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Abstract

This paper presents DTrace, a new facility for
dynamic instrumentation of production systems.
DTrace features the ability to dynamically instru-
ment both user-level and kernel-level software in a
unified and absolutely safe fashion. When not ex-
plicitly enabled, DTrace has zero probe effect —
the system operates exactly as if DTrace were not
present at all. DTrace allows for many tens of
thousands of instrumentation points, with even the
smallest of systems offering on the order of 30,000
such points in the kernel alone. We have developed
a C-like high-level control language to describe the
predicates and actions at a given point of instru-
mentation. The language features user-defined vari-
ables, including thread-local variables and associa-
tive arrays. To eliminate the need for most postpro-
cessing, the facility features a scalable mechanism
for aggregating data and a mechanism for specula-
tive tracing. DTrace has been integrated into the
Solaris operating system and has been used to find
serious systemic performance problems on produc-
tion systems — problems that could not be found
using preexisting facilities.

1 Introduction

As systems grow larger and more complicated, per-
formance analysis is increasingly performed by the
system integrator in production rather than by the
developer in development. Trends towards com-
ponentization and application consolidation accel-
erate this change: system integrators increasingly
combine off-the-shelf components in ways that the
original developers did not anticipate. Performance
analysis infrastructure has generally not kept pace
with the shift to in-production performance analy-
sis: the analysis infrastructure is still focussed on
the developer, on development systems, or both.
And where performance analysis infrastructure is
designed for production use, it is almost always

process-centric — and therefore of little help in un-
derstanding systemic problems.

To be acceptable for use on production systems,
performance analysis infrastructure must have zero
probe effect when disabled, and must be absolutely
safe when enabled. That is, its mere presence must
not make the system any slower, and there must be
no way to accidentally induce system failure through
misuse. To have systemic scope, the entire system
must be instrumentable, and there must exist ways
to easily coalesce data to highlight systemic trends.

We have developed a facility for systemic dynamic
instrumentation that can gather and coalesce arbi-
trary data on production systems. This facility —
DTrace — has been integrated into Solaris and is
publicly available[9]. DTrace features:

• Dynamic instrumentation. Static instrumen-
tation always induces some disabled probe ef-
fect; to achieve the zero disabled probe effect
required for production use, DTrace uses only
dynamic instrumentation. When DTrace is not
in use, the system is just as if DTrace were not
present at all.

• Unified instrumentation. DTrace can dynam-
ically instrument both user and kernel-level
software, and can do so in a unified manner
whereby both data and control flow can be fol-
lowed across the user/kernel boundary.

• Arbitrary-context kernel instrumentation.
DTrace can instrument virtually all of the
kernel, including delicate subsystems like the
scheduler and synchronization facilities.

• Data integrity. DTrace always reports any
errors that prevent trace data from being
recorded. In the absence of such errors, DTrace
guarantees data integrity: there are no win-
dows in which recorded data can be silently
corrupted or lost.



• Arbitrary actions. The actions taken at a given
point of instrumentation are not defined or
limited a priori — the user can enable any
probe with an arbitrary set of actions. More-
over, DTrace guarantees absolute safety of user-
defined actions: run-time errors such as illegal
memory accesses are caught and reported.

• Predicates. A logical predicate mechanism
allows actions to be taken only when user-
specified conditions are met, thereby pruning
unwanted data at the source. DTrace thus
avoids retaining, copying and storing data that
will ultimately be discarded.

• A high-level control language. Predicates and
actions are described in a C-like language —
dubbed “D” — that supports all ANSI C oper-
ators and allows access to the kernel’s variables
and native types. D offers user-defined vari-
ables, including global variables, thread-local
variables, and associative arrays. D also sup-
ports pointer dereferencing; coupled with the
run-time safety mechanisms of DTrace, struc-
ture chains can be safely traversed in a predi-
cate or action.

• A scalable mechanism for aggregating data.
DTrace allows data to be aggregated based on
an arbitrary tuple of D expressions. The mech-
anism coalesces data as it is generated, reducing
the amount of data that percolates through the
framework by a factor of the number of data
points. By allowing aggregation based on D
expressions, DTrace permits users to aggregate
by virtually anything.

• Speculative tracing. DTrace has a mechanism
for speculatively tracing data, deferring the de-
cision to commit or discard the data to a later
time. This feature eliminates the need for most
post-processing when exploring sporadic aber-
rant behavior.

• Heterogeneous instrumentation. Tracing
frameworks have historically been designed
around a single instrumentation methodology.
In DTrace, the instrumentation providers are
formally separated from the probe processing
framework by a well-specified API, allowing
novel dynamic instrumentation technologies to
plug into and exploit the common framework.

• Scalable architecture. DTrace allows for many
tens of thousands of instrumentation points
(even the smallest systems typically have on

the order of 30,000 such points) and provides
primitives for subsets of probes to be efficiently
selected and enabled.

• Virtualized consumers. Everything about
DTrace is virtualized per consumer: multiple
consumers can enable the same probe in dif-
ferent ways, and a single consumer can enable
a single probe in different ways. There is no
limit on the number of concurrent DTrace con-
sumers.

The remainder of this paper describes DTrace in
detail. In Section 2, we discuss related work in the
area of dynamic instrumentation. Section 3 provides
an overview of the DTrace architecture. Section 4
describes some of the instrumentation providers we
have implemented for DTrace. Section 5 describes
the D language. Section 6 describes the DTrace
facility for aggregating data. Section 7 describes
the user-level instrumentation provided by DTrace.
Section 8 describes the DTrace facility for specu-
lative tracing. Section 9 describes in detail a per-
formance problem on a production system that was
root-caused using DTrace. Finally, Section 10 dis-
cusses future work and Section 11 provides our con-
clusions.

