
Solaris Volume
Manager:
Multi-Owner Disksets

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Why Multi-Owner Disksets
• Requested by SunCluster to offer alternative

solution to Veritas Cluster Server
• Project name “Oban”
• Created to support Oracle RAC
• User application must handle overlapping writes

since there is no cluster wide lock mgr in Oban

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

What are MO Disksets?
• Manages storage grouped as multi-owner disk sets
● Multiple nodes can perform I/O to shared storage

simultaneously
● Multi-owner disk set functionality is enabled only in

a SunCluster environment

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Solaris Volume Manager for Sun
Cluster Overview

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MO Diskset Limits
● Multi-owner disk sets:

● Can support up to 128 nodes
● Support a maximum of 8192 volumes
● Have a larger state database replica. The default is 16

Mbytes, with a limit of 256 Mbytes
● Maximum number of disk sets still are 32
● No support for RAID or trans

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Commands and Daemons

● Metaclust
● Only called by reconfig scripts

● Metaset
● -M Creates a multi-owner disk set
● -j/-w Join/withdraw to/from diskset

● rpc.mdcommd
● Coordinates node communication

● Mddoors

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Common Terms
● Master – Each multi-node diskset has a master

node that acts as the controller for all configuration
updates to the cluster.

● Slave – All of the nodes in a multi-node diskset that
are not a master. It is possible for a node to be a
master of one diskset and a slave for another.

● Metadb, MDDB, replica – the metadata storage for
SVM

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MO Diskset Concepts

● Each MO diskset has a master
● Multiple masters can exist simultaneously in different

sets
● Master manages and updates the state database

replica changes for its set
● Two ways the master is chosen

● First node to add a disk to the disk set
● The node with the lowest node id

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Mirrors in MO disksets

Two types of mirrors:
● Optimized resync mirrors

● Only accessed by 1 node at a time
● Intended for use of Oracle RAC log files that are only

accessed by 1 node.
● ABR enabled mirrors

● Can be accessed by all nodes simultaneously

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Mirrors in MO Disksets (2)
● Mirror Owners

● A mirror owner is the node that is currently performing a
resync or with optimized resync mirrors the last node to
perform i/o

● Optimized resync mirrors always have an owner
● ABR enabled mirrors have an owner only during resyncs

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Optimized Resync Mirror
metastat -s blue
blue/d22: Mirror
 Submirror 0: blue/d20
 State: Okay
 Submirror 1: blue/d21
 State:Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Resync option: optimized resync
 Owner: nodetwo
 Size 1238895 blocks (604 MB)

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

ABR Enabled Mirror

metastat -s blue
blue/d22: Mirror
 Submirror 0: blue/d20
 State: Okay
 Submirror 1: blue/d21
 State:Okay
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Resync option: application based
 Owner: None
 Size 1238895 blocks (604 MB)

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Creation of MN diskset

• Similar to creation of traditional diskset (uses
rpc.metad)

• Starts rpc.mdcommd and mddoors
> rpc.mdcommd is an rpc daemon used to

communicate configuration and state changes
across the cluster nodes

> mdoors is a door interface between the kernel
and rpc.mdcommd

• Subsequent metaset and metadb commands use
rpc.mdcommd in addition to rpc.metad

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metaset output after creation

metaset -s foo1 -aMh staffa ulva

metaset

Multi-owner Set name = foo1, Set number = 1, Master =

Host Owner Member

 staffa Yes

 ulva Yes

• No owner since no disk in diskset
• Both nodes are members
• No master since no node is an owner

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Owner and Members

• Multiple owners allowed in MN diskset
• Node is a member if node is in the membership

list (/var/run/nodelist)
• Node is always a member on a single node

system with no membership list

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Membership File

cat /var/run/nodelist

1 staffa 172.16.193.1

2 ulva 172.16.193.2

• The node number starts at 1
• Written during reconfig cycle
• SunCluster will create and maintain this file so if

running/testing in a non-SC environment it is
necessary to create/maintain this manually

