
FUSE (Filesystem in USErspace)

on Open Solaris

Sunil Subramanya

DTC Intelligent Storage Consortium
(DISC)

University of Minnesota

Topics

• What is FUSE

• General Information

• How FUSE works

• How does Application use FUSE

• User space and kernel communication

• Fuse Message Format

• FUSE on Open Solaris Project

– Phase 1 Design

– Phase 2 - Mmap() design

What is FUSE

• FUSE is a framework which allows

implementing file systems in the user space.

• It consists of 2 components

– User space library (dynamically linkable) which is

used by file system implementers.

– Kernel module which binds to the VFS and redirects

calls to the fuse library.

• Example FS using Fuse: encfs, cvsfs, sshfs,

gmailfs, zfs, …

General Info

• Developed originally for Linux, currently

part of Linux Kernel 2.6.14.

• Later ported to FreeBSD and Mac OS X

(quite recently done).

• Fuse Library remains the same across

Operating Systems, ensures file system

applications need no rework.

How FUSE works

http://fuse.sourceforge.net/

How FUSE works contd…

• FUSE Kernel module will register with VFS.

• Application implementing file system at user
space will use FUSE library and provide
following:
– Specify the mount point in the current file system path

to where its file system will be mounted.

– Expose methods that do all the necessary file
handling such as:
• Creating directory

• Reading directory

• Reading file

• Writing file etc…

How FUSE works contd…

• Fuse Library invokes mount system call at the

provided mount point specifying file system type

as fuse - ensures mounting of FS App.

• Any file system call is passed by kernel to VFS,

which passes the request to Fuse Kernel Module

for calls at the mount point.

• Fuse Kernel Module passes the call on to Fuse

Library, which invokes appropriate FS App.

registered method.

How does Application use FUSE

• Develop application specific

implementation for each of the necessary

file system methods.

• The interface for these methods is defined

by FUSE library.

• Invoke the entry point in the FUSE library,

providing function pointers of the

implemented methods.

User space and kernel communication

• Fuse works by passing of System calls (and data) from
kernel module to fuse lib and data from fuse lib to kernel
module.

• This communication uses device file
descriptor(/dev/fuse), opened during mounting.

• So Fuse kernel module registers itself as a character
device driver.

• Fuse Lib. makes a blocking read call in to fuse kernel
module.

• For any incoming request from VFS, kernel module
unblocks read thread and sends VFS request info.

User space and kernel communication

• Fuse Lib returns data provided by FS App.

by making a write call on kernel module.

• Fuse Kernel module returns back received

data to VFS.

• Performance Issue ?

– Can redundant copy be avoided ?

Fuse Message format

• Every request sent to the fuse library (2.5.3) has the following
header:

struct fuse_in_header {

__u32 len;

__u32 opcode;

__u64 unique;

__u64 nodeid;

__u32 uid;

__u32 gid;

__u32 pid;

__u32 padding;

};

• Each operation has its own unique payload structure.

Fuse Message format

• Every response from the fuse library (2.5.3) has

the following header:

struct fuse_out_header {

__u32 len;

__s32 error;

__u64 unique;

};

• unique identifies the request this response

associates to.

Non-privileged mounts

• Mounting Fuse file System doesn’t require

super user privilege.

• So the user’s FS runs with the user’s

privilege.

• Separate Mount utility does the job of

mounting.

Fuse on Open Solaris

• How it started?

– Internal Project as part of Sun’s Excellence in
Engineering Mentoring program

– Requested by a big Sun customer, Marketing
Development Engineering (MDE) team
worked on porting the FreeBSD version.

– MDE got the preliminary version of this port
done.

– We took over from them and are reworking for
ultimate integration into Solaris.

Fuse on Open Solaris

• We have requests for Fuse on Solaris to

support:

– Davfs2: allows user to mount webdav server

as a local filesystem.

– EncFs: Encrypted File System.

Available on Linux, need to port it to Solaris.

FUSE on Open Solaris

• Phase1:

– To port existing Fuse implementation from FreeBSD

to Open Solaris.

– Current work.

• Sunil – Porting kernel module.

• Mark – Working on the mount utility.

– Implemented few vnode ops, few more to be done.

– Other work to be done include – porting fuse library,

implement necessary locks and kernel handling for

more than one FS mount on Solaris.

Fuse on Open Solaris Design

• Solaris VFS is Vnode based.

