallFunction function_type are mapped to callbacks where

appropriate.

rows XmNnumColumns Sets XmNnumColumns,

XmNorientation and

XmNpacking to reproduce a

similar layout of settings

rows XmNrows For text widget

rows XmNvisibleItemCount For list widget

selection-required XmNradioAlwaysOne

show-border XmNshadowThickness If set sets

XmNshadowThickness to 1

for forms which are not

children of a Shell

show-value XmNshowValue

slider-width XmNscaleWidth Sets XmNscaleWidth or

XmNscaleHeight depending

on orientation

stored-length XmNmaxLength

text-initial-value XmNvalue

text-type XmNeditMode If multiline,

XmNscrollVertical = false,

rows maps to XmNrows

title XmNlabelString

value-length XmNcolumns

TABLE 24-9 Actions That Are Mapped to Callbacks

Action Callback Widget

Create XmNcreateCallback Any

Destroy XmNdestroyCallback Any

Notify XmNactivateCallback PushButton

select XmNinputCallback DrawingArea

adjust XmNinputCallback DrawingArea

DoubleClick XmNinputCallback DrawingArea

Repaint XmNexposeCallback DrawingArea

TABLE 24-8 Resources That Are Mapped to the Nearest Possible Resource (Continued)

gil xd Notes



700 Sun WorkShop Visual User’s Guide • May 2000

There are a number of other gil actions which are not detailed in this list. These are

not supported by the filter as there is no appropriate Motif callback.

Notify actions for PushButtons which have a Show, Hide, Enable or Disable

connection are mapped to the appropriate Sun WorkShop Visual link.

Resize XmNresizeCallback DrawingArea

Select XmNvalueChangedCallback Gauge

Adjust XmNdragCallback Gauge

Notify XmNvalueChangedCallback Gauge

Popup XmNmapCallback Menu

Popdown XmNunmapCallback Menu

Notify XmNentryCallback Menu

Notify XmNvalueChangedCallback ToggleButton

Unselect XmNvalueChangedCallback ToggleButton

Popup XmNpopupCallback Shell

Popdown XmNpopdownCallback Shell

Notify XmNactivateCallback Text

KeyPress XmNvalueChangedCallback Text

Notify XmNentryCallback RowColumn

Done XmNunmapCallback Form

Notify XmNbrowseSelectionCallback List

TABLE 24-9 Actions That Are Mapped to Callbacks (Continued)

Action Callback Widget



701

CHAPTER 25

Configuration

Introduction

There are several ways to customize Sun WorkShop Visual, using either the resource

file or visu_config. This section explains the main features that can be customized

via the resource file. These features are:

■ Callback and Prelude editing

■ Palette icons

■ Palette contents and layout

■ Toolbar

■ Makefile templates

For further information on Sun WorkShop Visual resources, see Appendix D,

“Application Defaults”, starting on page 867. For information on using visu_config,

see Chapter 23, “User-Defined Widgets”, starting on page 627.

Another area of Sun WorkShop Visual which can be configured using resources is

the dynamic display window. This window has its own application class name and,

therefore, its own resource file. Details are provided in “Dynamic Display Window”

on page 713.

Setting up Callback and Prelude Editing

There are two mechanisms for editing callbacks and preludes. The first uses the Sun

Edit Services and the second simply invokes an editor of your choice in an “xterm”

window. This section describes the application resources, applications and

environment variables needed to configure the editing mechanism. See Appendix D,



702 Sun WorkShop Visual User’s Guide • May 2000

“Application Defaults” for details on using Sun WorkShop Visual’s application

resources. This first resource controls whether or not you wish the callback editing

mechanism to be present:

callbackEditing

This resource controls whether callback editing is enabled; if it is set to false then the

buttons relating to this feature do not appear.

If you wish to use callback and prelude editing without using the Sun WorkShop

Edit Server, you will need to specify which editor to use.

editor

This resource specifies the location of the shell wrapper script which starts up the

editor. By default it is set to:

$VISUROOT/lib/scripts/xd_edit

xd_edit is a text file containing a shell script which provides the startup command

applicable to different editors. If the editor you wish to use is not listed in this file,

the default is to use the behavior specified for the editor “vi”. When an editor is

invoked, an “xterm” is started and Sun WorkShop Visual tries to move to the

appropriate line in the stubs or primary source file (according to whether you are

editing callbacks or preludes respectively). This is not applicable to all editors.

Motif-based editors, for example, do not need an “xterm” and some editors cannot

move to a specified line on startup.

The file xd_edit contains some examples for different types of editor along with

explanatory comments. You can add special information for your chosen editor by

copying existing lines. Refer to the documentation for your UNIX shell for details of

the shell scripting language.

The xd_edit shell script checks the EDITOR environment variable for the name of

the editor you wish to use. If it is not set, the script checks the VISUAL environment

variable. If that is also not set, the default is “vi”. If you wish to use either of these

variables, specify the name along with the full directory name if it is not in a

directory listed by your PATHenvironment variable. Once the script has decided on

an editor, it runs the editor in the terminal program defined by the environment

variable XD_TERM. If this is not set, the default is to use the xterm program.

See your UNIX documentation for details on using environment variables.



Chapter 25 Configuration 703

Using the Editing Facility

See “Adding Callback Functionality” on page 226 for details on how to use the

editing facility to edit callbacks and “Code Preludes” on page 242 for a description

of prelude editing.

Palette Icons

Sun WorkShop Visual has an icon for each widget class. The icon is drawn on the

palette buttons and displayed in the tree hierarchy. The icon can be either a full color

XPM format pixmap or a monochrome bitmap. On start-up, Sun WorkShop Visual

searches through the application resources to find a pixmap or bitmap file for each

icon. If one cannot be found, a built-in bitmap is used.

Specifying the Icon File

Each Motif widget has an application resource that specifies its icon file. The

application resource file is:

$VISUROOT/lib/locale/<your-locale>/app-defaults/visu

where VISUROOT is your Sun WorkShop Visual install directory and your-locale is your
local language locale name. The default locale is C. The LANG environment variable may tell
you what your locale name is.

The application resource file contains a complete list of resource names for the Motif

widget icons. For example, the resource for the ArrowButton icon is:

visu.arrowButtonPixmap: arrow.xpm

Sun WorkShop Visual searches in the same way as XmGetPixmap() to find the bitmap

file. This search path is complex; for details, refer to the Motif documentation. In

practice, Sun WorkShop Visual places the default pixmap files in $VISUROOT/
bitmaps and adds $VISUROOT/bitmaps/%B to the XBMLANGPATH environment

variable. Individual users can provide their own local pixmaps by creating a file of

the correct name, such as arrow.xpm, in a directory and adding that directory with

the file matching string “/%B” to the SW_VISU_XBMLANGPATH environment

variable. For example,

setenv SW_VISU_XBMLANGPATH /home/me/pix/%B



704 Sun WorkShop Visual User’s Guide • May 2000

Default Pixmaps

Sun WorkShop Visual comes with two sets of icon pixmaps. The default set is

located in $VISUROOT/bitmaps. These icons are drawn using minimal color and will

work on either color or monochrome screens.

A set of color pixmaps is located in $VISUROOT/color_icons. To change to the color

pixmaps, either set the environment variable SW_VISU_ICONS to color_icons, or add

$VISUROOT/color_icons/%B to the SW_VISU_XBMLANGPATH environment

variable. To revert to the default icons either unset SW_VISU_ICONS or set it to

bitmaps.

Alternatively, an individual user can specify a different file name by setting the

resource in a local copy of the Sun WorkShop Visual resource file:

visu.arrowButtonPixmap: my_arrow.xpm

or:

visu.arrowButtonPixmap: /home/me/visu_bitmaps/my_arrow.xpm

Pixmap Requirements

You can create your own color pixmaps for icons using XPM3 format. This format

can be created using the Sun WorkShop Visual Pixmap editor (see “Editing

Pixmaps” on page 148). Icon pixmaps can be any size; the palette and tree are

displayed with a vertical spacing to accommodate the tallest icon. The Sun

WorkShop Visual display looks best when all icon pixmaps are the same size.

Default sizes are 32 by 32 for the large-screen icon pixmap and 20 by 20 for the

small-screen version.

When printed from Sun WorkShop Visual, the icons are dithered to grey scales.

Transparent Area

The icon should contain an area of transparency. Sun WorkShop Visual uses this area

to display highlighting and structure colors in the tree and the background color on

the palette button. XPM supports transparency by means of the color name “none”

(not the color object “none”). See “Transparent Colors” on page 160 for instructions

on setting up transparent colors.



Chapter 25 Configuration 705

Icons for User-Defined Widgets

visu_config’s Widget Edit dialog lets you specify icons for user-defined widgets. For

more information, see “Widget Attributes” on page 640.

Icons for Palette Definitions

The Edit Definitions dialog lets you specify an icon for each palette definition and a

file name to be used as a fallback if the resource is not set. The pixmap file is

searched for in the same way as the default pixmaps. If Sun WorkShop Visual cannot

find the pixmap it will use the default pixmap for the widget that is at the root of the

definition. See “Editing the Definitions File” on page 269 for further details.

Palette Contents

You can stop certain Motif widget classes from appearing on the Sun WorkShop

Visual palette using the stopList resource. In addition, you can use visu_config to

stop user-defined widgets appearing on the palette. Because stopped widgets do not

appear on the palette, they cannot be created interactively. They can be read in from

a save file generated by Sun WorkShop Visual but are not selectable.

To stop a Motif widget class, specify the class name in the stopList resource. For

example, to remove the Motif PanedWindow and ArrowButton from your widget

palette, set the resource:

visu.stopList: XmPanedWindow,XmArrowButton

To stop a user-defined widget, specify the class name:

visu.stopList: boxWidgetClass,formWidgetClass

visu_config has a Stopped Motif Widgets dialog which contains a toggle for each of

the Motif widgets. For more information, see Chapter 23, “User-Defined Widgets”,

starting on page 627. Widgets that are removed from the palette in visu_config

cannot be added back in using Sun WorkShop Visual resources.



706 Sun WorkShop Visual User’s Guide • May 2000

Palette Layout

The default settings display a vertical palette containing three columns of widget

icons and attached to the main window. You can change the default layout using the

resource file. You can also change the palette layout at run time using the Palette

Menu.

Separate Palette

You can display the palette in a separate window. To separate the palette at run time,

use the “Separate Palette” option in the Palette Menu. To have a separate palette by

default, set the following resource:

visu*pm_separate.set:true

When you separate the palette in the resource file, you must also explicitly set the

default height of the Sun WorkShop Visual main window:

visu.main_window.height: 600

The resource file contains several examples of alternative layouts, such as:

! Two columns is good if you do not have user defined widgets

visu*icon_panel.composite_icons.numColumns: 2

visu*icon_panel.basic_icons.numColumns: 2

! Set both labels and icons on

visu*pm_both.set: true

! You might also want to make the tool a bit wider

visu.main_window.width: 750

! Four columns, with labels underneath

XDesigner*widgetPalette.composite.buttonBox.XmRowColumn.\
orientation: VERTICAL

XDesigner*widgetPalette.composite.buttonBox.numColumns: 4

XDesigner*widgetPalette.basic.buttonBox.XmRowColumn.\
orientation: VERTICAL

XDesigner*widgetPalette.basic.buttonBox.numColumns: 4

XDesigner*widgetPalette*xwidget_icons*orientation: VERTICAL

XDesigner*widgetPalette*xwidget_icons.numColumns: 4

XDesigner*widgetPalette*_defn_icons*orientation: VERTICAL



Chapter 25 Configuration 707

XDesigner*widgetPalette*_defn_icons.numColumns: 4

Toolbar

The Sun WorkShop Visual interface includes a toolbar. Buttons in the toolbar

correspond to buttons in the menus. Generally, when you select a toolbar button, it

does exactly the same thing as the corresponding menu button.

Configuring the Toolbar

To configure buttons into the toolbar, use the toolbarDescription resource. This should

contain a comma-separated list of the widget names of the buttons. It can also

contain the word separator to add extra space between items and the word flavor to

insert the Microsoft Windows flavor option menu.

To obtain the widget name of a button, search Sun WorkShop Visual’s application

resource file for the entry that sets the labelString resource on the button in the menu

bar. See Appendix D, “Application Defaults”, for details on the location of

application resource files.

Sun WorkShop Visual’s resource file contains this line:

visu*em_cut.labelString: Cut

em_cut is the widget name of the “Cut” button in the Edit Menu.

The following line produces a toolbar with “Cut”, “Copy”, “Paste”, “Core

resources...”, “Layout...” (layout editor), and “C” (code generation) buttons:

visu.toolbarDescription:separator,em_cut,\
em_copy,em_paste,separator,wm_prim,\
wm_layout,separator,gm_c

Labels for Toolbar Buttons

The toolbar buttons have the same widget name as the counterpart menu button and

so, by default (assuming that no pixmaps are configured), they appear with the same

words. For example, the resource file contains the line:

visu*gm_c.labelString: C...



708 Sun WorkShop Visual User’s Guide • May 2000

By default, this applies to both the menu and the toolbar. You might want to remove

the ellipsis for the toolbar version since code generation buttons in the toolbar do

not display a dialog. To do this, add the following line:

visu*toolbar.gm_c.labelString: C

Pixmaps for Toolbar Buttons

The toolbar buttons also have a string resource associated with them that specifies

an XPM pixmap or X11 bitmap file in exactly the same way as for the palette

buttons.

visu*toolbar.em_copy_file.toolbarPixmap: em_copy_file.xpm

These pixmaps can be overridden by changing the resource or by providing a file

earlier in the search path.

Makefile Features

This section describes resources that control Makefile generation. For an

introduction to this feature, see Chapter 19, “Makefile Generation”, starting on page

553.

File Suffixes

Object and executable file names are derived from source file names by suffix

substitution. The suffixes are specified by the following application resources:

visu.objectFileSuffix: .o

visu.executableFileSuffix:

visu.uidFileSuffix: .uid

Makefile Template

The template used for generating new Makefiles is defined in two ways: either by

filename or directly in the resource file. The second way is used as a fallback if the

file cannot be found.

The template file is specified by one of two resources:



Chapter 25 Configuration 709

visu.motifMakeTemplateFile: $VISUROOT/make_templates/motif 1

visu.mmfcMakeTemplateFile: $VISUROOT/make_templates/mfc

There are two resources so that you can have different templates customized to pick

up the appropriate class libraries. The value for the resource can contain

environment variables which will be expanded by /bin/sh.

The fallback template is specified by the makefileTemplate resource:

visu.makefileTemplate:\

# System configuration\n\

# ---------------------\n\

\n\

# everything is in /usr/include or /usr/lib\n\

XINCLUDES=\n\

XLIBS=\n\

LDLIBS=\n\

.

.

You can edit the Makefile variables set at the beginning of the template to reflect

your system configuration. For example, you can set the XINCLUDES variable to the

path for your X include files.

Template Protocol

This section explains the symbols used in the Makefile template. In general we

recommend that you not edit the default template except for the variables at the

beginning. If you want to edit the actual template lines, first read Chapter 19,

“Makefile Generation”, starting on page 553, and try to get the results you want by

setting a variable.

Lines in the Makefile template that begin with #Sun WorkShop Visual: are template

lines. When Sun WorkShop Visual generates or updates a Makefile, it creates

instances of the appropriate template lines for each design file based on the files you

have generated and converts the special symbols beginning with an XDG_ prefix

(Sun WorkShop Visual generated) to file names. XDG_ symbols convert to a single

file, or a list of files if the symbol name ends with the _LIST suffix.

List symbols are used singly and not mixed with ordinary symbols in lines such as

the following:

#Sun WorkShop Visual:XD_C_PROGRAMS=XDG_C_PROGRAM_LIST

1. $VISUROOT is the path to the root of the Sun WorkShop Visual installation directory.



710 Sun WorkShop Visual User’s Guide • May 2000

The XDG_C_PROGRAM_LIST symbol translates to a list of all executables that the

Makefile can build. A typical instance of this template line is:

#DO NOT EDIT >>>

XD_C_PROGRAMS=\
myapp1\
myapp2

#<<< DO NOT EDIT

Ordinary template symbols, without the _LIST suffix, represent single files. You can

combine any number of ordinary template symbols in lines such as:

#Sun WorkShop Visual:XDG_C_PROGRAM: XDG_C_PROGRAM_OBJECT
$(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS)

#Sun WorkShop Visual:$(CC) XDG_C_DEBUG_FLAGS $(CFLAGS) $(CPPFLAGS)
$(LDFLAGS) -o XDG_C_PROGRAM XDG_C_PROGRAM_OBJECT $(XD_C_OBJECTS)
$(XD_C_STUB_OBJECTS) $(MOTIFLIBS) $(LDLIBS)

When Sun WorkShop Visual generates the Makefile, it adds a separate instance of

these lines for each design file for which you have generated code with the “Main

program” toggle set. Other files in the application are linked in as XD_C_OBJECTS
and XD_C_STUB_OBJECTS.

#DO NOT EDIT >>>

myapp1: myapp1.o $(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) $(CC) $(CFLAGS)
$(XDG_DEBUG_FLAGS) $(CPPFLAGS) $(LDFLAGS) -o myapp1 myapp1.o

$(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) $(MOTIFLIBS) $(LDLIBS)

#<<< DO NOT EDIT

#DO NOT EDIT >>>

myapp2: myapp2.o $(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) $(CC) $(CFLAGS)
$(XDG_DEBUG_FLAGS) $(CPPFLAGS) $(LDFLAGS) -o myapp2 myapp2.o

$(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) $(MOTIFLIBS) $(LDLIBS)

#<<< DO NOT EDIT

The following table shows the ordinary template symbols. You can add a _LIST
suffix to most of these symbols to generate the corresponding list symbol. You

cannot add _LIST to the “FLAGS” symbols. The filenames shown in parentheses are

for illustration only.

TABLE 25-1 Makefile Template Symbols

Name Use

XDG_C_PROGRAM_SOURCE C source for main program (main.c)

XDG_C_PROGRAM_OBJECT Corresponding object (main.o)

XDG_C_PROGRAM Corresponding executable (main)



Chapter 25 Configuration 711

XDG_C_SOURCE C source (foo.c)

XDG_C_OBJECT Corresponding object (foo.o)

XDG_C_STUB_SOURCE C stubs (stubs.c)

XDG_C_STUB_OBJECT Corresponding object (stubs.o)

XDG_C_EXTERN C header (externs.h)

XDG_C_PIXMAP C pixmaps (pixmaps.h)

XDG_CC_PROGRAM_SOURCE C++ source for main program

(main.cpp)

XDG_CC_PROGRAM_OBJECT Corresponding object (main.o)

XDG_CC_PROGRAM Corresponding executable (main)

XDG_CC_SOURCE C++ source (foo.cpp)

XDG_CC_OBJECT Corresponding object (foo.o)

XDG_CC_STUB_SOURCE C++ stubs (stubs.cpp)

XDG_CC_STUB_OBJECT Corresponding object (stubs.o)

XDG_CC_EXTERN C++ header (externs.h)

XDG_CC_PIXMAP C++ pixmaps (pixmaps.h)

XDG_JAVA_WIDGET_HDR Include directory for extra Java

Widgets

XDG_JAVA_WIDGET_LIB Archive Library for extra Java

Widgets

XDG_UIL_SOURCE UIL source (foo.uil)

XDG_UIL_OBJECT Corresponding compiled UIL (foo.uid)

XDG_C_FOR_UIL_PROGRAM_SOURCE C for UIL source with main program

(main.c)

XDG_C_FOR_UIL_PROGRAM_OBJECT Corresponding object (main.o)

XDG_C_FOR_UIL_PROGRAM Corresponding executable (main)

XDG_C_FOR_UIL_SOURCE C for UIL source (foo.c)

XDG_C_FOR_UIL_OBJECT Corresponding object (foo.o)

XDG_C_FOR_UIL_EXTERN C for UIL header (externs.h)

XDG_UIL_PIXMAP UIL pixmaps (pixmaps.uil)

TABLE 25-1 Makefile Template Symbols (Continued)

Name Use



712 Sun WorkShop Visual User’s Guide • May 2000

For completeness, the following table shows you the Makefile template symbols

used for Smart Code generation. Note, however, that these are for Sun WorkShop

Visual’s private use only and are not intended to be modified.

XDG_X_RESOURCE_FILE X resource file (foo.res)

XDG_C_DEBUG_FLAGS C compiler debugger flag(s)

XDG_CPP_DEBUG_FLAGS C++ compiler debugger flag(s)

TABLE 25-2 Private Makefile Template Symbols for Smart Code

Name Use

XDG_CC_GROUP_OBJECT Smart Code C++ object files

XDG_CC_GROUP_SOURCE Smart Code C++ source files

XDG_CC_SERVER_GROUP_OBJECT Server-side Smart Code C++ object files

XDG_CC_SERVER_GROUP_SOURCE Server-side Smart Code C++ source files

XDG_CC_SERVER_PROGRAM Server-side Smart Code C++ executeable

name

XDG_CC_SERVER_PROGRAM_OBJECT Server-side Smart Code C++ main object file

XDG_CC_SERVER_PROGRAM_SOURCE Server-side Smart Code C++ main source

file

XDG_C_GROUP_CFLAGS Compiler flags required for C/C++ Smart

Code

XDG_C_GROUP_LFLAGS Linker flags required for C/C++ Smart Code

XDG_C_GROUP_OBJECT Smart Code C object files

XDG_C_GROUP_SOURCE Smart Code C source files

XDG_C_SERVER_GROUP_CFLAGS Server-side Smart Code C/C++ Compiler

flags

XDG_C_SERVER_GROUP_LFLAGS Server-side Smart Code C/C++ Linker flags

XDG_C_SERVER_GROUP_OBJECT Server-side Smart Code C object files

XDG_C_SERVER_GROUP_SOURCE Server-side Smart Code C source files

XDG_C_SERVER_PROGRAM Server-side Smart Code C executeable name

XDG_C_SERVER_PROGRAM_OBJECT Server-side Smart Code C main object file

XDG_C_SERVER_PROGRAM_SOURCE Server-side Smart Code C main source file

TABLE 25-1 Makefile Template Symbols (Continued)

Name Use



Chapter 25 Configuration 713

Dynamic Display Window

To ensure that your application looks and feels the same inside Sun WorkShop

Visual and when running as an independent application, the dynamic display runs

off a separate X resource database and has its own application class name -

XDdynamic.

This means that the dynamic display cannot pick up Sun WorkShop Visual specific

resources. What you see inside Sun WorkShop Visual is what you will see when you

compile and run your code.

The dynamic display can be configured independently by creating a file called

XDdynamic and placing both application specific and general resources in the file.

For example, to produce a black and white appearance for printing add lines of the

form:

XDdynamic*foreground: black

XDdynamic*background: white

For application specific resources, use the application class name as it appears in

XDesigner for your product, for example:

XApplication*XmPushButton.background: #dededededede

Application specific resources of this type only load if the current application class

matches the class in the file.

The XDdynamic file should be placed where Sun WorkShop Visual can pick it up

through the normal X resource search mechanisms, as mentioned in “Introduction”

on page 867.

XDdynamic resources affect only the dynamic display, and have no effect on any

generated code.

Any Loose Bindings for the application are loaded after the XDdynamic resource

file, and are similarly loaded into the separate application resource database: these

take precedence over XDdynamic resources.

Specific resources applied to individual widgets through the resource panels are

unaffected by all this, and will always take effect.



714 Sun WorkShop Visual User’s Guide • May 2000



715

CHAPTER 26

Command Summary

Introduction

This chapter is a quick reference guide to Sun WorkShop Visual commands. It

includes:

■ All menu commands in the main menu bar

■ Some additional Sun WorkShop Visual commands

■ Instructions for accessing on-line help

■ A table of keyboard accelerators

This chapter is designed as a quick reference for experienced users. More detail on

the commands is found in the appropriate chapters of this document and in the on-

line help.

Some menu items execute immediately, while others display a dialog where you

must enter further information before anything happens. Commands that display a

dialog have three dots (...) after the command name.

Many commands have keyboard accelerators which allow you to execute them with

a single keystroke. The accelerators are listed in a table at the end of this chapter.

Widget Name and Variable Name

Two text boxes at the top of the main Sun WorkShop Visual screen let you specify a

variable name and widget name for the currently selected widget.



716 Sun WorkShop Visual User’s Guide • May 2000

The variable name is the name used to identify that widget in the generated code.

Variable names must be unique. If you do not specify a variable name, Sun

WorkShop Visual assigns a unique name of the form <widget-class><n>. The number

n is not guaranteed to stay the same every time you open the design file. Therefore,

you should never refer to a default name in your code.

Explicitly named widgets are global in scope. Those not explicitly named are local,

unless you change this status on the Core resource panel.

The widget name can be the same as the variable name or different. Widget names

do not have to be unique in a design. Groups of widgets that share a widget name

also share any resource settings that are generated into the X resource file. See

Chapter 7, “Generating Code”, starting on page 207, for more information.

FIGURE 26-1 Text Fields for Widget and Variable Name

The File Menu

Commands on Sun WorkShop Visual’s File Menu control only design files. Design

files are the principal Sun WorkShop Visual files and, by convention, have the suffix

.xd. They contain a design hierarchy (which may consist of multiple dialogs), the

resource values set on the resource panels, callbacks and links.

New

Clears the construction area so that you can begin a new design. If you have not

saved your work since the last change, you are asked if you want to save before the

construction area is cleared.

Open...

Opens an existing design file. You are prompted for the name of the file. If you have

not saved your work since the last change, you are asked if you want to save before

the new file is read in to replace it.



Chapter 26 Command Summary 717

Read...

Merges the contents of a file into your current design. Since all design files begin

with a Shell widget, this adds one or more dialogs to your design.

Variable names of widgets must be unique across the entire design. When you

combine two designs with “Read”, any variable names in the file that duplicate

names already in your design are silently removed and replaced with local names of

the default form <widget-class><n>.

To merge parts of dialogs from one design to another, use the “Copy to File” and

“Paste from File” commands in the Edit Menu.

Save

Saves the current design using its previously specified filename. If your current

design is new and has never been saved before, you are prompted for a filename as

in “Save as...”.

Save as...

Saves the current design under a specified filename. The Sun WorkShop Visual file

browser is displayed for you to specify a filename. Use this command when saving a

new design file for the first time or if you wish to save your design in a format

suitable for reading into Visaj, the visual application builder for Java. See “Moving

Sun WorkShop Visual Designs to Visaj” on page 347 for more information.

Print...

Prints the current design, or selected part of it, to a printer or a file. To print to a file,

click on the “File” toggle and enter the filename in the text box under “File”. To send

to a printer, click on the “Command” toggle and enter the command, such as lpr, in

the same text box, which is now labeled “Command”. Because the output is

Postscript, a Postscript printer or viewer is required.

The option menus in the Print Dialog let you specify the page size, orientation,

pages and scale. In the “Scale” option menu, the reduced scale option prints the

diagram two-thirds of its actual size. Note that if the “Scale to fit” option is not

selected, the diagram prints on as many pages as required. The “Pages” option menu

lets you print all the hierarchies in your design if your design contains more than

one dialog, or just the hierarchy currently displayed in the construction area.



718 Sun WorkShop Visual User’s Guide • May 2000

Selecting the “Show names” toggle lets you print the variable names of the widgets.

Selecting the “Print headings” toggle puts a border around the hierarchy and prints

a title, which you can specify in the “Title” text field. The title can have only a single

line of text.

Exit

Leaves Sun WorkShop Visual. If you have not saved your work since the last change,

you are asked whether you want to save before Sun WorkShop Visual exits.

The Edit Menu

The Edit Menu has commands for editing the design hierarchy. All Edit options

operate on the currently selected widget including all its children in the hierarchy.

Cut

Removes the currently selected widget from the design hierarchy and copies it into

the Sun WorkShop Visual clipboard.

Copy

Copies the currently selected widget to the clipboard.

Paste

Copies the contents of the clipboard into the hierarchy as a child of the currently

selected widget.

If the clipboard is empty, or if the widget in the clipboard cannot be made a child of

the currently selected widget, then “Paste” is disabled.



Chapter 26 Command Summary 719

Clear

Deletes the currently selected widget. A confirmation dialog is displayed. Cleared

widgets are not put into the clipboard and therefore cannot be pasted.

Copy to File...

Copies the currently selected widget to a clipboard file. You are prompted for the file

name you want to use.

Paste from File...

Copies the contents of a clipboard file into the hierarchy as a child of the currently

selected widget. You are prompted for the name of the clipboard file. If the widget at

the root of the clipboard file hierarchy cannot be made a child of the currently

selected widget, this operation shows an “Invalid hierarchy” error message.

“Paste” always makes the pasted widget the last child of the selected widget. To

reorder children of a widget, use dragging, discussed below.

Search...

Displays the search dialog. This is explained fully in the Search section on page 2-38.

Move by Dragging

You can move a widget to another position in the hierarchy by dragging its icon

with mouse button 1. This is the equivalent of using “Cut” followed by “Paste”.

Copy by Dragging

You can copy a widget to another location in the tree by dragging its icon with

mouse button 2. This is the equivalent of using “Copy” followed by “Paste”.



720 Sun WorkShop Visual User’s Guide • May 2000

The View Menu

The View Menu has commands that affect the appearance of the main Sun

WorkShop Visual window. Each command in this menu is a toggle and can be

turned on or off. The View options only affect the appearance of the Sun WorkShop

Visual screen, not your design.

Show Variable Names

Displays the name of each widget in your design underneath the widget icon in the

design area. The name shown is the unique variable name of the widget.

FIGURE 26-2 Show Widget Names



Chapter 26 Command Summary 721

Show Dialog Names

Displays the widget name assigned to each Shell in your design underneath its icon

in the window holding area. “Show dialog names” is particularly useful for

navigating in designs that have multiple dialogs. Note that the Shell icon shrinks to

allow room for the dialog name.

FIGURE 26-3 Show Dialog Names (Window Holding Area Shown)

Left Justify Tree

Changes the appearance of the hierarchy in the design area from a centered tree with

branches spreading in both directions to a left-justified one with its branches

spreading to the right.

FIGURE 26-4 Left Justify Tree



722 Sun WorkShop Visual User’s Guide • May 2000

Shrink Widgets

Reduces the size of widgets in the construction area. Use this option when the

hierarchy you are building becomes large and you want to see the whole or a large

proportion of the hierarchy. The widgets are shrunk to a uniform small square. As

with the other View options, your actual design is not affected.

FIGURE 26-5 Shrink Widgets

Widget Annotations

Annotates widgets in the construction area according to specified criteria. You can

request that the tree be annotated if the widget has:

■ Callbacks

■ Methods

■ Links

■ A pre-create prelude

■ A pre-manage prelude

You can also request that the tree be annotated to indicate the results of the previous

search operation. To turn on an annotation, select the appropriate toggle from the

Annotations pullright menu. You can tear off the pullright menu to use as an

annotation reference, as shown in Figure 26-6. To tear off the menu, click on the

dashed line. Annotations are explained more fully in “Widget Annotations” on

page 45.

FIGURE 26-6 “Annotations” Tear-Off Menu



Chapter 26 Command Summary 723

Structure Colors

Color-code widgets in the construction area. When this option is on, separate colors

are used to indicate those widgets in the hierarchy which have been designated as

functions, data structures, C++ classes, or children only (via the “Code generation”

page of the Core resource panel). These designations are discussed in “Structure

Colors” on page 47. This option has no effect if all your widgets are default

structures.

To turn on this option, click on the “Show colors” toggle in the pullright menu. You

can tear off the pullright menu to use as a color reference, as shown in Figure 26-7.

To tear off the menu, click on the dashed line.

FIGURE 26-7 “Structure Colors” Tear-Off Menu

The Palette Menu

The Palette Menu contains options which change the appearance of the Widget

Palette.

Layout

Specifies whether the Palette is to be displayed with icons, labels, or both. Click on

the appropriate toggle button in the pullright menu.

Separate Palette

Displays the Widget Palette in a separate sub-dialog. Sun WorkShop Visual Window

will then have more room for displaying the Design Area. You can select from and

add to the separated Widget Palette in the normal manner.



724 Sun WorkShop Visual User’s Guide • May 2000

Show Palette

Re-displays and raises the separated Widget Palette to the top of the window stack.

This is a useful option when you have closed down the separated Widget Palette, or

have lost it underneath all your separate application dialogs. This option is disabled

if a separate palette has not been chosen.

Define

Designates the currently selected widget as a widget definition. This option is a

short-hand method of creating widget definitions. The currently selected widget (if

specified as a class) will form a new definition using some default configuration data

deduced by context.

Edit Definitions...

Displays the Edit Definitions panel which allows you to turn portions of your

widget hierarchy into reusable objects selectable from the Widget Palette.

The Widget Menu

The Widget Menu has commands that apply to individual widgets. All these

commands apply to the currently selected widget in the hierarchy.

Resources...

Displays the resource panel for the currently selected widget. You can also display

the resource panel for most classes of widgets by clicking twice on the widget’s icon

in the design hierarchy.

