
The Ephemerizer: Making Data Disappear

Radia Perlman

Sun Labs
16 Network Circle
Menlo Park, CA 94025

The Ephemerizer: Making Data Disappear

Radia Perlman

SMLI TR-2005-140 February 2005

Abstract:

This paper is about how to keep data for a finite time, and then make it unrecoverable after
that. It is difficult to ensure that data is completely destroyed. To be available before expiration
it is desirable to create backup copies. Then absolute deletion becomes difficult, because
even after explicitly deleting it, copies might remain on backup media, or in swap space, or be
forensically recoverable. The obvious solution is to store the data encrypted, and then delete
the key after expiration. The key is somewhat easier to manage, because it is smaller, but
there is still the issue of needing to make the key reliably available for some time, and then reli-
ably destroyed. It is difficult enough for a user to manage one key, much less different keys for
different data expiration times. The user could keep each key on a tamper-proof smart card
with no copies, but then the data will be lost prematurely if the user loses the smart card. And
smart cards are expensive. So the idea in this paper is to concentrate all the key management
expense and expertise in one place, a server we call an “ephemerizer”. The ephemerizer cre-
ates keys, makes them available for encryption, aids in decryption, and destroys the keys at
the appropriate time. The design in this paper ensure that even if a client’s machine gets com-
promised, and everything in stable storage (including long term user keys) is stolen, any data
that has expired before the compromise remains unrecoverable.

The paper starts with a description of an existing commercial scheme, and presents improve-
ments to that scheme to eliminate the necessity for per-message state. Then it presents a new
approach, based on public keys, and presents an initial design, and then a more efficient ver-
sion using a new concept closely related to blind signatures, that we call “blind decryption”.

email address:
radia.perlman@sun.com

Copyright 2005 Sun Microsystems, Inc. All Rights Reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories,
of Sun Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trade-
mark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@sun.com>.All technical
reports are available online on our website, http://research.sun.com/techrep/.

The Ephemerizer: Making Data Disappear 1

The Ephemerizer: Making Data Disappear

Radia Perlman
radia.perlman@sun.com

1 Introduction
Making data robustly available is an important and difficult problem, but sometimes it is equally
important for the data to become reliably unrecoverable. One example is email. One might want a
certain class of emails to be readable for only some finite amount of time, say two weeks. Even if
the data is explicitly deleted, copies may remain on backup media, have been captured and stored
in transit, e.g., at a router or MTA (mail transfer agent), or even be forensically recoverable from
disk.

One approach is to only store the data encrypted, and then it is a somewhat easier problem to
delete the key. However, long term user keys can, over time, be made available through compro-
mise or coercion. It is possible for keys to be kept in tamper-resistant smart cards, in which case it
would not be feasible to covertly discover the key. Destroying the smart card certainly deletes the
key. It is somewhat expensive and inconvenient to assume every user has a smart card and every
computer has a smart card reader. But it is especially unrealistic for the user to simultaneously
manage many keys, since there would need to be a different key for each possible data expiration
time. For example, if Alice is to send an email message to Bob that will be unrecoverable after
two weeks, it has to be encrypted in a key that will be guaranteed to be available for two weeks,
and then reliably destroyed after two weeks. It would place a large burden in cost and expertise
for Bob to create, reliably store, certify, advertise, and then reliably destroy a large number of
keys.

The system in this paper instead concentrates all the expense and expertise of key management in
a service, which we call an “ephemerizer”, whose cost can be amortized over many users and
many messages. The ephemerizer’s job is to create, advertise, and destroy keys. A client needs the
ephemerizer’s help to read an ephemerized message. This service could be used for a message
composed by Alice to be readable by Bob, or it could be used solely by Alice for management of
her own data, to store data that can easily be irrevocably destroyed on demand (when an enemy
captures her stored data), or upon a predetermined expiration date.

We assume both Alice (the client encrypting the message) and Bob (the client reading the mes-
sage) are motivated to ensure that no copies of the data exist, so they do not save copies of the
decrypted message. We also assume that Alice and Bob have special message ephemeral-encryp-
tion and ephemeral-decryption software for creating and reading messages, respectively. The
decrypted message must never be in stable storage, so if the message reading system at the client
is designed with that in mind, there is no danger of backup copies of the decrypted message exist-
ing, or being forensically recoverable, even if deleted. We want the system to be easy for users to
use, and require sophisticated key management expertise and special hardware only at the

The Ephemerizer: Making Data Disappear 2

ephemerizer. We also want the cost to the ephemerizer of managing a key to be amortized over
many users and many messages.

We assume that it is possible that Bob’s machine will be compromised at some point, including
his long-term private keys, and that Bob’s machine was not compromised before that point. All
data accessible to Bob that has not yet expired will at that point be readable by the attacker, but
the system in this paper will assure that all Bob’s data that has expired will be unrecoverable, even
if everything in stable storage on Bob’s machine, or that was ever transmitted, is seen by the
attacker.

We also want to place minimal trust in the ephemerizer, and also of course, make the system cost-
effective in communication, computation, and storage.

1.1 Roadmap to this paper

In section 2, we describe some existing approaches to the problem of making data disappear.
Then in section 3, we present improvements to an existing commercial scheme that eliminates
the necessity for per-message state. In section 4, we present a new approach, which improves the
security properties by ensuring that only the authorized recipient can decrypt messages. In section
6, we present a new concept which we call “blind decryption”, which, as we show in section 6,
improves the security and efficiency of the general approach.

1.2 Notation
{M}K means the message M is encrypted with key K. K can be a public key or a secret key.

We assume that the plaintext of a message includes integrity protection, if needed (most likely a
digital signature).

We refer to two numbers, x and y, as “exponentiative inverses” mod p to mean that anything
raised to x and then raised to y will yield the original number. If p is a prime, then x and y are
exponentiative inverses if they are multiplicative inverses mod p-1.

