Sun Java System Web Server 7.0
NSAPI Developer's Guide

S
@dun
& :
microsystems
Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054
US.A.

Part No: 819-2632

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070111@15821

Contents

PrOFACE ... bbbttt 11
Creating Custom Server Application FUNCLIONScccoooiiiiinccccec s 17
Future Compatibility Issues
THE SAF TNLETTACE .vvurvevriecieicieirieieieeie sttt ettt e es et s s ss s ass s sassessssssensssnsnans
SAF PATAIMELETSuiuiuiririeietetcietirtrieee ettt sttt sttt sttt sttt sttt s b benenn 18
PD (Parameter DIOCK)ouiuiiiciriiciriccscei et 18
STL (SESSION) .evivievveeireeeeeteeetesee s et eteaeesese e et ese et ese s esessesesesesessesese s esensesessesesensesensesesessesensesensenenn 19
T (REQUESE) cecvrvueiieciiicireeietcte ettt sttt bttt seetacs 19
RESUIE COAES ...neniiiniieiete ettt ettt ettt et nnaas 19
Creating and Using CUSTOM SAFS ...ttt ssese et seaese e seteaes 20
VW To Create @ CUSTOM SAF ...ttt been 20
WTite the SOUICE COAE ...ouruiiniieiiieieicieisieiei ettt bbb eeansees 21
ComPile AN LINK .oucviiiiiieiieircieeesceccie ettt bbbt

Load and Initialize the SAF

TESTTNE SAF oottt s s s s b s s s s nansnsetenes
Overview of NSAPI C Functions
Parameter Block Manipulation Routines
Protocol Utilities fOr SErVICE SAFSvoviiieeieieiieecisieieie et seses s sssasssseseses

Memory Management
FileI/O

Contents

TIEE SAFS ettt bttt ettt et b et ettt bean 32
AULNTTANS SAFS .ottt a ettt bbb bbb s as bbb b s sananansnsas 32
NAMETTANS SAFS ..ottt ettt ettt et et eese e te et ese e ns 32
PathCRECK SATFS ...evvivevitieeete ettt ettt s s ae bbb b essanasananees 32
ODBJECETYPE SATFS ...ttt se et es s asesesssssessssasssannnsansesas 33
Input SAFs .33
OUEPUL SATFS .ttt ettt ettt et 33
SEIVICE SATFS ..ttt ettt ettt ettt e etk b et et e et be b benen 33
EITOT SAFS oottt ettt ettt ettt a et et e et et nn 34
AALOZ SAFS ...ttt ettt sttt ettt 34
CGI t0 NSAPT CONVETISION ...utuiiriiieiiiieirieirieieieteesteesee ettt sttt st s bbb e st stssesesesesenenen 34
Creating CUSTtOM FIlEErsc.ooiiiii et 37
Future COmpPatibDility ISSUEScueviueuriieeiricieinecie sttt ettt 37
The NSAPI FIlter INTEITACE .vcvveveieiieceeeceetctete ettt ettt bbb s e 38
Filter Methods .38
C Prototypes for Filter Methodsc.c.eveueureeiriniciricieirceieinecineeieseetesese et sseesesseaes 38
TTESEIT ettt ettt ettt ettt ettt e b e bt e b et e bt e a e b et et e st e bt e b et e b et e st e bt b e b et et e bt e b et et et et e bt benbenee 39

writev
Position of Filters in the FILter STACKccovoverriririieceeeeeccs et sesenes 42
Filters that Alter Content-Lengthcoccoviuriniiirnceirccienceis ettt 42
Creating and Using CuStom FILEETSccociurieirirriirieineiricneiseieieiseisee ettt sessessenns 43
V¥ To create a custom filter .. 43
WTite the SOUICE COAEuivivirireieiieecictctetetetet ettt b s s s ssees 44
Compile and LINK .o.oiuiieieieiiceeeee ettt 44
Load and Initialize the FIlLETccoiivmririiieeeeeriicse et sss s ssssssnsenes 45
Instruct the Server to INSert the FIlLerooocieieirieiieereieeseeeee e 45
Restart the Server

Test the Filter

Overview of NSAPI Functions for Filter Development

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Contents

3 Examplesof Custom SAFsand Filters ..o 47
Examples Bundled With the SEIVETcoieiriririieiririeseeie ettt seeasans 48
AUthTTans EXAMPLE ...c.ouiuierieieieiriiieceieietsts ettt sttt et ssase ettt esssennnnes 49

Installing the AuthTrans EXamplec.covceriirinieininceceeinceeeereeeseeie sttt 49
NAMETTANS EXAMPLEoueirieieiieirieiei ettt sttt es s 50
Installing the NameTrans EXamplecccoevreiiirenneeieceeeeiescssssssessssssssssssssssesnens 51
PathCheck EXAMPIEc.cuoviiririiieirieieiceieice sttt ettt s s esnaas 51
Installing the PathCheck EXamplec.cveueuriiininicinicenccciecniciesccietseie e 52
ODJECtTYPE EXAMPLE ..ottt enas 52
Installing the ObjectType EXAMPIEc.c.vviueuriuiieiniciriicineeieinecieieeseeee et sseaesseeaes 53
OULPUL EXAIMPLE ..ottt sttt bbb esnnas 53
Installing the Output EXamplecoveeurieueiniieiniciricieseeicireeteiee et 53

Service EXampleccocevenirrineinineerceeeeene

Installing the Service Example

More Complex Service EXAMPLEc.cceuriiueuririeiieirisieisesieieetsee et essesssssssesssnsens 55
AdALOZ EXAMPIE ..ooueeiiieiiicieiecirieie ettt ettt ettt ettt
Installing the AddLog Example
Quality Of SErvice EXAMPLEccc.cuiuiuiiieiiriiieiricieirecietrcietsece ettt ettt
Installing the Quality of Service EXamplecocveeuiurieeiieniieieineirieneeseieeseie e ssesseseeaens 56
4 Creating Custom Server-parsed HTMLTAQGSc.cccceurieiiiieieeeeeieseeeese e sesesnas 57
Defining Custom Server-parsed HTIML TagScccocvvurerireeeeiririreriiesesssssssessssssssssssssssssssssssssnes 57
V To Define Customer Server-parsed HTML Tagscccoveeurereueurineurmseesireneeeeseeieeeeesseseessenesees 58
Define the Functions that Implement the Tag
Write an Initialization FUNCHOMNccc.eiiueueeiieieie ettt eaesees
Load the New Tag into the SEIVETc.cociiniciriiirincciriciene ettt eesessesesseeaes
5 NSAPIFunction and Macro Reference ... sseneeaees 63
NSAPT FUNCHONS Q1A MACTOS ...euvvireiiireieiriacteicieiseeie ettt eseae et b saebecasassanans 63

Contents

N ettt E A b bt a bbbt b ettt et a et 84
PRt A At A ket a ettt ettt et naetetas 94

R ettt bbbttt 112
bbbttt bbbttt 117

U ettt R ARt R bbbttt et a ettt aen 136
Vet b ettt h e a e b et et et e bt e h e b et et e Rt e s e b e b et et e Rt e ae b et et et eneeae s nes 151
bbbttt ettt 158

6 Data Structure RefEreNCeccouoiiiiiirieiccie ettt 161
PUDLIC DAta STIUCLUTESvvieieieeieieieieieicccicee ettt ettt et s s eseannssssesesses 162

FAIEEICONLEXL .ovreeirieiiiecteicieieeciet ettt sttt sttt 167
FAIEEILAYET «.ucueirieiiacieiccisietetses ettt et sttt 167
FAIETMEtROAS ..eeveeiciceiricie sttt ettt 167
7 DynamicResults Caching FUNCHIONS ..o 169
FUNCHIOMS ettt bttt ettt bbbt n b 170
Ar_CACRE_AESITOY ..oeeeiiieie ettt 170
Ar_CACRE_INIE oottt 171

AT CACRE_TEITESI ettt ettt et e et e sae s st enessesensessenseressensen

dr_net_write ...

6 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Contents

A Hypertext Transfer Protocol ...t nane 179
COMPLAIICE evivrvieiriieeieiret ettt bbb ettt s b bbbttt bbb eb et 179
REQUESES .t 180

Request Method, URL, and Protocol VEISIONc.cccceeeureeueinceeinineeeineeieiceeseeieeseesseeeans 180
Request Headers

Request Data
RESPONSES ...t
HTTP Protocol Version, Status Code, and Reason Phraseccccecveeurecurinecenncucrnecnenenns 181
RESPONSE HEAETScvuvuiiieiicecieiciei ettt sttt 182
RESPONSE DAt ..ottt 183
B Alphabetical List of NSAPI Functions and Macroscccoovieeeinieineneeeeeeeeesesseenens 185
NSAPI FUNCtiONS aNd MACTOSovereieeiererereieeeeiere ettt s ses s sesesesessssassssssesesessssasanes 185
INAEX ...ttt bbbt 193

Examples

10

Preface

This guide discusses how to use Netscape Server Application Programmer's Interface (NSAPI)
to build plug-ins that define Server Application Functions (SAFs) to extend and modify Sun™
Java System Web Server 7.0. The guide also provides a reference of the NSAPI functions you can
use to define new plug-ins.

Who Should Use This Book

The intended audience for this guide is the person who develops, assembles, and deploys
NSAPI plug-ins in a corporate enterprise. This guide assumes you are familiar with the

following topics:

= HTTP

= HTML

= NSAPI

= Cprogramming
o

Software development processes, including debugging and source code control

Before You Read This Book

Web Server 7.0 can be installed as a stand-alone product or as a component of Sun Java™
Enterprise System (Java ES), a software infrastructure that supports enterprise applications
distributed across a network or Internet environment. If you are installing Web Server 7.0 as a
component of Java ES, you should be familiar with the system documentation at
http://docs.sun.com/coll/1286.2.

Web Server 7.0 Documentation Set

The Web Server 7.0 documentation set describes how to install and administer the Web Server.
The URL for Web Server 7.0 documentation is http://docs.sun.com/coll/1308.3. For an
introduction to Web Server 7.0, refer to the books in the order in which they are listed in the
following table.

http://docs.sun.com/coll/1286.2

Preface

TABLE P-1 Books in the Web Server 7.0 Documentation Set

Documentation Title

Contents

Sun Java System Web Server 7.0 Documentation Center

Web Server documentation topics organized by tasks and subject

Sun Java System Web Server 7.0 Release Notes

® Late-breaking information about the software and documentation
® Supported platforms and patch requirements for installing Web
Server

Sun Java System Web Server 7.0 Installation and Migration
Guide

Performing installation and migration tasks:
B Installing Web Server and its various components,

® Migrating data from Sun ONE Web Server 6.0 or 6.1 to Sun Java
System Web Server 7.0

Sun Java System Web Server 7.0 Administrator’s Guide

Performing the following administration tasks:
® Using the Administration and command-line interfaces

= Configuring server preferences

® Using server instances

= Monitoring and logging server activity

® Using certificates and public key cryptography to secure the server
= Configuringaccess control to secure the server

® Using Java Platform Enterprise Edition (Java EE) security features
= Deploying applications

B Managing virtual servers

B Defining server workload and sizing the system to meet performance
needs

® Searching the contents and attributes of server documents, and
creating a text search interface

= Configuring the server for content compression

= Configuring the server for web publishing and content authoring
using WebDAV

Sun Java System Web Server 7.0 Developer’s Guide

Using programming technologies and APIs to do the following:
= Extend and modify Sun Java System Web Server

® Dynamically generate content in response to client requests and
modify the content of the server

Sun Java System Web Server 7.0 NSAPI Developer’s Guide

Creating custom Netscape Server Application Programmer’s Interface
(NSAPT) plug-ins

Sun Java System Web Server 7.0 Developer’s Guide to Java
Web Applications

Implementing Java Servlets and JavaServer Pages™ (JSP™) technology in
Sun Java System Web Server

12 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Preface

TABLE P-1 Books in the Web Server 7.0 Documentation Set

(Continued)

Documentation Title

Contents

Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference

Editing configuration files

Sun Java System Web Server 7.0 Performance Tuning,
Sizing, and Scaling Guide

Tuning Sun Java System Web Server to optimize performance

Sun Java System Web Server 7.0 Troubleshooting Guide

Troubleshooting Web Server

Related Books

Default Paths and File Names

TABLE P-2 Default Paths and File Names

The URL for all documentation about Sun Java Enterprise System (Java ES) and its components
ishttp://docs.sun.com/app/docs/prod/entsys.06q4.

The following table describes the default paths and file names that are used in this book.

Placeholder

Description

DefaultValue

install_dir

Represents the base installation directory for Web
Server 7.0.

Sun Java Enterprise System (Java ES) installations on the
Solaris™ platform:

/opt/SUNWwbsvr7

Java ES installations on the Linux and HP-UX platform:
/opt/sun/webserver/

Java ES installations on the Windows platform:

System Drive:\Program Files\Sun\JavaES5\WebServer7

Other Solaris, Linux, and HP-UX installations, non-root
user:

user's home directory/sun/webserver7

Other Solaris, Linux, and HP-UX installations, root user:
/sun/webserver?7

Windows, all installations:

System Drive:\Program Files\Sun\WebServer7

http://docs.sun.com/app/docs/prod/entsys.06q4

Preface

TABLE P-2 Default Paths and File Names (Continued)

Placeholder

Description

DefaultValue

instance_dir

Directory that contains the instance-specific
subdirectories.

For Java ES installations, the default location for instances
on Solaris:

/var/opt/SUNWwbsvr7

For Java ES installations, the default location for instances
on Linux and HP-UX:

/var/opt/sun/webserver?7

For Java ES installations, the default location for instance
on Windows:

System Drive:\Program Files\Sun\JavaES5\WebServer7

For stand-alone installations, the default location for
instance on Solaris, Linux, and HP-UX:

<install_dir>

For stand-alone installations, the default location for
instance on Windows:

System Drive:\Program Files\sun\WebServer?

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLE P-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and directories, and Edit your . login file.
onscreen computer output Use s -a to list all files.
machine _name% you have mail.
AaBbCc123 What you type, contrasted with onscreen computer output | machine_name% su
Password:
AaBbCcl23 A placeholder to be replaced with a real name or value The command to remove a file is rm
filename.
AaBbCc123 Book titles, new terms, and terms to be emphasized (note | Read Chapter 6 in the User's Guide.
that some emphasized items appear bold online) A cache s a copy that is stored locally.
Do not save the file.
14 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Preface

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLE P-4 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional argumentsand | 1s [-1] The -1 option is not required.
command options.

{3} Contains a set of choices for a -d {y|n} The -d option requires that you use either the y
required command option. argument or the n argument.

${ } Indicates a variable reference. ${com.sun.javaRoot} References the value of the com. sun. javaRoot

variable.

- Joins simultaneous multiple Control-A Press the Control key while you press the A
keystrokes. key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and then press
keystrokes. the subsequent keys.

- Indicates menu item selectionina | File - New — Templates From the File menu, choose New. From the

graphical user interface.

New submenu, choose Templates.

Accessing Sun Resources Online

The http://docs.sun.com (docs.sun.com®™) web site enables you to access Sun technical
documentation online. You can browse the docs.sun.com archive or search for a specific book
title or subject. Books are available as online files in PDF and HTML formats. Both formats are
readable by assistive technologies for users with disabilities.

To access the following Sun resources, go to http://www.sun.com:

Training
Research

Downloads of Sun products
Services and solutions
Support (including patches and updates)

Communities (for example, Sun Developer Network)

http://docs.sun.com
http://www.sun.com

Preface

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “Web Server,” type the following:

Web Server site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun. com” in place of “docs. sun.com” in the search field.

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-2632.

16 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

CHAPTER 1

Creating Custom Server Application Functions

This chapter describes how to write your own NSAPI plug-ins that define custom Server
Application Functions (SAFs). Creation of plug-ins allows you to modify or extend the Sun Java
System Web Server’s built-in functionality. For example, you can modify the server to handle
user authorization in a special way or generate dynamic HTML pages based on information in a
database.

This chapter has the following sections:

= “Future Compatibility Issues” on page 18

= “The SAF Interface” on page 18

= “SAF Parameters” on page 18

= “Result Codes” on page 19

= “Creating and Using Custom SAFs” on page 20

= “Overview of NSAPI C Functions” on page 27

= “Required Behavior of SAFs for Each Directive” on page 31
= “CGIto NSAPI Conversion” on page 34

Before writing custom SAFs, you must familiarize yourself with the request-handling
process, as described in detail in the Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference. Also, before writing a custom SAF, check to see if a built-in
SAF already accomplishes the tasks you have in mind.

See Appendix B for a list of the predefined Init SAFs. For information about predefined
SAFsused in the obj . conf file, see the Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference.

For a complete list of the NSAPI routines for implementing custom SAFs, see Chapter 5.

Future Compatibility Issues

Future Compatibility Issues

The NSAPI interface might change in a future version of Sun Java System Web Server.

To keep your custom plug-ins upgradable, do the following:

= Make sure plug-in users know how to edit the configuration files (such as magnus . conf and
obj.conf) manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the request-handling
step for which they are written. SAFs are small functions that are designed for a specific purpose
within a specific request-response step. SAFs receive parameters from the directive that invokes
them in the obj . conf file, from the server, and from previous SAFs.

Here is the C interface for a SAF:

int function(pblock *pb, Session *sn, Request *rq);
The next section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The server uses the
result code from each function to determine how to proceed with processing the request. For
more information on the result codes, see “Result Codes” on page 19.

SAF Parameters

18

This section discusses the SAF parameters in detail.

The parameters are as follows:

= “pb (parameter block)” on page 18- contains the parameters from the directive that invokes
the SAF in the obj . conf file.

= “sn (Session)” on page 19- contains information relating to a single TCP/IP session.

= “rq (Request)” on page 19- contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values specified by the
directive that invokes the SAF. A pblock data structure contains a series of name-value pairs.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Result Codes

For example, a directive that invokes the basic-nsca function might look like the following:

AuthTrans fn=basic-ncsa auth-type=basic dbm=users.db

In this case, the pb parameter passed to basic-ncsa contains name-value pairs that correspond
to auth-type=basic and dbm=users.db.

NSAPI provides a set of functions for working with pblock data structures. For example,
pblock_findval() returns the value for a given name in a pblock. For information on working
with parameter blocks, see “Parameter Block Manipulation Routines” on page 27.

sn (Session)

The sn parameter is a pointer to a Session data structure. This parameter contains variables
related to an entire session. That is, the time between the opening and closing of the TCP/IP
connection between the client and the server. The same sn pointer is passed to each SAF called
within each request for an entire session. For a list of important fields, see “Session” on page 162.

rqg (Request)

The rq parameter is a pointer to a Request data structure. This parameter contains variables
related to the current request, such as the request headers, URI, and local file system path. The
same Request pointer is passed to each SAF called in the request-response process for an HTTP
request. For a list of important fields, see “Request” on page 164.

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the server should
do next.

Chapter 1 - Creating Custom Server Application Functions 19

Creating and Using Custom SAFs

The result codes are:

= REQ_PROCEED

Indicates that the SAF achieved its objective. For some request-response steps (AuthTrans,
NameTrans, Service, and Error), this tells the server to proceed to the next
request-response step, skipping any other SAFs in the current step. For the other
request-response steps (Input, Output, Route, PathCheck, ObjectType, and AddLog), the
server proceeds to the next SAF in the current step.

= REQ_NOACTION

Indicates that the SAF took no action. The server continues with the next SAF in the current
server step.

= REQ ABORTED

Indicates that an error occurred and an HTTP response should be sent to the client to
indicate the cause of the error. A SAF returning REQ_ABORTED should also set the HTTP
response status code. If the server finds an Error directive matching the status code or
reason phrase, the server executes the SAF specified. If not, the server sends a default HTTP
response with the status code and reason phrase, in addition to a short HTML page
reflecting the status code and reason phrase for the user. The server then goes to the first
AddLog directive.

= REQ EXIT

Indicates the connection to the client was lost. This should be returned when the SAF fails in
reading or writing to the client. The server then goes to the first AddLog directive.

Creating and Using Custom SAFs

20

Custom SAFs are functions in shared libraries that are loaded and called by the server. Follow
these steps to create a custom SAF:

To Create a Custom SAF

Write the Source Code using the NSAPI functions. Each SAF is written for a specific directive.
Compile and Link the source code to create a shared library (.so, .s1, or .d11) file.

Load and Initialize the SAF by editing the magnus . conf file to:

= Load the shared library file containing your custom SAF(s)
= Initialize the SAF if necessary

Instruct the Server to Call the SAFs by editing obj . conf to call your custom SAF(s) at the
appropriate time.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Creating and Using Custom SAFs

Restart the Server.

Test the SAF by accessing your server from a browser with a URL that triggers your function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the most
commonly used NSAPI functions, see “Overview of NSAPI C Functions” on page 27 and for
available routines, see Chapter 5.

For examples of custom SAFs, see Chapter 3.

The signature for all SAFs is as follows:

int function(pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see “SAF Parameters” on page 18.

You must register your SAFs with the server. SAFs may be registered using the funcs parameter
of the load-modules Init SAF or by acall to func_insert. A plug-in may define a
nspai_module_init function thatisused to call func_insert and perform any other
initialization tasks. For more information, see “nsapi_module_init” on page 92 and
“func_insert” on page 80.

The server runs as a multi-threaded single process. On UNIX platforms, there are two processes
,a parent and a child, for historical reasons. The parent process performs some initialization
and forks the child process. The child process performs further initialization and handles all of
the HTTP requests.

Keep the following in mind when writing your SAF:

= Write thread-safe code

= Blocking can affect performance

= Write small functions with parameters and configure the parameters in obj . conf

= Carefully check and handle all errors (and log the errors so you can determine the source of

problems and fix them)

If necessary, write an initialization function that performs initialization tasks required by your
new SAFs. The initialization function must be named nsapi module init and has the same
signature as other SAFs:

int nsapi_module init(pblock *pb, Session *sn, Request *rq);

Chapter 1 - Creating Custom Server Application Functions 21

Creating and Using Custom SAFs

22

SAFs expect to be able to obtain certain types of information from their parameters. In most
cases, parameter block (pblock) data structures provide the fundamental storage mechanism
for these parameters. pblock maintains its data as a collection of name-value pairs. For a
summary of the most commonly used functions for working with pblock structures, see
“Parameter Block Manipulation Routines” on page 27.

When defining a SAFE you do not specifically state which directive it is written for. However,
each SAF must be written for a specific directive, such as AuthTrans, Service, and so on. Each
directive expects its SAFs to behave in particular ways, and your SAF must conform to the
expectations of the directive for which it was written. For details on what each directive expects
of its SAFs, see “Required Behavior of SAFs for Each Directive” on page 31.

Compile and Link

Compile and link your code with the native compiler for the target platform. For UNIX, use the
gmake command. For Windows, use the nmake command. For Windows, use Microsoft Visual
C++ 6.0 or newer. You must have an import list that specifies all global variables and functions
to access from the server binary. Use the correct compiler and linker flags for your platform.
Refer to the example Makefile in the install_dir/samples/nsapi directory.

Adbhere to the following guidelines for compiling and linking.

Include Directory and nsapi.h File

Add the install_dir/include (UNIX) or install_dir\include (Windows) directory to your
makefile to include the nsapi . h file.

Libraries

Add the install_dir/bin/https/1lib (UNIX) or install_dir\bin\https\bin (Windows) library
directory to your linker command.

The following table lists the library that you need to link to.

TABLE 1-1 Libraries

Platform Library

Windows ns-httpd40.d11 (in addition to the standard Windows libraries)
HP-UX libns-httpd40.sl

All other UNIX platforms libns-httpd40.so

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Creating and Using Custom SAFs

Linker Commands and Options for Generating a Shared Object

To generate a shared library, use the commands and options listed in the following table.

TABLE 1-2 Linker Commands and Options

Platform Options

Solaris™ Operating System 1d -G or cc -G

(SPARC?® Platform Edition)

Windows link -LD

HP-UX cc +Z -b -Wl,+s -Wl,-B,symbolic

AIX cc -p @0 -berok -blibpath:$(LD_RPATH)
Compaq cc -shared

Linux gcc -shared

IRIX cc -shared

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be searched for
shared objects during runtime to resolve symbols.

TABLE 1-3 Linker Flags

Platform Flags

Solaris SPARC -Rdir:dir

Windows (no flags, but the ns-httpd40.d11 file must be in the system PATH variable)
HP-UX -Wl,+b, dir, dir

AIX -blibpath:dir:dir

Compaq -rpath dir: dir

Linux -W1, -rpath, dir:dir

IRIX -W1, -rpath, dir:dir

On UNIX, you can also set the library search path using the LD_LIBRARY_PATH environment
variable, which must be set when you start the server.

Chapter 1 - Creating Custom Server Application Functions 23

Creating and Using Custom SAFs

24

Compiler Flags

The following table lists the flags and defines you need to use for compilation of your source
code.

TABLE 1-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UNIX -D_REENTRANT -KPIC -DSOLARIS
Windows -DXP_WIN32 -DWIN32 /MD

HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

AIX -DXP_UNIX -D REENTRANT -DAIX $(DEBUG)
Compaq -DXP_UNIX -KPIC

Linux -DXP_UNIX -D_REENTRANT -fPIC

IRIX -032 -exceptions -DXP UNIX -KPIC

Compiling and Linking in 64-bit Mode

On Solaris, the server can run in either 32-bit or 64-bit mode. Because a 32-bit shared library
cannot be used in a 64-bit process and conversely, you may wish to compile and link two
separate shared libraries. By default, the Sun compiler and linker produce 32-bit binaries. To
compile and link your plug-in for 64-bit mode on Solaris SPARC, you must use Sun Workshop
5.0 or higher with the -xarch=v9 flag. To compile and link your plug-in for 64-bit mode on
Solaris x86, you must use Sun Java Studio 11 or higher with -xarch=amd64 flag.

Issues with Using C++ in a NSAPI Plug-in

NSAPI plug-ins are typically written using the C programming language. Using the C++
programming language in an NSAPI plug-in raises special compatibility issues.

On Solaris, the server is built using the new C++ 5 ABL. If your shared library uses C++, it must
be compiled with Sun Workshop 5.0 or higher. Sun Java Studio 11 or higher is recommended.
Do not use the - compat=4 option when compiling and linking a shared library that uses C++.
When running in 32-bit mode on Solaris SPARC, the server provides some backward
compatibility for the old C++ 4 ABI (Sun Workshop 4.2). This backward compatibility may be
removed at some future date. For all new NSAPI plug-ins, use the new C++ 5 ABI (Sun
Workshop 5.0 or higher).

On Linux, Web Server is built using the gcc 3.2 C++ ABI. If your shared library uses C++,
compile with gcc 3.2.x. Because of the volatility of the gcc C++ ABI, it is advised to avoid using
C++ in NSAPI plug-ins on Linux.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Creating and Using Custom SAFs

Load and Initialize the SAF

For each shared library (plug-in) containing custom SAFs to be loaded into the server, add an
Init directive that invokes the load-modules SAF to magnus.conf. The load-modules SAF
loads the shared library and calls the shared library's nsapi_module_init function. For more
information, see “nsapi_module_init” on page 92.

The syntax for a directive that calls Load-modules is:

Init fn=load-modules
[shlib=path]
[funcs="SAFI1,...,SAFn"]
[namel="valuel"]...[nameN="valueN"]

= shlibisthelocal file system path to the shared library (plug-in).

= funcs is an optional comma-separated list of function names to be loaded from the shared
library. Function names are case-sensitive. You may use dash a (-) in place of an underscore
(L) in function names. There should be no spaces in the function name list.

If the new SAFs require initialization, you must omit the funcs parameter and instead
define an nsapi_module_init function in your shared library. Any custom parameters on
the Init directive will be passed to nsapi_module_init in the pb parameter block.

= nameN="valueN" are the optional names and values of parameters passed to the shared
library's nsapi_module_init function in the pb parameter block.

Instruct the Server to Call the SAFs

Add directives to obj . conf to instruct the server to call each custom SAF at the appropriate
time. The syntax for directives is:

Directive fn=function-name [namel="valuel"]...[nameN="valueN"]

= Directive is one of the server directives, such as AuthTrans, Service, and so on.
= function-name is the name of the SAF to execute.
= nameN="valueN" are the names and values of parameters which are passed to the SAE

Depending on what your new SAF does, you might need to add just one directive to
obj.conf, or you might need to add more than one directive to provide complete
instructions for invoking the new SAE.

For example, if you define a new AuthTrans or PathCheck SAF, you could just add an
appropriate directive in the default object. However, if you define a new Service SAF to be
invoked only when the requested resource is in a particular directory or has a new kind of
file extension, you would need to take extra steps.

Chapter 1 - Creating Custom Server Application Functions 25

Creating and Using Custom SAFs

26

If your new Service SAF is to be invoked only when the requested resource has a new kind
of file extension, you might need to add an entry to the MIME types file so that the type
value gets set properly during the ObjectType stage. Then you could add a Service
directive to the default object that specifies the desired type value.