Resource panels are discussed in detail in Chapter 3, “Resources”, starting on page 53.

Some individual resources are also discussed on a per-widget basis in Chapter 27,

“Widget Reference”, starting on page 743.



Chapter 26 Command Summary 725

Core Resources...

Displays the Core resource panel, where you can set resources inherited from the

Core, Primitive and Manager superclasses. Core resources include foreground and

background colors and whether or not a widget is sensitive to events.

The “Code Generation” page of the Core resource panel lets you specify individual

widgets as local, global, or static, regardless of whether they are explicitly named. If

you are using C++, this page also lets you specify public, private, or protected status

for the selected widget. It also allows you to change the class access for Java code

generation.

Loose Bindings...

Displays the Loose Bindings Dialog. This allows you to control the way in which

resources are generated in the resource file so that widgets can share resources. See

“Loose Bindings” on page 86 for more details.

Layout...

Displays the Layout Editor. This option is available for the four classes of layout

widget - the Form, BulletinBoard, RowColumn and DrawingArea. For more

information, see Chapter 4, “The Layout Editor”, starting on page 97.

Constraints...

Displays the constraints panel for any widget that is a child of a constraint widget -

a PanedWindow or Form. In the case of the Form, this panel should usually be used

only to view the constraint resources rather than to reset them, because Form

attachments can be set more reliably in the Layout Editor. The Constraints panel is

discussed in Chapter 3, “Resources”, starting on page 53.

Callbacks...

This displays the Callbacks Dialog, as shown in Figure 26-8. You can set callbacks for

the selected widget here. This dialog is described in detail in “Designating a

Callback” on page 173.



726 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 26-8 Callbacks Dialog

Event Handlers...

Displays the Event Handlers Dialog which allows you to add low level input

handling for a widget, bypassing the widget’s translation tables. Event handlers are

generated by Sun WorkShop Visual into the code file as part of the general widget

configuration and a stub is generated into the stubs file. See “Event Handlers” on

page 203 for more information.

Translations...

Lets you specify translations for the currently selected widget. A translation is a key

sequence that is mapped to a specified action on the widget. Translations can be one

of two kinds, “Override” or “Augment”. “Override” translations override any

translations already set on the given key sequence. “Augment” translations are

added to the list of translations already set.



Chapter 26 Command Summary 727

FIGURE 26-9 Translations Dialog

If you use the “Replace” toggle on this dialog, the translations you type into the

upper box replace any translations already set on this widget. When “Replace” is set,

you cannot use the “Augment” text box.

For more information, see “Translations and Actions” on page 190.

Add to Groups...

Displays the Group Editor where you can add the selected widget to an existing

Group. Groups are the nuts and bolts of Smart Code which, in turn, provides the

foundations for creating applications capable of connecting to the World Wide Web.

The Group Editor also allows you to edit the Groups. Groups, along with the Group

Editor, are explained in Chapter 15, “Groups”, starting on page 477. “Get/Set

Tutorial” on page 493 contains a short tutorial to help you get the most from Groups

and basic Smart Code.

Add to a New Group...

Creates a new Group adding the selected widget as its first member. This option

displays the Group Editor, allowing you to edit any existing Groups, including the

one you have just added, as described in the above section.



728 Sun WorkShop Visual User’s Guide • May 2000

Code Preludes...

Allows you to add pieces of code to the code generated for the currently selected

widget. The most commonly used types are pre-create and pre-manage preludes.

Pre-create preludes appear just before the widget is created. A typical use of pre-

creation preludes is to set widget resources that can only be set at widget creation

time.

Pre-manage preludes appear just before the widget’s callbacks are added. They are

typically used for setting up client data for the callbacks.

When you select “Code preludes” you are given the choice of editing “in place” (in

the generated code) or typing code into a dialog and allowing Sun WorkShop Visual

to add it to the generated code. If you choose to “Edit in place”, the generated code

is opened at the appropriate line for the type of prelude selected. See “Code

Preludes” on page 242 for more details on prelude editing. See “Setting up Callback

and Prelude Editing” on page 701 for details on using the edit mechanism.

Code preludes for private, protected and public methods apply to C++ class

widgets. For more information, see “Adding Class Members” on page 291.

Method Declarations

Allows you to add, remove and edit method declarations in a widget’s C++ class.

Reset

Destroys the currently selected widget and all its children and recreates them. This is

useful after you set certain resources on the resource panels or in the Layout Editor.

Sometimes creating a widget and then changing a resource value gives a different

result from creating the widget initially with the changed value. Therefore, if your

dynamic display does not reflect changed resource settings the way you expected,

resetting widgets can often solve the problem.

Edit Links...

Allows you to you set up or remove links from widgets. Links are pre-defined

Activate callbacks and can be set only on button-type widgets. Links can show, hide,

manage, unmanage, enable or disable any widget. You can set multiple links on one

button. For more information see “Links” on page 183.



Chapter 26 Command Summary 729

Fold/Unfold

Hides/displays the children of a selected widget. Use this toggle to save space when

your design hierarchy becomes too large to fit in the construction area. When the

selected widget is folded, its children are hidden, though they are not removed from

the design. When a widget is folded, the fold icon changes to a plus sign (+). When

it is unfolded, the icon is a minus sign (-). You can also click over this icon to fold or

unfold the hierarchy.

FIGURE 26-10 Folded Widgets

Definition

Marks the currently selected hierarchy of widgets as a reusable object definition. The

definition can be inserted into the widget palette and then selected just like any

other palette widget.

The Module Menu

The commands on this menu refer to operations on the whole design rather than

individual widgets.

Loose Bindings...

Displays the Loose Bindings dialog, allowing you to set loose resource bindings for

the whole design. See “Loose Bindings” on page 86 for a description of the Loose

Bindings dialog.

Fold icon
indicating folded
children



730 Sun WorkShop Visual User’s Guide • May 2000

Module Preludes...

Displays a dialog box that lets you enter lines of code to be entered at or near the

beginning of the generated code file.

The Module Heading is inserted at the beginning of the primary code module and at

the beginning of the stubs file, if generated. The Module Heading is typically used

for SCCS ids, versions and other identifying information.

The Module Prelude is inserted after the generated Sun WorkShop Visual #include
directives, if any, and is typically used for #include or #define directives or extern
declarations required by your code preludes.

The Resource Prelude is inserted after the Sun WorkShop Visual generated comment

in the X resource file. It can be used to set global application resources or to #include
another resource file.

Help Defaults

Displays a dialog which allows you to specify defaults for the help system.

The Default Path field denotes the path used for help document names. It is also

used in Sun WorkShop Visual as a fall-back location for generated code.

The Default Document field is used if a marker for help is set but no document is

specified for the widget or any of the widget ancestors.

The Path Resource and Path environment variable fields allow you to provide a

dynamic help document context: code will be generated so that any values specified

will be used to override any setting of the Default path: the runtime environment

variable takes precedence over the static resource setting.

The Default Translation field will cause a translation to be added to every widget

which has a help marker; the associated Action for this translation will always be

Help. For example, a translation ‘Ctrl<key>A’ will mean that unless specified

otherwise Control A will cause the Help message window to be displayed for a

widget which has a help marker.

The ‘Always own window’ toggle, when set, causes code to be generated so that

each access to the Help System will result in a new Help Document window.

See Chapter 21, “Hypertext Help”, starting on page 597 for more information on

adding help to your design.



Chapter 26 Command Summary 731

Work Procedures...

Displays a dialog allowing you to add the names of functions which you wish to be

called when the X toolkit has no other events to process. X work procedures are,

therefore, a convenient means of setting up a background batch process. Stubs are

generated for these procedures in exactly the same was as for widget callbacks. “Xt

Work Procedures” on page 200 provides a more thorough description of this process.

Input Procedures...

Displays a dialog for adding the names of functions you wish to be called when a

specified file or pipe is ready for reading or writing. This allows you an alternative

source for events. More about these is given in “Input Procedures” on page 201.

Language Procedure...

Displays a dialog where you can specify the name of a language procedure which is

called when your application starts up. This gives you a place to provide additional

code for setting up the locale. See “Language Procedures” on page 202 for more

information on this topic.

Timeout Procedures...

Displays a dialog where you can add the name of a procedure to be called after a

specified amount of time has elapsed. The stubs for these are generated into the

main code file. See “Timeout Procedures” on page 201 for more information.

Action Procedures...

Allows you to specify the action associated with a particular translation. See

“Translations and Actions” on page 190 for information on setting up a translation

for a widget and “Additional Actions” on page 197 for information on adding an

action procedure.



732 Sun WorkShop Visual User’s Guide • May 2000

Groups...

Displays the Group Editor where you may edit the Groups in your design. Groups

are the nuts and bolts of Smart Code which, in turn, provides the foundations for

creating applications capable of connecting to the World Wide Web. Groups, along

with the Group Editor, are explained in Chapter 15, “Groups”, starting on page 477.

“Get/Set Tutorial” on page 493 contains a short tutorial to help you get to grips with

Groups and basic Smart Code.

Java Compliant

When this toggle button is selected, Sun WorkShop Visual checks over your design

to see whether the design can be generated as Java code. If the compliance check

fails, a dialog appears informing you of the failures. Some of these can be fixed

automatically by Sun WorkShop Visual, if you wish. This dialog is described in “Java

Compliance Failure Dialog” on page 316.

Microsoft Windows compliant

This toggle (only present when Sun WorkShop Visual is in Microsoft Windows

mode) is used to indicate that the design is Microsoft Windows compliant, i.e. it is

possible to generate MFC code for it. The toggle is set if the design is compliant. If

the design becomes non-compliant, the toggle is unset and the Microsoft Windows

Compliance Failure dialog is displayed (see “Compliance Failure” on page 369).

Application Class...

The MFC and Motif XP flavors use an instance of the CWinApp class to represent

the application. By popping up the Application class dialog you can change the base

class name, the class name and the instantiate as name for this instance. This item is

only present when Sun WorkShop Visual is in Microsoft Windows mode.

The Generate Menu

When your design is complete, the Generate Menu can be used to generate code for

it in three languages: C, C++, or UIL. The three menu items relating to these

languages are pullright menus from which you can select the file you wish to



Chapter 26 Command Summary 733

generate. From this menu you can also generate an X resource file containing

resource values explicitly set in your design, a Microsoft Windows resource file (if

you are running in Microsoft Windows mode) and a Makefile. You can also select a

general “Generate” option to display the Generate dialog and then specify all the

files to be generated. The procedure for generating code, linking and running is

discussed in Chapter 7, “Generating Code”, starting on page 207.

If you select a particular file from the menu (C, C Stubs, C++ Stubs etc.), the generate

dialog will only appear if you have not generated a file of that type before -

otherwise the file will be generated silently.

C

Displays the C tear-off or pullright menu.

C++

Displays the C++ tear-off or pullright menu.

UIL

Displays the UIL tear-off or pullright menu.

X Resource File...

Generates an X resource file from your design. By convention, generated X resource

files have the suffix .res. They must be copied to the location expected by X in order

to take effect.

You must use the same application class name for the X resource file that you used

when you generated the primary module, or X will not be able to associate your

resources with the generated application.



734 Sun WorkShop Visual User’s Guide • May 2000

Microsoft Windows Resources...

Generate a Microsoft Windows resource file and the associated bitmap (.bmp) and

icon (.ico) files. The Microsoft Windows resource file typically has the extension .rc.

This option is only present when Sun WorkShop Visual is in Microsoft Windows

mode.

Makefile...

Generates a Makefile to build your application. If you have specified filenames in

the Generate dialog, these are used. Otherwise the default names are used.

Java

Generates Java code for your design. The first time you select this option, the

Generate dialog is displayed with the language set to “Java”, thereby allowing you

to set any options you may require. Once you have generated Java code, selecting

this option will generate the previously selected files without displaying the

Generate dialog. Instead, a message appears telling you which files have been

generated. For more information on generating Java code, see “Generate Dialog” on

page 336.

Generate...

Displays the Generate dialog, as shown in Figure 26-11. This dialog can be used to

generate files, to save generate option settings and to enable you to see “at-a-glance”

the files that you are generating.



Chapter 26 Command Summary 735

FIGURE 26-11 Generate Dialog

The Generate dialog allows you to type in the names of the files to be generated

using either the full pathname or a name relative to a base directory which you can

specify in this dialog.

There are a number of sub-dialogs in the Generate dialog which relate to individual

files. There is also a sub-dialog which allows you to set code options which affect

code generation generally. The Code Options dialog contains sets of option menus

which control generation of code segments (in code files only), types of resources (in

code and X resource files) and a masking policy switch that works in conjunction

with the resource type toggles. The Code Options dialog, shown in Figure 26-12, is

explained in Chapter 7, “Generating Code”, starting on page 207.

FIGURE 26-12 Code Generation Options Dialog

Include/exclude
code segments

Masking policy
switch

Include/exclude
resource types



736 Sun WorkShop Visual User’s Guide • May 2000

Tear-Off Menus

The procedure for generating code is basically the same regardless of your choice of

language. The pullright menus for C, C++ and UIL can be torn off into a separate

window by clicking on the dashed line at the top of the menu. You can also invoke

commands from the pullright menu in the usual way without tearing off the menu.

After you have displayed or torn off one of these menus, you can select one of the

following commands.

C, C++, or UIL...

Generates the primary code module in the language of your choice.

Stubs or C++ Stubs...

Generates a stubs file, containing function declarations and empty braces for any

callback functions you have designated in your design. Use of a stubs file ensures

that your callbacks are declared with the proper syntax. You can then write code

between the braces to add functionality.

Externs, C++ Externs, or Externs for UIL...

Generates a header file that declares all global objects and functions in your design.

For convenient access to your global widgets and defined objects, #include this file in

your primary code module or stubs file.

C, C++, or UIL Pixmaps...

Generates static declarations of all pixmaps in your design into a separate file. This

file is meant to be included as a header file and by convention has the suffix .h.

C, C++, or UIL Main Module...

Generates the primary code module in the language of your choice.



Chapter 26 Command Summary 737

C for UIL...

Generates a C file that performs those functions in your application not covered by

the UIL file. This command applies only to UIL applications. It exists because UIL

does not have all the capabilities offered in Sun WorkShop Visual. You must first

generate a UIL file and specify the name of that file in the “Uid File” text field.

The Tools Menu

This menu contains a list of available tools. The tools fall into two categories: those

that are independent but work in conjunction with Sun WorkShop Visual and those

that are an integral part of Sun WorkShop Visual.

AppGuru Designer...

Displays the AppGuru Design dialog where you can choose an existing AppGuru

template, edit the templates and create new ones. Selecting a template from this

dialog adds it to your design, thus giving you reusable, standard interfaces. See

“AppGuru” on page 418 for details.

Pixmap Editor

This is an internal editor for creating pixmaps. See “Editing Pixmaps” on page 148

for more details.

Font Selector

This is an internal tool for selecting fonts and creating font objects. See “Setting

Fonts” on page 139 for more details.

Color Selector

This is an internal tool for selecting colors and creating color objects. See “Setting

Colors” on page 135 for details.



738 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop Visual Capture

This is a separate tool which captures the design of a Motif/Xt application of your

choice. See “Sun WorkShop Visual Capture” on page 425 for more details on

capturing designs.

Sun WorkShop Visual Replay

This is a separate tool which allows you to record your use of a Motif/Xt application

of your choice and to replay the recorded script. See Chapter 14, “Sun WorkShop

Visual Replay” for more details on recording and replaying.

The Help Menu

The Help Menu provides ways of getting information about Sun WorkShop Visual.

To get specific help, click on the “Help” button on any dialog box. Sun WorkShop

Visual’s help is organized as a hypertext network. Each help screen displays a list of

related topics, as shown in Figure 26-13. To display help for one of the related topics,

double click on the topic.



Chapter 26 Command Summary 739

FIGURE 26-13 Help Viewer

Click on the “Home” button to go to the top help screen. Double click on the “Index

of Help Topics” link for a complete list of help topics.

About Sun WorkShop Visual

Displays the Sun WorkShop Visual copyright screen and the version of the software.

Palette Icons...

Displays a window with pictures of all the Motif widget icons. You can click on any

of these icons to get information about that widget class. The Palette Icons window

can be iconified independently of the main Sun WorkShop Visual window.

Links to related
help topics

Home button



740 Sun WorkShop Visual User’s Guide • May 2000

Help...

Displays the top-level help screen in the hypertext index. This screen offers a very

general help message and the opportunity to follow links into more specific subjects.

Documentation...

Displays the User’s Guide in Netscape. If you have selected Sun WorkShop Visual

Help as the viewer, this item is unavailable.

Viewer

This is a pullright menu which allows you to choose which application to use to

display Sun WorkShop Visual help. There are two items in the menu:

■ Use Netscape - the popular HTML browser

■ Use XD/Help - Sun WorkShop Visual’s own HTML viewer

Keyboard Shortcuts

The following table lists the keyboard accelerators for the Sun WorkShop Visual

commands.

TABLE 26-1 Keyboard Accelerators for Sun WorkShop Visual Commands

Menu Command Accelerator

File New Control+N

Open... Control+O

Read... Control+R

Save Control+A

Save as.... Control+V

Print... Control+P

Exit Control+E

Module Module Prelude... Control+F9



Chapter 26 Command Summary 741

Edit Cut <keypad>Cut

Copy <keypad>Copy

Paste <keypad>Paste

Clear Del

View Show widget names Control+W

Show dialog names Control+D

Left justify tree Control+L

Widget Core resources... Control+C

Event Handlers... Control+H

Reset Control+T

Fold/unfold Control+F

Generate C... Alt+C

UIL... Alt+U

C for UIL... Alt+L

X Resources... Alt+X

Makefile... Alt+K

Java Alt+J

Pixmap

Editor

New Control+N

Open Control+O

Save Control+S

Close Control+Y

Undo <keypad>Paste

Cut <keypad>Cut

Copy <keypad>Copy

Paste <keypad>Paste

Clear Del

Select All Control+A

Resize Control+R

Edit Palette Control+P

TABLE 26-1 Keyboard Accelerators for Sun WorkShop Visual Commands (Continued)

Menu Command Accelerator



742 Sun WorkShop Visual User’s Guide • May 2000

Layout

Editor

Close Control+Y

Undo Control+Z

Reset Control+T

Widget Names Control+W

Class Names Control+N

Edge Highlights Control+E

Help About Sun WorkShop Visual... Control+F10

Help... F1 or HELP

TABLE 26-1 Keyboard Accelerators for Sun WorkShop Visual Commands (Continued)

Menu Command Accelerator



743

CHAPTER 27

Widget Reference

Introduction

This chapter provides a brief description of each of the Motif widgets in the widget

palette and gives hints for their effective use. It also describes some of the quirks of

each widget. Only basic information is given here. For a full description of each

widget, including all its resources, see the Motif Programmer’s Reference Manual.

Each widget description starts with a list of resources grouped by page in the

resource panel. Also listed are the callbacks applicable to the widget. Although,

strictly speaking, the callbacks for a widget are resources, they are added, edited and

viewed in a separate callbacks dialog.

Core resources are not listed to avoid repetition. Resources in bold typeface are

frequently set and so are of interest to users regardless of their level of expertise.

Resources in normal typeface are less commonly used and you may require more

knowledge to use them effectively. Resources that are in italics are not applicable to

that widget and are insensitive on the resource panel.

Note – If you invoke Sun WorkShop Visual using the command small_visu , the

widget icons are smaller and slightly different from those shown here.



744 Sun WorkShop Visual User’s Guide • May 2000

ArrowButton

The ArrowButton widget provides a button with an arrow on it instead of a text

label. The arrow can point up, down, left, or right. Choose one of the four directions

by selecting the appropriate direction from the option menu on the ArrowButton

resource panel which is shown in Figure 27-1.

FIGURE 27-1 ArrowButton Resource Panel

Unlike other button widgets, ArrowButtons are not derived from the Label and

cannot display text or pixmap labels.

Settings Callbacks Toggles

Arrow direction Activate Widget

Arm Gadget

Disarm

Select
direction



Chapter 27 Widget Reference 745

BulletinBoard

The BulletinBoard widget is the most basic container widget. It is most commonly

used internally by Motif to implement other container or composite widgets such as

the Form, SelectionBox and MessageBox. These derived widgets are often more

useful than the BulletinBoard itself.

As a container widget, the BulletinBoard does not impose any particular layout on

its children. It provides absolute positioning, margin constraints and lets you specify

whether the widgets inside are allowed to overlap or not. Resizing the BulletinBoard

does not move or resize the widgets in it.

The BulletinBoard is most useful for transient dialogs that are not meant to be

resized. For resizable dialogs, use a Form or DialogTemplate. You can also use a

BulletinBoard for cases where complicated positioning is required and code is to be

written for this purpose.

Only the Move and Resize options of the Layout Editor can be used with a

BulletinBoard. Attachments between widgets and position attachments are not

available. For more flexible layout options, use a Form widget.

If a BulletinBoard is the child of a Shell, the BulletinBoard’s “Title” resource is used

as the title of the Shell’s window.

Note that the “Title”, “Dialog style”, “Default position” and “No resize” resources

are disabled if the BulletinBoard is a child of the Form.

The “Auto unmanage” resource, when set to “Yes”, makes the dialog disappear

whenever you click on a button child of a BulletinBoard. This behavior, which is the

default behavior in Motif, is useful for transient dialogs but can be confusing in

main windows. Sun WorkShop Visual explicitly sets this resource to “No” for the

BulletinBoard and two of its derivatives, the DialogTemplate and the Form. With

Display Settings

Title Dialog style

Margin height Resize policy

Margin width Shadow

Horizontal spacing Allow overlap
Vertical spacing Auto unmanage
Fraction base Default position
Cancel button No resize

Default button Rubber positioning

Fonts Callbacks

Text font Focus

Button font Map

Label font Unmap



746 Sun WorkShop Visual User’s Guide • May 2000

other BulletinBoard derivatives, Sun WorkShop Visual does not override the default

“Yes” setting and so the dialog does disappear if you click any button. To restore

your dynamic display, reset the Shell or select the Shell icon in the window holding

area.

The “Default position” resource controls how the position of the window on the

screen is determined. If you set this resource to “No” on a BulletinBoard (or

derivative) that is a child of a Shell, the window is displayed in the position

determined by the x and y resources of the BulletinBoard, not those of the Shell. As

this behavior is dependent on the window manager, it may not be consistent.



Chapter 27 Widget Reference 747

CascadeButton

The CascadeButton widget is used to display a menu. A CascadeButton can only be

used as the child of a MenuBar or Menu. When it is the child of a MenuBar, a

pulldown menu is displayed and when it is the child of a Menu, a pullright menu is

displayed. Sample hierarchies showing these specific uses of the CascadeButton are

located in the Menu widget description.

The only permissible child of a CascadeButton is a Menu. When a user clicks on a

CascadeButton, a menu is displayed.

In Motif, a Menu is not technically a child of a CascadeButton but of the button’s

parent. To indicate this, the connection between a CascadeButton and its menu is

drawn with a dotted line instead of the normal solid line.

Display Margins

Label Top

Font Bottom

Pixmap Left

Insensitive pixmap Right

Cascade pixmap Width

Arm color Height

Arm pixmap Spacing
Select pixmap Default shadow
Select insensitive pixmap Indicator size

Toggles Keyboard

Widget Accelerator
Gadget Accelerator text

Mnemonic
Mnemonic charset

Mapping delay

Callbacks Settings

Activate Alignment

Cascading Type

Arm Resize

Disarm Push button
Expose Shadow
Resize Fill on Arm
Value changed Fill on select

Indicator on
Indicator type
Multi click

Set

Visible when off



748 Sun WorkShop Visual User’s Guide • May 2000

You can set keyboard mnemonics for CascadeButtons to let the user navigate

through the menus without using the mouse.

Note that the Mapping delay resource can be used only when the Button is used to

instigate a pullright menu.

Command

The Command widget is a composite widget used to select a command from a

scrollable history list of commands. Commands can be typed into a text area at the

bottom of the widget. When a command is entered, it is added to the end of the

history list. A Command inherits some BulletinBoard resources. To display the

BulletinBoard resource panel, click on “Bulletin Board Resources” in the resource

panel.

A Command contains a ScrolledList widget for the command history region, a Label

widget for the command line prompt and a Text widget for the command entry

region. These components are contained in a BulletinBoard widget that is not visible

in the design hierarchy. You can change the default resource settings for the

component widgets but you cannot delete them. To change the prompt, change the

“Prompt string” resource in the resource panel of the Command, not in the resource

panel of its Label child.

A Command is usually used in a Shell or MainWindow.

Display Labels

No match string Apply label
Pattern OK label
Max history items Cancel label
Command Help label
History item count List label
Text columns Prompt string

Directory mask Prompt string

Directory Directory label

Settings Callbacks

Dialog type Apply
Minimize buttons Cancel
Must match OK
File type No match
Work area placement Command changed

Command entered



Chapter 27 Widget Reference 749

You can add multiple children to a Command. The first child becomes the work area.

This can be a container widget containing additional widgets. The “Work area

placement” resource controls where the work area appears in the dialog, even

though it appears at the end of the Command widget’s hierarchy as shown in Figure

27-2. The additional children can include a MenuBar and any number of PushButton

widgets.

FIGURE 27-2 Command Widget Hierarchy

DialogTemplate

The DialogTemplate widget is usually used as the child of a Shell for a broad range

of dialogs. It provides a standard layout that includes, from top to bottom, a menu

bar, a work area, a Separator, and a button box.

The DialogTemplate is a specially configured MessageBox and shares its resource

panel. It also inherits some BulletinBoard resources. To display the BulletinBoard

resource panel, click on “Bulletin Board Resources” in the resource panel.

The Separator is a component part of the DialogTemplate. You must add the other

elements of the standard layout if you want them: for example, a MenuBar, any type

of widget for the work area and buttons of any type for the button box, as shown in

Display Settings

Message text Default button
OK label Dialog type

Cancel label Alignment
Help label Minimize buttons
Symbol pixmap

Callbacks

Cancel
Ok

Widgets
making up the
Command
widget

Added child
container
widget



750 Sun WorkShop Visual User’s Guide • May 2000

Figure 27-3. The work area can be a container widget, such as a Form, with children.

The DialogTemplate always arranges its children in the standard order from bottom

to top, regardless of the order in which you add them to the hierarchy.

FIGURE 27-3 Standard Hierarchy Using the DialogTemplate

The areas of the standard layout are constrained to be the same width, with the

buttons in the button box evenly spaced in one or more rows. The buttons are

automatically rearranged as needed when the window resizes.

DrawingArea

The DrawingArea widget provides an area in which an application can display

output graphics. For example, the design hierarchy in the main Sun WorkShop

Visual window is drawn in a DrawingArea contained in a ScrolledWindow.

To display the Layout Editor, select “Layout...” from the Widget menu or press the

Layout button on the toolbar. Only the Move and Resize options of the Layout

Editor can be used with a DrawingArea. Attachments between widgets and position

attachments are not available.

To display the resource panel, select “Resources...” from the Widget pulldown menu

or double-click over the widget.

Although a DrawingArea can have any number and types of children, it is not very

useful for managing the geometry of other widgets. Other container widgets such as

the Form should be used for this purpose instead.

Margins Callbacks

Width Expose
Height Input

Resize

Resize policy

Added
children



Chapter 27 Widget Reference 751

Sun WorkShop Visual cannot help you with drawing in the drawing area. To do this,

you must write code containing X Graphics calls. This code is normally put in the

“Expose” callback.

DrawnButton

The DrawnButton widget is similar to a PushButton except that its face must be

drawn by the application instead of being drawn automatically. It can be used to

provide a button that has a context-sensitive appearance.

To display a picture on a button, it is usually easier to use a PushButton with a

pixmap for the image. Drawing the picture on a DrawnButton requires writing code

containing X graphics calls, which is normally put in the “Expose” callback.

Display Settings

Label Alignment

Font Type

Pixmap Resize

Insensitive pixmap Push button

Cascade pixmap Shadow

Arm color Fill on Arm
Arm pixmap Fill on select
Select color Indicator on
Select pixmap Indicator type
Select insensitive pixmap Multi click

Set
Visible when off

Margins Callbacks

Top Activate
Bottom Cascading
Left Arm

Right Disarm

Width Expose
Height Resize

Spacing Value changed
Default shadow
Indicator size

Keyboard Toggles

Accelerator Widget

Accelerator text Gadget

Mnemonic
Mnemonic charset
Mapping delay



752 Sun WorkShop Visual User’s Guide • May 2000

FileSelectionBox

The FileSelectionBox widget is a composite widget that lets users browse through

the file system and select a file. The file browser in Sun WorkShop Visual is an

example of a FileSelectionBox. The Generate Dialog is a FileSelectionBox with a

work area child. The FileSelectionBox is derived from the SelectionBox and shares its

resource panel.

The FileSelectionBox combination includes two ScrolledLists, two TextFields, four

Labels, a Separator and four PushButtons, which are gadgets. These components are

contained in a BulletinBoard widget that is not visible in the design hierarchy. To

display the resources inherited from the BulletinBoard, click on “Bulletin Board

Resources” in the resource panel.

While a FileSelectionBox can be used anywhere that a BulletinBoard can, it is usually

placed in a Dialog Shell that is popped up for file selection.

To change the labels of button or label widgets from the defaults, change the

resources in the resource panel of the FileSelectionBox, not in the resource panels of

the individual widgets.

You can add multiple children to a FileSelectionBox. The first child becomes the

work area. This can be a container widget containing additional widgets. The “Work

area placement” resource controls where the work area appears in the dialog, even

though it appears at the end of the FileSelectionBox widget’s hierarchy. The

additional children can include a MenuBar and any number of PushButton widgets.

Display Labels

No match string Apply label

Pattern OK label

Max history items Cancel label

Directory spec Help label

Visible item count File list label

Text columns Selection label

Directory mask Filter label

Directory Directory label

Settings Callbacks

Dialog type Apply

Minimize buttons Cancel

Must match OK
File type No match

Work area placement Command changed
Command entered



Chapter 27 Widget Reference 753

Form

The Form widget is a container widget that provides both absolute and relative

positioning of its children widgets. It is commonly used to lay out widgets in a

dialog, either as a child of a Shell or as the work area in a DialogTemplate or similar

widget.

The layout of widgets in a Form is specified by using attachments on children of the

Form. Different types of attachments let you specify different types of spatial

relationships such as a fixed location within the Form, a relative location within the

Form, or a fixed distance between widgets. These capabilities allow considerable

flexibility and reliable behavior when widgets or windows are resized. Sun

WorkShop Visual lets you specify these attachments interactively in the Layout

Editor. For more information, see the Layout Editor chapter.

You can view the attachments set on any child of a Form by using the Constraints

panel. Select any child of the Form, pull down the Widget Menu and select

“Constraints...”. Use of this panel is described in the Using the Resource Panels
chapter. It is particular useful if you have to superimpose one widget over another.

The “Auto unmanage” resource, if set to “Yes”, makes the dialog erase whenever

you click on a button child of a Form. This behavior, the default behavior in Motif, is

useful for transient dialogs. However, because a Form is often used for main

windows, Sun WorkShop Visual explicitly sets this resource to “No” in the case of

the Form. Set it to “Yes” if you want a Form to auto unmanage.

For more details, see BulletinBoard.

Display Settings

Title Dialog style

Margin height Resize policy

Margin width Shadow

Horizontal spacing Allow overlap

Vertical spacing Auto unmanage

Fraction base Default position

Cancel button No resize

Default button Rubber positioning

Fonts Callbacks

Text font Focus

Button font Map

Label font Unmap



754 Sun WorkShop Visual User’s Guide • May 2000

Frame

The Frame widget is used to provide a border, possibly with a title, around a widget

that otherwise has none, to enhance the border of a widget that already has one, or

to create a border around a group of widgets. A Frame can be used to provide three-

dimensional effects, like indenting a DrawingArea.

A Frame can have two children. The first is placed inside the Frame and the second

(which is optional) is used as a title. The second child is usually a Label.

To create a border around a group of widgets, they must be placed in a container

widget such as a RowColumn or a Form, that is the child of a Frame, as shown in

Figure 27-4.

FIGURE 27-4 Hierarchy Showing a Frame Widget as a Border

The Frame sizes itself to match the size of its children.

Display

Margin width

Margin height

Title widget

Title spacing

Shadow type

Title alignment (horizontal)

Title alignment (vertical)



Chapter 27 Widget Reference 755

Label

The Label widget provides a static display area for text or pixmap images. Labels are

commonly used to display descriptive text strings or icons or logos. Labels can be

placed in menus to provide unselectable titles for groups of menu items.

A string in a Label can extend over multiple lines and have multiple fonts. Multiple

fonts are supported using the Compound String Editor, which is discussed in

“Compound Strings” on page 163.

If you set a pixmap for a Label, the Label does not display it until you also change

its “Type” setting to “Pixmap”.