We use | to mean “concatenated with”, so HMAC (T, X | Y) means applying HMAC with key T to
the quantity X concatenated with Y.

2 Previous Work
There are some email systems that have a “self-destruct” feature. This is implemented purely in
the mail reading client, and involves no cryptography. It just means that the copy of the email at
the client is automatically deleted after reading (or perhaps not even that...perhaps merely marked
as deleted). There are also commercial systems that allow setting policies that email should be

The Ephemerizer: Making Data Disappear 3

deleted automatically after some time. Again this involves no cryptography, and copies on backup
media would of course not go away.

A more sophisticated system was built by a company with the wonderful name of Disappearing,
Inc. [Dis]. Conceptually, one version of the system worked as follows:
1. If Alice wishes to create an encrypted message for Bob, she contacts the ephemerizer, specify-

ing an expiration time, and requesting a key.
2. The ephemerizer chooses a random secret key K, assigns a key-ID IDK, tells Alice: (K, IDK),

and remembers: (expiration time, K, IDK).
3. Alice encrypts the message M with K (to obtain {M}K) and sends to Bob: ({M}K, IDK)
4. When Bob wishes to decrypt the message, he sends the ephemerizer: IDK
5. The ephemerizer replies with K, and then Bob can decrypt the message.
6. When expiration time occurs, the ephemerizer forgets K.

Presumably Alice and Bob talk to the ephemerizer via some protected channel such as SSL, in
which they authenticate that they are indeed talking to the ephemerizer, and such that the mes-
sages between the ephemerizer and a client are encrypted.

A nice property of this scheme is that the ephemerizer can be built such that it does not see the
messages (though in one implementation of the scheme the messages are stored on the ephemer-
izer).

The problems with this approach are:
1. Anyone that captured ({M}K, IDK) would be able to get the ephemerizer to decrypt the mes-

sage, since there is no way for the ephemerizer to authenticate Bob.
2. The ephemerizer must create and store a key for every ephemerally encrypted message.
3. The ephemerizer must communicate both when a message is encrypted (by Alice) and

decrypted (by Bob).
4. Authentication of the ephemerizer by Alice and Bob depend on the non-compromise of the

PKI. For example, if an attacker could trick any of the trust anchors in Alice or Bob to issue a
certificate with the attacker’s public key and the ephemerizer’s name, it can act as a man-in-
the-middle, obtain the message encryption keys, and later compromise Bob to obtain the
encrypted data.

3 Improving Disappearing, Inc.’s Scheme
We present two ways of compressing the space needed at the ephemerizing server before present-
ing our preferred design for making data disappear in the following sections.

3.1 One secret per expiration time

It would be easy for the Disappearing, Inc.’s scheme to be modified to avoid requiring the
ephemerizer to keep per-message state. We suggest the following enhanced scheme:

The Ephemerizer: Making Data Disappear 4

1. Alice chooses a per-message nonce N (or the ephemerizer chooses the nonce and informs
Alice in step 3)

2. She tells the ephemerizer a desired expiration time T, and the nonce N.
3. The ephemerizer keeps a set of secrets: {expiration time, S, IDS}. If there is an S with expira-

tion time T (or close enough), it selects the secret ST that has expiration time T, and calculates
some hash H= h(N, ST). If there is no suitable ST, it creates and stores a new secret (T, ST,
IDS) and calculates H based on the newly created ST.

4. The ephemerizer sends to Alice: H and IDS, and then forgets H and N.
5. Alice encrypts M with H, and tells Bob: ({M}H, N, IDS).
6. When Bob wants to decrypt the message, he sends (N, IDS) to the ephemerizer.
7. The ephemerizer finds ST, the S associated with IDS, calculates H= h(N, ST), and tells Bob H.
8. Periodically the ephemerizer forgets all the (T, ST ,IDS) triples for which T has occurred.

This modification avoids the necessity for the ephemerizer to keep per-message state. It does
mean that someone that compromises a single one of the ephemerizer’s secret S’s compromises
all messages encrypted with that secret, but in the original scheme anyone who compromised the
ephemerizer’s data would capture all the per-message keys. This variant is probably, in practice,
more secure because it would be easier to adapt this variant to having the secret keys on a tamper-
resistant smart card, since the database is so much smaller. (The smart card would generate the
secrets and, given a nonce and a secret’s ID, calculate and output a per-message encryption key.)

Note that it might be feasible for the expiration date to be the ID, so instead of the ephemerizer
needing to remember (T, ST ,IDS), it would only need to remember (T, ST). But having the ID in
addition to the expiration time allows there to be multiple secrets for a given expiration time. For
instance, a particular user might want a key with special security properties, such as being extra
long, or done with their country’s national encryption standard protocol.

3.2 One secret overall
One could save even more space by having the ephemerizer roll over keys with a one-way hash
function. Instead of generating a new secret for each expiration time, the secret for expiration time
T might be ST, and the secret for expiration time one time unit later would be h(ST), and the secret
for expiration time two time units later would be h(h(ST)), and so on. The current secret, ST, is the
one about to expire. Every time unit, the current ST is forgotten and replaced by h(ST). This saves
storage if the ephemerizer is willing to compute hn(ST) in order to encrypt or decrypt a message
with a key n units from the current secret. Otherwise, the ephemerizer could precompute the next
n secrets and store them, in which case it hasn’t saved any storage. Or the ephemerizer could store
S’s for, say, every k time units, and then only need to compute hashes from an S close to the
requested expiration time.

The Ephemerizer: Making Data Disappear 5

3.3 Backward compatibility
Either of the above enhancements might be able to be made on-the-wire compatible with Disap-
pearing, Inc.’s scheme, and therefore could be implemented as an optimization at the server with-
out modifying the clients. This would be done by having the ephemerizer (rather than Alice)
choose the nonce, and have what appears to Alice to be the ID of the per-message secret actually
be the tuple (N, IDS).