If your new Service SAF is to be invoked only when the requested resource is in a particular
directory, you might need to define a NameTrans directive that generates a name or ppath
value that matches another object, and then in the new object you could invoke the new
Service function.

For example, suppose your plug-in defines two new SAFs, do_small_animand

do_big anim, which both take speed parameters. These functions run animations. All files
to be treated as small animations reside in the directoryD: /docs/animations/small, while
all files to be treated as full-screen animations reside in the directory
D:/docs/animations/fullscreen.

To ensure that the new animation functions are invoked whenever a client sends a request
for either a small or full-screen animation, you would add NameTrans directives to the
default object to translate the appropriate URLSs to the corresponding path names and also
assign a name to the request.

NameTrans fn=pfx2dir
from="/animations/small"
dir="D:/docs/animations/small"
name="small _anim"

NameTrans fn=pfx2dir
from="/animations/fullscreen"
dir="D:/docs/animations/fullscreen"
name="fullscreen anim"

You also need to define objects that contain the Service directives that run the animations and
specify the speed parameter.

<Object name="small anim">
Service fn=do small anim speed=40
</0Object>

<Object name="fullscreen anim">
Service fn=do big anim speed=20
</0bject>

Restart the Server

After modifying obj . conf, you need to restart the server. A restart is required for all plug-ins
that implement SAFs and/or filters.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Overview of NSAPI C Functions

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers your function.
For example, if your new SAF is triggered by requests to resources in
http://server-name/animations/small, try requesting a valid resource that starts with that
URL

You should disable caching in your browser so that the server is sure to be accessed. In Mozilla
Firefox, you may hold the shift key while clicking the Reload button to ensure that the cache is
not used.

Examine the access log and error log to help with debugging.

Overview of NSAPI C Functions

NSAPI provides a set of C functions that are used to implement SAFs. They serve several
purposes. They provide platform independence across operating system and hardware
platforms. They provide improved performance. They are thread-safe which is a requirement
for SAFs. They prevent memory leaks. And they provide functionality necessary for
implementing SAFs. You should always use these NSAPI routines when defining new SAFs.

This section provides an overview of the function categories available and some of the more
commonly used routines. All of the public routines are detailed in Chapter 5.

The main categories of NSAPI functions are:

“Parameter Block Manipulation Routines” on page 27
“Protocol Utilities for Service SAFs” on page 28
“Memory Management” on page 28

“File I/O” on page 28

“Network I/O” on page 29

“Threads” on page 29

“Utilities” on page 30

“Virtual Server” on page 30

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding, and
removing entries in a pblock data structure:

= “pblock_findval” on page 97 returns the value for a given name in a pblock.
= “pblock_nvinsert” on page 99 adds a new name-value pair entry to a pblock.

= “pblock_remove” on page 102 removes a pblock entry by name from a pblock. The entry is
not disposed. Use “param_free” on page 95 to free the memory used by the entry.

Chapter 1 - Creating Custom Server Application Functions 27

Overview of NSAPI C Functions

28

= “param_free” on page 95 frees the memory for the given pblock entry.

= “pblock_pblock2str” on page 101 creates a new string containing all of the name-value pairs
from a pblock in the form “name=value name=value?” This can be a useful function for
debugging.

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

= “protocol_status” on page 110 sets the HTTP response status code and reason phrase.
= “protocol_start_response” on page 109 sends the HTTP response and all HT'TP headers to
the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the standard
memory management routines. They also prevent memory leaks by allocating from a
temporary memory (called “pooled” memory) for each request, and then disposing the entire
pool after each request. There are wrappers for standard memory routines for using permanent
memory. To disable the server's pooled memory allocator for debugging, see the built-in SAF
pool-init in the Sun Java System Web Server 7.0 Administrator’s Configuration File Reference.

“MALLOC” on page 83

“FREE” on page 78
“PERM_STRDUP” on page 106
“REALLOC” on page 113
“CALLOC” on page 63
“PERM_MALLOC” on page 104
“PERM_FREE” on page 104

= “PERM_STRDUP” on page 106
= “PERM_REALLOC” on page 105
= “PERM_CALLOC” on page 103

Filel/O

The file I/O functions provide platform-independent, thread-safe file I/O routines.

= “system_fopenRO” on page 124 opens a file for read-only access.

= “system_fopenRW?” on page 124 opens a file for read-write access, creating the file if
necessary.

= “system_fopenWA” on page 125 opens a file for write-append access, creating the file if
necessary.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Overview of NSAPI C Functions

= “system_fclose” on page 123 closes a file.
= “system_fread” on page 126 reads from a file.
= “system_fwrite” on page 126 writes to a file.

= “system_fwrite_atomic” on page 127 locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple processes or threads.

Network /0

Network I/O functions provide platform-independent, thread-safe network I/O routines. These
routines work with SSL when it is enabled.

= “petbuf grab” on page 91 reads from a network buffer’s socket into the network buffer.
= “netbuf_getbytes” on page 89 gets a character from a network buffer.

“net_flush” on page 84 flushes buffered data.

“net_read” on page 85 reads bytes from a specified socket into a specified buffer.
“net_sendfile” on page 86 sends the contents of a specified file to a specified a socket.
“net_write” on page 87 writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are compatible with the
server’s threads. There are also routines for critical sections and condition variables.

= “systhread_start” on page 134 creates a new thread.

= “systhread_sleep” on page 134 puts a thread to sleep for a given time.

= “crit_init” on page 68 creates a new critical section variable.

= “crit_enter” on page 67 gains ownership of a critical section.

= “crit_exit” on page 67 surrenders ownership of a critical section.

= “crit_terminate” on page 68 disposes of a critical section variable.

= “condvar_init” on page 65 creates a new condition variable.

= “condvar_notify” on page 65 awakens any threads blocked on a condition variable.
= “condvar_wait” on page 66 blocks on a condition variable.

= “condvar_terminate” on page 66 disposes of a condition variable.

= “prepare_nsapi_thread” on page 107 allows threads that are not created by the server to act
like server-created threads.

Chapter 1 - Creating Custom Server Application Functions 29

Overview of NSAPI C Functions

30

Utilities
Utility functions include platform-independent, thread-safe versions of many standard library
functions (such as string manipulation), as well as new utilities useful for NSAPI.

= “daemon_atrestart” on page 69 registers a user function to be called when the server is sent a
restart signal (HUP) or at shutdown.

= “util_hostname” on page 142 gets the local host name as a fully qualified domain name.
= “util later_than” on page 143 compares two dates.

= “util_sprintf” on page 145 is the same as the standard library routine sprintf().

= “util_strftime” on page 147 is the same as the standard library routine strftime().

= “util_uri_escape” on page 148 converts the special characters in a string into URI-escaped
format.

= “util_uri_unescape” on page 150 converts the URI-escaped characters in a string back into
special characters.

Note - You cannot use an embedded null in a string, because NSAPI functions assume that a null
is the end of the string. Therefore, passing unicode-encoded content through an NSAPI plug-in
does not work.

Virtual Server

The virtual server functions provide routines for retrieving information about virtual servers.

= “request_get_vs” on page 114 finds the virtual server to which a request is directed.

= “vs_alloc_slot” on page 151 allocates a new slot for storing a pointer to data specificto a
certain virtual server.

m “vs_get_data” on page 152 finds the value of a pointer to data for a given virtual server and
slot.

= “vs_get default _httpd_object” on page 153 obtains a pointer to the default (or root) object
from the virtual server's virtual server class configuration.

= “vs_get_doc_root” on page 153 finds the document root for a virtual server.

m “vs_get_httpd_objset” on page 154 obtains a pointer to the virtual server class configuration
for a given virtual server.

= “vs_get_id” on page 154 finds the ID of a virtual server.

= “vs_get_mime_type” on page 155 determines the MIME type that would be returned in the
content-type: header for the given URL

= “vs_lookup_config var” on page 155 finds the value of a configuration variable for a given
virtual server.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Required Behavior of SAFs for Each Directive

= “ys_register_cb” on page 156 allows a plug-in to register functions that will receive
notifications of virtual server initialization and destruction events.

= “ys_set_data” on page 156 sets the value of a pointer to data for a given virtual server and slot.

= “ys_translate_uri” on page 157 translates a URI as though it were part of a request for a
specific virtual server.

Required Behavior of SAFs for Each Directive

When writing a new SAF, you should define it to do certain things, depending on which stage of
the request-handling process will invoke it. For example, SAFs to be invoked during the Init
stage must conform to different requirements than SAFs to be invoked during the Service
stage.

The rq parameter is the primary mechanism for passing along information throughout the
request-response process. On input to a SAFE, rq contains whatever values were inserted or
modified by previously executed SAFs. On output, rq contains any modifications or additional
information inserted by the SAF. Some SAFs depend on the existence of specific information
provided at an earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars that were previously inserted by an AuthTrans SAE

This section outlines the expected behavior of SAFs used at each stage in the request-handling
process.

= “Init SAFs” on page 32

= “AuthTrans SAFs” on page 32
= “NameTrans SAFs” on page 32
= “PathCheck SAFs” on page 32
= “ObjectType SAFs” on page 33
= “Input SAFs” on page 33

= “Output SAFs” on page 33

= “Service SAFs” on page 33

= “Error SAFs” on page 34

= “AddLog SAFs” on page 34

For more detailed information about these SAFs, see the Sun Java System Web Server 7.0
Administrator’s Configuration File Reference.

Chapter 1 - Creating Custom Server Application Functions 31

Required Behavior of SAFs for Each Directive

32

Init SAFs

Purpose: Initialize at startup.

Called at server startup and restart.

rqand snare NULL.

Initialize any shared resources such as files and global variables.

Can register callback function with daemon_atrestart() to clean up.

On error, insert error parameter into pb describing the error and return REQ_ABORTED.
If successful, return REQ_PROCEED.

AuthTrans SAFs

Purpose: Verify any authorization information.

Return REQ_PROCEED if the user was successfully and completely authenticated,
REQ NOACTION otherwise.

NameTrans SAFs

Purpose: Convert logical URI to physical path.

Perform operations on logical path (ppath in rq->vars) to convert it into a full local file
system path.

Return REQ_PROCEED if ppath in rq->vars contains the full local file system path, or
REQ NOACTION if not.

To redirect the client to another site, add url to rq->vars with full URL (for example,
http://www.sun.com/). Call protocol_status() toset HTTP response status to
PROTOCOL REDIRECT, NULL. Return REQ ABORTED.

PathCheck SAFs

Purpose: Check path validity and user’s access rights.
Check auth-type, auth-user, and/or auth-group in rq->vars.
Return REQ_PROCEED if user (and group) is authorized for this area (ppath in rq->vars).

If not authorized, insert WWW-Authenticate to rq->srvhdrs with a value such as: Basic;
Realm=\"Our private area\". Call protocol_status() to set HT'TP response status to
PROTOCOL UNAUTHORIZED. Return REQ ABORTED.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Required Behavior of SAFs for Each Directive

ObjectType SAFs

Purpose: Determine content - type of data.

If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
Determine the MIME type and create content-typein rq->srvhdrs
Return REQ_PROCEED if content-type is created, REQ_NOACTION otherwise.

Input SAFs

Purpose: Insert filters that process incoming (client-to-server) data.

Input SAFsare executed when a plug-in or the server first attempts to read entity body data
from the client.

Input SAFsare executed at most once per request.

Return REQ_PROCEED to indicate success, or REQ_NOACTION to indicate it performed no
action.

Output SAFs

Purpose: Insert filters that process outgoing (server-to-client) data.

Output SAFs are executed when a plug-in or the server first attempts to write entity body
data from the client.

Output SAFs are executed at most once per request.

Return REQ_PROCEED to indicate success, or REQ_NOACTION to indicate it performed no
action.

Service SAFs

Purpose: Generate and send the response to the client.

A Service SAF is only called if each of the optional parameters type, method, and query
specified in the directive in obj . conf match the request.

Remove existing content - type from rq->srvhdrs. Insert correct content-type in
rq->srvhdrs.

Create any other headers in rq->srvhdrs.

Call “protocol_status” on page 110 to set HT'TP response status.

Call “protocol_start_response” on page 109 to send HT'TP response and headers.
Generate and send data to the client using “net_write” on page 87.

Return REQ PROCEED if successful, REQ EXIT on write error, REQ ABORTED on other failures.

Chapter 1 - Creating Custom Server Application Functions 33

CGlto NSAPI Conversion

Error SAFs

m Purpose: Respond to an HTTP status error condition.

= TheError SAF is only called if each of the optional parameters code and reason specified in
the directive in obj . conf match the current error.

= Error SAFsdo the same as Service SAFs, but only in response to an HTTP status error

condition.

AddLog SAFs

= Purpose: Log the transaction to a log file.

= AddLog SAFs can use any data available in pb, sn, or rq to log this transaction.
= Return REQ PROCEED.

CGIl to NSAPI Conversion

You may have a need to convert a CGI variable into an SAF using NSAPI. Since the CGI
environment variables are not available to NSAPI, you retrieve them from the NSAPI
parameter blocks. The table below indicates how each CGI environment variable can be

34

obtained in NSAPI.

Keep in mind that your code must be thread-safe under NSAPI. You should use NSAPI
functions that are thread-safe. Also, you should use the NSAPI memory management and other
routines for speed and platform independence.

TABLE 1-5 Parameter Blocks for CGI Variables

CGl getenv() NSAPI
AUTH_TYPE pblock findval("auth-type", rqg->vars);
AUTH_USER pblock findval("auth-user", rg->vars);

CONTENT_LENGTH

pblock findval("content-length", rq->headers);

CONTENT_TYPE

pblock findval("content-type", rq->headers);

GATEWAY_ INTERFACE

"CGI/1.1"

HTTP_* pblock findval("*", rq->headers); (* is lowercase; dash replaces
underscore)
PATH_INFO pblock_findval("path-info", rg->vars);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

CGl to NSAPI Conversion

TABLE 1-5 Parameter Blocks for CGI Variables

(Continued)

CGl getenv()

NSAPI

PATH_TRANSLATED

pblock findval("path-translated", rq->vars);

QUERY_STRING

pblock findval("query", rq->reqpb);

REMOTE_ADDR

pblock findval("ip", sn->client);

REMOTE_HOST

session_dns(sn) ? session dns(sn) : pblock findval("ip",
sn->client);

REMOTE_IDENT

pblock findval("from", rq->headers);(not usually available)

REMOTE_USER

pblock findval("auth-user", rg->vars);

REQUEST_METHOD

pblock findval("method", req->reqpb);

SCRIPT_NAME

pblock findval("uri", rq->reqpb);

SERVER _NAME

char *util _hostname();

SERVER_PORT

conf_getglobals()->Vport; (asa string)

SERVER_PROTOCOL

pblock findval("protocol", rq->reqpb);

SERVER_SOFTWARE

system version()

Sun Java System-specific:

CLIENT_CERT

pblock findval("auth-cert", rqg->vars) ;

HOST

char *session_maxdns(sn);(may be null)

HTTPS

security active ? "ON" : "OFF";

HTTPS_KEYSIZE

pblock findval("keysize", sn->client);

HTTPS_SECRETKEYSIZE

pblock findval("secret-keysize", sn->client);

SERVER _URL

protocol uri2url_dynamic("","", sn, rq);

Chapter 1 « Creating Custom Server Application Functions

35

36

L K R 4 CHAPTER 2

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept and possibly
modify the content presented to or generated by another function.

This chapter has the following sections:

“Future Compatibility Issues” on page 37

“The NSAPI Filter Interface” on page 38

“Filter Methods” on page 38

“Position of Filters in the Filter Stack” on page 42

“Filters that Alter Content-Length” on page 42

“Creating and Using Custom Filters” on page 43

“Overview of NSAPI Functions for Filter Development” on page 46

Future Compatibility Issues
The NSAPI interface may change in a future version of Sun Java System Web Server.

To keep your custom plug-ins upgradable, do the following:

= Make sure plug-in users know how to edit the configuration files (such as magnus . conf and
obj.conf) manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

37

The NSAPIFilter Interface

The NSAPI

Filter Interface

The NSAPI filter interface complements the NSAPI Server Application Function (SAF)
interface. Filters make it possible to intercept and possibly modify data sent to and from the
server. The server communicates with a filter by calling the filter's filter methods. Each filter
implements one or more filter methods. A filter method is a C function that performs a specific
operation, such as processing data sent by the server.

Filter Methods

38

This section describes the filter methods that a filter can implement. To create a filter, a filter
developer implements one or more of these methods.

This section describes the following filter methods:

= insert

= remove
» flush

® read

= write

= writev
= sendfile

For more information about these methods, see Chapter 5.

C Prototypes for Filter Methods

Following is a list of C prototypes for the filter methods:

int insert(FilterLayer *layer, pblock *pb);

void remove(FilterLayer *layer);

int flush(FilterLayer *layer);

int read(FilterLayer *layer, void *buf, int amount, int timeout);

int write(FilterLayer *layer, const void *buf, int amount);

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);
int sendfile(FilterLayer *layer, sendfiledata *sfd);

The layer parameter is a pointer to a FilterLayer data structure, which contains variables
related to a particular instance of a filter.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Filter Methods

Following is a list of the most important fields in the FilterLayer data structure:

= context->sn: Contains information relating to a single TCP/IP session (the same sn pointer
that’s passed to SAFs).

= context->rg: Contains information relating to the current request (the same rq pointer
that’s passed to SAFs).

= context->data: Pointer to filter-specific data.

= lower: A platform-independent socket descriptor used to communicate with the next filter
in the stack.

The meaning of the context->data field is defined by the filter developer. Filters that must
maintain state information across filter method calls can use context->data to store that
information.

For more information about FilterLayer, see “FilterLayer” on page 167.

insert

The insert filter method is called when an SAF such as insert-filter calls the
filter_insert function to request that a specific filter be inserted into the filter stack. Each
filter must implement the insert filter method.

When insert is called, the filter can determine whether it should be inserted into the filter
stack. For example, the filter could inspect the content - type header in the rq->srvhdrs pblock
to determine whether it is interested in the type of data that will be transmitted. If the filter
should not be inserted, the insert filter method should indicate this by returning
REQ_NOACTION.

If the filter should be inserted, the insert filter method provides an opportunity to initialize
this particular instance of the filter. For example, the insert method could allocate a buffer with
MALLOC and store a pointer to that buffer in layer->context->data.

The filter is not part of the filter stack until after insert returns. As a result, the insert method
should not attempt to read from, write to, or otherwise interact with the filter stack.

SeeAlso
insert in Chapter 5

remove

The remove filter method is called when a filter stack is destroyed (that is, when the
corresponding socket descriptor is closed), when the server finishes processing the request the
filter was associated with, or when an SAF such as remove-filter calls the filter remove
function. The remove filter method is optional.

Chapter2 - Creating Custom Filters 39

Filter Methods

40

The remove method can be used to clean up any data the filter allocated in insert and to pass
any buffered data to the next filter by calling net_write(layer->lower, ...).

SeeAlso

remove in Chapter 5

flush

The flush filter method is called when a filter or SAF calls the net_flush function. The flush
method should pass any buffered data to the next filter by calling net_write(layer->lower,
.. .). The flush method is optional, but it should be implemented by any filter that bufters
outgoing data.

SeeAlso
flush in Chapter 5

read

The read filter method is called when a filter or SAF calls the net_read function. Filters that are
interested in incoming data (data sent from a client to the server) implement the read filter
method.

Typically, the read method will attempt to obtain data from the next filter by calling
net_read(layer->lower, ...).The read method may then modify the received data before
returning it to its caller.

SeeAlso
read in Chapter 5

write

The write filter method is called when a filter or SAF calls the net_write function. Filters that
are interested in outgoing data (data sent from the server to a client) implement the write filter
method.

Typically, the write method will pass data to the next filter by calling
net_write(layer->lower, ...).Thewrite method may modify the data before calling
net_write. For example, the http-compression filter compresses data before passing it on to
the next filter.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Filter Methods

If a filter implements the write filter method but does not pass the data to the next layer before
returning to its caller (that is, if the filter buffers outgoing data), the filter should also implement
the flush method.

SeeAlso
write in Chapter 5

sendfile

The sendfile filter method performs a function similar to the writev filter method, but it
sends a file directly instead of first copying the contents of the file into a buffer. It is not
necessary to implement the sendfile filter method; if a filter implements the write filter
method but not the sendfile filter method, the server will use the write method instead of the
sendfile method. A filter should not implement the sendfile method unless it also
implements the write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the sendfile filter method.

SeeAlso
sendfile in Chapter 5

writev

Thewritev filter method performs the same function as the write filter method, but the format
of its parameters is different. It is not necessary to implement the writev filter method; if a filter
implements the write filter method but not the writev filter method, the server uses thewrite
method instead of the writev method. A filter should not implement the writev method unless
italso implements the write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the writev filter method.

SeeAlso

writev in Chapter 5

Chapter2 - Creating Custom Filters 41

Position of Filters in the Filter Stack

Position of Filters in the Filter Stack

All data sent to the server (such as the result of an HTML form) or sent from the server (such as
the output of a JSP page) is passed through a set of filters known as a filter stack. The server
creates a separate filter stack for each connection. While processing a request, individual filters
can be inserted into and removed from the stack.

Different types of filters occupy different positions within a filter stack. Filters that deal with
application-level content (such filters that translates a page from XHTML to HTML) occupy a
higher position than filters that deal with protocol-level issues (such as filters that format HTTP
responses). When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted earlier.

Filters positioned higher in the filter stack are given an earlier opportunity to process outgoing
data, while filters positioned lower in the stack are given an earlier opportunity to process
incoming data. For example, in the following figure, the xml-to-xhtmt filter is given an earlier
opportunity to process outgoing data than the xhtml-to-html filter.

When you create a filter with the filter_create function, you specify what position your filter
should occupy in the stack. You can also use the init-filter-order Init SAF to control the
position of specific filters within filter stacks. For example, init-filter-order can be used to
ensure that a filter that converts outgoing XML to XHTML is inserted above a filter that
converts outgoing XHTML to HTML.

For more information, see “filter_create” on page 73 and init-filter-order in the Sun Java
System Web Server 7.0 Administrator’s Configuration File Reference.

Filters that Alter Content-Length

42

Filters that can alter the length of an incoming request body or outgoing response body must
take special steps to ensure interoperability with other filters and SAFs.

Filters that process incoming data are referred to as input filters. If an input filter can alter the
length of the incoming request body (for example, if a filter decompresses incoming data) and
thereisa Content-Length header in the rq->headers pblock, the filter's insert filter method
should remove the Content-Length header and replace it with a Transfer-encoding:
identity header as follows:

pb_param *pp;
pp = pblock remove("content-length", layer->context->rq->headers);
if (pp '= NULL) {

param free(pp);
pblock nvinsert("transfer-encoding", "identity", layer->context->rq->headers);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Creating and Using Custom Filters

Because some SAFs expect a content-1length header when a request body is present, before
calling the first Service SAF the server will insert all relevant filters, read the entire request
body, and compute the length of the request body after it has been passed through all input
filters. However, by default, the server will read at most 8192 bytes of request body data. If the
request body exceeds 8192 bytes after being passed through the relevant input filters, the
request will be cancelled. For more information, see the description of
ChunkedRequestBufferSize in the “Syntax and Use of obj . conf”chapter in the Sun Java
System Web Server 7.0 Administrator’s Configuration File Reference.

Filters that process outgoing data are referred to as output filters. If an output filter can alter the
length of the outgoing response body (for example, if the filter compresses outgoing data), the
filter's insert filter method should remove the Content-Length header from rq->srvhdrs as
follows:

pb_param *pp;

pp = pblock remove("content-length", layer->context->rq->srvhdrs);

if (pp != NULL)
param free(pp);

Creating and Using Custom Filters

Custom filters are defined in shared libraries that are loaded and called by the server. The
general steps for creating a custom filter are as follows:

v To create a custom filter

1 “Write the Source Code” on page 44 using the NSAPI functions.

2 “Compile and Link” on page 44 the source code to create a shared library (. so, .s1,0r .d11)
file.

3 “Loadand Initialize the Filter” on page 45 by editing the magnus . conf file.

4 “Instruct the Server to Insert the Filter” on page 45 by editing the obj . conf file to insert your
custom filter(s) at the appropriate time.

5 “Restart the Server”on page 46.

Chapter2 - Creating Custom Filters 43

Creating and Using Custom Filters

44

“Test the Filter” on page 46 by accessing your server from a browser with a URL that triggers
your filter.

These steps are described in greater detail in the following sections.

Write the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the NSAPI
functions specific to filter development, see“Overview of NSAPI Functions for Filter
Development” on page 46 and “Filter Methods” on page 38 for the filter method prototypes.

The filter must be created by a call to filter_create. Typically, each plug-in defines an
nsapi_module_init function thatis used to call filter_create and perform any other
initialization tasks. For more information, see “nsapi_module_init” on page 92 and
“filter_create” on page 73.

Filter methods are invoked whenever the server or an SAF calls certain NSAPI functions such as
net_writeor filter_insert. Asaresult, filter methods can be invoked from any thread and
should only block using NSAPI functions (for example, crit_enter and net_read). If a filter
method blocks using other functions (for example, the WindowsWaitForMultipleObjects
and ReadFile functions), the server may hang. Also, shared objects that define filters should be
loaded with the NativeThread="no" flag, as described in “Load and Initialize the Filter”

on page 45.

If a filter method must block using a non-NSAPI function, KernelThreads 1 should be set in
magnus . conf. For more information about KernelThreads, see the description in the chapter
Syntax and Use of magnus . conf in the Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference.

Keep the following in mind when writing your filter:

®m Write thread-safe code

= JO should only be performed using the NSAPI functions documented in “File I/O” on page
28

= Thread synchronization should only be performed using NSAPI functions documented in
“Threads” on page 29

= Blocking may affect performance

= Carefully check and handle all errors

For examples of custom filters, see Chapter 3.

Compile and Link

Filters are compiled and linked in the same way as SAFs. For more information, see “Compile
and Link” on page 22.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Creating and Using Custom Filters

Load and Initialize the Filter

For each shared library (plug-in) containing custom filters to be loaded into the server, add an
Init directive that invokes the load-modules SAF to magnus. conf. The syntax for a directive
that loads a filter plug-in is:

Init fn=load-modules shlib=path NativeThread="no"

= shlibisthelocal file system path to the shared library (plug-in).

= NativeThread indicates whether the plug-in requires native threads. Filters should be
written to run on any type of thread (see “Write the Source Code” on page 44).

When the server encounters such a directive, it calls the plug-in's nsapi_module_init
function to initialize the filter.

Instruct the Server to Insert the Filter

Add an Input or Output directive to obj . conf to instruct the server to insert your filter into the
filter stack. The format of the directive is as follows:

Directive fn=insert-filter filter="filter-name" [namel="valuel"]...[nameN="valueN"]

m Directiveis Input or Output.
= filter-name is the name of the filter, as passed to filter_create, to insert.

= nameN="valueN" are the names and values of parameters that are passed to the filter's
insert filter method.

Filters that process incoming data should be inserted using an Input directive. Filters that
process outgoing data should be inserted using an Output directive.

To ensure that your filter is inserted whenever a client sends a request, add the Input or
Output directive to the default object. For example, the following portion of obj . conf
instructs the server to insert a filter named example- replace and pass it two parameters,
fromand to:

<Object name="default">

Output fn=insert-filter
filter="example-replace"
from="0ld String"
to="New String"

</0bject>

Chapter2 - Creating Custom Filters 45

Overview of NSAPI Functions for Filter Development

Restart the Server

For the server to load your plug-in, you must restart the server. A restart is required for all
plug-ins that implement SAFs and/or filters.

Test the Filter

Test your filter by accessing your server from a web browser. You should disable caching in
your web browser so that the server is sure to be accessed. In Mozilla Firefox, you may hold the
shift key while clicking the Reload button to ensure that the cache is not used. Examine the
access and error logs to help with debugging.

Overview of NSAPI Functions for Filter Development

46

NSAPI provides a set of C functions that are used to implement SAFs and filters. This section
lists the functions that are specific to the development of filters. All of the public routines are
described in detail in Chapter 5.

The NSAPI functions specific to the development of filters are:

“filter_create” on page 73 creates a new filter

“filter_insert” on page 75 inserts the specified filter into a filter stack

“filter_remove” on page 77 removes the specified filter from a filter stack

“filter_name” on page 77 returns the name of the specified filter

“filter_find” on page 75 finds an existing filter given a filter name

“filter_layer” on page 76 returns the layer in a filter stack that corresponds to the specified
filter

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

CHAPTER 3

Examples of Custom SAFs and Filters

This chapter provides examples of custom Sever Application Functions (SAFs) and filters for
each directive in the request-response process. You may wish to use these examples as the basis
for implementing your own custom SAFs and filters. For more information about creating your
own custom SAFs, see Chapter 1 and for information about creating your own filters, see
Chapter 2.

Before writing custom SAFs, you should be familiar with the request-response process and the
role of the configuration file obj . conf. See the Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference for information on the obj . conf file.

Before writing your own SAF, check to see if an existing SAF serves your purpose. The
predefined SAFs are discussed in the Sun Java System Web Server 7.0 Administrator’s
Configuration File Reference.