Display Settings

Label Alignment

Font Type
Pixmap Resize

Insensitive pixmap Push button
Cascade pixmap Shadow in
Arm color Fill on arm
Arm pixmap Fill on select
Select color Indicator on
Select pixmap Indicator type
Select insensitive pixmap Multi click

Set
Visible when off

Margins Callbacks

Top Activate
Bottom Cascading
Left Arm
Right Disarm
Width Expose
Height Resize
Spacing Value changed
Default shadow
Indicator size

Keyboard Toggles

Accelerator Widget

Accelerator text Gadget

Mnemonic
Mnemonic charset
Mapping delay



756 Sun WorkShop Visual User’s Guide • May 2000

List

The List widget is used to display a list of text items, one or more of which can be

selected, depending on the setting of the “Selection policy” resource.

For a scrolling list of text items, use a ScrolledList widget, a composite widget that

contains a List widget.

The Items page of the List resource panel lets you add items to the list so you can see

what the list looks like. To add an item, enter its text into the “Item” resource box

and select “Add”. To remove an item from the list, enter its text into the “Item”

resource box and select “Remove”. While items must be added in the order in which

you want them to appear, they can be deleted in any order.

To see additional items, change the “Visible items” resource.

The Motif toolkit provides a large number of functions for manipulating Lists such

as adding, removing and replacing items. For further details, see the Motif

documentation.

Note that each item in a List is a compound string (XmString). It is therefore

theoretically possible to use different fonts for different items, or for different parts

of a single item. In practice, limitations of the Motif toolkit make this inadvisable.

Display Callbacks

Margin width Browse

Margin height Default

Spacing Extended

Visible items Multiple

Top item Single

Double click interval

Font

Settings Items

Automatic selection Item

Selection policy
Size policy

Scroll bar display



Chapter 27 Widget Reference 757

MainWindow

The MainWindow provides a standard layout for an application’s primary window.

This standard layout includes, from top to bottom:

■ A menu bar

■ A command area with history, a prompt and an input area

■ A work area

■ A message area

The MainWindow is a composite widget with three Separators and two ScrollBars.

You must add the widgets for each element in the standard layout. Use a MenuBar

for the menu bar and a Command for the command area. A Text or TextField is

usually used for the message area. You must give the message area widget a variable

name and specify that name as the “Message window” resource of the MainWindow.

The work area can be almost any other kind of widget. It can be a container widget

with other widgets as children. A MainWindow ordinarily displays a scrolled

window onto a work area whose size is fixed. If your work area is a Form, you may

want to change the “Scrolling policy” resource to “Application defined”. This

removes the scroll bars and lets the Form resize with the window so that you can use

the features of the Layout Editor to control resize behavior.

Note – “Scrolling policy” does not take effect in the dynamic display but works

correctly in the generated code.

If you do not add a work area to a MainWindow, the generated code produces

warning messages when you run it.

Careful use of resources can make a Form emulate the behavior of a MainWindow.

Experience has shown that it is often more convenient to use.

Scrolled window margins Main window margins

Width Width

Height Height

Spacing

Callbacks Settings

Traverse obscured Scroll bar display

Scroll bar placement

Scrolling policy
Visual policy

Show separators

Command location

Message window



758 Sun WorkShop Visual User’s Guide • May 2000

Menu

The Menu widget provides pulldown, pullright and popup menus and is a specially

configured RowColumn widget.

The active items in a menu can be PushButtons, ToggleButtons, or CascadeButtons.

Menus can also contain Separators and Labels for display purposes.

To create a pulldown menu, add a Menu as a child of a CascadeButton that is a child

of a MenuBar or OptionMenu. When a user clicks on the CascadeButton, the menu

appears.

To create a pullright menu, add a Menu as a child of a CascadeButton that is a child

of a Menu. When a user clicks on the CascadeButton, the menu appears. Pullright

menus are only permitted in menus that are pulled down from a MenuBar, not in

OptionMenus.

To create a popup menu, add a Menu as a child of a DrawingArea. When a user

clicks on the DrawingArea with the right mouse button, the menu appears. A

DrawingArea can have more than one popup menu as a child. In this case, the menu

that pops up in the dynamic display depends on which menu is selected in the

design hierarchy.

Display Settings

Entry border Orientation

Margin width Packing

Margin height Alignment

Columns Adjust last

Spacing Adjust margin

Help widget Aligned

Last selected Homogeneous

Popup enabled1

1. Only if used as a PopupMenu. It is insensitive in all other cases.

Radio always one

Radio behavior
Resize height

Resize width

Tear-off modal

Keyboard Callbacks

Accelerator 1

1. Only if used as a PopupMenu. It is insensitive in all other cases.

Map

Menu post1 Unmap

Mnemonic Entry

Mnemonic charset



Chapter 27 Widget Reference 759

To create a Tear-off menu, set the Tear-off modal resource to enabled. Note that some

Motif versions have a bug where, if this resource is not hard-coded and is part of the

applications resource file, a call to XmRepTypeInstallTearOffModalConverter() must be

made from either the main program or the Menu’s pre-create prelude for the

resource to take effect.

Figure 27-5 shows design hierarchies for the three types of menus.

FIGURE 27-5 Sample Hierarchy Using Menus

Unlike pulldown and pullright menus, popup menus must be explicitly managed by

the generated code. Sun WorkShop Visual does not do this automatically because

popup menus are context-sensitive in most applications. You can do this by using

the input callback of the DrawingArea to position and manage the menu, or with an

action routine using the translations mechanism. Normally, the menu is positioned

using XmMenuPosition() and managed using XtManageChild().

To create a Menu with mutually exclusive toggle buttons, set the “Radio behavior”

resource to “Yes”.

In Motif, Menus are technically siblings, not children, of the DrawingAreas or

CascadeButtons from which they appear. However, Sun WorkShop Visual displays

its hierarchy as if the Menus were children of these widgets because the

DrawingArea or CascadeButton affects the Menu’s behavior just as a parent widget

DrawingArea
with two popup Menus as
children

Nested (pull-right)
Menu

Pull-Down Menu
Configuration:

Menu

CascadeButton

MenuBar



760 Sun WorkShop Visual User’s Guide • May 2000

does. Sun WorkShop Visual uses a dotted rather than a solid line to connect the

Menu to its CascadeButton or DrawingArea. The dotted line indicates that the

connection is not a true Motif parent-child relationship.

MenuBar

The MenuBar widget displays a set of CascadeButtons from which you can pull

down menus.

MainWindow, DialogTemplate and SelectionBox provide standard layouts that can

include a MenuBar. If you do not use one of these to contain the MenuBar, you must

use a Form and attach the MenuBar to its top, left and right sides. For further

information about the differences, see the descriptions of the MainWindow,

DialogTemplate, SelectionBox and Form. For a design hierarchy that includes a

MenuBar with a typical configuration of children, see Figure 27-5 on page 759.

The default resource settings provide a standard menu bar as defined in the Motif
Style Guide. You can change the “Packing” resource setting from “Tight” to

“Column”. “Tight” makes all buttons the minimum size to accommodate their text

“Column” makes all buttons the same size

If you use “Column” packing, the “Alignment” resource can be set to center the

labels on the buttons. Changing other resources is not recommended.

Display Settings

Entry border Orientation
Margin width Packing
Margin height Alignment
Columns Adjust last

Spacing Adjust margin

Help widget Aligned

Last selected Homogeneous
Popup enabled
Radio always one
Radio behavior
Resize height

Resize width

Tear off modal

Keyboard Callbacks

Accelerator Map

Menu post Unmap

Mnemonic Entry

Mnemonic charset



Chapter 27 Widget Reference 761

A MenuBar positions all its CascadeButtons close together starting at the left. If your

menu bar has a “Help” button, the Motif Style Guide recommends placing it at the

right end of the menu bar. To designate a CascadeButton as the “Help” button, enter

its variable name as the “Help widget” resource of the MenuBar.

MessageBox

The MessageBox widget displays a message to the user. Sun WorkShop Visual’s

error messages are examples of MessageBoxes. The MessageBox is a composite

widget that consists of three PushButton gadgets, two Labels and a Separator. These

components are contained in a BulletinBoard that is not visible in the design

hierarchy. To view the inherited BulletinBoard resources, click on “Bulletin Board

Resources” in the resource panel.

Although a MessageBox can be used anywhere that a BulletinBoard can be used, it is

usually placed in a Dialog Shell that is popped up to alert the user.

To display a message or pixmap in the message area, or to change the labels of

buttons, change the resources in the resource panel of the MessageBox, not in the

resource panels of the component widgets.

You can add a MenuBar and any number of button widgets as children of a

MessageBox, as well as a single widget of another type, which becomes the work

area. The work area can be a container widget, such as a Form, with children.

Display Settings Callbacks

Message text Default button Cancel

Ok label Dialog type Ok
Cancel label Alignment

Help label Minimize buttons

Symbol pixmap



762 Sun WorkShop Visual User’s Guide • May 2000

OptionMenu

The OptionMenu widget is used to display a one-of-many choice without using the

screen space required by a set of radio buttons. The page selectors in Sun WorkShop

Visual’s resource panels are examples of OptionMenus.

An OptionMenu is a composite widget that includes a Label and a CascadeButton.

You should add a Menu child to the CascadeButton, with a PushButton for each

choice. You can use Separators to divide groups of options. Figure 27-6 shows a

sample hierarchy. Note that you cannot have a cascading option menu.

Display Settings

Entry border Orientation

Margin width Packing
Margin height Alignment

Columns Adjust last

Spacing Adjust margin

Help widget Aligned

Last selected Homogeneous
Popup enabled
Radio always one
Radio behavior
Resize height

Resize width

Tear off modal

Keyboard Callbacks

Accelerator Map

Menu post Unmap

Mnemonic Entry

Mnemonic charset



Chapter 27 Widget Reference 763

FIGURE 27-6 Sample Hierarchy for the OptionMenu

Set the label identifying the OptionMenu by changing the “Label” resource in the

resource panel of the Label. Do not change the label of the CascadeButton as this

displays the current setting of the OptionMenu.

PanedWindow

The PanedWindow widget is used to lay out a set of widgets in a vertical column of

uniform width. Each child widget is laid out in a vertical partition that is separated

from adjacent children by a movable separator like a window sash. The user can

move the sash to determine how much vertical space is allotted to each child. Since

the height of a PanedWindow is less than the aggregate height of its children, a

PanedWindow saves vertical space without sacrificing functionality. The children of

a PanedWindow can be container widgets that control the layout of other widgets.

Margins

Margin width Margin height

Sash width Sash height

Sash indent Sash shadow

Spacing

Settings

Refigure Separator



764 Sun WorkShop Visual User’s Guide • May 2000

The PanedWindow is a constraint widget. The Constraints panel applies to any child

of the PanedWindow, not to the PanedWindow itself. You can display the

Constraints panel by selecting “Constraints” from the Widget menu when one of the

PanedWindow’s children is selected. The Resource Panels chapter discusses how to

use this panel.

The Constraints panel lets you set the “Minimum” and “Maximum” height resources

for the child. These provide limits on the height of the widget’s partition and

positioning of the sashes.

The children in a PanedWindow are constrained to be the same width as the widest

child.

You may need to reset a PanedWindow whenever you rearrange or resize its

children.



Chapter 27 Widget Reference 765

PushButton

The PushButton widget displays a button that can be “pressed” by clicking a mouse

button over it. Like the Label, it can display either text or a pixmap.

There are different kinds of buttons for different needs, such as the ArrowButton and

DrawnButton. For a button that pops up a menu, use a CascadeButton.

Setting the “Show as default” resource is not recommended since a BulletinBoard

parent often changes this setting. The BulletinBoard decides which button to make

the default.

Display Margins

Label Top

Font Bottom

Pixmap Left

Insensitive pixmap Right

Cascade pixmap Width

Arm color Height

Arm pixmap Spacing
Select color Default shadow

Select pixmap Indicator size
Select insensitive pixmap

Settings Callbacks

Alignment Activate
Type Cascading
Resize Arm

Push button Disarm

Shadow Expose
Fill on Arm Resize
Fill on select Value changed
Indicator as
Indicator type
Multi click

Set
Visible when off

Toggles Keyboard

Widget Accelerator1

1. Sensitive when PushButton is child of Menu

Gadget Accelerator text 1

Mnemonic 1

Mnemonic charset1

Mapping delay



766 Sun WorkShop Visual User’s Guide • May 2000

RadioBox

A RadioBox widget is used to contain a group of ToggleButtons that act as radio
buttons, meaning that they are mutually exclusive. Selecting one toggle in the group

deselects the previously selected one. You can set the “Packing”, “Columns”, and

“Orientation” resources to create multiple columns as for RowColumn.

The ToggleButtons in the RadioBox are gadgets.

You can make a RowColumn act like a RadioBox by setting its “Radio behavior”

resource to “Yes”. This configuration of the RowColumn provides more flexibility

than the RadioBox does, e.g. to have Labels, Separators, or other widgets inside the

box with the ToggleButtons, or to use the widget version of the ToggleButton instead

of the gadget.

Display Settings

Entry border Orientation
Margin width Packing
Margin height Alignment

Columns Adjust last

Spacing Adjust margin

Help widget Aligned

Last selected Homogeneous
Popup enabled
Radio always one

Radio behavior
Resize height

Resize width

Tear off modal

Keyboard Callbacks

Accelerator Map

Menu post Unmap

Mnemonic Entry

Mnemonic charset



Chapter 27 Widget Reference 767

RowColumn

The RowColumn widget is used to arrange child widgets in a grid. It is often used

for arranging items such as groups of buttons or toggles. For example, a Menu is a

specially configured RowColumn widget. Other widgets that are based on

RowColumn are OptionMenu, MenuBar, Menu and RadioBox.

A RowColumn can have any number of children. The default arrangement of

RowColumn items is one vertical column. To create multiple columns, set the

“Packing” resource to “Column”, then set the “Columns” resource.

Items are read in order starting down the first column when the “Orientation”

resource setting is “Vertical” and across the first row when the “Orientation”

resource setting is “Horizontal”. When the “Orientation” resource setting is

“Horizontal”, the “Columns” setting refers to the number of horizontal rows.

Because a RowColumn widget is not designed to have its layout changed

dynamically, it may not display the changes you expect. If its children seem to be the

wrong size on the dynamic display, try resetting the RowColumn.

Display Settings

Entry border Orientation
Margin width Packing
Margin height Alignment

Columns Adjust last

Spacing Adjust margin

Help widget Aligned

Last selected Homogeneous

Popup enabled
Radio always one

Radio behavior
Resize height

Resize width

Tear off modal

Keyboard Callbacks

Accelerator Map

Menu post Unmap

Mnemonic Entry

Mnemonic charset



768 Sun WorkShop Visual User’s Guide • May 2000

Note – When you use multiple columns, a RowColumn forces all items to be the

same width. Sometimes this results in wasted space, as in the “Before” view of

Figure 27-7, where the left column has short Labels and the right column has long

TextFields. You can resize the TextFields to match the width of the Labels. However,

although the new value is accepted in the resource panel, the difference in width is

not apparent in the dynamic display until you have changed the value for all of the

TextFields, as shown in the “After” view.

FIGURE 27-7 Resizing Widgets in a RowColumn

To create columns of unequal width, use a Form instead of a RowColumn. You can

also nest RowColumns to create layouts that are more complex than rows and

columns.

To create a group of radio buttons inside a RowColumn, use ToggleButtons and set

the “Radio behavior” resource of the RowColumn to “Yes”.

Before After



Chapter 27 Widget Reference 769

Scale

The Scale widget offers a range of values to choose from and displays a slider that

can be moved to change the current value. You can drag the slider to move it

continuously, click in the trough with the left mouse button to move the slider

incrementally, or click in the trough with the middle mouse button to move the

slider to the cursor location.

A Scale can have children of almost any type. These are usually Labels, which the

Scale lays out evenly along its length.

Changing the orientation of a Scale can have strange effects. If problems occur, try

resetting the Scale or its parent.

ScrollBar

The ScrollBar widget lets users view data that requires more space than the display

area provides. ScrollBars are rarely used alone. It is easiest to use them as part of a

composite widget such as a ScrolledWindow, ScrolledList, or ScrolledText.

Display Settings Callbacks

Decimal points Orientation Drag

Minimum Direction Value changed
Maximum Show value
Value

Title

Scale width

Scale height

Scale multiple

Font

Display Settings Callbacks

Slider size Orientation Decrement

Minimum Direction Drag

Maximum Show arrows Increment

Value Page decrement

Increment Page increment

Page increment To bottom

Initial delay To top

Repeat delay Value changed
Trough color



770 Sun WorkShop Visual User’s Guide • May 2000

Each ScrollBar is represented as a rectangle with an arrow pointing outward at each

end and a slider inside it. The display area is scrolled either by moving the slider or

by clicking on an arrow. You can drag the slider to move it continuously, click in the

trough or on the arrows with the left mouse button to move the slider incrementally,

or click in the trough with the middle mouse button to move the slider to the cursor

location. You can edit the resources to control the amount by which the display area

scrolls on each scrolling action.

A ScrollBar cannot have children.

ScrolledList

The ScrolledList widget is a composite widget that displays a scrollable list of items.

A ScrolledList is a specially configured ScrolledWindow that contains a List widget.

The resources of a List widget child can be set in the normal way.

A ScrolledList resizes itself whenever you add or delete items from the List so that

its width always matches that of the widest item in the list. In some versions of the

Motif toolkit, the ScrolledList may become confused about its correct width.

To prevent unwanted resizing, you must constrain a ScrolledList in some way. You

can constrain it in a Form by using attachments and positions. However, if the Form

also contains other widgets, this can produce strange results. To avoid this, use a

ScrolledList in a Form containing nothing except a ScrolledList, as shown in Figure

27-8:

Margins Settings

Width Scroll bar display
Height Scroll bar placement
Spacing Scrolling policy

Visual policy
Callbacks Show separators
Traverse obscured Command window

Message window



Chapter 27 Widget Reference 771

FIGURE 27-8 Effective ScrolledList Placement

You can then place this Form in another Form with other widgets. Attach the

ScrolledList to its parent Form on all four sides and set the “Resize policy” of the

Form to either “Grow” or “None”. You can set the width and height of the Form to

define a reasonable size for the ScrolledList, or fix the initial size of the Form, and

therefore the ScrolledList it contains, by using attachments.

Constraints set in the Form supersede the ScrolledList’s “Visible items” resource

setting and the width of individual items in the list.

ScrolledText

The ScrolledText widget is a composite widget that provides a scrollable text area. A

ScrolledText is a specially configured ScrolledWindow that contains a Text widget.

The resources of the Text widget child can be set in the usual way.

Margins Settings

Width Scroll bar display
Height Scroll bar placement
Spacing Scrolling policy

Visual policy
Callbacks Show separators
Traverse obscured Command window

Message window

Form

ScrolledList



772 Sun WorkShop Visual User’s Guide • May 2000

ScrolledWindow

The ScrolledWindow widget is used to display data that requires more space than is

available. It is a composite widget consisting of two scroll bars and a viewing area

onto a visible object that can be larger than the ScrolledWindow. A ScrolledWindow

can have one child of almost any type.

Although the visible object can be any kind of widget, it is commonly a

DrawingArea or a composite widget containing other widgets. For example, a

ScrolledWindow can be used to scroll through a form or table of widgets by placing

a Form or RowColumn in it. For a scrollable list or text display, use the ScrolledList

or ScrolledText widget.

If you do not add a child to a ScrolledWindow, the generated code produces

warning messages when you run it.

If the “Scrolling policy” resource is set to “Automatic”, the toolkit handles scrolling

for you and the scroll bars are created automatically.

If the “Scrolling policy” resource is set to “Application defined”, you must respond

to movements of the scroll bars by changing the information displayed in the

ScrolledWindow’s child. In this case, Sun WorkShop Visual generates code to create

the scroll bars for you if any resource, callback, or name is set.

The effect of the resources that control scroll bar behavior - “Scrolling policy” and

“Scroll bar display” - is not reflected in the dynamic display but they work correctly

in the generated code.

Margins Settings

Width Scroll bar display
Height Scroll bar placement
Spacing Scrolling policy

Visual policy
Callbacks Show separators
Traverse obscured Command window

Message window



Chapter 27 Widget Reference 773

SelectionBox

The SelectionBox widget is a composite widget used to select one or more items

from a scrollable list. The SelectionBox combination includes a ScrolledList for the

item list, two Labels, a Separator and four PushButtons, which are gadgets. These

components are contained in a BulletinBoard widget that is not visible in the design

hierarchy. To view resources inherited from the BulletinBoard, click on “Bulletin

Board Resources” in the resource panel.

While a SelectionBox can be used anywhere that a BulletinBoard can be used, it is

usually placed in a Dialog Shell that is popped up to get a selection from the user.

To change the labels of button or label widgets, change the resources in the resource

panel of the SelectionBox, not in the resource panels of the individual widgets.

You can add multiple children to a SelectionBox. The first child becomes the work

area. This can be a container widget containing additional widgets. The “Work area

placement” resource controls where the work area appears in the dialog, even

though it appears at the end of the SelectionBox widget’s hierarchy. The additional

children can include a MenuBar and any number of PushButton widgets.

The four PushButtons provided are labeled “OK”, “Apply”, “Cancel”, and “Help”.

The “Apply” PushButton can be displayed by setting the “Managed” toggle in the

PushButton’s Core resource panel.

Display Labels

No match string Apply label

Pattern Ok label

Max history items Cancel label

Text String Help label

Visible item count List label

Text columns Selection label

Directory mask Filter label
Directory Directory label

Settings Callbacks

Dialog type Apply

Minimize buttons Cancel

Must match Ok
File type No match

Work area placement Command changed
Command entered



774 Sun WorkShop Visual User’s Guide • May 2000

SelectionPrompt

The SelectionPrompt widget is used to prompt the user for text input. It is a

composite widget consisting of a Label used for a question or prompt, a Text box

into which the answer is typed and three PushButtons (“OK”, “Cancel”, and

“Help”). An “Apply” PushButton is also provided. It is displayed by setting the

“Managed” toggle in that PushButton’s Core resource panel. These components are

contained in a BulletinBoard that is not visible in the design hierarchy. To view the

resources inherited from the BulletinBoard, click on “Bulletin Board Resources” in

the resource panel.

Most of the information about the SelectionBox applies to the SelectionPrompt,

except that the SelectionPrompt does not include a List. While a SelectionPrompt can

be used anywhere that a BulletinBoard can be used, it is usually placed in a Dialog

Shell that is popped up to query the user for input. To change the prompt or the

labels of the buttons, change the resources in resource panel of the SelectionPrompt,

not in the resource panels of the individual widgets. The SelectionPrompt can have

multiple lines.

The PushButtons in a SelectionPrompt are gadgets. You can add multiple children to

a Prompt. The first child becomes the work area. This can be a container widget. The

“Work area placement” resource controls where the work area appears in the dialog,

even though it appears at the end of the Prompt widget’s hierarchy. The additional

children can include a MenuBar and any number of PushButtons.

Display Labels

No match string Apply label

Pattern OK label

Max history items Cancel label

Text String Help label

Visible item count List label
Text columns Selection label
Directory mask Filter label
Directory Directory label

Settings Callbacks

Dialog type Apply

Minimize buttons Cancel

Must match OK

File type No match

Work area placement Command changed
Command entered



Chapter 27 Widget Reference 775

Separator

The Separator widget is a line used to separate objects visually. A Separator cannot

have children. Set the “Orientation” resource to specify a vertical or horizontal line.

Set the “Type” resource to specify a different line type such as a double line or a

dashed line.

Separators can be used to separate items in a Menu or RowColumn or to separate

widgets in a dialog box. To separate widgets in a Form, make a Separator a child of

the Form along with the other widgets. The Separator is very small until it is

constrained in some way. To stretch it the length or width of the Form, attach it to

both sides of the Form, or to other widgets on each side. Setting the size of a

Separator explicitly is not recommended. A Separator with a “Type” of “No line”

can be used as an invisible widget.

Separators are often used inside Menus to divide items into groups. The Separator

appears between its adjacent siblings, as shown in Figure 27-9.

FIGURE 27-9 Use of Separator Inside a Menu

You can use Separators inside a RowColumn. Figure 27-10 shows a sample hierarchy

and the resulting dynamic display. When you use Separators in a RowColumn, set

the orientation of the Separators explicitly to “Vertical” or “Horizontal”. Separators

Margins Toggles

Type Widget

Orientation Gadget

Separator



776 Sun WorkShop Visual User’s Guide • May 2000

in a RowColumn span a cell the size of every other element in the array. This can

produce more white space around the Separator than is pleasing. If you want

different proportions, use a Form for your column layout.

Set the RowColumn’s “Spacing” resource to 0 to eliminate a gap between adjacent

separators.

FIGURE 27-10 Use of Separators in a RowColumn (Horizontal Orientation, 4 Rows)

Separators



Chapter 27 Widget Reference 777

Shells- Dialog, Top Level, and
Application

The Shell widget forms the interface between your design and the Motif window

manager. Every Sun WorkShop Visual design hierarchy must have a Shell as its root

widget.

The Sun WorkShop Visual palette contains three types of Shell widget - the Dialog

shell, Top Level Shell and Application Shell. These Shells can be switched to any of

the others by setting the appropriate toggle in the Shell resource panel.

The Application Shell is used as the main application window. Your application

must have at least one (and usually only one) Application Shell. Top level Shells

look and act like Application Shells. Typically, they are used for all primary

windows in the application except the first. Dialog Shells are used for secondary

windows such as pop-up dialogs. If an Application or Top level Shell is closed or

iconified, all associated Dialog windows also disappear.

An Application or Top level Shell appears as a Dialog Shell in the dynamic display

but the generated code produces the correct type of Shell. To check the icon pixmap,

set the “Transient” resource to “No”, then reset the Shell. This produces the full set

of decorations, allowing you to iconify the dynamic display window.

Display Settings Dimensions

Title Delete response Base width

Mwm menu Keyboard focus Base height

Icon mask Input Width inc

Icon pixmap Transient Height inc

Icon name1

1. Sensitive if Shell is set to Dialog Shell

Allow resize Min width

Label font Override redirect: No Min height

Button font Iconic1 Max width

Text font Unit type Max height

Input method Window gravity Min aspect X

Pre-edit type Initial state Min aspect Y

Save under Max aspect X

Audible warning Max aspect Y

Timeout

Callbacks Toggles

Pop down Application shell
Pop up Top level shell

Dialog shell



778 Sun WorkShop Visual User’s Guide • May 2000

A Shell can only have one child, which can be of any type. However, much of the

Shell’s behavior is based on the assumption that its child is a BulletinBoard, Form, or

similar container widget, since the Shell exercises no geometry management over its

descendants. A Shell is not visible until it has a child.

Setting a Shell’s width and height on its Core resource panel does not control the

window size. To control initial window size, set the minimum width and height

resources of the Shell, or set the width and height of the Shell’s child.

To control the initial position of a window, set the “Default position” resource of the

Shell’s child to “No”, and set the x and y resources of the child, not the Shell.

Text

The Text widget provides an area for entering multi-line text. A wide range of

callbacks is provided to deal with input verification and validation.

Display Settings

Value Edit mode
Cursor position Auto show cursor

Margin width Editable

Margin height Pending delete

Maximum length Cursor visible

Top position Resize height

Selection threshold Resize width

Blink rate Word wrap

Columns Verify bell

Rows Scroll horizontal

Font Scroll vertical

Scroll left side

Scroll top side

Callbacks Toggles

Activate Text

Focus Text Field

Losing focus

Gain primary

Lose primary

Modify verify

Motion verify

Value changed



Chapter 27 Widget Reference 779

To use multi-line text, you must set the “Edit mode” resource to “Multi line”. To

change the height of the Text widget to display multiple lines of text, you can change

the “Rows” resource setting to a number greater than 1. Changing the number of

Rows may or may not be effective, depending on the type of widget used as the Text

widget’s parent.

To create a scrollable text editing area, use a ScrolledText, a composite widget that

includes a Text widget. Although the Text widget can be the child of a

ScrolledWindow, this configuration does not work well. If you use this

configuration, change the “Edit Mode” resource to “Multi line” and increase the

number of Rows and Columns to exceed the size of the ScrolledWindow viewing

area.

The Motif toolkit provides functions for accessing and modifying the text in the

widget. For details, see the Motif documentation.



780 Sun WorkShop Visual User’s Guide • May 2000

TextField

The TextField widget is a variant of the Text widget that provides an area for

entering only a single line of text. It has all the Text’s editing features except multi-

line capability.

You can change from TextField to Text by using the toggle. However, to get multi-

line capability, you must also set the “Edit mode” resource to “Multi line”.

The Motif toolkit provides functions for accessing and modifying the text in the

widget. For details, see your Motif documentation. “Books on X and Motif” on

page 886 provides some suggestions for further reading on this subject.

Display Settings

Value Edit mode
Cursor position Auto show cursor
Margin width Editable

Margin height Pending delete

Maximum length Cursor visible

Top position Resize height
Selection threshold Resize width

Blink rate Word wrap
Columns Verify bell

Rows Scroll horizontal
Font Scroll vertical

Scroll left side
Scroll top side

Callbacks Toggles

Activate Text
Focus Text Field
Losing focus

Gain primary

Lose primary

Modify verify

Motion verify

Value changed



Chapter 27 Widget Reference 781

ToggleButton

The ToggleButton widget provides a simple on/off toggle for indicating “yes/no”

choices.

ToggleButtons can be made into mutually exclusive radio buttons by placing them

inside a RadioBox, or inside a Menu or RowColumn whose “Radio behavior”

resource is set to “Yes”. Radio buttons have a different shape from normal toggles, as

shown in Figure 27-11.

FIGURE 27-11 Radio Buttons and Normal Toggle Buttons

Display Settings Callbacks

Label Alignment Activate
Font Type Cascading
Pixmap Resize Arm

Insensitive pixmap Push button Disarm

Cascade pixmap Shadow Expose
Arm color Fill on arm Resize
Arm pixmap Fill on select Value changed
Select color Indicator on

Select pixmap Indicator type

Select insensitive pixmap Multi click
Set

Visible when off

Margins Keyboard Toggles

Top Accelerator1

1. Sensitive when ToggleButton is child of Menu

Widget

Bottom Accelerator text1 Gadget

Left Mnemonic1

Right Mnemonic charset1

Width Mapping delay
Height

Spacing

Default shadow
Indicator size



782 Sun WorkShop Visual User’s Guide • May 2000

You can configure the ToggleButton to resemble a PushButton that appears to push

in and out to represent on and off settings. To do this:

1. Set the “Shadow Thickness” Core resource to 2. This draws a border around the
button.

2. Set the “Indicator on” resource to “No”. This suppresses the small square
indicator.

3. Set the left margin to 0. This removes the space which was occupied by the
indicator.

Mapping Motif Widgets to Microsoft
Windows

Following is a list of the Motif widgets which can be selected from within Sun

WorkShop Visual in Microsoft Windows mode along with the way in which they are

mapped to a Microsoft Windows class.

ApplicationShell

Maps to CDialog.

TopLevelShell

Maps to CDialog.

DialogShell

Maps to CDialog.

MainWindow and ScrolledWindow

Map to CWnd unless they are the child of a Shell, in which case they are ignored for

Microsoft Windows. If the ScrolledWindow has its Scrolling Policy resource set to

“Automatic”, it maps to a CScrollView.



Chapter 27 Widget Reference 783

Frame, RadioBox and ToggleButton

Map to CButton.

BulletinBoard, Form, RowColumn and DialogTemplate

Map to CWnd if they are structured as a C++ class.

DrawingArea

Maps to CWnd unless its parent is a ScrolledWindow, MainWindow or Shell in

which case it is ignored for Microsoft Windows. Otherwise it is forced to be

structured as a C++ class.

MenuBar, PopupMenu and CascadeButton

Map to a CMenu and cannot be structured as a C++ class.

OptionMenu

Maps to a CComboBox and cannot be structured as a C++ class.

FileSelectionBox

Maps to a CFileDialog class.

Paned Window

Maps to CSplitterWnd.

Label

Maps to a CStatic.

PushButton

Maps to a CButton if XmNlabelType is XmLABEL or to a CBitmapButton if

XmNlabelType is XmPIXMAP.



784 Sun WorkShop Visual User’s Guide • May 2000

Separator

This is not mapped to an object on Microsoft Windows - instead it is added as a

Menu attribute, if part of a menu. If not in a menu, it is ignored.

Scale and Scrollbar

Map to CScrollbar unless they are part of a ScrolledWindow in which case the

appropriate style is added to the enclosing class and they are ignored as widgets. If

you choose to “Generate as Resources”, the Scale maps to CSliderCtrl.

TextField and Text

Maps to CEdit.

List

Maps to CListBox.

ScrolledText

This maps to CEdit with appropriate scrolling styles and the ScrolledWindow part is

ignored.

ScrolledList

This maps to CListBox with appropriate scrolling styles and the ScrolledWindow

part is ignored.