4 Our Scheme (without blind decryption)
In this section, we present a design based on public keys, that allow messages to be encrypted
without the ephemerizer’s active participation (other than advertising the keys). A single public
key can be used by many users, and for many messages. The ephemerizer must actively partici-
pate in decryption of the messages, though. In section 6, we present a scheme which is more effi-
cient for the ephemerizer.

4.1 Introduction

The basic idea behind our scheme is that there will be an ephemerizer which will create and
advertise public keys and expiration times, Alice will choose an appropriate public key, encrypt
the message using that key, and send the message securely to Bob. When Bob wants to decrypt, he
enlists the aid of the ephemerizer.

This system might be used for Alice to ephemerize her own data, in which case the step of
securely sending it to Bob can be skipped.

Although the message encryption keys used by the ephemerizer are ephemeral, we assume that
the ephemerizer has a long-term key that it uses to authenticate itself and/or certify the ephemeral
public keys. There is no need for that key to be ephemeral. If that long-term key were to become
compromised, this would be dealt with the same way that any authentication key compromise
would be handled. The old key would be revoked and a new key would be advertised and certified
(by whatever trusted third party had certified the original key). However, the important point is
that even if the ephemerizer’s authentication key is compromised, this will not cause any data to
become recoverable that had expired before the ephemerizer’s authentication key became com-
promised.

We also assume that Bob has a long term public key pair. If that key becomes compromised, and
also everything in Bob’s stable storage is read by the attacker, then all data that has not yet expired
will be readable by the attacker, but our scheme guarantees that all data that has expired before the
compromise will be unrecoverable. We also assume that Alice and Bob have special ephemeriza-
tion software. Alice’s must be capable of finding an appropriate ephemeral public key and
encrypting with it. Bob’s must be capable of communicating with the ephemerizer and doing the
cryptography necessary to get the message decrypted, and not to store the decrypted message in
stable storage. It is possible in many operating systems to have a process that will not be swapped
out to stable storage, so the ephemerization software at the client should use that feature to ensure
that the decrypted message never appear on stable storage.

The Ephemerizer: Making Data Disappear 6

4.2 Thresholding
There are two ways in which an ephemerizer can fail:
1. Prematurely forget the key, or be unavailable when needed for decryption
2. Remember the key beyond its expiration time

The solution is to use a simple thresholding scheme, where the secret is broken into n pieces, such
that any k of the pieces can recover the secret, and to give each of the n pieces to each of n
ephemerizers. Then as long as k of them are available before the key expires, the message can be
read, and as long as n-k+1 of them forget their share of the secret when they are supposed to, the
message will be unrecoverable.

Thresholding is an easy extension to any of the schemes in this paper.

4.3 Relationship to forward-secure public key cryptography

There is a concept known as “forward secure public key cryptography” [A97] which might appear
to be related to this paper. That concept is focused on surviving compromise of a signature key
without casting suspicion on all documents previously signed with that key (since whoever stole
the private key could back-date whatever it signed). The idea is that there are a set of public signa-
ture keys, each one with an expiration date, and when the expiration date on a private key has
passed and the private key is discarded, it should be impossible, even if a current private key is
compromised, to recover a previously discarded private key, and therefore anything signed with a
private key that expired before the owner’s machine (and keys) got compromised, would still
remain valid. This is conceptually trivial to accomplish if the key pairs are mathematically unre-
lated, but takes storage proportional to the number of existing time units to store all the keys. For
instance, key j could be used to certify public key j+1. The certificate chain for public key j+1
would consist of j certificates. Or key j could directly certify the next k keys, in which case the
certificate chain would be k times smaller, but the holder of the private keys would need to store k
private keys.

Ideally there would be a single key seed, and each subsequent key pair would be derived from a
one-way function of the previous key pair, so that if the first j keys were discarded, all subsequent
keys could be derived from key j+1. Although this has not been accomplished, various optimiza-
tions have been introduced over the conceptually simplest scheme of having certificate chains
proportional in size to the number of elapsed time units. [BM99] [CJMM03].

This concept of forward secure public key cryptography is not directly relevant to the ephemer-
izer concept in this paper because the ephemerizer concept does not require archivally valid sig-
natures. The public encryption/decryption keys for the ephemerizer only need to be valid during
their lifetime. And furthermore, unlike forward secure signatures, where the signer need only
keep a single private key (the current one), the ephemerizer needs to keep all currently valid
encryption/decryption keys, since it might be asked to decrypt with any of the unexpired keys.

The Ephemerizer: Making Data Disappear 7

4.4 Using triple encryption

The ephemerizer will create a set of public key pairs, and advertise triples consisting of (public
key, key ID, expiration time). The ephemerizer’s advertised triples should be signed. We assume
the ephemerizer has a long-term signature key (in addition to all the ephemeral data encryption
keys) with which all the ephemeral public keys are signed. We do not need to solve the problem of
forward secure signatures, since, as pointed out in section 4.3, there is no need for archival quality
signatures. If the ephemerizer’s long term signature key were compromised, usual PKI revocation
can be done. Compromise of the ephemerizer’s long term signature key would not cause any mes-
sages to become readable, if they were encrypted with an ephemeral key that expired before the
compromise. Someone who has stolen the long-term ephemerizer signature key can, until the
compromise is known to Alice, fool Alice into encrypting a message with a key that will not be
deleted at the expiration time, or possibly a nonsensical key for which no private key exists, and
the message will never be readable.