For alist of the NSAPI functions for creating new SAFs, see Chapter 5.

This chapter has the following sections:

“Examples Bundled With the Server” on page 48
“AuthTrans Example” on page 49

“NameTrans Example” on page 50

“PathCheck Example” on page 51

“ObjectType Example” on page 52

“Output Example” on page 53

“Service Example” on page 54

“AddLog Example” on page 55

“Quality of Service Example” on page 56

47

Examples Bundled With the Server

Examples Bundled With the Server

48

The install_dir/samples/nsapi directory contains examples of source code for SAFs.

You can use the example.mak (Windows) or Makefile (UNIX) makefile in the same directory
to compile the examples and create shared libraries containing the functions in all of the
example files.

To test an example, load the examples shared library into the server by adding the following
directive in the Init section of magnus. conf:

Init fn=load-modules
shlib=examples.so/d1l
funcs=functionl,...,functionN

The shlib parameter specifies the path to the shared library (for example,
../../samples/nsapi/examples.so), and the funcs parameter specifies the functions to load
from the shared library.

If the example uses an initialization function, be sure to specify the initialization function in the
funcs argument to load-modules, and also add an Init directive to call the initialization
function.

For example, the PathCheck example implements the restrict-by-acf function, which is
initialized by the acf-init function. The following directive loads both these functions:

Init fn=load-modules
shlib="path"
funcs=acf-init, restrict-by-acf
The following directive calls the acf-init function during server initialization:

Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling process, add an
appropriate directive in the object to which it applies, for example:

PathCheck fn=restrict-by-acf

After adding new Init directives to magnus.conf, you always need to restart the Web Server to
load the changes, since Init directives are only applied during server initialization.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

AuthTrans Example

AuthTrans Example

This simple example of an AuthTrans function demonstrates how to use your own custom ways
of verifying the user name and password that a remote client provided is accurate. This
program uses a hard-coded table of user names and passwords and checks a given user's
password against the one in the static data array. The userdb parameter is not used in this
function.

AuthTrans directives work in conjunction with PathCheck directives. Generally, an AuthTrans
function checks if the user name and password associated with the request are acceptable, but it
does not allow or deny access to the request; it leaves that to a PathCheck function.

AuthTrans functions get the user name and password from the headers associated with the
request. When a client initially makes a request, the user name and password are unknown so
the AuthTrans function and PathCheck function work together to reject the request, since they
can’t validate the user name and password. When the client receives the rejection, the usual
response is for it to present a dialog box asking the user for their user name and password, and
then the client submits the request again, this time including the user name and password in the
headers.

In this example, the hardcoded-auth function, which is invoked during the AuthTrans step,
checks if the user name and password correspond to an entry in the hard-coded table of users
and passwords.

Installing the AuthTrans Example

To install the function on the Web Server, add the following Init directive to magnus. conf to
load the compiled function:

Init fn=load-modules
shlib="path'
funcs=hardcoded-auth

Inside the default object in obj . conf, add the following AuthTrans directive:

AuthTrans fn=basic-auth
auth-type="basic"
userfn=hardcoded-auth
userdb=unused

Note that this function does not actually enforce authorization requirements, it only takes given
information and tells the server if it is correct or not. The PathCheck function require-auth
performs the enforcement, so add the following PathCheck directive as well:

Chapter 3 - Examples of Custom SAFs and Filters 49

NameTrans Example

PathCheck fn=require-auth
realm="test realm"
auth-type="basic"

The source code for this example is in the auth. c file in the
install_dir/samples/nsapi/directory.

NameTrans Example

50

The ntrans. c file in the samples/nsapi subdirectory of the server root directory contains
source code for two example NameT rans functions:

m explicit pathinfo
This example allows the use of explicit extra path information in a URL.
" https redirect
This example redirects the URL if the client is a particular version of Netscape Navigator.

This section discusses the first example. Look at the source code in ntrans. c for the second
example.

Note - A NameTrans function is used primarily to convert the logical URL in ppath in rq->vars
to a physical path name. However, the example discussed here, explicit_pathinfo, does not
translate the URL into a physical path name; it changes the value of the requested URL. See the
second example, https_redirect,inntrans.c for an example of a NameTrans function that
converts the value of ppath in rq->vars from a URL to a physical path name.

The explicit_pathinfo example allows URLs to explicitly include extra path information for
use by a CGI program. The extra path information is delimited from the main URL by a
specified separator, such as a comma.

For example:

http://server-name/cgi/marketing,/jan/releases/hardware

In this case, the URL of the requested resource (which would be a CGI program) is
http://server-name/cgi/marketing, and the extra path information to give to the CGI
programis /jan/releases/hardware.

When choosing a separator, be sure to pick a character that is never used as part of the real URL.

The explicit_pathinfo function reads the URL, strips out everything following the comma,
and puts it in the path-info field of the vars field in the request object (rq->vars). CGI
programs can access this information through the PATH_INFO environment variable.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

PathCheck Example

One side effect of explicit pathinfo is that the SCRIPT _NAME CGI environment variable has
the separator character tacked onto the end.

NameTrans directives usually return REQ_PROCEED when they change the path, so that the server
does not process any more NameTrans directives. However, in this case we want name
translation to continue after we have extracted the path info, since we have not yet translated
the URL to a physical path name.

Installing the NameTrans Example

To install the function on the Web Server, add the following Init directive to magnus. conf to
load the compiled function:

Init fn=load-modules
shlib="path'
funcs=explicit-pathinfo

Inside the default object in obj . conf, add the following NameTrans directive:

NameTrans fn=explicit-pathinfo
separator=","

This NameTrans directive should appear before other NameTrans directives in the default object.

The source code for this example is in the ntrans. c file in the
install_dir/smaples/nsapi/directory.

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for performing path
checks. This example simply checks if the requesting host is on a list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses with one IP
address per line. The PathCheck function restrict_by_acf gets the IP address of the host that
is making the request and checks if it is on the list. If the host is on the list, it is allowed access;
otherwise, access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Chapter 3 - Examples of Custom SAFs and Filters 51

ObjectType Example

Installing the PathCheck Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus. conf file:

Init fn=load-modules
shlib="path"
funcs=acf-init, restrict-by-acf

To call acf-init to read the list of allowable hosts, add the following line to the Init section in
magnus . conf. (This line must come after the one that loads the library containing acf-init).

Init fn=acf-init
file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

PathCheck fn=restrict-by-acf

The source code for this example is in pcheck. c in the install_dir/samples/nsapi/directory.

ObjectType Example

52

The example in this section demonstrates how to implement html2shtml, a custom SAF that
instructs the server to treata . html fileasa . shtml fileifa . shtml version of the requested file
exists.

A well-behaved ObjectType function checks if the content type is already set, and if so, does
nothing except return REQ_NOACTION.

if(pblock findval("content-type", rq->srvhdrs))
return REQ NOACTION;

The primary task an ObjectType directive needs to perform is to set the content type (if it is not
already set). This example sets it to magnus - internal/parsed-html in the following lines:

/* Set the content-type to magnus-internal/parsed-html */
pblock nvinsert("content-type", "magnus-internal/parsed-html",
rq->srvhdrs);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Output Example

The html2shtml function looks at the requested file name. If it ends with . htm1, the function
looks for a file with the same base name, but with the extension . shtml instead. If it finds one, it
uses that path and informs the server that the file is parsed HTML instead of regular HTML.
Note that this requires an extra stat call for every HTML file accessed.

Installing the ObjectType Example

To load the shared object containing your function, add the following line in the Init section of
the magnus. conf file:

Init fn=load-modules
shlib="path"
funcs=html2shtml

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

ObjectType fn=html2shtml

The source code for this example is in otype. c in the install_dir/samples/nsapi/ directory.

Output Example

This section describes an example NSAPI filter named example- replace, which examines
outgoing data and substitutes one string for another. It shows how you can create a filter that
intercepts and modifies outgoing data.

Installing the Output Example

To load the filter, add the following line in the Init section of the magnus . conf file:

Init fn="load-modules"
shlib=yourlibrary
NativeThread="no"

To execute the filter during the request-response process for some object, add the following line
to that object in the obj . conf file:

Output fn="insert-filter"
type="text/*"
filter="example-replace"
from="iPlanet" to="Sun ONE"

Chapter 3 - Examples of Custom SAFs and Filters 53

Service Example

The source code for this example is in the replace. c file in the install_dir/samples/nsapi/
directory.

Service Example

This section discusses a very simple Service function called simple_service. All this function
does is send a message in response to a client request. The message is initialized by the
init_simple_service function during server initialization.

For a more complex example, see the file service. c in the examples directory, which is
discussed in “More Complex Service Example” on page 55.

Installing the Service Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus. conf file:

Init fn=load-modules
shlib=yourlibrary
funcs=simple-service-init,simple-service

To call the simple-service-init function to initialize the message representing the generated
output, add the following line to the Init section in magnus . conf. (This line must come after
the one that loads the library containing simple-service-init.)

Init fn=simple-service-init
generated-output="<H1>Generated output msg</H1>"

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

Service type="text/html"
fn=simple-service

The type="text/html" argument indicates that this function is invoked during the Service
stage only if the content - type has been set to text/html.

The source code for this example is in the service. c file in the install_dir/samples/nsapi
directory.

54 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

AddLog Example

More Complex Service Example

The send-images function is a custom SAF that replaces the doit.cgi demonstration available
on the iPlanet home pages. When a file is accessed as /dirl/dir2/something.picgroup, the
send-images function checks if the file is being accessed by a Mozilla/1.1 browser. If not, it
sends a short error message. The file something. picgroup contains a list of lines, each of which
specifies a file name followed by a content-type (for example, one.gif image/gif).

To load the shared object containing your function, add the following line at the beginning of
the magnus. conf file:

Init fn=load-modules shlib=yourlibrary funcs=send-images

Also, add the following line to the mime. types file:

type=magnus-internal/picgroup exts=picgroup

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file (send - images takes an optional parameter,
delay, which is not used for this example):

Service method=(GET|HEAD) type=magnus-internal/picgroup fn=send-images

The source code for this example is in the service. c file in the install_dir/samples/nsapi
directory.

AddLog Example

The example in this section demonstrates how to implement brief-1log, a custom SAF for
logging only three items of information about a request: the IP address, the method, and the
URI (for example, 198.93.95.99 GET /jocelyn/dogs/homesneeded.html).

Installing the AddLog Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus . conf file:

Init fn=load-modules
shlib=yourlibrary
funcs=brief-init,brief-log

To call brief-1init to open the log file, add the following line to the Init section in
magnus . conf. (This line must come after the one that loads the library containing brief-init.)

Chapter 3 - Examples of Custom SAFs and Filters 55

Quality of Service Example

Init fn=brief-init
file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the following line to
that object in the obj . conf file:

AddLog fn=brief-log

The source code for this example is in addlog. c file in the install_dir/samples/nsapi directory.

Quality of Service Example

56

The code for the qos-handler (AuthTrans) and qos-error (Error) SAFsis provided as an
example in case you want to define your own SAFs for quality of service handling.

For more information about predefined SAFs, see the Sun Java System Web Server 7.0
Administrator’s Configuration File Reference.

Installing the Quality of Service Example

Inside the default object in obj . conf, add the following AuthTrans and Error directives:
AuthTrans fn=qos-handler

Error fn=qos-error code=503

The source code for this example is in the qos.. c file in the samples/nsapi subdirectory of the
server root directory.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

CHAPTER 4

Creating Custom Server-parsed HTMLTags

This chapter describes the procedure to create customer server-parsed HTML tags. This
chapter contains the following sections:

“Defining Custom Server-parsed HTML Tags” on page 57
“Define the Functions that Implement the Tag” on page 58
“Write an Initialization Function” on page 61

“Load the New Tag into the Server” on page 62

Defining Custom Server-parsed HTML Tags

HTML files can contain tags that are executed on the server. For general information about
server-parsed HTML tags, see the Sun Java System Web Server 7.0 Developer’s Guide.

In Web Server 7.0, you can define your own server-side tags. For example, you could define the
tag HELLO to invoke a function that prints Hello World!You could have the following code in
your hello.shtml file:

<html>
<head>
<title>shtml custom tag example</title>
</head>
<body>
<!--#HELLO-->
</body>
</html>

When the browser displays this code, each occurrence of the HELLO tag calls the function.

The steps for defining a customized server-parsed tag are listed below, and described in this
chapter.

57

Define the Functions that Implement the Tag

To Define Customer Server-parsed HTML Tags

“Define the Functions that Implement the Tag” on page 58.

You must define the tag execution function. You must also define other functions that are called
on tagloading and unloading, and on page loading and unloading.

“Write an Initialization Function” on page 61.

Write an initialization function that registers the tag using the shtml_add_tag function.

“Load the New Tag into the Server” on page 62.

Define the Functions that Implement the Tag

Define the functions that implement the tags in C, using NSAPL

58

Include the header shtml_public.h, which is in the directory install_dir/include/shtml.

Link against the SHTML shared library in the install_dir/1ib directory. On Windows, the
SHTML shared library is named sshtml.d1l. On UNIX platforms, it is named 1ibShtml.so
or libShtml.s1.

ShtmlTagExecuteFunc is the actual tag handler. It gets called with the usual NSAPI pblock,
Session, and Request variables. In addition, it also gets passed the TagUserData created
from the result of executing the tag loading and page loading functions (if defined) for that
tag.

The signature for the tag execution function is:

typedef int (*ShtmlTagExecuteFunc)
(pblock*, Session*, Request*, TagUserData, TagUserData);

Write the body of the tag execution function to generate the output to replace the tag in the
.shtml page. Do this in the usual NSAPI way, using the net_write NSAPI function, which
writes a specified number of bytes to a specified socket from a specified buffer.

For more information about writing NSAPI plug-ins, see Chapter 1.
For more information about net_write and other NSAPI functions, see Chapter 5.

The tag execution function must return an int that indicates whether the server should
proceed to the next instruction in obj . conf, which is one of:

REQ PROCEED -- the execution was successful

REQ_NOACTION -- nothing happened

REQ ABORTED - - an error occurred

REQ EXIT - - the connection was lost

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Define the Functions that Implement the Tag

The other functions you must define for your tag are:
® ShtmlTagInstanceload

This is called when a page containing the tag is parsed. It is not called if the page is retrieved
from the browser's cache. It serves as a constructor, the result of which is cached and is
passed into ShtmlTagExecuteFunc whenever the execution function is called.

® ShtmlTagInstanceUnload

This is a destructor for cleaning up whatever was created in the ShtmlTagInstanceLoad
function. It gets passed the result that was originally returned from the
ShtmlTagInstanceload function.

® ShtmlTagPagelLoadFunc

This is called when a page containing the tag is executed, regardless of whether the page is
still in the browser's cache. This provides a way to make information persistent between
occurrences of the same tag on the same page.

® ShtmlTagPageUnLoadFn

This is called after a page containing the tag has executed. It provides a way to clean up any
allocations done in a ShtmlTagPageLoadFunc and hence gets passed the result returned
from the ShtmlTagPageLoadFunc.

The signatures for these functions are:

#define TagUserData void*
typedef TagUserData (*ShtmlTagInstancelLoad)

(const char* tag, pblock*, const char*, size t);
typedef void (*ShtmlTagInstanceUnload) (TagUserData);
typedef int (*ShtmlTagExecuteFunc)

(pblock*, Session*, Request*, TagUserData, TagUserData);

typedef TagUserData (*ShtmlTagPageLoadFunc)

(block* pb, Session*, Request*);
typedef void (*ShtmlTagPageUnLoadFunc) (TagUserData);

Following is the code that implements the HELLO tag:

/*
* mytag.c: NSAPI functions to implement #HELLO SSI calls
*/
#include "nsapi.h"
#include "shtml/shtml _public.h"
/* FUNCTION : mytag con
*
* DESCRIPTION: ShtmlTagInstancelLoad function
*/
#ifdef _ cplusplus

Chapter4 - Creating Custom Server-parsed HTML Tags 59

Define the Functions that Implement the Tag

extern "C"
#endif
TagUserData
mytag con(const char* tag, pblock* pb, const char* cl, size t t1)
{
return NULL;
}
/* FUNCTION : mytag des
*
* DESCRIPTION: ShtmlTagInstanceUnload
*/
#ifdef cplusplus
extern "C"
#endif
void
mytag des(TagUserData v1)
{
}
/* FUNCTION : mytag load
* DESCRIPTION: ShtmlTagPagelLoadFunc
*/
#ifdef _ cplusplus
extern "C"
#endif
TagUserData
mytag load(pblock *pb, Session *sn, Request *rq)
{
return NULL;
}
/* FUNCTION : mytag unload
*
* DESCRIPTION: ShtmlTagPageUnloadFunc
*/
#
#ifdef cplusplus
extern "C"
#endif
void
mytag unload(TagUserData v2)
{
}
/* FUNCTION : mytag
* DESCRIPTION: ShtmlTagExecuteFunc
*/
#ifdef _ cplusplus
extern "C"
#endif
int

60 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Write an Initialization Function

mytag(pblock* pb, Session* sn, Request* rq, TagUserData tl, TagUserData t2)
{

char* buf;

int length;

char* client;

buf = (char *) MALLOC(100*sizeof(char));

length = util sprintf(buf, "<hl>Hello World! </hl>", client);

if (net write(sn->csd, buf, length) == IO ERROR)

{

FREE (buf) ;

return REQ ABORTED;
}
FREE (buf) ;

return REQ PROCEED;
}
/* FUNCTION : mytag init
* DESCRIPTION: initialization function, calls shtml add tag() to
* load new tag
*/
#
#ifdef cplusplus
extern "C"
#endif
int
mytag init(pblock* pb, Session* sn, Request* rq)
{
int retval = 0;
// NOTE: ALL arguments are required in the shtml_add tag() function
retVal = shtml add tag("HELLO", mytag con, mytag des, mytag, mytag load, mytag unload);
return retVal;
}
/* end mytag.c */

Write an Initialization Function

In the initialization function for the shared library that defines the new tag, register the tag using

the function shtml_add_tag. The signature is:

NSAPI PUBLIC int shtml add tag (
const char* tag,
ShtmlTagInstancelLoad ctor,
ShtmlTagInstanceUnload dtor,
ShtmlTagExecuteFunc execFn,
ShtmlTagPagelLoadFunc pagelLoadFn,
ShtmlTagPageUnLoadFunc pageUnLoadFn);

Any of these arguments can return NULL except for the tag and execFn.

Chapter4 - Creating Custom Server-parsed HTMLTags

61

Load the New Tag into the Server

Load the New Tag into the Server

62

After creating the shared library that defines the new tag, you load the library into the Web
Server in the usual way for NSAPI plug-ins. That is, add the following directives to the
configuration file magnus . conf:

Add an Init directive whose fn parameter is load-modules and whose shlib parameter is the
shared library to load. For example, if you compiled your tag into the shared object
install_dir/hello. so, it would be:

Init funcs="mytag,mytag init" shlib="install_dir/hello.so" fn="1load-modules"

Add another Init directive whose fn parameter is the initialization function in the shared
library that uses shtml_add_tag to register the tag. For example:

Init fn="mytag init"

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

CHAPTER 5

NSAPI Function and Macro Reference

This chapter lists all the public C functions and macros of the Netscape Server Applications
Programming Interface (NSAPI). These are the functions you use when writing your own
Server Application Functions (SAFs) and filters.

Each function provides the name, syntax, parameters, return value, a description of what the
function does, and sometimes an example of its use and a list of related functions.

For more information on data structures, see Chapter 6.

NSAPI Functions and Macros

For an alphabetical list of function names, see Appendix B.

CALLOC

The CALLOC macro is a platform-independent substitute for the Clibrary routine calloc. It
allocates size bytes from the request’s memory pool and initializes the memory to zeros. The
memory can be explicitly freed by a call to FREE. If the memory is not explicitly freed, it is
automatically freed after processing of the current request has been completed. If pooled
memory has been disabled in the configuration file (with the pool-init built-in SAF),
PERM-CALLOC and CALLOC both obtain their memory from the system heap. However, since
memory allocated by CALLOCis automatically freed, it should not be shared with threads.

63

NSAPI Functions and Macros

64

Syntax

void *CALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

char *name;
name = (char *) CALLOC(100);

See Also

“FREE” on page 78, “MALLOC” on page 83, “REALLOC” on page 113, “STRDUP” on page
121, “PERM_CALLOC” on page 103

cinfo_find

The cinfo_find() function uses the MIME types information to find the type, encoding,
and/or language based on the extension(s) of the Universal Resource Identifier (URI) or local
file name. Use this information to send headers (rq->srvhdrs) to the client indicating the
content-type, content-encoding, and content-language of the data it will be receiving from
the server.

The name used is everything after the last slash (/) or the whole string if no slash is found. File
name extensions are not case-sensitive. The name can contain multiple extensions separated by
period (.) to indicate type, encoding, or language. For example, the URI
a/b/filename.jp.txt.zip represents a Japanese language, text/plain type, zip encoded file.

Syntax

cinfo *cinfo find(char *uri);

Returns

A pointer to a newly allocated cinfo structure if the find succeeds, or NULL if the find fails.

The cinfo structure that is allocated and returned contains pointers to the content - type,
content-encoding, and content-language, if found. Each structure points to static data in the
types database, or NULL if not found. Do not free these pointers. You should free the cinfo
structure after using it.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Parameters

char *uri is a Universal Resource Identifier (URI) or local file name. Multiple file name
extensions should be separated by periods (.).

condvar _init

The condvar_init function is a critical-section function that initializes and returns a new
condition variable associated with a specified critical-section variable. You can use the
condition variable to prevent interference between two threads of execution.

Syntax

CONDVAR condvar init(CRITICAL id);

Returns

A newly allocated condition variable (CONDVAR).

Parameters

CRITICAL id is a critical-section variable.

See Also

“condvar_notify” on page 65, “condvar_terminate” on page 66, “condvar_wait” on page 66,
“crit_init” on page 68, “crit_enter” on page 67, “crit_exit” on page 67, “crit_terminate”
on page 68

condvar_notify

The condvar_notify function is a critical-section function that awakens any threads that are
blocked on the given critical-section variable. Use this function to awaken threads of execution
of a given critical section. First, use crit_enter to gain ownership of the critical section. Then
use the returned critical-section variable to call condvar_notify to awaken the threads. Finally,
when condvar_notify returns, call crit_exit to surrender ownership of the critical section.

Syntax
void condvar notify(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

Chapter5 « NSAPI Function and Macro Reference 65

NSAPI Functions and Macros

66

See Also

“condvar_init” on page 65, “condvar_terminate” on page 66, “condvar_wait” on page 66,
“crit_init” on page 68, “crit_enter” on page 67, “crit_exit” on page 67, “crit_terminate”
on page 68

condvar_terminate

The condvar terminate function is a critical-section function that frees a condition variable.
Use this function to free a previously allocated condition variable.

Caution - Terminating a condition variable that is in use can lead to unpredictable results.

Syntax

void condvar terminate(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

See Also

“condvar_init” on page 65, “condvar_notify” on page 65, “condvar_wait” on page 66,
“crit_init” on page 68, “crit_enter” on page 67, “crit_exit” on page 67, “crit_terminate”
on page 68

condvar_wait

The condvar_wait function is a critical-section function that blocks on a given condition
variable. Use this function to wait for a critical section (specified by a condition variable
argument) to become available. The calling thread is blocked until another thread calls
condvar_notify with the same condition variable argument. The caller must have entered the
critical section associated with this condition variable before calling condvar_wait.

Syntax

void condvar wait(CONDVAR cv);

Returns

void

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Parameters

CONDVAR cv is a condition variable.

See Also

“condvar_init” on page 65, “condvar_terminate” on page 66, “condvar_notify” on page 65,
“crit_init” on page 68, “crit_enter” on page 67, “crit_exit” on page 67, “crit_terminate”
on page 68

crit_enter

The crit_enter function is a critical-section function that attempts to enter a critical section.
Use this function to gain ownership of a critical section. If another thread already owns the
section, the calling thread is blocked until the first thread surrenders ownership by calling
crit exit.

Syntax

void crit enter(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 68, “crit_exit” on page 67, “crit_terminate” on page 68

crit_exit

The crit_exit function is a critical-section function that surrenders ownership of a critical
section. Use this function to surrender ownership of a critical section. If another thread is
blocked waiting for the section, the block is removed and the waiting thread is given ownership
of the section.

Syntax

void crit exit(CRITICAL crvar);

Returns

void

Chapter5 « NSAPI Function and Macro Reference 67

NSAPI Functions and Macros

68

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 68, “crit_enter” on page 67, “crit_terminate” on page 68

crit_init

The crit init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type CRITICAL). Use this function to obtain a new instance
of a variable of type CRITICAL (a critical-section variable). Use this variable to prevent
interference between two threads of execution. At the time of creating this variable, no thread
owns the critical section.

Caution - Threads must not own or be waiting for the critical section when crit_terminate is
called.

Syntax

CRITICAL crit_init(void);

Returns

A newly allocated critical-section variable (CRITICAL).

Parameters

none

See Also

“crit_enter” on page 67, “crit_exit” on page 67, “crit_terminate” on page 68

crit_terminate

The crit_terminate function is a critical-section function that removes a previously allocated
critical-section variable (a variable of type CRITICAL). Use this function to release a
critical-section variable previously obtained by a call to crit_init.

Syntax

void crit terminate(CRITICAL crvar);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

See Also

“crit_init” on page 68, “crit_enter” on page 67, “crit_exit” on page 67

D

daemon_atrestart

The daemon_atrestart function lets you register a callback function named fn to be used when
the server terminates. Use this function when you need a callback function to deallocate
resources allocated by an initialization function. The daemon_atrestart functionisa
generalization of the magnus_atrestart function.

The magnus . conf directives TerminateTimeout and ChildRestartCallback also affect the
callback of NSAPI functions.

Syntax

void daemon atrestart(void (*fn)(void *), void *data);

Returns

void

Parameters

void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is restarted.

Chapter5 « NSAPI Function and Macro Reference 69

NSAPI Functions and Macros

Example

/* Register the log close function, passing it NULL */
/* to close *a log file when the server is */
/* restarted or shutdown. */
daemon_atrestart(log close, NULL);
NSAPI PUBLIC void log close(void *parameter)

{system fclose(global logfd);}

F

filebuf _buf2sd

The filebuf_buf2sd function sends a file buffer to a socket (descriptor) and returns the
number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax

int filebuf buf2sd(filebuf *buf, SYS NETFD sd);

Returns

The number of bytes sent to the socket if successful, or the constant I0_ERROR if the file buffer
cannot be sent.

Parameters

filebuf *buf is the file buffer that must already have been opened.
SYS_NETFD sd is the platform-independent socket descriptor. Normally this is obtained from

the csd (client socket descriptor) field of the sn (session) structure.

Example

if (filebuf buf2sd(buf, sn->csd) == IO ERROR)
return(REQ EXIT);

See Also

“filebuf_close” on page 71, “filebuf_open” on page 72, “filebuf_open_nostat” on page 72,
“filebuf_getc” on page 71

70 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

filebuf close

The filebuf close function deallocates a file buffer and closes its associated file.

Generally, use filebuf_open first to open a file buffer, and then filebuf_getc to access the
information in the file. After you have finished using the file buffer, use filebuf_close to close
it.

Syntax

void filebuf close(filebuf *buf);

Returns

void

Parameters

filebuf *buf is the file buffer previously opened with filebuf_open.

Example

filebuf close(buf);

See Also

“filebuf_open” on page 72, “filebuf_open_nostat” on page 72, “filebuf_buf2sd” on page 70,
“filebuf_getc” on page 71

filebuf_getc

The filebuf_getc function retrieves a character from the current file position and returns it as
an integer. It then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

Syntax

filebuf getc(filebuf b);

Returns

An integer containing the character retrieved, or the constant I0_EOF or I0_ERROR upon an end
of file or error.

Parameters

filebuf b is the name of the file buffer.

Chapter5 « NSAPI Function and Macro Reference 71

NSAPI Functions and Macros

72

See Also

“filebuf_close” on page 71, “filebuf_buf2sd” on page 70, “filebuf_open” on page 72,
“filter_create” on page 73

filebuf_open

The filebuf_open function opens a new file buffer for a previously opened file. It returns a new
buffer structure. Buffered files provide more efficient file access by guaranteeing the use of
buffered file I/O in environments where it is not supported by the operating system.

Syntax

filebuf *filebuf open(SYS FILE fd, int sz);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer can be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file which has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

Example

filebuf *buf = filebuf open(fd, FILE BUFFERSIZE);
if (!'buf)
{

system fclose(fd);

}
See Also

“filebuf_getc” on page 71, “filebuf_buf2sd” on page 70, “filebuf _close” on page 71,
“filebuf_open_nostat” on page 72

filebuf_open_nostat

The filebuf_open_nostat function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by guaranteeing
the use of buffered file I/O in environments where it is not supported by the operating system.

