
The RWTH SunFire SMP-Cluster

User’s Guide, Version 3.0
September 2002

Dieter an Mey, Center for Computing and Comunication, Aachen University
(Rechen- und Kommunikationszentrum der RWTH Aachen)

anmey@rz.rwth-aachen.de

Ruud van der Pas, Application Performance Specialist, Sun Microsystems
ruud.vanderpas@sun.com

Eugene Loh, High-End Software, Sun Microsystems
eugene.loh@sun.com

Table of Contents
1 Introduction..4
2 Hardware..5

2.1 Configuration RWTH...5
2.2 Processors...6
2.3 Memory..7
2.4 Network RWTH...8

3 Operating System...9
3.1 Addressing Modes..9
3.2 Batch Job Administration RWTH..10
3.3 Defaults of the User Environment RWTH...13
3.4 User File Management RWTH..14

4 Programming/Tuning...15
4.1 Sun Compilers..15
4.2 The KCC C++ Compiler by KAI RWTH...19
4.3 Interval Arithmetic...19
4.4 Tuning Tips..19
4.5 Time measurements...21
4.6 Hardware Performance Counters...21

5 Parallelization..23
5.1 Message passing with MPI..23
5.1.1 Sun MPI...23

5.1.1.1 Placing the MPI-Tasks with mprun..23
5.1.1.2 Input and output control with mprun..24
5.1.1.3 Handling MPI program runs...25
5.1.1.4 Sun MPI environment variables...25

5.1.2 mpich RWTH..26
5.2 Shared memory programming with OpenMP..27
5.2.1 Sun-OpenMP...28
5.2.2 KAP/Pro Toolset RWTH...28
5.2.3 Automatic shared memory parallelization of loops...29

5.4 Hybrid Parallelization..30
6 Debugging..31

6.1 Static program analysis..31
6.2 Dynamic program analysis...31
6.3 Debuggers..32
6.3.1 dbx...32
6.3.2 Prism..34
6.3.3 TotalView..34

6.3.3.1 Invocation of TotalView for serial programs...34
6.3.3.2 Debugging of Sun-MPI programs RWTH..34
6.3.3.3 Debugging of OpenMP-programs..35

7 Programming tools...36
7.1 Sampling Collector and Performance Analyzer...36
7.1.1 The Collector...36
7.1.2 The Performance Analyzer..37
7.1.3 The Performance Tools Collector Library API...38

7.2 Frequency analysis with tcov...38
7.3 Run time analysis with gprof ..39
7.4 Run time analysis of MPI programs...39
7.4.1 Sampling Collector and Performance Analyzer..39
7.4.2 Prism environment...39
7.4.3 Vampir and VampirTrace RWTH..41
7.4.4 Jumpshot and the MPE Library...41

8 Application software..43
8.1 Application software and program libraries RWTH..43
8.2 The Sun Performance Library..43
8.3 The Sun S3L library...43
8.4 Nag Numerical Libraries RWTH...43

9 Further information..45
9.1 Sun products...45
9.1.1 on Sun’s web site...45
9.1.2 on the RWTH Support Server...45
9.1.3 on local file systems..45

9.2 Third party products...45
9.3 Public domain software..46
9.4 Problems and inquiries...46

10 Miscellaneous..47
10.1 Other Useful commands...47

1 Introduction
This primer gives you a quick start in using the new Sun Fire SMP-Cluster at the
Aachen University.
It describes the hardware architecture, selected aspects of the operating environment,
a few software tools, and helpful references for further information. The software
tools include:

• Sun ONE Studio 7, Compiler Collection, formerly called Forte Developer Ver-
sion 7, Sun’s latest compiler and programming environment (It will be the default
compiler from Sept/Oct 2002 on RWTH)

• Sun HPC ClusterTools Version 4.0, Sun’s MPI implementation and environment

• TotalView Version 5.0, Etnus’ parallel debugger

• VampirTrace Version 2.0 and Vampir Version 2.5, Pallas’ tools for runtime
analysis of MPI programs

• KAP/Pro Toolset Version 4.0, KAI's OpenMP tools including

• the KCC C++ Compiler Version 4.0

• some details about the Solaris 9 operating system (It will successively be in-
stalled on the Sun Fire systems from 4Q 2002 on and particularly effects the runtime
behaviour of the Sun Fire 15 K systems RWTH)
Site-specific sections are marked with RWTH.

Please check our web pages for more up-to-date information and the latest version of
this document:

http://www.rz.rwth-aachen.de/hpc/sun
For interactive access to the cluster, login to

cluster-sun.rz.RWTH-Aachen.DE
For acquiring access to the machines, fill out the registration form at

http.//rz.rwth-aachen.de/hpc/org/antraege.html
Please join the rzcluster mailing list, if you want to be informed on a regular ba-
sis:

http://MailMan.RWTH-Aachen.DE/mailman/listinfo/rzcluster
Do not hesitate to send criticisms or suggestions to

hpc@rz.rwth-aachen.de
Have fun using the new Sun Fire SMP-Cluster!

4 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

2 Hardware

2.1 Configuration RWTH
The Sun SMP cluster currently consists of
 16 Sun Fire 6800 nodes with 24 UltraSPARC-III Cu processors and 24 GB of

shared memory each and of
 4 Sun Fire 15K nodes with 72 UltraSPARC-III Cu processors and 144 GB of

shared memory each.
All 672 CPUs have a 900 MHz clock cycles with an accumulated peak performance
of 1,2 TFlop/s and a total main memory capacity of 906 GB.
All compute nodes are equipped with local scratch (TMP) and system file systems.
They also have access to a common NFS file system for small long-term user data
(HOME) and to another common file system for large medium-term work files
(WORK).

In the future (4Q2002) all compute nodes will have direct access to all shared file-
systems via a fast storage area network (SAN) using the QFS file system. High IO
bandwidth will be achieved by striping multiple RAID systems.
The SMP compute nodes are connected to each other by Gigabit Ethernet. In
1Q2003 proprietary high-speed Fire Link networks will be installed to form three
clusters: two clusters of 8 Sun Fire 6800 systems each and one cluster of 4 Sun Fire
15K systems.
Finally all nodes will be upgraded with UltraSPARC-IV processors in 2H2003.

date nodes processors main memory networks
2Q2001 8 Sun Fire 6800 8 x 24 US-III 750 8 x 24 GB GE, Myr
4Q2001 8 Sun Fire 6800

8 Sun Fire 6800
8 x 24 US-III 750
8 x 24 US-III 900

8 x 24 GB
8 x 24 GB

GE, Myr
GE

1H2002 8 Sun Fire 6800
8 Sun Fire 6800
4 Sun Fire 15K

8 x 24 US-III 900
8 x 24 US-III 900
4 x 72 US-III 900

8 x 24 GB
8 x 24 GB
4 x 144 GB

GE
GE
GE

2H2003 8 Sun Fire 6800
8 Sun Fire 6800
4 Sun Fire 15K

8 x 24 US-IV 1500
8 x 24 US-IV 1500
4 x 72 US-IV 1500

8 x 24 GB
8 x 24 GB
4 x 144 GB

GE,Fire Link
GE,Fire Link
GE,Fire Link

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 5

2.2 Processors
The UltraSPARC-III Cu processor (US-III Cu) is a superscalar 64-bit processor with
two cache levels:

Level 1 (on chip):

• 64 KB for data and 32 KB for instructions
(4-way associative, 32 byte cache-lines, write-through, no-write allocate, pseudo random
replacement strategy, 2 clock cycles latency. Modified cache lines are written back immediately
into the L2 cache and a cache line is not fetched before a write operation)

• 2 KB prefetch cache, for an accelerated load of floating point numbers
 (4-way associative, 64 byte cache lines, 32 byte subblocks, LRU replacement strategy)

• 2 KB write cache
(4-way associative, 64 byte cache lines, 32 byte subblocks, LRU replacement strategy)

Level 2 (off chip):
• 8 MB for data and instructions

(2-way associative (900 MHz), 512 Byte cache lines with 64 byte subblocks, approx. 12 clock
cycles latency, 6.4 GB/s bandwidth, write-back; write-allocate strategy . Modified cache lines are
not written back until they are pushed out of the cache and before a write the whole subblock has
to be fetched from memory.)

The most important information about the current processors can be acquired with
the instruction

$ fpversion

Each clock period the processor can initiate 2 integer operations or an integer and a
memory operation, one floating point addition and one floating point multiplication.
Thus the peak performance in Mflop/s is twice the clock rate in MHz. In suitable
computing kernels, like the well-known Linpack benchmark or a matrix multiplica-
tion, 70-90% of this rate will be actually attainable.