In order for Alice to encrypt a message for Bob, Alice encrypts the message with a randomly
selected secret key S to obtain {M}S, and encrypts S first with Bob’s key, to obtain {S}Bob, and
then with Keph, an appropriate one of the ephemerizer’s keys, to obtain {{S}Bob}Keph. To
securely transmit {{S}Bob}Keph to Bob, Alice further encrypts {{S}Bob}Keph with Bob’s long-
term public key, to obtain {{{S}Bob}Keph}Bob. She sends to Bob:
• {M}S ; the message encrypted with secret key S
• key ID of Keph ; the ID of the ephemeral key Keph that Alice chose to encrypt with
• {{{S}Bob}Keph}Bob ; the message secret key S, encrypted first with Bob’s public key, then

with Keph, then with Bob’s public key.

Bob decrypts {{{S}Bob}Keph}Bob to obtain {{S}Bob}Keph. Next the following has to happen:
• Bob needs to send {{S}Bob}Keph to the ephemerizer
• The ephemerizer has to return {S}Bob to Bob.

Bob can’t directly transmit {{S}Bob}Keph to the ephemerizer, or else an eavesdropper would be
able to request the ephemerizer to decrypt {{S}Bob}Keph. The attacker would still only see
{S}Bob, and have to also obtain Bob’s public key, but we are assuming that Bob’s key is long-
term and will not expire, and will be easy to obtain at some point through coercion, court order, or
Bob’s carelessness. Even though {M}S is not transmitted, we are assuming that anything in stable
storage on Bob’s machine might be retrievable at some point in the future, and we can’t count on
all copies of {M}S getting deleted, so it is essential that nobody other than Bob (and the ephemer-
izer) sees S or {S}Bob.

Therefore, Bob needs to securely convey {{S}Bob}Keph to the ephemerizer, and securely receive
{S}Bob} in response.

He could, in theory, communicate with the ephemerizer using SSL, and send {{S}Bob}Keph and
receive {S}Bob}, over the encrypted SSL connection. However, given that SSL does not (usually)
provide PFS (perfect forward secrecy), this would mean that S would be encrypted in a non-

The Ephemerizer: Making Data Disappear 8

ephemeral key. (someone that compromised the ephemerizer’s long-term key after Keph had
expired and was discarded, would still be able to recover S).

We could use a protocol (such as IPSEC’s IKE handshake) or a version of SSL that provides PFS.
For instance, one of SSL’s variants (designed for exportability) has the server certify an ephem-
eral RSA key with its long term key, and the session secret is encrypted with the ephemeral public
key. However, we’d like Bob to know it’s the same ephemerizer as Alice used.

Since Alice has already looked up Keph, the best solution is for her to send Keph to Bob, and Bob
can use Keph to secure his communication to the ephemerizer. However, Keph has to be securely
tied to {{S}Bob}Keph. Otherwise, if Bob can be tricked into using an attacker’s public key for
securing his communication to (what he thinks is) the ephemerizer, then he will be tricked into
sending {{S}Bob}Keph to the attacker, who will be able to then ask the ephemerizer to decrypt it
to obtain {S}Bob, and be able to, long after the message has expired, compromise Bob’s long
term key and decrypt the message.

So instead Alice chooses an ephemeral secret T, and she will use it to compute a cryptographic
integrity check linking the encrypted per-message key S with Keph. She will send T encrypted
with Bob’s public key. So for efficiency, rather than sending {{{S}Bob}Keph}Bob, she will
instead send {{{S}Bob}Keph}T. So, what Alice sends to Bob (Message 1) is:

Message 1: What Alice sends to Bob is:
• {T}Kbob
• {{{S}KBob}Keph}T
• {M}S
• key ID of Keph
• Keph
• HMAC (T, {{S}KBob}Keph} | Keph)

Next Bob decrypts with KBob in order to obtain T, and then with T to obtain {{S}KBob}Keph.
At this point he also verifies HMAC (T, {{S}KBob}Keph} | Keph).
If the HMAC verifies, then in order to decrypt the message, Bob chooses a secret key J with
which to secure his communication with the ephemerizer, encrypts J with Keph, and sends to the
ephemerizer as Message 2:
• keyID
• {J}Keph
• {{{S}KBob}Keph}J

The ephemerizer uses keyID to select Keph, decrypts J, decrypts {{{S}KBob}Keph}J with J, and
then decrypts {{S}KBob}Keph to obtain {S}KBob. Then the ephemerizer encrypts {S}KBob and
returns to Bob as Message 3:
• {{S}KBob}J

The Ephemerizer: Making Data Disappear 9

4.5 Analysis
Why is it necessary for Alice to triply encrypt S? Why can’t she send {{S}Keph}T instead of
{{{S}KBob}Keph}T? What good is the inner encryption of S with KBob?

Without the inner encryption with Kbob, if the ephemerizer is really dishonest, then the ephemer-
izer will be able to obtain S (and therefore decrypt the message) with only eavesdropping (and not
needing to compromise Bob), because a malicious ephemerizer will be able to see S and eaves-
drop from the wire {M}S. A crooked ephemerizer can refuse to delete the ephemeral private keys,
but with the triple encryption scheme we have presented, it will still need to compromise Bob.

Message 1 contains:
• {T}Kbob
• {{{S}KBob}Keph}T
• {M}S
• key ID of Keph
• Keph
• HMAC (T, {{S}KBob}Keph} | Keph)

An eavesdropper without knowledge of KBob will not be able to get the ephemerizer to decrypt
the first item, and therefore, once Keph expires, {M}S is unrecoverable to an eavesdropper. Also,
without knowledge of KBob, an attacker will not be able to substitute a different Keph, because
he will be unable to compute the integrity check HMAC (T, {{S}KBob}Keph} | Keph), because
the attacker does not know {S}KBob}Keph} without KBob. An eavesdropper will be able to dis-
cover keyID and Keph, but these are publicly available. Modifying them in the message will
cause Bob not to be able to decrypt the message, but it will not allow the attacker to read the infor-
mation.