This function is the same as filebuf open, but is more efficient, since it does not need to call
the request_stat_path function. It requires that the stat information be passed in.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

filebuf* filebuf open nostat(SYS FILE fd, int sz, struct stat *finfo);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer can be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file that has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the filebuf open_nostat
function, you must call the request_stat_path function to retrieve the file information.

Example

filebuf *buf = filebuf open nostat(fd, FILE BUFFERSIZE, &finfo);
if (!'buf)
{

system fclose(fd);

}

SeeAlso
“filebuf_close” on page 71, “filebuf_open” on page 72, “filebuf_getc” on page 71,
“filebuf_buf2sd” on page 70

filter_create

The filter create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the specified name
already exists, it will be replaced.

Names beginning with magnus - or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by specifying what
class of functionality the filter implements.

The following table describes parameters allowed constants and their associated meanings for
the filter create function. The left column lists the name of the constant, the middle column
describes the functionality the filter implements, and the right column lists the position the
filter occupies in the filter stack.

Chapter5 « NSAPI Function and Macro Reference 73

NSAPI Functions and Macros

74

TABLE 5-1 filter-create constants

Constant Functionality Filter Implements Position in Filter Stack

FILTER CONTENT TRANSLATION Translates content TOp
from one form to another (for
example, XSLT)

FILTER CONTENT CODING Encodes content (for example, Middle
HTTP gzip compression)

FILTER TRANSFER CODING Encodes entity bodies for Bottom
transmission (for example, HTTP
chunking)

The methods parameter specifies a pointer to a FilterMethods structure. Before calling
filter_create, you must initialize the FilterMethods structure using the
FILTER_METHODS_INITIALIZER macro, and then assign function pointers to the individual
FilterMethods members (for example, insert, read, write, and so on) that correspond to the
filter methods the filter supports.

filter_create returns const Filter *, a pointer to an opaque representation of the filter.
This value can be passed to filter_insert to insert the filter in a particular filter stack.

Syntax

const Filter *filter_create(const char *name, int order,
const FilterMethods *methods);

Returns

The const Filter * that identifies the filter or NULL if an error occurs.

Parameters

const char *name is the name of the filter.
int order is one of the order constants above.

const FilterMethods *methods contains pointers to the filter methods the filter supports.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Example

FilterMethods methods = FILTER METHODS INITIALIZER;

const Filter *filter;

/* This filter will only support the "read" filter method */

methods.read = my input filter read;

/* Create the filter */

filter = filter create("my-input-filter", FILTER CONTENT TRANSLATION,
&methods) ;

See Also

“filter_insert” on page 75, “insert” on page 81, “flush” on page 78, “read” on page 112,
“sendfile” on page 117, “write” on page 158, “writev” on page 159, “FilterMethods” on page 167

filter_find

The filter_find function finds the filter with the specified name.

Syntax

const Filter *filter find(const char *name);

Returns

The const Filter * that identifies the filter, or NULL if the specified filter does not exist.

Parameters

const char *name is the name of the filter of interest.

filter_insert

The filter_insert function inserts a filter into a filter stack, creating a new filter layer and
installing the filter at that layer. The filter layer's position in the stack is determined by the order
value specified when filter_create was called, and any explicit ordering configured by
init-filter-order. If afilter layer with the same order value already exists in the stack, the
new layer is inserted above that layer.

Parameters are passed to the filter using the pb and data parameters. The semantics of the data
parameter are defined by individual filters. However, all filters must be able to handle a data
parameter of NULL.

Chapter5 « NSAPI Function and Macro Reference 75

NSAPI Functions and Macros

Note - When possible, plug-in developers should avoid calling filter_insert directly, and
instead use the insert-filter SAE

Syntax

int filter insert(SYS NETFD sd, pblock *pb, Session *sn, Request *rq,
void *data, const Filter *filter);

Returns

REQ_PROCEED if the specified filter was inserted successfully, or REQ_NOACTION if the specified
filter was not inserted because it was not required. Any other return value indicates an error.

Parameters

SYS _NETFD sd is NULL (reserved for future use).

pblock *pb is a set of parameters to pass to the specified filter\gs init method.
Session *sn is the Session.

Request *rq is the Request.

void *data is filter-defined private data.

const Filter *filter is the filter to insert.

See Also

“filter_create” on page 73

filter_layer

The filter_layer function returns the layer in a filter stack that corresponds to the specified
filter.

Syntax

FilterLayer *filter layer(SYS_NETFD sd, const Filter *filter);

Returns

The topmost FilterLayer * associated with the specified filter, or NULL if the specified filter is
not part of the specified filter stack.

76 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Parameters

SYS_NETFD sd is the filter stack to inspect.

const Filter *filter is the filter of interest.

filter_name

The filter_name function returns the name of the specified filter. The caller should not free the
returned string.
Syntax

const char *filter name(const Filter *filter);

Returns

The name of the specified filter, or NULL if an error occurred.

Parameters

const Filter *filter is the filter of interest.

filter_remove

The filter_remove function removes the specified filter from the specified filter stack,
destroying a filter layer. If the specified filter was inserted into the filter stack multiple times,
only the topmost filter layer of the filter is destroyed.

Note - When possible, plug-in developers should avoid calling filter_remove directly, and
instead use the remove-filter SAF (applicable in Input-, Output-, Service-, and Error-class
directives).

Syntax

int filter remove(SYS _NETFD sd, const Filter *filter);

Returns

REQ_PROCEED if the specified filter was removed successfully or REQ_NOACTION if the specified
filter was not part of the filter stack. Any other return value indicates an error.

Parameters

SYS_NETFD sd is the filter stack, sn->csd.

const Filter *filter is the filter to remove.

Chapter5 « NSAPI Function and Macro Reference 77

NSAPI Functions and Macros

78

flush

The flush filter method is called when buffered data should be sent. Filters that buffer outgoing
data should implement the flush filter method.

Upon receiving control, a f lush implementation must write any buffered data to the filter layer
immediately below it. Before returning success, a flush implementation must successfully call
the net flush function:

net flush(layer->lower).

Syntax

int flush(FilterLayer *layer);

Returns

0 on success or -1 ifan error occurs.

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

Example
int myfilter flush(FilterLayer *layer)
{
MyFilterContext context = (MyFilterContext *)layer->context->data;
if (context->buf.count) {
int rv;
rv = net write(layer->lower, context->buf.data, context->buf.count);
if (rv !'= context->buf.count)
return -1; /* failed to flush data */
context->buf.count = 0;
}
return net flush(layer->lower);
}
SeeAlso

“net_flush” on page 84, “filter_create” on page 73

FREE

The FREE macro is a platform-independent substitute for the Clibrary routine free. It
deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP from the request’s
memory pool.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Note - Calling FREE for a block that was allocated with PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP will not work.

Syntax

FREE (void *ptr);

Returns

void

Parameters
void *ptrisa (void *) pointer to a block of memory. If the pointer is not the one created by

MALLOC, CALLOC, or STRDUP, the behavior is undefined.

Example

char *name;
name = (char *) MALLOC(256);

FREE (name) ;

See Also

“CALLOC” on page 63, “MALLOC” on page 83, “REALLOC” on page 113, “STRDUP” on page
121, “PERM_FREE” on page 104

func_exec

The func_exec function executes the function named by the fn entry in a specified pblock. If
the function name is not found, it logs the error and returns REQ_ABORTED.

You can use this function to execute a built-in Server Application Function (SAF) by identifying
itin the pblock.

Syntax

int func_exec(pblock *pb, Session *sn, Request *rq);

Returns

The value returned by the executed function, or the constant if successful. REQ_ABORTED, if no
function is executed.

Chapter5 « NSAPI Function and Macro Reference 79

NSAPI Functions and Macros

Parameters

pblock pb is the pblock containing the function name (fn) and parameters.
Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAE.

See Also

“log_error” on page 82

func_find

The func_find function returns a pointer to the function specified by name. If the function does
not exist, it returns NULL.

Syntax

FuncPtr func find(char *name);

Returns

A pointer to the chosen function, suitable for de-referencing, or NULL if the function is not
found.

Parameters

char *name is the name of the function.

Example

/* this block of code does the same thing as func_exec */
char *afunc = pblock findval("afunction", pb);
FuncPtr afnptr = func find(afunc);
if (afnptr)
return (afnptr)(pb, sn, rq);

See Also

“func_exec” on page 79

func_insert

The func_insert function dynamically inserts a named function into the server's table of
functions. This function should only be called during the Init stage.

80 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

FuncStruct *func_insert(char *name, FuncPtr fn);

Returns

The FuncStruct structure that identifies the newly inserted function. The caller should not
modify the contents of the FuncStruct structure.

Parameters

char *name is the name of the function.

FuncPtr fn is the pointer to the function.

Example

func_insert("my-service-saf", &my service saf);

See Also

“func_exec” on page 79, “func_find” on page 80

insert

The insert filter method is called when a filter is inserted into a filter stack by the
filter insert functionorinsert-filter SAE

Syntax

int insert(FilterLayer *layer, pblock *pb);

Returns

REQ_PROCEED if the filter should be inserted into the filter stack, REQ_NOACTION if the filter
should not be inserted because it is not required, or REQ_ABORTED if the filter should not be
inserted because of an error.

Parameters

FilterLayer *layer is the filter layer at which the filter is being inserted.

pblock *pb is the set of parameters passed to filter_insert or specified by the
fn="insert-filter" directive.

Chapter5 « NSAPI Function and Macro Reference 81

NSAPI Functions and Macros

82

Example

int myfilter insert(FilterLayer *layer, pblock *pb)

{
if (pblock findval("dont-insert-filter", pb))
return REQ NOACTION;
return REQ_PROCEED;

}

FilterMethods myfilter methods = FILTER METHODS INITIALIZER;
const Filter *myfilter;

myfilter methods.insert = &myfilter insert;
myfilter = filter create("myfilter", &myfilter methods);

See Also

“filter_insert” on page 75, “filter_create” on page 73

L

log_error

The log_error function creates an entry in an error log, recording the date, the severity, and a
description of the error.

Syntax

int log error(int degree, char *func, Session *sn, Request *rq, char *fmt, ...);

Returns

0 if the log entry is created, or - 1 if the log entry is not created.

Parameters
int degree specifies the severity of the error. It must be one of the following constants:

LOG_VERBOSE - debug message
LOG_VERBOSE - debug message
LOG_INFORM - information message
LOG_WARN- warning

LOG_FAILURE - operation failed

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

= | 0G_MISCONFIG- misconfiguration
® LOG_SECURITY - authentication or authorization failure
® LOG_CATASTROPHE - nonrecoverable server error

char *func is the name of the function where the error has occurred.
Session *sn is the Session.
Request *rq is the Request.

char *fmt specifies the format for the printf function that delivers the message.

Example

log error(LOG_WARN, "send-file", sn, rq, "error opening buffer from %s (%s)"),
path, system errmsg(fd));

See Also

“func_exec” on page 79

M

MALLOC

The MALLOC macro is a platform-independent substitute for the Clibrary routine malloc. It
allocates size bytes from the requests's memory pool. The memory can be explicitly freed by a
call to FREE. If the memory is not explicitly freed, it is automatically freed after processing of the
current request has been completed. If pooled memory has been disabled in the configuration
file (with the pool-initbuilt-in SAF), PERM_MALLOC and MALLOC both obtain their memory
from the system heap. However, since memory allocated by MALLOC is automatically freed, it
should not be shared between threads.

If pooled memory has been disabled in the configuration file (with the pool-init built-in SAF),
PERM_MALLOC and MALLOC both obtain their memory from the system heap.

Syntax

void *MALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Chapter5 « NSAPI Function and Macro Reference 83

NSAPI Functions and Macros

84

Example

/* Allocate 256 bytes for a name */
char *name;
name = (char *) MALLOC(256);

See Also

“FREE” on page 78, “CALLOC” on page 63, “REALLOC” on page 113, “STRDUP” on page 121,
“PERM_MALLOC” on page 104

net_flush

The net_flush function flushes any buffered data. If you require that data be sent immediately,
call net_flush after calling the network output functions such as net_write or net_sendfile.

Syntax

int net_flush(SYS_NETFD sd);

Returns

0 on success, or a negative value if an error occurs.

Parameters

SYS_NETFD sd is the socket to flush.

Example

net write(sn->csd, "Please wait... ", 15);
net_flush(sn->csd);
/* Perform some time-intensive operation */

net write(sn->csd, "Thank you.\n", 11);

See Also

“net_write” on page 87, “net_sendfile” on page 86

net_ip2host

The net_ip2host function transforms a textual IP address into a fully-qualified domain name
and returns it.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Note - This function works only if the DNS directive is enabled in the magnus . conf file.

Syntax

char *net ip2host(char *ip, int verify);

Returns

A new string containing the fully-qualified domain name if the transformation is accomplished,
or NULL if the transformation is not accomplished.

Parameters

char *ip is the IP address as a character string in dotted-decimal notation: nnn.nnn.nnn.nnn
int verify, if nonzero, specifies that the function should verify the fully-qualified domain

name. Though this requires an extra query, you should use it when checking the access control.

net_read

The net_read function reads bytes from a specified socket into a specified buffer. The function
waits to receive data from the socket until either at least one byte is available in the socket or the
specified time has elapsed.

Syntax

int net_read (SYS_NETFD sd, char *buf, int sz, int timeout);

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative value is
returned if an error has occurred, in which case errno is set to the constant ETIMEDOUT if the
operation did not complete before timeout seconds elapsed.

Parameters

SYS_NETFD sd is the platform-independent socket descriptor.
char *buf is the buffer to receive the bytes.
int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before returning. The
purpose of timeout is not to return because not enough bytes were read in the given time, but to
limit the amount of time devoted to waiting until some data arrives.

Chapter5 « NSAPI Function and Macro Reference 85

NSAPI Functions and Macros

See Also

“net_write” on page 87

net_sendfile

The net_sendfile function sends the contents of a specified file to a specified a socket. Either
the whole file or a fraction might be sent, and the contents of the file might optionally be
preceded and/or followed by caller-specified data.

Parameters are passed to net_sendfile in the sendfiledata structure. Before invoking
net_sendfile, the caller must initialize every sendfiledata structure member.

Syntax

int net sendfile(SYS NETFD sd, const sendfiledata *sfd);

Returns

A positive number indicating the number of bytes successfully written, including the headers,
file contents, and trailers. A negative value indicating an error.

Parameters

SYS NETFD sd is the socket to write to.

const sendfiledata *sfd identifies the data to send.

Example

The following Service SAF sends a file bracketed by the strings "begin" and "end."

#include <string.h>
#include "nsapi.h"

NSAPI PUBLIC int service net sendfile(pblock *pb, Session *sn, Request *rq)
{

char *path;

SYS FILE fd;

struct sendfiledata sfd;

int rv;

path = pblock findval("path", rqg->vars);
fd = system fopenRO(path);
if (!fd) {
log error(LOG MISCONFIG, "service-net-sendfile", sn, rq,
"Error opening %s (%s)", path, system errmsg());

86 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

return REQ_ABORTED;

}

sfd.fd = fd; /* file to send */

sfd.offset = 0; /* start sending from the beginning */
sfd.len = 0; /* send the whole file */

sfd.header = "begin"; /* header data to send before the file */
sfd.hlen = strlen(sfd.header); /* length of header data */

sfd.trailer = "end"; /* trailer data to send after the file */

sfd.tlen = strlen(sfd.trailer); /* length of trailer data */

/* send the headers, file, and trailers to the client */
rv = net_sendfile(sn->csd, &sfd);

system fclose(fd);

if (rv < 0) {
log_error(LOG_INFORM, "service-net-sendfile", sn, rq,
"Error sending %s (%s)", path,
system errmsg());
return REQ ABORTED;

}

return REQ_PROCEED;
}
See Also

“net_flush” on page 84

net_write

The net_write function writes a specified number of bytes to a specified socket from a specified
buffer.

Syntax

int net write(SYS NETFD sd, char *buf, int sz);

Returns

The number of bytes written, which may be less than the requested size if an error occurs.

Chapter5 « NSAPI Function and Macro Reference 87

NSAPI Functions and Macros

Parameters

SYS_NETFD sd is the platform-independent socket descriptor.
char *buf is the buffer containing the bytes.

int sz is the number of bytes to write.

Example

if (net_write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO ERROR)
return REQ_EXIT;

See Also

“net_read” on page 85

netbuf buf2sd

The netbuf buf2sd function sends a buffer to a socket. You can use this function to send data
from IPC pipes to the client.
Syntax

int netbuf buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns

The number of bytes transferred to the socket, if successful, or the constant I0_ERROR if
unsuccessful.

Parameters

netbuf *buf is the buffer to send.
SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.

SeeAlso
“netbuf_close” on page 88, “netbuf_getc” on page 90, “netbuf_getbytes” on page 89,
“netbuf_grab” on page 91, “netbuf_open” on page 91

netbuf close

The netbuf close function deallocates a network buffer and closes its associated files. Use this
function when you need to deallocate the network buffer and close the socket.

You should never close the netbuf parameter in a session structure.

88 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

void netbuf close(netbuf *buf);

Returns

void

Parameters

netbuf *buf is the buffer to close.

See Also

“netbuf_buf2sd” on page 88, “netbuf_getc” on page 90, “netbuf_getbytes” on page 89,
“netbuf_grab” on page 91, “netbuf_open” on page 91

netbuf_getbytes

The netbuf_getbytes function reads bytes from a network buffer into a caller-supplied bufter.
If the network buffer is empty, the function waits to receive data from the network buffer's
socket until either at least one byte is available from the socket or the network buffer's timeout
has elapsed.

Syntax

int netbuf getbytes(netbuf *buf, char *buffer, int sz);

Returns

The number of bytes placed into buffer (between 1 and sz) if the operation is successful, the
constant NETBUF _EOF on end of file, or the constant NETBUF_ERROR if an error occurred.

Parameters

netbuf *buf is the buffer from which to retrieve bytes.
char *buffer is the caller-supplied buffer that receives the bytes.

int sz is the maximum number of bytes to read.

Example

int cl = 0;

* Read the entire request body */

Chapter5 « NSAPI Function and Macro Reference 89

NSAPI Functions and Macros

90

for (;;) {
char mybuf[1024];
int rv;

rv = netbuf getbytes(sn->inbuf, mybuf, sizeof(mybuf));
if (rv == NETBUF EOF) {
log error(LOG_INFORM, "mysaf", sn, rq,
"Received %d byte(s)",
cl);
break;
}
if (rv == NETBUF_ERROR) {
log error(LOG FAILURE, "mysaf", sn, rq,
"Error reading request body (%s)",
cl, system errmsg());
break; }

cl += rv;

See Also

“netbuf_buf2sd” on page 88, “netbuf_close” on page 88, “netbuf_getc” on page 90,
“netbuf_grab” on page 91, “netbuf_open” on page 91

netbuf_getc

The netbuf_getc function retrieves a character from the cursor position of the network buffer
specified by b.

Note — Because the constant I0_EOF has a value of 0, netbuf_getc cannot be used to read data
that may contain a null character. To read binary data, use “netbuf_getbytes” on page 89 or
“netbuf_grab” on page 91.

Syntax

netbuf getc(netbuf b);

Returns

The integer representing the character if a character is retrieved, or the constant I0_EOF or
I0 ERROR for end of file or error.

Parameters

netbuf b is the buffer from which to retrieve one character.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

See Also

“netbuf_buf2sd” on page 88, “netbuf_close” on page 88, “netbuf_getbytes” on page 89,
“netbuf_grab” on page 91, “netbuf_open” on page 91

netbuf _grab

The netbuf_grab function reads sz number of bytes from the network buffer’s (buf) socket into
the network buffer. If the buffer is not large enough it is resized. The data can be retrieved from
buf->inbuf on success.

This function is used by the function netbuf_buf2sd.

Syntax

int netbuf _grab(netbuf *buf, int sz);

Returns

The number of bytes actually read (between 1 and sz) if the operation is successful, or the
constant I0 EOF or I0_ERROR for end of file or error.

Parameters

netbuf *buf is the buffer to read into.

int sz is the number of bytes to read.

See Also

“netbuf_buf2sd” on page 88, “netbuf_close” on page 88, “netbuf_getbytes” on page 89,
“netbuf_getc” on page 90, “netbuf_open” on page 91

netbuf_open

The netbuf_open function opens a new network buffer and returns it. You can use
netbuf_open to create a netbuf structure and start using buffered I/O on a socket.

Syntax

netbuf* netbuf open(SYS NETFD sd, int sz);

Returns

A pointer to a new netbuf structure (network buffer).

Chapter5 « NSAPI Function and Macro Reference 91

NSAPI Functions and Macros

92

Parameters

SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

See Also
“netbuf_buf2sd” on page 88, “netbuf_close” on page 88, “netbuf_getc” on page 90,
“netbuf_getbytes” on page 89, “netbuf_grab” on page 91

nsapi_module_init

Define the nsapi_module_init function, which is a module initialization entry point that
enables a plug-in to create filters when it is loaded. When an NSAPI module contains an
nsapi_module_init function, the server will call that function immediately after loading the
module. The nsapi_module_init presents the same interface asan Init SAF and it must
follow the same rules.

The nsapi_module_init function is used to register SAFs with func_insert, create filters with
filter_create, register virtual server initialization/destruction callbacks with
vs_register cb, and perform other initialization tasks.

Syntax

int nsapi module init(pblock *pb, Session *sn, Request *rq);

Returns

REQ_PROCEED on success, or REQ_ABORTED on error.

Parameters

pblock *pb is a set of parameters specified by the fn="1oad-modules" directive.
Session *sn (the Session) is NULL.

Request *rq (the Request) is NULL.

See Also

“filter_create” on page 73, “func_insert” on page 80, “vs_register_cb” on page 156

NSAPI_RUNTIME_VERSION

The NSAPI RUNTIME VERSION macro defines the NSAPI version available at runtime. This is the
same as the highest NSAPI version supported by the server the plug-in is running in. The
NSAPI version is encoded as in USE_NSAPI_VERSION.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

The value returned by the NSAPI_RUNTIME_VERSION macro is valid only in iPlanet™ Web Server
6.0, Netscape Enterprise Server 6.0, Sun ONE Web Server 6.1 and Sun Java System Web Server
7.0. That is, the server must support NSAPI 3.1 for this macro to return a valid value.
Additionally, to use NSAPI_RUNTIME_VERSION, you must compile againstan nsapi.h header file
that supports NSAPI 3.2 or higher.

You must not attempt to set the value of the NSAPI_RUNTIME_VERSION macro directly. Instead,
see the USE_NSAPI VERSION macro.

Syntax

int NSAPI_RUNTIME VERSION

Example

NSAPI PUBLIC int log nsapi runtime version(pblock *pb, Session *sn, Request *rq)
{
log error(LOG_INFORM, "log-nsapi-runtime-version", sn, rq,
"Server supports NSAPI version %d.%d\n",
NSAPI RUNTIME VERSION / 100,
NSAPI RUNTIME VERSION % 100);
return REQ PROCEED;

See Also

“filter_create” on page 73, “func_insert” on page 80, “vs_register_cb” on page 156

NSAPI_VERSION

The NSAPI_VERSION macro defines the NSAPI version used at compile time. This value is
determined by the value of the USE_NSAPI_VERSION macro or by the highest NSAPI version
supported by the nsapi.h header the plug-in was compiled against. The NSAPI version is
encoded as in USE_NSAPI VERSION.

You must not attempt to set the value of the NSAPI_VERSION macro directly. Instead, see the
USE_NSAPI VERSION macro.

Syntax

int NSAPI_VERSION

Chapter5 « NSAPI Function and Macro Reference 93

NSAPI Functions and Macros

94

Example

NSAPI PUBLIC int log nsapi_compile time version(pblock *pb, Session *sn, Request *rq)
{
log error(LOG INFORM, "log-nsapi-compile-time-version", sn, rq,
"Plugin compiled against NSAPI version %d.%d\n",
NSAPI VERSION / 100,
NSAPI VERSION % 100);
return REQ PROCEED;

See Also
“NSAPI_RUNTIME_VERSION” on page 92, “USE_NSAPI_VERSION” on page 136

P

param_create

The param_create function creates a pb_param structure containing a specified name and
value. The name and value are copied. Use this function to prepare a pb_param structure to be
used in calls to pblock routines such as pblock pinsert.

Syntax

pb _param *param create(char *name, char *value);

Returns

A pointer to a new pb_param structure.

Parameters

char *name is the string containing the name.

char *value is the string containing the value.

Example

pb_param *newpp = param_create("content-type", "text/plain");
pblock pinsert(newpp, rqg->srvhdrs);

See Also

“param_free” on page 95, “pblock_pinsert” on page 101, “pblock_remove” on page 102

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

param_free

The param_free function frees the pb_param structure specified by pp and its associated
structures. Use the param_free function to dispose a pb_param after removing it from a pblock
with pblock remove.

Syntax

int param free(pb param *pp);

Returns

1if the parameter is freed or 0 if the parameter is NULL.

Parameters

pb_param *pp is the name-value pair stored in a pblock.

Example

if (param free(pblock remove("content-type", rq-srvhdrs)))
return; /* we removed it */

See Also

“param_create” on page 94, “pblock_pinsert” on page 101, “pblock_remove” on page 102

pblock_copy

The pblock_copy function copies the entries of the source pblock and adds them into the
destination pblock. Any previous entries in the destination pblock are left intact.

Syntax

void pblock copy(pblock *src, pblock *dst);

Returns

void

Parameters

pblock *src is the source pblock.
pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be freed, or the new
pblock changed without affecting the original pblock.

Chapter5 « NSAPI Function and Macro Reference 95

NSAPI Functions and Macros

96

See Also

“pblock_create” on page 96, “pblock_dup” on page 96, “pblock_free” on page 98,
“pblock_find” on page 97, “pblock_findval” on page 97, “pblock_remove” on page 102,
“pblock_nvinsert” on page 99

pblock_create

The pblock_create function creates a new pblock. The pblock maintains an internal hash
table for fast name-value pair lookups. Because the pblock is allocated from the request's
memory pool, it should not be shared between threads.

Syntax

pblock *pblock create(int n);

Returns

A pointer to a newly allocated pblock.

Parameters

int n is the size of the hash table (number of name-value pairs) for the pblock.

See Also

“pblock_copy” on page 95, “pblock_dup” on page 96, “pblock_find” on page 97,
“pblock_findval” on page 97, “pblock_free” on page 98, “pblock_nvinsert” on page 99,
“pblock_remove” on page 102

pblock_dup

The pblock_dup function duplicates a pblock. It is equivalent to a sequence of pblock_create
and pblock_copy.

Syntax

pblock *pblock dup(pblock *src);

Returns

A pointer to a newly allocated pblock.

Parameters

pblock *src is the source pblock.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

See Also

“pblock_create” on page 96, “pblock_find” on page 97, “pblock_findval” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102

pblock_find

The pblock_find macro finds a specified name-value pair entry in a pblock, and returns the
pb_param structure. If you only want the value associated with the name, use the
pblock_findval function.

Note - Parameter names are case-sensitive. By convention, lowercase names are used for
parameters that correspond to HT'TP header fields.

Syntax

pb param *pblock find(char *name, pblock *pb);

Returns

A pointer to the pb_param structure if found, or NULL if name is not found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

See Also

“pblock_copy” on page 95, “pblock_dup” on page 96, “pblock_findval” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102

pblock_findval

The pblock findval function finds the value associated with a specified name in a pblock. If
you want the pb_param structure of the pblock, use the pblock_find function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to modify it, do a
STRDUP and modify the copy.

Note - Parameter names are case-sensitive. By convention, lowercase names are used for
parameters that correspond to HTTP header fields.

Chapter5 « NSAPI Function and Macro Reference 97

NSAPI Functions and Macros

98

Syntax

char *pblock findval(char *name, pblock *pb);

Returns

A string containing the value associated with the name if found, or NULL if no match is found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

Example

See “pblock_nvinsert” on page 99.

See Also

“pblock_create” on page 96, “pblock_copy” on page 95, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“request_header” on page 115

pblock_free

The pblock_free function frees a specified pblock and any entries inside it. If you want to save
avariable in the pblock, remove the variable using the function pblock_remove and save the
resulting pointer.

Syntax

void pblock free(pblock *pb);

Returns

void

Parameters

pblock *pb is the pblock to be freed.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_dup” on page 96,
“pblock_find” on page 97, “pblock_findval” on page 97, “pblock_nvinsert” on page 99,
“pblock_remove” on page 102

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

pblock_nninsert

The pblock_nninsert function creates a new entry with a given name and a numeric value in
the specified pblock. The numeric value is first converted into a string. The name and value
parameters are copied.

Note - Parameter names are case-sensitive. By convention, lowercase names are used for
parameters that correspond to HTTP header fields.

Syntax

pb _param *pblock nninsert(char *name, int value, pblock *pb);

Returns

A pointer to the new pb_param structure.

Parameters

char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This parameter must be an
integer. If the value you assign is not a number, then instead use the function pblock_nvinsert
to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“pblock_str2pblock” on page 102

pblock_nvinsert

The pblock_nvinsert function creates a new entry with a given name and character value in
the specified pblock. The name and value parameters are copied.