Chapter 27 Widget Reference 785

Mapping Motif Resources to Microsoft
Windows

Although Microsoft Windows uses resources, the way in which they are used is

different from X/Motif. Resources used by Microsoft Windows are compiled into the

application. There is also a far more restricted set than on Motif.

Sun WorkShop Visual only generates bitmaps, icons and accelerators as Microsoft

Windows resources. Other Motif resources are mapped to visual window attributes

or written into the source code.

Window Styles

When a Microsoft Windows object is created, window styles can be specified. These

are bit flags which are or’d together. The following example shows how a toggle

button would be created:

Create ( “Classical”, WS_CHILD | WS_VISIBLE | WS_TABSTOP |
BS_AUTORADIOBUTTON, rect, this, IDC_shell_classical);

The second parameter to this method, which is a method inherited from a basic MFC

class, is the window style. When you set resources in Sun WorkShop Visual, suitable

window styles are chosen. Below is a list of the window styles available for each

widget which can be mapped to a Microsoft Windows object. The list also shows

when they are used and the corresponding Motif resource.

Shells

All Shells have:

■ WS_POPUP

■ WS_CAPTION

■ WS_SYSMENU

■ WS_MINIMIZE - if XmNinitialState is set to Iconic

■ WS_VSCROLL and WS_HSCROLL - if child is MainWindow or ScrolledWindow

and the appropriate scrollbar is named, has a resource set or has a callback or

method set



786 Sun WorkShop Visual User’s Guide • May 2000

ApplicationShell

In addition to Shell styles, has:

■ WS_THICKFRAME

■ WS_MINIMIZEBOX

■ WS_MAXIMIZEBOX

TopLevelShell

Exactly the same styles as ApplicationShell.

Note – This does not mean that ApplicationShell and TopLevelShell are exactly the

same on Microsoft Windows - they are different classes.

DialogShell

In addition to Shell styles, has:

■ WS_THICKFRAME - unless XmNoResize is set to True on the BulletinBoard

derived child

MainWindow and ScrolledWindow
■ Only supported if XmNscrollingPolicy is set to XmAPPLICATION-DEFINED

■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ WS_VSCROLL and WS_HSCROLL - if the appropriate scrollbar is named, has a

resource set or has a callback or method set

Frame
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True



Chapter 27 Widget Reference 787

■ WS_GROUP

■ BS_GROUPBOX

BulletinBoard, Form, RowColumn, DrawingArea,

and DialogTemplate
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if is XmNtraversalOn is True

RadioBox
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ WS_GROUP

■ BS_GROUPBOX - if parent is not a Frame

MenuBar, PopupMenu, and CascadeButton

These widgets are not windows on Microsoft Windows, as all other objects are - they

are CMenu objects. CMenu is not derived from CWnd. This means that they have no

window styles associated with them. Their children (or the children of the

PulldownMenu in the case of the CascadeButton) are generated by a call to

AppendMenu for each child. The following flags are passed to AppendMenu

depending on the type of child:

■ MF_POPUP - for a CascadeButton which has a PulldownMenu

■ MF_STRING - for CascadeButtons without a PulldownMenu, PushButtons, Labels

and ToggleButtons which do not have a valid pixmap object for XmNlabelPixmap

■ MF_GRAYED - if XmNsensitive is False (for the CascadeButton in the case of a

MenuBar)

■ MF_MENUBREAK - if the item (or the CascadeButton in the case of a MenuBar)

starts a new column



788 Sun WorkShop Visual User’s Guide • May 2000

The following apply to calls to AppendMenu from a PopupMenu or CascadeButton

only:

■ MF_DISABLED - for Labels if XmNsensitive is True

■ MF_SEPARATOR - for separators

■ MF_CHECKED - for ToggleButtons which have XmNset True

OptionMenu
■ WS_CHILD

■ CBS_DROPDOWNLIST

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ WS_GROUP - if XmNnavigationType is not XmNONE

■ The SetFont method is called if the widget has a font object resource set for the

XmNbuttonfontList resource or if it inherits a font object set for an enclosing

BulletinBoard or Shell

FileSelectionBox

This maps to a CFileDialog class. Since the Create method is not called explicitly for

a CFileDialog (instead InitDialog and DoModal are called) there are no styles.

Instead, resources are mapped to parameters passed to the New method:

■ OpenFileDialog - always TRUE

■ lpszDefExt - always NULL

■ lpszFileName - set to the value of XmNdirSpec if specified, otherwise NULL

■ dwFlags - always OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT

■ lpszFilter - if XmNpattern is specified this value is set as follows:

“<XmNfilterLabelString>(<XmNpattern>)|XmNpattern|All
files(*.*)|*.*||”

If XmNpattern is not set this parameter is NULL

■ pParentWnd - the main window

PanedWindow
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed



Chapter 27 Widget Reference 789

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ The CreateView method is called to create each of the child panes. This requires

that the child pane classes can support dynamic creation (i.e. have the

IMPLEMENT_DYNCREATE macro). Sun WorkShop Visual will generate the

appropriate macro invocations to support dynamic creation of child pane classes.

Label
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ An alignment (SS_LEFT, SS_CENTER, SS_RIGHT) depending on the alignment of

the label (determined either from XmNalignment or from parent’s

XmNentryAlignment if parent is a RowColumn)

■ SS_ICON - if XmNlabelType is set to XmPIXMAP and XmNlabelPixmap is set to a

Pixmap object

■ The caption parameter to the Create method is the value of XmNlabelString if set,

otherwise the widget name.

■ The SetFont method is called if the widget has a font object resource set for the

XmNfontList resource. If the widget is being created (i.e. is not a component) then

SetFont will be called if an ancestor BulletinBoard or Shell has XmNlabelFontList
set.

■ The SetIcon method is called if the widget has a valid Pixmap object set for

XmNlabelPixmap.

PushButton
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ BS_OWNERDRAW - if XmNlabelType is set to XmPIXMAP

■ BS_DEFPUSHBUTTON - if the widget is set as the default button for an ancestor

BulletinBoard which is itself a descendant of a DialogShell or a TopLevelShell and

there are no CWnd objects intervening between the button and the CDialog



790 Sun WorkShop Visual User’s Guide • May 2000

■ The caption parameter to the Create method is the value of XmNlabelString if set,

otherwise the widget name

■ The SetFont method is called if the widget has a font object resource set for the

XmNfontList resource. If the widget is being created (i.e. is not a component) then

SetFont will be called if an ancestor BulletinBoard or Shell has XmNlabelFontList
set.

ToggleButton
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ BS_AUTORADIOBUTTON - if XmNindicatorType is set to XmONE_OF_MANY,

otherwise BS_AUTOCHECKBOX

■ The SetCheck method is called if XmNset is set.

■ The caption parameter to the Create method is the value of XmNlabelString if set,

otherwise the widget name.

■ The SetFont method is called if the widget has a font object resource set for the

XmNfontList resource.

Scale and Scrollbar
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False

■ WS_TABSTOP - if XmNtraversalOn is True

■ SBS_HORIZ or SBS_VERT - depending on the setting of XmNorientation

■ SetScrollRange is called if the widget is a ScrolledWindow component or if either

XmNmaximum or XmNminimum are set.

■ SetScrollPos is called if XmNvalue is set.

TextField and Text
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_DISABLED - if XmNsensitive is False



Chapter 27 Widget Reference 791

■ WS_TABSTOP - if XmNtraversalOn is True

■ WS_BORDER - if XmNshadowThickness is greater than zero

■ WS_GROUP if XmNnavigationType is not XmNONE

■ ES_MULTILINE and ES_WANTRETURN if XmNeditMode is set to

XmMULTI_LINE_EDIT

■ ES_READONLY if XmNeditable is set to false

■ WS_VSCROLL - if the parent is a ScrolledText and XmNscrollVertical is the default

or set to true

■ WS_HSCROLL - if the parent is a ScrolledText and XmNscrollHorizontal is the

default or set to true

■ The SetWindowText method is called if the XmNvalue resource is set.

■ The SetFont method is called if the widget has a font object resource set for the

XmNfontList resource or if it inherits a font object set for an enclosing

BulletinBoard or Shell.

■ The LimitText method is called if the XmNmaxLength resource is set.

List
■ WS_CHILD

■ WS_VISIBLE - if the widget is managed

■ WS_GROUP if XmNnavigationType is not XmNONE

■ WS_TABSTOP - if XmNtraversalOn is True

■ WS_BORDER - if XmNshadowThickness is greater than zero

■ WS_VSCROLL and WS_HSCROLL - if the parent is a ScrolledList

■ LBS_EXTENDEDSEL - if XmNselectionPolicy is XmEXTENDED_SELECT

■ LBS_MULTIPLESEL - if XmNselectionPolicy is XmMULTIPLESELECT

■ LBS_DISABLENOSCROLL - if parent is ScrolledList and

XmNscrollbarDisplayPolicy is not XmAS_NEEDED
■ The SetFont method is called if the widget has a font object resource set for the

XmNfontList resource or if it inherits a font object set for an enclosing

BulletinBoard or Shell.



792 Sun WorkShop Visual User’s Guide • May 2000



793

CHAPTER 28

Troubleshooting in Sun WorkShop
Visual

Introduction

This chapter is intended as a quick reference to some common questions and

problems new Sun WorkShop Visual users may have. It is organized loosely by

functionality:

■ Sun WorkShop Visual Interface

■ Definitions and Instances

■ Unsupported Locale

■ Resource Panels

■ Layout Editor

■ Links

■ Code Generation

■ Sun WorkShop Visual Replay and Sun WorkShop Visual Capture

The subheadings in this chapter, unlike those elsewhere in this manual, do not

describe features of Sun WorkShop Visual but symptoms of problems. Scan the bold

sub-headings for a brief description of your problem.



794 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop Visual Interface

This section discusses problems you may encounter if Sun WorkShop Visual cannot

find the correct resource file. Sun WorkShop Visual must be installed so that X looks

at the Sun WorkShop Visual resource file. These problems refer to the Sun WorkShop

Visual interface, not to the dynamic display.

Labels Don’t Display Correctly

Symptom: The labels on the Sun WorkShop Visual buttons, prompts, and menu

commands do not display correctly.

Cause and Solution: These labels are only available when the correct resource file is

read. If the labels are not available, X substitutes variable names. Reconfigure your

system so Sun WorkShop Visual reads the Sun WorkShop Visual resource file. There

are several ways to do this in X. Consult your system administrator.

Only a Few Labels Are Wrong

Symptom: Most of the Sun WorkShop Visual display is correct, but a few button

labels or other resources are wrong.

Cause and Solution: Your configuration may be reading an obsolete version of the Sun

WorkShop Visual resource file. Check the software version and make sure Sun

WorkShop Visual is reading the resource file that came with that version.

Blank Help Screens

Symptom: Help screens come up blank.

Cause and Solution: Either your X environment is not finding the correct resource file,

or the resource file is not accessing the correct search path. Make sure the “helpDir”

resource contains the search path for your Sun WorkShop Visual help database.



Chapter 28 Troubleshooting in Sun WorkShop Visual 795

Definitions and Instances

This section covers issues connected with the creation and use of definitions and

instances. These are described in “Definitions” on page 268.

When opening a file in Sun WorkShop Visual, an error message is
displayed claiming a “Class object” is “not recognized”

This means that the design file you are trying to open contains an instance of a

definition which is not known to your current Sun WorkShop Visual session. When

you create a definition, Sun WorkShop Visual puts a special file, called

.xddefinitionsrc , into your home directory so that it can find the definition

when it is referenced by an instance of it. You will need to find out what the

definition is and then do one of the following:

1. Open the design file containing the definition, select the root of the definition,

unset the “Definition” toggle in the Widget menu and then select “Define” from

the Palette menu. This creates a .xddefinitionsrc for you. You do not even

need to save the definition design before opening the file containing the instance.

2. Exit Sun WorkShop Visual, copy the .xddefinitionsrc from a user who

already has the definition defined into your home directory (checking first that

you are not overwriting an existing one).

3. Set the definitionsFileName resource so that you can share the definitions file

with other users, as described in “The Definitions File” on page 269.

Compiling Code Containing an Instance

The following items list some of the problems you may encounter when compiling

code which has been generated by Sun WorkShop Visual from designs containing an

instance of a definition.

The compiler complains about an “undefined symbol”

Check that the definition and the instance are not in the same design and therefore

the same generated code file. The definition must be kept in a separate design. You

should then compile the definition code and make it available to the code containing

the instance.



796 Sun WorkShop Visual User’s Guide • May 2000

The compiler says that it cannot find an include file and then says the
instance is “undefined or not a type”

If you have generated the code for the definition into a separate directory, you will

have to change the Makefile so that it can find the header file for the definition. This

header file should have the same name as that which appears in the Edit Definitions

dialog.

The linker says that it has an un “undefined symbol:
create_<defintionname>”

The definition code must be compiled in with the code containing the instance.

There are two ways of doing this:

1. Compile the code containing the definition into a library and link the library into

the application containing an instance of it. You will need to change the Makefile

so that the linker can find the library.

2. Generate the code for the definition into the same directory as the code for the

instance. Generate a Makefile first with the “New” and “Template” toggles set

and then with just the “Template” toggle set. This should create a Makefile which

will compile the definition and the instance code into one application.

Unsupported Locale

If you have specified a locale using the LANG environment variable which Sun

WorkShop Visual does not recognize, a message is printed on startup informing you

that the specified locale is not supported and that it is being coerced to “C”. For

information on the impact this will have, see “Unsupported Locales” on page 626.



Chapter 28 Troubleshooting in Sun WorkShop Visual 797

Resource Panels

This section discusses problems you may encounter when you use the resource

panels. If you encounter problems with resource values at run time of the generated

application, see “Code Generation” on page 804.

For advice on setting resources for specific widgets and combinations of widgets,

lookup the widget in Chapter 27, “Widget Reference”, starting on page 743 and your

Motif documentation. Note that many apparent problems with resource settings can

be solved by resetting the widget involved or the Shell.

When you set values in Sun WorkShop Visual’s resource panels, Sun WorkShop

Visual actually resets resources of widget instances in the dynamic display.

Sometimes the results are not what you expect:

Resource Settings Are Rejected

Symptoms:

■ The value you typed into a field of the resource panel is not accepted

■ The value in the resource panel reverts to the former value

■ The value in the resource panel changes to some other value

■ The dynamic display reflects the value on the resource panel, but the value is not

what you typed

Cause: Motif cannot set the new value you specified. The most common reason is

that the selected widget is being constrained by another widget, usually its parent.

This is particularly common with size and position resources such as the width and

height resources in the Core resource panel, which are frequently overridden.

For example, if a RadioBox contains a group of ToggleButtons, the width of the

individual ToggleButtons is determined by their text and margin resources; the

width of the RadioBox is calculated from the width of its widest child; and all the

ToggleButtons are forced to be the same width as the widest one. A width setting on

the Core resource panel is overridden by the calculated value. If the RadioBox is in

turn the child of a Form, attachments set in the Layout Editor can override the

RadioBox rules.

Solution: Check your design for constraints that may be overriding the setting. Use

the constraints imposed by other widgets to achieve the desired effect.



798 Sun WorkShop Visual User’s Guide • May 2000

FIGURE 28-1 Resource Relationships

Resource Settings Don’t Take Effect

Symptom: A new value is accepted on the resource panel, but the dynamic display

does not immediately reflect the change as you expect.

Solutions: Reset the widget. If that doesn’t work, reset the Shell. If resetting the Shell

doesn’t work, consult the Widget Reference chapter. You may need to set two or more

resources to achieve a single effect. For example, to display a pixmap on a label or

button, you must set the “Pixmap” resource to specify the pixmap you want, and set

the “Type” resource to “Pixmap.”

A few resources are never reflected in the dynamic display, as discussed below.

Geometry Resources Are Overridden

Symptom: The width and height resources on a widget’s Core resource panel are

overridden.

Cause and Solution: The width and height Core resources of any widget can be

overridden, either by resources specific to that widget class or by geometry rules of

the widget’s parent. Consult Chapter 27, “Widget Reference”, starting on page 743,

or Motif documentation for information about resources of the widget and its parent

that may be controlling its size.

Cause and Solution: The width and height Core resources of a Shell can be overridden

by the corresponding resources of the Shell’s child. One way to control the size of a

dialog is to set the width and height resources of the Shell’s child. Another way is to

set the minimum width and height resources of the Shell, which are not overridden

by the child.

the labels of its
ToggleButton children.

the RadioBox can resize to
accommodate....

Rules of the Form
control whether....



Chapter 28 Troubleshooting in Sun WorkShop Visual 799

Cause and Solution: The x,y position resources of a Shell can be overridden by the

position resources of the Shell’s child if the Shell’s child is a BulletinBoard, or a

derivative of the BulletinBoard such as a Form, DialogTemplate, or MessageBox. To

use the Shell’s x,y position resources to control the dialog’s position, set the

BulletinBoard’s “Default position” resource to “No.”

Resources Are Not Reflected After Resetting

Symptom: The resource panel accepts your resource settings, but they are not

reflected in the dynamic display even when you reset the widget.

Cause: Certain resources can only be set when a widget is first created. These

resources cannot be changed once the widget is added to the dynamic display. They

include various resources related to scrollbars such as “Scrolling policy.” Sun

WorkShop Visual still lets you change the value on the resource panel, and even

though the value is not reflected in the dynamic display, the new setting takes effect

at run time of the generated application. For details about individual resources,

consult the Motif Programmer’s Manual.

Cause: The “Dialog Style” resource of BulletinBoards and widget classes that derive

from the BulletinBoard can be set to “Modeless,” “System Modal,” or “Application

Modal.” Modal dialogs disable all other dialogs until they receive an answer from

the user, so if a setting of “System Modal” or “Application Modal” were effective in

the dynamic display, you would not be able to do anything else until the dynamic

display was closed. You can still select one of these settings; Sun WorkShop Visual

disables the setting while you are building the hierarchy and generates it correctly in

the code.

Solution: If you have resources of this kind in your design, you can only see the final

results after the design is finished and you generate the code. You can see the results

at intermediate stages by generating code and running a prototype using the

following steps:

1. Generate a primary code module. Include all types of resources and a main()
program.

2. Generate a stubs file (only necessary if your design has callbacks). Leave the
function braces empty.

3. Compile and link the generated files.

4. Run the resulting program.

Expected Fonts Do Not Display In Sun WorkShop Visual

Symptom: A widget with a default font setting does not display the font you expect

in the dynamic display.



800 Sun WorkShop Visual User’s Guide • May 2000

Cause: When a widget does not have an explicit font setting, Motif searches back

through the design hierarchy to find the widget’s nearest BulletinBoard,

BulletinBoard derivative, or Shell ancestor, and uses the font setting of that ancestor

for the current widget. Therefore, if several buttons all have default font settings but

are children of different BulletinBoards, some may show different fonts from others.

Solution: Setting a font on the BulletinBoard or Shell instead of on individual widgets

is a convenient way of setting all the fonts at once. To get uniformity you must use

the same font on all parent widgets with explicit font settings. A font object is a

convenient way to do this.

Font Change on Parent Doesn’t Affect Children

Symptom: Changing the font on a BulletinBoard, BulletinBoard derivative, or Shell

has no effect on its children.

Cause and Solution: The new font setting on a parent widget does not affect the

children until you reset the parent widget. Reset the parent widget.

Cause and Solution: Font settings on parent widgets do not affect their children if the

children have explicit font settings of their own. Make sure the children have default

font settings.

CascadeButtons in DialogTemplate Don’t Display

Symptom: The DialogTemplate does not resize to accommodate CascadeButtons in

the MenuBar.

Cause: This is a bug in some versions of Motif. The DialogTemplate resizes properly

to accommodate the button box and work area, but if the MenuBar exceeds the

width of the button box and work area, it is cut off.

Solution: Add the button box and work area children to the DialogTemplate before

you add the CascadeButtons to the MenuBar. In many cases the width of your work

area or button box will create enough width to accommodate the MenuBar.

Solution: If your MenuBar is still too wide to display, use a Form as the work area, or

put the work area inside a Form, then use the Layout Editor to add extra space

around the work area.

Solution: You can force the DialogTemplate to be wider by setting its “Width”

resource on the Core resource panel.



Chapter 28 Troubleshooting in Sun WorkShop Visual 801

Layout Editor

This section discusses problems you may encounter when you use the Layout Editor.

Note that many apparent problems in the Layout Editor can be solved by resetting

the Form.

Widget Becomes Very Small or Very Large

Symptom: The widget becomes very small or very large.

Cause and Solution: In some versions of Motif there is a bug in the Form that appears

when the Form is a child of a DialogTemplate. When you reset the Form, any

container widgets inside the Form become very small. If you have this problem,

resetting the DialogTemplate instead of the Form corrects it. To do this, you must go

from the Layout Editor screen to the main Sun WorkShop Visual screen, select the

DialogTemplate in the construction area, and give the “Reset” command. To resume

working in the Layout Editor, first select the Form again in the construction area.

Cause and Solution: Attachments can change the size of a widget. For example,

attaching the edges of a widget to the corresponding edges of the Form forces the

widget to span the full width or height of the Form. Reset the Form. If resetting the

Form doesn’t work, remove some of the attachments from the widget and reset

again.

Methods of breaking attachments are listed below. For a more complete discussion,

see Chapter 4, “The Layout Editor”, starting on page 97.

■ Use “Undo” to remove the most recent attachment

■ Move the widget

■ In the “Attach” mode, click just inside the edge of the widget or drag from just

inside the edge of the widget toward the widget’s center

■ Replace the old attachment with a new attachment

■ Select the widget in the design hierarchy, bring up its Constraints panel, and reset

the attachment “Type” for that edge to “None”.

“Circular Dependency” Error Message

Symptom: A “circular dependency” message appears after you make an attachment.



802 Sun WorkShop Visual User’s Guide • May 2000

Cause and Solutions: If you add an attachment that results in a circularity involving

two or more widgets, Motif detects the circularity and returns the error message.

Click on “Undo.” If you still get the error message, carefully inspect your layout for

an attachment loop and remove one of the attachments.

“Bailed Out...” Error Message

Symptom: A “bailed out” message appears after you make an attachment.

Cause and Solutions: This Motif message indicates that your layout contains

attachments that contradict one another without being circular. It usually occurs

with “Self” or “Position” attachments. Use “Undo” or move the widgets to remove

the contradictory attachments, then reset the Form.

Widgets Overlap the Boundary of the Form

Symptom: Widgets at the edge of a Form cause breaks in the Form’s boundary line.

Causes: Widgets whose edges coincide with the sides of the Form can overlap the

line drawn around the Form, causing undesirable breaks in the line. This only occurs

if the Form is the immediate child of a Shell. Three conditions in the Form can cause

the overlap:

■ A widget is attached to the edge of the Form with an offset of 0 or 1 pixel

■ A widget is attached to the edge of the Form with a default offset and a vertical or

horizontal spacing value of 0

■ There are no attachments between the bottom or right edge of the Form and the

widgets closest to those edges

Solution: Attach widgets to the top or left edge of the Form with an offset of 2 or

more pixels. You can use an explicit offset, or you can set the Form’s vertical and

horizontal spacing resources to the offset value and use the default offsets. Make

sure the widgets at the bottom and right side of the layout are attached to the edge

of the Form with an offset or spacing of 2 or more pixels.

Solution: Put the Form inside another manager widget, such as another Form or a

DialogTemplate. This is the simplest and most flexible solution.



Chapter 28 Troubleshooting in Sun WorkShop Visual 803

Links

This section discusses problems you may encounter when you use the “Edit links”

command in the Widget Menu. For additional information about links, see the Code
Generation section that follows.

“Add” Is Disabled

Symptom: The “Add” option is grayed out.

Cause and Solution: The Link facility requires the target widget to have an explicit

variable name. If the target widget is a Shell, its immediate child must also have an

explicit name. Sun WorkShop Visual grays out the “Add” option if it does not find

explicit names. Name the appropriate widgets.

A Link Stops Working

Symptom: A link that used to work stops working. The link appears in the “Edit

links...” dialog with a blank space instead of an icon.

Cause and Solution: If you change the name of a widget, Sun WorkShop Visual does

not automatically update links that refer to that widget and they cease to be

functional. Remove the obsolete links and replace them with new ones.

Links Don’t Update When You Select Another Button

Symptom: The “Links” panel doesn’t behave like the resource panels. If you edit links

on one button then select another button, the “Links” panel still shows the links

from the previously selected button.

Cause: Sun WorkShop Visual interprets the selection of any new widget as a target

widget for a potential new link on the previously selected button.

Solution: Pull down the Widget Menu and select “Edit links” again to display and

edit links on the second button. You do not have to close the Links panel first.



804 Sun WorkShop Visual User’s Guide • May 2000

Code Generation

This section discusses problems you may encounter when you generate code. Some

of these problems result because Sun WorkShop Visual offers you so much flexibility

in arranging your files. For example, you should make sure to generate Link

functions in only one file, and to generate Includes in the files where they will be

needed. Read “Arranging Your Files” on page 237 for more details.

“No Application Shell” Warning

Symptom: Sun WorkShop Visual displays a “No Application Shell” warning message

when you try to generate the primary module with a main() program.

Cause and Solution: Your design does not contain the required Application Shell.

Bring up the resource panel for the Shell of the main window in your design, click

on the “Application Shell” toggle, then click on “Apply.”

Links are Undefined

Symptom: Link functions are undefined at link time.

Cause and Solution: If you generate Links with your primary module, you must

generate the actual code for the links - the Link functions - into one of your code

files, either the primary module or a stubs file. Be sure to generate the link functions

into an appropriate file.

Global Widgets Are Undefined

Symptom: Global widgets are undefined when you compile the stubs file.

Cause and Solution: Declarations of global widgets and objects are generated into the

primary module, but not into the stubs file. To generate a header file that declares

them, use the “Externs...” option and #include the resulting header file with your

callbacks. This is preferable to writing your own extern declarations or copying the

ones generated in the primary module, because it is less error-prone and more

complete. The Externs file can be regenerated when necessary to reflect changes in

the design.



Chapter 28 Troubleshooting in Sun WorkShop Visual 805

Application Does Not Use Resources from X Resource File

Symptom: The generated application doesn’t use the resource values from the

generated X resource file. For example, variable names appear on labels and buttons

instead of the label strings, colors are wrong, or fonts are wrong. The exact

symptoms depend on which resources were generated into the X resource file and

which were hard-wired.

Cause and Solution: You did not regenerate the X resource file when you regenerated

code. If you have added or removed widgets from your design, default widget

names may change and no longer correspond to those in the generated X resource

file. Regenerate the X resource file.

Cause and Solution: X cannot find the X resource file when you run your application.

You may need to rename the X resource file, usually with the same name as the

application class and without a suffix. For more information, see your X

documentation.

Cause and Solution: X cannot recognize the widget names in the file because a

different application class name was used for the generated code file and the

X resource file. Regenerate the application and the X resource file, being sure to use

the same application class name for both. Be sure to use a unique application name

to avoid confusion with other resource files your system may be accessing.

Default Resources Change At Run Time

Symptom: A color, font, or other resource is different at run time from that in the

dynamic display.

Cause: Some resources shown in the dynamic display are inherited from Sun

WorkShop Visual. If not explicitly set on the resource panels, these resources may

inherit values from other sources at run time, depending on the platform where the

program is run.

Solution: To ensure the correct colors and fonts, set explicit values for them on the

resource panels. Foreground and background colors can be set on each Shell in the

design and are then inherited by all children of the Shell. Fonts can be set on

BulletinBoards, derivatives of the BulletinBoard, or Shells, and apply to all their

children.



806 Sun WorkShop Visual User’s Guide • May 2000

Unexpected Results Occur When Widgets Share a Widget Name

Resource values can be shared among widgets with a common widget name, but

only if they are read from the X resource file into the resource data base. The

following rules apply:

■ Sharing of resources occurs only at run time. Resource values are not shared

among widgets in the dynamic display

■ Hard-wired resources are not shared

■ Object bindings are not shared

Symptom: Resource values are different at run time from values in the dynamic

display. When a resource is generated to the X resource file, the result is different

from when it is hard-wired.

Cause: These are expected results when widgets share a widget name. The dynamic

display and hard-wired resource settings disregard common widget names.

Resources generated into the X resource file, however, affect all widgets with a

common widget name.

Symptom: A color or font is not shared among widgets with a common widget name,

even if that resource was generated to the X resource file.

Cause and Solution: The color or font used an object binding instead of a color or font

setting. Use a simple color or font setting, or set the resource on a common parent of

the widgets that you want to share the value.

Symptom: An explicitly set resource value is overridden at run time.

Cause: If widgets share a widget name and resources are generated to the X resource

file, only one value is used even if more than one was set.

Solution: Generally it is better to avoid common widget names unless widgets are to

share all resource values. However, you can force any resource value to be restricted

to a single widget by hard-wiring it. Use the masking toggles on the resource panels

to do this.



Chapter 28 Troubleshooting in Sun WorkShop Visual 807

Sun WorkShop Visual Replay and Sun
WorkShop Visual Capture

The following section answers frequently asked questions about Sun WorkShop

Visual Replay and Sun WorkShop Visual Capture.

Why is it not possible to record and replay certain applications (e.g.
Netscape)?

Typical reasons are:

■ The application may be statically linked with the Xt library rather than

dynamically linked with it.

■ The application may have its own multi-threading scheme that disallows Xt Work

Procedures.

■ The product may have multiple application shells. (See below)

If you experience difficulties in recording and replaying your own software, simply

relink it so that it uses libXt.so.

Why is the click position in a text widget not recorded?

All of the “position sensitive” motif widgets are recorded/replayed through special

Sun WorkShop Visual Replay routines. You will find the source code for these

routines in the src/examples/replay/libcvtXm directory.

The conversion routines for XmText and XmTextField are not built by default because,

for most testing purposes, it is reasonable to treat the text field as a simple data entry

field whose contents you wish to replace.

It is a lot simpler to do the following:

doubleclick mytextwidget

type halloworld

than it is to do this:

doubleclick mytextwidget(position, 25)

type halloworld

It would also be difficult to check that doubleclicking at a particular character

position did select all the text.



808 Sun WorkShop Visual User’s Guide • May 2000

Different test runs may involve replacing the contents of a text field with different

values. The name of the text widget is the most important item - not the values

which are to be placed in it.

If you wish to test the editing facilities provided in an XmText widget within an

application, you should rebuild the libcvtXm directory with -DHANDLE_TEXT
added to the cc command line. Then copy the libcvtXm.so shared object to lib/xds so

overwriting the standard version.

The Sun WorkShop Visual Replay copyright message appears but then it
exits

This commonly occurs when Sun WorkShop Visual Replay has determined that you

are attempting to replay a non-Motif application.

The -O flag can be used to force the application to be invoked and allows you to

replay any non-Motif application functionality.

NB: This situation can also arise for Motif applications which have multiple

application shells (see below).

Sun WorkShop Visual Replay is invoked successfully but appears not to
be working

Typical reasons are:

■ The application has a “splash” or creates one or more temporary ApplicationShell

widgets on startup.

By default, Sun WorkShop Visual Replay registers the first ApplicationShell widget

and uses it as a point of reference. Usually it “takes” the first applicationShell it sees,

but you can change it to take the 4th by adding:

  -use 4

on the command line, or set the XDSUSESHELL environment variable:

  setenv XDSUSESHELL 4

NB: To check that you are using the “real” application shell, try recording. You

should see:

in ApplicationShell

......

If you see:

in myapp

.....



Chapter 28 Troubleshooting in Sun WorkShop Visual 809

then it may not be using the correct application shell. (If your application has an

unmapped application shell, and multiple toplevel shells, then this is the correct

behavior).

The solution is to keep incrementing the -use count. The worst that can happen is

that you tell it to ignore ALL you application shells, so it won't record, replay or

capture.

■ Your application has reworked or subverted Xt event handling.

You know that this is the problem, if:

■ the -i flag is used and the application appears, but the Sun WorkShop Visual

Replay dialog does not, or

■ the -I flag is used and the Sun WorkShop Visual Replay dialog is displayed

before the application appears.

In these circumstances, all you will be able to do is capture designs.

■ Your application has not been linked with Motif.

In this situation, the default behavior is for Sun WorkShop Visual Replay to abort.

This may be overridden using the -O flag. Note however that you will not be able to

record or replay any application functionality which relies upon Motif.

My application has 3rd party widgets in it. How can I capture them
properly?

The capture mechanism creates capture files in the Sun WorkShop Visual .xd format

and assumes that you are using the standard version of Sun WorkShop Visual, i.e.

not one supplemented with non-Motif widgets. By default, all non-Motif widgets are

represented in the capture file as Motif DrawingArea widgets.

If you are using a version of Sun WorkShop Visual which supports the 3rd party

widgets you wish to capture, you need to set the following resource:

*xdsCaptureUserWidgets:true

Can Sun WorkShop Visual Replay handle japanese (and other) text and
input methods?

