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What is FUSE

• FUSE is a framework which allows 

implementing file systems in the user space. 

• It consists of 2 components

– User space library (dynamically linkable) which is 

used by file system implementers.

– Kernel module which binds to the VFS and redirects 

calls to the fuse library.

• Example FS using Fuse: encfs, cvsfs, sshfs, 

gmailfs, zfs, …



General Info

• Developed originally for Linux, currently 

part of Linux Kernel 2.6.14.

• Later ported to FreeBSD and Mac OS X 

(quite recently done).

• Fuse Library remains the same across 

Operating Systems, ensures file system 

applications need no rework. 



How FUSE works

http://fuse.sourceforge.net/



How FUSE works contd…

• FUSE Kernel module will register with VFS. 

• Application implementing file system at user 
space will use FUSE library and provide 
following:
– Specify the mount point in the current file system path 

to where its file system will be mounted.

– Expose methods that do all the necessary file 
handling such as: 
• Creating directory

• Reading directory

• Reading file 

• Writing file etc…



How FUSE works contd…

• Fuse Library invokes mount system call at the 

provided mount point specifying file system type 

as fuse - ensures mounting of FS App.

• Any file system call is passed by kernel to VFS, 

which passes the request to Fuse Kernel Module 

for calls at the mount point.

• Fuse Kernel Module passes the call on to Fuse 

Library, which invokes appropriate FS App. 

registered method.



How does Application use FUSE

• Develop application specific 

implementation for each of the necessary 

file system methods.

• The interface for these methods is defined 

by FUSE library.

• Invoke the entry point in the FUSE library, 

providing function pointers of the 

implemented methods.



User space and kernel communication

• Fuse works by passing of System calls (and data) from 
kernel module to fuse lib and data from fuse lib to kernel 
module.

• This communication uses device file 
descriptor(/dev/fuse), opened during mounting.

• So Fuse kernel module registers itself as a character 
device driver.

• Fuse Lib. makes a blocking read call in to fuse kernel 
module.

• For any incoming request from VFS, kernel module 
unblocks read thread and sends VFS request info.



User space and kernel communication

• Fuse Lib returns data provided by FS App. 

by making a write call on kernel module.

• Fuse Kernel module returns back received 

data to VFS.

• Performance Issue ?

– Can redundant copy be avoided ?



Fuse Message format

• Every request sent to the fuse library (2.5.3) has the following
header:

struct fuse_in_header {

__u32 len;

__u32 opcode;

__u64 unique;

__u64 nodeid;

__u32 uid;

__u32 gid;

__u32 pid;

__u32 padding;

};

• Each operation has its own unique payload structure.



Fuse Message format

• Every response from the fuse library (2.5.3) has 

the following header:

struct fuse_out_header {

__u32 len;

__s32 error;

__u64 unique;

};

• unique identifies the request this response 

associates to.



Non-privileged mounts

• Mounting Fuse file System doesn’t require 

super user privilege.

• So the user’s FS runs with the user’s 

privilege.

• Separate Mount utility does the job of 

mounting.



Fuse on Open Solaris

• How it started?

– Internal Project as part of Sun’s Excellence in 
Engineering Mentoring program

– Requested by a big Sun customer, Marketing 
Development Engineering (MDE) team 
worked on porting the FreeBSD version.

– MDE got the preliminary version of this port 
done.

– We took over from them and are reworking for 
ultimate integration into Solaris.



Fuse on Open Solaris

• We have requests for Fuse on Solaris to 

support:

– Davfs2: allows user to mount webdav server 

as a local filesystem.

– EncFs: Encrypted File System.

Available on Linux, need to port it to Solaris.



FUSE on Open Solaris

• Phase1: 

– To port existing Fuse implementation from FreeBSD 

to Open Solaris.

– Current work.

• Sunil – Porting kernel module.

• Mark – Working on the mount utility.

– Implemented few vnode ops, few more to be done.