2 Related work

The notion of safely augmenting operating system
execution with user-specified code has been explored
in extensible systems like VINO[8] and SPIN[2].
However, these systems were designed to allow the
user to extend the system where DTrace is designed
to allow the user to simply understand it. So where
the extensible systems allow much more general pur-
pose augmentation, they have many fewer (if any)
primitives for understanding system behavior.

There is a large body of work dedicated to sys-
temic and dynamic instrumentation. Some features
of DTrace, like predicates, were directly inspired by
other work[6]. Some other features, like the idea of
a higher-level language for system monitoring, exist
elsewhere[1, 3, 7] — but DTrace has made important
new contributions. Other features, like aggrega-
tions, exist only in rudimentary form elsewhere[1, 3];
DTrace has advanced these ideas significantly. And
some features, like speculative tracing, don’t seem
to exist in any form in any of the prior work.



2.1 Linux Trace Toolkit

The Linux Trace Toolkit (LTT) is designed around
a traditional static instrumentation methodology
that induces a non-zero (but small) probe effect for
each instrumentation point[13]. To keep the overall
disabled probe effect reasonably low, LTT defines
only a limited number of instrumentation points
— comprising approximately 45 events. LTT can-
not take arbitrary actions (each statically-defined
event defines an event-specific “detail”), and lacks
any sort of higher-level language to describe such
actions. LTT has a coarse mechanism for pruning
data, whereby traced events may be limited only
to those pertaining to a given PID, process group,
GID or UID, but no other predicates are possible.
As LTT has few mechanisms for reducing the data
flow via pruning or coalescing, substantial effort has
naturally gone into optimizing the path of trace data
from the kernel to user-level[14].

2.2 DProbes

DProbes is a facility originally designed for
OS/2 that was ported to Linux and subsequently
expanded[7]. Superficially, DProbes and DTrace
have some similar attributes: both are based on
dynamic instrumentation (and thus both have zero
probe effect when not enabled) and both define a
language for arbitrary actions as well as a simple
virtual machine to implement them. However, there
are significant differences. While DProbes uses dy-
namic instrumentation, it uses a technique that is
lossy when a probe is hit simultaneously on differ-
ent CPUs. While DProbes has user-defined vari-
ables, it lacks thread-local variables and associative
arrays. Further, it lacks any mechanism for data
aggregation, and has no predicate support. And
while DProbes has made some safety considerations
(for example, invalid loads are handled through an
exception mechanism), is was not designed with ab-
solute safety as a constraint; misuse of DProbes can
result in a system crash.1

2.3 K42

K42 is a research kernel that has its own static
instrumentation framework[11]. K42’s instrumen-
tation has many of LTT’s limitations (statically
defined actions, no facilities for data reduction,
etc.), but — as in DTrace — thought has been

1Examples of such misuse include erroneously specifying
a non-instruction boundary to instrument or specifying an
action that incorrectly changes register values.

given in K42 to instrumentation scalability. Like
DTrace, K42 has lock-free, per-CPU buffering —
but K42 implements it in a way that sacrifices the
integrity of traced data.2 Recently, the scalable
tracing techniques from K42 have been integrated
into LTT, presumably rectifying LTT’s serious scal-
ability problems (albeit at the expense of data in-
tegrity).

2.4 Kerninst

Kerninst is a dynamic instrumentation framework
that is designed for use on commodity operating sys-
tem kernels[10]. Kerninst achieves zero probe effect
when disabled, and allows instrumentation of vir-
tually any text in the kernel. However, Kerninst is
highly aggressive in its instrumentation; users can
erroneously induce a fatal error by accidentally in-
strumenting routines that are not actually safe to
instrument.3 Kerninst allows for some coalesence
of data, but data may not be aggregated based on
arbitrary tuples. Kerninst has some predicate sup-
port, but it does not allow for arbitrary predicates
and has no support for arbitrary actions.

3 DTrace Architecture

The core of DTrace — including all instrumenta-
tion, probe processing and buffering — resides in
the kernel. Processes become DTrace consumers by
initiating communication with the in-kernel DTrace
component via the DTrace library. While any pro-
gram may be a DTrace consumer, dtrace(1M) is
the canonical DTrace consumer: it allows general-
ized access to all DTrace facilities.

3.1 Providers and Probes

The DTrace framework itself performs no instru-
mentation of the system; that task is delegated to
instrumentation providers. Providers are loadable
kernel modules that communicate with the DTrace
kernel module using a well-defined API. When they
are instructed to do so by the DTrace framework, in-
strumentation providers determine points that they
can potentially instrument. For every point of in-
strumentation, providers call back into the DTrace

2For example, rescheduling during data recording can
silently corrupt the data buffer.

3In particular, Kerninst on SPARC makes no attempt to
recognize text as being executed at TL=1 or TL>1 — two
highly constrained contexts in the SPARC V9 architecture.
Instrumenting such text with Kerninst induces an operating
system panic. This has been communicated to Miller et al.;
a solution is likely forthcoming[5].



framework to create a probe. To create a probe the
provider specifies the module name and function
name of the instrumentation point, plus a seman-
tic name for the probe. Each probe is thus uniquely
identified by a 4-tuple:

< provider,module, function, name >

Probe creation does not instrument the system: it
simply identifies a potential for instrumentation to
the DTrace framework. When a provider creates
a probe, DTrace returns a probe identifier to the
provider.

Probes are advertised to consumers, who can en-
able them by specifying any (or all) elements of
the 4-tuple. When a probe is enabled, an enabling
control block (ECB) is created and associated with
the probe. If there are no other ECBs associated
with the probe (that is, if the probe is disabled),
the DTrace framework calls the probe’s provider to
enable the probe. The provider dynamically instru-
ments the system in such a way that when the probe
fires, control is transferred to an entry point in the
DTrace framework with the probe’s identifier speci-
fied as the first argument. A key attribute of DTrace
is that there are no constraints as to the context of
a firing probe: the DTrace framework itself is non-
blocking and makes no explicit or implicit calls into
the kernel at-large.