Yes. It records the composed text that has been inserted in the text field and replays

by inserting the text directly. It has been configured for the Motif Text and Textfield

widgets. The configuration software is in:

src/examples/replay/motif/motif4.c

and the mechanism for registering the software is in:

src/examples/replay/motif/register.c



810 Sun WorkShop Visual User’s Guide • May 2000

The configuration involves a get /put routine of the data. Some input methods will

allow you to access this information. The default fallback is to access the string in

the widget itself.

It has hard-wired control-space as an input method compose request, and has an

alternative “compose” keysym resource, which is set by default to Henkan_Mode.

If you are using the recording software with an input method that takes, e.g. F3 as

the compose key, you should run your software with:

-xrm *xdsImComposeKeySym:F3

or set this resource from a defaults file, or with xrdb .

Can my customers record/replay my applications?

To permit users to use Sun WorkShop Visual Replay to record and replay your

application, you must have the following line in your code:

xdsAllowUserAccess()

and link the application with the libxdsclient.a library.



811

APPENDIX A

Sun WorkShop Visual Replay
Command Syntax

Introduction

This appendix describes the keywords used in Sun WorkShop Visual Replay scripts.

The Sun WorkShop Visual Replay script keywords have been divided into the

following subsections according to their functions:

■ Record and Replay Commands:

■ Specifying the context of actions

■ Button actions (Simple controls)

■ Pulldown Menu operations

■ Option Menu operations

■ Keyboard Operations

■ Text Entry

■ Button actions (Position dependent controls)

■ Extra Commands:

■ Resource Evaluation

■ Widget Hierarchy Analysis

■ Non-application operations

■ Condition clauses

■ Display Expressions

■ Widget State Expressions

■ Importing User-Defined Commands



812 Sun WorkShop Visual User’s Guide • May 2000

Specifying the Context of Actions

Keywords

in - specify the context of subsequent actions in a script

ApplicationShell - the top level shell of the application

Synopsis

in shell_widget

commands

in ApplicationShell

commands

Inputs

Description

Sun WorkShop Visual Replay scripts consist of actions on widgets. These actions

have to take place within the context of the shell (i.e. dialog) which contains that

widget. If the shell is not realized, the script will fail at that point. The in command

cannot be nested. Once you have come out of a shell (to go into another shell), you

must go back in to that shell before attempting any further actions within that

context.

Examples

in ApplicationShell

push this_button

push that_button

push help_dialog_button

in help_dialog_popup

shell_widget the name of a shell widget other than the main

application shell



Appendix A Sun WorkShop Visual Replay Command Syntax 813

push cancel_button

in ApplicationShell

push another_button

Button Actions (Simple Controls)

Keywords

Synopsis
push widget  [with [ modifier -] button[1-5] ]

doubleclick widget

Inputs

Description

pushsimulates a single click (a mouse button press/release sequence) using a mouse

button on the named widget. The with keyword allows you to specify a particular

mouse button. If this is not used, button1 (the left mouse button) is used. A

keyboard modifier (such as the Shift key) can be used to extend the permutations of

mouse button events. The permitted modifiers are alt, ctrl and shift.

doubleclicksimulates a doubleclick with the left mouse button. This can be used in

any widget but is especially useful for selecting from a text widget (see “Text Entry”

on page 819).

push - press and release a mouse button

doubleclick - doubleclick mouse button

widget the name of a widget

modifier a keyboard modifier

button[1-5] the number of the mouse button

(default is button 1 with no modifiers).



814 Sun WorkShop Visual User’s Guide • May 2000

Usage

In some widgets, where the user clicks with the mouse is unimportant. For example,

clicking on a button widget in any part of it will activate that button. However, for

other widgets, the position is significant; for example pushing on a scale widget will

have different effects depending upon the where the push was made.

The following table lists those widgets which are position and non-position

dependent:

Refer to “Button Actions (Position Dependent Controls)” on page 820 for details on

recording and replaying the other widgets in the position-dependent list.

Examples

in ApplicationShell

push this_button

in ApplicationShell

push that_button with shift-button2

in my_dialog_popup

if color_toggle->set:true

push color_toggle

endif

TABLE A-1

Position Independent Widgets Position Dependent Widgets

Buttons Sliders

Toggles Scales

Lists

Drawing Areas

Text Widgets1

1. Recording and replaying user interaction with text widgets is covered in
“Text Entry” on page 819

Non-Motif widgets



Appendix A Sun WorkShop Visual Replay Command Syntax 815

Menu Operations

Keywords

Synopsis

cascade cascadebutton

select widget

cascade cascadebutton

pullright cascadebutton

Inputs

Description

cascadeis a shorthand way of describing menu operations. You can also post a menu

by pushing on the associated cascade button or using a keyboard accelerator.

Similarly, menu options can be selected using accelerators or keyboard mnemonics.

cascadeposts a pulldown menu to allow a selection to be made from it. The selection

may be a widget (i.e. an option in that menu) or a cascadebutton which displays a

pullright menu.

Examples

in ApplicationShell

 cascade file_m

select open_file

in ApplicationShell

cascade - post a pulldown menu

pullright - post a pullright menu from a pulldown menu

cascadebutton the name of a cascadebutton

widget the name of a widget within the cascade button’s

pulldown menu



816 Sun WorkShop Visual User’s Guide • May 2000

 cascade format_menu

pullright character_menu

Notes

Sun WorkShop Visual Replay only supports one level of pullright menu to conform

to the Motif style guide. You can however use the push command in your scripts to

select pullright menus in succeeding levels.

Option Menu Operations

Keywords

Synopsis

option opmenu-widget :: member_widget

Inputs

Description

option selects an option from an option menu.

Examples

in ApplicationShell

 cascade format_menu

pullright character_menu

option character_menu::bold

The next example only selects an option if the option menu itself is sensitive to user

input:

if IsSensitive(myoptionmenu->OptionButton)

option myoptionmenu::thisoption



Appendix A Sun WorkShop Visual Replay Command Syntax 817

endif

If you want to check the current setting of the optionmenu (i.e. what was last

selected), you simply examine the option menu menuHistory resource, for example:

if myoptionMenu->menuHistory: select_yes

message he said yes

endif

Notes

An alternative method of selecting a member of an option menu is to push the

option button and then push the appropriate member widget. However, we

recommend use of the option syntax as it more closely mimics user actions.

Keyboard Operations

Keywords

Synopsis
alt char

ctrl char

key keysym

alt - select current word

ctrl - select current line

key - enter a keysym from the keyboard



818 Sun WorkShop Visual User’s Guide • May 2000

Inputs

Description

Keyboard input is directed at the widget that has the focus. Sun WorkShop Visual

Replay does not require any extra programming to enter input from the keyboard.

Users and test scripts alike have to work with the window manager when

entering text. Where explicit focus is in place (i.e. you have to click in a window

to get the focus), you will have to program this into the test script.

Example

in ApplicationShell

alt f

type o

in open_file_popup

multiclick selection_field

type foo.xd

push ok_button

doubleclick my_text_field

type hallo world

key Return

Notes

A push or a doubleclick in a text field has the side effect of taking the focus. This is

the only place in Sun WorkShop Visual Replay that focus is handled directly.

Data entry into text fields often overrides what is already there and will be preceded

by a doubleclick or a multiclick.

char a single character

keysym any X keysym (see X11/keysymdef.h for list)



Appendix A Sun WorkShop Visual Replay Command Syntax 819

Text Entry

Keywords

Synopsis
type text

key keysym

doubleclick textwidget

multiclick textwidget

Inputs

Description

Most text widgets in an application are used for single line data entry (for example

the selection fields in a File Selection Box). Sun WorkShop Visual Replay allows

testers to replace the default content of the field with a known value and then check

the consequences.

typeenters text into a text widget. doubleclickand multiclick program word and line

selection respectively. multiclick is most commonly used in test scripts, when you

want to replace the contents of the text field, regardless of how many words there

are on the line.

type - enter text from the keyboard

key - enter a keysym from the keyboard

doubleclick - select current word

multiclick - select current line

keysym any X keysym (see X11/keysymdef.h for list) without

the XK_ prefix

textwidget the name of a text widget

text a text string



820 Sun WorkShop Visual User’s Guide • May 2000

Examples

in form_attr_dialog_popup

doubleclick formHorizSpacingField

type 100

in coreDialog

multiclick title_t

type My Dialog Title

Notes

There is a limit of 512 characters to the length of a line which can be handled by Sun

WorkShop Visual Replay. In you want to enter a text string whose length exceeds

this limit, split the text and type in each section.

Sun WorkShop Visual Replay works around a problem in some versions of Motif

where triple-click is not properly handled in XmTextField widgets. In these

circumstances, if your script contains multiclick, it will be converted to doubleclick.

Button Actions (Position Dependent
Controls)

Keywords

Synopsis

push widget(mame,qual)

drag widget(name1,qual1)-widget(name2,qual2)

push - press and release a mouse button

drag - combine a press and release within the same widget



Appendix A Sun WorkShop Visual Replay Command Syntax 821

Inputs

Description

In some widgets (e.g. drawing areas) where you click is important. In the case of

drawing areas, a position within the drawing area is needed. For lists, you need an

indication of which item has been selected. The version of push listed above is

intended for such position-dependent widgets.

In these widgets, you will often need to do more than just click. You may need to

press down at one point and release at another. An example is the setting up of

attachments between widgets in the Sun WorkShop Visual form layout editor. This

may involve a server grab, so it is described as a single drag operation where the first

part describes where you pressed and the second where you released the button.

This mechanism can be used for single user-defined widget instances, such as the

drawing areas within your application and also for entire widget classes (as we have

done for XmList, XmScale and XmScrollBar and various 3rd party widget sets).

Example

The first example shows how the Motif DrawingArea widget has been implemented

for Sun WorkShop Visual testing:

in ApplicationShell

push tree_da(mybutton,centre)

In the next example we show how attachments are made between the frame1 and

button_box widgets in the Sun WorkShop Visual form layout editor:

in form_layout

drag layout(frame1,right)-layout(button_box,left)

You can try out these effects in Sun WorkShop Visual.

Notes

Information on how to handle your own position-dependent widgets, or those from

a 3rd party supplier, are given in “Extending the Sun WorkShop Visual Replay

Widget Set” on page 458.

widget a widget name

name, name1,
name2

application/widget dependent description



822 Sun WorkShop Visual User’s Guide • May 2000

Resource Evaluation

Keywords

printres - print the value of a widget resource

Synopsis

printres widget -> resource

Inputs

Description

printres prints the current value of a specified resource within a selected widget. This

is especially useful in test scripts where a known resource value is expected. The

name of the resource must be specified without any “XmN” prefix, e.g.

“labelString”.

Your scripts are more likely to include resource evaluation within conditional

expressions.

Example

in my_shell

if !my_option_menu->menuHistory:default_option

message FAIL: bad setting for my_option_menu

message Setting should be:

printres my_option_menu->menuHistory:default_option

endif

widget the name of a widget

resource the name of the widget resource



Appendix A Sun WorkShop Visual Replay Command Syntax 823

Widget Hierarchy Analysis

Keywords

Synopsis

tree widget

dump widget

snapshot widget

Inputs

Description

The tree, dump and snapshot commands allow you to analyze the structure of the

widgets within an application interface and the values of resources assigned to those

widgets. The results from the analysis are displayed on standard error.

tree gives a recursive listing of widget names in the widget hierarchy from the

nominated widget.

dump displays the resource settings of the nominated widget.

snapshot displays the resource settings of the nominated widget and all other

widgets in the widget hierarchy from the nominated widget.

tree - produce recursive listing of current widget hierarchy

dump - show resources assigned to widget

snapshot - produce recursive listing of current widget hierarchy and

the resources assigned to each widget

widget the name of a widget



824 Sun WorkShop Visual User’s Guide • May 2000

Example

The following command displays the resources allocated to the button1 widget:

in ApplicationShell

dump button1

Part of the example output is shown below:

button1():

Boolean ancestorSensitive:true

HorizontalDimension width:58

VerticalDimension height:22

Pixel background:color('black')

Pixel foreground:color('#72729F9FFFFF')

HorizontalDimension highlightThickness:1

Pixel highlightColor:color('black')

XmString labelString:'Button A'

Pixel armColor:color('red')

The next command displays the widget hierarchy from the form1 widget:

in ApplicationShell

tree form1

Part of the example output is shown below:

rowcol1():

buttonA():

button2():

address_area():

label1():

text1():

Notes

Sun WorkShop Visual Replay assigns a unique name to widgets which share a

common widget name within a shell (e.g., HorScrollBar#1, HorScrollBar#2, Apply#3,

Apply#5, etc.). Where the replay name is different from the actual widget name, it is

given within the brackets.



Appendix A Sun WorkShop Visual Replay Command Syntax 825

Non-Application Operations

Keywords

Synopsis

delay duration

message text

sequence text

shell command

setenv env-var env-value

breakpoint widget

exit status

Inputs

Description

delayallows you to insert a pause in a script. This is useful when you wish to

visually inspect the application at particular points in its execution. The next action

in the script will continue after the pause.

messagedisplays a message on standard error. This allows you to label different

parts of the script and communicate expected results and errors to testers. The

message text does not have to be enclosed in quotes.

delay - pause replay of user actions

message - print message

sequence - label part of a script

shell - execute shell command

duration time in seconds

text a text string

widget the name of a widget

status either 1 or 0



826 Sun WorkShop Visual User’s Guide • May 2000

sequenceis used to label different sections of a script. Then if an error occurs, you can

skip to the next labelled sequence and continue from that point.

To use sequence, you must invoke visu_replay with the -skip-on-error flag. By

default, visu_replay is run with the -user-on-error flag which will stop the test and

stay in the application when an error occurs. The remaining error flag, -exit-on-error
causes will terminate the application when an error occurs.

shell executes a shell command from a script. The script continues when the shell

command has terminated. This facility allows you to enrich your scripts to do far

more than simply re-running user actions.

setenvis used in conjunction with the shell command to pass information to the shell

through environment variables. setenvhas two arguments. The first is the name of

the variable; the second is an expression that can combine widget resource values

and one of the following convenience functions:

■ WindowId(widget)
■ WindowFrame(widget)
■ Parent(widget)
■ Shell(widget)

breakpointis used, in conjunction with a debugger, to set a breakpoint in a script

when a nominated widget is activated. You can then examine the internals of

individual widgets.

A script which contains the breakpointkeyword should be invoked as follows:

visu_replay -f script debugger app

where script is the name of the script, debugger is the name of your debugger and app
is the name of the application to be exercised by the script. The debugger is run by

Sun WorkShop Visual Replay. At the breakpointkeyword, the application will stop as

if you set the breakpoint directly. This will allow you to inspect widget internals

even if your application has been optimized.

exit terminates the script with the specified exit status.

Examples

To delay for 5 seconds after pushing a widget:

in ApplicationShell

push mywidget

delay 5

push yourwidget

To take a screen dump of a shell without window manager decorations:

in ApplicationShell



Appendix A Sun WorkShop Visual Replay Command Syntax 827

setenv ID WindowId(ApplicationShell)

shell xwd -id $ID -out /tmp/shell.xwd

To take a screen dump with window manager decorations:

in ApplicationShell

setenv ID WindowFrame(ApplicationShell)

shell xwd -id $ID -out /tmp/shell.xwd

To take a screen dump of a pulldown menu, when you only know the name of its

cascade button:

in ApplicationShell

push cascade_button

setenv ID WindowId(cascade_button->subMenuId)

shell xwd -id $ID -out /tmp/shell.xwd

Note – If you don’t push the button first, the menu will not have been posted and

xwd will not be able to snapshot it.

To do the same with an OptionMenu:

in ApplicationShell

push option_menu.OptionButton

setenv ID WindowId(option_menu->subMenuId)

shell xwd -id $ID -out /tmp/shell.xwd

To note the background color of the cascade button’s parent:

in ApplicationShell

setenv ID Parent(cascade_button)->background

shell echo The Color $ID

Condition Clauses

Keywords

if

else

elif



828 Sun WorkShop Visual User’s Guide • May 2000

endif

Synopsis

if expression

actions

[elif expression

actions ]

[else

actions ]

endif

Inputs

Description

The if statement allows the control flow through a script to be sensitive to conditions

inside the application as it is being run. For each if there must be a matching endif. If

necessary the statement can include optional alternatives (elif) and a default catch-all

elsecondition.

Example

in my_shell

if !my_option_menu->menuHistory:default_option

message FAIL: bad setting for my_option_menu

message Setting should be:

printres my_option_menu->menuHistory:default_option

else

message setting ok for my_option_menu

endif

expression an expression which evaluates to true or false

actions one or more user actions



Appendix A Sun WorkShop Visual Replay Command Syntax 829

Display Expressions

Keywords

IsPseudoColor

IsDirectColor

IsTrueColor

IsStaticColor

IsStaticGrey

IsGreyScale

Synopsis

if expression

actions

endif

Inputs

Description

You cannot guarantee that a script recorded on one display will necessarily work on

another of a different type. Certain applications make heavy use of color and may

display a color restriction message to a user if he is running the application on a

display with a limited color map. Your scripts must accommodate such situations.

Example

if !IsPseudoColor

message Non PseudoColor display

in warning_popup

push warning.OK

endif

expression one of the keywords listed above



830 Sun WorkShop Visual User’s Guide • May 2000

Widget State Expressions

Keywords

IsVisible

IsManaged

IsRealized

IsHere

Synopsis

if expression

actions

endif

Inputs

Description

Where parts of a dialog are selectively displayed, you can check which parts are

managed and realized using the IsManagedand IsRealizedexpressions.

IsVisible is intended for small (VGA) displays where the whole of a dialog may not

be visible on the screen. This is important as Motif TAB navigation traversal model

ignores controls which are off screen.

IsHere simply checks whether the widget exists in the current shell.

Example

in ApplicationShell

cascade file_menu

select fm_menu.fm_exit

if IsVisible(save_dialog)

in save_dialog

expression one of the keywords listed above



Appendix A Sun WorkShop Visual Replay Command Syntax 831

push save.ok

else

message Save Dialog cannot be seen

endif

Importing User-Defined Commands

Keywords

Synopsis

import module

user command text

Inputs

Description

The command set of Sun WorkShop Visual Replay is intended for replaying user

actions and for checking the state of an application with respect to its widget

hierarchy and its resource settings. There is nothing to stop you adding your own

commands to meet your own needs. For example:

■ To produce screen dumps at various points in a replay session.

■ To do other sorts of consistency checking on the widget hierarchy - one example

would be to interface with Doug Young’s widgetlint library.

■ To insert a probe or a patch for a particular debugging problem. This will be of

most use in a stripped optimized binary, where you do not have access to the full

power of the debugger.

import - load a module of additional commands

user - invoke a command from a loaded module

module the name of the module

command the name of the command

text parameters passed to the command



832 Sun WorkShop Visual User’s Guide • May 2000

import allows you to load a module of your own commands into a script. Once the

module has been loaded the commands in it can be invoked using the user
command. You can import as many modules as you wish.

Example

import mymodule

in ApplicationShell

cascade file_menu

select fm_print

in print_dialog

user myscreendumper print_dialog

Notes

The shell and setenv interface is the preferred route if the actions you need to

perform do not involve extensive access to the widget hierarchy, or inspection of the

internals of your program. In the latter case, see “Adding Your Own Sun WorkShop

Visual Replay Commands” on page 471 to see how to add your own commands to

Sun WorkShop Visual Replay.

Sun WorkShop Visual Replay Widget
Naming Conventions

In Sun WorkShop Visual Replay, the widget name is what you use to reference a

widget. One of the main tasks for any widget-based testing tool is identifying the

right widget. The naming convention must be unambiguous, without being over-

complicated.

Here are the rules used by Sun WorkShop Visual Replay:

1. If the control is a widget (i.e. not a gadget), and it is the only widget with that

name in the current dialog, use the widget name, e.g.

in ApplicationShell

push mywidget

2. If the control is a gadget, use parentname.gadgetname

in ApplicationShell



Appendix A Sun WorkShop Visual Replay Command Syntax 833

push myradiobox.mytogglebuttongadget

3. Where a widget name is null (i.e. “”), use unnamed, e.g.

in ApplicationShell

push myradiobox.unnamed

4. Where there are multiple instances of this widget name (or gadget name) in the

current shell, then reference the instance by number, e.g.

in ApplicationShell

push mywidget#17

push myradiobox.unnamed#3

push myradiobox#2.unnamed#2

5. If you are writing your script by hand, the tree command can be used to

examine the widget hierarchy:

in ApplicationShell

tree ApplicationShell

This outputs a recursive listing of the widget hierarchy. The listing contains the

actual widget name, and in parenthesis, the name you should use for Sun WorkShop

Visual Replay, if it is different from the actual name.

6. If the shell name is ambiguous, then use instances, e.g.

in myshell#2

push button1

in myshell#3

push button2

Note – the instance numbers are automatically calculated when you record a script.

Instance #3 simply means the third occurrence of that name in a depth-first left to

right search of the widget hierarchy for that shell.



834 Sun WorkShop Visual User’s Guide • May 2000



835

APPENDIX B

Motif XP Reference

Introduction

The Motif XP library allows you to share code between Motif and Microsoft

Windows by providing a mapping of most of the MFC classes and methods to Motif

widgets and X or UNIX calls. This chapter documents the library.

Using the Motif XP

To make full use of the following information, start by checking which MFC class

you are dealing with. “Mapping Motif Widgets to Microsoft Windows” on page 782

will give you this information. You can then look up the class in the following pages

and find which methods are available.

Note – All variables and methods beginning xd_ are specific to the Motif XP - you

can use them on Motif but not on Microsoft Windows.

For information on the MFC and the methods, you should consult your MFC

documentation supplied with the environment you are using on Microsoft Windows.

Enhancing the Motif XP

The source code for the Motif XP is provided with Sun WorkShop Visual, allowing

you to add to it if you wish.



836 Sun WorkShop Visual User’s Guide • May 2000

It is located in $VISUROOT/src/motifxp/lib (where $VISUROOT is the path to

the root of the Sun WorkShop Visual installation directory). Each class has a separate

source file and is commented to help you find your way around. The public headers

are in xdclass.h which can be found in the $VISUROOT/src/motifxp/h directory.

Motif XP Library

class CObject

The class CObject is the principal base class for the XP library. All other classes are

derived from this one.

virtual ~CObject();

Destroys a CObject object.

protected CObject();

Constructs a CObject object.

virtual Widget xd_rootwidget(); and virtual void xd_rootwidget( Widget
xd_rootwidget );

The first version of xd_rootwidget() returns the widget pointer of the widget at the

root of the hierarchy which is represented by the CObject object. The second version

sets the root widget.

class CFrameWnd : public CWnd

The class CFrameWnd provides the functionality of a Microsoft Windows single

document interface overlapped or pop-up frame window. It is used by Sun

WorkShop Visual to support the ApplicationShell widget.



Appendix B Motif XP Reference 837

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Gets the value of XmNtitle for the Shell widget. Returns 0 if the widget has not yet

been created, otherwise returns the length of the text.

protected virtual int xd_get_window_text_length() const;

Returns the length of the widget’s XmNtitle resource. Returns 0 if the widget has not

yet been created.

protected virtual void xd_set_window_text(LPCSTR lpszString);

Sets the XmNtitle and XmNiconName for the Shell widget to lpszString.

protected virtual BOOL xd_show_window(int nCmdShow);

Used to implement ShowWindow for ApplicationShell. Supports

SW_SHOWMINIMIZED, SW_HIDEand SW_RESTOREonly.

class CCmdTarget : public CObject

The class CCmdTarget is the base class for the XP library message-map architecture.

A message map routes commands or messages to the member functions you write to

handle them. This Motif version includes no functionality; the class is included only

for compatibility with the Microsoft Windows code.

class CWnd : public CCmdTarget

The class CWnd provides the base functionality of all window classes in the XP

library. The following MFC methods have been implemented:



838 Sun WorkShop Visual User’s Guide • May 2000

CWnd();

virtual ~CWnd();

int GetWindowText(LPSTR lpszStringBuf, int nMaxCount) const;

Gets the window text for the widget. This is implemented by calling the virtual

member function xd_get_window_text().

int GetWindowTextLength() const;

Gets the length of the window text for the widget. This is implemented by calling

the virtual member function xd_get_window_text_length().

BOOL EnableWindow(BOOL bEnable=TRUE);

Enables or disables a window. Returns 0 if the widget has not yet been created, 0 if

the widget was previously enabled or non-zero if the widget was previously

disabled.

void SetWindowText(LPCSTR lpszString);

Sets the window text for the widget. This is implemented by calling the virtual

member function xd_set_window_text().

BOOL ShowWindow(int nCmdShow);

Show, iconize (ApplicationShell or TopLevelShell only) or hide a window. Returns 0

if the widget has not yet been created; 0 if the window was previously hidden or

non-zero if the window was previously visible. It is implemented by calling the

virtual member function xd_show_window().

void xd_call_data ( XmAnyCallbackStruct *call_data); and

XmAnyCallbackStruct *xd_call_data () { return _xd_call_data; }

The first version of xd_call_data() is used by the Sun WorkShop Visual generated

code to store a callback’s call_data in the class. It can be retrieved in the callback

method using the second version.



Appendix B Motif XP Reference 839

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Used by the sub-classes to implement GetWindowText().

protected virtual int xd_get_window_text_length() const;

Used by the sub-classes to implement GetWindowTextLength().

protected virtual void xd_set_window_text(LPCSTR lpszString);

Used by the sub-classes to implement SetWindowText().

protected virtual BOOL xd_show_window(int nCmdShow);

Implements default show and hide behavior for ShowWindow. For gadgets it

manages and unmanages the gadget, for widgets it sets mappedWhenManaged
appropriately.

class CDialog : public CWnd

The class CDialog is the base class used for displaying dialog boxes on the screen. To

make a useful class, you would normally derive another class from CDialog.

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Gets the value of XmNtitle for the Shell widget. Returns 0 if the widget has not yet

been created, otherwise returns the length of the text and the text is placed into

lpszStringBuf.

protected virtual int xd_get_window_text_length() const;

Returns the length of the widget’s XmNtitle resource. Returns 0 if the widget has not

yet been created.



840 Sun WorkShop Visual User’s Guide • May 2000

protected virtual void xd_set_window_text(LPCSTR lpszString);

Sets the XmNtitle and XmNiconName for the Shell widget to lpszString.

protected virtual BOOL xd_show_window(int nCmdShow);

Implements ShowWindow for TopLevelShell or DialogShell. Supports

SW_SHOWMINIMIZED(TopLevelShell only), SW_HIDEand SW_RESTORE.

class CScrollBar : public CWnd

The class CScrollBar provides the functionality of a Microsoft Windows scroll-bar

control.

int GetScrollPos() const;

int GetPos() const;

Returns 0 if the widget has not yet been created, otherwise returns XmNvalue. You

can use either of these routines.

void GetScrollRange(LPINT lpMinPos, LPINT lpMaxPos) const;

If the widget has been created sets lpMinPos and lpMaxPos to XmNminimum and

XmNmaximum respectively.

int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

int SetPos(int nPos, BOOL bRedraw = TRUE) const;

If the widget has been created sets XmNvalue to nPos and returns the previous

XmNvalue, otherwise returns 0. You can use either of these routines.



Appendix B Motif XP Reference 841

void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw =
TRUE);

If the widget has been created sets XmNminimum and XmNmaximum to nMinPos and

nMaxPos respectively.

void ShowScrollBar(BOOL bShow = TRUE);

If the widget has been created manages or unmanages it as determined by bShow.

class CFileDialog : public CDialog

The CFileDialog class encapsulates the Microsoft Windows common file dialog box,

providing an easy way to implement File Open and File Save As dialog boxes (as

well as other file selection dialog boxes) in a manner consistent with Microsoft

Windows standards.

CFileDialog (BOOL bOpenFileDialog,
LPCSTR lpszDefExt = NULL,
LPCSTR lpszFileName = NULL,
DWORD dwFlags =
OFN_HIDEREADONLY |OFN_OVERWRITEPROMPT,
LPCSTR lpszFilter = NULL,
CWnd* pParentWnd = NULL);

The constructor simply builds a CFileDialogObject. The lpszFileName and lpszFilter
parameters are used to set the XmNdirSpec and XmNpattern resources of the file

selection box in the DoModal() method. The pParentWnd resource should point to a

CFrameWnd object.

virtual ~CFileDialog();

Destroys the CFileDialog object, freeing private class variables.

virtual int DoModal();

Sets the XmNdirSpec and XmNpattern resources as specified in the constructor then

executes a private event loop until the OK, Cancel, or Popdown callback is

processed.



842 Sun WorkShop Visual User’s Guide • May 2000

CString GetPathName() const;

Returns the value of the file selection box’s XmNdirSpec resource.

protected virtual void OnCancel();

Called when the user presses the Cancel button or pops down the dialog from the

window menu. Sub-classes should call this method when overriding OnCancel() if

they want the file selection to complete.

protected virtual void OnOK();

Called when the user presses the OK button. Sub-classes should call this method

when overriding OnOk() if they want the file selection to complete.

virtual BOOL OnInitDialog();

Returns True by default. This is overridden in Sun WorkShop Visual generated code

to call the create method which will create the widgets.

class CSplitterWnd : public CWnd

Used to implement PanedWindows.

class CMenu : public CObject

The class CMenu is a class for handling the Microsoft Windows menu control.

CMenu();

Creates a CMenu object.

~CMenu();

Destroys a CMenu object.



Appendix B Motif XP Reference 843

UINT CheckMenuItem(UINT nIDCheckItem, UINT nCheck);

Sets the check state for a menu item which corresponds to a toggle button. The

nCheck parameter specifies both the required state of the item (MF_CHECKEDor

MF_UNCHECKED) and the interpretation of nIDCheckItem (MF_BYCOMMANDand

MF_BYPOSITION). These two values should be specified using bitwise OR (e.g.

menu->CheckMenuItem ( ID_toggle_b, MF_BYCOMMAND | MF_CHECKED)). The

function returns -1 if the menu item is not found or is not a toggle button (note that

the MFC will allow any menu item to be checked - even a separator). The previous

state (MF_CHECKor MF_UNCHECKED) is returned otherwise. If nCheck includes

MF_BYCOMMANDany submenus are also searched.

UINT EnableMenuItem(UINT nIDEnableItem, UINT nEnable);

Enables or Disables a menu item. The nEnable parameter specifies both the required

state of the item (MF_ENABLEDor MF_GRAYED) and the interpretation of

nIDEnableItem (MF_BYCOMMANDand MF_BYPOSITION). These two values should be

specified using bitwise OR (e.g. menu->EnableMenuItem ( ID_toggle_b,
MF_BYCOMMAND | MF_GRAYED )). The function returns -1 if the menu item is

not found or is a menubar, menu, separator or a cascade button and MF_BYCOMMAND
is specified. The previous state ( MF_ENABLEDor MF_GRAYED) is returned otherwise.

If nEnable includes MF_BYCOMMANDany submenus are also searched. Note that the

state MF_DISABLED(insensitive but not grayed out) is not supported.

UINT GetMenuState(UINT nID, UINT nFlags)const;

Gets the state of a menu item. The nFlags parameter specifies the interpretation of

nID (MF_BYCOMMANDor MF_BYPOSITION). The function returns -1 if the menu item

is not found or is a separator and MF_BYCOMMANDis specified. A bitwise ORof the

states (MF_CHECKED, MF_UNCHECKED, MF_SEPARATOR, MF_ENABLEDor MF_GRAYED)
is returned otherwise. If nFlags is MF_BYCOMMANDany submenus are also searched.

Note that in MFC, GetMenuState for a popup menu also returns the number of

items in the high order byte. This is not supported by the Motif XP.

BOOL TrackPopupMenu ( UINT nFlags, int x, int y, CWnd *pWnd,
LPCRECT lpRect = 0 );

This function simulates the behavior of the MFC TrackPopupMenu function. The

function retrieves the call_data from the window specified by pWnd (this will have

been saved by the callback function). If the event in the call_data is a ButtonPress

event the popup menu is positioned using the call_data’s event (not the function

parameters), the menu is managed and TRUE is returned. FALSE is returned

otherwise.



844 Sun WorkShop Visual User’s Guide • May 2000

void xd_register_menu(CMenu *menu);

Used by the toolkit to map IDs to menu items.

void xd_register_menu_item(UINT nIDItem, Widget item);

Used by the toolkit to map IDs to menu items.

protected Widgetxd_get_menu_item_by_position(UINT nPos);

Used by the toolkit to map IDs to menu items.

protected Widgetxd_get_menu_item_by_id(UINT nIDItem);

Used by the toolkit to map IDs to menu items.

class CComboBox : public CWnd

The class CComboBox is used to wrap an OptionMenu to provide an interface

equivalent to the ComboBox.

int GetCurSel() const;

Returns the (zero based) index of the currently selected item. Returns 0 if the widget

has not yet been created.

int GetLBText(int nIndex, LPSTR lpszText) const;

Gets a copy of the text of the item into lpszText identified by nIndex and returns its

length. Returns 0 if the widget has not yet been created and LB_ERR if the index is

out of range.

int GetLBTextLen(int nIndex) const;

Returns the length of the text of the item identified by nIndex. Returns 0 if the widget

has not yet been created and LB_ERR if the index is out of range.