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Join and Withdraw

• Options -j/-w like -t/-r
• First node to join is master
• Master not allowed to withdraw until all other

nodes have withdrawn
• Customers not expected to use since SunCluster

reconfig automatically joins nodes

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Join and Withdraw (2)

• Slave node inherits state of diskset
• If master is running at 50% available mddbs,

slave node is allowed to join diskset
• If master is running in STALE state when slave

node joins, slave node is also in STALE state

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Join and Withdraw (3)
ulva# metaset -w

ulva# metaset

Multi-owner Set name = foo1, Set number = 1, Master =

Master and owner information unavailable until joined
(metaset -j)

Host Owner Member

 staffa multi-owner Yes

 ulva Yes

Drive Dbase

c1t16d0 Yes

• Ulva no longer owner

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Join and Withdraw (4)

Staffa# metaset

Multi-owner Set name = foo1, Set number = 1, Master =
staffa

Host Owner Member

 staffa multi-owner Yes

 ulva Yes

Drive Dbase

c1t16d0 Yes

• Staffa is still owner and master

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Node Records

• Each node in MN diskset has a node record
stored in local metadbs

• Node record added/deleted during addition or
removal of host from set

• Node record updated during join/withdraw of host

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Diskset Failure Recovery

• Recovery is more comprehensive due to leverage
of SunCluster reconfig cycle

• Nodes communicate during recovery to develop
consistent view

• Should never have situation where 2 nodes have
different views of diskset

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metadb

• Only master node allowed to write to diskset
mddbs

• When master changes the mddb it sends a
PARSE message which causes the slaves to re-
read the mddb in from disk

• Optimized resync record updates do not cause a
PARSE message

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metaset and Metadb

• These commands are only run on the local node
• These commands can change the nodelist and so

can't use rpc.mdcommd
• These commands suspend rpc.mdcommd in

order to lock out other meta* commands.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MO Diskset Commands
• Most can be run from any node
• Metarecover must be run on master node
• Metastat doesn't contact other nodes in multi-owner

set
• Most are executed on all nodes using

rpc.mdcommd

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MO Diskset Commands (2)

• Most run a -n (dryrun) option first
• If dryrun fails, command is done.
• Once a command (non-dryrun) is issued on master

node, it will be issued to all nodes even if command
failed.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MO Diskset Commands (3)
• When invoked by rpc.mdcommd, exec name is

metaxxxx.rpc_call. This enables the command to
determine if it has been invoked by the user or by
rpc.mdcommd.

• The command must return identical values on all
nodes, if not, rpc.mdcommd will Panic the Master
node.

• A disk failure on one node is reflected as a failure
on all the nodes.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metainit example

• User types “metainit -sA d0 1 1 c1t3d0s0”
• Metainit sends dryrun command to rpc.mdcommd

on local node.
• rpc.mdcommd sends message to Master.
• Master executes dryrun command locally.
• If successful, dryrun command sent to all slave

nodes, including originating node.
• If dryrun fails on any node, failure is returned to

the originator which aborts command.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metainit example (2)

• If dryrun succeeds, metainit sends the metainit to
rpc.mdcommd locally.

• rpc.mdcommd sends message to Master.
• Master executes metainit command locally,

metadbs updated.
• Command then sent to all slave nodes
• If the result on any node differs from the result on

the Master, rpc.mdcommd forces a panic of the
Master node as there is an inconsistency
between the two nodes.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metainit example (3)
• We now have identical results for the command,

return the result to the originating metainit
command. Note that it may be that the command
fails on all nodes, this is an acceptable outcome.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Multiple Argument Cmds

• Metaclear and metasync can refer to multiple
metadevices, either explicitly

metaclear -sA d1 d2 d3
metasync -sA d10 d11

or implicitly
metaclear sA -a, metasync -sA -r

• Here, the originating command, sends a series of
individual metacommands to the Master node. This
avoids the requirement for a long timeout for the
messages.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Oban Libmeta Support
• Libmeta functions used by metacommands

> meta_mn_send_command()
> meta_mn_send_resync_starting()
> meta_mn_suspend_writes()
> meta_mn_send_setsync() (S10)
> meta_mn_send_metaclear_command()
> meta_is_mn_set() - also sets sp to current set if set/dxx

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

rpc.mdcommd

• Communication daemon
• Runs on every node
• Accepts messages
• Guarantees response to message
• Class oriented (classes 1- 8)
• Set oriented (1- 32)

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

rpc.mdcommd Classes

• rpc.mdcommd can only process one message per
set/class at a time.