When a probe fires and control is transferred to the
DTrace framework, interrupts are disabled on the
current CPU, and DTrace performs the activities
specified by each ECB on the probe’s ECB chain.
Interrupts are then reenabled and control returns
to the provider. The provider itself need not handle
any multiplexing of consumers on a single probe —
all multiplexing is handled by the framework’s ECB
abstraction.

3.2 Actions and Predicates

Each ECB may have an optional predicate associ-
ated with it. If an ECB has a predicate and the
condition specified by the predicate is not satisfied,
processing advances to the next ECB. Every ECB
has a list of actions; if the predicate is satisfied, the
ECB is processed by iterating over its actions. If an
action indicates data to be traced, the data is stored
in the per-CPU buffer associated with the consumer
that created the ECB; see Section 3.3. Actions may
also update D variable state; user variables are de-
scribed in more detail in Section 5. Actions may not
store to kernel memory, modify registers, or make

otherwise arbitrary changes to system state.4

3.3 Buffers

Each DTrace consumer has a set of in-kernel per-
CPU buffers allocated on its behalf and referred to
by its consumer state. The consumer state is in
turn referred to by each of the consumer’s ECBs;
when an ECB action indicates data to be traced, it
is recorded in the ECB consumer’s per-CPU buffer.
The amount of data traced by a given ECB is al-
ways constant. That is, different ECBs may trace
different amounts of data, but a given ECB always
traces the same quantity of data. Before processing
an ECB, the per-CPU buffer is checked for sufficient
space; if there is not sufficient space for the ECB’s
data recording actions, a per-buffer drop count is
incremented and processing advances to the next
ECB.

It is up to consumers to minimize drop counts by
reading buffers periodically.5 Buffers are read out
of the kernel using a mechanism that both main-
tains data integrity and assures that probe process-
ing remains wait-free. This is done by having two
per-CPU buffers: an active buffer and an inactive
buffer. When a DTrace consumer wishes to read the
buffer for a specified CPU, a cross-call is made to the
CPU. The cross-call, which executes on the speci-
fied CPU, disables interrupts on the CPU, switches
the active buffer with the inactive buffer, reenables
interrupts and returns. Because interrupts are dis-
abled in both probe processing and buffer switching
(and because buffer switching always occurs on the
CPU to be switched), an ordering is assured: buffer
switching and probe processing cannot possibly in-
terleave on the same CPU. Once the active and inac-
tive buffers have been switched, the inactive buffer
is copied out to the consumer.

The data record layout in the per-CPU buffer is
an enabled probe identifier (EPID) followed by some
amount of data. An EPID has a one-to-one mapping
with an ECB, and can be used to query the kernel
for the size and layout of the data stored by the
corresponding ECB. Because the data layout for a
given ECB is guaranteed to be constant over the life-
time of the ECB, the ECB metadata can be cached
at user-level. This design separates the metadata

4There do exist some actions that change the state of the
system, but they change state only in a well-defined way (e.g.
stopping the current process, inducing a kernel breakpoint).
These destructive actions are only permitted to users with
sufficient privilege, and can be disabled entirely.

5Consumers may also reduce drops by increasing the size
of in-kernel buffers.



stream from the data stream, simplifying run-time
analysis tools considerably.

3.4 DIF

Actions and predicates are specified in a virtual ma-
chine instruction set that is emulated in the kernel
at probe firing time. The instruction set, “D Inter-
mediate Format” or DIF, is a small RISC instruc-
tion set designed for simple emulation and on-the-fly
code generation. It features 64-bit registers, 64-bit
arithmetic and logical instructions, comparison and
branch instructions, 1-, 2-, 4- and 8-byte memory
loads from kernel and user space, and special in-
structions to access variables and strings. DIF is
designed for simplicity of emulation. For example,
there is only one addressing mode and most instruc-
tions operate only on register operands.

3.5 DIF Safety

As DIF is emulated in the context of a firing probe,
it is a design constraint that DIF emulation be abso-
lutely safe. To assure basic sanity, opcodes, reserved
bits, registers, string references and variable refer-
ences are checked for validity as the DIF is loaded
into the kernel. To prevent DIF from inducing an
infinite loop in probe context, only forward branches
are permitted. This safety provision may seem dra-
conian — it eliminates loops altogether — but in
practice we have not discovered it to present a seri-
ous limitation.6

Run-time errors like illegal loads or division by zero
cannot be detected statically; these errors are han-
dled by the DIF virtual machine. Misaligned loads
and division by zero are easily handled — the em-
ulator simply refuses to perform such operations.
(Any attempt to perform such an operation aborts
processing of the current ECB and results in a run-
time error that is propagated back to the DTrace
consumer.) Similarly, loads from memory-mapped
I/O devices (where loads may have undesirable or
dangerous side effects) are prevented by checking
that the address of a DIF-directed load does not
fall within the virtual address range that the kernel
reserves for memory-mapped device registers.

Loads from unmapped memory are more compli-
cated to prevent, however, because it is not possi-
ble to probe VM data structures from probe firing
context. When the emulation engine attempts to

6DProbes addressed this problem by allowing loops but
introducing a user-tunable, “jmpmax,” as an upper-bound on
the number of jumps that a probe handler may make.

perform such a load, a hardware fault will occur.
The kernel’s page fault handler has been modified
to check if the load is DIF-directed; if it is, the fault
handler sets a per-CPU bit to indicate that a fault
has occurred, and increments the instruction pointer
past the faulting load. After emulating each load,
the DIF emulation engine checks for the presence
of the faulted bit; if it is set, processing of the cur-
rent ECB is aborted and the error is reported to the
user. This mechanism adds some processing cost to
the kernel’s page fault path, but the cost is so ex-
traordinarily small relative to the total processing
cost of a page fault that the effect on system per-
formance is nil.