6 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

2.3 Memory
Each CPU board contains 4 processors and their external (L2) caches together with
their local interleaved memory.
In the Sun Fire 6800, 6 of these boards are coupled with a crossbar. The memory
bandwidth amounts to theoretically 2.4 GB/s for a single processor and -- due to
snoop bus limitations -- 9.6 GB/s for all 24 processors of a SMP node.
In the Sun Fire 15K, 18 CPU boards are interconnected with a crossbar and the
cache coherency is handled by a combination of snooping within each board and di-
rectory-based cache coherency between the boards.

From the programmer's point of view, the Fire 6800 thereby offers a " flat " memory
system with a limited bandwidth (9.6 GB/s), i.e. all memory cells approximately
have the same distance to each processor (latency about 270 ns), whereas data local-
ity plays a more important role in the Fire 15K (cc-NUMA architecture).
The latency to get data from memory on the same board is approximately 270 ns.
The Fire 15K’s latency for fetching remote data will be at least 330 ns and in ex-
treme cases, however, up to about 600 ns. Theoretically the total memory bandwidth
will be between 43.2 GB/s (worst case) and 172.8 GB/s (only local accesses). Data
locality will be supported by the upcoming version of the Solaris 9 operating system.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 7

2.4 Network RWTH
Gigabit Ethernet will be used to interconnect SMP nodes. Further, two tightly cou-
pled clusters of 8 Fire 6800 systems each and one cluster of 4 Fire 15K systems will
be formed with a proprietary high-speed Fire Link network in 1H2003. With Sun’s
version of MPI, a latency of 4 micro seconds and a bandwidth of up to 2.7 GB/s can
be obtained between nodes.

8 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

3 Operating System
The Solaris Operating Environment is an operating system of the UNIX family.
The current version on all Sun Fire machines is Solaris8. In the 2002/2003 time
frame we will migrate to Solaris 9. RWTH
The command

$ uname -r

will print out the corresponding SunOS release level 5.8 or 5.9.
NEW: Solaris 9 will introduce the multiple page size support and the memory place-
ment option (MPO) for the Sun Fire 15K systems.
By default Solaris organizes all data in pages of 8 KB. Programs with a large mem-
ory requirement and/or programs which access memory randomly or with non-unit
strides might profit from using a large page size (reduction of TLB misses). This can
be done by using the ppgsz command. Example:

$ man ppgsz # manual page

$ ppgsz -o heap=4M,stack=4M a.out # program start

All dynamically or locally allocated data, as well as uninitialized Fortran COMMON
Blocks will be allocated on large pages (4 MB in the above example), if enough con-
secutive memory is available. You may check the running program with the com-
mand

$ pmap -s pid # address space map of a process

The Sun Fire 15K machines have a non uniform memory access (cc-NUMA) archi-
tecture. Thus processors have a quicker access to data on a memory chip on the same
CPU board than to that residing on a different board. Whereas Solaris 8 allocates
data uniformly on all boards, MPO in Solaris 9 tries to place data (pages) on the
same board as the processor, which touches the data first (first touch policy)

3.1 Addressing Modes
Solaris 7, 8 and 9 are 64-bit UNIX operating systems. Programs can be compiled
and linked in 32-bit mode (default) or 64-bit mode. This affects memory addressing
(usage of 32- or 64-bit pointers) and has no influence on the precision of floating
point numbers (4- or 8-byte real numbers). Programs needing more than 4 GB mem-
ory, have to use the 64-bit addressing mode. The switches for UltraSPARC-III Cu
specific compilation and linking are

-xarch=v8plusb 32-bit
-xarch=v9b 64-bit

Note: long int data and pointers in C programs are stored with 8 bytes when us-
ing 64-bit addressing mode.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 9

3.2 Batch Job Administration RWTH
Batchjobs are handled by the Sun GridEngine (formerly Codine).
Job scripts can be submitted to the batch system with the line command

$ qsub [options] [scriptfile | - [script_args]]

or through the graphical user interface
$ qmon

The attributes of queued jobs can be modified with
qalter [options]

Jobs can be deleted with
$ qdel job_id

Status information can be inquired with
$ qstat -f | -j job_id | -u user

On overview of the current batch job load of the entire Sun Fire cluster can be ob-
tained with the utility

jobinfo RWTH

The most important parameters of qsub are:

-o [hostname:]path standard output file
-e [hostname:]path standard error file
-j y|n merge error outputs into standard

output
-l resource=value,... specification of the necessary

resources (see below)
-N name job name
-pe parallel_environment ntask processor count for the MPI

environment (see below)
-v variable[=value] set environment variables
-w v only check the job parameters, do

not submit (this does currently not
work in combination with the -pe
parameter)

-r n no restart, in case of a system crash
-hold_jid job_id,... start after the termination of the

indicated job
-M mail_address notification mail address
-m b | e | a | s | n send notification mail at job begin |

end | abort | suspend | send no mail

10 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

The most important resource parameters are (see qsub-parameter -l):

-l hostname=hostname computer name.Normally the use of
this parameter is not recommended.

-l h_rt=hh:mm:ss required real time
[[hours:]minutes:]seconds
Default: 0:10:00
Maximum: 24:00:00

-l h_vmem=xxxX virtual memory
specification in bytes, KB, MB oder
GB
e.g. vmem=10M
default: vmem=1M

-l num_proc=nthread in case of shared memory
parallelization: specification of the
number of threads

-l ostype=sunos start on the SunFire compute nodes.
-l solaris8
-l solaris9

during the migration period from
Solaris 8 to Solaris 9 these resource
parameters may be used. Normally
the use of these parameters is not
recommended.

-l march=sf-15k
-l march=sf-6800k

jobs can be directed to the Sun Fire
15K or to the Sun Fire 6800 nodes.
Normally the use of these
parameters is not recommended.

-l software=#_of_licenses the need for software licenses has to
be specified.
Currently the available licensed
packages are: abaqus, ansys, cfx4,
cfx5, gamess, gaussian, g98, linda,
marc, matlab, tascflow
The number of licenses normally
equals 1.

MPI-Jobs have to be submitted into one of the following "parallel environments".
The number of MPI processes has to be specified (nproc)

-pe mpi_sunos_* nproc the MPI job will be started on any
of the Sun Fire machines

-pe mpi_sunos_6800 nproc the MPI job will be started on Sun
Fire 6800 nodes only

-pe mpi_sunos_15k nproc the MPI job will be started on Sun
Fire 15K nodes only

-pe mpi_sunos_1host nproc all processes of the MPI job will be
started on any one Sun Fire
node.All MPI communication will
use the common main memory.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 11

The parameters can also be indicated as comment lines, starting with the characters
"#$", in the beginning of the job scripts. Command line parameters have higher
precedence than the imbedded script flags.

Submitting a serial job:

$ qsub -o $HOME/aus.txt -j y -l ostype=sunos \
-l h_rt=00:15:00 -l h_vmem=500M scriptfile

This corresponds to
#!/usr/bin/ksh
#$ -o $HOME/aus.txt
#$ -j y
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l ostype=sunos

cd workdir
program

Example of a batch job script for starting a Sun MPI program:
(The environment variable MPRUN_FLAGS is predefined by the batch system in
order to direct the MPI processes to the reserved machines. The limits are per proc-
ess limits, so in total 5 times 500 MB will be reserved.)

#!/usr/bin/ksh
#$ -N MPI-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -pe mpi_sunos_* 5
#$ -l ostype=sunos
cd workdir
mprun program

Example of a batch job script starting an OpenMP or an autoparallel program:
(The environment variable OMP_NUM_THREADS is predefined by the batch
system in order to start as many threads as processors have been reserved. 500 MB
will be reserved on one node for all 5 threads.)

#!/usr/bin/ksh
#$ -N OpenMP-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l num_proc=6
#$ -l ostype=sunos
cd workdir
program

Hybrid Programs use a combination of MPI and OpenMP, where each MPI process
is multi-threaded. Example of a batch job script starting a hybrid program:
(The environment variables MPRUN_FLAGS and OMP_NUM_THREADS are

12 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

predefined by the batch system. In this example 5 groups of 4 CPUs will be re-
served.)

#!/usr/bin/ksh
#$ -N Hybrid-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l num_proc=4
#$ -pe mpi_sunos_15k 5
#$ -l ostype=sunos
cd workdir
mprun program

3.3 Defaults of the User Environment RWTH
The login shell is the korn shell (ksh). It's prompt is symbolized by the dollar sign.
Accordingly numerous initialization scripts follow this syntax. They must be started
with

$. scriptfile

Environment variables are set with
$ export variable=value

This corresponds to the C shell command
% setenv variable value

If you prefer to use a different shell, start any necessary initialization scripts before
you change to your preferred shell.