• Classes enable the processing of one message
to send another message.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

rpc.mdcommd Classes (2)

• While processing one message, a message can
be generated with a higher class than the
originating message.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Components of rpc.mdcommd

• Local rpc.mdcommd accepts requests from
initiators

• Master rpc.mdcommd accepts messages from
local rpc.mdcommd on all nodes

• Slave rpc.mdcommd accepts messages from
Master rpc.mdcommd

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Using rpc.mdcommd

• User level initiator uses mdmn_send_message
• Kernel level initiator uses mdmn_ksend_message
• Kernel request sent to local rpc.mdcommd via

mddoors
• Initiator can hold no locks across send

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Change log

• Implemented as user records in diskset mddb
(previously user records only used in local set)

• 16 user records allocated when diskset mddb is
created (2 for each class)

• Only accessed by master node
• Persists across full cluster reboot

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Message Completion Table

• Memory mapped file on each node (not persistent
across boot)

• Holds ID of last message completed on this node
for all message types and their results

• Used when replaying messages during reconfig
cycle so message isn't executed twice

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Mddoors
• Fast kernel to user interface for rpc.mdcommd

messages
• Less complex and just as fast as kernel RPC

implementation

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Message Handlers

• Each message has a handler or a submessage
generator

• Handler can only cause higher priority class
messages to be sent

• Handlers are run on master and slave nodes
unless specific flags are set

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Message Handlers(2)
• Most message handlers make ioctl calls into SVM

drivers.
• SVM ioctls are single-threaded, hence deadlock if

sending a message from within an ioctl.
• Hence we implement multi-threaded ioctls.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Multi-threaded ioctls

• Multi-threaded ioctl can be executed while a
single threaded ioctl is active.

• Single-threaded ioctl cannot be executed while
multi-threaded active.

• Multiple multi-threaded ioctls can be concurrently
active.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Submessage Generator

Submessage generator is used for a multipart
message that needs to be entered into the
change log as one message but logically breaks
out into smaller submessages.

The smaller submessages are not logged.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Special rpc.mdcommd routines

• Lock, Unlock
> used during test

• Suspend, Reinit, Resume, Ping
> used when nodelist is being manipulated by

metaset and metadb commands. Forces
rpc.mdcommd to get new nodelist from
rpc.metad

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Lock Issues

• No locks should be held across call to send a
message to rpc.mdcommd

• Lots of changes made to code to stop deadlock
situations

• There are a few places where a lock must be held
while sending a message but beware!

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

rpc.mdcommd debugging

• rpc.mdcommd debug output is setup by adding
the following lines to /etc/lvm/runtime.cf and
restarting rpc.mdcommd
> commd_out_file=/commd_log/commd.out
> commd_verbosity=0x2000ffff

• The commd_out_file isn't reset at reboot and can
become quite large.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Event Flow – Phase 1

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Event Flow – Phase 2

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Event Flow – Phase 3

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Event Flow – Phase 4

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Event Flow – Phase 5

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

DRL Mirror

Each node in a cluster can write to a shared mirror.
Every time the writer changes, the associated
DRL records need to be updated and transferred
to the new owner

Ownership can change on every call to
mirror_write_strategy()

metastat displays the current owner of a mirror;
'None' is displayed if the mirror has not been
written to or is being treated as an ABR mirror

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Ownership change

mirror_write_strategy()

become_owner()

MD_MN_MSG_REQUIRE_OWNER

set un_mirror_owner
set un_rr_dirty_recid
owner

update_resync()