4 Providers

By formally separating instrumentation providers
from the core framework, DTrace is able to accom-
modate heterogeneous instrumentation methodolo-
gies. Further, as future instrumentation method-
ologies are developed, they can be easily plugged in
to the DTrace framework. We have implemented
six different instrumentation providers, each with
its own dynamic instrumentation methodology, that
offer observability into different aspects of the sys-
tem. While the providers differ in their method-
ology, all of the DTrace providers have zero probe
effect when disabled. Some of the providers are in-
troduced below, but the details of their instrumen-
tation methodologies are largely beyond the scope
of this paper.

4.1 Function Boundary Tracing

The Function Boundary Tracing (FBT) provider
makes available a probe upon entry to and return
from nearly every function in the kernel. As there
are many functions in the kernel, FBT provides
many probes — even on the smallest systems, FBT
will provide more than 25,000 probes. As with other
DTrace providers, FBT has zero probe effect when
it is not explicitly enabled, and when enabled only
induces a probe effect in probed functions. While
the mechanism used for the implementation of FBT
is highly specific to the instruction set architecture,
FBT has been implemented on both SPARC and
x86.

On SPARC, FBT works by replacing an instruc-
tion with an unconditional annulled branch-always
(ba,a) instruction. The branch redirects control
flow into an FBT-controlled trampoline, which pre-
pares arguments and transfers control into DTrace.



Upon return from DTrace, the replaced instruction
is executed in the trampoline before transferring
control back to the instrumented code path. This
is a similar mechanism to that used by Kerninst[10]
— but it is at once less general (it instruments only
function entry and return) and completely safe (it
will never erroneously instrument code executed at
TL>0).

On x86, FBT uses a trap-based mechanism that re-
places one of the instructions in the sequence that
establishes a stack frame (or one of the instructions
in the sequence that dismantles a stack frame) with
an instruction to transfer control to the interrupt
descriptor table (IDT). The IDT handler uses the
trapping instruction pointer to look up the FBT
probe and transfers control into DTrace. Upon re-
turn from DTrace, the replaced instruction is em-
ulated from the trap handler by manipulating the
trap stack. The use of emulation (instead of instruc-
tion rewriting and reexecution) assures that FBT
does not suffer from the potential lossiness of the
DProbes mechanism.

4.2 System Call Tracing

The syscall provider makes available a probe at
the entry to and return from each system call in
the system. As system calls are the primary inter-
face between user-level applications and the oper-
ating system kernel, the syscall provider can offer
tremendous insight into application behavior with
respect to the system. The syscall provider works
by dynamically rewriting the corresponding entry in
the system call table when a probe is enabled.

4.3 Lock Tracing

The lockstat provider makes available probes that
can be used to obtain kernel lock contention statis-
tics, or to understand virtually any aspect of ker-
nel locking behavior. The lockstat provider works
by dynamically rewriting the kernel functions that
manipulate synchronization primitives. As with
all other DTrace providers, this instrumentation
only occurs as probes are explicitly enabled; the
lockstat provider induces zero probe effect when
not enabled. The lockstat provider’s instrumen-
tation methodology has existed in Solaris for quite
some time — it has historically been the basis for
the lockstat(1M) command. As part of the DTrace
work, the in-kernel component was augmented to
become the lockstat provider, the lockstat com-
mand was reimplemented as a DTrace consumer,

and the legacy custom-built, single-purpose data-
processing framework was discarded.

4.4 Profiling

The providers described above provide probes that
are anchored to specific points in text. However,
DTrace also allows for unanchored probes — probes
that are not associated with any particular point of
execution but rather with some asynchronous event
source. Among these is the profile provider, for
which the event source is a time-based interrupt of
specified interval. These probes can be used to sam-
ple some aspect of system state every specified unit
of time, and the samples can then be used to in-
fer system behavior. Given the arbitrary actions
that DTrace supports, the profile provider can be
used to sample practically any datum in the system.
For example, one could sample the state of the cur-
rent thread, the state of the CPU, the current stack
trace, or the current machine instruction.

5 D Language

DTrace users can specify arbitrary predicates and
actions using the high-level D programming lan-
guage. D is a C-like language that supports all
ANSI C operators and allows access to the kernel’s
native types and global variables. D includes sup-
port for several kinds of user-defined variables, in-
cluding global, clause-local, and thread-local vari-
ables and associative arrays. D programs are com-
piled into DIF by a compiler implemented in the
DTrace library; the DIF is then bundled into an in-
memory object file representation and sent to the in-
kernel DTrace framework for validation and probe
enabling. The dtrace(1M) command provides a
generic front-end to the D compiler and DTrace,
but other layered tools can be built on top of the
compiler library as well, such as the new implemen-
tation of lockstat(1M) described earlier.

5.1 Program Structure

A D program consists of one or more clauses that de-
scribe the instrumentation to be enabled by DTrace.
Each probe clause has the form:

probe-descriptions
/predicate/
{

action-statements
}



Probe descriptions are specified using the form
provider:module:function:name. Omitted fields
match any value, and sh(1) globbing syntax is sup-
ported. The predicate and action statements may
each be optionally omitted.

D uses a program structure similar to awk(1) be-
cause tracing programs resemble pattern matching
programs in that execution order does not follow
traditional function-oriented program structure; in-
stead, execution order is defined by a set of external
inputs and the tracing program “reacts” by execut-
ing the predefined matching clauses. During inter-
nal testing, the meaning of this program form was
immediately obvious to UNIX developers and per-
mitted rapid adoption of the language.

5.2 Types, Operators and Expressions

As C is the language of UNIX, D is designed to form
a companion language to C for use in dynamic trac-
ing. D predicates and actions are written identically
to C language statements, and all of the ANSI C op-
erators can be used and follow identical precedence
rules. D also supports all of the intrinsic C data
types, typedef, and the ability to define struct,
union, and enum types. Users are also permitted to
define and manipulate their own variables, described
shortly, and access a set of predefined functions and
variables provided by DTrace.