– Other work to be done include – porting fuse library, 

implement necessary locks and kernel handling for 

more than one FS mount on Solaris.



Fuse on Open Solaris Design

• Solaris VFS is Vnode based.

• Each opened file will have only one vnode.

• There usually will be many file_t structures 

pointing to a single vnode.
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Design…

• Fuse Library is very file* centric (Linux way 

of dealing with files).

• We need to keep track of all open files 

associated with each vnode.

• So each vnode is associated with a list of 

file handles



Design…



Design…

• Each mounted FS App. will have a fuse_session data 
structure

• AVL Tree is used as a way to retrieve vnode from nodeid

typedef struct fuse_session

{

kmutex_t sesssion_mutx;

ksema_t session_sema;   /* devops read sleeps over it */  

list_t msg_list;   /* message awaiting service rest here */

avl_tree_t avl_cache; /* used to retrieve vnode from nodeid */ 

uint32_t     minor;       

uint32_t     state; 

uint64_t    unique;                 /* message identfier used between library and */

/* kernel module */

cred_t *usercred;     /* Credentials passed by fuse library */

uint32_t    max_write;   /* Max Write value passed by fuse library */                

/*during mount */

} fuse_session_t;



Design …

• Every request received from VFS is 

represented as a message 

(fuse_msg_node)

• Every message is identified by a unique 

64 bit value, passed to fuse library.

• Contains fuse header and payload to be 

sent to fuse library.

• Queued in a list maintained per session



Design …

• Each request is inserted at the tail of the list

• Devops read processes requests from the front of the 

list



Code Snippet
fuse_fs_readlink(…)

{

…

setup_msg_onlyheader(msgp, FUSE_READLINK, 
FUSE_GET_UNIQUE(sep), VNODE_TO_NODEID(vp), cred_p);

/* Queue request to be sent to fuse library */

if ((err = fuse_queue_request_wait(sep, msgp))) {

DEBUG(" Obtained err=%d for FUSE_READLINK request \n", err);

goto out;

}

err = msgp->opdata.fouth->error;

if (!err) {

uiomove(msgp->opdata.outdata, msgp->opdata.outsize, UIO_READ,

uiop);

}

…

}



FUSE on Open Solaris

• Phase 2:  New Features not in current 

Fuse implementation (fuse 2.5.3):

– Implementation of Mmap functionality

– Provide record locking, ACL support

– Address performance issues related to FUSE 

message passing mechanism.

– Provide inode persistence in the kernel,

• current fuse doesn’t do any persistence.

• So any FS App. crash means all information lost



Fuse Mmap (Initial attempt…)

• File system can be mapped to a process 

address space using mmap() system call.

• Once a mapping is established, read/write 

of memory corresponds to file data.

• This is performed transparently by the 

kernel using file system support.



Solaris Fuse mmap() contd…
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Solaris Fuse mmap() contd…
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Solaris Fuse mmap() contd…



Fuse Project on opensolaris

• http://opensolaris.org/os/project/fuse/

• Code base hosted through mercurial

• Download using:
– hg clone 

ssh://anon@hg.opensolaris.org/hg/fuse/libfuse

– hg clone 

ssh://anon@hg.opensolaris.org/hg/fuse/fusefs



So why use Fuse?

Advantages:

• Flexibility – easy to code in user space than 
kernel space.

• File system implementation not tied to any 
particular OS.

• Doesn’t require Kernel recompile.

• Non-privileged mounts possible.

Disadvantage:

• Performance - redundant data copy, many user 
space/kernel space switches



Related Work at U of M

• CoreFS: 

– basic network file system built on top of 

FUSE.

– http://www.cs.umn.edu/research/sclab/coreFS.html

• Group Key Management for Secure Global File 

Sharing over CoreFS

– Provides end to end encryption and makes 

cryptographic operations transparent to users.



Questions?

Email: subram@cs.umn.edu