Note - Parameter names are case-sensitive. By convention, lowercase names are used for
parameters that correspond to HT'TP header fields.

Syntax

pb _param *pblock nvinsert(char *name, char *value, pblock *pb);

Chapter5 « NSAPI Function and Macro Reference 99

NSAPI Functions and Macros

100

Returns

A pointer to the newly allocated pb_param structure.

Parameters
char *name is the name of the new entry.
char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example

pblock nvinsert("content-type", "text/html", rg->srvhdrs);

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nninsert” on page 99, “pblock_remove” on page 102,
“pblock_str2pblock” on page 102

pblock_pb2env

The pblock_pb2env function copies a specified pblock into a specified environment. The
function creates one new environment entry for each name-value pair in the pblock. Use this
function to send pblock entries to a program that you are going to execute.

Syntax

char **pblock pb2env(pblock *pb, char **env);

Returns

A pointer to the environment.

Parameters

pblock *pb is the pblock to be copied.

char **env is the environment into which the pblock is to be copied.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“pblock_str2pblock” on page 102

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

pblock_pblock2str

The pblock_pblock2str function copies all parameters of a specified pblock into a specified
string. The function allocates additional non-heap space for the string if needed.

Use this function to stream the pblock for archival and other purposes.

Syntax

char *pblock pblock2str(pblock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, this is a new string; otherwise, itisa
reallocated string. In either case, it is allocated from the request’s memory pool.
Parameters

pblock *pb is the pblock to be copied.

char *stris the string into which the pblock is to be copied. It must have been allocated by
MALLOC or REALLOC, not by PERM_MALLOC or PERM_REALLOC (which allocate from the system
heap).

Each name-value pair in the string is separated from its neighbor pair by a space, and is in the
format name="value."
See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“pblock_str2pblock” on page 102

pblock_pinsert

The function pblock pinsert insertsapb_param structure into a pblock.

Note - Parameter names are case-sensitive. By convention, lowercase names are used for
parameters that correspond to HT'TP header fields.

Syntax

void pblock pinsert(pb param *pp, pblock *pb);

Returns

void

Chapter5 « NSAPI Function and Macro Reference 101

NSAPI Functions and Macros

102

Parameters

pb_param *pp is the pb_param structure to insert.

pblock *pb is the pblock.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“pblock_str2pblock” on page 102

pblock_remove

The pblock_remove macro removes a specified name-value entry from a specified pblock. If
you use this function, you must call param_free to deallocate the memory used by the pb_param
structure.

Syntax

pb param *pblock remove(char *name, pblock *pb);

Returns

A pointer to the named pb_param structure if it is found, or NULL if the named pb_param is not
found.

Parameters

char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “param_create” on page 94,
“param_free” on page 95

pblock_str2pblock

The pblock_str2pblock function scans a string for parameter pairs, adds them to a pblock,
and returns the number of parameters added.

Syntax

int pblock str2pblock(char *str, pblock *pb);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

The number of parameter pairs added to the pblock, ifany, or -1 ifan error occurs.

Parameters
char *str is the string to be scanned.
The name-value pairs in the string can have the format name=value or name="value."

All backslashes (\) must be followed by a literal character. If string values are found with no
unescaped = signs (no name=), it assumes the names 1, 2, 3, and so on, depending on the string
position. For example, if pblock str2pblock finds "some strings together," the function
treats the strings as if they appeared in name-value pairs as 1="some" 2="strings"
3="together."

pblock *pb is the pblock into which the name-value pairs are stored.

See Also

“pblock_copy” on page 95, “pblock_create” on page 96, “pblock_find” on page 97,
“pblock_free” on page 98, “pblock_nvinsert” on page 99, “pblock_remove” on page 102,
“pblock_pblock2str” on page 101

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the Clibrary routine calloc.
It allocates size bytes of memory and initializes the memory to zeros. The memory persists
after processing the current request has been completed. The memory should be explicitly freed
by a call to PERM_FREE.

Syntax

void *PERM CALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

char **name;
name = (char **) PERM CALLOC(100 * sizeof(char *));

Chapter5 « NSAPI Function and Macro Reference 103

NSAPI Functions and Macros

104

See Also

“CALLOC” on page 63, “PERM_FREE” on page 104, “PERM_STRDUP” on page 106,
“PERM_MALLOC?” on page 104, “PERM_REALLOC” on page 105

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library routine free. It
deallocates the persistent space previously allocated by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP.

Note - Calling PERM_FREE for a block that was allocated with MALLOC, CALLOC, or STRTUP will not
work.

Syntax

PERM FREE(void *ptr);

Returns

void

Parameters

void *ptrisa (void *) pointer to block of memory. If the pointer is not the one created by
PERM_MALLOC, PERM_CALLOC, or PERM_STRDUP, the behavior is undefined.

Example

char *name;
name = (char *) PERM _MALLOC(256);

PERM FREE (name) ;

See Also

“FREE” on page 78, “PERM_MALLOC” on page 104, “PERM_CALLOC” on page 103,
“PERM_REALLOC” on page 105, “PERM_STRDUP” on page 106

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the Clibrary routine malloc.
It provides allocation of memory that persists after the request that is being processed has been
completed.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

void *PERM MALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */
char *name;
name = (char *) PERM_MALLOC(256);

See Also

“MALLOC” on page 83, “PERM_FREE” on page 104, “PERM_STRDUP” on page 106,
“PERM_CALLOC” on page 103, “PERM_REALLOC” on page 105

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the Clibrary routine
realloc. It changes the size of a specified memory block that was originally created by
PERM_MALLOC, PERM_CALLOC, or PERM_STRDUP. The contents of the object remains unchanged up
to the lesser of the old and new sizes. If the new size is larger, the new space is uninitialized.

Caution - Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or STRDUP
does not work.

Syntax

void *PERM REALLOC(vod *ptr, int size)

Returns

A void pointer to a block of memory.

Parameters

void *ptravoid pointer to a block of memory created by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP.

int size is the number of bytes to which the memory block should be resized.

Chapter5 « NSAPI Function and Macro Reference 105

NSAPI Functions and Macros

106

Example

char *name;
name = (char *) PERM MALLOC(256);
if (NotBigEnough())
name = (char *) PERM REALLOC(name, 512);

See Also

“REALLOC” on page 113, “PERM_CALLOC” on page 103, “PERM_MALLOC” on page 104,
“PERM_FREE” on page 104, “PERM_STRDUP” on page 106

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the Clibrary routine strdup.
It creates a new copy of a string in memory that persists after the request that is being processed
has been completed. If pooled memory has been disabled in the configuration file (with the
pool-init built-in SAF), PERM_STRDUP and STRDUP both obtain their memory from the system
heap.

The PERM_STRDUP routine is functionally equivalent to:

newstr = (char *) PERM MALLOC(strlen(str) + 1);strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM_FREE.

Syntax

char *PERM _STRDUP(char *ptr);

Returns

A pointer to the new string.

Parameters

char *ptrisa pointer to a string.

See Also

“PERM_MALLOC” on page 104, “PERM_FREE” on page 104, “PERM_CALLOC” on page 103,
“PERM_REALLOC” on page 105, “MALLOC” on page 83, “FREE” on page 78, “STRDUP”
on page 121, “CALLOC” on page 63, “REALLOC” on page 113

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

prepare_nsapi_thread

The prepare_nsapi_thread function allows threads that are not created by the server to act
like server-created threads. This function must be called before any NSAPI functions are called
from a thread that is not server-created.

Syntax

void prepare nsapi_thread(Request *rq, Session *sn);

Returns

void

Parameters

Request *rq is the Request.
Session *sn is the Session.

The Request and Session parameters are the same as the ones passed into your SAF.

See Also

“protocol_start_response” on page 109

protocol_dump822

The protocol_dump822 function prints headers from a specified pblock into a specific buffer,
with a specified size and position. Use this function to serialize the headers so that they can be
sent, for example, in a mail message.

Syntax

char *protocol dump822(pblock *pb, char *t, int *pos, int tsz);

Returns

A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Chapter5 « NSAPI Function and Macro Reference 107

NSAPI Functions and Macros

Parameters

pblock *pb is the pblock structure.
char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.
int *pos is the position within the buffer at which the headers are to be dumped.

int tsz is the size of the buffer.

See Also

“protocol_start_response” on page 109, “protocol_status” on page 110

protocol_set_finfo

The protocol set finfo function retrieves the content-length and last-modified date
from a specified stat structure and adds them to the response headers (rq->srvhdrs). Call
protocol_set_finfo before calling protocol_start_response.

Syntax

int protocol set finfo(Session *sn, Request *rq, struct stat *finfo);

Returns

The constant REQ_PROCEED if the request can proceed normally, or the constant REQ_ABORTED if
the function should treat the request normally but not send any output to the client.

Parameters

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

stat *finfo is the stat structure for the file.

The stat structure contains the information about the file from the file system. You can get the

stat structure info using request_stat_path.

See Also

“protocol_start_response” on page 109, “protocol_status” on page 110

108 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

protocol_start_response

The protocol_start_response function initiates the HTTP response for a specified session
and request. If the protocol version is HTTP/0.9, the function does nothing, because that
version has no concept of status. If the protocol version is HTTP/1.0 or higher, the function
sends a status line followed by the response headers. Because of buffering, the status line and
response headers might not be sent immediately. To flush the status line and response headers,
use the net_flush function. Use this function to set up HTTP and prepare the client and server
to receive the body (or data) of the response.

Note - If you do not want the server to send the status line and response headers, set
rq->senthdrs = 1 before calling protocol_start_response or sending any data to the client.

Syntax

int protocol start response(Session *sn, Request *rq);

Returns

The constant REQ_PROCEED if the operation succeeds, in which case you should send the data
you were preparing to send.

The constant REQ_NOACTION if the operation succeeds but the request method is HEAD, in which
case no data should be sent to the client.

The constant REQ_ABORTED if the operation fails.

Parameters
Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

Example

/* REQ_NOACTION means the request was HEAD */
if (protocol start response(sn, rq) == REQ NOACTION)
{
filebuf close(groupbuf); /* close our file*/
return REQ PROCEED;
}

See Also

“protocol_status” on page 110, “net_flush” on page 84

Chapter5 « NSAPI Function and Macro Reference 109

NSAPI Functions and Macros

110

protocol_status

The protocol_status function sets the session status to indicate whether an error condition
occurred. If the reason string is NULL, the server attempts to find a reason string for the given
status code. If it finds none, it returns Unknown reason. The reason string is sent to the client in
the HTTP response line. Use this function to set the status of the response before calling the
function protocol start_response or returning REQ_ABORTED.

For the complete list of valid status code constants, refer to the nsapi. h file.

Syntax

void protocol status(Session *sn, Request *rq, int n, char *r);

Returns

void

Parameters

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAE.
int nisan HTTP status code constants above.

char *r is the reason string.

Example

/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock findval("path-info", rqg->vars))

{
protocol status(sn, rg, PROTOCOL_NOT_FOUND, NULL);
log error(LOG WARN, "function-name", sn, rq, "%s not found",path);
return REQ ABORTED;
}
See Also

“protocol_start_response” on page 109

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

protocol_uri2url

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form
http://(server): (port) (prefix) (suffix).Seeprotocol uri2url dynamic.

If you want to omit either the URI prefix or suffix, use " " instead of NULL as the value for either
parameter.

Syntax

char *protocol uri2url(char *prefix, char *suffix);

Returns

A new string containing the URL.

Parameters

char *prefix is the prefix.

char *suffix is the suffix.

See Also
“pblock_nvinsert” on page 99, “protocol_start_response” on page 109, “protocol_status”

on page 110, “protocol_uri2url_dynamic” on page 111

protocol_uri2url_dynamic

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form
http://(server):(port) (prefix) (suffix).

If you want to omit either the URI prefix or suffix, use " " instead of NULL as the value for either
parameter.

The protocol uri2url_dynamic function is similar to the protocol_uri2url function, but
should be used whenever the Session and Request structures are available. This ensures that
the URL it constructs refers to the host that the client specified.

Syntax

char *protocol uri2url(char *prefix, char *suffix, Session *sn, Request *rq);

Returns

A new string containing the URL.

Chapter5 « NSAPI Function and Macro Reference m

NSAPI Functions and Macros

Parameters

char *prefix is the prefix.
char *suffix is the suffix.
Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAE.

See Also

“protocol_start_response” on page 109, “protocol_status” on page 110

R

read

The read filter method is called when input data is required. Filters that modify or consume
incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to amount bytes of input
data. This data can be obtained by calling the “net_read” on page 85 function, as shown in the
example below.

Syntax

int read(FilterLayer *layer, void *buf, int amount, int timeout);

Returns

The number of bytes placed in buf on success. 0 if no data is available, or a negative value ifan
error OCcurs.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.
void *buf is the buffer in which data should be placed.
int amount is the maximum number of bytes that should be placed in the buffer.

int timeout is the number of seconds to allow the read operation to return. The purpose of
timeout is not to return because not enough bytes were read in the given time, but to limit the
amount of time devoted to waiting until some data arrives.

112 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Example

int myfilter read(FilterLayer *layer, void *buf, int amount, int timeout)

{

return net read(layer->lower, buf, amount, timeout);

}

See Also

“net_read” on page 85, “filter_create” on page 73

REALLOC

The REALLOC macro is a platform-independent substitute for the Clibrary routine realloc. It
changes the size of a specified memory block that was originally created by MALLOC, CALLOC, or
STRDUP. The contents of the object remains unchanged up to the lesser of the old and new sizes.
If the new size is larger, the new space is uninitialized.

Caution — Calling REALLOC for a block that was allocated with PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP will not work.

Syntax

void *REALLOC(void *ptr, int size);

Returns

A pointer to the new space if the request is satisfied.

Parameters

void *ptrisa (void *) pointer to a block of memory. If the pointer is not the one created by
MALLOC, CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example

char *name;
name = (char *) MALLOC(256);
if (NotBigEnough())
name = (char *) REALLOC(name, 512);

See Also

“CALLOC” on page 63, “MALLOC” on page 83, “FREE” on page 78, “STRDUP” on page 121,
“PERM_REALLOC” on page 105

Chapter5 « NSAPI Function and Macro Reference 113

NSAPI Functions and Macros

114

remove

The remove filter method is called when the filter stack is destroyed, or when a filter is removed
from a filter stack by the filter_remove function or remove-filter SAF.

Note - It may be too late to flush buffered data when the remove method is invoked. For this
reason, filters that buffer outgoing data should implement the flush filter method.

Syntax

void remove(FilterLayer *layer);

Returns

void

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.

See Also

“flush” on page 78, “filter_remove” on page 77, “filter_create” on page 73

request_get_vs

The request_get_vs function finds the VirtualServer* to which a request is directed.

The returned VirtualServer#* is valid only for the current request. To retrieve a virtual server
ID that is valid across requests, use “vs_get_id” on page 154.

Syntax

const VirtualServer* request get vs(Request* rq);

Returns

The VirtualServer* to which the request is directed.

Parameters

Request *rq is the request for which the VirtualServer* is returned.

See Also

“vs_get_id” on page 154

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

request_header

The request_header function finds an entry in the pblock containing the client’s HTTP
request headers (rq->headers). You must use this function rather than pblock_findval when
accessing the client headers, since the server might begin processing the request before the
headers have been completely read.

Syntax

int request header(char *name, char **value, Session *sn, Request *rq);

Returns

A result code, REQ PROCEED if the header was found, REQ_ ABORTED if the header was not found,
REQ_EXIT if there was an error reading from the client.

Parameters

char *name is the name of the header.

char **value is the address where the function will place the value of the specified header. If
none is found, the function stores a NULL.

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAFE.

See Also

request create, request free

request_stat_path

The request_stat_path function returns the file information structure for a specified path or,
if none is specified, the path entry in the vars pblock in the specified request structure. If the
resulting file name points to a file that the server can read, request_stat_path returns a new
file information structure. This structure contains information on the size of the file, its owner,
when it was created, and when it was last modified.

You should use request_stat_path to retrieve information on the file you are currently
accessing (instead of calling stat directly), because this function keeps track of previous calls
for the same path and returns its cached information.

Syntax

struct stat *request stat path(char *path, Request *rq);

Chapter5 « NSAPI Function and Macro Reference 115

NSAPI Functions and Macros

116

Returns

Returns a pointer to the file information structure for the file named by the path parameter. Do
not free this structure. Returns NULL if the file is not valid or the server cannot read it. In this
case, it also leaves an error message describing the problem in rq->staterr.

Parameters

char *path is the string containing the name of the path. If the value of path is NULL, the
function uses the path entry in the vars pblock in the request structure denoted by rg.

Request *rq is the request identifier for a Server Application Function call.

Example

fi = request stat path(path, rq);

See Also

request_create, request_free, “request_header” on page 115

request_translate_uri

The request_translate_uri function performs virtual to physical mapping on a specified URI
during a specified session. Use this function to determine the file to be sent back if a given URI is
accessed.

Syntax

char *request_translate_uri(char *uri, Session *sn);

Returns

A path string if it performed the mapping, or NULL if it could not perform the mapping.

Parameters

char *uri is the name of the URI.

Session *sn is the Session parameter that is passed into your SAE.

See Also

request_create, request_free, “request_header” on page 115

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

S

sendfile

The sendfile filter method is called when the contents of a file are to be sent. Filters that
modify or consume outgoing data can choose to implement the sendfile filter method.

Ifa filter implements the write filter method but not the sendfile filter method, the server will
automatically translate “net_sendfile” on page 86 calls to “net_write” on page 87 calls. Asa
result, filters interested in the outgoing data stream do not need to implement the sendfile
filter method. However, for performance reasons, it is beneficial for filters that implement the
write filter method to also implement the sendfile filter method.

Syntax

int sendfile(FilterLayer *layer, const sendfiledata *data);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.

const sendfiledata *sfd identifies the data to send.

Example
int myfilter sendfile(FilterLayer *1layer, const sendfiledata *sfd)
{
return net_sendfile(layer->lower, sfd);
}
See Also

“net_sendfile” on page 86, “filter_create” on page 73

session_dns

The session_dns function resolves the IP address of the client associated with a specified
session into its DNS name. It returns a newly allocated string. You can use session_dns to
change the numeric IP address into something more readable.

The session maxdns function verifies that the client is who it claims to be; the session dns
function does not perform this verification.

Chapter5 « NSAPI Function and Macro Reference 17

NSAPI Functions and Macros

118

Note - This function works only if the DNS directive is enabled in the magnus . conf file. For more
information, see Appendix B.

Syntax

char *session dns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAE

session_maxdns

The session_maxdns function resolves the IP address of the client associated with a specified
session into its DNS name. It returns a newly allocated string. You can use session_maxdns to
change the numeric IP address into something more readable.

Note - This function works only if the DNS directive is enabled in the magnus . conf file. For more
information, see Appendix B.

Syntax

char *session maxdns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAE

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

shexp_casecmp

The shexp_casecmp function validates a specified shell expression and compares it with a
specified string. It returns one of three possible values representing match, no match, and
invalid comparison. The comparison (in contrast to that of the shexp_cmp function) is not
case-sensitive.

Use this function if you have a shell expression like *. netscape. com and make sure that a string

matches it, such as foo.netscape. com.

Syntax

int shexp casecmp(char *str, char *exp);

Returns

0 if a match was found.
1if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See Also

“shexp_cmp” on page 119, “shexp_match” on page 120, “shexp_valid” on page 121

shexp_cmp

The shexp_cmp function validates a specified shell expression and compares it with a specified
string. It returns one of three possible values representing match, no match, and invalid
comparison. The comparison (in contrast to that of the shexp_casecmp function) is
case-sensitive.

Use this function for a shell expression like *. netscape. com and make sure that a string
matches it, such as foo.netscape.com.

Syntax

int shexp_cmp(char *str, char *exp);

Chapter5 « NSAPI Function and Macro Reference 119

NSAPI Functions and Macros

120

Returns

0 if a match was found.
1 if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example

/* Use wildcard match to see if this path is one we want */
char *path;

char *match = "/usr/netscape/*";

if (shexp_cmp(path, match) !'= 0)
return REQ NOACTION; /* no match */

See Also

“shexp_casecmp” on page 119, “shexp_match” on page 120, “shexp_valid” on page 121

shexp_match

The shexp_match function compares a specified pre-validated shell expression against a
specified string. It returns one of three possible values representing match, no match, and
invalid comparison. The comparison (in contrast to that of the shexp_casecmp function) is
case-sensitive.

The shexp_match function does not perform validation of the shell expression; instead the
function assumes that you have already called shexp_valid.

Use this function for a shell expression such as *.netscape. com, and make sure that a string

matches it, such as foo.netscape.com.

Syntax

int shexp match(char *str, char *exp);

Returns

0 if a match was found.
1if no match was found.

-1if the comparison resulted in an invalid expression.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Parameters

char *str is the string to be compared.

char *exp is the prevalidated shell expression (wildcard pattern) to compare against.

See Also

“shexp_casecmp” on page 119, “shexp_cmp” on page 119, “shexp_valid” on page 121

shexp_valid

The shexp_valid function validates a specified shell expression named by exp. Use this
function to validate a shell expression before using the function shexp_match to compare the
expression with a string.

Syntax

int shexp valid(char *exp);

Returns
The constant NON_SXP if exp is a standard string.
The constant INVALID_SXP if exp is a shell expression, but invalid.

The constant VALID_SXP if exp is a valid shell expression.

Parameters

char *exp is the shell expression (wildcard pattern) to be validated.

See Also

“shexp_casecmp” on page 119, “shexp_match” on page 120, “shexp_cmp” on page 119

STRDUP

The STRDUP macro is a platform-independent substitute for the Clibrary routine strdup. It
creates a new copy of a string in the request’s memory pool. The memory can be explicitly freed
by a call to FREE. If the memory is not explicitly freed, it is automatically freed after processing
the current request. If pooled memory has been disabled in the configuration file (with the
pool-init built-in SAF), PERM_STRDUP and STRDUP both obtain their memory from the system
heap. However, since the memory allocated by STRDUP is automatically freed, it should not be
shared between threads.

Chapter5 « NSAPI Function and Macro Reference 121

NSAPI Functions and Macros

122

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

Syntax

char *STRDUP(char *ptr);

Returns

A pointer to the new string.

Parameters

char *ptrisa pointer to a string.

Example

char *namel = "MyName";
char *name2 = STRDUP(namel);

See Also
“CALLOC” on page 63,“MALLOC” on page 83, “FREE” on page 78, “REALLOC” on page 113,
“PERM_STRDUP” on page 106

system_errmsg

The system_errmsg function returns the last error that occurred from the most recent system
call. This function is implemented as a macro that returns an entry from the global array
sys_errlist. Use this macro to help with I/O error diagnostics.

Syntax

char *system errmsg(int paraml);

Returns

A string containing the text of the latest error message that resulted from a system call. Do not
FREE this string.

Parameters

int paraml is reserved, and should always have the value 0.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

See Also

“system_fopenRO” on page 124, “system_fopenRW” on page 124, “system_fopenWA” on page
125, “system_lseek” on page 129, “system_fread” on page 126, “system_fwrite” on page 126,
“system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_fclose

The system fclose function closes a specified file descriptor. The system_fclose function
must be called for every file descriptor opened by any of the system_fopen functions.

Syntax

int system fclose(SYS FILE fd);

Returns

0 if the close succeeds, or the constant I0_ERROR if the close fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

Example

SYS FILE logfd;
system fclose(logfd);

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_lseek” on page 129, “system_fread” on page 126,
“system_fwrite” on page 126, “system_fwrite_atomic” on page 127, “system_flock” on page 123,
“system_ulock” on page 130

system_flock

The system_flock function locks the specified file against interference from other processes.
Use system_flock if you do not want other processes to use the file you currently have open.
Overusing file locking can cause performance degradation and possibly lead to deadlocks.

Syntax

int system flock(SYS FILE fd);

Chapter5 « NSAPI Function and Macro Reference 123

NSAPI Functions and Macros

124

Returns

The constant I0 OKAY if the lock succeeds, or the constant I0 ERROR if the lock fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW?” on page
124, “system_fopenWA” on page 125, “system_lseek” on page 129, “system_fread” on page 126,
“system_fwrite” on page 126, “system_fwrite_atomic” on page 127, “system_ulock” on page 130,
“system_fclose” on page 123

system_fopenRO

The system_fopenR0 function opens the file identified by path in read-only mode and returns a
valid file descriptor. Use this function to open files that will not be modified by your program. In
addition, you can use system_fopenRO to open a new file buffer structure using filebuf_open.

Syntax

SYS FILE system fopenRO(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeds, or 0 if the open fails.

Parameters

char *path is the file name.

See Also

“system_errmsg” on page 122, “system_fopenRW” on page 124, “system_fopenWA” on page
125, “system_lseek” on page 129, “system_fread” on page 126, “system_fwrite” on page 126,
“system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_fopenRW

The system_fopenRW function opens the file identified by path in read-write mode and returns
avalid file descriptor. If the file already exists, system_fopenRW does not truncate it. Use this
function to open files that can be read and written by your program.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

SYS FILE system fopenRW(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeds, or @ if the open fails.

Parameters

char *path is the file name.

Example

SYS FILE fd;

fd = system fopenRO(pathname);
if (fd == SYS_ERROR FD)

break;

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenWA” on page
125, “system_Iseek” on page 129, “system_fread” on page 126, “system_fwrite” on page 126,
“system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_fopenWA

The system_fopenWA function opens the file identified by path in write-append mode and
returns a valid file descriptor. Use this function to open those files to which your program will
append data.

Syntax

SYS FILE system fopenWA(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeds, or @ if the open fails.

Parameters

char *path is the file name.

Chapter5 « NSAPI Function and Macro Reference 125

NSAPI Functions and Macros

126

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW?” on page
124, “system_lseek” on page 129, “system_fread” on page 126, “system_fwrite” on page 126,
“system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_fread

The system_fread function reads a specified number of bytes from a specified file into a
specified buffer. It returns the number of bytes read. Before system_fread can be used, you
must open the file using any of the system_fopen functions (except system_fopenWA).
Syntax

int system fread(SYS FILE fd, char *buf, int sz);

Returns

The number of bytes read, which may be less than the requested size if an error occurs, or the
end of the file was reached before that number of characters were obtained.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_lseek” on page 129, “system_fwrite” on page 126,
“system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_fwrite

The system_fwrite function writes a specified number of bytes from a specified buffer into a
specified file.

Before system_fwrite can be used, you must open the file using any of the system_fopen
functions (except system_fopenR0).

Syntax

int system fwrite(SYS FILE fd, char *buf, int sz);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

The constant I0_OKAY if the write succeeds, or the constant I0_ERROR if the write fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_lseek” on page 129, “system_fread” on page 126,
“system_fwrite” on page 126, “system_fwrite_atomic” on page 127, “system_£flock” on page 123,
“system_ulock” on page 130, “system_fclose” on page 123

system_fwrite_atomic

The system_fwrite_atomic function writes a specified number of bytes from a specified buffer
into a specified file. This function also locks the file prior to performing the write, and then
unlocks it when done, thereby avoiding interference between simultaneous write actions.
Before system_fwrite_atomic can be used, you must open the file using any of the
system_fopen functions, except system_fopenRO.

Syntax

int system fwrite atomic(SYS FILE fd, char *buf, int sz);

Returns

The constant I0 OKAY if the write/lock succeeds, or the constant I0 ERROR if the write/lock fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.
int sz is the number of bytes to write to the file.

Example

SYS FILE logfd;
char *logmsg = "An error occurred.";
system fwrite atomic(logfd, logmsg, strlen(logmsg));

Chapter5 « NSAPI Function and Macro Reference 127

NSAPI Functions and Macros

128

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_lseek” on page 129, “system_fread” on page 126,
“system_fwrite” on page 126, “system_flock” on page 123, “system_ulock” on page 130,
“system_fclose” on page 123

system_gmtime

The system gmtime function is a thread-safe version of the standard gmtime function. It returns
the current time adjusted to Greenwich Mean Time.

Syntax

struct tm *system gmtime(const time_t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the GMT time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically-allocated item. For portability, do not assume either situation.

Parameters

time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example

time t tp;

struct tm res, *resp;

tp = time(NULL);

resp = system gmtime(&tp, &res);

See Also

“system_localtime” on page 128, “util_strftime” on page 147

system_localtime

The system localtime function is a thread-safe version of the standard localtime function. It
returns the current time in the local time zone.

Syntax

struct tm *system localtime(const time t *tp, const struct tm *res);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

A pointer to a calendar time (tm) structure containing the local time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically-allocated item. For portability, do not assume either situation.

Parameters

time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

See Also

“system_gmtime” on page 128, “util_strftime” on page 147

system_lseek

The system_1lseek function sets the file position of a file. This affects where data from
system fread or system fwrite isread or written.

Syntax

int system lseek(SYS FILE fd, int offset, int whence);

Returns

The offset, in bytes, of the new position from the beginning of the file if the operation succeeds,
or -1ifthe operation fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

int offset isa number of bytes relative to whence. It may be negative.
int whence is one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.