The D compiler also makes use of C source type and
symbol information provided by a special kernel ser-
vice, allowing D programmers to access C types and
global variables defined in kernel source code with-
out declaring them. The FBT provider exports the
input arguments and return values of kernel func-
tions to DTrace when its probes fire, and the C type
service also allows the D compiler to automatically
associate these arguments with their corresponding
C data types in a D program clause that matches
an FBT probe.

Unlike a traditional C source file, a D source file may
access types and symbols from a variety of separate
scopes, including the core kernel, multiple loadable
kernel modules, and any type and variable defini-
tions provided in the D program itself. To manage
access to external namespaces, the backquote (‘)
character can be inserted in symbol and type iden-
tifiers to reference the namespace denoted by the
identifier preceding the backquote. For example,
the type struct foo‘bar would name the C type
struct bar in a kernel module named foo, and the
identifier ‘rootvp would match the kernel global

variable rootvp and would have the type vnode t *
automatically assigned to it by the D compiler.

5.3 User Variables

D programs can declare global variables using C dec-
laration syntax in the outer scope of the program, or
they can be implicitly defined by assignment state-
ments. When variables are defined by assignment,
the left-hand identifier is defined and assigned the
type of the right-hand expression for the remainder
of the program. Our experience showed that D pro-
grams were rapidly developed and edited and often
written directly on the dtrace(1M) command-line,
so users benefited from the ability to omit declara-
tions for simple programs.

5.4 Variable Scopes

In addition to global variables, D programs can
create clause-local and thread-local variables of any
type. Variables from these two scopes are accessed
using the reserved prefixes this-> and self-> re-
spectively. The prefixes serve to both separate the
variable namespaces and to facilitate their use in as-
signment statements without the need for prior dec-
laration. Clause-local variables access storage that
is re-used across the execution of D program clauses,
and are used like C automatic variables. Thread-
local variables associate a single variable name with
separate storage for each operating system thread,
including interrupt threads.

Thread-local variables are used frequently in D to
associate data with a thread performing some ac-
tivity of interest. For example, to trace the amount
of time any thread spends in a read(2) system call,
one can write the D program:

syscall::read:entry

{

self->t = timestamp;

}

syscall::read:return

/self->t/

{

printf("%d/%d spent %d nsecs in read\n",

pid, tid, timestamp - self->t);

}

The thread-local variable self->t is instan-
tiated on-demand when any thread fires the
syscall::read:entry probe and is assigned the
value of the built-in timestamp variable; the pro-
gram then computes the time difference when the



system call returns. As with traced data, DTrace
reports any failure to allocate a dynamic variable so
data is never silently lost.

5.5 Associative Arrays

D programs can also create associative array vari-
ables where each array element is indexed by a tuple
of expression values and data elements are created
on-demand. For example, the D program state-
ment a[123, "hello"] = 456 defines an associa-
tive array a with tuple signature [int, string]
where each element is an int, and then assigns the
value 456 to the element indexed by tuple [123,
"hello"]. D supports both global and thread-local
associative arrays. As in other languages such as
Perl, associative arrays permit D programmers to
easily create and manage complex dictionary data
structures without requiring them to manage mem-
ory and write lookup routines.

5.6 Strings

D provides a built-in string type to resolve the am-
biguity of the C char* type, which can be used to
represent an arbitrary address, the address of a sin-
gle character, or the address of a NUL-terminated
string. The D string type acts like the C type char
[n] where n is a fixed string limit that can be ad-
justed at compile-time. The string limit is also en-
forced by the DTrace in-kernel component, so that it
can provide built-in functions such as strlen() and
ensure finite running time when an invalid string
address is specified. D permits strings to be copied
using the = operator and compared using the rela-
tional operators. D implicitly promotes char* and
char[] to string appropriately.

6 Aggregating Data

When instrumenting the system to answer
performance-related questions, it is often useful to
think not in terms of data gathered by individual
probes, but rather how that data can be aggregated
to answer a specific question. For example, if one
wished to know the number of system calls by user
ID, one would not necessarily care about the datum
collected at each system call — one simply wants
to see a table of user IDs and system calls. Histori-
cally, this question has been answered by gathering
data at each system call, and postprocessing the
data using a tool like awk(1) or perl(1). However,
in DTrace the aggregating of data is a first-class
operation, performed at the source.

6.1 Aggregating Functions

We define an aggregating function to be one that has
the following property:

f(f(x0)∪ f(x1)∪ ...∪ f(xn)) = f(x0 ∪ x1 ∪ ...∪ xn)

where xn is a set of arbitrary data. That is, applying
an aggregating function to subsets of the whole and
then applying it again to the set of results gives the
same result as applying it to the whole itself. Many
common functions for understanding a set of data
are aggregating functions, including counting the
number of elements in the set, computing the max-
imum value of the set, and summing all elements in
the set. Not all functions are aggregating functions,
however; computing the mode and computing the
median are two examples of non-aggregating func-
tions.

Applying aggregating functions to data in situ has
a number of advantages:

• The entire data set need not be stored. When-
ever a new element is to be added to the set,
the aggregating function is calculated given the
set consisting of the current intermediate result
and the new element. After the new result is
calculated, the new element may be discarded.
This reduces the amount of storage required by
a factor of the number of data points — which
is often quite large.

• A scalable implementation is allowed. One does
not wish for data collection to induce patho-
logical scalability problems. Aggregating func-
tions allow for intermediate results to be kept
per-CPU instead of in a shared data structure.
When a system-wide result is desired, the ag-
gregating function may then be applied to the
set consisting of the per-CPU intermediate re-
sults.

6.2 Aggregations

DTrace implements aggregating functions as aggre-
gations. An aggregation is a named structure in-
dexed by an n-tuple that stores the result of an
aggregating function. In D, the syntax for an ag-
gregation is:

@identifier [keys] = aggfunc(args);

where identifier is an optional name of the aggre-
gation, keys is a comma-separated list of D expres-
sions, aggfunc is one of the DTrace aggregating func-



tions and args is a comma-separated list of argu-
ments to the aggregating function. (Most aggre-
gating functions take just a single argument that
represents the new datum.)