$. init_script
$ exec csh
%

or insert the appropriate commands into the .profile file in your HOME directory.
The Korn shell prompt is indicated with a dollar sign, and the C shell prompt is indi-
cated with an “percentage” symbol.
For the use of the Sun ONE Studio Compiler Collection environment and HPC Clus-
terTools, the environment variables PATH and MANPATH are already adapted in the
user profile:

$ export PATH=${PATH}:\
/opt/SUNWspro/bin:/optSUNWhpc/bin

$ export MANPATH=${MANPATH}:\
/opt/SUNWspro/man:/optSUNWhpc/man

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 13

3.4 User File Management RWTH
Every user owns directories on shared file systems for small, long-term user files
($HOME=/home/username) and for large, medium-term workfiles
($WORK=/work/username). The $HOME data will be saved regularly.

A directory for local scratch files ($TMP=/tmp/username/login_pid) is ac-
cessible only on the respective node and will be automatically created before and de-
leted after the terminal session or the batch job

14 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

4 Programming/Tuning

4.1 Sun Compilers
Before long we will switch production from the current Forte Developer 6 Update 2
Compiler suite (Sun Fortran, C and C++ compilers) to the new Sun ONE Studio 7
Compiler Collection. You can choose the compiler version by modification of the
search path with one of the following commands RWTH

$. Forte61.init
$. Forte62.init
$. Forte70.init

We recommend that you always recompile your code with the latest compiler for
performance reasons and bug fixes.
Check the compiler version which you are currently using with the option

-V

or with the command
$ dumpstabs object_file

Online information in addition to the manual pages can be found by directing your
browser to the local file

 file:///opt/SUNWspro/docs/index.html

or to the website
http://docs.sun.com

The compilers are invoked with the commands
$ cc, c89, f90, f95, CC

The appropriate manual pages are available. You can get an overview of the avail-
able compiler flags with the option

-flags

It is in general recommended to use the same flags for compiling and for linking.
The latest compiler release (7.0) does no longer contain a separate FORTRAN77
Compiler. Instead the Fortran95 compiler has a new flag, which might be used to
compile legacy Fortran codes.

f95 -f77 -ftrap=%none

In general we do not recommend to switch off all error trapping (-ftrap=%none). If
your program compiles and runs fine with the above compatibility flag, we suggest
you repeat this without the -ftrap=%none option.

For further information check the f77(1) manual page.
Compute intensive program parts can be translated and linked with the optimization
options (US-III Cu)

-fast –xarch=v9b (64 bit addressing) or
-fast –xarch=v8plusb (32 bit addressing)

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 15

-fast is a macro expanding to several individual options, which are meant to give
you the best performance with one single compile and link (!) option. Note however
that the expansion of -fast might be different across the various compilers and
can change between different compiler releases.
At present (version 7.0) -fast with the Fortran 95 compiler corresponds to the fol-
lowing list (see manual page):

-O5 -xarch=native –pad=local –xvector=yes
-xprefetch=yes -xprefetch_level=2 –f –fsimple=2
–fns –ftrap=common –libmil –dalign –xlibmopt
-depend

with the C compiler:
-dalign -fns –fsimple=2 –ftrap=%none
-xalias_level=basic -xarch –xbuiltin=%all -xdepend
–xlibmil -xmemalign=8s -xprefetch=auto,explicit
-xO5 -xtarget=native

and with the C++ compiler:
-dalign -fns –fsimple=2 –ftrap=%none -nofstore
-xarch –xlibmil -xlibmopt -xmemalign -xO5
-xtarget=native –xbuiltin=%all

For further optimization by the C-compiler the following options can be added:
–xvector –xspfconst

and for further optimization by the C++-compiler the following options can be
added:

-xalias_level –xvector –xspfconst
-xprefetch=auto,explicit

The generated code can be specifically tuned for the 900 Mhz-UltraSPARC-III Cu
processor (US-III Cu) by specifying

-xchip=ultra3cu -xcache=64/32/4:8192/512/2 \
 -xarch=v8plusb (32-bit addressing mode)
-xchip=ultra3cu -xcache=64/32/4:8192/512/2 \
 -xarch=v9b (64-bit addressing mode)

(Use -xchip=ultra or -xchip=ultraplus with the version 6.1 resp. 6.2
compilers)
In general it is recommended to specify the precise architecture flags for linkage as
well (-xarch=v8plusb / v9b for the UltraSPARC-III Cu processor), so that the opti-
mal run time libraries are used.
You can get a survey of the compiler flags used by adding the option

–v (Fortran and C++)
-# (C)

The compiler supports inlining of function and subroutine calls. With optimization
level -xO4 and above, this is attempted for functions/subroutines within the same
source file. The programmer can also specify which functions/subroutines should be

16 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

inlined, by specifying these with the following option
-xinline=routine_list

Note however that in this case, automatic inlining is disabled. It can be restored
through the %auto option. We therefore recommend the following:

-xinline=%auto,routine_list

If one wishes to have the compiler perform inlining across various source files, the
-xipo option can be used. This is a compile and link option. With the 7.0 release,
-xipo=2 is also supported. This adds memory related optimizations to the interproce-
dural analysis.
Program kernels with numerous branches can be further optimized with the profile
feedback method. This two step method starts with a compile using this option
added to the regular optimization options:

–xprofile=collect:a.out

Then the program should be run for one or more data sets. During these runs, run-
time characteristics will be gathered.
The second phase consists of a re-compile, using the run-time statistics:

–xprofile=use:a.out

This will then hopefully give a better optimized executable, but keep in mind this is
of benefit for specific scenario's only.
NOTE : High optimization can have an influence on floating points results due to
different rounding errors. In order not to change the order of the arithmetic opera-
tions by the optimization, a further option can be added, which reduces the execution
speed however:

-fast –fsimple=0 –xnolibmopt (Fortran)
The option

–g

produces debugging information. This is also useful for run-time analysis with the
Performance Analyzer, which can use the debugging information to attribute time
spent to particular lines of the source code. Use of -g does not substantially impact
optimizations performed by the new Sun compilers. Meanwhile, the correspondence
between the binary program and the source code is weakened by optimization, mak-
ing debugging more difficult.
The Fortran compiler prints a lot of information (compiler messages, cross reference
list, etc.) about the program in a separate listing file when compiling with the option

$ f90 -Xlist ... program.f
$ cat program.lst

The default data mappings of the Fortran compiler can be adjusted with the -type-
map option. The normal setting is

-typemap=real:32,double:64,integer:32 ...

For example with

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 17

$ f90 -typemap=real:64,double:64,integer:32 ...

the REAL type can be mapped to 8 bytes.
When using the -g option, the latest Sun compilers introduce comments about loop
optimizations into the object files, which can be output by the command

$ er_src progname.o

A comment like
Loop below pipelined with steady-state cycle
count..

indicates that modulo scheduling (aka software pipelining) has been applied, which
in general gives better performance.
An expert of the chip architecture will be able to judge by the additional informa-
tion, if further optimizations are possible.
With the help of the er_src command a successful subroutine inlining can also be
easily verified:

er_src *.o | grep inline

NOTE: The compiler options are interpreted from left to the right. In the case of
contradictory options the right most dominates.

18 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

4.2 The KCC C++ Compiler by KAI RWTH
KCC is an excellent C++ compiler by Kuck & Associates. KCC translates C++ pro-
grams to an intermediate C code, which then can be compiled by a native C com-
piler. KCC is imbedded in the guidec++ OpenMP compiler.
The most important KCC flags are
+K3 maximum optimization
-O<n> resp. –fast optimization level of the back-end C compiler (will

be passed through)
-k or -keep_gen_c do not delete the generated intermediate C code.

The C code stored into <filename>.int.c
might be interesting, but it is hard to read.

-v verbose mode
--backend ... pass the following option to the back end compiler
-c, -o will be passed through as well.

4.3 Interval Arithmetic
The Sun Fortran and C++ compilers support interval arithmetic by an intrinsic IN-
TERVAL data type and the UltraSPARC-III Cu processor supports fast switching of
the rounding mode of floating point operations.
The use of interval arithmetic requires the use of appropriate numeric procedures.

4.4 Tuning Tips
Compiler options, compiler directives, programming techniques and last but not
least the Sun performance library with highly optimized routines can be used for ac-
celerating programs.
Recently an excellent book covering this topic particularly on UltraSPARC comput-
ers has been published:

Rajat Garg and Ilya SharapovTechniques for Optimizing Applications:
High Performance Computing,ISBN:0-13-093476-3, published by Pren-
tice-Hall PTR/Sun Press.