Chapter5 « NSAPI Function and Macro Reference 129

NSAPI Functions and Macros

130

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_fread” on page 126, “system_fwrite” on page
126, “system_fwrite_atomic” on page 127, “system_£flock” on page 123, “system_ulock”

on page 130, “system_fclose” on page 123

system_rename

The system rename function renames a file. It does not work on directories if the old and new
directories are on different file systems.

Syntax

int system rename(char *old, char *new);

Returns

0 if the operation succeeds, or - 1 if the operation fails.

Parameters

char *old is the old name of the file.

char *new is the new name for the file.

system_ulock

The system_ulock function unlocks the specified file that has been locked by the function
system_lock. For more information about locking, see system_flock.

Syntax

int system ulock(SYS_FILE fd);

Returns

The constant I0_OKAY if the operation succeeds, or the constant I0_ERROR if the operation fails.

Parameters

SYS_FILE fd is the platform-independent file descriptor.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

See Also

“system_errmsg” on page 122, “system_fopenRO” on page 124, “system_fopenRW” on page
124, “system_fopenWA” on page 125, “system_fread” on page 126, “system_fwrite” on page
126, “system_fwrite_atomic” on page 127, “system_flock” on page 123, “system_fclose”

on page 123

system_unix2local

The system_unix2local function converts a specified UNIX-style path name to a local file
system path name. Use this function when you have a file name in the UNIX format (such as
one containing forward slashes), and you need to access a file on another system such as
Windows. You can use system unix2local to convert the UNIX file name into the format that
Windows accepts. In the UNIX environment this function does nothing, but can be called for
portability.

Syntax

char *system unix2local(char *path, char *1p);

Returns

A pointer to the local file system path string.

Parameters

char *path is the UNIX-style path name to be converted.

char *1p is the local path name.

You must allocate the parameter 1p, and it must contain enough space to hold the local path

name.

See Also

“system_fclose” on page 123, “system_flock” on page 123, “system_fopenRO” on page 124,
“system_fopenRW?” on page 124, “system_fopenWA” on page 125, “system_fwrite” on page 126

systhread_attach

The systhread_attach function makes an existing thread into a platform-independent thread.

Syntax

SYS THREAD systhread attach(void);

Chapter5 « NSAPI Function and Macro Reference 131

NSAPI Functions and Macros

132

Returns

A SYS_THREAD pointer to the platform-independent thread.

Parameters

none

See Also

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_newkey”
on page 133, “systhread_setdata” on page 133, “systhread_sleep” on page 134, “systhread_start
on page 134, “systhread_timerset” on page 135

»

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax

SYS _THREAD systhread current(void);

Returns

A SYS_THREAD pointer to the current thread.

Parameters

none

See Also

“systhread_getdata” on page 132, “systhread_newkey” on page 133, “systhread_setdata”
on page 133, “systhread_sleep” on page 134, “systhread_start” on page 134, “systhread_timerset”
on page 135

systhread_getdata
The systhread_getdata function gets data that is associated with a specified key in the current

thread.

Syntax

void *systhread getdata(int key);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

A pointer to the data that was earlier used with the systhread_setkey function from the
current thread, using the same value of key if the call succeeds. Returns NULL if the call does
not succeed; for example, if the systhread setkey function was never called with the specified
key during this session.

Parameters

int key is the value associated with the stored data by a systhread_setdata function. Keys are
assigned by the systhread_newkey function.

See Also

“systhread_current” on page 132, “systhread_newkey” on page 133, “systhread_setdata”
on page 133, “systhread_sleep” on page 134, “systhread_start” on page 134, “systhread_timerset”
on page 135

systhread_newkey

The systhread_newkey function allocates a new integer key (identifier) for thread-private data.
Use this key to identify a variable that you want to localize to the current thread, then use the
systhread_setdata function to associate a value with the key.

Syntax

int systhread newkey(void);

Returns

An integer key.

Parameters

none

See Also

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_setdata”
on page 133, “systhread_sleep” on page 134, “systhread_start” on page 134, “systhread_timerset”
on page 135

systhread_setdata

The systhread_setdata function associates data with a specified key number for the current
thread. Keys are assigned by the systhread_newkey function.

Chapter5 « NSAPI Function and Macro Reference 133

NSAPI Functions and Macros

134

Syntax

void systhread setdata(int key, void *data);

Returns

void

Parameters

int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of key.

See Also

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_newkey”
on page 133, “systhread_sleep” on page 134, “systhread_start” on page 134,
“systhread_timerset” on page 135

systhread_sleep

The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax

void systhread sleep(int milliseconds);

Returns

void

Parameters

int milliseconds is the number of milliseconds the thread is to sleep.

See Also

>

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_newkey’
on page 133, “systhread_setdata” on page 133, “systhread_start” on page 134,
“systhread_timerset” on page 135

systhread_start

The systhread_start function creates a thread with the given priority, allocates a stack of a
specified number of bytes, and calls a specified function with a specified argument.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

SYS THREAD systhread start(int prio, int stksz, void (*fn)(void *), void *arg);

Returns

A new SYS_THREAD pointer if the call succeeds, or the constant SYS THREAD ERROR if the call
does not succeed.

Parameters

int prio is the priority of the thread. Priorities are system-dependent.
int stksz is the stack size in bytes. If stksz is zero (@), the function allocates a default size.
void (*fn) (void *) is the function to call.

void *arg is the argument for the fn function.

See Also

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_newkey”
on page 133, “systhread_setdata” on page 133, “systhread_sleep” on page 134,
“systhread_timerset” on page 135

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for a thread
system.

Because most systems do not allow the timer interval to be changed, this should be considered a
suggestion, rather than a command.

Syntax

void systhread timerset(int usec);

Returns

void

Parameters

int usec is the time, in microseconds

Chapter5 « NSAPI Function and Macro Reference 135

NSAPI Functions and Macros

136

See Also

“systhread_current” on page 132, “systhread_getdata” on page 132, “systhread_newkey”
on page 133, “systhread_setdata” on page 133, “systhread_sleep” on page 134, “systhread_start”
on page 134

U

USE_NSAPI_VERSION

Plug-in developers can define the USE_NSAPI_VERSION macro before including the nsapi.h
header file to request a particular version of NSAPI. The requested NSAPI version is encoded by
multiplying the major version number by 100 and then adding this to the minor version
number. For example, the following code requests NSAPI 3.2 features:

#define USE_NSAPI_VERSION 302 /* We want NSAPI 3.2 (Web Server 6.1) */
#include "nsapi.h"

To develop a plug-in that is compatible across multiple server versions, define
USE_NSAPI_VERSION to the highest NSAPI version supported by all of the target server versions.

The following table lists server versions and the highest NSAPI version supported by each:

TABLE 5-2 NSAPI Versions Supported by Different Servers

ServerVersion NSAPIVersion
iPlanet Web Server 4.1 3.0
iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun ONE Application Server 7.0 3.1
Sun ONE Web Server 6.1 32
Sun Java System Web Proxy Server 4.0 3.3
Sun Java System Web Server 7.0 33

Itis an error to request a version of NSAPI higher than the highest version supported by the
nsapi.h header that the plug-in is being compiled against. Additionally, to use
USE_NSAPI_VERSION, you must compile against an nsapi.h header file that supports NSAPI 3.2
or higher.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

int USE NSAPI VERSION

Example

The following code can be used when building a plug-in designed to work with iPlanet Web
Server 4.1 and Sun Java System Web Server 7.0:

#define USE NSAPI VERSION 300 /* We want NSAPI 3.0 (Web Server 4.1) */
#include "nsapi.h"

See Also
“NSAPI_RUNTIME_VERSION” on page 92, “NSAPI_VERSION” on page 93

util_can_exec

UNIX Only

The util_can_exec function checks that a specified file can be executed, returning eithera 1
(executable) or a 0. The function checks if the file can be executed by the user with the given
user and group ID.

Use this function before executing a program using the exec system call.

Syntax

int util can_exec(struct stat *finfo, uid t uid, gid t gid);

Returns

1if the file is executable, or 0 if the file is not executable.

Parameters

stat *finfo is the stat structure associated with a file.
uid tuid is the UNIX user id.

gid_t gid is the UNIX group id. Together with uid, this determines the permissions of the
UNIX user.

See Also

“util_env_create” on page 139, “util_getline” on page 141, “util_hostname” on page 142

Chapter5 « NSAPI Function and Macro Reference 137

NSAPI Functions and Macros

138

util_chdir2path

The util_chdir2path function changes the current working directory. Because a server
process can service multiple requests concurrently but has only a single current working
directory, this function should not be used.

Syntax

int util chdir2path(char *path);

Returns

0 if the directory change succeeds, or -1 if the directory can not bee changed.

Parameters

char *path is the name of a directory.
The parameter must be a writable string.

util_cookie_ find

The util_cookie_find function finds a specific cookie in a cookie string and returns its value.

Syntax

char *util cookie find(char *cookie, char *name);

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie. Otherwise, returns
NULL. This function modifies the cookie string parameter by null-terminating the name and
value.

Parameters

char *cookie is the value of the Cookie: request header.

char *name is the name of the cookie whose value is to be retrieved.

util_env_find

The util_env_find function locates the string denoted by a name in a specified environment
and returns the associated value. Use this function to find an entry in an environment.

Syntax

char *util env_find(char **env, char *name);

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Returns

The value of the environment variable if it is found, or NULL if the string was not found.

Parameters

char **env is the environment.

char *name is the name of an environment variable in env.

See Also
“util_env_replace” on page 140, “util_env_str” on page 140, “util_env_free” on page 139,

“util_env_create” on page 139

util_env_create

The util_env_create function creates and allocates the environment specified by env, returns
a pointer to the environment. If the parameter env is NULL, the function allocates a new
environment. Use util_env_create to create an environment when executing a new program.

Syntax

#include <base/util.h>
char **util_env_create(char **env, int n, int *pos)

Returns

A pointer to an environment.

Parameters

char **env is the environment or NULL.
int n is the maximum number of environment entries that you want in the environment.

int *pos is an integer that keeps track of the number of entries used in the environment.

See Also
“util_env_replace” on page 140, “util_env_str” on page 140, “util_env_free” on page 139,

“util_env_find” on page 138

util_env_free

The util_env_free function frees a specified environment. Use this function to deallocate an
environment you created using the function util_env_create.

Chapter5 « NSAPI Function and Macro Reference 139

NSAPI Functions and Macros

140

Syntax

void util env free(char **env);

Returns

void

Parameters

char **env is the environment to be freed.

See Also

“util_env_replace” on page 140, “util_env_str” on page 140, “util_env_create” on page 139,
“util_env_create” on page 139

util_env_replace

The util_env_replace function replaces the occurrence of the variable denoted by aname in a
specified environment with a specified value. Use this function to change the value of a setting
in an environment.

Syntax

void util env_replace(char **env, char *name, char *value);

Returns

void

Parameters

char **env is the environment.
char *name is the name of a name-value pair.

char *value is the new value to be stored.

See Also

“util_env_str” on page 140, “util_env_free” on page 139, “util_env_create” on page 139,
“util_env_create” on page 139

util_env_str

The util_env_str function creates an environment entry and returns it. This function does
not check for non-alphanumeric symbols in the name (such as the equal sign “=”). You can use
this function to create a new environment entry.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Syntax

char *util env str(char *name, char *value);

Returns

A newly allocated string containing the name-value pair.

Parameters

char *name is the name of a name-value pair.

char *value is the new value to be stored.

See Also

“util_env_replace” on page 140, “util_env_free” on page 139, “util_env_create” on page 139,
“util_env_create” on page 139

util_getline

The util_getline function scans the specified file buffer to find a line feed or carriage
return/line feed terminated string. The string is copied into the specified buffer, and
NULL-terminates it. The function returns a value that indicates whether the operation stored a
string in the buffer, encountered an error, or reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax

int util getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns

0 if successful; 1ine contains the string.
1if the end of file is reached; line contains the string.

-1ifan error occurs; line contains a description of the error.

Parameters

filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an error occurs. The
caller is responsible for making sure the line number is accurate.

Chapter5 « NSAPI Function and Macro Reference 141

NSAPI Functions and Macros

142

int maxlen is the maximum number of characters that can be written into 1.
char *1 is the buffer in which to store the string. The user is responsible for allocating and

deallocating line.

util_hostname

The util_hostname function retrieves the local host name and returns it as a string. If the
function cannot find a fully-qualified domain name, it returns NULL. You can reallocate or free
this string. Use this function to determine the name of the system you are on.

Syntax

char *util hostname(void);

Returns

A string containing that name, if a fully-qualified domain name is found; otherwise, returns
NULL.

Parameters

none

util_is_mozilla

The util_is_mozilla function checks whether a specified user-agent header string is a mozilla
browser of at least a specified revision level, returning a 1 if it is, and @ otherwise. It uses strings
to specify the revision level to avoid ambiguities such as 1.56 > 1.5.

Syntax

int util is mozilla(char *ua, char *major, char *minor);

Returns

1ifthe user-agent is a mozilla browser, or 0 if the user-agent is not a mozilla browser.

Parameters

char *ua is the user-agent string from the request headers.
char *major is the major release number (to the left of the decimal point).

char *minor is the minor release number (to the right of the decimal point).

See Also

“util_is_url” on page 143, “util_later_than” on page 143

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

util_is_url

The util_is_url function checks whether a string is a URL, returns 1 ifitisa URL and @
otherwise. The string is a URL if it begins with alphabetic characters followed by a colon (:).

Syntax

int util is url(char *url);

Returns

1if the string specified by urlis a URL, or @ if the string specified by urlis nota URL.

Parameters

char *url is the string to be examined.

See Also

“util_is_mozilla” on page 142, “util_later_than” on page 143

util_itoa

The util_itoa function converts a specified integer to a string, and returns the length of the
string. Use this function to create a textual representation of a number.

Syntax

int util itoa(int i, char *a);

Returns

The length of the string created.

Parameters

int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the allocation
and deallocation of a, and it should be at least 32 bytes long.

util_later_than

The util_later_than function compares the date specified in a time structure against a date
specified in a string. If the date in the string is later than or equal to the one in the time structure,
the function returns 1. Use this function to handle REC 822, REC 850, and ctime formats.

Chapter5 « NSAPI Function and Macro Reference 143

NSAPI Functions and Macros

Syntax

int util later_than(struct tm *lms, char *ims);

Returns

1if the date represented by ims is the same as or later than that represented by the ms, or 0 if the
date represented by ims is earlier than that represented by the ms.

Parameters

tm *1ms is the time structure containing a date.

char *ims is the string containing a date.

See Also

“util_strftime” on page 147

util_sh_escape

The util_sh_escape function parses a specified string and places a backslash (\) in front of
any shell-special characters, returning the resultant string. Use this function to ensure that
strings from clients do not cause a shell to do anything unexpected.

The shell-special characters are the space plus the following characters:

&; X2~ () [1{3$\#!

Syntax

char *util sh_escape(char *s);

Returns

A newly allocated string.

Parameters

char *s is the string to be parsed.

See Also

“atil_uri_escape” on page 148

144 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

util_snprintf

The util_snprintf function formats a specified string, using a specified format, into a
specified buffer using the printf-style syntax and performs bounds checking. It returns the
number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of

your compiler.

Syntax

int util snprintf(char *s, int n, char *fmt, ...);

Returns

The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.
int nis the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings; it does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

See Also

“util_sprintf” on page 145, “util_vsnprintf” on page 150, “util_vsprintf” on page 151

util_sprintf

The util_sprintf function formats a specified string, using a specified format, into a specified
buffer, using the printf-style syntax without bounds checking. It returns the number of
characters in the formatted buffer.

Because util_sprintf does not perform bounds checking, use this function only if you are
certain that the string fits the buffer. Otherwise, use the function util_snprintf. For more
information, see the documentation on the printf function for the runtime library of your
compiler.

Syntax

int util sprintf(char *s, char *fmt, ...);

Chapter5 « NSAPI Function and Macro Reference 145

NSAPI Functions and Macros

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings; it does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

Example

char *logmsg;

int len;

logmsg = (char *) MALLOC(256);
len = util sprintf(logmsg, "%s %s %s\n", ip, method, uri);

See Also

“atil_snprintf” on page 145, “util_vsnprintf” on page 150, “util_vsprintf” on page 151

util_strcasecmp

The util_strcasecmp function performs a comparison of two alphanumeric strings and
returns a -1, @, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

Syntax

int util strcasecmp(const char *sl, const char *s2);

Returns

1if s1is greater than s2.
0ifslisequaltos2.

-lifslislessthans2.

Parameters

char *s1 is the first string.

char *s2 is the second string.

146 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

See Also

“util_strncasecmp” on page 147

util_strftime

The util_strftime function translates a tm structure, which is a structure describing a system
time, into a textual representation. It is a thread-safe version of the standard strftime function.

Syntax

int util strftime(char *s, const char *format, const struct tm *t);

Returns

The number of characters placed into s, not counting the terminating NULL character.

Parameters

char *s is the string buffer to put the text into. There is no bounds checking, so you must make
sure that the buffer is large enough for the text of the date.

const char *format is a format string, a bit like a printf string in that it consists of text with
certain %x substrings. You can use the constant HTTP_DATE_FMT to create date strings in the
standard Internet format. For more information, see the documentation on the printf
function for the runtime library of your compiler. For more information on time formats, see
the Sun Java System Web Server 7.0 Administrator’s Configuration File Reference.

const struct tm*t is a pointer to a calendar time (tm) structure, usually created by the

function system localtime or system_gmtime.

See Also

“system_localtime” on page 128, “system_gmtime” on page 128

util_strncasecmp

The util_strncasecmp function performs a comparison of the first n characters in the
alphanumeric strings and returns a -1, 0, or 1 to signal which is larger or that they are identical.

The function’s comparison is not case-sensitive.

Syntax

int util strncasecmp(const char *sl, const char *s2, int n);

Chapter5 « NSAPI Function and Macro Reference 147

NSAPI Functions and Macros

148

Returns

1if s1isgreater than s2.
0ifslisequaltos2.

-lifslislessthans2.

Parameters

char *s1 is the first string.
char *s2 is the second string.

int n is the number of initial characters to compare.

See Also

“util_strcasecmp” on page 146

util_uri_escape

The util_uri_escape function converts any special characters in the URI into the URI format
(%XX, where XX is the hexadecimal equivalent of the ASCII character), and returns the escaped
string. The special characters are %?#:+&*" <>, space, carriage return, and line feed.

Useutil_uri_escape before sendinga URI back to the client.

Syntax

char *util uri_escape(char *d, char *s);

Returns

The string (possibly newly allocated) with escaped characters replaced.

Parameters

char *d is a string. If d is not NULL, the function copies the formatted string into d and returns
it. If d is NULL, the function allocates a properly sized string and copies the formatted special
characters into the new string, then returns it.

Theutil uri_escape function does not check bounds for the parameter d. Therefore, if d is
not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URIL.

See Also

“atil_uri_is_evil” on page 149, “util_uri_parse” on page 149, “util_uri_unescape” on page 150

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

util_uri_is_evil

Theutil uri is evil function checks a specified URI for insecure path characters. Insecure
path charactersinclude //,/./,/../and/., /.. (also for Windows. /) at the end of the URL.
Use this function to see if a URI requested by the client is insecure.

Syntax

int util uri is evil(char *t);

Returns
1ifthe URI is insecure, or 0 if the URI is OK.

Parameters

char *t is the URI to be checked.

See Also

“util_uri_parse” on page 149, “util_uri_escape” on page 148

util_uri_parse

Theutil_uri_parse function converts //,/./,and /*/. ./ into / in the specified URI (where *
is any character other than /). You can use this function to convert a URI’s bad sequences into
valid ones. First, use the function util uri_is_ evil to determine whether the function hasa
bad sequence.

Syntax

void util uri parse(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

See Also

“atil_uri_is_evil” on page 149, “util_uri_unescape” on page 150

Chapter5 « NSAPI Function and Macro Reference 149

NSAPI Functions and Macros

150

util_uri_unescape

The util uri unescape function converts the encoded characters of a URI into their ASCIT
equivalents. Encoded characters appear as %XX, where XX is a hexadecimal equivalent of the
character.

Note - You cannot use an embedded null in a string, because NSAPI functions assume that a null
is the end of the string. Therefore, passing unicode-encoded content through an NSAPI plug-in
does not work.

Syntax

void util uri_unescape(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

See Also

“atil_uri_escape” on page 148“util_uri_is_evil” on page 149, “util_uri_parse” on page 149

util_vsnprintf

The util_vsnprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax and performs bounds checking. It returns the
number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util vsnprintf(char *s, int n, register char *fmt, va list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

register char *fmt is the format string. The function handles only %d and %s strings; it does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

See Also

“util_sprintf” on page 145, “util_vsprintf” on page 151

util_vsprintf

The util_vsprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax without bounds checking. It returns the number
of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util vsprintf(char *s, register char *fmt, va list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only %d and %s strings; it does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

See Also

“util_snprintf” on page 145, “util_vsnprintf” on page 150

Vv

vs_alloc_slot

The vs_alloc_slot function allocates a new slot for storing a pointer to data specific to a
certain VirtualServer*. The returned slot number can be used in subsequent vs_set_data
and vs_get_data calls. The returned slot number is valid for any VirtualServer*.

Chapter5 « NSAPI Function and Macro Reference 151

NSAPI Functions and Macros

152

The value of the pointer (which may be returned by a call to “vs_set_data” on page 156) defaults
to NULL for every VirtualServer*.

Syntax

int vs alloc slot(void);

Returns

A slot number if succeeds, or -1 if fails.

See Also

“vs_get_data” on page 152, “vs_set_data” on page 156

vs_get_data

The vs_get_data function finds the value of a pointer to data for a given VirtualServer* and
slot. The slot must be a slot number returned from vs_alloc_slotorvs_set data.

Syntax

void* vs get data(const VirtualServer* vs, int slot);

Returns

The value of the pointer previously stored using vs_set_data or NULL on failure.

Parameters

const VirtualServer* vs represents the virtual server to query the pointer for.

int slot is the slot number to retrieve the pointer from.

See Also

“vs_set_data” on page 156, “vs_alloc_slot” on page 151

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

vs_get_default_httpd_object

Thevs get default httpd object function obtains a pointer to the default (or root)
httpd_object from the virtual server's httpd_objset (in the configuration defined by the

obj . conf file of the virtual server class). The default object is typically named default. Plug-ins
may only modify the httpd_object at VSInitFunc time (see “vs_register_cb” on page 156 for an
explanation of VSInitFunc time).

Do not FREE the returned object.

Syntax

httpd object* vs get default httpd object(VirtualServer* vs);

Returns

A pointer the default httpd_object, or NULL on failure. Do not FREE this object.

Parameters

VirtualServer* vs represents the virtual server for which to find the default object.

See Also

“vs_get_httpd_objset” on page 154, “vs_register_cb” on page 156

vs_get_doc_root

Thevs get doc_root function finds the document root for a virtual server. The returned
string is the full operating system path to the document root.

The caller should FREE the returned string when done with it.

Syntax

char* vs_get doc_root(const VirtualServer* vs);

Returns

A pointer to a string representing the full operating system path to the document root. It is the
caller's responsibility to FREE this string.

Parameters

const VirtualServer* vs represents the virtual server for which to find the document root.

Chapter5 « NSAPI Function and Macro Reference 153

NSAPI Functions and Macros

154

vs_get_httpd_objset

Thevs_get_httpd_objset function obtains a pointer to the httpd_objset (the configuration
defined by the obj . conf file of the virtual server class) for a given virtual server. Plug-ins may
only modify the httpd_objset at VSInitFunc time (see “vs_register_cb” on page 156 for an
explanation of VSInitFunc time).

Do not FREE the returned objset.

Syntax

httpd_objset* vs get httpd objset(VirtualServer* vs);

Returns

A pointer to the httpd_objset, or NULL on failure. Do not FREE this objset.

Parameters

VirtualServer* vs represents the virtual server for which to find the objset.

See Also

“vs_get_default_httpd_object” on page 153, “vs_register_cb” on page 156
vs_get_id
Thevs get id function finds the ID ofaVirtualServer*.

The ID of a virtual server is a unique null-terminated string that remains constant across
configurations. Note that while IDs remain constant across configurations, the value of
VirtualServer* pointers do not.

Do not FREE the virtual server ID string. If called during request processing, the string will
remain valid for the duration of the current request. If called during VSInitFunc processing, the
string will remain valid until after the corresponding VSDestroyFunc function has returned (see
“vs_register_cb” on page 156).

To retrieve a VirtualServer* thatis valid only for the current request, use “request_get_vs”
on page 114.

Syntax

const char* vs get id(const VirtualServer* vs);

Returns

A pointer to a string representing the virtual server ID. Do not FREE this string.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Parameters

const VirtualServer* vs represents the virtual server of interest.

See Also

“vs_register_cb” on page 156, “request_get_vs” on page 114

vs_get_mime_type

Thevs_get_mime_type function determines the MIME type that would be returned in the
content-type: header for the given URI.

The caller should FREE the returned string when done with it.

Syntax

char* vs _get mime type(const VirtualServer* vs, const char* uri);

Returns

A pointer to a string representing the MIME type. It is the caller's responsibility to FREE this
string.

Parameters

const VirtualServer* vs represents the virtual server of interest.

const char* uri is the URI whose MIME type is of interest.

vs_lookup_config_var

The vs_lookup_config_var function finds the value of a configuration variable for a given
virtual server.

Do not FREE the returned string.

Syntax

const char* vs lookup config var(const VirtualServer* vs, const char* name);

Returns

A pointer to a string representing the value of variable name on success, or NULL if variable
name was not found. Do not FREE this string.

Chapter5 « NSAPI Function and Macro Reference 155

NSAPI Functions and Macros

156

Parameters

const VirtualServer* vs represents the virtual server of interest.

const char* name is the name of the configuration variable.

vs_register_cb

The vs_register_cb function allows a plug-in to register functions that will receive
notifications of virtual server initialization and destruction events. The vs_register cb
function would typically be called from an Init SAF in magnus. conf.

When a new configuration is loaded, all registered VSInitFunc (virtual server initialization)
callbacks are called for each of the virtual servers before any requests are served from the new
configuration. VSInitFunc callbacks are called in the same order they were registered; that is,
the first callback registered is the first called.

When the last request has been served from an old configuration, all registered VSDestroyFunc
(virtual server destruction) callbacks are called for each of the virtual servers before any virtual
servers are destroyed. VSDest royFunc callbacks are called in reverse order; that is, the first
callback registered is the last called.

Either initfn or destroyfn may be NULL if the caller is not interested in callbacks for
initialization or destruction, respectively.

Syntax

int vs register cb(VSInitFunc* initfn, VSDestroyFunc* destroyfn);

Returns

The constant REQ_PROCEED if the operation succeeds.

The constant REQ_ABORTED if the operation fails.

Parameters

VSInitFunc* initfn isa pointer to the function to call at virtual server initialization time, or
NULL if the caller is not interested in virtual server initialization events.

VSDestroyFunc* destroyfn is a pointer to the function to call at virtual server destruction

time, or NULL if the caller is not interested in virtual server destruction events.

vs_set _data

The vs_set_data function sets the value of a pointer to data for a given virtual server and slot.
The *slot must be -1 or a slot number returned from vs_alloc_slot.If *slotis -1,
vs_set_datacallsvs_alloc_slot implicitly and returns the new slot number in *slot.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

Note that the stored pointer is maintained on a per-VirtualServer* basis, not a per-ID basis.
Distinct VirtualServer#*s from different configurations might exist simultaneously with the
same virtual server IDs. However, since these are distinct VirtualServerxs, they each have
their own VirtualServer*-specific data. Asaresult, vs_set_data should generally not be
called outside of VSInitFunc processing (see “vs_register_cb” on page 156 for an explanation of
VSInitFunc processing).

Syntax

void* vs set data(const VirtualServer* vs, int* slot, void* data);

Returns

Data on success, or NULL on failure.

Parameters

const VirtualServer* vs represents the virtual server to set the pointer for.
int* slot is the slot number to store the pointer at.

void* data is the pointer to store.

See Also

“vs_get_data” on page 152, “vs_alloc_slot” on page 151, “vs_register_cb” on page 156

vs_translate_uri

Thevs_translate_uri function translates a URI as though it were part of a request for a
specific virtual server. The returned string is the full operating system path.

The caller should FREE the returned string when done with it.

Syntax

char* vs translate uri(const VirtualServer* vs, const char* uri);

Returns

A pointer to a string representing the full operating system path for the given URI. It is the
caller\qs responsibility to FREE this string.

Parameters

const VirtualServer* vs represents the virtual server for which to translate the URI.

const char* uri is the URI to translate to an operating system path.

Chapter5 « NSAPI Function and Macro Reference 157

NSAPI Functions and Macros

158

W

write

The write filter method is called when output data is to be sent. Filters that modify or consume
outgoing data should implement the write filter method.

Upon receiving control, a write implementation should first process the data as necessary, and
then pass it on to the next filter layer; for example, by calling net_write(layer->lower,
...,). If the filter buffers outgoing data, it should implement the flush filter method.