Re-read resync record
bitmaps & merge

Restart resync

mirror_write_strategy()

md_mirror_daemon

md_mirror_rs_daemon/
md_mirror_io_daemon

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Data Structures
Daemon structures used for blockable contexts
• mirror_daemon_queue

> Used to start ownership change request. Populated by mirror_write_strategy(), serviced by
become_owner()

• mirror_rs_daemon_queue
> Used to service resync derived ownership change. Populated by become_owner(), serviced

by update_resync() and daemon_io()

• mirror_io_daemon_queue
> Used to service i/o driven ownership change. Populated by become_owner(), serviced by

update_resync() and daemon_io()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Data structures contd.
mm_unit_t structure elements used
• un_owner_state

> MM_MN_OWNER_SENT set while ownership change in flight
> MM_MN_BECOME_OWNER set on originating node when mirror_set_owner() runs;

MM_MN_OWNER_SENT cleared
> MM_MN_PREVENT_CHANGE set to prevent the ownership moving from the current owner.

Used by the soft-partition creation code

• un_mirror_owner
> set to node-id of mirror owner. Consistent after successful completion of

MD_MN_MSG_REQUIRE_OWNER message

• un_owner_mx
> controls access to un_owner_state

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

MD_MN_MSG_REQUIRE_OWNER
• Calls mirror_set_owner() to update the node's in-core

ownership field. If the node is not the owner of the
mirror and is not the requesting node (i.e. the to-be-
assigned owner), update the un_mirror_owner field to
the specified node ID.

• If node is the requesting new owner, set
MM_MN_BECOME_OWNER in
un_mirror_owner_state. Do not update
un_mirror_owner. This is done on successful
completion of the message handler.

• If node owns mirror, relinquish ownership, drain i/o,
block resync, transfer resync record ownership

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Application Based Recovery
• ABR means that the standard SVM dirty region list is

not updated on a mirror write. The application must
handle the resync of the data if a node panics during
the write.

• Provides higher throughput as the DRL is not written
to and then cleared as a result of each write to the
metadevice

• ABR capability is stored in a per-unit ui→ui_tstate flag
to allow mirror_write_strategy to perform necessary
processing

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

ABR continued...

• As soft partitions can be created on top of a mirror the
ABR behavior needs to be propagated through the
softpart driver
> MD_STR_ABR indicates an ABR write request

originating from a higher metadevice (e.g. a softpart
• Direct kernel accesses (QFS) can also use the ABR

behavior by setting the buf flag B_ABRWRITE on each
individual I/O.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

ABR and ownership

• ABR mirrors do not have an owner unless a submirror
or component resync is in progress

• Top-level soft-partitions can provide ABR capability
but the underlying mirror will not be marked as ABR.
Each i/o through the soft-part will have MD_STR_ABR
set in the strategy flags. This allows for non-intuitive
setups:

d50 ABR d51 non-ABR d52 d53 ABR

d100

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

ABR and ownership contd...

• d100 will maintain resync-records for all non-ABR soft-
partitions built on it. write()s to d50, d53 will not incur
resync-record updates

• Optimized resyncs will occur for all regions with a
resync-record marked (i.e. not d50,d53)

• Component and submirror resyncs will occur as
normal

• DMR will recover application data from all sides of the
mirror associated with d50, d53

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Performance

• Frequently changing owners is a bad thing to do
because:
> heavy i/o load on the current owner will delay the

switch away from that owner
> the time to switch scales linearly with the number of

nodes in a cluster as the message has to be passed
to each node in sequence

> it probably means the database isn't set-up correctly

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Types Of Resync

• Optimized
• Submirror
• Component

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Optimized Resync
• Ensures that mirrors are in sync following

> System failure
> metaoffline/metaonline

• Only need to resync the blocks that have been
written to since the last time we know they were
in sync.