For example, the following DTrace script counts
write(2) system calls by application name:

syscall::write:entry

{

@counts[execname] = count();

}

By default, aggregation results are displayed when
dtrace(1M) terminates. (This behavior may be
changed by explicitly controlling aggregation out-
put with the printa function.) Assuming the above
were named “write.d”, running it might yield:

# dtrace -s write.d

dtrace: script ’write.d’ matched 1 probe

^C

dtrace 1

cat 4

sed 9

head 9

grep 14

find 15

tail 25

mountd 28

expr 72

sh 291

tee 814

sshd 1996

make.bin 2010

In the above output, one might perhaps be inter-
ested in understanding more about the write sys-
tem calls from the processes named “sshd.” For ex-
ample, to get a feel for the distribution of write sizes
per file descriptor, one could aggregate on arg0 (the
file descriptor argument to the write system call),
specifying the “quantize()” aggregating function
(which generates a power-of-two distribution) with
an argument of arg2 (the size argument to the
write system call):

syscall::write:entry

/execname == "sshd"/

{

@[arg0] = quantize(arg2);

}

Running the above yields a frequency distribution
for each file descriptor. For example:

5

value --------- Distribution --------- count

16 | 0

32 | 1

64 | 0

128 | 0

256 |@@ 13

512 |@@ 13

1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 199

2048 | 0

The above output would indicate that for file de-
scriptor five, 199 writes were between 1024 and 2047
bytes. If one wanted to understand the origin of
writes to this file descriptor, one could (for exam-
ple) add to the predicate that arg0 be five, and
aggregate on the application’s stack trace by using
the ustack function:

syscall::write:entry

/execname == "sshd" && arg0 == 5/

{

@[ustack()] = quantize(arg2);

}

7 User-level Instrumentation

DTrace provides instrumentation of user-level pro-
gram text through the pid provider, which can in-
strument arbitrary instructions in a specified pro-
cess. The pid provider is slightly different from
other providers in that it actually defines a class of
providers — each process can potentially have an as-
sociated pid provider. The process identifier is ap-
pended to the name of each pid provider. For exam-
ple, the probe pid1203:libc.so.1:malloc:entry
corresponds to the function entry of malloc(3C) in
process 1203.

In keeping with the DTrace philosophy of dy-
namic instrumentation, target processes need not
be restarted to be instrumented and, as with other
providers, there is no pid provider probe effect when
the probes are not enabled.

The techniques used by the pid provider are ISA-
specific, but they all involve a mechanism that
rewrites the instrumented instruction to induce a
trap into the operating system. The trap-based
mechanism has a higher enabled probe effect than
branch-based mechanisms used elsewhere[12], but it
completely unifies kernel- and user-level instrumen-
tation: any DTrace mechanism that may be used
with kernel-level probes may also be used with user-
level probes.

For example, one can use a thread-local D variable



to follow all activity — user-level and kernel-level
— from a specified user-level function:

#!/usr/sbin/dtrace -s

#pragma D option flowindent

pid$1::$2:entry

{

self->trace = 1;

}

pid$1:::entry, pid$1:::return, fbt:::

/self->trace/

{

printf("%s", curlwpsinfo->pr_syscall ?

"K" : "U");

}

pid$1::$2:return

/self->trace/

{

self->trace = 0;

}

The above script uses the D macro argument vari-
ables “$1” and “$2” to allow the target process iden-
tifier and the user-level function to be specified as
arguments to the script. Assuming that this script
were named “all.d,” one could run it this way:

# ./all.d ‘pgrep xclock‘ XEventsQueued

dtrace: script ’./all.d’ matched 52377 probes

CPU FUNCTION

0 -> XEventsQueued U

0 -> _XEventsQueued U

0 -> _X11TransBytesReadable U

0 <- _X11TransBytesReadable U

0 -> _X11TransSocketBytesReadable U

0 <- _X11TransSocketBytesReadable U

0 -> ioctl U

0 -> ioctl K

0 -> getf K

0 -> set_active_fd K

0 <- set_active_fd K

0 <- getf K

0 -> get_udatamodel K

0 <- get_udatamodel K

...

0 -> releasef K

0 -> clear_active_fd K

0 <- clear_active_fd K

0 -> cv_broadcast K

0 <- cv_broadcast K

0 <- releasef K

0 <- ioctl K

0 <- ioctl U

0 <- _XEventsQueued U

0 <- XEventsQueued U

Note the crossing of the user/kernel boundary in
the above: while other instrumentation frameworks
allow for some unified tracing, this is perhaps the
clearest display of control flow across the user/kernel
boundary.

DTrace also allows for tracing of data from user
processes. The copyin() and copyinstr() sub-
routines can be used to access data from the cur-
rent process. For example, the following script ag-
gregates on the name (arg0) passed to the open(2)
system call:

syscall::open:entry

{

@files[copyinstr(arg0)] = count();

}

By tracing events in both the kernel and user
processes, and combining data from both sources,
DTrace provides the complete view of the system
required to understand systemic problems that span
the user/kernel boundary.

8 Speculative Tracing

In a tracing framework that offers coverage as com-
prehensive as that of DTrace, the challenge for the
user quickly becomes figuring out what not to trace.
In DTrace, the primary mechanism for filtering out
uninteresting events is the predicate mechanism dis-
cussed in Section 3.2. Predicates are useful when
it is known at the time that a probe fires whether
or not the probe event is interesting. For exam-
ple, if one is only interested in activity associated
with a certain process or a certain file descriptor,
one can know when the probe fires if it associated
with the process or file descriptor of interest. How-
ever, there are some situations in which one may
not know whether or not a given probe event is in-
teresting until some time after the probe fires.