• Each opened file will have only one vnode.

• There usually will be many file_t structures

pointing to a single vnode.

Design

Solaris

Internals

Book

Second

Edition

Design…

• Fuse Library is very file* centric (Linux way

of dealing with files).

• We need to keep track of all open files

associated with each vnode.

• So each vnode is associated with a list of

file handles

Design…

Design…

• Each mounted FS App. will have a fuse_session data
structure

• AVL Tree is used as a way to retrieve vnode from nodeid

typedef struct fuse_session

{

kmutex_t sesssion_mutx;

ksema_t session_sema; /* devops read sleeps over it */

list_t msg_list; /* message awaiting service rest here */

avl_tree_t avl_cache; /* used to retrieve vnode from nodeid */

uint32_t minor;

uint32_t state;

uint64_t unique; /* message identfier used between library and */

/* kernel module */

cred_t *usercred; /* Credentials passed by fuse library */

uint32_t max_write; /* Max Write value passed by fuse library */

/*during mount */

} fuse_session_t;

Design …

• Every request received from VFS is

represented as a message

(fuse_msg_node)

• Every message is identified by a unique

64 bit value, passed to fuse library.

• Contains fuse header and payload to be

sent to fuse library.

• Queued in a list maintained per session

Design …

• Each request is inserted at the tail of the list

• Devops read processes requests from the front of the

list

Code Snippet
fuse_fs_readlink(…)

{

…

setup_msg_onlyheader(msgp, FUSE_READLINK,
FUSE_GET_UNIQUE(sep), VNODE_TO_NODEID(vp), cred_p);

/* Queue request to be sent to fuse library */

if ((err = fuse_queue_request_wait(sep, msgp))) {

DEBUG(" Obtained err=%d for FUSE_READLINK request \n", err);

goto out;

}

err = msgp->opdata.fouth->error;

if (!err) {

uiomove(msgp->opdata.outdata, msgp->opdata.outsize, UIO_READ,

uiop);

}

…

}

FUSE on Open Solaris

• Phase 2: New Features not in current

Fuse implementation (fuse 2.5.3):

– Implementation of Mmap functionality

– Provide record locking, ACL support

– Address performance issues related to FUSE

message passing mechanism.

– Provide inode persistence in the kernel,

• current fuse doesn’t do any persistence.

• So any FS App. crash means all information lost

Fuse Mmap (Initial attempt…)

• File system can be mapped to a process

address space using mmap() system call.

• Once a mapping is established, read/write

of memory corresponds to file data.

• This is performed transparently by the

kernel using file system support.

Solaris Fuse mmap() contd…

User space

Application

VFS Layer

FUSE Kernel

Module

KERNEL SPACE

USER SPACE

Mmap()

1. Create ProcessAddress

space

2. Setup Address Space

parameters

KERNEL

MEMORY

SUBSYSTEM

Fuse Library

File System

Implementation

Solaris Fuse mmap() contd…

User space

Application

VFS Layer

FUSE Kernel

Module

KERNEL SPACE

USER SPACE

1) Read()/Write()

KERNEL

MEMORY

SUBSYSTEM

MMU

2) Page Fault/

Trap

3) VOP_GETPAGE()

5) Read (...OFFSET, PAGE_SIZE)

4) Get_Page_Frame

Fuse Library

File System

Implementation

segvn_fault()

Solaris Fuse mmap() contd…

Fuse Project on opensolaris

• http://opensolaris.org/os/project/fuse/

• Code base hosted through mercurial

• Download using:
– hg clone

ssh://anon@hg.opensolaris.org/hg/fuse/libfuse

– hg clone

ssh://anon@hg.opensolaris.org/hg/fuse/fusefs

So why use Fuse?

Advantages:

• Flexibility – easy to code in user space than
kernel space.

• File system implementation not tied to any
particular OS.

• Doesn’t require Kernel recompile.

• Non-privileged mounts possible.

Disadvantage:

• Performance - redundant data copy, many user
space/kernel space switches

Related Work at U of M

• CoreFS:

– basic network file system built on top of

FUSE.

– http://www.cs.umn.edu/research/sclab/coreFS.html

• Group Key Management for Secure Global File

Sharing over CoreFS

– Provides end to end encryption and makes

cryptographic operations transparent to users.

Questions?

Email: subram@cs.umn.edu