We assume that Bob stores what he received in message 1 in stable storage, so the same argument
applies to the information as stored at Bob, as the information in transit. Once Keph expires
(assuming an honest ephemerizer), an attacker that reads everything Bob has in stable storage will
not be able to recover M.

Messages 2 and 3 are encrypted with J, an ephemeral key that Bob creates and remembers just for
the duration of those two messages. J is encrypted with Keph, so once Keph expires, no useful
information can be recovered from messages 2 and 3. Although KeyID is unencrypted, and not
even integrity protected, it is not of use to an attacker. Modifying KeyID is only a denial of ser-
vice attack (preventing Bob from decrypting the message).

If the ephemerizer is dishonest, and retains Keph, then someone that obtains the private key for
Keph, and Bob’s public key, and the message sent by Alice to Bob, will be able to recover the
message.

4.6 An ephemerizer implementation

The Ephemerizer: Making Data Disappear 10

Imagine an implementation of the ephemerizer in which the private keys are in a tamper-resistant
smart card that also does the cryptographic operations, but the rest of the machine is a general pur-
pose computer. If the smart card never divulges the private keys, and also decrypts J from “Mes-
sage 2”, and only outputs message 3 encrypted with J, then even if there were malicious software
on the general purpose computer portion of the ephemerizer, it would not be able to obtain any-
thing more than an eavesdropper would be able to obtain.

5 Blind Decryption
Blind decryption is similar in spirit to the existing concept of blind signatures [CH83]. In fact
almost the same mathematics that works for blind signatures works for blind decryption. How-
ever, we will also show two additional mathematical systems that work for blind decryption that
do not work for blind signatures.

Suppose there is a blind decrypter BD, with public key Keph, and Bob has a quantity {S}Keph,
that he wishes to have BD decrypt. Instead of sending {S}Keph to BD, Bob will instead invent
new functions “blind” and “unblind”, that commute with the encryption/decryption functions
associated with Keph. Bob will apply “blind” to {S}Keph to obtain B({S}Keph, and ask the blind
decrypter to apply its private key. The result with be B(S), which BD returns to Bob.

We want the ability to have inverse functions “encrypt” and “decrypt”, and inverse functions
“blind” and “unblind”, that commute, such that we can do “encrypt”, “blind”, “decrypt”, and
“unblind” and get the original message back.

5.1 Review of blind signatures
Blind signatures were invented by Chaum [CH83] using RSA public keys. Suppose the blind
signer (BS) has RSA public key (e,n) with private key (d,n). Suppose Alice wants BS to blindly
sign M, so she wants to obtain Md mod n. To reduce clutter, we will leave out “mod n” and
assume all arithmetic is done mod n.

Alice gets BS to blindly sign M through the following steps:
1. Alice chooses random R
2. Alice computes Re.
3. Alice computes M*Re and sends that to BS
4. BS raises that to d to obtain Md*Red = Md*R.
5. Alice divides by R to obtain Md.

5.2 Encryption with blind decryption
We will have two types of “encrypt” functions in our blind decryption schemes:
1. encryption done with a public key
2. encryption with a secret function, but with blinding. In this case encryption needs to be done

with the aid of the blind encrypter/decrypter BD. This requires choosing “blind” and

The Ephemerizer: Making Data Disappear 11

“unblind” functions that work with encryption as well as decryption. So to encrypt, a client of
BD chooses functions B and U (blind and unblind), sends B(message) to BD with the request
“please encrypt”. BD performs E(B(message)), and returns the result. The client computes
U(E(B(message))) to obtain the encrypted message E(M). Later to decrypt, the client again
chooses inverse functions B’ and U’, sends BD B’(E(M)), and says “please decrypt”. BD
applies D and returns B’(M). The client applies U’ to obtain the decrypted M.

In the next sections we describe three different types of mathematics that accomplish blind
encryption/decryption. Two of them use encryption with a public key. One of them has both func-
tions encryption and decryption as secret functions, so encryption must be done with help, and be
blinded.

5.3 Blind decryption with an RSA key
This form is almost identical to blind signatures with an RSA key. The blind decrypter’s public
RSA key is (e,n). Again, we assume all arithmetic is done mod n.

Alice encrypts M by computing Me.
Alice gets the BD to blindly decrypt Me, by doing the following:

1. Alice chooses random R
2. Alice computes Re.
3. Alice computes Me * Re and sends that to BD
4. BD raises that to d to obtain Med * Red = M * R.
5. Alice divides by R to obtain M.

5.4 Blind encryption/decryption with a Diffie-Hellman public key

This form of blind decryption does not have a similar blind signature scheme. Assume that the
blind decrypter’s public Diffie-Hellman key is gx mod p, where g and p are known. The private
key is x. (We leave out “mod p” for clarity).

To encrypt message M with BD’s public key, Alice performs the following:

1. Alice chooses random y, and computes gy and gxy. This is done by raising the publicly known
base g to y, and BD’s public Diffie-Hellman key gx to y.

2. She uses gxy as a secret key to encrypt M, obtaining {M}gxy. She saves {M}gxy and gy, and
discards y and gxy.

Again, as in the previous section, encryption is done without BD’s involvement.

To get BD to blindly decrypt {M}gxy:

The Ephemerizer: Making Data Disappear 12

1. Alice has {M}gxy and gy.
2. Alice chooses random z, and its exponentiative inverse z-1.
3. She computes (gy)z , sends gyz to BD.
4. The BD applies its private key (x) and sends to Alice: gxyz
5. Alice raises gxyz to z-1 to obtain gxy, with which she can decrypt {M}gxy.