• Mirror is split into a maximum of 1001 contiguous
regions and the dirty-region bitmap is stored in
mddb

• When writing to a mirror we maintain this dirty-
region bitmap, un_dirty_bm in the unit structure.
When we are about to add a new dirty region, we
commit the resync record to disk.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Optimized Resync – cont
• When a write completes, the count in

un_outstanding_writes is decremented.
• Every md_mdelay seconds (default 10),

check_resync_regions is called to check if any
resync regions are now clean and if so commits
the resync record. The resync record has a
record of the regions that have been written to in
up to the last 10 seconds.

• Before calling optimized_resync(), un_dirty_bm
is copied to un_resync_bm.

• check_resync_regions() does not clear any dirty
region if the region has not yet been resynced, ie
bit set in un_resync_bm.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

optimized_resync()

• Sets MD_UN_RESYNC_ACTIVE and
MD_UN_WAR in un_status.

• Calculates un_resync_2_do as the number of
dirty regions, un_resync_done set 0.

• Loops through all of the dirty regions, calling
resync_read_blk_range() for each dirty region.

• Increments un_resync_done for each region
resynced.

• Clears bit un_resync_bm for each region
resynced.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

submirror_resync()
• Resyncs a submirror following a metattach
• Sets MD_UN_RESYNC_ACTIVE and MD_UN_WAR in

un_status.
• Splits the submirror into chunks. The size of each chunk

is 1/100 of the mirror size if <= 1TB or 1/1000 of the
mirror size if > 1TB.

• Sets un_resync_2_do to the number of chunks,
un_resync_done set to 0.

• Loops through the mirror calling
resync_read_blk_range() for each chunk.

• Increments un_resync_done for each region resynced.
• Continue until all chunks resynced.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Component_resync()

• Called to resync a submirror component following
a hotspare allocation or a metareplace.

• Scans all submirror components calling
check_comp_4_resync() for each one.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Resync Thread – resync_unit()

• The 3 types of resync are controlled by a resync
thread, one thread per mirror.

• When a resync is required due to metasync,
metattach, metaonline, metareplace or hotspare
allocation command, mirror_resync_unit() is
called to create the resync thread, resync_unit().

• resync_unit loops through resyncs in the order:
> Optimized
> Component
> Submirror

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Resync Thread – resync_unit()

• It continues to loop until no resync has been
performed by any of the 3 resync functions. The
variable un_dropped_lock controls this.
un_rs_dropped_lock is set 0 at the start of the
loop and is set to 1 by the resync functions when
a resync is being done.

• At the end, MD_UN_RESYNC_ACTIVE is cleared
in un_status and the thread terminates.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Data Structures

• The key data structure for resync is the mirror unit
structure.
> c.un_status – MD_UN_RESYNC_ACTIVE set while

resyncs are running and MD_UN_WAR set while an
individual resync is running.

> un_rs_done – number of resync segments that have
been resynced.

> un_rs_2_do – number of segments to be resynced
> un_rs_dropped_lock – set if a resync has been run

during the current loop through the resyncs
> un_rs_flg – controls commits to resync record

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Oban Resync Requirements

• When a mirror changes ownership, the resync
should migrate to the new owner.

• When a node fails while performing a resync, it
must be possible to restart the resync on another
node.

• When resyncing an ABR mirror, the resync must
prevent writes on other nodes from overlapping
with resync writes.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Starting a Resync

• In metattach, metareplace, metaonline and
metasync, we first execute the command on
every node, which, for a MN set, does not start
the resync thread.

• Once the command has been executed, send a
message, RESYNC_STARTING, to start the
resync thread on every node.

• Message handler calls mirror_resync_unit() to
start the resync thread.

• Only the mirror owner will perform the resync, on
non-owner nodes the mirror_thread will block.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Starting a Resync(2)

• mirror_resync_unit() also starts a
resync_progress_thread on each node.

• Once the resync thread starts, if the node has
been joined to the set, issue GET_SM_STATE
message to get the submirror state from the
master. This ensures that the state on all nodes
are in sync.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Overlapping writes

• For non-Oban sets wait_for_overlaps() is called
to ensure that there are no pending writes that
overlap this block.