Appendix B Motif XP Reference 845

int SetCurSel(int nSelect);

Sets the current selection to be the item identified by nSelect. Returns 0 if the widget

has not yet been created and LB_ERR if the index is out of range. Otherwise returns

the index of the selected item. Note unlike MFC passing nSelect as -1 to clear the

selection is not supported.

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Returns the text of the selected item in lpszStringBuf. Returns 0 if the widget has not

been created, LB_ERR if there is no selected item, the length of the text otherwise.

protected virtual int xd_get_window_text_length() const;

Returns -1 if the widget has not yet been created, and 0 if it has. This corresponds to

MFC behavior.

protected virtual void xd_set_window_text(LPCSTR);

This is a noop for CComboBox.

class CStatic : public CWnd

The class CStatic implements a Microsoft Windows static control which is a simple

text field, implemented with a Label widget.

protected virtual void xd_set_window_text(LPCSTR lpszString);

Sets the XmNlabelString resource for the widget to an XmString created with

XmStringCreateLocalized() using lpszString.

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Gets the value of XmNlabelString for the widget into lpszStringBuf. If the widget has

not yet been created 0 is returned, otherwise the length of the string is returned.



846 Sun WorkShop Visual User’s Guide • May 2000

protected virtual int xd_get_window_text_length() const;

Returns the length of the XmNlabelString resource for the widget. If the widget has

not yet been created 0 is returned.

class CButton : public CWnd

The CButton class provides the functionality of Microsoft Windows button controls

and is implemented with either a PushButton or a ToggleButton.

int GetCheck() const;

Gets the check state of a button. Returns 0 if the widget has not yet been created, is

not a toggle button or is a toggle button and is not set. Returns 1 if the toggle button

is set. Note that the MFC can return a value 2 (indeterminate state) which is not

supported by the Motif XP.

void SetCheck(int nCheck);

Sets the state of a toggle button according to nCheck. This is a noop for push buttons.

protected virtual void xd_set_window_text(LPCSTR lpszString);

Sets the XmNlabelString resource for the widget to an XmString created with

XmStringCreateLocalized() using lpszString.

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Gets the value of XmNlabelString for the widget into lpszStringBuf. If the widget has

not yet been created 0 is returned, otherwise the length of the string is returned.

protected virtual int xd_get_window_text_length() const;

Returns the length of the XmNlabelString resource for the widget. If the widget has

not yet been created 0 is returned.



Appendix B Motif XP Reference 847

class CBitmapButton : public CButton

The class CBitmapButton implements a button with a bitmap instead of text.

class CListBox : public CWnd

The class CListBox provides the functionality of a list box which can display a list of

items that the user can view and select.

CListBox();

Initializes the private data.

virtual Widget xd_rootwidget(); and virtual void xd_rootwidget( Widget
xd_rootwidget );

Overrides the methods in CObject so that the class can distinguish between List and

ScrolledList.

virtual Widget xd_listwidget();

Returns the list widget for the object. For an ordinary List this is the same as the root

widget, however, it is different for a ScrolledList.

int DeleteString(UINT nIndex);

Deletes the list item identified by nIndex (zero based). Returns 0 if the widget has not

yet been created, LB_ERR if the index is out of range or the number of items

remaining in the list.

int GetCount() const;

Returns 0 if the widget has not yet been created, otherwise returns the number of

items in the list (XmNitemCount).



848 Sun WorkShop Visual User’s Guide • May 2000

int GetCurSel() const;

Gets the index of the currently selected item in a single select list (XmNselectionPolicy
is XmSINGLE_SELECT or XmBROWSE_SELECT). Returns 0 if the widget has not yet

been created, LB_ERR if the list is a multiple selection list or it has not selected item.

Otherwise the index of the selected item is returned. Note that the MFC returns an

arbitrary positive value if the list is a multiple selection list, Motif XP always returns

LB_ERR.

int GetSel(int nIndex) const;

Returns the selection state of the item indicated by nIndex. Returns 0 if the widget

has not yet been created or if the item is not selected. Returns LB_ERR if the index is

out of range, or a positive value if the item is selected.

int GetSelCount() const;

Returns the number of selected items in a multiple selection list. Returns 0 if the

widget has not yet been created, LB_ERR if the list is a single selection list, or the

number of selected items otherwise.

int GetSelItems(int nMaxItems, LPINT rgIndex) const;

Gets the indices of the selected items in a multiple selection list and copies them into

the array rgIndex. Returns 0 if the widget has not yet been created, LB_ERR if the list

is a single selection list, or the number of indices copied otherwise.

int GetText(int nIndex, LPSTR lpszBuffer) const;

Gets the text of an item identified by nIndex into lpszBuffer. Returns 0 if the widget

has not yet been created, LB_ERR if the index is out of range, the length of the text

otherwise.

int GetTextLen(int nIndex) const;

Gets the length of the text of an item identified by nIndex. Returns 0 if the widget has

not yet been created, LB_ERR if the index is out of range, the length of the text

otherwise.



Appendix B Motif XP Reference 849

int GetTopIndex() const;

Returns the index of the item that is visible at the top of the list. Returns 0 if the

widget has not yet been created.

int InsertString(int nIndex, LPCSTR lpszItem);

Inserts an item into the list at the position given by nIndex, If nIndex is -1 the item is

appended at the end of the list. Returns 0 if the widget has not yet been created,

LB_ERR if the index is out of range, the position at which the item was inserted

otherwise.

void ResetContent();

Removes all the items from a list.

int SelItemRange(BOOL bSelect, int nFirstItem, int nLastItem);

Selects or deselects, according to bSelect, a range of items in a multiple selection list.

Returns 0 if the widget has not yet been created, LB_ERR if the list is a single

selection list, a value other than LB_ERR otherwise.

int SetCurSel(int nSelect);

Select an item, identified by nSelect, in a single selection list and scroll it into view. If

nSelect is -1, the selection is cleared. Returns 0 if the widget has not yet been created,

LB_ERR if the list is a multiple selection list or the index is out of range, a value

other than LB_ERR otherwise.

int SetSel(int nIndex, BOOL bSelect = TRUE);

Selects or deselects, according to bSelect, an item in a multiple selection list. If nIndex

is -1 all items are selected or deselected. Returns 0 if the widget has not yet been

created, LB_ERR if the list is a single selection list or the index is out of range, a

value other than LB_ERR otherwise.



850 Sun WorkShop Visual User’s Guide • May 2000

int SetTopIndex(int nIndex);

Scroll the list to make the item identified by nIndex visible. Returns 0 if the widget

has not yet been created, LB_ERR if the index is out of range, a value other than

LB_ERR otherwise.

class CEdit : public CWnd

The class CEdit provides the functionality of a Microsoft Windows edit control which

is a rectangular window in which the user can enter text. Implemented with either a

Text or TextField widget.

CEdit();

Initializes the private data.

virtual Widget xd_rootwidget(); and virtual void xd_rootwidget( Widget
xd_rootwidget );

Overrides the methods in CObject so that the class can distinguish between Text and

ScrolledText.

virtual Widget xd_textwidget();

Returns the text widget for the object. For ordinary Text this is the same as the root

widget, however, it is different for ScrolledText.

void Clear();

Deletes the currently selected text (XmTextRemove() ).

void Copy();

Copies the currently selected text to the clipboard (XmTextCopy() ).

void Cut();

Deletes the currently selected text and copies it to the clipboard. (XmTextCut() ).



Appendix B Motif XP Reference 851

void GetSel(int &nStartChar, int &nEndChar) const;

Gets the start and end of the selected text. Returns start and end as 0 if there is no

selected text.

void LimitText(int nChars = 0);

Limit the number of characters that can be typed. If nChars is 0 the limit is set to

maximum.

void Paste();

Insert data from the clipboard into the text widget (XmTextPaste() ).

void ReplaceSel(LPCSTR lpszNewText);

Replaces the current selection with the text supplied in lpszNewText. If there is no

selection the text is inserted at the insert cursor position.

BOOL SetReadOnly(BOOL bReadOnly = TRUE);

Sets the XmNeditable resource of the widget to be !bReadOnly. Returns 0 if the widget

has not yet been created, otherwise returns 1.

void SetSel(int nStartChar, int nEndChar, BOOL bNoScroll = FALSE);

Sets the current selection to the text specified by nStartChar and nEndChar. Will also

set XmNautoShowCursorPosition to !bNoScroll.

protected virtual void xd_set_window_text(LPCSTR lpszString);

Sets the value for the widget to lpszString (XmTextSetString() ).

protected virtual int xd_get_window_text(LPSTR lpszStringBuf, int
nMaxCount) const;

Gets the text from the widget (XmTextGetString()) into lpszStringBuf. If the widget

has not yet been created 0 is returned, otherwise the length of the string is returned.



852 Sun WorkShop Visual User’s Guide • May 2000

protected virtual int xd_get_window_text_length() const;

Returns the length of the widget’s text. If the widget has not yet been created 0 is

returned.

class CWinApp : public CCmdTarget

The class CWinApp is the base class from which you derive a Microsoft Windows

application object for initializing your application and for running the application.

CWinApp(const char* pszAppName = NULL);

Constructs a CWinApp object.

const char* m_pszAppName;

The name of the application. This comes from the parameter passed to the CWinApp
constructor.

int m_nCmdShow;

Defaults to SW_RESTOR.

CWnd *m_pMainWnd;

The main window (ApplicationShell) of the application.

Display *xd_display(); and void xd_display(Display *display);

These two functions store and retrieve the applications Display connection.

char **xd_argv() const; and void xd_argv(char **argv);

These two functions store and retrieve the argv parameters passed into main() .



Appendix B Motif XP Reference 853

int xd_argc() const; and void xd_argc(int argc);

These two functions store and retrieve the argc parameter passed into main() .

char *xd_app_class() const; and void xd_app_class(char *app_class);

These two functions store and retrieve the application class name used in

XtOpenDisplay() .

CWinApp* AfxGetApp()

Returns the one, and only, instance of a CWinApp object.

Linking Error with Some Compilers

Some C++ compilers will fail to link, producing the following sort of errors:

Undefined symbol

CWnd::xd_get_window_text_length(void) const

CFrameWnd::xd_get_window_text_length(void) const

CButton::xd_get_window_text_length(void) const

CButton::__vtbl

CMenu::xd_register_menu_item(unsigned int, _WidgetRec*)

CDialog::xd_show_window(int)

CDialog::xd_get_window_text_length(void) const

CDialog::xd_set_window_text(const char*)

CEdit::__vtbl

The Problem

The compiler requires there to be an implementation of the copy constructor.



854 Sun WorkShop Visual User’s Guide • May 2000

The Remedy

If this occurs, do the following:

1. Find the header file xdclass.h in $VISUROOT/src/motifxp/h (where
$VISUROOT is the path to the root of the Sun WorkShop Visual installation
directory).

2. Locate the following lines:

private:

    // Certain C++ compilers (e.g. gcc 2.5) require there to be an

    // implementation of the copy constructor. If your application

// fails to link try using the second version of the constructor

    CObject(const CObject& objectSrc);

// no default copy

    //CObject(const CObject& objectSrc) { abort();}

// no default copy

3. Follow the instructions so that the first line beginning CObject is commented out
and the second has the comment markers removed:

// CObject(const CObject& objectSrc);

// no default copy

CObject(const CObject& objectSrc) { abort();}

// no default copy

4. Add the following include line somewhere above the line containing the call to
abort :

#include <stdlib.h>

5. Recompile your generated code.

The application should now link successfully.



855

APPENDIX C

Getters and Setters

Introduction

Getters and setters are provided for those widgets which can have a value or a state.

This appendix lists the available getters and setters for each of those widgets. These

routines are toolkit-independent. To use them, you must first define a Group

containing the widget(s) and then set up a Smart Code callback. For more

information on these subjects, see:

1. Chapter 15, “Groups”, starting on page 477.

2. Chapter 16, “Get/Set Smart Code”, starting on page 485.

3. Chapter 17, “Thin Client Smart Code”, starting on page 501.

4. Chapter 18, “Internet Smart Code”, starting on page 533.

The widgets covered here are:

■ Label and Button

■ Toggle

■ Text Field, Text, and Scrolled Text

■ Scale

■ List and Scrolled List

■ Option Menu

■ Radio Box



856 Sun WorkShop Visual User’s Guide • May 2000

How to Use This Information

A table is provided for each widget which shows the X resource which can be

accessed using a getter and a setter. One is the default - this is the one which is

accessed from the server. The server simply does a get or a set of the “value” of a

widget. The “value” is this default.

For each widget, an example of how to use the getters and setters is given in

separate subsections for C, C++ and Java code.

More Information

There are extensive online reference documents. Open the following file in an HTML

browser for a list of contents:

$XDROOT/lib/locale/<YourLocale>/sc/index.html

where XDROOT is the install directory of your X-Designer and

YourLocale is the locale you are using. If you are unsure about your

locale, try typing locale into a terminal window. This prints out your

locale information. Use the string assigned to LANG. Example locales are:

C (for English).

ja (for Japanese).

In addition, once you have generated code, you have a file called index.html in

the directory where your code was generated. This contains hypertext links giving

you access to the online reference material.



Appendix C Getters and Setters 857

Label and Button

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the value of a label. label1 is a member of group

mygroup.

char * val = SC_GET(Value,mygroup->label1);

SC_SET(Value,mygroup->label1,”my label”);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the value of

a label. “label1” is a member of Group mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

char * val = g->label1->getValue();

g->label1->setValue(“my label”);

TABLE 28-1 Available Getters/Setters for Label and Button

Resource Name Type

Value char * Default

Sensitive int



858 Sun WorkShop Visual User’s Guide • May 2000

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the value of

a label. “label1” is a member of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

String val = g.label1.getValue();

g.label1.setValue(“my label”);

Toggle

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the state (whether or not it is set) of a toggle. “toggle1”

and “toggle2” are members of group mygroup.

int state = SC_GET(State,mygroup->toggle1);

SC_SET(State,mygroup->toggle2, state);

TABLE 28-2 Available Getters/Setters for Toggle

Resource Name Type

State int1

1. For Java, State is boolean.

Default

Sensitive int



Appendix C Getters and Setters 859

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets the state of one toggle

and sets the state of another. “toggle1” and “toggle2” are members of Group

mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

int state = g->toggle1->getState();

g->toggle2->setState(state);

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the state of a

toggle. “toggle1” and “toggle2” are members of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

boolean state = g.toggle1.getState();

g.toggle2.setState(state);

Note that “state” is a boolean here - for C and C++ it would be an int.

Text Field, Text, and Scrolled Text

Getters and Setters for text controls are available through the SC_GET() and

SC_SET() macros, defined in groups_c/sc_types.h.

TABLE 28-3 Available Getters/Setters for Text

Resource Name Type

Value char * Default

Sensitive int



860 Sun WorkShop Visual User’s Guide • May 2000

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the value (that is, the contents) of a text. text1 is a

member of group mygroup.

char * contents = SC_GET(Value,mygroup->text1);

SC_SET(Value,mygroup->text1,”a new string”);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the contents

of a text. “text1” is a member of Group mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

char * contents = g->text1->getValue();

g->text1->setValue(“a new string”);

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the contents

of a text. “text1” is a member of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

String contents = g.text1.getValue();

g.text1.setValue(“a new string”);



Appendix C Getters and Setters 861

Scale

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the value (that is, the number on the scale) of a scale

widget. scale1 is a member of group mygroup.

int val = SC_GET(Value,mygroup->scale1);

SC_SET(Value,mygroup->scale1, 1);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the scale

number of a scale widget. “scale1” is a member of Group mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

int scaleValue = g->scale1->getValue();

g->scale1->setValue(1);

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

TABLE 28-4 Available Getters/Setters for Scale

Resource Name Type

Value int Default

Sensitive int



862 Sun WorkShop Visual User’s Guide • May 2000

This example is the same as the C code example above; it gets and sets the scale

number of a scale widget. “scale1” is a member of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

int scaleValue = g.scale1.getValue();

g.scale1.setValue(1);

List and Scrolled List

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the list of selected items of the list widget. list1 is a

member of group mygroup. The list of selected items is a null terminated array of

strings.

char ** my_stringlist = SC_GET(SelectedItems,mygroup->list1);

SC_SET(SelectedItems,mygroup->list1,a_new_stringlist);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the selected

items in a list widget. “list1” is a member of Group mygroup. The list of selected

items is a null terminated array of strings.

TABLE 28-5 Available Getters/Setters for List

Resource Name Type

Items char **

Sensitive int

SelectedItems char ** Default



Appendix C Getters and Setters 863

mygroup_c * g = (mygroup_c *) getGroup();

char ** my_stringlist = g->list1->getSelectedItems();

g->list1->setSelectedItems(a_new_stringlist);

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the selected

items in a list widget. “list1” is a member of Group mygroup. Use the Java built-in

“<array>.length” to find out how many Strings there are in the array.

mygroup_c g = (mygroup_c ) getGroup();

String [] my_stringlist = g.list1.getSelectedItems();

int how_many = my_stringlist.length;

g.list1.setSelectedItems(a_new_stringlist);

Option Menu

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

TABLE 28-6 Available Getters/Setters for Option Menu

Resource Name Type

Label char *

Sensitive int

SelectionByName1

1. This is the string being displayed and not the widget name.

char *

SelectionByIndex int Default



864 Sun WorkShop Visual User’s Guide • May 2000

This example gets and sets the selected item in the optionmenu. optionMenu1 is a

member of group mygroup.

char * val = SC_GET(SelectionByName, mygroup->optionMenu1);

SC_SET(SelectionByName,mygroup->optionMenu1, ”Option 1”);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the selected

item in the option menu. “optionMenu1” is a member of Group mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

char * val = g->optionMenu1->getSelectionByName();

g->optionMenu1->setSelectionByName(“Option 2”);

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the selected

item in the option menu. “optionMenu1” is a member of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

String val = g.optionMenu1.getSelectionByName();

g.optionMenu1.setSelectionByName(“Option 3”);



Appendix C Getters and Setters 865

Radio Box

C Code Example

In C code, use the SC_GET and SC_SET macros. These macros take the resource

name (i.e. what you are getting/setting) as the first parameter and the Group

component as the second. For SC_SET, the third parameter is the new value. See

Chapter 16, “Get/Set Smart Code”, starting on page 485 for more details.

This example gets and sets the label of the selected item in a radiobox widget.

radiobox1 is a member of group mygroup.

char * str = SC_GET(SelectionByName, mygroup->radiobox1);

SC_SET(SelectionByName,mygroup->radiobox1, ”The text to show”);

C++ Code Example

In C++, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above, it gets and sets the label of

the selected item in a radiobox widget. “radiobox1” is a member of Group mygroup:

mygroup_c * g = (mygroup_c *) getGroup();

char * str = g->radiobox1->getSelectionByName();

g->radiobox1->setSelectionByName(“The text to show”);

TABLE 28-7 Available Getters/Setters for Radio Box

Resource Name Type

Label char *

Sensitive int

SelectionByName1

1. This is the string being displayed and not the widget name.

char *

SelectionByIndex int Default



866 Sun WorkShop Visual User’s Guide • May 2000

Java Code Example

In Java, the Group is a class, the group member is a variable of this class and is a

class itself and the getters and setters are methods of the Group member’s class.

This example is the same as the C code example above; it gets and sets the scale

number of a scale widget. “scale1” is a member of Group mygroup:

mygroup_c g = (mygroup_c ) getGroup();

String str = g.radiobox1.getSelectionByName();

g.radiobox1.setSelectionByName(“The text to show”);



867

APPENDIX D

Application Defaults

Introduction

Sun WorkShop Visual has its own set of application resource settings. This appendix

briefly describes the resources you are most likely to change to suit your personal

preference. They can be altered in or appended to any application resource file,

according to the configuration of your system. For example, you might only want to

change the Sun WorkShop Visual application resource file, which is:

$VISUROOT/lib/locale/<YourLocale>/app-defaults/ visu

or

$VISUROOT/lib/locale/<YourLocale>/app-defaults/CDE/ visu

for the CDE window manager.

$VISUROOT is the path to the root of the Sun WorkShop Visual installation

directory. The locale directory, named “YourLocale ” above, defaults to “C”. If you

are using a different locale, however, the directory used will have the same name as

the locale you are using. See “Locale” on page 616 for more details on locales. See

Appendix E, “Further Reading”, starting on page 885, for some suggestions on

books on the X Window System.

You may also add any of the Sun WorkShop Visual resource settings to the .Xdefaults
file in your home directory. If you do not yet have one of these, you can create one.

It can contain resource information, in the format described in this chapter, for any X

Windows application. See your X Window System documentation for more details.

In this section, the resource names appear in bold type and the default values in

italic. To turn these into a resource file setting, simply add a line to the appropriate

resource file. For example, in the following line:



868 Sun WorkShop Visual User’s Guide • May 2000

visu.autoSave: true

autoSave is the name of the resource and true is the setting.

The visu resource file contains many resources that are not mentioned here. Most of

these only need to be changed if you are working in a language other than English

or have some other special requirements. For information on resources not

documented in this appendix, see the comments in the visu resource file.

A resource can have different settings for the large and small-screen versions of Sun

WorkShop Visual. Use the application class name visu for the large-screen version

and small_visu for the small-screen version. Resources set under the name visu

also apply to small_visu , unless there is a specific setting under the name

small_visu .

Refer to Chapter 25, “Configuration”, starting on page 701, for information on

customizing the Sun WorkShop Visual interface using some resources not covered in

this chapter.

General

nameFont

The font in which widget names are displayed. Default for visu :
-*-helvetica-medium-r-normal--12-*-*-*-*-*-*-*
Default for small_visu :

-*-helvetica-medium-r-normal--10-*-*-*-*-*-*-*

labelFontList

The font in which labels are displayed in dialogs, menus etc. Default for visu :
-*-helvetica-medium-r-normal--12-*-*-*-*-*-*-*
Default for small_visu :

-*-helvetica-medium-r-normal--10-*-*-*-*-*-*-*



Appendix D Application Defaults 869

buttonFontList

The font in which button labels are displayed in dialogs, menus etc. Default for

visu :
-*-helvetica-medium-r-normal--12-*-*-*-*-*-*-*
Default for small_visu :

-*-helvetica-medium-r-normal--10-*-*-*-*-*-*-*

textFontList

The font in which text is displayed in text boxes, list etc. Default for visu :
-*-helvetica-medium-r-normal--12-*-*-*-*-*-*-*
Default for small_visu :

-*-helvetica-medium-r-normal--10-*-*-*-*-*-*-*

warnOnClose

Causes Sun WorkShop Visual to warn you if you try to close a dialog with

outstanding changes. Default: true.

warnOnSelect

Causes Sun WorkShop Visual to warn you if you try to select a different widget with

outstanding changes on the currently selected widget. Default: true.

dialogsTopLevel

Causes Sun WorkShop Visual to create Top Level Shells rather than Dialog Shells for

the dynamic display. This alters the way that the dialogs are iconised and their

stacking properties. It does not, however, affect the final application. Default: false.

visu*dialogs.transient:false produces a similar effect.

smallScreen

Makes Sun WorkShop Visual use the small icons. Default: false for visu , true for

small_visu .



870 Sun WorkShop Visual User’s Guide • May 2000

intrinsicsHeadersPrefix

The prefix of the X intrinsics header file names. An important resource that depends

on where X is installed on your system. Default: X11.

definitionsFileName

The file containing the specifications for the definitions which you have configured

onto the palette. The value of this resource is expanded by /bin/sh and so can contain

environment variables, etc. Default: $HOME/.xddefinitionsrc.

Callback and Prelude Editing

callbackEditing

This resource controls whether callback editing is enabled; if it is set to false then the

buttons relating to this feature do not appear. Default: true.

editor

This resource specifies the location of the executable program which is used for

editing files. Default:

$BINARYROOT/lib/scripts/xd_edit

sunEditService

This is a boolean resource which determines whether Sun WorkShop Visual uses the

Sun Edit Server or not. If not, use the “editor” resource described above. Default:

True

sunEditServerPath

This specifies the path of the eserve binary, including the binary name. It defaults to

NULL if not defined in the resource file, which has the same effect as setting

sunEditService to false.



Appendix D Application Defaults 871

Microsoft Windows

windows

If this resource is set, Sun WorkShop Visual will run in Microsoft Windows Mode.

See the Cross Platform Development chapter for further details. Default false.

mfcTextWarningBackground

The color used to indicate that a resource is not used in Microsoft Windows flavor

code.

mfcCarriageReturn

If this resource is set Sun WorkShop Visual will generate carriage return characters

as well as newline characters in files generated for Microsoft Windows. Default true.

mfcFourEnhancements

When this resource is set to true, Sun WorkShop Visual generates code which uses

the extended create functions in MFC version 4 to give your application the 3D look

and feel. This resource also tells Sun WorkShop Visual to map bitmaps onto labels

and icons onto buttons, giving you 3D buttons and images that do not need to be

insensitive buttons. Images handled in this way are able to find their natural size.

This results in an exact representation of your Motif design. Default true.

Filters

objectFileSuffix

Object file suffix used in generated Makefiles. Default: .o.



872 Sun WorkShop Visual User’s Guide • May 2000

executableFileSuffix

Executable file suffix used in generated Makefiles. Default: empty string.

uidFileSuffix

uid file suffix used in generated Makefiles. Default: .uid.

Generate Dialog

The Generate dialog is primed with default names for the files to be generated. The

defaults used can be changed, as detailed below.

cCodeSuffix

The default suffix for the code file when generating C. Default “.c”

cppCodeSuffix

The default suffix for the code file when generating C++. Default “.cpp”

cStubsCodeSuffix

The default suffix for the stubs file when generating C. Default “.c”

cppStubsCodeSuffix

The default suffix for the stubs file when generating C++. Default “.cpp”

cExternsCodeSuffix

The default suffix for the externs file when generating C. Default “.h”



Appendix D Application Defaults 873

cppExternsCodeSuffix

The default suffix for the externs file when generating C++. Default “.h”

uilExternsCodeSuffix

The default suffix for the externs file when generating UIL. Default “.h”

uilCodeSuffix

The default suffix for the code file when generating UIL. Default “.uil”

cUilCodeSuffix

The default suffix for the code file when generating C for UIL. Default “.c”

cPixmapsCodeSuffix

The default suffix for the pixmaps file when generating C. Default “.h”

cppPixmapsCodeSuffix

The default suffix for the pixmaps file when generating C++. Default “.h”

uilPixmapsCodeSuffix

The default suffix for the pixmaps file when generating UIL. Default “.h”

xResourcesCodeSuffix

The default suffix for the X resources file. Default “.res”

windowsResourcesCodeSuffix

The default suffix for the Microsoft Windows resource file. Default “.rc”



874 Sun WorkShop Visual User’s Guide • May 2000

backupCodeSuffix

The default suffix for the backup file used for incremental stubs file generation.

Default “.bak”

defaultCodeFileName

The default base name for all files to be generated, except the makefile. If the design

has been saved, the save filename is used instead. Default “untitled”.

makefileCodeFileName

The default name of the makefile. Default “Makefile”.

Note – You can construct your own resource name for filenames based on a

language tag and the word “CodeFileName”. For example: “cCodeFileName” means

the code file name for C code generation.

cUilCodeExtension

The extension added to the code filename when generating C for UIL. Default

“_uil”.

cStubsCodeExtension

The extension added to the stubs filename when generating C. Default “_stubs”.

cppStubsCodeExtension

The extension added to the stubs filename when generating C++. Default “_stubs”.

cPixmapsCodeExtension

The extension added to the pixmaps filename when generating C. Default

“_pixmaps”.



Appendix D Application Defaults 875

cppPixmapsCodeExtension

The extension added to the pixmaps filename when generating C++. Default

“_pixmaps”.

uilPixmapsCodeExtension

The extension added to the pixmaps filename when generating UIL. Default

“_pixmaps”.

Generation

makefileTemplate

Defines the default Makefile. For details, see the Configuration chapter.

motifMakeTemplateFile

Points to the default makefile template for Motif flavor. Default: $VISUROOT/
make_templates/motif.

mmfcMakeTemplateFile

Points to the default makefile template for Motif XP flavor. Default: $VISUROOT/
make_templates/mfc.

javaWidgetsLib and javaWidgetsInclude

Placed in the link/compile lines in generated Makefiles to point to the

libjavawidgets.a library and associated include files. Default values are

$VISUROOT/src/java_widgets/lib/libjavawidgets.a and -I$VISUROOT/src/java_widgets/h
respectively.



876 Sun WorkShop Visual User’s Guide • May 2000

c++BaseClassHeader

Header file for C++ that contains the base class definitions. Include quotes (“”) or

angle brackets (<>) as required; defaults to angle brackets. To disable, set it to an

empty string. Default: xdclass.h.

xpmHeader

Header file for definitions required by XPM library. Include quotes (“”) or angle

brackets (<>) as required; defaults to angle brackets. Default: <xpm.h>.

generateXFuncCLinkage

Causes Sun WorkShop Visual to generate _XFUNCPROTOBEGIN and

_XFUNCPROTOEND macros around the help link externs. Default: true.

generateRedefineDefaultWidgetName

In C++ base class declarations, Sun WorkShop Visual generates the default value for

the widget name parameter to the create() member function: widget_name = NULL. In

derived classes this should not be necessary as derived classes inherit such default

parameter values from their base classes. However, many compilers require it if the

create() function is called without a widget_name parameter. Sun WorkShop Visual

will never generate such code, but you may have existing source where this is the

case. Default: true.

oldUIL

Use this resource to tell Sun WorkShop Visual whether or not to generate old style

UIL code. If set to “true”, the old style UIL compiler code is generated, for example:

XmPushButton gadget ...

If set to “false”, the newer style code is generated. For example:

XmPushButtonGadget ...

Default: true.



Appendix D Application Defaults 877

Comments in Generated Code

javaBeginGuard and javaEndGuard

Text put in as part of the guard comments in generated Java code. This text is only

used for readability purposes. Default:

Sun WorkShop Visual-generated code - do not edit >>>

and

<<< Sun WorkShop Visual-generated code ends.

respectively.

Help

helpKey

The key to invoke the help callback. Default: <Key>F1. If your keyboard has a Help

key, try <Key>Help.

helpDir

The search path to use when looking for help files. The search path is a colon-

separated list. Sun WorkShop Visual looks in these directories for the file named

entry .html , which is the starting point for links to other help files. If you are using

text help for user-defined widgets or definitions, Sun WorkShop Visual looks in this

directory for a local subdirectory. Default: $VISUROOT/lib/locale/<YourLocale>/help
(where $VISUROOT is the path to the root of the Sun WorkShop Visual installation
directory).

userHelpCatString

Separator string used to build help file names for user-defined widgets and

definitions. Default: “.”



878 Sun WorkShop Visual User’s Guide • May 2000

Text file help for user-defined widgets is defined by file and tag pairs. The file and

tag are concatenated to produce a filename relative to helpDir/local. The value of

userHelpCatString is used as a separator between document and tag when creating

the string. For example, if userHelpCatString is “.” the help file is document.tag. An

alternative setting would be “/” to produce document/tag. The help file is assumed to

be in HTML format.

Auto Save

autoSave

Activates the auto save facility. Default: true (active).

autoSaveThreshold

The number of changes made before an auto save occurs. Default: 20.

autoSaveExt

The extension to the filename added by auto save. Default: .sav. For example, fred.xd
becomes fred.xd.sav.

Layout Editor

The following resources control colors in the Layout Editor:

formFillColor

The background color of the Layout Editor. Default: #dededededede.

formStrokeColor

The color used to outline the Form in the Layout Editor. Default: Black.



Appendix D Application Defaults 879

widgetFillColor

The color used to fill the boxes representing the widgets in the Layout Editor.

Default: Blue.

widgetStrokeColor

The color used to outline the widgets. Default: Black.

widgetDestinationColor

The color used to denote the last selected widget when doing align and distribute

operations. This is the reference widget for the operation. Default: #9a9ae1163232.

widgetSelectColor

The color used to denote selected widgets when doing align and distribute

operations. These are the widgets that will be moved by the operation. Default:

#ecc9c9eacdda.

attachmentColor

The color used for the lines representing attachments in the Layout Editor. Default:

Black.

Hierarchy Colors

The following resources are used when drawing widgets in the design hierarchy:

widgetForeground

The foreground color of bitmap-type widget icons. Default: Black. This refers to the

color in which the pixmap or icon is drawn. For bitmap icons, it must contrast with

the widgetBackground resource. It is unused for color pixmap icons.



880 Sun WorkShop Visual User’s Guide • May 2000

widgetBackground

The background color of the widget icon. This color shows through the sections of

color pixmaps that are set to color none. Default: #fdfdf5f5ebeb.

highlightForeground

The foreground color used for drawing bitmap-type icons when the widget is

highlighted. For bitmap icons, it must contrast with the highlightBackground resource.