Syntax

int write(FilterLayer *layer, const void *buf, int amount);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.
const void *buf is the buffer that contains the outgoing data.

int amount is the number of bytes in the buffer.

Example

int myfilter write(FilterLayer *layer, const void *buf, int amount)

{

return net write(layer->lower, buf, amount);

See Also

“flush” on page 78, “net_write” on page 87, “writev” on page 159, “filter_create” on page 73

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

writev

Thewritev filter method is called when multiple buffers of output data are to be sent. Filters
that modify or consume outgoing data may choose to implement the writev filter method.

If a filter implements the write filter method but not the writev filter method, the server
automatically translates net_writev calls to net_write calls. As aresult, filters interested in the
outgoing data stream do not need to implement the writev filter method. However, for
performance reasons, it is beneficial for filters that implement the write filter method to also
implement the writev filter method.

Syntax

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters

FilterLayer *layer is the filter layer the filter is installed in.

const struct iovec *iov is an array of iovec structures, each of which contains outgoing
data.

int iov_size is the number of iovec structures in the iov array.

Example

int myfilter writev(FilterLayer *layer, const struct iovec *iov, int iov_size)

{

return net writev(layer->lower, iov, iov size);

See Also

“flush” on page 78, “net_write” on page 87, “write” on page 158, “filter_create” on page 73

Chapter5 « NSAPI Function and Macro Reference 159

160

CHAPTER 6

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi. h header file, which is in the
install_dir/include directory.

This chapter describes public data structures in nsapi.h.

Note - The data structures in nsapi. h that are not described in this chapter are considered
private and may change incompatibly in future releases. Some of the data structures described
in this chapter may contain additional, undocumented fields. These fields are also considered
private and may change incompatibly in future releases. Additional fields may be added in
future release, so do not make assumptions regarding the size of data structures.

This chapter has the following sections:

“Session” on page 162
“pblock” on page 163
“pb_entry” on page 163
“pb_param” on page 163
“Request” on page 164
“stat” on page 165
“shmem_s” on page 165
“cinfo” on page 166
“sendfiledata” on page 166
“Filter” on page 166
“FilterContext” on page 167
“FilterLayer” on page 167
“FilterMethods” on page 167

161

Public Data Structures

Public Data Structures

This section describes the following data structures in nsapi.h.

Session

A session is the time between the opening and closing of the connection between the client and
the server.

The following list describes the most important fields in this data structure:

= sn->client
Pointer to a pblock containing information about the client such as its IP address, DNS
name, or certificate.

® sn->csd

Platform-independent client socket descriptor. This is passed to the routines for reading
from and writing to the client.

The Session data structure holds variables that apply to a client, regardless of the requests
being sent.

typedef struct {
/* Information about the remote client */
pblock *client;

/* The socket descriptor to the remote client */
SYS NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;
} Session;

The following list describes the most important fields in the Session data structure:

= client - Pointer to a pblock containing information about the client such as its IP address,
DNS name, or SSL certificate. The ip parameter contains the client's IP address. Do not
modify the contents of this pblock.

m csd - The platform-independent client socket descriptor used to communicate with the
client. This can be passed to routines such as net_write to send output to the client.

= inbuf - Pointer to the input buffer for the client socket descriptor. This can be passed to
routines such as netbuf_grab or netbuf_getc to receive input from the client.

162 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Public Data Structures

Note - The Session NSAPI data structure cannot be used concurrently by multiple threads. It is
an error to retain any reference to a Session or its contents after processing of the current
request is complete.

pblock

The parameter block is the hash table that holds pb_entry structures. Its contents are
transparent to most code. This data structure is frequently used in NSAPI; it provides the basic
mechanism for packaging up parameters and values. There are many functions for creating and
managing parameter blocks, and for extracting, adding, and deleting entries. See the functions
whose names start with pblock_ in Chapter 5. You do not need to write code that accesses
pblock data fields directly.

typedef struct {

int hsize;

struct pb_entry **ht;
} pblock;

Note - The pblock NSAPI data structure can not be used concurrently by multiple threads. It is
an error to retain any reference to a pblock or its contents after processing of the current
request is complete.

pb_entry
The pb_entry is a single element in the parameter block.
struct pb _entry {

pb_param *param;

struct pb entry *next;

};

pb_param

The pb_param represents a name-value pair, as stored ina pb_entry.

typedef struct {
char *name, *value;
} pb_param;

Chapter 6 - Data Structure Reference 163

Public Data Structures

164

Request

The Request data structure describes an HTTP transaction (for example, the variables include
the client's HTTP request headers).

typedef struct{

*/Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
pblock *regpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
int senthdrs;
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd objset *os;

} Request;

The following list describes the most important fields in the Request data structure:

vars- Pointer to a pblock containing information about request-response processing. SAFs
may modify the contents of this pblock according to the rules established in “Required
Behavior of SAFs for Each Directive” on page 31.

reqpb - Pointer to a pblock containing information about the client's HTTP request. The
method parameter contains the HTTP request method, the uriparameter contains the path
portion of the requested URI, the optional query parameter contains any query string from
the requested URIL, and the protocol parameter contains the HT'TP protocol version. Do
not modify the contents of this pblock.

headers - Pointer to a pblock containing the client's HTTP request headers. By convention,
all parameter names are lowercase. Do not modify the contents of this pblock.

senthdrs - Indicates whether the server has sent HTTP response headers. Service SAFs may
set rq->senthdrs = 1 to prevent the server from sending HTTP response headers.

srvhdrs - Pointer to a pblock containing the server's HTTP response headers. By
convention, all parameter names are lowercase. SAFs and filters may modify the contents of
this pblock.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Public Data Structures

Note - The Request NSAPI data structure cannot be used concurrently by multiple threads. It is
an error to retain any references to a Request or its contents after processing of the current
request.

stat

When a program calls the stat() function for a given file, the system returns a structure that
provides information about the file. The specific details of the structure should be obtained
from the implementation of your platform, but the basic outline of the structure is as follows:

struct stat {

dev t st dev; /* device of inode */

inot t st ino; /* inode number */

short st mode; /* mode bits */

short st _nlink; /* number of links to file /*
short st uid; /* owner's user id */

short st gid; /* owner’s group id */

dev t st rdev; /* for special files */

off t st size; /* file size in characters */
time t st _atime; /* time last accessed */

time t st_mtime; /* time last modified */

time t st _ctime; /* time inode last changed*/

The elements that are most significant for server plug-in API activities are st_size, st_atime,
st _mtime,and st _ctime.

shmem_s
typedef struct {
void *data; /* the data */
HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; /* internal use: filename to unlink if exposed */
SYS FILE fd; /* internal use: file descriptor for region */
} shmem s;

Chapter 6 - Data Structure Reference 165

Public Data Structures

cinfo

The cinfo data structure records the content information for a file.

typedef struct {
char *type;
/* Identifies what kind of data is in the file*/
char *encoding;
/* encoding identifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode)*/
char *language;
/* Identifies the language a text document is in. */
} cinfo;

sendfiledata

The sendfiledata data structure is used to pass parameters to the net_sendfile function. It is
also passed to the sendfile method in an installed filter in response to a net_sendfile call.

typedef struct {

SYS_FILE fd; /* file to send */

size t offset; /* offset in file to start sending from */
size t len; /* number of bytes to send from file */
const void *header; /* data to send before file */

int hlen; /* number of bytes to send before file */
const void *trailer; /* data to send after file */

int tlen; /* number of bytes to send after file */

} sendfiledata;

Filter

The Filter data structure is an opaque representation of a filter. A Filter structure is created
by calling “filter_create” on page 73.

typedef struct Filter Filter;

166 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Public Data Structures

FilterContext

The FilterContext data structure stores the context associated with a particular filter layer.
Filter layers are created by calling “filter_insert” on page 75.

Filter developers may use the data member to store filter-specific context information.

typedef struct {
pool_handle_t *pool; /* pool context was allocated from */

Session *sn; /* session being processed */
Request *rq; /* request being processed */
void *data; /* filter-defined private data */

} FilterContext;

FilterLayer

The FilterLayer data structure represents one layer in a filter stack. The FilterLayer
structure identifies the filter installed at that layer. It provides pointers to layer-specific context
and a filter stack that represents the layer immediately below it in the filter stack.

typedef struct {
Filter *filter; /* the filter at this layer in the filter stack */
FilterContext *context; /* context for the filter */
SYS NETFD lower; /* access to the next filter layer in the stack */
} FilterlLayer;

FilterMethods

The FilterMethods data structure is passed to “filter_create” on page 73 to define the filter
methods that a filter supports. Each new FilterMethods instance must be initialized with the
FILTER METHODS INITIALIZER macro. For each filter method that a filter supports, the
corresponding FilterMethods member should point to a function that implements that filter
method.

typedef struct {
size t size;
FilterInsertFunc *insert;
FilterRemoveFunc *remove;
FilterFlushFunc *flush;
FilterReadFunc *read;
FilterWriteFunc *write;
FilterWritevFunc *writev;
FilterSendfileFunc *sendfile;
} FilterMethods;

Chapter 6 - Data Structure Reference 167

168

CHAPTER 7

Dynamic Results Caching Functions

The functions described in this chapter allow you to write a results caching plug-in for Sun Java
System Web Server. A results caching plug-in, which is a Service SAF, caches data, a page, or
part of a page in the web server address space, which the Web Server can refresh periodically on
demand. An Init SAF initializes the callback function that performs the refresh.

A results caching plug-in can generate a page for a request in three parts:

A header, such as a page banner, which changes for every request
A body, which changes less frequently
A footer, which also changes for every request

Without this feature, a plug-in would have to generate the whole page for every request
(unless an IFRAME is used, where the header or footer is sent in the first response along with
an IFRAME pointing to the body; in this case the browser must send another request for the
IFRAME).

If the body of a page has not changed, the plug-in needs to generate only the header and
footer and to call the dr_net_write function (instead of net_write) with the following
arguments:

header

footer

handle to cache

key to identify the cached object

The web server constructs the whole page by fetching the body from the cache. If the cache
has expired, it calls the refresh function and sends the refreshed page back to the client.

An Init SAF thatis visible to the plug-in creates the handle to the cache. The Init SAF
must pass the following parameters to the dr_cache_init function:

RefreshFunctionPointer

FreeFunctionPointer

169

Functions

m KeyComparatorFunctionPtr
m RefreshInterval

TheRefreshInterval value must be a PRIntervalTime type. For more information, see the
NSPR reference at:

http://www.mozilla.org/projects/nspr/reference/html/index.html

As an alternative, if the body is a file that is present in a directory within the web server
system machine, the plug-in can generate the header and footer and call the fc_net_write
function along with the file name.

This chapter lists the most important functions a results caching plug-in can use. For more
information, see the following file:

install_dir/include/drnsapi.h
This chapter has the following sections:

= “Functions” on page 170

m “dr_cache_init” on page 171

= “dr_cache_refresh” on page 172
= “dr_net_write” on page 173

= “fc_net_write” on page 176

Functions

This section describes the dynamic result cache functions.

dr_cache_destroy

The dr_cache_destroy function destroys and frees resources associated with a previously
created and used cache handle. This handle cannot be used in subsequent calls to any of the
above functions unless another dr_cache_init is performed.

Syntax

void dr cache destroy(DrHdl *hdl);

Parameters

DrHdl *hd1l is a pointer to a previously initialized handle to a cache (see dr_cache_init).

Returns

void

170 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Functions

Example
dr _cache destroy(&myHdl);

dr_cache _init

The dr_cache_init function creates a persistent handle to the cache, or NULL on failure. It is

called by an Init SAF.

Syntax

PRINt32 dr cache init(DrHdl *hdl, RefreshFunc t ref, FreeFunc t fre,
CompareFunc_t cmp, PRUint32 maxEntries,
PRIntervalTime maxAge);

Returns

1if successful.

0 if an error occurs.

Parameters

The following table describes parameters for the dr_cache_init function.

TABLE7-1dr_cache_init parameters

Parameter Description

DrHd1 hdl Pointer to an unallocated handle.

RefreshFunc t ref pointer to a cache refresh function. This can be NULL; see the DR_CHECK flag
and DR_EXPIR return value for dr net write.

FreeFunc_t fre Pointer to a function that frees an entry.

CompareFunc_t cmp Pointer to a key comparator function.

PRUint32 maxEntriesp Maximum number of entries possible in the cache for a given hd1.

PRIntervalTime maxAgep The maximum amount of time that an entry is valid. If 9, the cache never
expires.

Chapter7 « Dynamic Results Caching Functions

171

Functions

172

Example

if(!dr cache init(&hdl, (RefreshFunc t)FnRefresh, (FreeFunc t)FnFree,
(CompareFunc _t)FnCompare, 150000, PR SecondsToInterval(7200)))

{
ereport(LOG_FAILURE, "dr cache init() failed");
return(REQ ABORTED) ;

dr_cache refresh

The dr_cache_refresh function provides a way to refresh a cache entry when the plug-in
requires it. This can be achieved by passing NULL for the ref parameterindr_cache_init and
by passing DR_CHECKinadr_net_write call. IfDR_CHECKis passed to dr_net_write andit
returns with DR_EXPIR, the plug-in should generate new content in the entry and call
dr_cache_refresh with that entry before calling dr_net_write again to send the response.

The plug-in may simply decide to replace the cached entry even if it has not expired (based on
some other business logic). The dr_cache_refresh function is useful in this case. This way the
plug-in does the cache refresh management actively by itself.

Syntax

PRINt32 dr_cache refresh(DrHdl hdl, const char *key,
PRUint32 klen, PRIntervalTime timeout,
Entry *entry, Request *rq, Session *sn);

Returns

1if successful.

0 if an error occurs.

Parameters

The following table describes parameters for the dr_cache_refresh function.

TABLE7-2dr_cache_refresh parameters

Parameter Description

DrHdl hdl Persistent handle created by the dr_cache_init function.
const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Functions

TABLE 7-2dr_cache_refresh parameters (Continued)
Parameter Description
PRIntervalTime timeout Expiration time of this entry; if a value of 0 is passed, the maxAge value

passed todr_cache_initisused

Entry *entry The not NULL entry to be cached.
Request *rq Pointer to the request.

Session *sn Pointer to the session.
Example

Entry entry;

char *key = "MOVIES"

GenNewMovielist(&entry.data, &entry.datalLen); // Implemented by
// plugin developer

if(!dr _cache refresh(hdl, key, strlen(key), @, &entry, rq, sn))

{
ereport(LOG_FAILURE, "dr cache refresh() failed");
return REQ ABORTED;

dr_net_write

The dr_net_write function sends a response back to the requestor after constructing the full
page with hdr, the content of the cached entry as the body (located using the key), and ftr. The
hdr, ftr, or hd1l can be NULL, but not all of them can be NULL. If hdl is NULL, no cache
lookup is done; the caller must pass DR_NONE as the flag.

By default, this function refreshes the cache entry if it has expired by making a call to the ref
function passed to dr_cache_init. If no cache entry is found with the specified key, this
function adds a new cache entry by calling the ref function before sending out the response.
However, if the DR_CHECK flag is passed in the flags parameter and if either the cache entry has
expired or the cache entry corresponding to the key does not exist, dr_net_write does not send
any data out. Instead, it returns with DR_EXPIR.

If ref (passed todr_cache_init)is NULL, the DR_CHECK flag is not passed in the flags
parameter, and the cache entry corresponding to the key has expired or does not exist, then
dr_net write fails with DR_ERROR. However, dr net write refreshes the cache if ref is not
NULL and DR_CHECK is not passed.

If ref (passed todr_cache_init)is NULL and the DR_CHECK flag is not passed but DR_IGNORE is
passed and the entry is present in the cache, dr_net_write sends out the response even if the
entry has expired. However, if the entry is not found, dr_net_write returns DR_ERROR.

Chapter7 « Dynamic Results Caching Functions 173

Functions

174

If ref (passed todr_cache_init)is not NULL and the DR_CHECK flag is not passed but
DR_IGNORE is passed and the entry is present in the cache, dr_net_write sends out the response
even if the entry has expired. However, if the entry is not found, dr_net_write calls the ref
function and stores the new entry returned from ref before sending out the response.

Syntax

PRINt32 dr _net write(DrHdl hdl, const char *key, PRUint32 klen, const char *hdr,
const char *ftr, PRUint32 hlen, PRUint32 flen,
PRIntervalTime timeout, PRUint32 flags,
Request *rq, Session *sn);

Returns
I0 OKAY if successful.

I0_ERRORif an error occurs.
DR_ERROR if an error in cache handling occurs.

DR_EXPIR if the cache has expired.

Parameters

The following table describes parameters for the dr_net_write function.

TABLE 7-3 dr_net_write parameters

Parameter Description

DrHdl hdl Persistent handle created by the dr_cache_init function.
const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

const char *hdr Any header data (which can be NULL).

const char *ftr Any footer data (which can be NULL).

PRUint32 hlen Length of the header data in bytes (which can be 0).
PRUint32 flen Length of the footer data in bytes (which can be 0).
PRIntervalTime timeout Timeout before this function aborts.

PRUint32 flags ORed directives for this function (see the Flags table, below).
Request *rq Pointer to the request.

Session *sn Pointer to the session.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Functions

Flags

The following table describes flags for dr_net_write.

TABLE 7-4 Flags for dr_net_write

Flag Description

DR _NONE Specifies that no cache is used, so the function works as net_write does;
DrHdl can be NULL.

DR_FORCE Forces the cache to refresh, even if it has not expired.

DR_CHECK Returns DR_EXPIR if the cache has expired; if the calling function has not

provided a refresh function and this flag is not used, DR_ERROR is returned.

DR_IGNORE Ignores cache expiration and sends out the cache entry even if it has expired.

DR_CNTLEN Supplies the Content-Length header and does a
PROTOCOL_START_RESPONSE.

DR_PROTO Does a PROTOCOL_START_RESPONSE.

Example

if(dr_net write(Dr, szFileName, ilenK, NULL, NULL, @, 0, O,
DR _CNTLEN | DR _PROTO, rqg, sn) == IO ERROR)

{

return(REQ EXIT);
}
fc_open

The fc_open function returns a pointer to PRFileDesc that refers to an open file (fileName).
The fileName must be the full path name of an existing file. The file is opened in read mode
only. The application calling this function should not modify the currency of the file pointed to
by the PRFileDesc * unless the DUP_FILE_DESC is also passed to this function. In other words,
the application (at minimum) should not issue a read operation based on this pointer that
would modify the currency for the PRFileDesc *. If such a read operation is required (that may
change the currency for the PRFileDesc *), then the application should call this function with
the argument DUP_FILE_DESC.

On a successful call to this function, a valid pointer to PRFileDesc is returned and the handle
'FcHdU' is properly initialized. The size information for the file is stored in the 'fileSize'
member of the handle.

Syntax

PRFileDesc *fc_open(const char *fileName, FcHdl *hD1l,PRUint32 flags, Session *sn, Request *rq);

Chapter7 « Dynamic Results Caching Functions 175

Functions

Returns

Pointer to PRFileDesc, or NULL on failure.

Parameters

const char *fileName is the full path name of the file to be opened.
FcHd1*hD1 is a valid pointer to a structure of type FcHdl.

PRUint32 flags can be 0 or DUP_FILE_DESC.

Session *sn is a pointer to the session.

Request *rq is a pointer to the request.

fc_close

The fc_close function closes a file opened using fc_open. This function should only be called
with files opened using fc_open.

Syntax

void fc_close(PRFileDesc *fd, FcHdl *hD1;

Returns

void

Parameters

PRFileDesc *fd is a valid pointer returned from a prior call to fc_open.

FcHd1 *hD1 is a valid pointer to a structure of type FcHdl. This pointer must have been
initialized by a prior call to fc_open.

fc_net_write

The fc_net_write function is used to send a header and/or footer and a file that exists
somewhere in the system. The fileName should be the full path name of a file.

Syntax

PRINt32 fc net write(const char *fileName, const char *hdr,
const char *ftr, PRUint32 hlen,
PRUint32 flen, PRUint32 flags,
PRIntervalTime timeout, Session *sn, Request *rq);

176 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Functions

Returns
I0 OKAY if successful.

I0 ERRORif an error occurs.

FC_ERROR if an error in file handling occurs.

Parameters

The following table describes parameters for the fc_net_write function.

TABLE 7-5 fc_net_write parameters

Parameter Description

const char *fileName File to be inserted.

const char *hdr Any header data (which can be NULL).

const char *ftr Any footer data (which can be NULL).

PRUint32 hlen Length of the header data in bytes (which can be 0).
PRUint32 flen Length of the footer data in bytes (which can be 0).
PRUint32 flags ORed directives for this function (see the Flags table, below).
PRIntervalTime timeout Timeout before this function aborts.

Request *rq Pointer to the request.

Session *sn Pointer to the session.

Flags

The following table describes flags for fc_net_write.

TABLE 7-6 Flags for fc_net_write

Flag Description

FC_CNTLEN Supplies the Content-Length header and does a
PROTOCOL_START_RESPONSE.

FC_PROTO Does a PROTOCOL_START_RESPONSE.

Chapter7 « Dynamic Results Caching Functions

177

Functions

Example

const char *fileName = "/docs/myads/filel.ad";
char *hdr = GenHdr(); // Implemented by plugin
char *ftr = GenFtr(); // Implemented by plugin

if(fc _net write(fileName, hdr, ftr, strlen(hdr), strlen(ftr),
FC_CNTLEN, PR INTERVAL NO TIMEOUT, sn, rq) != IO OKEY)

ereport(LOG_FAILURE, "fc net write() failed");
return REQ ABORTED;

178 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

L K R 4 APPENDIX A

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol (a set of rules that describes how
information is exchanged) that allows a client (such as a web browser) and a web server to
communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to the server and
sends a request to the server. The server processes the request and generates a response, which it
sends to the browser. The server then closes the connection.

This chapter provides a short introduction to a few HTTP basics. For more information on
HTTP, see the IETF home page at:

http://www.ietf.org/home.html

This chapter has the following sections:

= “Compliance” on page 179
= “Requests” on page 180
= “Responses” on page 181

Compliance

Sun Java System Web Server supports HT'TP/1.1. The server is conditionally compliant with the
HTTP/1.1 proposed standard, as approved by the Internet Engineering Steering Group (IESG),
and the Internet Engineering Task Force (IETF) HTTP working group.

For more information on the criteria for being conditionally compliant, see the Hypertext
Transfer Protocol -- HT'TP/1.1 specification (RFC 2616) at:
http://www.ietf.org/rfc/rfc2616.txt

179

http://www.ietf.org/rfc/rfc2616.txt

Requests

Requests

180

A request from a browser to a server includes the following information:

= “Request Method, URI, and Protocol Version” on page 180
= “Request Headers” on page 180
= “Request Data” on page 180

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly used methods
are:

® GET -- Requests the specified resource, such as a document or image
= HEAD -- Requests only the header information for the document

m POST -- Requests that the server accept some data from the browser, such as form input for a
CGI program

m PUT -- Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most of these request headers are optional.

The following table lists some of the commonly used request headers.

TABLE A-1 Common Request Headers

Request Header Description
Accept File types the browser can accept.
Authorization Used if the browser wants to authenticate itself with a server; information

such as the user name and password are included.

User-Agent Name and version of the browser software.
Referer URL of the document.
Host Internet host and port number of the resource being requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line following the
request headers. If the browser sends a GET or HEAD request, there is no data to send.

Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Responses

Responses

The server’s response includes the following:

= “HTTP Protocol Version, Status Code, and Reason Phrase” on page 181
= “Response Headers” on page 182
= “Response Data” on page 183

HTTP Protocol Version, Status Code, and Reason

Phrase

The server sends back a status code, which is a three-digit numeric code. The five categories of

status codes are:

= 100-199 a provisional response.

®m 200-299 a successful transaction.

= 300-399 the requested resource should be retrieved from a different location.

= 400-499 an error was caused by the browser.

® 500-599 a serious error occurred in the server.

The following table lists some common status codes.

TABLE A-2 Common HTTP Status Codes

Status Code

Meaning

200

OK; request has succeeded for the method used (GET, POST, HEAD).

201

The request has resulted in the creation of a new resource reference by the returned URI.

206

The server has sent a response to byte range requests.

302

Found. Redirection to a new URL. The original URL has moved. This is not an error; most
browsers will get the new page.

304

Use alocal copy. If a browser already has a page in its cache, and the page is requested again,
some browsers (such as Netscape Navigator) relay to the web server the “last-modified”
timestamp on the browser’s cached copy. If the copy on the server is not newer than the
browser’s copy, the server returns a 304 code instead of returning the page, reducing
unnecessary network traffic. This is not an error.

400

Sent if the request is not a valid HTTP/1.0 or HTTP/1.1 request. For example HTTP/1.1
requires a host to be specified either in the Host header or as part of the URI on the request
line.

Appendix A - Hypertext Transfer Protocol 181

Responses

TABLE A-2 Common HTTP Status Codes (Continued)

Status Code Meaning

401 Unauthorized. The user requested a document but did not provide a valid user name or
password.

403 Forbidden. Access to this URL is forbidden.

404 Not found. The document requested is not on the server. This code can also be sent if the

server is configured to protect the document for unauthorized personnel.

408 If the client starts a request but does not complete it within the keep-alive timeout
configured in the server, then this response will be sent and the connection closed. The
request can be repeated with another open connection.

411 The client submitted a POST request with chunked encoding, which is of variable length.
However, the resource or application on the server requires a fixed length - a
Content-Length header to be present. This code tells the client to resubmit its request with
content-length.

413 Some applications (e.g., certain NSAPI plug-ins) cannot handle very large amounts of data,
so returns this error code.

414 The URI is longer than the maximum the web server is willing to serve.
416 Data was requested outside the range of a file.
500 Server error. A server-related error occurred. The server administrator must check the

error log in the server.

503 Sent if the quality of service mechanism was enabled and bandwidth or connection limits
were attained. The server then serves requests with that code.

Response Headers
The response headers contain information about the server and the response data.

The following table lists some common response headers.

TABLE A-3 Common Response Headers

Response Header Description

Server Name and version of the web server.

Date Current date (in Greenwich Mean Time).
Last-Modified Date when the document was last modified.
Expires Date when the document expires.
content-length Length of the data that follows (in bytes).

182 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Responses

TABLE A-3 Common Response Headers (Continued)

Response Header

Description

content-type

MIME type of the data that follows.

WWW-Authenticate

Used during authentication and includes information that tells the
browser software what is necessary for authentication (such as user name

and password).

Response Data

The server sends a blank line after the last header. It then sends the response data such as an

image or an HTML page.

Appendix A - Hypertext Transfer Protocol

183

184

L K R 4 APPENDIX B

Alphabetical List of NSAPI Functions and
Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions and macros.