5.5 Blind encryption/decryption without public keys
This form of blind decryption also does not have a similar blind signature scheme (and couldn’t,
because there is no public key with which to validate a signature). We use exponentiation mod p,
a blinded version of Pohlig-Hellman [PH78]. BD does not have a public key, but rather has two
secret numbers, x and x-1, which are exponentiative inverses mod p. “Encrypt” will be done with
x, “decrypt with x-1. Blind encryption, like blind decryption, requires the involvement of BD. To
get BD to blindly encrypt M:

1. Alice chooses random z, and its exponentiative inverse z-1.
2. She computes Mz, sends it to BD, with the request to “encrypt”.
3. BD applies x and returns Mxz

4. Alice applies z-1 to obtain Mx.

To get BD to blindly decrypt Mx:
1. Alice chooses random y, and its exponentiative inverse y-1.
2. She computes Mxy, sends it to BD, with the request to “decrypt”.
3. BD applies x-1 and returns My

4. Alice applies y-1 to obtain M.

Note that this scheme could be done with constant storage at the ephemerizer (as desired for the
ideal forward secure scheme), by having BD’s encryption exponent x for expiration time j+1 not
be randomly chosen, but instead chosen as a one-way hash of the x for expiration time j. How-
ever, this would be computationally expensive.

6 Using Blind Encryption/Decryption for Ephemeral Email

It is easy to combine the ephemerizer concept with the blind encryption/decryption concept. Let’s
assume Alice is sending an ephemeral email to Bob. The ephemerizer makes available a set of
(public key, expiration time, key ID) triples (if doing a scheme with public keys), or merely (expi-
ration time, key ID) if doing a scheme with secret encryption and decryption functions as in sec-
tion 5.5.

To ephemerally encrypt message M with public keys, Alice does the following:
1. She selects an appropriate (key=Keph, time, ID).

The Ephemerizer: Making Data Disappear 13

2. She encrypts the message using Keph. (by choosing secret key S, and calculating {M}S, and
{S}Keph.

3. She must send {S}Keph securely to Bob. She might do this by encrypting with Bob’s long
term public key, or, if she shares a secret key with Bob, she can encrypt {M}Keph with that.
Or Bob might actually equal Alice (Alice is encrypting stored files for easy shredding, for her-
self), in which case this step isn’t necessary since Alice already has {S}Keph.

4. She also sends Bob Keph, since he needs to know Keph in order to create blinding/unblinding
functions compatible with Keph. So she sends to Bob: {{S}Keph}Bob, {M}S, Keph. There is
no need to encrypt or integrity protect Keph, since an attacker that replaced Keph with a dif-
ferent key would only cause Bob not to be able to decrpt the message.

5. Bob decrypts {{S}Keph}Bob to obtain {S}Keph. To decrypt {S}Keph, he creates blinding
functions compatible with Keph, and blindly decrypts with the help of the ephemerizer. He
can then decrypt {M}S and read it. His machine forgets S, M, and the blinding functions (i.e.,
does not store them in stable storage).

If using the secret encryption method of section 5.5, Bob needs to know the modulus p, just like
Bob needs to know Keph in order to create compatible blinding functions in the public key case.
Otherwise, it is a straightforward variant of the above. Alice just needs to get the ephemerizer to
blindly encrypt the message. When communicating with the ephemerizer in the secret function
variant, it is essential to specify whether you want it to apply “encrypt” or “decrypt” to the blinded
quantity.

6.1 Authentication of the ephemerizer
Although all communication with the ephemerizer is blinded, it is still important for Alice to
know she is talking to an ephemerizer she trusts. Otherwise, she could be tricked into encrypting
the message with a key known to a party that is intentionally not going to discard it (or a nonexist-
ent key, so the message will be unreadable even before it expires). In the case of public keys, the
public keys can be certified with a long-term signature key of the ephemerizer (the signature key
need not expire). In the case of encryption with a secret encryption function, Alice will need to
authenticate who she is talking to when she presents the blinded message to be encrypted, with a
protocol such as SSL.

6.2 Security properties

The ephemerizer could be built on a general purpose machine, that might wind up with infected
code, but as long as the ephemeral private keys are kept on a tamper-resistant smart card, this
accomplishes a secure path between Bob and the smart card. As long as trusted people supervise
that the smart card is not stolen, and that it has a reliable source of power so that it knows when to
discard keys, infected code on the rest of the ephemerizer will not be able to store anything away
that could be used to decrypt messages.

Even if Bob’s machine is compromised, and everything stored in stable storage is recovered,
including Bob’s long term key, messages that have expired will not be readable.

The Ephemerizer: Making Data Disappear 14

If Bob’s long term key is not compromised before the ephemeral key expires, someone that sees
an encrypted message for Bob will not be able to get the ephemerizer to decrypt the message.

There is no need for Bob or the ephemerizer to authenticate each other. Decryption can be done
anonymously through an anonymizer [CA97].

Alice does need to verify that she has an authentic ephemeral public key from an ephemerizer she
trusts, in the case of the public key variants. In the case of the secret functions variant presented in
section 5.5, she must authenticate that she is indeed communicating with the ephemerizer.

The cryptography has to withstand a chosen ciphertext attack, since the ephemerizer cannot, by
definition, see what it is decrypting [NY90].

6.3 Analysis
Messages appear in one of several places: on Alice’s machine, in transit between Alice and Bob,
on Bob’s machine, in transit between Bob and the ephemerizer, inside the ephemerizer, in transit
between the ephemerizer and Bob, and at Bob’s machine after communication with the ephemer-
izer.

We assume that Alice creates the message and encrypts it using special software that does not
save the message, or allow its data to be swapped out to stable storage. After transmitting the
ephemerized message, Alice’s machine deletes all the data.

What Alice sends on the wire to Bob is: {{S}Keph}Bob, {M}S, ID, Keph. {M}S is protected
with S. Keph need not be protected. If an attacker substitutes a different Keph, it is only a denial
of service attack. Bob will not be able to recover M. {{S}Keph}Bob is encrypted with Bob’s pub-
lic key. Only someone that knows Bob’s public key before P’s private key is deleted will be able
to unwrap this in order to obtain {S}Keph.