For example, if a system call is failing sporadically
with a common error code (e.g. EIO or EINVAL),
one may wish to better understand the code path
that is leading to the error condition. To capture
the code path, one could enable every probe — but
only if the failing call can be isolated in such a way
that a meaningful predicate can be constructed. If
the failures were sporadic or nondeterministic, one
would be forced to trace all events that might be
interesting, and later postprocess the data to filter
out the ones that were not associated with the fail-
ing code path. In this case, even though the number
of interesting events may be reasonably small, the



number of events that must be traced is very large
— making postprocessing difficult if not impossible.

To address this and similar situations, DTrace has
a facility for speculative tracing. Using this facility,
one may tentatively trace data; later, one may de-
cide that the traced data is interesting and commit
it to the principal buffer, or one may decide that
the traced data is uninteresting, and discard it. For
example, to speculatively trace all ioctl(2) system
calls that return failure:

#pragma D option flowindent

syscall::ioctl:entry

/pid != $pid/

{

self->spec = speculation();

}

fbt:::

/self->spec/

{

speculate(self->spec);

printf("%s: %d", execname, errno);

}

syscall::ioctl:return

/self->spec && errno != 0/

{

commit(self->spec);

self->spec = 0;

}

syscall::ioctl:return

/self->spec && errno == 0/

{

discard(self->spec);

self->spec = 0;

}

Note that this script uses the “$pid” variable to
avoid tracing any failing ioctl calls by dtrace it-
self. Running the above:

# dtrace -s ./ioctl.d

dtrace: script ’./ioctl.d’ matched 27778 probes

CPU FUNCTION

0 -> ioctl dhcpagent: 0

0 -> getf dhcpagent: 0

0 -> set_active_fd dhcpagent: 0

0 <- set_active_fd dhcpagent: 0

0 <- getf dhcpagent: 0

0 -> fop_ioctl dhcpagent: 0

0 -> ufs_ioctl dhcpagent: 0

0 <- ufs_ioctl dhcpagent: 0

0 <- fop_ioctl dhcpagent: 0

0 -> releasef dhcpagent: 0

0 -> clear_active_fd dhcpagent: 0

0 <- clear_active_fd dhcpagent: 0

0 -> cv_broadcast dhcpagent: 0

0 <- cv_broadcast dhcpagent: 0

0 <- releasef dhcpagent: 0

0 -> set_errno dhcpagent: 0

0 <- set_errno dhcpagent: 25

0 <- ioctl dhcpagent: 25

9 Experience

DTrace has been used extensively inside Sun to un-
derstand system behavior in both development and
production environments. One production environ-
ment in which DTrace has been especially useful is a
SunRay server in Broomfield, Colorado. The server
— which is run by Sun’s IT organization and has 10
CPUs, 32 gigabytes of memory, and approximately
170 SunRay users — was routinely exhibiting slug-
gish performance. DTrace was used to resolve many
performance problems on this production system;
the following is the detailed description of the reso-
lution of one such problem.

By looking at the output of mpstat(1), a traditional
Solaris monitoring tool, it was noted that the num-
ber of cross-calls per CPU per second was quite
high. (A cross-call is a function call directed to
be performed by a specified CPU.) This led to the
natural question: who (or what) was inducing the
cross-calls? Traditionally, there is no way to an-
swer this question concisely, as there is no static
instrumentation in the cross-call mechanism. The
DTrace “sysinfo” provider, however, can dynam-
ically instrument every increment of the counters
consumed by mpstat. So by using DTrace and
sysinfo’s “xcalls” probe, this question can be eas-
ily answered:

sysinfo:::xcalls

{

@[execname] = count();

}

Running the above gives a table of application
names and the number of cross-calls that each in-
duced; running it on the server in question re-
vealed that virtually all application-induced cross
calls were due to the “Xsun” application, the Sun
X server. This wasn’t too surprising — as there is
an X server for each SunRay user, one would expect
them to do much of the machine’s work. Still, the
high number of cross-calls merited further investi-
gation: what were the X servers doing to induce the
cross-calls? To answer this question, the following
D script was written:



syscall:::entry

/execname == "Xsun"/

{

self->sys = probefunc;

}

sysinfo:::xcalls

/execname == "Xsun"/

{

@[self->sys != NULL ?

self->sys : "<none>"] = count();

}

syscall:::return

/self->sys != NULL/

{

self->sys = NULL;

}

This script uses a thread-local variable to keep track
of the current system call name; when the xcalls
probe fires, it aggregates on the system call that
induced the cross-call. In this case, the script re-
vealed that nearly all cross-calls from “Xsun” were
being induced by the munmap(2) system call. The
fact that munmap activity induces cross-calls is not
surprising (memory demapping induces a cross call
as part of TLB invalidation), but the fact that there
was so much munmap activity (thousands of munmap
calls per second, system wide) was unexpected.

Given that ongoing munmap activity must coexist
with ongoing mmap(2) activity, the next question was
what were the X servers mmap’ing? And were there
some X servers that were mmap’ing more than oth-
ers? Both of these questions can be answered at
once:

syscall::mmap:entry

/execname == "Xsun"/

{

@[pid, arg4] = count();

}

END

{

printf("%9s %13s %16s\n",

"PID", "FD", "COUNT");

printa("%9d %13d %16@d\n", @);

}

This script aggregates on both process identifier and
mmap’s file descriptor argument to yield a table of
process identifiers and mmap’ed file descriptors. It
uses the special DTrace END probe and the printa
function to precisely control the output. Here is the
tail of the output from running the above D script
on the production SunRay server:

PID FD COUNT

... .. ...