Contiguous memory access is critical for reducing cache and TLB misses. This has a
direct impact on the addressing of multidimensional fields or structures. Therefore
Fortran arrays should be processed in columns and C and C++ arrays in rows. When
using structures, all structure components should be processed in quick succession.
Frequently this can be achieved by the technique of the loop interchange.
The limited memory bandwidth of RISC processors like the UltraSPARC III is a se-
vere bottleneck for many scientific applications. With prefetching data can be loaded
in advance from the memory into the cache and into the registers. This can be sup-
ported automatically by hard- and software but also by explicitly adding prefetch di-
rectives resp. calls.
The re-use of cache contents is very important, in order to reduce the number of
memory accesses. If possible block algorithms should be used e.g. from the opti-
mized Sun performance library described below.
Cache behavior of programs can be improved frequently by the techniques of loop

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 19

fission (=loop splitting), by loop fusion (=loop collapsing), by loop unrolling (see
option xunroll=n), by loop blocking, the strip mining and by combinations of
these methods. Conflicts caused by the mapping of storage addresses to cache ad-
dresses can be eased by the creation of buffer areas (padding) (see compiler option
–pad).

With the option –dalign the memory access on 64 bit data can be accelerated.
This alignment permits the compiler to use single 64 bit load and store instructions.
Otherwise, the program must use more than one instruction for each memory access.
However this option must be applied to each routine.
With this option, the compiler will assume that double precision data has been
aligned on an 8-byte boundary. If the application violates this rule, the run-time be-
haviour is undetermined, but typically the program will crash.
On well-behaved programs, this should not be an issue, but care should be taken for
those applications that perform their own memory management, switching the inter-
pretation of a chunk of memory while the program executes. A classical example
can be found in some (older) Fortran programs. A large INTEGER COMMON
-block is allocated, but later on this is declared to be a DOUBLE PRECISION
COMMON -block of half the size. Under such circumstances, a misalignment of
data can easily happen.

NOTE: The -dalign options is actually required for Fortran MPI programs and for
programs linked to other libraries like the Sun Performance Library and the NAG li-
braries.
The compiler optimization can be improved by integrating frequently called small
subroutines into the calling subroutines (inlining). The expense for the subroutine
call will be avoided thereby.

-xinline=routine1,routine2,...
(Inlining of routines from the same source file)

-xO4 –xcrossfile
(Inlining of routines from other files in the same compiler call)

-xipo

(Inlining of routines from other files in different compiler calls)

In C and C++ programs the use of pointers frequently obstructs the possibility for
optimization by the compiler. Through compiler options

–xrestrict and –xalias_level=...
it is possible to give additional information to the C-compiler.
With the directive

#pragma pipeloop(0)

in front of a for loop it can be indicated to the C-compiler that there is no data de-
pendency present in the loop.
Word of caution. These options and the pragma make certain assumption. When us-
ing these mechanisms incorrectly, the behaviour of the program becomes undefined.

20 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

Please study the documentation carefully before using these options or directives.

4.5 Time measurements
For real time measurements a high-resolution timer is available. However, the meas-
urements can supply reliable, reproducible results only on an (almost) empty ma-
chine. At least the number of runnable processes (use uptime command) plus the
number of processors needed for the measurement has to be by far less than the
number of processors available on the compute node.
Example in C

#include <sys/time.h>
/* Real time in nanoseconds as long long int */
double second;
second = (double) gethrtime() * 1.0E-9;

and in Fortran
INTEGER*8 gethrtime
REAL*8 second
second = 1.d-9 * gethrtime()

CPU time measurements have a smaller precision and are more time costly. For
measuring large time intervals they are quite suitable.
In case of parallel programs, real time measurements should by made anyway!
After linking a library supplied by the computing center:

-L/usr/local_rwth/lib –lr_lib RWTH

the functions r_rtime and r_ctime are available. They return the real time and
the CPU time, respectively, as double floating point numbers.

4.6 Hardware Performance Counters
The UltraSPARC-III Cu Chip offers 2 programmable 32-bit performance counters
for counting various hardware events.
The cputrack command (see man cputrack), the cpc-library (see man cpc),
the portable PCL-library or the Performance Analyzer (see chapter 7) can be used to
access these counters.
The command

$ cputrack –h

lists the names of the countable events. A simple application can be seen in the shell
script

/usr/local_rwth/bin/mflops RWTH

Just call
$ /usr/local_rwth/bin/mflops a.out RWTH

to count the number of floating points instructions during the execution of a.out in
MFlop/s.

$ man cpc_bind_event

displays an example program using the cpc library.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 21

The portable performance counter library (PCL) profits from the cpc library. It can
be linked by

$ f90 –L/usr/local_rwth/lib –lpcl –lcpc ...

A more elegant way of obtaining performance information is the use of the collect
command and the er_print utility or the analyzer GUI (see chapter 7)

22 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

5 Parallelization
Parallelization for computers with shared memory (SM) means either the automatic
distribution of loop iterations on several processors or the explicit distribution of
work on the processors by compiler directives and function calls (OpenMP) or a
combination of both.
Parallelism for computers with distributed memory (DM) is done via the explicit dis-
tribution of work and data on the processors and their coordination with the ex-
change of messages (Message Passing with MPI).
MPI programs run on shared memory computers as well, whereas OpenMP pro-
grams (normally) do not run on computers with distributed memory. As a conse-
quence MPI programs can use all available processors of the SMP cluster, whereas
OpenMP programs can use up to 24 processors of a Sun Fire 6800 node, or up to 72
Processors of a Sun Fire 15K node.
For large applications the hybrid parallelization approach, a combination of coarse-
grained parallelism with MPI and underlying fine-grained parallelism with OpenMP,
might be an attractive possibility, in order to use as many processors efficiently as
possible.

5.1 Message passing with MPI
5.1.1 Sun MPI

Sun MPI is the Sun implementation of the MPI standard and is part of the Sun HPC
ClusterTools software suite. At present, ClusterTools 4.0 is installed.
The compiler drivers mpf77, mpf90 , mpcc and mpCC and the instruction for start-
ing an MPI application mprun are in the directory /opt/SUNWhpc/bin. The neces-
sary include directory /opt/SUNWhpc/include and the library directory
/opt/SUNWhpc/lib are picked up automatically by these compiler drivers.
Example (recommendation):

$ mpf90 –c -dalign ... *.f90
$ mpf90 –o a.out *.o -lmpi
$ mprun –np 4 a.out

Example (only for explanation):
$ f90 –I /opt/SUNWhpc/include –c -dalign ... *.f90
$ f90 –o a.out *.o –L/opt/SUNWhpc/lib –lmpi
$ /opt/SUNWhpc/bin/mprun –np 4 a.out

MPI programs can be started with the command
$ mprun [options] program

The command mprun has numerous flags for placing the MPI tasks on the compute
nodes and for input and output control (see also man mprun and mprun -h).

5.1.1.1 Placing the MPI-Tasks with mprun
The following table contains the most important parameters of mprun for the distri-
bution of the MPI tasks on the involved machines.
Please note however, that large computing jobs should not be started interactively,

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 23

and that with use of batch jobs (see chapter 3), the GridEngine batch system deter-
mines the distribution of the MPI tasks on the machines to a large extent.
Small MPI test jobs can be started on the interactive node, where you use to logged
in by just specifying

mprun -np n program

because the environment variable MPRUN_FLAGS is predefined in the user profile
such that all MPI processes will be started on the current machine.

-J Prints the job identification number
–np n Start of exactly n MPI tasks
–np 0 Start of exactly one MPI task for each

processor
–S –np n Start n MPI tasks, but settle for one

process per CPU if not enough CPUs
are available.

–W –np n Cyclic distribution of the MPI tasks
on the processors, if the number of
MPI tasks is larger than the number of
the processors of the SMP node.

–np n –l
“sunc01.rz.RWTH-Aachen.DE 2,
sunc02.rz.RWTH-Aachen.DE 3“

Explicit distributing of the n MPI
tasks to the indicated SMP nodes.
Note: capitalization is relevant

–np n –m rankmapfile Explicit distribution of the n MPI
tasks on SMP nodes listed in a file.

-np n –Ns Start of exactly one MPI task on each
of n SMP nodes.

–Zt m –np n Start of n MPI tasks in groups of m on
each of the involved nodes.

–Z m –np n Start of n MPI tasks in groups of m.
Several groups on a sufficiently large
SMP node are allowed.

5.1.1.2 Input and output control with mprun
Under normal conditions standard input (stdin) is passed to all MPI tasks by the
mprun, command. Standard output (stdout) as well as standard error output
(stderr) of all tasks are passed to the standard output of mprun.

24 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

By further options of the command mprun this behavior can be modified:
–D The error outputs of the tasks are passed to the

error output of the mprun command.
–N All standard input and output is turned off.
–n /dev/null is passed to the standard input. That

can be useful for MPI jobs, which run in the
background (e.g. as a batch job), so that they
do not block, if they wait unintentionally for an
input. In this case they will read an EOF.