• Before adding an entry, if the current block
overlaps any entry on the linked-list,
wait_for_overlaps() waits until there are no
overlaps and then adds the entry

• Once the write is complete, the entry is removed
from the list.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Overlapping writes(2)

• For a non-ABR mirror, the old algorithm works
since only 1 node can write

• For an ABR mirror, writes can be executed on all
nodes while a resync is in progress on one of the
nodes. Writes on the other nodes that overlap
the current resync block must be blocked

• For ABR mirrors, the application must handle the
overlapping writes on different nodes

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Overlapping writes(3)

• Split the resync into 4Mb regions.
• Before resyncing each 4Mb region, send a

RESYNC_NEXT message to all other nodes. This
is done in resync_read_blk_range().

• On receipt of this message, all nodes, except the
owner, setup un_rs_prev_ovrlap with the current
4Mb region and call wait_for_overlaps() with this
as the argument, to ensure that there are no
writes that overlap this region.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Overlapping writes(4)

• The current resync region must be on the
overlaps chain before we execute an ABR write
on a non-owner node.

• Can't rely on the call to wait_for_overlaps() in the
RESYNC_NEXT handler as it releases the unit
lock and a write may be started before resync
region is on the chain.

• Add a call to wait_for_overlaps() in
mirror_write_strategy() to add the resync region
before the write is processed.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Overlapping writes(5)

• An additional flag has been added to
wait_for_overlaps() to allow multiple calls for the
same parent_structure,
MD_OVERLAP_ALLOW_REPEAT.

• Needed because we now may call
wait_for_overlaps() several times for the same
resync region.

• After wait_for_overlaps(), reacquire the unit lock
and then check that we are still the owner. If not
we have to remove the resync region from the
overlaps chain.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Changing Ownership
• When the resync thread is run on non-owner

nodes, set MD_RI_BLOCK_OWNER in
un_rs_thread_flags.

• Before the main loop, call resync_kill_pending()
which
> Blocks on un_rs_thread_cv if

MD_RI_BLOCK_OWNER
> Exits 1 if the resync has been finished or aborted
> Exits 0 if mirror owner

• When a node becomes the owner,
MD_RI_BLOCK_OWNER is cleared and the
resync thread is signalled to continue

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Changing Ownership(2)
• When a node relinquishes ownership,

MD_RI_BLOCK_OWNER is set to cause the
resync thread to block.

• Ownership can only be changed when the unit
lock is free. This lock is held during I/O but any
time the lock is released in a resync,
resync_kill_pending() must be called as there
may have been a change of ownership.

• When resuming after resync_kill_pending() we
need to check we are still performing the same
resync. It is possible that another node may have
completed the resync and started a new one.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Changing Ownership(3)

• In each resync function, resync_read_blk_range()
is called to write a number of contiguous blocks.

• In resync_read_blk_range(),
resync_kill_pending() is called after each I/O to
deal with change of ownership and resync
termination.

• resync_read_blk_range() exits 1 if the resync has
been cancelled. The calling resync function will
break out of the resync in this case.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Changing Ownership – another
problem
• When issuing a resync read,

mirror_read_strategy() calls drops the unit lock
before calling wait_for_overlaps().

• When the lock is dropped, an ownership change
may occur.

• After getting the lock, if we have lost ownership,
we request ownership before continuing.

• Once ownership has been obtained must check
that the block requested is still in the current
resync region.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Changing Ownership – another
problem(2)
• This may not be the case if another node has

completed this 4Mb resync region and
progressed to the next while this node was
waiting to become the owner.

• If outside of the current resync region just abort
the resync read/write.

• The same may occur in mirror_write_strategy()
when performing a write-after_read (a resync
write) so check if in the current resync_region.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Maintaining Resync Position on all
nodes

• RESYNC_NEXT message sent every 4Mb before
issuing the I/O.

• This message includes un_rs_type, un_rs_startbl,
un_rs_resync_2_do and un_rs_done.

• On receipt of this message, resync state is
updated.