Bob creates a blinding pair (B,U). What he sends on the wire to the ephemerizer is B({S}Keph).
This quantity is protected because it is encrypted with an ephemeral encryption function B. B will
be destroyed as soon as Bob receives the reply from the ephemerizer, after which nobody will be
able to obtain any information from B({S}Keph.

The ephemerizer applies the private component of Keph to obtain B(S). S is encrypted with B,
and cannot be recovered even if B(S) is saved and later Bob’s machine is compromised, because
B will be forgotten momentarily by Bob (and never was stored in stable storage).

Bob decrypts S and the message, but does not save these in stable storage.

If the ephemerizer really does not forget Keph, then assuming {M}S and {S}Keph are later recov-
ered from stable storage at Bob, the message will be recoverable. This is why Alice must choose
an ephemerizer she trusts, or use a thresholding scheme so that messages will be unrecoverable
after the expiration time provided enough ephemerizers are trustworthy.

The Ephemerizer: Making Data Disappear 15

6.4 Secure channel to the ephemerizer’s smart card
A way of building a cheap and secure ephemerizer is to have the private keys in a tamper-proof
smart card, and connected to a general purpose machine. Assume that the machine might have
malicious code, and that malicious people might have access to the machine, including with the
smart cart connected. However, also assume that the smart card can be physically protected, not
removed from the building (at least without being detected), and that it has a reliable source of
power so that it will know when to delete keys. Perhaps it erases its memory if deprived of power.

With our ephemerizer scheme, there is nothing that can be gained by storing information transmit-
ted over the wire, or seen by the general purpose computer portion of the ephemerizer. There is a
secure path between the client (Bob) and the smart card. Destruction of the smart card, or over-
writing its contents, can be done in a supervised way. Someone might steal the smart card, but that
would at least be known. There is no way to covertly compromise the system.

Without a reliable source of power or access to a reliable clock, it might not be easy for the smart
card to automatically delete the private key at the right time. However, we assume there are some
honest people at the ephemerizer company that can supervise timely destruction of the keys.

6.5 Comparison between blind decryption and triple encryption schemes

Both have the same security properties, provided that the ephemerizer keeps its ephemeral keys
on a tamper-resistant smart card that performs the cryptographic operations. However, the blind
decryption scheme is more efficient for the ephemerizer, because it only needs to apply its private
key once in order to decrypt a message. In the triple encryption scheme, the ephemerizer needs to
do two private key operations per message decryption; once to decrypt {J}Keph, and once to
decrypt {{S}KBob}Keph.

7 Conclusions
We presented a scheme in which a service known as an ephemerizer creates encryption and
decryption functions with expiration times. The purpose is to concentrate the expense and exper-
tise of secure key management in one place, and the expense of key management will be amor-
tized over many users and many messages. The ephemerizer’s functions must work together with
blinding functions that Bob will create in order to decrypt an ephemerized message. Ephemeral
encryption can be done with one of two public key schemes, or with a scheme in which the
ephemerizer’s encryption function is a secret function, and encryption must be done with the
ephemerizer’s help (and using blinding functions chosen by Alice, the entity creating the
encrypted message). If the clients, when creating and reading messages, use special software that
does not store decrypted messages in stable storage, expired messages will be unreadable once the
ephemerizer deletes expired keys.

The Ephemerizer: Making Data Disappear 16

8 Acknowledgements
We would like to thank Charlie Kaufman, Hilarie Orman, and Gideon Yuval for their comments,
which helped improve both the technical content and readability of this paper.

 Bibliography
[A97] Anderson, R., “Two remarks on public-key cryptology”, Invited lecture, Fourth ACM Con-
ference on Computer and Communications Security, April, 1997.

[BM99] Bellare, M., and Miner, S.K., “A Forward-secure digital signature scheme”. Advances in
Cryptology - CRYPTO ‘99 Lecture Notes in Computer Science, 1999.

[CA97] Camp, L. J. (1997, February). Web security & privacy: An American perspective. ACM
SIGCAS CEPC ’97 (Computer Ethics: Philosophical Inquiry).

[CH83] Chaum, D., “Blind signatures for Untraceable payments”, Advances in Cryptology - pro-
ceedings of Crypto 82, 1983.

[CJMM03] Cronin, E., Jamin, S., Malkin, T., and McDaniel, P, “On the performance, feasibility,
and use of forward-secure signatures”, Conference on Computer and Communications Security,
2003.

[DH76] Diffie, W., and Hellman, M., “New directions in cryptography”, IEEE Transcations on
Information Theory”, 1976.

[Dis] Disappearing, Inc., web site: http://www.specimenbox.com/di/ab/hwdi.html

[NY90] Naor, M., and Yung, M., “Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks”, 22nd Annual ACM Symposium on Theory of Computing, 1990.

[PH78] Pohlig, S., and Hellman, M., “An Improved Algorithm for Computing Logarithms in
GF(P) and Its Cryptographic Significance,” IEEE Transactions on Information Theory, v. 24, #1,
Jan 1978.

[RSA78] Rivest, R., Shamir, A., and Adleman, L., “A method for obtaining digital signatures and
public-key cryptosystems”, Communications of the ACM, 1978.

The Ephemerizer: Making Data Disappear 17

Author Biography
Radia Perlman is a Distinguished Engineer at Sun Microsystems Laboratories. Her work has
had a profound impact on the field on computer networking. She designed the algorithms
that make link state routing protocols robust, efficient, and manageable, the spanning tree algo-
rithm used by bridges/switches, routing in the presence of Byzantine failures, and many other
contributions to network security and routing. She is the author of "Interconnections: Bridges,
Routers, Switches, and Internetworking Protocols" and coauthor of "Network Security: Private
Communication in a Public World", both textbooks used in many universities as textbooks, and as
references by engineers. She holds about 80 issued patents, a PhD in computer science from MIT,
and an honorary doctorate from KTH. She was named 2004 Inventor of the Year by SVIPLA (Sil-
icon Valley Intellectual Property Law Association).