26744 4 50

2219 4 56

64907 4 65

23468 4 65

45317 4 68

11077 4 1684

63574 4 1780

8477 4 1826

55758 4 1850

38710 4 1907

9973 4 1948

As labelled above, the first column is the process
identifier, the second column is the file descriptor,
and the third column is the count. (dtrace(1M)
always sorts its aggregation output by aggregation
value.) The data revealed two things: first, that
all of the mmap activity for each of the X servers
orginated from file descriptor 4 in each. And sec-
ond, that six of the 170 X servers on the machine
were responsible for most of the mmap activity. Using
traditional process-centric tools (e.g., pfiles(1)) re-
vealed that in each X server file descriptor 4 cor-
responded to the file “/dev/zero,” the zero(7D)
device present in most UNIX variants. mmap’ing
/dev/zero is a technique for allocating memory, but
why were the X servers allocating (and deallocating)
so much memory so frequently? To answer this, we
wrote a script to aggregate on the user stack trace
of the X servers when they called mmap:

syscall::mmap:entry

/execname == "Xsun"/

{

@[ustack()] = count();

}

Running this yields a table of stack traces and
counts. In this case, all Xsun mmap stack traces were
identical:

libc.so.1‘mmap+0xc

libcfb32.so.1‘cfb32CreatePixmap+0x74

ddxSUNWsunray.so.1‘newt32CreatePixmap+0x20

Xsun‘ProcCreatePixmap+0x118

Xsun‘Dispatch+0x17c

Xsun‘main+0x788

Xsun‘_start+0x108

The stack trace indicated why the X servers were al-
locating (and deallocating) memory: they were cre-
ating (and destroying) Pixmaps. This answered the
immediate question, and raised a new one: what
applications were ordering their X servers to create
and destroy Pixmaps? Answering this required a
somewhat more sophisticated script:



syscall::poll:entry

/execname == "Xsun"/

{

self->interested = 0;

}

syscall::mmap:entry

/execname == "Xsun"/

{

self->interested = 1;

}

fbt::sleepq_unlink:entry

/self->interested/

{

this->u = &args[1]->t_procp->p_user;

@[stringof(this->u->u_comm)] = count();

}

This script exploits some implementation knowledge
of both X servers and the kernel. An X server works
by calling poll(2) on its connections to wait for
requests; when a request arrives, the X server (a
single-threaded process) processes the request and
sends the response. Sending the response causes
the X server to awaken the blocking client, af-
ter which the X server again polls on its connec-
tions. To determine for whom the X servers were
creating Pixmaps, we set a thread-local variable
(“interested”) when the X server called mmap. We
then enabled the FBT probe in the kernel’s routine
to awaken another thread (“sleepq unlink()”); if
(and only if) interested was set, we aggregated on
the process that we were waking. The core assump-
tion was that the process that the X server awak-
ened immediately after having performed an mmap
was the process for whom that mmap was performed.

Running the above on the production SunRay server
produced the following (trimmed) output:

...

gedit 25

soffice.bin 26

netscape-bin 44

gnome-terminal 81

dsdm 487

gnome-smproxy 490

metacity 546

gnome-panel 549

gtik2_applet2 6399

This output was the smoking gun — it imme-
diately focussed all attention on the application
“gtik2 applet2,” a stock ticker applet for the
GNOME desktop. A further DTrace script that ag-
gregated on user stack revealed the source of the

problem: gtik2 applet2 was creating (and destroy-
ing) an X graphics context (GC) every 10 millisec-
onds.7 As any X programmer knows, GC’s are ex-
pensive server-side objects — they are not to be
created with reckless abandon[4]. While there were
only six instances of gtik2 applet2 running on the
SunRay server, each was inducing this expensive op-
eration from their X servers (and subsequently from
the operating system) one hundred times per sec-
ond; taken together, they were having a substantial
effect on system performance. Indeed, stopping the
six gtik2 applet2 processes dramatically improved
the system’s performance: cross-calls dropped by 64
percent, involuntary context switches dropped by
35 percent, system time went down 27 percent, user
time went down 37 percent and idle time went up
by 15 percent.

This was a serious (and in retrospect, glaring) per-
formance problem. But it was practically impossible
to debug with traditional tools because it was a sys-
temic problem: the gtik2 applet2 processes were
doing very little work themselves — they were in-
ducing work on their behalf from other components
of the system. To root-cause the problem, we made
extensive use of aggregations and and thread-local
variables, two features unique to DTrace.

10 Future Work

DTrace provides a stable and extensible foundation
for future work to enhance our ability to observe
production systems. We are actively developing ex-
tensions to DTrace, including:

• Performance counters. Modern microproces-
sors such as SPARC and x86 export per-
formance counter registers that can be pro-
grammed to count branch mispredicts, cache
misses, and other processor events. We plan to
implement a DTrace provider that exports per-
formance counter information and allows it to
be accessed in D from a probe action.

• Helper actions. Complex middleware may
wish to assist DTrace with actions that require
knowledge specific to the middleware. We have
developed a prototype of such a helper action
that permits applications to provide assistance
for DTrace in obtaining a user-level stack trace.
We have implemented the helper action in the
Java Virtual Machine, allowing for ustack to

7See http://bugzilla.gnome.org/show bug.cgi?id=99696

for details.



obtain a user-level stack trace that contains
both Java and C/C++ stack frames.

• User lock analysis. The pid provider can in-
strument any function in a user process, in-
cluding user-level synchronization facilities. We
have developed a prototype user-level equiva-
lent to the kernel lockstat(1M) utility, dubbed
plockstat, that can perform dynamic lock-
contention analysis of multi-threaded user pro-
cesses.

11 Conclusions

We have described DTrace, a new facility for dy-
namic instrumentation of both user-level and kernel-
level software in production systems. We have de-
scribed the principal features of DTrace, including
the details of D, its high-level control language. Al-
though there remain other important features of
DTrace for which space did not permit a detailed
description (e.g. postmortem tracing, boot-time
tracing) we have highlighted the major advances in
DTrace over prior work in dynamic instrumentation:
thread-local variables, associative arrays, data ag-
gregation, seamlessly unified user-/kernel-level trac-
ing, and speculative tracing. We have demonstrated
the use of DTrace in root-causing an actual, serious
performance problem on a production system — a
problem that could not have been root-caused in a
production environment prior to this work.
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