NSAPI Functions and Macros

C CALLOC
cinfo_find
condvar_init
condvar_notify
condvar_terminate
condvar_wait
crit_enter
crit_exit
crit_init
crit_terminate

D daemon_atrestart

F fc_close
fc_open
filebuf_buf2sd
filebuf _close

185

NSAPI Functions and Macros

filebuf_getc
filebuf_open
filebuf_open_nostat
filter_find
filter_insert
filter_layer
filter name
filter_remove
filter-create
flush

FREE
func_exec
func_find

func_insert

I insert

L log_error
M MALLOC
N net_flush

net_ip2host
net_read
net_sendfile
net_write
netbuf buf2sd
netbuf_getbytes
netbuf_close

netbuf_getc

186 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

netbuf_grab

netbuf_open
nsapi_module_init
NSAPI_RUNTIME_VERSION

NSAPI_VERSION

P param_create
param_free
pblock_copy
pblock_create
pblock_dup
pblock_find
pblock_findval
pblock_free
pblock_nninsert
pblock_nvinsert
pblock_pb2env
pblock_pblock2str
pblock_pinsert
pblock_remove
pblock_str2pblock
PERM_CALLOC
PERM_FREE
PERM_MALLOC
PERM_REALLOC

PERM_STRDUP

Appendix B « Alphabetical List of NSAPI Functions and Macros 187

NSAPI Functions and Macros

prepare_nsapi_thread
protocol_dump822
protocol_set_finfo
protocol_start_response
protocol_status
protocol_uri2url

protocol_uri2url_dynamic

R read
REALLOC
remove
request_get_vs
request_header
request_stat_path

request_translate_uri

S sendfile
session_dns
session_maxdns
shexp_casecmp
shexp_cmp
shexp_match
shexp_valid
STRDUP
system_errmsg
system_fclose

system_flock

188 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

system_fopenRO
system_fopenRW
system_fopenWA
system_fread
system_fwrite
system_fwrite_atomic
system_gmtime
system_localtime
system_lseek
system_rename
system_ulock
system_unix2local
systhread_attach
systhread_current
systhread_getdata
systhread_newkey
systhread_setdata
systhread_sleep
systhread_start

systhread_timerset

U USE_NSAPI_VERSION
util_can_exec
util_chdir2path
util_chdir2path

util_cookie_find

Appendix B « Alphabetical List of NSAPI Functions and Macros 189

NSAPI Functions and Macros

util_env_find
util_env_free
util_env_replace
util_env_str
util_getline
util_hostname
util_is_mozilla
util_is_url
util_itoa
util_later_than
util_sh_escape
util_snprintf
util_sprintf
util_strcasecmp
util_strftime
util_strncasecmp
util_uri_escape
util_uri_is_evil
util_uri_parse
util_uri_unescape
util_vsnprintf

util_vsprintf

\Y% vs_alloc_slot
vs_get_data

vs_get_default_httpd_object

190 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

NSAPI Functions and Macros

vs_get_doc_root
vs_get_httpd_objset
vs_get_id
vs_get_mime_type
vs_lookup_config var
vs_register_cb
vs_set_data

vs_translate_uri

W write

writev

Appendix B « Alphabetical List of NSAPI Functions and Macros 191

192

Index

A
AddLog
example of custom SAE, 55-56
requirements for SAFs, 31-34,34
Admin Console, more information about, 12
alphabetical reference, NSAPI functions, 63-159
API functions
CALLOC, 63-64
cinfo_find, 64
condvar_init, 65
condvar_notify, 65-66
condvar_terminate, 66
condvar_wait, 66-67
crit_enter, 67
crit_exit, 67-68
crit_init, 68
crit_terminate, 68-69
daemon_atrestart, 69-70
dr_cache_init, 171-172
dr_cache_refresh, 172-173
dr_net_write, 173-175
fc_close, 176
fc_net_write, 176-178
fc_open, 175-176
filebuf buf2sd, 70
filebuf close, 71
filebuf getc, 71-72
filebuf_open, 72
filebuf_open_nostat, 72-73
filter_create, 73-75
filter_find, 75
filter_insert, 75-76

API functions (Continued)

filter_layer, 76-77
filter name, 77
filter_remove, 77
flush, 78

FREE, 78-79
func_exec, 79-80
func_find, 80
func_insert, 80-81
insert, 81-82
log_error, 82-83
MALLOC, 83-84
net_flush, 84
net_ip2host, 84-85
net_read, 85-86
net_sendfile, 86-87
net_write, 87-88
netbuf buf2sd, 88
netbuf close, 88-89
netbuf_getbytes, 89-90
netbuf_getc, 90-91
netbuf_grab, 91
netbuf_open, 91-92
nsapi_module_init, 92
param_create, 94
param_free, 95
pblock_copy, 95-96
pblock_create, 96
pblock_dup, 96-97
pblock_find, 97
pblock_findval, 97-98
pblock_free, 98

193

Index

API functions (Continued) API functions (Continued)
pblock_nninsert, 99 system_rename, 130
pblock_nvinsert, 99-100 system_ulock, 129-130, 130
pblock_pb2env, 100 system_unix2local, 131
pblock_pblock2str, 101 systhread_attach, 131-132
pblock_pinsert, 101-102 systhread_current, 132
pblock_remove, 102 systhread_getdata, 132-133
pblock_str2pblock, 102-103 systhread_newkey, 133
PERM_FREE, 104 systhread_setdata, 133-134
PERM_MALLOC, 103-104, 104-105,105-106 systhread_sleep, 134
PERM_STRDUP, 106 systhread_start, 134-135
prepare_nsapi_thread, 107 systhread_timerset, 135-136
protocol_dump822, 107-108 util_can_exec, 137
protocol_set_finfo, 108 util_chdir2path, 138
protocol_start_response, 109 util-cookie_find, 138
protocol_status, 110 util_cookie_find, 138
protocol_uri2url, 111 util_env_find, 138-139, 139
read, 112-113 util_env_free, 139-140
REALLOC, 113 util_env_replace, 140
remove, 114 util_env_str, 140-141
request_get_vs, 114 util_getline, 141-142
request_header, 115 util_hostname, 142
request_stat_path, 115-116 util_is_mozilla, 142
request_translate_uri, 116 util_is_url, 143
sendfile, 117 util_itoa, 143
session_dns, 117-118 util later_than, 143-144
session_maxdns, 118 util_sh_escape, 144
shexp_casecmp, 119 util_snprintf, 145
shexp_cmp, 119-120 util-sprintf, 145-146
shexp_match, 120-121 util_strcasecmp, 146-147
shexp_valid, 121 util_strftime, 147
STRDUP, 121-122 util_strncasecmp, 147-148
system_errmsg, 122-123 util_uri_escape, 148
system_fclose, 123 util_uri_is_evil, 149
system_flock, 123-124 util_uri_parse, 149
system_fopenRO, 124 util_uri_unescape, 150
system_fopenRW, 124-125 util_vsnprintf, 150-151
system_fopenWA, 125-126 util_vsprintf, 151
system_fread, 126 vs_alloc_slot, 151-152
system_fwrite, 126-127 vs_get_data, 152
system_fwrite_atomic, 127-128 vs_get_default_httpd_object, 153
system_gmtime, 128 vs_get_doc_root, 153
system_localtime, 128-129 vs_get_httpd_objset, 154
system_lseek, 129-130 vs_get_id, 154-155

194 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Index

API functions (Continued)
vs_get_mime_type, 155
vs_lookup_config var, 155-156
vs_register_cb, 156
vs_set_data, 156-157
vs_translate_uri, 157
write, 158
writev, 159

AUTH_TYPE environment variable, 34

AUTH_USER environment variable, 34

AuthTrans
example of custom SAE, 49-50
requirements for SAFs, 31-34

C
caching, results caching plug-in, 169-178
CALLOC API function, 63-64
CGI
environment variables in NSAPI, 34-35
to NSAPI conversion, 34-35
cinfo_find API function, 64
cinfo NSAPI data structure, 166
client
field in session parameter, 162
sessions and, 162
CLIENT_CERT environment variable, 35
compatibility issues, 18
compiling custom SAFs, 22-24
condvar_init API function, 65
condvar_notify API function, 65-66
condvar_terminate API function, 66
condvar_wait API function, 66-67

CONTENT_LENGTH environment variable, 34

CONTENT_TYPE environment variable, 34
context->data, 39
context->rq, 39
context->sn, 39
creating
custom filters, 37-46
custom SAFs, 17-35
custom server-parsed HTML tags, 57-62
crit_enter API function, 67
crit_exit API function, 67-68

crit_init API function, 68
crit_terminate API function, 68-69
csd field in session parameter, 162
custom

filters, 37-46,47-56

SAFs, 17-35,47-56

server-parsed HTML tags, 57-62

D
daemon_atrestart API function, 69-70
data structures, 161-167

cinfo, 166

Filter, 166

FilterContext, 167

FilterLayer, 167

FilterMethods, 167

nsapi.h header file, 161

pb_entry, 163

pb_param, 163

pblock, 163

request, 164-165

sendfiledata, 166

session, 162-163

shmem_s, 165

stat, 165
defining

custom SAFs, 17-35

server-side tags, 57
dr_cache_init API function, 171-172
dr_cache_refresh API function, 172-173
dr_net_write API function, 173-175

E
environment variables, CGI to NSAPI
conversion, 34-35
Error directive
requirements for SAFs, 31-34,34
errors, finding most recent system error, 122-123
examples
location in the build, 48
of custom filters, 47-56

195

Index

examples (Continued) FilterLayer NSAPI data structure (Continued)

of custom SAFs (plug-ins), 47-56 context->data, 39

of custom SAFs in the build, 48 context->rq, 39

quality of service, 56 context->sn, 39

lower, 39
FilterMethods NSAPI data structure, 167
filters

F altering Content-length, 42-43
fc_close API function, 176 creating custom, 37-46
fc_net_write API function, 176-178 examples of, 47-56
fc_open API function, 175-176 functions used to implement, 46
file descriptor input, 42

closing, 123 interface, 38

locking, 123-124 methods, 38-41

opening read-only, 124 NSAPI function overview, 46

opening read-write, 124-125 output, 43

opening write-append, 125-126 stack position, 42

reading into a buffer, 126 using, 43-46

unlocking, 129-130, 130 flush API function, 40,78

writing from a buffer, 126-127 FREE API function, 78-79

writing without interruption, 127-128 func_exec API function, 79-80
fileI/O routines, 28-29 func_find API function, 80
filebuf_buf2sd API function, 70 func_insert API function, 80-81
filebuf close API function, 71 funcs parameter, 25
ﬁlebuf_getc API function, 71-72 functions, reference, 63-159

filebuf_open API function, 72
filebuf open_nostat API function, 72-73
filter_create API function, 73-75

filter_find API function, 75 G
filter_insert API function, 75-76 GATEWAY_INTERFACE environment variable, 34
filter_layer API function, 76-77 GMT time, getting thread-safe value, 128

filter methods, 38-41
C prototypes for, 38-39
FilterLayer data structure, 38

flush, 40 H

insert, 39 headers

remove, 39-40 request, 180

sendfile, 41 response, 182-183

write, 40-41 HOST environment variable, 35

writev, 41 HTML tags, creating custom, 57-62
filter_name API function, 77 HTTP
Filter NSAPI data structure, 166 compliance with HTTP/1.1, 179
filter_remove API function, 77 HTTP/1.1 specification, 179
FilterContext NSAPI data structure, 167 overview, 179
FilterLayer NSAPI data structure, 38,167 requests, 180

196 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Index

HTTP (Continued)
responses, 181-183
status codes, 181
HTTP_* environment variable, 34
HTTPS environment variable, 35
HTTPS_KEYSIZE environment variable, 35
HTTPS_SECRETKEYSIZE environment variable, 35

|
IETF home page, 179
include directory, for SAFs, 22
Init SAFs in magnus.conf
requirements for SAFs, 31-34
initializing
plug-ins, 25
SAFs, 25
Input
requirements for SAFs, 31-34
input filters, 42
insert API function, 39, 81-82

L
layer parameter, 38
linking SAFs, 22-24
loading
custom SAFs, 25
plug-ins, 25
SAFs, 25
localtime, getting thread-safe value, 128-129
log_error API function, 82-83

M

macros
NSAPI_RUNTIME_VERSION, 92-93
NSAPI_VERSION, 93-94

MALLOC API function, 83-84

memory management routines, 28

N
NameTrans
example of custom SAF, 50-51
requirements for SAFs, 31-34
net_flush API function, 84
net_ip2host API function, 84-85
net_read API function, 85-86
net_sendfile API function, 86-87
net_write API function, 87-88
netbuf buf2sd API function, 88
netbuf close API function, 88-89
netbuf_getbytes API function, 89-90
netbuf_getc API function, 90-91
netbuf_grab API function, 91
netbuf_open API function, 91-92
network I/O routines, 29
NSAPI
alphabetical function reference, 63-159
CGI environment variables, 34-35
data structure reference, 161-167
filter interface, 38
function overview, 27-31
NSAPI filters
interface, 38
methods, 38-41
nsapi.h, 161
nsapi_module_init API function, 92
NSAPI_RUNTIME _VERSION macro, 92-93
NSAPI_VERSION macro, 93-94

o

obj.conf, adding directives for new SAFs, 25-26

ObjectType
example of custom SAF, 52-53
requirements for SAFs, 31-34

order, of filters in filter stack, 42

Output
example of custom SAF, 53-54
requirements for SAFs, 31-34

output filters, 43

197

Index

P

param_create API function, 94
param_free API function, 95
parameter block

manipulation routines, 27-28

SAF parameter, 18-19
parameters, for SAFs, 18-19
PATH_INFO environment variable, 34
path name, converting UNIX-style tolocal, 131
PATH_TRANSLATED environment variable, 35
PathCheck

example of custom SAE, 51-52

requirements for SAFs, 31-34
pb_entry NSAPI data structure, 163
pb_param NSAPI data structure, 163
pb SAF parameter, 18-19
pblock, NSAPI data structure, 163
pblock_copy API function, 95-96
pblock_create API function, 96
pblock_dup API function, 96-97
pblock_find API function, 97
pblock_findval API function, 97-98
pblock_free API function, 98
pblock_nninsert API function, 99
pblock_nvinsert API function, 99-100
pblock_pb2env API function, 100
pblock_pblock2str API function, 101
pblock_pinsert API function, 101-102
pblock_remove API function, 102
pblock_str2pblock API function, 102-103
PERM_FREE API function, 104
PERM_MALLOC API function, 103-104, 104-105,

105-106
PERM_STRDUP API function, 106
plug-ins

compatibility issues, 18

creating, 17

example of new plug-ins, 47-56

instructing the server to use, 25-26

loading and initializing, 25
prepare_nsapi_thread API function, 107
protocol_dump822 API function, 107-108
protocol_set_finfo API function, 108
protocol_start_response API function, 109

protocol_status API function, 110
protocol_uri2url API function, 111
protocol utility routines, 28

Q

qos.cfile, 56

quality of service, example code, 56
QUERY_STRING environment variable, 35

R
read API function, 40,112-113
REALLOC API function, 113
reference

data structure, 161-167

NSAPI functions, 63-159
REMOTE_ADDR environment variable, 35
REMOTE_HOST environment variable, 35
REMOTE_IDENT environment variable, 35
REMOTE_USER environment variable, 35
remove API function, 39-40,114
replace.c, 54
REQ_ABORTED response code, 20
REQ_EXIT response code, 20
REQ_NOACTION response code, 20
REQ_PROCEED response code, 20
request

NSAPI data structure, 164-165

SAF parameter, 19
request_get_vs API function, 114
request-handling process, 31-34
request_header API function, 115
request headers, 180
REQUEST_METHOD environment variable, 35
request-response model, 179
request_stat_path API function, 115-116
request_translate_uri API function, 116
requests, HTTP, 180
requirements for SAFs, 31-34

AddLog, 34

AuthTrans, 32

Error directive, 34

198 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

Index

requirements for SAFs (Continued)
Init, 32
Input, 33
NameTrans, 32
ObjectType, 33
Output, 33
PathCheck, 32
Service, 33
response headers, 182-183
responses, HTTP, 181-183
result codes, 19-20
results caching plug-in, 169
important functions used by, 170
rq SAF parameter, 19

S
SAFs

compiling and linking, 22-24

creating, 17-35

examples of custom SAFs, 47-56

include directory, 22

interface, 18

loading and initializing, 25

parameters, 18-19

result codes, 19-20

return values, 20

signature, 18

testing, 27
SCRIPT_NAME environment variable, 35
sendfile API function, 41,117
sendfiledata NSAPI data structure, 166
server, instructions for using plug-ins, 25-26
SERVER_NAME environment variable, 35
server-parsed HTML tags

creating custom, 57-62

more information, 57
SERVER_PORT environment variable, 35
SERVER_PROTOCOL environment variable, 35
SERVER_SOFTWARE environment variable, 35
SERVER_URL environment variable, 35
Service

directives for new SAFs (plug-ins), 26

example of custom SAE, 54-55

Service (Continued)

requirements for SAFs, 31-34
session

defined, 162

NSAPI data structure, 162-163

resolving the IP address of, 117-118,118
session_dns API function, 117-118
session_maxdns API function, 118
session SAF parameter, 19
shell expression

comparing (case-blind) to a string, 119

comparing (case-sensitive) to a string, 119-120,

120-121

validating, 121
shexp_casecmp API function, 119
shexp_cmp API function, 119-120
shexp_match API function, 120-121
shexp_valid API function, 121
shmem_s NSAPI data structure, 165
ShtmlTaglInstanceLoad function, 59
ShtmlTaglInstanceUnload function, 59
ShtmlTagPageLoadFunc function, 59
ShtmlTagPageUnLoadFn, 59
sn->client, 162
sn->csd, 162
sn SAF parameter, 19
socket

closing, 88

reading from, 85

sending a buffer to, 88

sending file buffer to, 70

writing to, 87
sprintf, see util_sprintf, 145-146
stat NSAPI data structure, 165
status codes, 181
STRDUP API function, 121-122
string, creating a copy of, 121-122
system_errmsg API function, 122-123
system_fclose API function, 123
system_flock API function, 123-124
system_fopenRO API function, 124
system_fopenRW API function, 124-125
system_fopenWA API function, 125-126
system_fread API function, 126

199

Index

system_fwrite API function, 126-127

system_fwrite_atomic API function, 127-128

system_gmtime API function, 128
system_localtime API function, 128-129
system_lseek API function, 129-130
system_rename API function, 130
system_ulock API function, 129-130, 130
system_unix2local API function, 131
systhread_attach API function, 131-132
systhread_current API function, 132
systhread_getdata API function, 132-133
systhread_newkey API function, 133
systhread_setdata API function, 133-134
systhread_sleep API function, 134
systhread_start API function, 134-135
systhread_timerset API function, 135-136

T
tags, creating custom, 57-62
testing custom SAFs, 27
thread
allocating a key for, 133
creating, 134-135
getting a pointer to, 132
getting data belonging to, 132-133
putting to sleep, 134
setting data belonging to, 133-134
setting interrupt timer, 135-136
thread routines, 29

U

unicode, 30, 150

util_can_exec API function, 137
util_chdir2path API function, 138
util_cookie_find API function, 138
util_env_find API function, 138-139,139
util_env_free API function, 139-140
util_env_replace API function, 140
util_env_str API function, 140-141
util_getline API function, 141-142
util_hostname API function, 142

util_is_mozilla API function, 142
util_is_url API function, 143

util_itoa API function, 143
util_later_than API function, 143-144
util_sh_escape API function, 144
util_snprintf API function, 145
util_sprintf API function, 145-146
util_strcasecmp API function, 146-147
util_strftime API function, 147
util_strncasecmp API function, 147-148
util_uri_escape API function, 148
util_uri_is_evil API function, 149
util_uri_parse API function, 149
util_uri_unescape API function, 150
util_vsnprintf API function, 150-151
util_vsprintf API function, 151

utility routines, 30

\'}

virtual server routines, 30-31

vs_alloc_slot API function, 151-152
vs_get_data API function, 152
vs_get_default_httpd_object API function, 153
vs_get_doc_root API function, 153
vs_get_httpd_objset API function, 154
vs_get_id API function, 154-155
vs_get_mime_type API function, 155
vs_lookup_config_var API function, 155-156
vs_register_cb API function, 156

vs_set_data API function, 156-157
vs_translate_uri API function, 157

vsnprintf, see util_vsnprintf, 150-151
vsprintf, see util_vsprintf, 151

w
write API function, 40-41, 158
writev API function, 41,159

200 Sun Java System Web Server 7.0 NSAPI Developer's Guide «

	Sun Java System Web Server 7.0 NSAPI Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	Web Server 7.0 Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Accessing Sun Resources Online
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Creating Custom Server Application Functions
	Future Compatibility Issues
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (Session)
	rq (Request)

	Result Codes
	Creating and Using Custom SAFs
	To Create a Custom SAF
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags
	Compiling and Linking in 64–bit Mode
	Issues with Using C++ in a NSAPI Plug-in

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Restart the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities
	Virtual Server

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	Creating Custom Filters
	Future Compatibility Issues
	The NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	See Also

	remove
	See Also

	flush
	See Also

	read
	See Also

	write
	See Also

	sendfile
	See Also

	writev
	See Also

	Position of Filters in the Filter Stack
	Filters that Alter Content-Length
	Creating and Using Custom Filters
	To create a custom filter
	Write the Source Code
	Compile and Link
	Load and Initialize the Filter
	Instruct the Server to Insert the Filter
	Restart the Server
	Test the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples Bundled With the Server
	AuthTrans Example
	Installing the AuthTrans Example

	NameTrans Example
	Installing the NameTrans Example

	PathCheck Example
	Installing the PathCheck Example

	ObjectType Example
	Installing the ObjectType Example

	Output Example
	Installing the Output Example

	Service Example
	Installing the Service Example
	More Complex Service Example

	AddLog Example
	Installing the AddLog Example

	Quality of Service Example
	Installing the Quality of Service Example

	Creating Custom Server-parsed HTML Tags
	Defining Custom Server-parsed HTML Tags
	To Define Customer Server-parsed HTML Tags

	Define the Functions that Implement the Tag
	Write an Initialization Function
	Load the New Tag into the Server

	NSAPI Function and Macro Reference
	NSAPI Functions and Macros
	C
	CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	cinfo_find
	Syntax
	Returns
	Parameters

	condvar_init
	Syntax
	Returns
	Parameters
	See Also

	condvar_notify
	Syntax
	Returns
	Parameters
	See Also

	condvar_terminate
	Syntax
	Returns
	Parameters
	See Also

	condvar_wait
	Syntax
	Returns
	Parameters
	See Also

	crit_enter
	Syntax
	Returns
	Parameters
	See Also

	crit_exit
	Syntax
	Returns
	Parameters
	See Also

	crit_init
	Syntax
	Returns
	Parameters
	See Also

	crit_terminate
	Syntax
	Returns
	Parameters
	See Also

	D
	daemon_atrestart
	Syntax
	Returns
	Parameters
	Example

	F
	filebuf_buf2sd
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_close
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_getc
	Syntax
	Returns
	Parameters
	See Also

	filebuf_open
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_open_nostat
	Syntax
	Returns
	Parameters
	Example
	See Also

	filter_create
	Syntax
	Returns
	Parameters
	Example
	See Also

	filter_find
	Syntax
	Returns
	Parameters

	filter_insert
	Syntax
	Returns
	Parameters
	See Also

	filter_layer
	Syntax
	Returns
	Parameters

	filter_name
	Syntax
	Returns
	Parameters

	filter_remove
	Syntax
	Returns
	Parameters

	flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_exec
	Syntax
	Returns
	Parameters
	See Also

	func_find
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_insert
	Syntax
	Returns
	Parameters
	Example
	See Also

	I
	insert
	Syntax
	Returns
	Parameters
	Example
	See Also

	L
	log_error
	Syntax
	Returns
	Parameters
	Example
	See Also

	M
	MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	N
	net_flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_ip2host
	Syntax
	Returns
	Parameters

	net_read
	Syntax
	Returns
	Parameters
	See Also

	net_sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_write
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_buf2sd
	Syntax
	Returns
	Parameters
	See Also

	netbuf_close
	Syntax
	Returns
	Parameters
	See Also

	netbuf_getbytes
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_getc
	Syntax
	Returns
	Parameters
	See Also

	netbuf_grab
	Syntax
	Returns
	Parameters
	See Also

	netbuf_open
	Syntax
	Returns
	Parameters
	See Also

	nsapi_module_init
	Syntax
	Returns
	Parameters
	See Also

	NSAPI_RUNTIME_VERSION
	Syntax
	Example
	See Also

	NSAPI_VERSION
	Syntax
	Example
	See Also

	P
	param_create
	Syntax
	Returns
	Parameters
	Example
	See Also

	param_free
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_copy
	Syntax
	Returns
	Parameters
	See Also

	pblock_create
	Syntax
	Returns
	Parameters
	See Also

	pblock_dup
	Syntax
	Returns
	Parameters
	See Also

	pblock_find
	Syntax
	Returns
	Parameters
	See Also

	pblock_findval
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_free
	Syntax
	Returns
	Parameters
	See Also

	pblock_nninsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_nvinsert
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_pb2env
	Syntax
	Returns
	Parameters
	See Also

	pblock_pblock2str
	Syntax
	Returns
	Parameters
	See Also

	pblock_pinsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_remove
	Syntax
	Returns
	Parameters
	See Also

	pblock_str2pblock
	Syntax
	Returns
	Parameters
	See Also

	PERM_CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_REALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_STRDUP
	Syntax
	Returns
	Parameters
	See Also

	prepare_nsapi_thread
	Syntax
	Returns
	Parameters
	See Also

	protocol_dump822
	Syntax
	Returns
	Parameters
	See Also

	protocol_set_finfo
	Syntax
	Returns
	Parameters
	See Also

	protocol_start_response
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_status
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_uri2url
	Syntax
	Returns
	Parameters
	See Also

	protocol_uri2url_dynamic
	Syntax
	Returns
	Parameters
	See Also

	R
	read
	Syntax
	Returns
	Parameters
	Example
	See Also

	REALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	remove
	Syntax
	Returns
	Parameters
	See Also

	request_get_vs
	Syntax
	Returns
	Parameters
	See Also

	request_header
	Syntax
	Returns
	Parameters
	See Also

	request_stat_path
	Syntax
	Returns
	Parameters
	Example
	See Also

	request_translate_uri
	Syntax
	Returns
	Parameters
	See Also

	S
	sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	session_dns
	Syntax
	Returns
	Parameters

	session_maxdns
	Syntax
	Returns
	Parameters

	shexp_casecmp
	Syntax
	Returns
	Parameters
	See Also

	shexp_cmp
	Syntax
	Returns
	Parameters
	Example
	See Also

	shexp_match
	Syntax
	Returns
	Parameters
	See Also

	shexp_valid
	Syntax
	Returns
	Parameters
	See Also

	STRDUP
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_errmsg
	Syntax
	Returns
	Parameters
	See Also

	system_fclose
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_flock
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRO
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRW
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_fopenWA
	Syntax
	Returns
	Parameters
	See Also

	system_fread
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite_atomic
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_gmtime
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_localtime
	Syntax
	Returns
	Parameters
	See Also

	system_lseek
	Syntax
	Returns
	Parameters
	See Also

	system_rename
	Syntax
	Returns
	Parameters

	system_ulock
	Syntax
	Returns
	Parameters
	See Also

	system_unix2local
	Syntax
	Returns
	Parameters
	See Also

	systhread_attach
	Syntax
	Returns
	Parameters
	See Also

	systhread_current
	Syntax
	Returns
	Parameters
	See Also

	systhread_getdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_newkey
	Syntax
	Returns
	Parameters
	See Also

	systhread_setdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_sleep
	Syntax
	Returns
	Parameters
	See Also

	systhread_start
	Syntax
	Returns
	Parameters
	See Also

	systhread_timerset
	Syntax
	Returns
	Parameters
	See Also

	U
	USE_NSAPI_VERSION
	Syntax
	Example
	See Also

	util_can_exec
	UNIX Only
	Syntax
	Returns
	Parameters
	See Also

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_cookie_find
	Syntax
	Returns
	Parameters

	util_env_find
	Syntax
	Returns
	Parameters
	See Also

	util_env_create
	Syntax
	Returns
	Parameters
	See Also

	util_env_free
	Syntax
	Returns
	Parameters
	See Also

	util_env_replace
	Syntax
	Returns
	Parameters
	See Also

	util_env_str
	Syntax
	Returns
	Parameters
	See Also

	util_getline
	Syntax
	Returns
	Parameters

	util_hostname
	Syntax
	Returns
	Parameters

	util_is_mozilla
	Syntax
	Returns
	Parameters
	See Also

	util_is_url
	Syntax
	Returns
	Parameters
	See Also

	util_itoa
	Syntax
	Returns
	Parameters

	util_later_than
	Syntax
	Returns
	Parameters
	See Also

	util_sh_escape
	Syntax
	Returns
	Parameters
	See Also

	util_snprintf
	Syntax
	Returns
	Parameters
	See Also

	util_sprintf
	Syntax
	Returns
	Parameters
	Example
	See Also

	util_strcasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_strftime
	Syntax
	Returns
	Parameters
	See Also

	util_strncasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_uri_escape
	Syntax
	Returns
	Parameters
	See Also

	util_uri_is_evil
	Syntax
	Returns
	Parameters
	See Also

	util_uri_parse
	Syntax
	Returns
	Parameters
	See Also

	util_uri_unescape
	Syntax
	Returns
	Parameters
	See Also

	util_vsnprintf
	Syntax
	Returns
	Parameters
	See Also

	util_vsprintf
	Syntax
	Returns
	Parameters
	See Also

	V
	vs_alloc_slot
	Syntax
	Returns
	See Also

	vs_get_data
	Syntax
	Returns
	Parameters
	See Also

	vs_get_default_httpd_object
	Syntax
	Returns
	Parameters
	See Also

	vs_get_doc_root
	Syntax
	Returns
	Parameters

	vs_get_httpd_objset
	Syntax
	Returns
	Parameters
	See Also

	vs_get_id
	Syntax
	Returns
	Parameters
	See Also

	vs_get_mime_type
	Syntax
	Returns
	Parameters

	vs_lookup_config_var
	Syntax
	Returns
	Parameters

	vs_register_cb
	Syntax
	Returns
	Parameters

	vs_set_data
	Syntax
	Returns
	Parameters
	See Also

	vs_translate_uri
	Syntax
	Returns
	Parameters

	W
	write
	Syntax
	Returns
	Parameters
	Example
	See Also

	writev
	Syntax
	Returns
	Parameters
	Example
	See Also

	Data Structure Reference
	Public Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods

	Dynamic Results Caching Functions
	Functions
	dr_cache_destroy
	Parameters
	Returns
	Example

	dr_cache_init
	Syntax
	Returns
	Parameters
	Example

	dr_cache_refresh
	Syntax
	Returns
	Parameters
	Example

	dr_net_write
	Syntax
	Returns
	Parameters
	Flags
	Example

	fc_open
	Syntax
	Returns
	Parameters

	fc_close
	Syntax
	Returns
	Parameters

	fc_net_write
	Syntax
	Returns
	Parameters
	Flags
	Example

	Hypertext Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Alphabetical List of NSAPI Functions and Macros
	NSAPI Functions and Macros

	Index