	The Ephemerizer: Making Data Disappear
	Abstract
	Copyright
	1 Introduction
	1.1 Roadmap to this paper
	1.2 Notation

	2 Previous Work
	1. If Alice wishes to create an encrypted message for Bob, she contacts the ephemerizer, specifying an expiration time, and requesting a key.
	2. The ephemerizer chooses a random secret key K, assigns a key-ID IDK, tells Alice: (K, IDK), and remembers: (expiration time, K, IDK).
	3. Alice encrypts the message M with K (to obtain {M}K) and sends to Bob: ({M}K, IDK)
	4. When Bob wishes to decrypt the message, he sends the ephemerizer: IDK
	5. The ephemerizer replies with K, and then Bob can decrypt the message.
	6. When expiration time occurs, the ephemerizer forgets K.
	1. Anyone that captured ({M}K, IDK) would be able to get the ephemerizer to decrypt the message, since there is no way for the ephemerizer to authenticate Bob.
	2. The ephemerizer must create and store a key for every ephemerally encrypted message.
	3. The ephemerizer must communicate both when a message is encrypted (by Alice) and decrypted (by Bob).
	4. Authentication of the ephemerizer by Alice and Bob depend on the non-compromise of the PKI. For example, if an attacker could...

	3 Improving Disappearing, Inc.’s Scheme
	3.1 One secret per expiration time
	1. Alice chooses a per-message nonce N (or the ephemerizer chooses the nonce and informs Alice in step 3)
	2. She tells the ephemerizer a desired expiration time T, and the nonce N.
	3. The ephemerizer keeps a set of secrets: {expiration time, S, IDS}. If there is an S with expiration time T (or close enough),...
	4. The ephemerizer sends to Alice: H and IDS, and then forgets H and N.
	5. Alice encrypts M with H, and tells Bob: ({M}H, N, IDS).
	6. When Bob wants to decrypt the message, he sends (N, IDS) to the ephemerizer.
	7. The ephemerizer finds ST, the S associated with IDS, calculates H= h(N, ST), and tells Bob H.
	8. Periodically the ephemerizer forgets all the (T, ST ,IDS) triples for which T has occurred.

	3.2 One secret overall
	3.3 Backward compatibility

	4 Our Scheme (without blind decryption)
	4.1 Introduction
	4.2 Thresholding
	1. Prematurely forget the key, or be unavailable when needed for decryption
	2. Remember the key beyond its expiration time

	4.3 Relationship to forward-secure public key cryptography
	4.4 Using triple encryption
	4.5 Analysis
	4.6 An ephemerizer implementation

	5 Blind Decryption
	5.1 Review of blind signatures
	1. Alice chooses random R
	2. Alice computes Re.
	3. Alice computes M*Re and sends that to BS
	4. BS raises that to d to obtain Md*Red = Md*R.
	5. Alice divides by R to obtain Md.

	5.2 Encryption with blind decryption
	1. encryption done with a public key
	2. encryption with a secret function, but with blinding. In this case encryption needs to be done with the aid of the blind encr...

	5.3 Blind decryption with an RSA key
	1. Alice chooses random R
	2. Alice computes Re.
	3. Alice computes Me * Re and sends that to BD
	4. BD raises that to d to obtain Med * Red = M * R.
	5. Alice divides by R to obtain M.

	5.4 Blind encryption/decryption with a Diffie-Hellman public key
	1. Alice chooses random y, and computes gy and gxy. This is done by raising the publicly known base g to y, and BD’s public Diffie-Hellman key gx to y.
	2. She uses gxy as a secret key to encrypt M, obtaining {M}gxy. She saves {M}gxy and gy, and discards y and gxy.
	1. Alice has {M}gxy and gy.
	2. Alice chooses random z, and its exponentiative inverse z-1.
	3. She computes (gy)z , sends gyz to BD.
	4. The BD applies its private key (x) and sends to Alice: gxyz
	5. Alice raises gxyz to z-1 to obtain gxy, with which she can decrypt {M}gxy.

	5.5 Blind encryption/decryption without public keys
	1. Alice chooses random z, and its exponentiative inverse z-1.
	2. She computes Mz, sends it to BD, with the request to “encrypt”.
	3. BD applies x and returns Mxz
	4. Alice applies z-1 to obtain Mx.
	1. Alice chooses random y, and its exponentiative inverse y-1.
	2. She computes Mxy, sends it to BD, with the request to “decrypt”.
	3. BD applies x-1 and returns My
	4. Alice applies y-1 to obtain M.

	6 Using Blind Encryption/Decryption for Ephemeral Email
	1. She selects an appropriate (key=Keph, time, ID).
	2. She encrypts the message using Keph. (by choosing secret key S, and calculating {M}S, and {S}Keph.
	3. She must send {S}Keph securely to Bob. She might do this by encrypting with Bob’s long term public key, or, if she shares a s...
	4. She also sends Bob Keph, since he needs to know Keph in order to create blinding/unblinding functions compatible with Keph. S...
	5. Bob decrypts {{S}Keph}Bob to obtain {S}Keph. To decrypt {S}Keph, he creates blinding functions compatible with Keph, and blin...
	6.1 Authentication of the ephemerizer
	6.2 Security properties
	6.3 Analysis
	6.4 Secure channel to the ephemerizer’s smart card
	6.5 Comparison between blind decryption and triple encryption schemes

	7 Conclusions
	8 Acknowledgements
	Bibliography
	Author Biography