It is unused for color pixmap icons. Default: #fdfdf5f5ebeb.

If you have a monochrome display, the default setting may cause some icons to

show as all black. In this case set it to the same value as widgetBackground.

highlightBackground

The background color used when the widget is highlighted. For bitmap icons, it

must contrast with the highlightBackground resource. Default: Red. This color shows

through sections of color pixmaps that are set to color none.

If you have a monochrome display, the default setting may cause some icons to

show as all black. In this case set it to the same value as widgetForeground.

Structure Colors

The following resources control the colors that indicate widgets that are designated

as structures or C++ classes. They are effective only when the “Structure colors”

toggle is set:

widgetFunctionBackground

Background color for widgets designated as function structures. Default:

#ecc9c9eacdda.

widgetStructBackground

Background color for widgets designated as data structures. Default: #9a9ae1163232.



Appendix D Application Defaults 881

widgetClassBackground

Background color for widgets designated as C++ classes. Default: #d2dfe785f3ce.

widgetChildrenBackground

Background color for widgets designated as Children only. Default: #d8c0d2d1f3f2.

Background for Definitions and Instances

The following resources control displays of definitions and instances:

widgetInstanceBackground

The background color in the tree for instances. Default: #ecc0ecc086db.

widgetDefinitionBackground

The background color in the tree for definitions. Default: .#86dbecc0ecc0

widgetInstanceBitmap

On monochrome displays only, this is the background bitmap in the tree for

hierarchies that are instances. Default: 25_foreground.

widgetDefinitionBitmap

On monochrome displays only, this is the background bitmap in the tree for

hierarchies that are definitions. Default: 25_foreground.



882 Sun WorkShop Visual User’s Guide • May 2000

Workarounds

tileOriginBug

Works around problems on some servers which have difficulty displaying the tree

icons. Default: false.

alternateFolding

Works around problem on some servers which cannot do the stippling for folding.

Draws folded icons with a cross through them. Default: false.

xorByInvert

In order that color map cells are not used up needlessly, Sun WorkShop Visual

simply does XOR drawing using whatever happens to be in the color map. This will

sometimes cause interactive drawing to be invisible. You can change the mechanism

to use INVERT rather than XOR which may produce different results. Default: false.

freeStaticColors

Some servers do not allow the application to free colors cells in a static color map

(more typically they simply ignore the request). Set this resource to false if you have

a display with a default visual type of static (typically a VGA type screen), and your

Sun WorkShop Visual is crashing with an X error when it tries to free a color.

Default: true.

closeColourMatching

If your server is taking an unacceptably long time to load the main Sun WorkShop

Visual window, setting this resource to false will prevent lengthy searches for close

color matches when colors cannot be found. This would mean, however, that the

pixmaps in Sun WorkShop Visual may look strange. Default: true.



Appendix D Application Defaults 883

FrameMaker

These resources are used to specify parameters used when using FrameMaker to

develop help for your application.

frameMakerBinary

The binary that is executed to display FrameMaker help files. Default: viewer.

frameMakerTimeout

Number of seconds to wait for FrameMaker to start up before Sun WorkShop Visual

attempts to talk to it. Default: 20.

Configuration

See Chapter 25, “Configuration”, starting on page 701 for details on configuring the

palette and toolbar.

stopList

A comma separated list of widgets that are not to be on the palette. The complete list

for the Motif widgets is:

XmDialogShell, XmMainWindow, XmMenuBar, XmPulldownMenu, XmRadioBox,
XmRowColumn, XmFrame, XmDrawingArea, XmBulletinBoard, XmForm,
XmPanedWindow, XmScrolledWindow, XmMessageBox, XmMessageTemplate,
XmCommand, XmSelectionPrompt, XmSelectionBox, XmFileSelectionBox,
XmLabel, XmPushButton, XmToggleButton, XmDrawnButton, XmArrowButton,
XmCascadeButton, XmOptionMenu, XmSeparator, XmScale, XmScrollBar,
XmTextField, XmText, XmScrolledText, XmList, XmScrolledList

Use class names for user-defined widgets, e.g:

boxWidgetClass, formWidgetClass

Default: empty.



884 Sun WorkShop Visual User’s Guide • May 2000

pm_icons, pm_labels, pm_both

These are the three toggle buttons in the Palette Layout menu. Set one of them for

the default layout. Default: visu*pm_icons.set:true



885

APPENDIX E

Further Reading

Introduction

This section supplies further details on the books which are referred to in this

manual and others which we recommend for additional reading.

We list ISBN numbers but suggest you consult your book supplier for the latest

editions.

Books Mentioned in This Manual

Kernighan, B.W. and Ritchie, D.M., The C Programming Language. Prentice Hall, 1978

First edition 1978 ISBN 0-13-110163-3

Second edition 1988 ISBN 0-13-110362-8

Open Software Foundation, OSF/Motif (5 vols). Prentice Hall, 1990, 1991, 1992.

OSF/Motif Style Guide 1993 ISBN 0-13-643123-2

OSF/Motif Programmer’s Guide 1993 ISBN 0-13-643107-0

OSF/Motif Programmer’s Reference 1993 ISBN 0-13-643115-1

OSF/Motif User’s Guide 1993 ISBN 0-13-643131-3

Application Environment/Specification (AES) User Environment, Revision C 1992 ISBN 0-

13-043621-6



886 Sun WorkShop Visual User’s Guide • May 2000

O’Reilly and Associates, The X Window System Series (8 vols). O’Reilly and

Associates, Inc., 1988, 1989, 1990, 1991, 1992, 1993

Volume 0:1992 ISBN 1-56592-008-2

Volume 1:1992 ISBN 1-56592-002-3

Volume 2:1992 ISBN 1-56592-006-6

Volume 3M:1993 ISBN 1-56592-015-5

Volume 4M:1992 ISBN 1-56592-013-9

Volume 5:1992 ISBN 1-56592-007-4

Volume 6A:1994 ISBN 1-56592-016-3

Volume 6B:1993 ISBN 1-56592-038-4

Volume 7:1993 ISBN 0-937175-87-0

Volume 8:1992 ISBN 0-937175-83-8

Books on X and Motif

The following books are useful books on the X Window System and OSF/Motif.

Beginner/Intermediate

Berlage, Thomas, OSF/Motif: Concepts and Programming. Addison-Wesley, 1991. ISBN

0-201-55792-4

Jones, Oliver, Introduction to the X Window System. Prentice Hall, 1989.

ISBN 0-13-499997-5

Rost, Randi J., X and Motif Quick Reference Guide. Digital Press, 1993.

ISBN 13-972746-9

Young, Douglas A., X Window System: Programming and Applications with Xt, 2nd
OSF/Motif Edition. Prentice Hall, 1994. ISBN 0-13-123803-5

Young, Douglas A., OSF/Motif Reference Manual. Prentice Hall, 1990. ISBN 0-13-

642786-3



Appendix E Further Reading 887

Intermediate/Advanced

Asente, Paul J. and Swick Ralph R., X Window System Toolkit. Digital Press, 1990.

ISBN 1-55558-051-3

Scheifler, R.W. and Gettys, J., X Window System, 3rd edition. Digital Press, 1992. ISBN

13-971201-1

George, Alistair and Riches, Mark, Advanced Motif Programming Techniques, Prentice

Hall, 1993. ISBN 0-13-219965-3

A more comprehensive listing of publications is posted monthly to the X newsgroup

on usenet by Ken Lee of DEC.

Books on C++ and Object Oriented
Programming

Stroustrup, Bjarne, The C++ Programming Language, 2nd edition. Addison-Wesley

Publishing Company, 1991. ISBN 0-201-53992-6

Young, Douglas, Object-Oriented Programming with C++ and OSF/Motif. Prentice-Hall,

1992. ISBN 0-13-630252-1

Books on Microsoft Foundation Classes

Blaszczak, Mike, The Revolutionary Guide to MFC 4 Programming with Visual C++.
Wrox Press Ltd. ISBN 1-874416-92-3

Books on Java

Flanagan, David, Java in a Nutshell. O’Reilly & Associates, Inc., 1996. ISBN 1-56592-

183-6

Arnold, Ken and Gosling, James, The Java Programming Language. Prentice Hall, 1996.

ISBN 0-201-63455-4



888 Sun WorkShop Visual User’s Guide • May 2000

Books on Networking and World Wide
Web

Harold, Elliotte Rusty, JAVA Network Programming. O’Reilly, 1997. ISBN 1-56592-

227-1.

World Wide Web Consortium, World Wide Web Journal: Key Specifications of the
World Wide Web. O’Reilly, published quarterly. ISBN (of Volume 1, Issue 2) 1-

56592-190-9.

Ed Tittel, Mark Gather, Sebastian Hassinger & Mike Erwin, World Wide Web
Programming With HTML & CGI. IDG Books Worldwide, Inc., 1995. ISBN 1-56884-

703-3.

Books on Internationalization

O’Donnell, Sandra Martin, Programming for the World: a guide to internationalization.

Prentice Hall, 1994. ISBN 0-13-722190-8

Books on CDE

Lunde, Ken, Understanding Japanese Information Processing. O’Reilly & Associates Inc.,

1993. ISBN 1-56592-043-0

Common Desktop Environment User’s Guide. Addison-Wesley.

ISBN 0-201-48951-1

Books on HTML

Graham, Ian S., HTML Sourcebook. John Wiley & Sons Inc., 1995.

ISBN 0-471-11849-4



889

Glossary

accelerator A key or key combination that immediately executes a command from a menu.

accelerator text Text that appears on the buttons of a menu to remind the user of an accelerator.

action The name (such as “Arm,” “Activate,” or “Help”) of a widget’s prescribed

response to an event, as defined in the widget’s translations table. Actions are

mapped to functions in the widget’s action table.

action routine A function that performs an action. Many action routines are supplied with

Motif. Sun WorkShop Visual users can also write their own action routines.

action table A table associated with a widget that maps actions to the action routines that

perform them.

applet An applet is a small application written in Java which is embedded in a web

page and runs when the page is browsed.

application class
name The name given to the Application Shell of a generated application. This name

is used as a title for that Shell’s window and to identify resources that belong

to that application. In Sun WorkShop Visual, the application class name is

assigned at code generation time.

Application Shell The type of Shell widget that is used for the primary window in the

application.

attachment A constraint fixing one side of a widget to one side of a sibling widget or to

one side of its parent layout widget. Attachments can be made at a fixed

distance or at a percentage of the layout widget’s dimension.

button box The area reserved for buttons at the bottom of a composite widget such as a

MessageBox, DialogTemplate, or FileSelectionBox.

C++ class widget A widget in the design hierarchy that is designated as a C++ class. In the

generated code, Sun WorkShop Visual defines a C++ class for the widget, with

named descendant widgets as members of the class.



890 Sun WorkShop Visual User’s Guide • May 2000

callback A field of a widget structure that designates a list of callback functions and a

user action. When the user action occurs on that widget, the functions on the

callback list are executed.

callback function One of the functions on a callback list.

callback list A group of functions (callback functions) associated with a callback.

candidate list A list of character (ideograph) choices for a given typed pronunciation

produced from an input method. This normally applies only to ideographic

scripts.

capture Analyze the design of a running Motif application and create a “.xd” file

containing an identical design. Sun WorkShop Visual Capture does this.

CGI Common Gateway Interface. The CGI standard lays down the rules for

running external programs in a Web HTTP server. External programs are called

gateways because they open up an outside world of information to the server.

CGI Script A program or shell script written in any language which conforms to the CGI

standard for data communication.

children The widgets that are managed by, and (if visible) contained within the

boundaries of, a parent widget. In Sun WorkShop Visual, children widgets

appear below their parents in the design hierarchy.

Children Only
widget A widget which Sun WorkShop Visual treats as a place-holder when

generating code. No code is generated for the Children Only widget itself, but

code is generated for any of its descendants that are designated as data

structures, function structures, or C++ classes.

circular attachment In Form layout, an attachment of Widget A to Widget B, when Widget B is

attached to Widget A. Attachment of Widget A to B, B to C, and C to A, or any

larger loop, is also considered circular. Circular attachments are not allowed in

Motif.

class hierarchy The abstract hierarchy of widget classes in Motif. Class hierarchy is

distinguished from design hierarchy.

client data The single parameter that can be passed to a callback function.

code prelude Lines of code supplied in a dialog in Sun WorkShop Visual and inserted at

specific points in the generated code.

color object Association of a name with a color.

complex font object Association of a name with a list of fonts grouped together by Motif into a

FontList.

compound string A Motif data structure that combines a text string with font and direction

information.



Glossary 891

config utility Generic name for visu_config.

constraint resources The resources displayed on the Constraints panel. These resources can be

viewed for any child of a constraint widget.

In general, any resources of a widget that control its children’s sizes or

positions.

constraint widget One of the two types of widgets (the Form and PanedWindow) whose children

have a Constraints panel.

construction area The drawing area on the main Sun WorkShop Visual screen in which the

design hierarchy is displayed.

container widget A widget whose main purpose is to contain and organize its children.

Control The term used widely for interface objects by such systems as Windows and

Java. A control is a basic user interface object such as a button or text field.

converter A function or set of functions used to convert text entries on the resource panel

to numeric resource values. Needed for certain types of user-defined widgets.

Core resource panel The special resource panel that lets you set the resources of the Core, Primitive,

and Manager superclasses.

Core widget The broad superclass from which all widget classes are derived.

creation procedure A function generated by Sun WorkShop Visual that creates a Shell widget with

its children.

data structure A widget for which Sun WorkShop Visual generates a typedef for a data

structure, and a creation procedure that sets up that type of structure and

returns a pointer to it.

derived widget class A widget class that is below another class in the class hierarchy. The derived

class possesses all attributes of the classes above it, plus specialized attributes

of its own.

design hierarchy The hierarchy of individual widget instances that makes up the design for an

interface. Distinguished from class hierarchy.

detail The last field in an event specification for a translation, normally used to

specify which key must be pressed.

Dialog Shell The type of Shell widget used for subsidiary windows. Dialog Shells cannot be

iconified independently of their parent Shells.

dither Use various patterns of black and white pixels to achieve the effect of grey

coloring.

DTD A DTD (Document Type Definition) is a collection of declarations (entity,

element, attribute, link, map, etc.) in SGML syntax that defines the components

and structures available for a class (type) of documents.



892 Sun WorkShop Visual User’s Guide • May 2000

dynamic display The working version of the design that Sun WorkShop Visual creates

dynamically as you build and edit the design hierarchy.

editing area The drawing area on the Layout Editor screen in which an editable sketch of

the layout is displayed.

editing modes The designated behavior of mouse button 1 in the Layout Editor, as controlled

by the radio buttons on the left side of the screen. The modes include “Move,”

“Attach,” “Resize,” “Self,” and “Position.”

enumeration resource A resource that has a limited set of possible values. Sun WorkShop Visual

displays enumeration resources on the “Settings” page of resource panels.

event An element of user input such as a key press or button press.

fold A display command in Sun WorkShop Visual that makes the folded widget’s

children not appear on the screen, thus saving space.

FontList A list of fonts grouped together so that it is possible to show different fonts in

the one string. FontList is a Motif term.

font object Association of a name with a font or a list of fonts.

Form attachment An attachment of one side of a widget to one side of its parent Form at a fixed

horizontal or vertical offset. The offset remains the same when the Form

resizes.

function structure A widget for which Sun WorkShop Visual produces a separate creation

procedure in the generated code.

gadget An alternative version of certain widgets derived from the Primitive class.

Unlike widgets, gadgets do not require the internal creation of a window for

each instance. Use of gadgets instead of widgets may or may not be

advantageous, depending on your system.

GIF Graphic Interchange Format. A file format for storing images. GIFs only store 8

bits of color information per pixel which makes them less attractive than other

formats.

graying out Fuzzy display of an icon, pushbutton, or menu option. In Sun WorkShop

Visual, graying out denotes that the command is inactive.

hard-wired resource A resource value that is generated into the source code, not into the X resource

file. Hard-wired resource values cannot be changed without remaking the

application.

HTML Acronym for “HyperText Markup Language”. HTML is a public domain

format which uses only printable characters and can, therefore, be created in

any text editor. It is also a standard used by many applications.



Glossary 893

HTTP HyperText Transfer Protocol. At the beginning of every URL, you see the four

letters “http”. They tell the Web server how your browser intends to

communicate with it. When you connect to a World Wide Web server, both

systems use this protocol to transfer the document from the server to your

system. For more detailed information see:

http://info.cern.ch/hypertext/WWW/Protocols/HTTP/HTTP2.html

Hypertext Text, graphics and other media connected through links.

IDE Integrated Development Environment. An application comprising a set of

integrated tools which help you to develop programs. IDEs normally include

at least a compiler, debugger and code editor.

inherit To possess the attributes of a superclass. Derived widget classes are said to

inherit from their superclasses.

input focus Indicates the window or component within a window that receives keyboard

input. Sometimes called keyboard focus.

instance An individual widget data structure. Widget instances are specific examples of

widget classes. To instantiate a widget means to create an instance of a widget

class.

Intranet A network internal to an organization. There is usually no firewall between the

computers on an intranet but there probably is one between the intranet and

the internet.

Java Java is a programming language with libraries specifically geared for the

Internet environment. Java is highly portable, object-oriented and interpreted.

It is threaded, has automatic storage management and uses exceptions.

keysym A string used to identify a key in the detail field of a translation.

layout Geometric arrangement of widgets in an interface.

Layout Editor The interactive screen editor used for setting constraint resources for the Form,

BulletinBoard, or DrawingArea widget.

layout widget Any of the widgets that can be used with the Layout Editor: a Form,

BulletinBoard, RowColumn, or DrawingArea.

link A pre-defined callback provided by Sun WorkShop Visual.

link function The function code executed by a link.

loose binding A resource binding which can be made general to apply to groups of widgets

or the whole application.

Manager widget A broad superclass in the Motif class hierarchy, from which most container

widgets are derived. The Manager widget is derived from the Core widget.



894 Sun WorkShop Visual User’s Guide • May 2000

masking toggle The unlabeled toggle next to each resource in the resource panels, used to

designate which resources are generated into the X resource file and which are

hard-wired into the code.

MFC Microsoft Foundation Classes. A set of base classes for building user interfaces

to run on Microsoft Windows.

MIME Multimedia Internet Message Extension. MIME provides a way of extending

the power of Web browsers to handle graphics, sound, multimedia and

anything else except text. HTML handles only text - everything else is an

extension. MIME is also used for binary email attachments. Browsers recognize

MIME types in categories and file types, separated by a slash (such as image/

gif). If you’ve registered a MIME type, the browser decodes the file and

launches a helper application.

mnemonic A single character (often the initial character) of a menu or menu selection,

which initiates the selection when the menu is displayed and the character is

pressed on the keyboard.

module heading Lines of code inserted at the beginning of the generated primary module and

the stubs file.

modifier list A field in the event specification of a translation that specifies whether

modifier keys (such as <Ctrl> and <Shift>) must be pressed or not to cause the

event.

module prelude 1) Lines of code inserted just after the Sun WorkShop Visual generated header

and #include directives.

2) A general term meaning either a module prelude or module heading.

monitor When replaying and recording scripts - display the replay commands as they

are recorded or replayed.

multiple selection The selection of more than one widget from the construction area.

offset The fixed distance, in pixels, between two attached widgets, or between a

widget and the side of the layout widget to which it is attached.

originate Said of an attachment. The origin of an attachment is the widget from which

the attachment was made.

package A term used in connection with Java code. A package is like a library in C. It

provides a way to group together related object files. Each source file should be

labelled with the name of the package to which it belongs. The package name

is based on the directory containing the source file. Source files can “import”

packages that they wish to use.

page selector The options menu at the top of some resource panels that lets you move from

one page of resources to another.



Glossary 895

parent A widget that manages and determines the layout of its children. In Sun

WorkShop Visual, parent widgets are shown above their children in the design

hierarchy.

pause When replaying scripts - stop replaying and wait at the current point in the

script.

pixmap object Association of a name with a pixmap.

position attachment Attachment of one side of a widget at a specified percentage of the width or

height of its parent Form. This type of attachment adjusts to the current Form

dimensions.

pre-create prelude A code prelude inserted just before the given widget is created.

prelude A piece of code inserted into the generated files. See pre-create prelude, pre-

manage prelude, module prelude.

pre-manage prelude A code prelude inserted after the given widget is created but before it is

managed. Commonly used to set up client data for callbacks.

primary module The code module generated by Sun WorkShop Visual that contains the creation

procedures for your interface.

primary selection In the context of the layout editor - the primary selection is the widget which

was selected last. When aligning widgets, any other selected widgets will be

aligned to the primary selection.

Primitive widget In the Motif class hierarchy, a broad superclass from which all the button-type

widgets and several other classes are derived. The Primitive widget is derived

from the Core widget.

Proxy A proxy server is a system that caches items from other servers to speed up

access. On the Web, a proxy first attempts to find data locally, and if it’s not

there, fetches it from the remote server where the data resides permanently.

Query String As used in this document, a query string refers to the part of a URL which

appears after a question mark (?). The query string has a standard format

which is understood by applications such as search engines.

radio buttons Toggle buttons grouped inside a RadioBox, or inside a Menu or RowColumn

with the “Radio behavior” resource set to “Yes.” Only one radio button in the

group may be selected at a time.

resource A settable field in a widget data structure. Resources control many aspects of a

widget’s appearance and behavior. Resources can be set by the designer or the

user, or both.

resource panel An interactive screen in Sun WorkShop Visual that lets you specify resource

values for a widget.



896 Sun WorkShop Visual User’s Guide • May 2000

resource prelude A prelude inserted at the beginning of the generated X resource file.

Commonly used to add loose resource bindings for the entire application

rather than for individual widgets.

script When running in record mode, the replay tool creates scripts containing a

description of the actions performed on an application. In replay mode, the

replay tool can read scripts and perform the actions described therein. Scripts

are plain text and consist of keywords and variables.

secondary selection In the context of the layout editor - the secondary selection is any widget other

than the primary selection. When aligning widgets, those which are the

secondary selection will be aligned to the primary selection.

selected widget The widget whose icon is currently highlighted in the design hierarchy. A

widget must be selected before anything can be done to it in Sun WorkShop

Visual.

Server The business end of a client/server setup, a server is usually a computer that

provides the information, files, Web pages, and other services to the client that

logs on to it. The word server is also used to describe the software and

operating system designed to run server hardware. The client/server setup is

analogous to a restaurant with waiters and customers.

SGML Standard Generalized Markup Language is a data encoding that allows the

information in documents to be shared -- either by other document publishing

systems or by applications for electronic delivery, configuration management,

database management, inventory control, etc. Defined in ISO 8879:1986

Information Processing Text and Office Systems; Standard Generalized Markup

Language (SGML).

simple font object Association of name with a single font.

single step When replaying scripts - execute the next command only.

source file One of the code files generated by Sun WorkShop Visual. When contrasted to

the “resource file,” this term refers to the primary module.

status line (1) An area at the bottom left of the main Sun WorkShop Visual screen and the

Layout Editor which provides information relating to the menu option, toolbar

button or widget at the current cursor location.

(2) When an input method is active, an extra text line appears in the active

window (usually at the bottom left). This informs the user of the current mode

with respect to the input method along with any other information the input

method wishes to convey.

stubs file A generated file containing #include statements, function declarations and

empty braces for callbacks.

subclass A widget class that is derived from another class.

superclass A widget class from which another class is derived.



Glossary 897

tag Hypertext help information, consisting of a document name and a hypertext

marker within the document.

template Used in AppGuru to describe an example user interface to be used as the

starting point of a new design.

Thin Client A client is the “customer” side of a client/server setup. For example, to

download something from an ftp site, you use ftp client software. A thin clint

refers to a clint which only provides the thin layer of user interface. All of the

“business” is performed in the server.

thumbnail sketch A small pictorial representation of a dialog which appears in the Sun

WorkShop Visual Capture dialog when a dialog is captured.

tight binding A resource binding in which a widget has been forced to be included.

Top level Shell The type of Shell widget used for primary windows in a design other than the

main application window.

translation A mapping of an event, such as a key or button press, or a sequence of events,

to an action.

translations table The list of translations associated with a widget.

user action A predefined set of events, such as keystrokes or button presses, that triggers a

callback.

variable name The name used to identify a widget’s data structure in the generated code. This

is a C variable name, so it must not be the same as the variable name of any

other widget, any other variable name or function name in your application, or

any C code word.

widget One of the predefined data structures in the Motif toolkit, or other toolkits, that

are used as building blocks for graphical user interfaces.

widget attachment An attachment of one widget to another within the Form.

widget class A specific type of widget.

widget name (1) The name used to distinguish a widget instance in the X resource file. This

name does not have to be the same as the variable name and does not have to

be unique.

(2) The name used to refer to a widget by Sun WorkShop Visual Replay.

Multiple instances of the same widget name are referenced by number.

widget palette The area on the main Sun WorkShop Visual screen that shows icons

representing the available widget classes.

window holding area The area at the upper right of the main Sun WorkShop Visual screen that

displays one Shell icon for each window in the design.



898 Sun WorkShop Visual User’s Guide • May 2000

work area The central area of a composite widget such as a MessageBox, DialogTemplate,

or FileSelectionBox, which can contain one child widget of any type.

X resource file An editable file generated by Sun WorkShop Visual, containing some or all

explicit resource values for the design.

XmString The Motif compound string structure.



Index 899

Index

SYMBOLS
#include generation, 212

NUMERICS
64-bit compiler, 555

A
abstract children (of third-party widgets), 669

abstract classes in generated code, 261

Accelerator text, 66

accelerators

description, 16

how to specify, 66

shortcuts for menu commands, 740

access control for generating C++ classes, 258

access menu in core resource panel, 258

accessibility of Group components, 480

accessing static widget variables, 181

accessing widgets from callbacks, 180

action table, 197

actionPerformed method, 333

actions (for translations)

syntax, 195

toolkit, 196

adding class members, 291

adding code preludes, 242

adding windows to the design, 33

afx_msg, 382

annotation of resources, 56

annotations

configuring the symbols, 46

description, 722

Java version, 321

AppGuru, 418

AppGuru Designer

Editing dialog, 421

editing/creating templates, 419

template attributes, 422

Template Attributes dialog, 423

applets, 314, 338

design rules for, 318

application class

dialog, 383

for Microsoft Windows, 383

application class name, 219

and file naming, 215

troubleshooting, 805

application default resources, 867

application resource directory, 215

application resources

annotation symbols, 47

Windows mode, 388

Application Shell, 72, 73, 777, 804

required in design, 74

appropriate parent function, 675

ArrowButton, 744

mapping to Swing, 355

asterisk

in window border, 16



900 Sun WorkShop Visual User’s Guide • May 2000

attachments

circular, 116

Form, 99

offsets, 109 to 111

position, 99, 126 to 128

removing, 116

preventing, on move, 108

self, 128 to 129

widget, 99, 113 to 118

Auto save, 878

Auto unmanage resource, 745, 753

B
background color of widget in Windows mode, 377

background processing, 199

base classes

modifying, 263

of widget, 258

samples, 263

to compile, 284

base directory, 271

binding objects

color, 138

font, 144

pixmaps, 162

bitmaps

instead of text string, 146

bitmaps versus pixmaps, 146

border widget, 325

bridge to Visaj, 347

building the server, 528

BulletinBoard, 745

mapping to Swing, 354

button

getters and setters, 857

C
C for UIL, 737

C++

classes

use of, 254

C++ classes

creating, 278

default class name, 280

in C code generation, 258

what is generated, 281

callback methods

access level, 289

editing, 259, 289

generating code for, 287

implementing, 288

in structured designs, 365

overriding, 274, 306

specifying, 285

callback methods, new signature, 335

callback stubs in Java, 346

callbacks, 172 to 180

accessing widgets, 180

adding functionality, 226

after specified delay, 201

client, 528, 529

client data parameter, 179, 245

deleting, 261

editing, 226

editing from the design, 226

finding, 46

for custom connections, 529

getters and setters, 527

in generated code, 234

inherited, 174

Java, 319

keeping changes, 230

member functions, 259, 285

order of execution, 176

parameters, 178

predefined, 183

regenerating all, 230

retaining added code, 228

server, 529

syntax, 175

upgrading to Smart Code, 177

callbacks dialog

Java markers, 172

Windows toggle, 380

can add child function, 675 to 678

capture

See Sun WorkShop Visual Capture, 425

card widget, 324

card widgets, 324



Index 901

CascadeButton, 747

mapping to Swing, 354

CBitmapButton, 847, 852

CButton, 846

CCmdTarget, 837

CComboBox, 844

CDialog, 839

CFileDialog, 841

CFrameWnd, 836

children only

for place holders, 265

structuring widgets, 300

circular attachments, 116

class hierarchy of widgets, 61

class members

adding, 291

Class object not recognised error, 795

Clear Settings button in Callbacks dialog, 178

client callbacks, 528, 529

client data

description, 179

in callback methods, 259

in Callbacks dialog, 176

use of, 245

using to access widgets, 180

CListBox, 847

CMenu, 842

CObject, 836

code generation, 207 to 225

C++ class, 281

changing name of class, 263

children only structuring, 300

controlling resources, 221

from the command line, 686 to 688

global object functions, 219

instantiate as, 263

Java, 339

links, 219

Makefile, 216

required variables for Shells, 244

storage of variables, 220

structured, 249

troubleshooting, 804

code preludes, 242

for Shell widgets, 244

menu option description, 728

to add class members, 291

coffee cup icon, 321

color icons for widget palette, 704

color in Windows mode, 377

color matching

preventing on startup, 882

color objects

global accessor function for, 219

color palette

editing, 159

reading in, 155

saving, 160

color resources, 78

color selector dialog, 135 to 139

colored background

in edit links dialog, 372

instance definitions, 273

resource fields in Windows mode, 389

colors

color objects in Windows mode, 377

objects, 138

using private colormap, 161

column layout

example use of RowColumn, 69 to 72

using RowColumn and Separator, 775

using RowColumn widget, 767

Command

mapping to Swing, 354

command line options

Sun WorkShop Visual Capture, 690

Sun WorkShop Visual Replay, 689

Command widget, 748

command-line interface, 15

comments

in Sun WorkShop Visual Replay scripts, 442

compiling the base classes, 284

compliance failure dialog

description, 369

fix, 370

go to, 370

next, 370

compliance failure dialog for Java, 316

composite user-defined widgets, 669

composites, families in config utility, 638

compound strings, 163, 376

compress (number of colours saved), 160



902 Sun WorkShop Visual User’s Guide • May 2000

config utility menu commands, 637

configuration functions

appropriate parent, 675

can add child, 675 to 678

defined name, 674

realize, 673

constant extra data in Groups, 481

constant menu in Customize dialog, 517

constraint widgets, 81

constraints dialog, 81, 131 to 132

construction area, 4

control flow in Sun WorkShop Visual Replay

scripts, 453

converters

for user-defined widget resources, 655

Converting GIL Source, 693

Converting UIL Source, 691

copy to file menu command, 719

core resource panel

drop site, 188

menu command description, 725

create callback, using, 491

creating templates for AppGuru, 419

creation functions

code generated for widgets, 183

dialog fragments, 183

creation procedures in generated code, 233

cross-platform

third-party widget children, 669

CScrollBar, 840

CSG (Create Set Get), 648

CSplitterWnd, 842

CStatic, 845

Ctrl-M in files for Windows, 389

Current language only toggle in Makefile options

dialog, 217, 554

currently selected widget, 22, 37

customize

constant, 517

function, 517

out of band data handle, 520

query data, 515

receive handler, 519

send handler, 519

server push, 515

URL, 515

variable, 517

customizing network, 514

cut menu command, 37, 718

CWinApp, 852

CWnd

from DrawingArea, 381

in MFC Motif library, 837

D
data structures, 252

Debugging

toggle in makefile generation, 554

debugging applications with Sun WorkShop Visual

Replay, 457

debugging Sun WorkShop Visual Replay

scripts, 455

default resources, 82, 224

default storage of variables, 220

define button in palette menu, 269

defined name function in config utility, 642

definitions

adding to the widget palette, 298

and resource files, 275, 309

avoiding modification errors, 273

changing order of widgets, 305

configuring, 269

creating, 270

creating instances of, 273, 301

creating, step-by-step, 297

deriving a class from, 274, 303

designating, 268, 297

families, 273

generating code for, 300

introduction, 249

modifying, 272

modifying an instance, 273, 302

online help for, 276

prerequisites, 268

recovering from error, 272

restrictions on Windows, 368

shortcut to creating, 269

troubleshooting, 795

definitionsFileName resource, 269

deleting callback methods, 261



Index 903

demonstrations

using Sun WorkShop Visual Replay for, 449

derived class

creating a, 263, 293

writing, 294

descendant widgets in C++ class, 258

design hierarchy

description, 4

editing, 36 to 37, 718

search for string, 38

Design Tools, 417

destroying widgets, 183

development cycle, 1, 9

dialog flashing in Windows mode, 388

Dialog Shell

description, 73

full definition, 777

types of, 233

dialog style resource, 799

dialogs

initial size, 595

mode causing problem, 799

DialogTemplate, 749

mapping to Swing, 354

directory for code generation, 210

directory menu

in Sun WorkShop Visual Capture dialog, 428

disabling multiple widgets using Groups, 480

disabling widgets, 182

display options, 43

fold/unfold widget, 47

left justify tree, 44

list of, 720

show dialog names, 34, 44

show widget names, 43

shrink widgets, 45

structure colors, 47, 723

display page of resource panels, 77

Document Type Definition, 541

drag and drop support, 188

dragging widgets

in layout editor, 107

in the hierarchy, 36 to 37

DrawingArea, 750

mapping to Swing, 354

DrawingArea resource panel, 399

DrawnButton, 751

mapping to Swing, 355

drop procedure, adding to widget, 189

drop site, 188

DTD, 541

DTDDIR environment variable, 542

dummy functions in stubs file, 213

duplicate widget names, 232

dynamic display

description, 22

finding widgets, 40

going live, 521

resetting, 84

resources for, 713

Shell types, 74

dynamically linked applications

checking, for Sun WorkShop Visual Capure, 425

checking, for Sun WorkShop Visual Replay, 434

E
edit code button in callbacks dialog, 177

edit definitions button in palette menu, 269

edit definitions dialog, 270

edit menu

in Sun WorkShop Visual Capture dialog, 429

edit menu description, 718

editing a stubs file, 288

editing callbacks, 226

editing callbacks from the design, 226

editing code preludes, 242

editing color palette, 159

editing design hierarchy, 36 to 37

Editing dialog in AppGuru, 421

editing templates for AppGuru, 419

editing the templates in AppGuru, 421

eight-bit characters in Shell title, 625

enabling widgets, 182

enclosing class, 260, 380

environment variables, for SGML parser, 551

error handler for SGML parser, 544



904 Sun WorkShop Visual User’s Guide • May 2000

error messages

no Application Shell in design, 804

unreachable widget, 267

Windows compliance failure, 369

errors, see troubleshooting

event handlers, 203

for Microsoft Windows, 384

mapping to MFC, 384

Event Handlers dialog, 204

event listeners

adding code for, 333

Event Masks dialog, 205

executable

in Sun WorkShop Visual Capture/Replay

dialog, 426

exiting X-Designer, 16

exit-on-error flag in Sun WorkShop Visual

Replay, 455

externs file

including in primary module, 214

problem in, 804

tips on including, 213

externs option in generate menu, 736

extra commands

inserting in Sun WorkShop Visual Replay

scripts, 441

Extra Data (in Group Editor)