–B The output of the tasks is written to files
named out.jid.rank.

–o The output is buffered line by line and the rank
of the respective process is written on the
beginning of each line.

–I „0r,1wl,2wl“ more precise controlling of the input and
output. Only complete lines will be written.

–I „0r,1wt,2wt“ Only complete lines are output and all lines
have the task rank placed in front.

–I „0r=input,\
1wt=out.&J.&R,\
2w=err.&J.&R”

All tasks read the same input file, but write in
separate output and error output files

5.1.1.3 Handling MPI program runs
You can terminate a MPI job with the job identification number jid (see:
mprun –J) by:

$ mpkill jid

The command mpps gives a list of the processes, that run under the control of the
MPI run time system (CRE=cluster run time environment).

$ mpps –pef

The command mpinfo gives an overview of the configuration of all nodes attached
to the CRE. Example:

mpinfo –N

5.1.1.4 Sun MPI environment variables
Numerous environment variables can govern the behavior of an MPI program. Occa-
sionally performance can be improved by increasing internal buffering with

$ export MPI_SHM_SBPOOLSIZE=8000000
$ export MPI_SHM_NUMPOSTBOX=256

Another environment variable should be set in combination to this. The value de-
pends on the number of address bits. With 32 bit addressing, the command is

$ export MPI_SHM_CYCLESTART=0x7fffffff

and with 64 bit addressing
$ export MPI_SHM_CYCLESTART=0x7fffffffffffffff

should be set.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 25

It is typically safe and helps performance when one decouples processes by sup-
pressing "cyclic" message passing. This is done for 32-bit addressing with

$ export MPI_SHM_CYCLESTART=0x7fffffff

and for 64-bit addressing with
export MPI_SHM_CYCLESTART=0x7fffffffffffffff

In the case of exclusive use of the involved SMP nodes, in particular if one proces-
sor in each node is kept free for system processes, it’s possible to accelerate a pro-
gram with:

$ export MPI_SPIN=1

The MPI tasks wait then actively (busy waiting, spinning) for messages and keep
their processor busy thereby.
In some cases (e.g. pingpong tests)

$ export MPI_POLLALL=0

accelerates the application (do not poll).
In case of problems more run time messages can be printed through

$ export MPI_SHOW_INTERFACES=3
$ export MPI_SHOW_ERRORS=1
$ export MPI_CHECK_ARGS=1

The current values of all MPI related environment variables will be listed at the pro-
gram start with:

$ export MPI_PRINTENV=1

Appendix A of the Sun HPC ClusterTools Performance Guide sums up tips for the
tuning of MPI applications.

5.1.2 mpich RWTH
Alternatively to the described use of the Sun MPI, which is optimised for the Sun
computer architecture, also the public domain version mpich 1.2.4 can be used (at
present only with 32 bit addressing). The instruction

$. mpich.init

initializes the environment.
Example (recommendation):

$. mpich.init
$ mpif90 –o a.out ... *.f90 –lmpich
$ mpirun –np 4 a.out

Example (for explanation):

26 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

$ export MPICH_ROOT=/rwthfs/rz/SW/MPI/\
mpich-1.2.4/solaris/ch_p4

$ f90 –I ${MPICH_ROOT }/include –c ... *.f90
$ f90 –o a.out *.o –L${MPICH_ROOT }/lib \

–lmpich –lthread –lsocket –lnsl -laio
$ ${MPICH_ROOT }/mpirun –np 4 a.out

Note: The Sun MPI and mpich include files are not compatible. If mpif77 or mpif90
are aborted prematurely, then they leave links to mpif.h in the current directory,
which might cause interesting errors, if one uses Sun MPI afterwards.
Usually Sun MPI should be preferred on the Sun Fire cluster.

5.2 Shared memory programming with OpenMP
For shared memory programming OpenMP is becoming the de facto standard. The
OpenMP API is defined for FORTRAN, C and C++ and consists of compiler direc-
tives, run time routines and environment variables.
In the parallel regions of a program several threads are started, that execute the con-
tained program segment redundantly, until they hit a worksharing construct. Within
this construct, the contained work (usually do- or for-loops) is distributed among the
threads. Under normal conditions all threads have access to all data (shared data).
But pay attention: if data, accessed by several threads, is modified, then the access to
this data must be protected in critical regions.
Also private data areas can be used, where the individual threads hold their tempo-
rary data. All local data of subroutines, which are called within parallel regions, are
put on the stack, and thus don’t keep their contents from one call to the next!
Therefore, Fortran programs must be translated with the option –stackvar. COM-
MON blocks, data in modules or SAVE statements must be used with caution (thread
safety).
Attention! In many cases, the stack area for the slave threads must be increased by
changing the environment variable STACKSIZE, or the stack area for the master
thread must be increased with the (Korn shell) command ulimit (specification in
KB). It is recommended to use the new compiler option (version 7.0)

-xcheck=stkovf

in order to detect stack overflow at runtime.
Hint: In a loop, which is to be parallelized, the results must not depend on the order
of the loop iterations! Try to run the loop backwards in serial mode. The results
should be the same. (This is a necessary, but not a sufficient condition!)

The number of the threads to use is indicated by the environment variable
OMP_NUM_THREADS.
Notes: If OMP_NUM_THREADS is not set, then Sun OpenMP starts only 1 thread (as
opposed to the Guide compiler from the KAP/Pro Toolset which starts as many
threads as there are processors available).
On a loaded system fewer threads may be employed than specified by this environ-
ment variable, because the dynamic mode is used by default (as opposed to the

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 27

Guide compiler). Use the environment variable OMP_DYNAMIC to change this
behaviour.

28 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

5.2.1 Sun-OpenMP
By adding the option

-xopenmp

the OpenMP directives (according to the latest OpenMP 2.0 specifications) are inter-
preted by the Fortran95 compiler. This option is an abbreviation for

–mp=openmp –explicitpar –stackvar –D_OPENMP –O3

Fortunately, the explicit parallelization can be combined with the automatic paralle-
lization of the Fortran compiler. Loops within parallel OpenMP regions are no
longer subject to automatic parallelization. Nested parallelization is not (yet) sup-
ported.
The C- and C++-compilers support OpenMP as well after adding the option

-xopenmp

Though the OpenMP features of the C++-compiler (version 7.0) are still quite lim-
ited.
Between parallel regions the slave threads go to sleep. How they are woken up is
controlled by the environment variable SUMW_MP_THR_IDLE. The possible values
are:

$ export SUNW_MP_THR_IDLE=spin | sleep | ns | nms

The slave threads wait either actively (busy waiting, by default) and thereby con-
sume CPU time or passively (idle waiting) and must then be woken up by the system
or in a combination of these methods they wait first actively and fall asleep n sec-
onds or n milliseconds later. With fine-grained parallelization active waiting and
with coarse-grained parallelization passive waiting is recommended. Idle waiting
might be advantageous on an overloaded system.

Setting
export SUNW_MP_WARN=TRUE

enables additional warning messages of the OpenMP run time system.
Use the new Fortran compiler option

-XlistMP

to receive additional OpenMP related messages in the listing files (*.lst)

5.2.2 KAP/Pro Toolset RWTH
The KAP/Pro Toolset from the Kuck & Assoc. Inc. (KAI) contains OpenMP compil-
ers and tools.
The Guide compilers interpret OpenMP directives in Fortran, C and C++ programs
and generate intermediate programs with calls to the pthread library.
By just replacing the compiler and linker calls to

$ guidef77 | guidef90 | guidec | guidec++

appropriate compiler drivers are used.
By adding the

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 29

–WGkeep
flag the intermediate programs are kept. By linking with the option

–WGstats
a statistics file is written during program execution, which can be nicely visualized
with

$ guideview.
A remarkable tool for the verification of the correctness of OpenMP programs is As-
sure. Replacing the compiler and linker calls by

$ assuref77|assuref90|assurec|assurec++ \
-WGpname=project

the program is instrumented, such that during the program execution every memory
access is traced in order to detect possible data races.
The results of this analysis can be displayed with the GUI

$ assureview –pname=project

or printed out in line mode by
$ assureview –txt –pname project

The instrumented program will take about 10 times more CPU time and 10 times
more memory!
Recommendation: Never put an OpenMP code into production, before using
Assure!