• When there is a change of ownership, this state is
used to determine where to start from.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Maintaining Resync Position in the
metadb

• The resync_progress_thread runs every 5
minutes and, on the master node, it commits the
mirror record to the metadb. Following total
system failure, this state can be used to restart
the resync.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Terminating a Resync

• When a resync has completed, send a
RESYNC_PHASE_DONE msg to all nodes

• The handler for this message clears
MD_UN_WAR in c.un_status and un_rs_type

• When all resyncs are complete and the thread is
about to terminate, send a RESYNC_FINISH
message to all nodes.

• The handler terminates the thread, clearing
MD_UN_RESYNC_ACTIVE in c.un_status and
clears un_rs_thread.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Restarting a resync following system
failure
• The resync_progress_thread maintains the

current (within the last 5 minutes) state in the
metadb.

• This state is snarfed and when a resync is started
in the Sun Cluster reconfig cycle, the resync is
started from position recorded in the unit
structure.

• Before starting this resync, call
optimized_resync() to deal with dirty regions.

• Each resync function has to deal with restarting a
partially complete resync.

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Debugging

• In a debug kernel, the mirror driver is
instrumented with a number of debug messages.
These are only output if mirror_debug_flag is
non-zero.

• Either add “set md_mirror:mirror_debug_flag = 1”
to /etc/system.

• Or mdb -kw
>mirror_debug_flag/W 1

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Reconfig cycle basics

• Reconfig cycle consists of steps
• All nodes must finish with one step before going

to next step (barrier)
• Nodes booting run start step first
• Returning nodes run return step first
• New reconfig cycle can start after any step

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Reconfig cycle SVM specific

• SVM interface is metaclust command
• Must recover from a node panic during any

operation on master or slave node
• Must recover from coredump of command or

daemon
• Must handle case when node panics and reboots

fast enough to boot into cluster during next
reconfig cycle

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Metaclust

• Almost secret command
• Lives in /usr/lib/lvm
• Runs on all nodes
• metaclust [-t timeout] [-d level] start localnodeid

• metaclust [-t timeout] [-d level] step nodelist...

• metaclust [-t timeout] [-d level] return nodelist...

• Step can be

> Step1 (maps to ucmmstep2)

> Step2 (maps to ucmmstep3)

> Step3 (maps to ucmmstep4)

> Step4 (maps to ucmmstep5)

• -d {Debug level} 5 is the highest level

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Start step

• Called by nodes that are joining cluster
• Metaclust start

> Suspends rpc.mdcommd
> Issues ioctl to set start flag in kernel

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Return Step

• Called by nodes that are already in the cluster
and prepares the nodes for reconfig

• Metaclust return
> Suspends mirror resyncs
> Drains metaset and metadb commands
> Drains and suspends rpc.mdcommd

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SVM step1

• All nodes in nodelist run step1
• Metaclust step1 nodelist

> Writes new nodelist to /var/run/nodelist
> Clears any rpc.metad locks left around
> All nodes choose master

>If master node already chosen, choose that node
>If no master node, choose lowest numbered node

that is an owner
>If no owner nodes, choose lowest numbered node

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SVM step2

• All nodes in nodelist run step2
• Metaclust step2 nodelist

> Master node synchronizes user records to be
consistent on all nodes in a diskset (this is a big win
over traditional diskset recovery)

> Master node replays entries in change log so that all
nodes have consistent view of diskset

> Master node tells starting nodes to join the set

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SVM step3

• All nodes in nodelist run step3
• Metaclust step3 nodelist

> Reinit rpc.mdcommd which forces rpc.mdcommd to
get latest nodelist from rpc.metad

> Reset mirror owners for mirrors that are owned by
nodes that are no longer in the cluster

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SVM step4

• All nodes in nodelist run step4
• Metaclust step4 nodelist

> Resume rpc.mdcommd
> Check kernel for start flag (set in start step)
> Reset ABR state on mirrors and softparts
> Choose owners for orphaned resyncs
> Restart resyncs

SVM
Multi-Owner Disksets