files generated for functions, 527

F
family

in Edit Definitions Dialog, 271

of definitions, 271

fast find

configuring, 42

disabling, 42

focus policy and, 41

gadgets and, 43

how to use, 40

fetching data (receive), 519

file browser, 50

file operations

copy to file, 719

new file, 16

open, 16

paste from file, 719

print, 717

read, 717

save, 16

file, reading/writing when ready, 201

filename filter resource in Windows mode, 389

filenaming

for DOS-compatibility, 384

to compile on Windows, 404

FileSelection

mapping to Swing, 354

FileSelectionBox, 752

restriction on Windows, 367

filling a ScrollingList, 245

find widget, using Groups, 479

finding widgets, 40

firewall, 516

fixing compliance errors, 370

flavor menu

on toolbar, 18

overview, 362

flavour menu in callbacks dialog, 177

flow widget, 324

fold icon, 48

fold/unfold widget, 47

font objects

global accessor function for, 219

font objects, in Windows mode, 375

font selection dialog, 139 to 146

font sets, 617

fontlists

and compound strings, 163

creating, 164

in Windows code, 376

fonts

objects

complex, 164

simple, 144

scalable, 143

foreground color of widget in Windows mode, 377

Form, 753

mapping to Swing, 354

Form, see also layout techniques, layout editor

formatting the data of a Group, 484



Index 905

Frame, 754

restrictions on Windows, 368

FrameViewer hypertext, 597 to 614

function extra data in Groups, 483

function menu in Customize dialog, 517

function structures, 250

G
-g flag, how to add, 554

gadgets, 6, 58

generate dialog

for Java generation, 336

generate menu, 208

generate overview dialog

description, 208

externs file, 214

primary source file, 211

reset to default names, 209

setting base directory, 210

setting the language, 209

stubs file, 213

generated code

creation of Shells, 232

default naming of classes, 263

get/set, 526

global object functions, 219

Groups, 525

includes in, 239

local and global variables, 232

storage of variables, 220

thin client/internet, 527

generated files

avoiding editing, 238

C for UIL, 737

externs (header), 804

including pixmaps file, 212

Makefile, 216

organizing, 237 to 239

pixmaps, 736

primary module, 230

X resource file, 805

GET HTTP protocol, 536

getters

button, 857

described, 487

generated code, 526

label, 857

list, 862

location of callbacks, 527

option menu, 863

radio box, 865

scale, 861

scrolled text, 859, 862

text, 859

toggle, 858

GIFs, 338

global object functions, 219

global variables

changing scope of widget, 266

in externs file, 214

in generated code, 232

use of, 180

global widget declaration, 79

Go Live toggle, 521

go to, in compliance failure dialog, 370

grayed out icons, 7

grid

in layout editor, 105

grid widget, 326

gridbag widget, 326

Group Editor, 478

Groups

adding extra functions, 483

creating, 478

defining for Smart code, 487

extra data, 481

for multiple selection, 479

formatting the data, 484

generated code, 525

hiding/disabling multiple widgets, 480

how to specify, 503

non-widget components, 481

Public/Private components, 480

quick find, 479

tutorial, 493

H
header file

including without angle brackets, 213

tips on including, 213



906 Sun WorkShop Visual User’s Guide • May 2000

header information in generated code, 231

help

designating the help widget, 67

for user-defined widgets, 642

in SPARCworks/Visual

the help menu, 738

in your design, 67, 597 to 614

on-line, 7

palette icons, 9

help documents

text, 276

help menu, 738

hiding multiple widgets using Groups, 480

hiding widgets, 182

hints, 18

HTML, 600

HTML attr, reading, 547

HTML parser

example, 549

HTML tag, reading, 545

HTML tags, 601

http_c sub-directory, 527

hypertext help, 597 to 614

I
icons

color icons for widget palette, 704

for definitions, 705

for user-defined widgets, 641, 642

on small screens, 15

palette icons help, 739

pixmaps for widget palette, 703

stopping palette icons appearing, 705

import targets in core resource panel, 189

include in resource bindings toggle, 94

include statements in generated code, 231

includes

where to put them, 239

including a header file

tips, 213

including generated code in callbacks file, 181

incremental stubs file generation, 228

index.html, 492, 526, 530

inherited callbacks, 174

input method, 621

input procedures, 201

input stream, parsing, 548

insert button

in Sun WorkShop Visual Replay, 439

inserting

in Sun WorkShop Visual Replay scripts, 447

inserting extra commands

in Sun WorkShop Visual Replay scripts, 441

instance of class in generated code, 293

instances of definitions, 273

and resource files, 311

compiling code, troubleshooting, 795

troubleshooting, 795

instantiate as

example use of, 293

field in core resource panel, 263

used for parameter passing, 296

internationalization, 224, 615 to 624

language procedure for, 202

internet

description, 533

generated code, 527

going live, 521

how to use, 502

introduction, 501

invalid method callbacks error

error messages

invalid method callback, 366

invisible widget, 582

invoking resource panels, 54

J
J1.0, in Callbacks dialog, 322

J1.1, in Callbacks dialog, 322

Java

adding callbacks, 319

applets, 314, 338

border widget, 325

callback dialog markers, 172

callback stubs, 346

card widget, 324

class method restriction, 318

code generation, 339

creating compliant designs, 316



Index 907

description, 314

design restrictions, 317

designing for, 313

emulation widgets for Motif, 323

example code, 340

flow widget, 324

generate dialog, 336

generating user-defined widgets, 629

grid widget, 326

gridbag widget, 326

links restriction, 184

MWT, 315

MWT library, 350

packages, 338

requirements for, 315

resource panel markers, 57

special comments in generated code, 346

specifying packages, 339

using generated code, 345

using GIFs, 338

Java 1.1, 319, 320, 322

Java compliant, in Module Menu, 732

Java generation options dialog, 336

Java Options dialog, 319

Javadoc, 347

K
keyboard accelerators

description, 16

how to specify, 66

shortcuts for menu commands, 740

keyboard mnemonics, 17, 65

keyboard page of resource panels, 77

L
Label, 755

mapping to Swing, 354

label, getters and setters, 857

language procedures, 202

layout

using RowColumn widget, 29 to 30

layout editor

aligning widgets

in groups, 120 to 123

in pairs, 118 to 120

annotation, 104

circular attachments, 116

circularity error with distribute, 126

circularity errors, 116, 123

distribute widgets, 123

edge highlights, 103

editing modes, 101

align, 118 to 120

attach, 112

move, 107

position, 126 to 128

resize, 130

self, 128 to 129

grid, 105

invoking, 99

layout menu, 105

removing attachments, 116

preventing, on move, 108

reset, 103

selecting widgets, 102

troubleshooting, 801

view menu, 103

layout techniques, 567 to 595

Form

avoiding edge problems, 581 to 584

invisible widget, 582

three widgets, 588 to 590, 594 to 595

two widgets, equal shares, 587

two widgets, one dominant, 586

RowColumn

single column layout, 567 to 570

layout widgets, 98

left justify tree, 44

libxdclass, 284

linking error with MFC Motif, 853

links, 183

annotating the hierarchy, 46

generating code for, 219

in design file, 803

in generated code, 234, 239

in Windows mode, 372

Java restriction, 184

removing, 187

troubleshooting, 803

where to put, 239

widget naming, 184



908 Sun WorkShop Visual User’s Guide • May 2000

List, 756

mapping to Swing, 355

list, getters and setters, 862

listener objects, 319

introduction to, 331

X events as, 334

loading data on startup, 491

local variable (widget), 184

local variables, 233, 266

local variables in generated code, 232

local widget declaration, 79

localising string resources, 224

loose bindings, 86

low level input handling, 203

M
m4, using with Sun WorkShop Visual Replay, 457

main procedure

keeping separate, 238

main program

the generated module, 234

MainWindow, 757

mapping to Swing, 354

restriction on Windows, 368

Makefile

adapting for MFC, 404

controlling generation of, 708 to 712

for different paltforms, 555

generate current language only, 217, 554

generation, 216, 556 to 564

generation options, 553

new versus template options, 553

template symbols, 710

using 64-bit compiler, 555

Makefile template generation toggle, 554

making the server, 528

managed toggle in resource panel, 79, 182

manager widgets on Windows, 373

managing widgets, 182

manipulating widgets, 181

mapping widgets, 182

margins page of resource panels, 77

mask only global resources, 224

mask widget resources, 223

masking resources, 57

Menu, 758

mapping to Swing, 354

menu commands in config utility, 637

MenuBar, 760

default attachment, 107

mapping to Swing, 354

restrictions on Windows, 367

menus

building, 25

building, example, 63 to 68

MessageBox, 761

mapping to Swing, 353

method declarations, 260

method preludes, 262

methods

access control, 260

browsing, 259

finding, 46

Java, 319

setting pure virtual, 260

methods button in callbacks dialog, 259

MFC

3D look and feel, 871

adapting the Makefile, 404

filename filter for Windows, 389

generating user-defined widgets, 630

mapping from X event masks, 384

Motif flavor option, 362

version 4 enhancements, 871

MFC Motif library

CBitmapButton class, 847, 852

CButton class, 846

CCmdTarget class, 837

CComboBox class, 844

CDialog class, 839

CEdit class, 850

CFileDialog class, 841

CFrameWnd class, 836

CListBox class, 847

CMenu class, 842

CObject class, 836

CScrollBar class, 840

CSplitterWnd, 842

CStatic class, 845

CWinApp class, 852

CWnd class, 837



Index 909

drawing model, 381

MFC Offset in definitions dialog, 271

mfcFourEnhancements, 871

MIME, 519

minus icon in hierarchy, 48

mnemonics, 17, 65

modal dialogs

to capture, 430

with Sun WorkShop Visual Replay, 442

modifying a definition instance, 302

module heading, 231, 241

module prelude, 231, 730

monitor window

in Sun WorkShop Visual Replay, 441

Motif

knowledge prerequisite, 10

Motif resources, 6 to 7

MotifXP, 359

mouse button 2, 37

mouse buttons, 12

multiple file families in user-defined widgets, 638

multiple selection, 23

resources, 59

setting resources, 59

multiple selection using Groups, 479

MWT, 315

MWT library, 350

N
names

variable, 19, 232

widget, 19

widget naming conventions, 232

naming of classes in generated code, 263

naming pixmap objects for Windows, 385

naming source code files

for compiling on Windows, 404

for DOS, 384

naming widgets in C++ class, 258

Netscape, using to view help, 9

network connection stubs, 529

network proxy, 516

network, specifying, 514

new file, 16

new makefile generation toggle, 554

new signature on callback methods, 335

next, in compliance failure dialog, 370

Non Maskable toggle in Event Masks dialog, 205

non-maskable events, adding, 205

non-standard resource types for user-defined

widgets, 635, 648

O
objects

color, 138

font

complex, 164

simple, 144

on Windows

detailed mapping, 782

pixmaps, 162

offsets (in Form layout), 109 to 111

default vs. explicit, 110

on-line help, 7

OnRButtonDown, 382

OnRButtonDown toggle, 399

OnSize handler, 374

open a saved file, 50

opening a design file, 16

Class object not recognised error, 795

option menu, getters and setters, 863

OptionMenu, 762

mapping to Swing, 355

order of execution of callbacks, 176

order of widgets in definition, 305

out of band data handler, 520

overriding callback methods, 306

overview dialog, see generate overview dialog

P
packages, generation of, 338

packages, specifying, 339

palette icons

configuring, 701, 703

for user-defined widgets, 705



910 Sun WorkShop Visual User’s Guide • May 2000

help, 9, 739

pixmap requirements for, 704

specifying the icon file for, 703

stopping appearing, 705

transparent area for, 704

palette layout

separate palette, 706

palette menu, 723

palette stopList resource, 705

PanedWindow, 763

mapping to Swing, 354

restriction on Windows, 368

parameters to constructor of new class, 296

parent-child widget relationships, 98

parsing input stream, 548

paste from file, 719

paste menu command, 37, 718

pause button

in Sun WorkShop Visual Replay, 439

pink fields in Windows mode, 389

changing color, 389

edit links dialog, 372, 397

pipe, reading/writing when ready, 201

pixmap editor, 148 to 162

changing colors, 158

dropper tool, 157

effects, 154

read color palette, 155

tools, 155

pixmap object

global accessor function for, 219

pixmap resources, 78

pixmaps

creating for Windows, 401

editor, 148

generated file, 736

instead of text string, 146

naming objects, 402

objects, 162

on Windows, 376

preventing close color matching, 882

selector, 146

use of for Windows, 385

pixmaps file

including in primary module, 212

pixmaps for user-defined widgets, 641

pixmaps versus bitmaps, 146

place holders widgets, 265

play button

in Sun WorkShop Visual Replay, 439

plus icon in hierarchy, 48

popup for resource of user-defined widget, 647

popup menus

add to DrawingArea, 398

position attachments, 126 to 128, 587 to 589

POST HTTP protocol, 536

pre-create prelude

editing, 243

preludes

adding, 242

code

menu option description, 728

editing, 242

finding, 46

method, 262

module

description, 730

in header section of code, 231

pre-manage, 245

to specify client data, 179

pre-manage for Shell widgets, 245

resource, 241

to add class members, 291

pre-manage preludes

editing, 245

primary module

analysis, 230

priming dialogs, 491

primitives, families in config utility, 638

print, 48, 717

private colormap, 161

Private Group components, 480

prompts, 18

protected methods, 292

proxy host function, example, 517

proxy, description, 516

Public Group components, 480

pure virtual, 289

pure virtual methods, 260

PushButton, 765

default labels, 27

mapping to Swing, 355



Index 911

Q
query data in Customize dialog, 515

quick find using Groups, 479

R
radio box, getters and setters, 865

radio buttons, 28, 31, 781

RadioBox, 766

mapping to Swing, 354

restrictions on Windows, 368

raw event handler, adding, 205

Raw toggle in Event Masks dialog, 205

read a saved file, 50, 717

reading from file or pipe, 201

realize function in config utility, 643

receive handler, 519

received data, parsing, 548

record button in Sun WorkShop Visual Replay, 439

recording applications

from the command line, 447, 689

red cross (in Windows compliant button), 371

registering a MIME type, 543

rejection of resources, 85

replay

See Sun WorkShop Visual Replay, 433

replaying applications

from the command line, 448

reset, 84, 728

Reset button in generate dialog, 209

resize behavior

Form, 585 to 595

three-widget layouts, 588, 594 to 595

two-widget layouts, 586 to 588

RowColumn, 569

resize behaviour

Form, 126 to 128, 130 to 131

on Windows, 374, 395

turning off for Windows, 374

resource bindings, 85

examples, 95

resource file

and definitions, 309

editing, 236

for dynamic display, 713

syntax of, 235

wildcard (*) in, 237

resource generation

controlling, 221

resource masking, 223

resource panel regions, 56

resource panels

annotations, 56

brackets in, 224

constraints, 81, 131 to 132

core, 135, 725

defaults, 224

display page, 77

for user-defined widgets, 645 to 649

gadget toggle, 58

introduction, 6

invoking, 54

keyboard page, 64, 77

margins page, 77

navigating in, 76

page selector, 58

pages for user-defined widgets, 650

pages of, 76

return characters in labels, 55

settings page, 77

sharing, 61

symbols in, 56

text boxes in, 55

tip on using, 63

toggles for resource masking, 57, 223

undo, close and help, 58

use of, 53 to 95

Windows mode, 59

resource preludes, 241

resource types for user-defined widgets, 635

resources, 6, 269

accessing abstract children, 669

aliases for user-defined widgets, 649

and multiple selection, 59

application

annotation symbols, 47

for Windows mode, 388

widget stopList, 705

application versus system-wide, 219

changing application defaults, 867

changing the binding, 85

default, 224



912 Sun WorkShop Visual User’s Guide • May 2000

font objects in Windows mode, 375

for Java, 57

for Swing, 57

for user-defined widgets, 646

generating for Windows, 376

hard-wiring, 215, 224

loose bindings, 86

masking, 57

memory management for user-defined

widgets, 664

multiple selection and, 59

of user-defined widgets

converters for, 655

enumerations, 650 to 655

popups, 657 to 664

on Windows, 399, 785

rejection of, 85

setting and getting widget resources, 182

tight bindings, 92

troubleshooting, 797, 805

widget, 53 to 95

reusable widget hierarchies, 249

rewind button

in Sun WorkShop Visual Replay, 439

RowColumn, 767

mapping to Swing, 354

setting number of columns or rows, 72

RowColumn widget, 69 to 72

running an application from Visual C++, 410, 412

running the tutorial, 225

S
Save As, bridge file, 347

saving a design file, 16, 50

Scale, 769

mapping to Swing, 355

restrictions on Windows, 368

scale

getters and setters, 861

scHTTPReply, 520

screen dumps

using Sun WorkShop Visual Replay, 449

scRegisterHTML, 542

scRegisterSGMLMimeErrorHandler, 542

scRegisterSGMLMimeType, 542

scripts

creating and naming in Sun WorkShop Visual

Replay, 440

data-driven, in Sun WorkShop Visual

Replay, 452

debugging, in Sun WorkShop Visual Replay, 455

modular, in Sun WorkShop Visual Replay, 451

saving and opening in Sun WorkShop Visual

Replay, 443

using macros, in Sun WorkShop Visual

Replay, 455

ScrollBar, 769

mapping to Swing, 355

scrolled text

getters and setters, 859, 862

ScrolledList, 770

mapping to Swing, 355

ScrolledText, 771

mapping to Swing, 355

ScrolledWindow, 772

mapping to Swing, 354

restriction on Windows, 368

search, 38, 719

search list dialog, 39

selected widget, 22, 37

multiple selection, 23

selecting widgets

in layout editor, 102

SelectionBox, 773

mapping to Swing, 354

SelectionPrompt, 774

mapping to Swing, 354

self attachments, 128 to 129

send handler, 519

sending data to server, 519

separate palette, 706

Separator, 775

mapping to Swing, 355

server callbacks, 529

server connection, customizing, 514

server push in Customize dialog, 515

server, building, 528

server_c sub-directory, 527

setters

button, 857

described, 487



Index 913

generated code, 526

label, 857

list, 862

location of callbacks, 527

option menu, 863

radio box, 865

scale, 861

scrolled text, 859, 862

text, 859

toggle, 858

setting the value of a Text widget, 245

settings page of resource panel, 77

SGML parser

example, 549

Shell, 777

mapping to Swing, 353

shell

in Sun WorkShop Visual Capture dialog, 428

Shell title

using eight bit characters, 625

Shell types, examples, 73

Shell widget

changing order on loading, 34

creation procedure in generated code, 232

initial size, 595

making a Shell an Application Shell, 75

replacing the creation procedure function

header, 244

required variables in generated code, 244

resource binding recommendation, 95

resources, 72

structure in Windows mode, 364

types of, 73, 233, 777

show dialog names, 44

show widget names, 43

showing widgets, 182

shrink widgets, 45

single step button

in Sun WorkShop Visual Replay, 439

skip-on-error flag on Sun WorkShop Visual

Replay, 455

small screens, 15

small_visu

application resource, 869

application resources for, 868

widget icons, 743

small_visu as symbolic link, 361

Smart Code

defining Group, 487

Get/Set tutorial, 493

getters and setters for each widget, 855 to 866

how to use for thin client/internet, 502

internet description, 533

thin client description, 512

upgrading existing callbacks, 177

source code suffix for Windows, 385

static variable (widget), 184

static variables, 266

status line, 18

stop button

in Sun WorkShop Visual Replay, 439

stopList application resource, 705

stopping palette icons appearing, 705

storage class of widget, 180

storage of variables, 220

string objects

global accessor function for, 219

string resources

localising, 224

structure colors, 47, 723

structured code generation, 249

C++ classes, 254

children only, 265

data structures, 252

function structures, 250

stubs file

altering, 230

editing, 226, 239, 288

generating, 213

incremental generation, 228

prelude, 229

removing, 230

renaming, 230

subclasses and superclasses, 61

subclassing a definition, 303

Sun WorkShop Visual

application defaults, 867

exiting, 16

installation

troubleshooting, 794

starting, 15

using for screen dumps, 449



914 Sun WorkShop Visual User’s Guide • May 2000

Sun WorkShop Visual Capture

capturing modal dialogs, 430

command line options, 690

information captured, 430

Sun WorkShop Visual Capture dialog, 426

Sun WorkShop Visual Replay

adding commands, 471

changing Sun WorkShop Visual Replay replay

speed, 442

command line options, 689

comments in scripts, 442

control flow in scripts, 453

conversion routines for custom widgets, 468

creating scripts, 440

data-driven scripts, 452

debugging applications with, 457

debugging scripts, 455

displaying commands on stdout, 455

exit-on-error flag, 455

expressions in scripts, 453

extending the widget set, 458

functions, 438

insert button, 439

inserting extra commands, 441

inserting in scripts, 447

interfacing with widgetlint, 471

macros in scripts, 455

modal dialogs, 442

modular scripts, 451

monitor window, 441

naming scripts, 440

opening scripts, 443

operations, 438

pause button, 439

play button, 439

record button, 439

recorded information, 437

registering conversion routines, 461

rewind button, 439

saving scripts, 443

script fragmentation, 451

single step button, 439

skip-on-error flag, 455

status indicators, 440

stop button, 439

summary of actions to add new command, 474

test failure options, 455

testing application on different displays, 454

tips for using, 448

user-on-error flag, 455

using, 443

using for demonstrations, 449

using for testing, 450

using internally defined names, 457

using m4 with, 457

using third party widgets, 459

using XmListYToPos in, 459

using XmScrollBarGetValues in, 459

using XmScrollBarSetValues in, 459

vcrNameToXYProc, 460

vcrRegisterContextHandler function, 469

vcrRegisterFunction function pointer

variable, 469

vcrXyToNameProc, 459

Sun WorkShop Visual Replay dialog, 437

Sun WorkShop Visual Replay replay speed

changing, 442

Swing

description, 314

resource panel markers, 57

T
table of Motif widget to Swing mapping, 353

tear-off menus

annotations, 722

structure colors, 723

Template Attributes dialog, 423

template attributes for AppGuru, 422

testing

failure options, in Sun WorkShop Visual

Replay, 455

using internally defined names, in Sun

WorkShop Visual Replay, 457

using Sun WorkShop Visual Replay, 450

Text, 778

mapping to Swing, 355

text help documents, 276

text, getters and setters, 859

TextField, 69, 780

mapping to Swing, 355

TextField to Text widget toggle, 69

thin client

description, 512

generated code, 527



Index 915

going live, 521

how to use, 502

introduction, 501

tutorial, 504

third party widgets

cross-platform code for children of, 669

for MFC (Windows), 377

tight bindings, 92

recommendation, 95

timeout procedures, 201

titleEncoding resource for Shell title, 625

toggle

managed (in core resource panel), 79

toggle, getters and setters, 858

ToggleButton, 781

mapping to Swing, 355

toggles

for masking (in resource panel), 57

toolbar

configuring the, 707

description, 17

toolbar buttons

modifying the labels for, 707

modifying the pixmaps for, 708

toolkit independent wrappers, 487

Top level Shell, 73, 74, 777

translations

action procedures for, 197

actions for, 195

default, 190

help, 598

menu option, 726

replacing, 192

search order, 196

syntax, 192 to 195

translations dialog, 191 to 192

transparent area for palette icons, 704

transparent Color

in pixmaps, 160

troubleshooting

add links disabled, 803

blank help screen, 794

cascade buttons not appearing, 800

children ignore parent’s font, 800

Class object not recognised, 795

compiling code with instance of definition, 795

definitions and instances, 795

expected font not appearing, 799

few labels wrong, 794

geometry resources overridden, 798

global widgets undefined, 804

labels incorrect, 794

link stops working, 803

links not updating, 803

links undefined, 804

odd size widget in layout editor, 801

resource settings ignored, 798

resource settings rejected, 797

resources ignored after reset, 799

run time resources different, 805

shared widget names, 806

slow to startup, 882

user-defined widgets, 670 to 672

widgets overlap Form edge, 802

X resource file ignored, 805

tutorial

Get/Set, 493

Internet, 536

thin client, 504

twm, 73

U
UIL, 737

converting to xd, 691

UIL code generation, 210

UIL structured code generation, 266

uil2xd, 691

unreachable widget, 267

unsaved changes

mark indicating, 16

unsupported widgets on Windows, 367

update button in Callbacks dialog, 177

URL in Customize dialog, 515

URL library, 516

user-defined widgets, 627 to 678

accessing abstract children, 669

adding widget class, 639

boolean type resources, 650

can create widgets option, 644

configuration functions, 642, 672 to 678

appropriate parent, 675



916 Sun WorkShop Visual User’s Guide • May 2000

can add child, 643, 675 to 678

defined name, 674

realize, 673

disabling foreground swapping, 644

enumeration type resources, 636

enumerations

default values, 653

help for, 642

icons, 641

in Windows mode, 377

include files, 641

Java generation, 629

main dialog, 636

MFC generation, 630

non-standard resource types, 648

order of widget palette, 637

organisation of families, 638

requirements, 628

resource aliases, 649

resources

converters for, 655

enumerations, 650 to 655

popups, 657 to 664

standard types of resources, 646

testing, 670 to 672

using families from multiple files, 638

widget families, 637

user-on-error flag in Sun WorkShop Visual

Replay, 455

V
variable extra data in Groups, 482

variable menu in Customize dialog, 517

variable name

in resource file, 235

variable names

explanation, 19

requirements, 184, 232

restrictions, 20

vcrNameToXYProc

in Sun WorkShop Visual Replay, 460

vcrRegisterContextHandler, in Sun WorkShop

Visual Replay, 469

vcrXyToNameProc

in Sun WorkShop Visual Replay, 459

view menu, 43 to 45

annotations, 45

description, 720

structure colors, 47

virtual callback method, 259

Visaj

bridging to, 347

visu_config, see user-defined widgets

visu_replay

-v flag, 455

Visual C++

compilation errors, 409, 412

running an application, 410, 412

W
Web browser, using for proxies, 516

widget attributes in config utility, 640

widget attributes of user-defined widgets

changing, 646

widget class pointer for user-defined widgets, 634

widget classes in config utility, 639

widget creation

deferring, 183

widget instances, in dynamic display, 22

widget member access control, 280

widget naming

and scope, 233

conventions, 232

recommendation, 22

variable name restrictions, 20

widget palette, 4

widget resources, 53 to 95

default, 82

widgets, 4

as place-holders, 250

attachments, 113 to 118

building a MenuBar, 25

cannot be classes in Windows code, 364

children only, 300

children only as place holder, 265

class hierarchy, 61

classes

BulletinBoard, 98, 133

Command, 748

DrawingArea, 98, 133



Index 917

Form, 571 to 595

Form, see also Layout techniques, Layout Edi-

tor

PushButtons

default labels, 27

RowColumn, 567

controlling C++ access, 258

creating and destroying, 183

currently selected, 22, 37

defined as C++ class, 254

defined as data structure, 252

defined as function structure, 250

DialogTemplate, 20 to 21, 25

duplicate names, 232

effect of naming, 279

enabling and disabling, 182

enclosing class, 260, 380

FileSelectionBox restrictions on Windows, 367

Form, 28, 81

Frame restrictions on Windows, 368

inheritance, 61

invisible, 582

Java classes, 350

links and, 183

MainWindow restrictions on Windows, 368

manager widgets on Windows, 373

managing, 79

mapping and managing, 182

mapping to Windows objects, 782

members of C++ class, 278

MenuBar restrictions on Windows, 367

multiple selection, 23

must be class in Windows mode, 364

naming in C++ class, 258

palette icons help, 9

PanedWindow restrictions on Windows, 368

parent-child relationships, 98

pasting into design, 232

popup menus, 398

RadioBox, 28

RadioBox restrictions on Windows, 368

reading into design, 232

referencing before creating in generated

code, 179

resetting, 84

RowColumn, 29 to 30, 69 to 72

Scale restrictions on Windows, 368

scope, 79, 180, 266

scope in generated code, 232

ScrolledWindow restrictions on Windows, 368

setting and getting resources, 182

Shell, 72, 73

showing and hiding, 182

static and local definition, 184

subclasses and superclasses, 61

TextFields, 69

translation tables, 190

unnamed causing problems, 258

unreachable, 267

unsupported on Windows, 367

user-defined

configuration, 627 to 678

variable name in resource file, 235

variable names, 184

window style mapping, 785

widgets for Java emulation, 323

widgets vs. gadgets, see gadgets

wildcard (*) in resource file, 237

window holding area, 34, 44

changing Shell order, 34

window styles, 785

mapped from Motif widget resources, 785

Windows

Bitmap and Icon files, 376

creating objects, 785

drawing model, 398

generating resources, 376

message handlers, 399

message handling, 381

MFC 4 enhancements, 871

Windows compliant

fixing errors, 370

invalidation of methods, 366

structure error, 365

toggle buttons, 18, 361

Windows event handling

mapping from X event masks, 384

mapping to callbacks, 364

Windows mode

appearance, 361

application resource, 360

color objects, 377

command line switch, 360

compliance failure, 369

Ctrl-M in generated files, 389

font objects, 375

how to invoke, 360



918 Sun WorkShop Visual User’s Guide • May 2000

pink fields, 389

Windows toggle in callbacks dialog, 380

writing to file or pipe, 201

X
X Events as listener objects, 334

X procedures, 198

X procedures, editing, 206

X window system, 10

X resource file, 57, 82

name for, 215

preludes for, 241

problems in, 805

syntax, 235

X11 Release 5 and Release 6 X Toolkit

Intrinsics, 628

XApplication, in resource file, 219

XBell, 309

xd_base_c, 264

xd_rootwidget, 264, 273

xddefinitionsrc file, 269

XDdynamic resources, 713

XENVIRONMENT environment variable, 216, 311

Xlib, 311

XmDropSiteRegister, 190

XmListYToPos

using in Sun WorkShop Visual Replay, 459

XmNdefaultButton, 267

XmNmappedWhenManaged, 182

XmScrollBarGetValues

using in Sun WorkShop Visual Replay, 459

XmScrollBarSetValues

using in Sun WorkShop Visual Replay, 459

XmStrings, 163, 376

XtAddCallback, 287

XtDestroyWidget, 183

XtManageChild, 182

XtManageChildren, 182

XtNameToWidget, 669

XtPointer, 288

XtPopdown, 182

XtPopup, 182

XtUnmanageChild, 182

XtUnmanageChildren, 182