5.2.3 Automatic shared memory parallelization of loops

The Sun Fortran- and C-compilers are able to parallelize loops automatically.
Success or failure to do so depends on the compiler's ability to be able to prove it is
safe to parallelize a (nested) loop. This is often application area specific (e.g. finite
differences versus finite elements), language dependent (pointers may make the
analysis hard) and coding style.
The respective option is

-xautopar
The -autopar option is an abbreviation for

–xautopar –depend –xO3

The combination of explicit parallelism by directives and automatic parallelism is
accessible by the option

-xparallel

as an abbreviation for
-xautopar –xexplicitpar –depend –xO3

Not only OpenMP directives are interpreted, but also proprietary parallelization di-
rectives of Sun and Cray, which, since OpenMP becomes more and more a standard,
should not be used anymore. Adding

30 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

-mp=openmp

limits the compiler to OpenMP directives, if for historical reasons also different di-
rectives should be still contained in the program.

With the option
-xreduction

automatic parallelization of reductions is also permitted, e.g. accumulations, dot
products etc., whereby the modification of the sequence of the arithmetic operation
can cause different rounding error accumulations.
Compiling with the option

-xloopinfo

supplies information about the parallelization.
If the number of loop iterations is unknown during compile time, then code is pro-
duced, which decides at run-time whether a parallel execution of the loop is more ef-
ficient or not (alternate coding).
Also with automatic parallelization, the number of the used threads can be specified
by the environment variable OMP_NUM_THREADS.

5.4 Hybrid Parallelization
The combination of MPI and OpenMP and/or autoparallelization is called hybrid
parallelization. Each MPI process is multi-threaded. It is important to link the
thread-save version of the MPI library:

$ mpf90 -openmp -fast -c program.f90
$ mpf90 -openmp -fast -o a.out program.o -lmpi_mt
$ export OMP_NUM_THREADS=n
$ mprun -np m a.out

KAI's guide preprocessors can be used as well:
$ guidef90 -Wgcompiler=mpf90 -openmp -fast -c \

program.f90
$ guidef90 -Wgcompiler=mpf90 -openmp -fast \

-o a.out program.o -lmpi_mt
$ export OMP_NUM_THREADS=n
$ mprun -np m a.out

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 31

6 Debugging

If your program is causing problems, it might be good opportunity to lean back and
think for a while.
Take a step back:
 What were the last changes that you made? (A source code revision system (RCS,

CVS) might help.)
 Reduce the number of CPUs in a parallel program, try a serial program run if pos-

sible.
 Reduce the optimization level of your compilation,
 Chose a smaller data set. Try to build a specific test case for your problem.
 Look for compiler messages and warnings. Use tools for a static program analysis

(see chapter 6.1)
 Try a dynamic analysis with appropriate compiler options (see chapter 6.2). In

case of an OpenMP program, use Assure (see chapter 5.2.2)
 Use a debugger. Use the smallest case which shows the error. (see chapter 6.3)

6.1 Static program analysis
First, an exact static analysis of the program is recommended for error detection. The
Fortran compiler offers an -Xlist option which generates warning and error messages
into additional listing files (file extension .lst). For OpenMP programs there is a
new option -XlistMP. Furthermore the following tools can be used for static analy-
sis:

cc -v .. stricter semantic checks of C programs by the compiler
lint more accurate syntax check of C programs
ftnchek more accurate syntax check of Fortran77 programs
foresys more accurate syntax check of Fortran77 and Fortran90 programs

and more
Sometimes, program errors occur only after high optimization by the compiler. That
can be a compiler error or a programming error. If the program runs correctly with-
out compiler optimizations, the module causing the trouble can be found by system-
atic bisectioning.

6.2 Dynamic program analysis
The program can be further checked by translation with certain options:

32 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

-C array bound check of Fortran programs
-Xlist global program analysis, write detailed list to files with the

ending .lst
-ftrap=%all pursue of floating point errors, like division by zero,

overflow, underflow. The error handling can be
programmed also explicitly, see: man ieee_handler

-g enrich the binary program with debugger information, for
step-by-step debugging, turn off all optimizations)

-xcheck=stkovf check stack overflow at runtime, new with version 7

The sampling collector (see chapter 7.1) is now also able to detect memory leaks
collect -H

A core dump can be analyzed with the debugger, if the program was translated with
-g :

$ dbx a.out core

$ totalview a.out core

If a program with optimization delivers other results than without, then the changed
rounding error behavior can be responsible. There is a possibility to test this by opti-
mizing the program “carefully”:

$ f90 ... –fsimple=0 -xnolibmopt...

Thus, the sequence of the floating point operations is not changed by the optimiza-
tion, which can increase the run time.

6.3 Debuggers
At present four different debuggers are available. In all cases the program must be
translated and linked with the option –g and without optimization (at least in the in-
teresting program parts).
Don't forget to increase the core file size limit of your shell, if you want to analyze
the core that your program may have left behind:

ulimit -c unlimited

But please don't forget to purge core files afterwards!

6.3.1 dbx
dbx is a powerful line orientated debugger with a detailed online help.
It can as well be used to debug long running programs in batch mode. Collect the
dbx commands in an input file and start your program under control of dbx:

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 33

$ cat >> dbx.in < EOF
catch FPE
catch SIGSEGV
catch SIGBUS
run inputfile
where
dump
quit
EOF
$ dbx a.out < dbx.in

You may as well debug MPI-Programs this way:
mprun -np ntasks -o dbx a.out < dbx.in

It might be more comfortable only to run a few MPI processes through the debugger.
This can be accomplished by starting a small shell script like the following:

#!/bin/ksh
giving the corefile a useful name ...
coreadm -p core.%n.%f.p%p.j${MP_JOBID}.t$MP_RANK
$$;
mechanism to restrict debugging to a subset of
MPI processes ...
if [[$MP_RANK < 2]]
then
 dbx a.out < dbx.in > dbx.out.t$MP_RANK
 mpkill -9 $MP_JOBID
else
 debug.exe
fi

This script, using the same input file dbx.in for dbx like above, is than run with
mprun ... rundebug.ksh

This will leave some core files with meaningful names behind, which then can be
analyzed with

dbx a.out core.machinename.a.out.pnnnn.jmmmm.tkk

6.3.2 Prism
prism is a graphic debugger and run time analysis tool for Sun MPI programs.
If the help information browser does not start correctly, use

$ export PRISM_BROWSER_SCRIPT=yes

For debugging it can be helpful to turn off the following timeout setting:
$ export MPI_INIT_TIMEOUT=-1

Invoke prism by
$ prism –np n [-W] program

34 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

$ prism –np n [-W] –mprunargs ‘mprun_options’
program

$ prism program corefile

$ prism program jid

6.3.3 TotalView
The state-of-the-art debugger TotalView from Etnus (http://www.etnus.com/) can be
used to debug serial and parallel Fortran, C and C++ programs. It is available on all
major platforms.
At present TotalView does not yet support the latest Sun compiler version 6 Update
2. After

$. Forte61.init RWTH

the 6 Update 1 compiler is in the search path.
The upcoming version 6 of TotalView will support the latest Sun compilers as well.

6.3.3.1 Invocation of TotalView for serial programs
$. totalview.init
$ totalview program [corefile]

6.3.3.2 Debugging of Sun-MPI programs RWTH
At present a preliminary wrapper program has to be used, in order to debug a pro-
gram compiled and linked with Sun MPI:

$. totalview.init
$ totalview tvrun –a –np 2 –l “$(hostname) 2” a.out

Initially a dummy program is displayed in the source window. After pressing Go the
user program is entered. A few preferences should be changed beforehand:
Add /opt/SUNWhpc/lib in

File - Preferences - Dynamic Libraries

and turn on Stop the goup in
File - Preferences - Parallel

Save these settings with Save.

Now start your parallel program with Go, the source of your main program will be
displayed and the debugging session starts.
Message Queues cannot yet be displayed.

Programs using the public domain MPI library mpich can be debugged with Total-
View as well:

$. totalview.init
$. mpich.init
$ ${MPICH_ROOT}/bin/mpirun –tv –np nproc program

6.3.3.3 Debugging of OpenMP-programs
Before debugging an OpenMP program, the corresponding serial program should

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 35

run correctly. The typical OpenMP parallelization errors are data races, which are
hard to detect in a debugging session, because the timing behaviour of the program
is heavily influenced by debugging.
It is recommended to use the new Fortran compiler option

-XlistMP

to do a basic static program check. Furthermore the Assure tool is recommended for
the verification of OpenMP programs (see chapter 5.2.2).
But interactive debugging is possible as well. The Sun compilers’ OpenMP options
require high optimisation (-xO3) which in turn prohibits debugging. It is necessary
to use KAI’s guide precompiler, which can be combined with TotalView.
Example:

$. Forte61.init
$ f90_6_1=$(which f90)
$ guidef90 –WGcompiler=$f90_6_1 \

–WG,-cmpo=i –g –c *.f90
$ guidef90 –WGcompiler=$f90_6_1 \

–WG,-cmpo=i –g –o a.out *.o
$ export OMP_NUM_THREADS=2
$. totalview.init
$ totalview a.out

For the interpretation of the OpenMP directives, the original source program is
transformed. The parallel regions are outlined into separate subroutines. Shared
variables are passed as call parameters and private variables are defined locally. A
parallel region cannot be entered stepwise, but only by running into a breakpoint.
When setting a breakpoint in a parallel region, turn on All in the Ambiguous
Line dialog.

36 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

7 Programming tools
This chapter describes tools that are available to help you assess the performance of
your code, identify potential performance problems, and locate the part of the code
where most of the execution time is spent.

7.1 Sampling Collector and Performance Analyzer

The Sampling Collector and the Performance Analyzer are a pair of tools that you
use to collect and analyze performance data for your application.
The Collector gathers performance data by sampling at regular time intervals and by
tracing function calls.
The performance information is gathered in so called experiment files, which can
then be displayed with the analyzer GUI or the er_print command after the pro-
gram has finished.

7.1.1 The Collector
At first you have to compile your program with the

-g

option. Link the program as usual and then start the executable under the control of
the Sampling Collector

collect collect_options a.out

Every 10 milliseconds profile data will be gathered and written in the experiment
file

test.1.er

The number will be automatically incremented on subsequent experiments. In fact
the experiment file is an entire directory with a lot of information. One can manipu-
late these with the regular Unix commands, but it is recommended to use the

er_mv, er_rm, er_cp

utilities to move, remove or copy these directories. This ensures for example that
time stamps are preserved
After

er_print test.1.er

you can generate a first ASCII report from the experiment with the command
functions

Further commands are explained after invoking help or through the man page of the
er_print command.

By selecting the options of the collect command, many different kinds of perform-
ance data can be gathered:

-p on | off | hi | lo Clock profiling ('hi' needs to be supported on the
system)

-H on | off Heap tracing

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 37

-m on | off MPI tracing
-h counter0,0,counter1,0 Hardware Counters
-j on | off Java profiling
-S on | off | seconds Periodic sampling (default interval: 1 sec)
-o experimentfile Output file
-d directory Output directory
-g experimentgroup Output file group
-L size Output file size limit [MB]
-F on | off Follow descendant processes

Various hardware counters can be chosen for collecting. Typing the collect com-
mand without any parameters, will print out all the counters available for profiling.
Some of the events can only be gathered in register 0 and some only in register 1.
Favorite choices are given in the following table.

-h cycles,0,insts,0 Cycle count, instruction count
The quotient is the CPI rate (clocks per instruction) The
optimum would be 0.25.
The Mhz rate of the CPU multiplied with the
instruction count divided by the cycle count gives the
MIPS rate.

-h fpadd,0,fpmul,0 Floating point additions and multiplications
The sum divided by the runtime in s gives the
Mflop/s rate

-h cycles,0,dtlbm,0 Cycle count, data translation look-aside buffer (DTLB)
misses
A high rate of DTLB misses indicates an unpleasant
memory access pattern of the program. Large pages
might help (Solaris 9)

-h cycles,0,ecstall,0 L2 cache stall cycles.
-h cycles,0,dcstall,0 L1 plus L2 cache stall cycles
-h ecref,0,ecm L2 cache references and misses
-h dcr,0,dcrm,0 L1 cache read references and read misses
-h dcw,0,dcwm,0 L1 cache write references and write misses

7.1.2 The Performance Analyzer

For the standard case of just collecting clock profiling and printing out the most im-
portant information in text mode a simple shell script is available:

$ /usr/local_rwth/bin/sample a.out RWTH
$ more sample.out RWTH

38 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

A program call tree with performance information can be displayed with the locally
developed utility

$ /usr/local_rwth/bin/er_view RWTH

The full result of the analysis can be displayed graphically afterwards with the Per-
formance Analyzer GUI, which has been redesigned in the latest version.

$ analyzer experimentfile.er

7.1.3 The Performance Tools Collector Library API
Sometimes it is convinient to group performance data in self defined samples, and to
collect performance data only of a specific part of the program.
For this purpose the libcollector library can easily be used.
In the following example Fortran program, performance data only of the subroutines
work1 and work2 is collected:

program test_collector
call collector_pause()
call preproc
call collector_resume()
call collector_sample("start")
call work1
call collector_sample("work1")
call work2
call collector_sample("work2")
call collector_terminate_expt()
call postproc
end program test_collector

The libfcollector library (C: libcollector) has to be linked. And if this
program is started by

collect -S off a.out

performance data is only collected between the collector_resume and the
collector_terminate_expt calls. No periodic sampling is done, but single
samples are recorded whenever collector_sample is called. (The label is not
currently used). When the experiment file is evaluated, the filter mechanism can be
used to restrict the displayed data to the interesting program parts.
See the libcollector manual page for further information.

7.2 Frequency analysis with tcov
For error detection and tuning it might be helpful to know, how often each statement
is executed. For testing a program it is important that all program branches are
passed (test coverage). For this purpose, the program must be compiled and linked
with the option

–xprofile=tcov

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 39

In the following program execution the frequencies of all statements recorded. The
values can be entered in modified program sources using the command

$ tcov –a –50 –x a.out.profile \
[–p srcdir objdir] source_files...

Statements which have never been executed are marked by “#”.

7.3 Run time analysis with gprof
With gprof, a run time profile on module level can be generated. The program must
be translated and linked with the option –pg (Fortran) resp. –xpg (C). During the
execution a file named gmon.out is generated, which can be analyzed by

$ gprof program

With gprof it is easy to find out the number of the calls of a program module, which
is a useful information for inlining.
NOTE: gprof assumes that all calls of a module are equally expensive, which is not
always true. We recommend to use the Callers-Callees info in the Performance Ana-
lyzer to gather this kind of information. It is much more reliable.

7.4 Run time analysis of MPI programs
7.4.1 Sampling Collector and Performance Analyzer

With MPI programs, the Sampling Collector (see chapter 6.1) collects run time in-
formation for each MPI task, which can also be displayed for each task separately:

$ mprun –np n collect a.out

With a new option of the Sampling Collector MPI events can be traced as well
$ mprun -np n \

collect -m on -g experiment_group.erg a.out

together with the ability to bundle experiment files written by all MPI processes to
experiment groups and display them with the Analyzer

analyzer experiment_group

Running collect with a large number of MPI processes, the amount of experiment
dat might become overwhelming. Starting the MPI program with a little script will
help:

mprun -np 4 run.ksh

with
#!/bin/ksh
filename: run.ksh
if [[$MP_RANK < 2]]
then

collect -m on -g test.erg a.out
else

a.out
fi

Performance information will be collected only for the MPI processes with rank 0

40 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

and 1

7.4.2 Prism environment
With the Prism debugger the communication structure of an MPI program can be
traced.

$ prism –np n program

For Prism tracing of 32-bit programs the option -32 must be added. Switch on the
collection of run time information by clicking Performance -> Collection in
the menu or by the input of tnfcollection on in the command line at the bot-
tom. Start the program by clicking run or by input of the command run. An
xterm window opens in which the program is started. When the program has com-
pleted, you can display the analysis with Performance -> Display TNF
Data or by entering the command tnfview.

In the window that appears, you see the Timeline display, which shows the tem-
poral behavior of the program.
After clicking the plot button

another window opens, in which you can produce and examine statistics for the indi-
vidual calls of the MPI library. Select one of the displayed MPI calls and press the
button Create a dataset from this interval definition. You
have numerous options to vary the representation (don’t forget to refresh).

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 41

7.4.3 Vampir and VampirTrace RWTH
Vampir is an MPI performance analysis tool sold by the company Pallas. After link-
ing the VampirTrace library to the MPI program, a trace file is written during the
program execution, which then can be displayed with the Vampir graphical user in-
terface..
NOTE: The trace file produced at the end of a Fortran program run is always called
TRACE.bvp.

Example in C:
$. vampir.init
$ mpcc –o a.out ... *.c \
 –L/usr/local_rwth/lib –lVT –lmpi -lnsl
$ mprun –np 4 a.out
$ vampir a.out.bvp

Example in Fortran:
$. vampir.init
$ mpf90 –o a.out ... *.f90 –R/usr/local_rwth/lib \

–L/usr/local_rwth/lib –lVT –lmpi -lnsl
$ mprun –np 4 a.out
$ vampir TRACE.bvp

7.4.4 Jumpshot and the MPE Library
The Multi-Processing Environment (MPE) attempts to provide programmers with a
complete suite of performance analysis tools for their MPI programs based on post
processing approach. These tools include a set of profiling libraries, a set of utility
programs, and a set of graphical visualization tools.
The most useful and widely used profiling libraries in MPE are the logging libraries.
Various logfile formats are supported, the most powerful one is SLOG. As the de-
fault format is the CLOG, the programmer must set an environment variable to over-
write the default format:

$ export MPE_LOG_FORMAT=SLOG

After linking the libraries liblmpe.a (MPE logging interface) and libmpe.a (MPE
graphics, logging, and other extensions) and, in the case of a Fortran program, the
additional wrapper library libmpe_f2cmpi.a, the (binary) logfiles will be generated
during runtime. Visualize these logfiles with the jumpshot (version 3) utility.

$ mpcc -c foo.c
$ mpcc -o foo foo.o \

-L/usr/local_rwth/lib -llmpe -lmpe -lmpi
$ export MPE_LOG_FORMAT=SLOG
$ mprun -np 4 foo
$ jumpshot foo.slog

Example in Fortran:

42 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

$ mpf90 -c foo.f90
$ mpf90 -o foo foo.o -L/usr/local_rwth/lib \
 -lmpe_f2cmpi -llmpe -lmpe -lmpi
$ export MPE_LOG_FORMAT=SLOG
$ mprun -np 4 foo
$ jumpshot Unknown.slog

NOTE: The trace file produced at the end of a Fortran program run is always called
Unknown.bvp.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 43

8 Application software

8.1 Application software and program libraries RWTH
You will find the list of available application software and program libraries at
http://www.rz.rwth-aachen.de/sw/

8.2 The Sun Performance Library
The Sun Performance Library is a part of the Sun One Studio Compiler Collection
environment and contains highly optimized and parallelized versions of the well
known standard libraries LAPACK version 3.0, BLAS, FFTPACK version 4 and
VFFTPACK Verson 2.1 from the field of linear algebra, Fast Fourier transforms
and solution of sparse linear systems of equations (Sparse Solver, SuperLU) (see
http://www.netlib.org). Please link your program with the options:

-xarch=vplus8b -xlic_lib=sunperf 32 bit addressing
-xarch=v9b -xlic_lib=sunperf 64 bit addressing

The performance of programs using the BLAS1-library can be improved by the new
Fortran compiler option

-xknown_lib=blas

The corresponding routines will be inlined if possible.
The latest Performance Library contains new parallelized sparse BLAS routines for
matrix-matrix multiplication and a sparse triangular solver. Linpack routines are no
longer provided, it is stronly recommended to use the corresponding LAPACK rou-
tines.
Many of the contained routines have been parallelized using the shared memory
programming model. Compare the execution times! Example:

$ f90 -dalign –mt -xlic_lib=sunperf ...
$ ptime a.out
$ (export OMP_NUM_THREADS=4; ptime a.out)

The number of Threads used by the parallel Performance Library can be determined
by the following call:

call USE_THREADS(n)

8.3 The Sun S3L library
The S3L-Library offers to MPI programs access to distributed arrays similar to the
array descriptors, as they are used in the public domain packages ScaLAPACK and
PETSc. The S3L-Library offers many functions from the fields linear algebra, Fou-
rier transforms, etc. and further auxiliary functions (toolkit). Numerous kernel rou-
tines correspond to the ScaLAPACK interfaces.
The Toolkit functions are useful for working with parallel arrays and processor
grids, as well as for parallel input or output. S3L arrays can be transformed into Sca-
LAPACK descriptors.

44 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

8.4 Nag Numerical Libraries RWTH
The Nag Numerical Libraries provide a broad range of reliable and robust numerical
and statistical routines in areas such as optimization, PDEs, ODEs, FFTs, correlation
and regression, and multivariate methods, to name but a few.
They are available in three flavours:

1) The serial NAG Mark 19 FORTRAN-Library (32 bit addressing mode)
f90 -xarch=v8plusb -dalign ... \
-L/usr/local_rwth/lib -lnag19 \
-xlic_lib=sunperf -lF77

2) The shared memory version, which includes 231 routines that benefit from shared
memory parallelization (32- and 64-bit addressing modes) and has the identical
programming interface as the serial version

f90 -dalign -xarch=v8plusb ... \
 -L/usr/local_rwth/lib -lnagsmp32 \
-xlic_lib=sunperf -lF77

f90 -dalign ... -xarch=v9b \
-L/usr/local_rwth/lib -lnagsmp64 \
-xlic_lib=sunperf -lF77

3) and the NAG Parallel Library Release 3.0, which contains 183 routines that have
been specifically developed for use on distributed memory systems (32 bit ad-
dressing mode) using the MPI library.

mpf90 -dalign -xarch=v8plusb ... \
 -L/usr/local_rwth/lib -lnagmpi -ls3l

Use the compiler version 6.2 to compile and link programs using the NAG libraries.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 45

9 Further information

9.1 Sun products
9.1.1 on Sun’s web site

 Sun Online Dokumentation [Documentation] (http://docs.sun.com)
 Sun Compiler Collection Portal (http://forte.sun.com)
 Forte Developer 7 Collection

(http://docs.sun.com/db?p=prod/fortedev7)
 Sun HPC ClusterTools (http://docs.sun.com/software/hpc/index.html)

9.1.2 on the RWTH Support Server
 Forte Developer Programming Environment

(http://support.rz.rwth-aachen.de/Manuals/SUN/WS6U2/html/home.html)
 Prism MPI Programming Environment

(http://support.rz.rwth-aachen.de/Manuals/SUN/prism/html/home.html)
 Sun MPI Programming and Reference Guide (pdf)
 Sun HPC ClusterTools Performance Guide (pdf)
 Sun HPC ClusterTools User’s Guide (pdf)
 Prism Reference Manual (pdf)
 Prism User’s Guide (pdf)
 Sun S3L Programming and Reference Guide (pdf)

9.1.3 on local file systems
 Sun Online-Dokumentation zur Forte Developer Entwicklungsumgebung

(file:///opt/SUNWspro/docs/index.html)
 Prism Entwicklungsumgebung

(file://opt/SUNWhpc/doc/prism/html/home.html)

9.2 Third party products
 TotalView (http://www.etnus.com)
 KAP Pro/Toolset

(http://support.rz.rwth-aachen.de/Manuals/KAI/KAP_Pro_Reference.pdf,
http://www.kai.com/parallel/kappro/index.html)

 Assure
(http://support.rz.rwth-aachen.de/Manuals/KAI/AssureT_Reference.pdf,
http://www.kai.com/)

 Vampir and VampirTrace
(http://support.rz.rwth-aachen.de/Manuals/Vampir/Vampir-userguide.pdf,
http://support.rz.rwth-aachen.de/Manuals/Vampir/VT20-userguide.pdf,
http://www.pallas.com)

 KCC
(http://support.rz.rwth-aachen.de/Manuals/KAI/KCC_docs/index.html,

46 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

http://www.kai.com/C_plus_plus/index.html)
 Foresys (http://www.simulog.fr)

9.3 Public domain software
 mpich – Eine portierbare Implementierung von MPI (http://www-

unix.mcs.anl.gov/mpi/mpich)
 PCL Performance Counter Library

(http://www.fz-juelich.de/zam/PCL)

9.4 Problems and inquiries
 Helpdesk of the computer center (web interface)

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002 47

10 Miscellaneous

10.1 Other Useful commands
/opt/SUNWspro/bin/dmake Parallel make (compare gmake)
/usr/bin/csplit Splits C programs
/opt/SUNWspro/bin/fsplit Splits Fortran programs
/usr/ccs/bin/nm Prints the name list of object programs
/usr/bin/ldd Prints the dynamic dependencies of

executable programs
/opt/SUNWspro/bin/lint More accurate syntax examination of C

programs
/opt/SUNWspro/bin/cflow Prints the call hierarchy of a C

program
/opt/SUNWspro/bin/cxref Cross reference list of a C program
/opt/SUNWspro/bin/ctrace Tracing of a C program
/opt/SUNWspro/bin/dumpstabs Analysis of an object program
/usr/bin/showrev Prints the software status of the

machine
/usr/bin/ptime
/usr/bin/pstack
/usr/bin/ptree
/usr/bin/pmap

Analysis of the /proc directory

/usr/sbin/sysdef system parameters
/usr/sbin/prtconf system configuration
/usr/platform/SUNW,Sun-
Fire/sbin/prtdiag

diagnostic messages

/usr/sbin/psrinfo processor information
/usr/bin/pkginfo installed software packages
/opt/SUNWspro/bin/fpversion processor information
/usr/dt/bin/sdtprocess process list (compare top)
/usr/bin/sar system activity report
/usr/bin/truss log system calls
/usr/bin/sotruss log of shared library calls
ld.so.1 Run time linker for dynamic objects
/usr/bin/vmstat status of the virtual memory

organization
/usr/bin/iostat I/O statistics
/usr/bin/busstat system bus performance counters
gettimeofday
#include <sys/time.h>

Portable real time counter

48 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.0, Sept 2002

